xref: /openbmc/linux/net/ceph/messenger.c (revision 1f9f6a78)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		con->error_msg = "connect error";
509 
510 		return ret;
511 	}
512 
513 	sk_set_memalloc(sock->sk);
514 
515 	con->sock = sock;
516 	return 0;
517 }
518 
519 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
520 {
521 	struct kvec iov = {buf, len};
522 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
523 	int r;
524 
525 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
526 	if (r == -EAGAIN)
527 		r = 0;
528 	return r;
529 }
530 
531 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
532 		     int page_offset, size_t length)
533 {
534 	void *kaddr;
535 	int ret;
536 
537 	BUG_ON(page_offset + length > PAGE_SIZE);
538 
539 	kaddr = kmap(page);
540 	BUG_ON(!kaddr);
541 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
542 	kunmap(page);
543 
544 	return ret;
545 }
546 
547 /*
548  * write something.  @more is true if caller will be sending more data
549  * shortly.
550  */
551 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
552 		     size_t kvlen, size_t len, int more)
553 {
554 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
555 	int r;
556 
557 	if (more)
558 		msg.msg_flags |= MSG_MORE;
559 	else
560 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
561 
562 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
563 	if (r == -EAGAIN)
564 		r = 0;
565 	return r;
566 }
567 
568 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
569 		     int offset, size_t size, bool more)
570 {
571 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
572 	int ret;
573 
574 	ret = kernel_sendpage(sock, page, offset, size, flags);
575 	if (ret == -EAGAIN)
576 		ret = 0;
577 
578 	return ret;
579 }
580 
581 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
582 		     int offset, size_t size, bool more)
583 {
584 	int ret;
585 	struct kvec iov;
586 
587 	/* sendpage cannot properly handle pages with page_count == 0,
588 	 * we need to fallback to sendmsg if that's the case */
589 	if (page_count(page) >= 1)
590 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
591 
592 	iov.iov_base = kmap(page) + offset;
593 	iov.iov_len = size;
594 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
595 	kunmap(page);
596 
597 	return ret;
598 }
599 
600 /*
601  * Shutdown/close the socket for the given connection.
602  */
603 static int con_close_socket(struct ceph_connection *con)
604 {
605 	int rc = 0;
606 
607 	dout("con_close_socket on %p sock %p\n", con, con->sock);
608 	if (con->sock) {
609 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
610 		sock_release(con->sock);
611 		con->sock = NULL;
612 	}
613 
614 	/*
615 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
616 	 * independent of the connection mutex, and we could have
617 	 * received a socket close event before we had the chance to
618 	 * shut the socket down.
619 	 */
620 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
621 
622 	con_sock_state_closed(con);
623 	return rc;
624 }
625 
626 /*
627  * Reset a connection.  Discard all incoming and outgoing messages
628  * and clear *_seq state.
629  */
630 static void ceph_msg_remove(struct ceph_msg *msg)
631 {
632 	list_del_init(&msg->list_head);
633 	BUG_ON(msg->con == NULL);
634 	msg->con->ops->put(msg->con);
635 	msg->con = NULL;
636 
637 	ceph_msg_put(msg);
638 }
639 static void ceph_msg_remove_list(struct list_head *head)
640 {
641 	while (!list_empty(head)) {
642 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
643 							list_head);
644 		ceph_msg_remove(msg);
645 	}
646 }
647 
648 static void reset_connection(struct ceph_connection *con)
649 {
650 	/* reset connection, out_queue, msg_ and connect_seq */
651 	/* discard existing out_queue and msg_seq */
652 	dout("reset_connection %p\n", con);
653 	ceph_msg_remove_list(&con->out_queue);
654 	ceph_msg_remove_list(&con->out_sent);
655 
656 	if (con->in_msg) {
657 		BUG_ON(con->in_msg->con != con);
658 		con->in_msg->con = NULL;
659 		ceph_msg_put(con->in_msg);
660 		con->in_msg = NULL;
661 		con->ops->put(con);
662 	}
663 
664 	con->connect_seq = 0;
665 	con->out_seq = 0;
666 	if (con->out_msg) {
667 		ceph_msg_put(con->out_msg);
668 		con->out_msg = NULL;
669 	}
670 	con->in_seq = 0;
671 	con->in_seq_acked = 0;
672 }
673 
674 /*
675  * mark a peer down.  drop any open connections.
676  */
677 void ceph_con_close(struct ceph_connection *con)
678 {
679 	mutex_lock(&con->mutex);
680 	dout("con_close %p peer %s\n", con,
681 	     ceph_pr_addr(&con->peer_addr.in_addr));
682 	con->state = CON_STATE_CLOSED;
683 
684 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
685 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
686 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
687 	con_flag_clear(con, CON_FLAG_BACKOFF);
688 
689 	reset_connection(con);
690 	con->peer_global_seq = 0;
691 	cancel_con(con);
692 	con_close_socket(con);
693 	mutex_unlock(&con->mutex);
694 }
695 EXPORT_SYMBOL(ceph_con_close);
696 
697 /*
698  * Reopen a closed connection, with a new peer address.
699  */
700 void ceph_con_open(struct ceph_connection *con,
701 		   __u8 entity_type, __u64 entity_num,
702 		   struct ceph_entity_addr *addr)
703 {
704 	mutex_lock(&con->mutex);
705 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
706 
707 	WARN_ON(con->state != CON_STATE_CLOSED);
708 	con->state = CON_STATE_PREOPEN;
709 
710 	con->peer_name.type = (__u8) entity_type;
711 	con->peer_name.num = cpu_to_le64(entity_num);
712 
713 	memcpy(&con->peer_addr, addr, sizeof(*addr));
714 	con->delay = 0;      /* reset backoff memory */
715 	mutex_unlock(&con->mutex);
716 	queue_con(con);
717 }
718 EXPORT_SYMBOL(ceph_con_open);
719 
720 /*
721  * return true if this connection ever successfully opened
722  */
723 bool ceph_con_opened(struct ceph_connection *con)
724 {
725 	return con->connect_seq > 0;
726 }
727 
728 /*
729  * initialize a new connection.
730  */
731 void ceph_con_init(struct ceph_connection *con, void *private,
732 	const struct ceph_connection_operations *ops,
733 	struct ceph_messenger *msgr)
734 {
735 	dout("con_init %p\n", con);
736 	memset(con, 0, sizeof(*con));
737 	con->private = private;
738 	con->ops = ops;
739 	con->msgr = msgr;
740 
741 	con_sock_state_init(con);
742 
743 	mutex_init(&con->mutex);
744 	INIT_LIST_HEAD(&con->out_queue);
745 	INIT_LIST_HEAD(&con->out_sent);
746 	INIT_DELAYED_WORK(&con->work, con_work);
747 
748 	con->state = CON_STATE_CLOSED;
749 }
750 EXPORT_SYMBOL(ceph_con_init);
751 
752 
753 /*
754  * We maintain a global counter to order connection attempts.  Get
755  * a unique seq greater than @gt.
756  */
757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
758 {
759 	u32 ret;
760 
761 	spin_lock(&msgr->global_seq_lock);
762 	if (msgr->global_seq < gt)
763 		msgr->global_seq = gt;
764 	ret = ++msgr->global_seq;
765 	spin_unlock(&msgr->global_seq_lock);
766 	return ret;
767 }
768 
769 static void con_out_kvec_reset(struct ceph_connection *con)
770 {
771 	con->out_kvec_left = 0;
772 	con->out_kvec_bytes = 0;
773 	con->out_kvec_cur = &con->out_kvec[0];
774 }
775 
776 static void con_out_kvec_add(struct ceph_connection *con,
777 				size_t size, void *data)
778 {
779 	int index;
780 
781 	index = con->out_kvec_left;
782 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
783 
784 	con->out_kvec[index].iov_len = size;
785 	con->out_kvec[index].iov_base = data;
786 	con->out_kvec_left++;
787 	con->out_kvec_bytes += size;
788 }
789 
790 #ifdef CONFIG_BLOCK
791 
792 /*
793  * For a bio data item, a piece is whatever remains of the next
794  * entry in the current bio iovec, or the first entry in the next
795  * bio in the list.
796  */
797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
798 					size_t length)
799 {
800 	struct ceph_msg_data *data = cursor->data;
801 	struct bio *bio;
802 
803 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
804 
805 	bio = data->bio;
806 	BUG_ON(!bio);
807 
808 	cursor->resid = min(length, data->bio_length);
809 	cursor->bio = bio;
810 	cursor->bvec_iter = bio->bi_iter;
811 	cursor->last_piece =
812 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
813 }
814 
815 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
816 						size_t *page_offset,
817 						size_t *length)
818 {
819 	struct ceph_msg_data *data = cursor->data;
820 	struct bio *bio;
821 	struct bio_vec bio_vec;
822 
823 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
824 
825 	bio = cursor->bio;
826 	BUG_ON(!bio);
827 
828 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
829 
830 	*page_offset = (size_t) bio_vec.bv_offset;
831 	BUG_ON(*page_offset >= PAGE_SIZE);
832 	if (cursor->last_piece) /* pagelist offset is always 0 */
833 		*length = cursor->resid;
834 	else
835 		*length = (size_t) bio_vec.bv_len;
836 	BUG_ON(*length > cursor->resid);
837 	BUG_ON(*page_offset + *length > PAGE_SIZE);
838 
839 	return bio_vec.bv_page;
840 }
841 
842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
843 					size_t bytes)
844 {
845 	struct bio *bio;
846 	struct bio_vec bio_vec;
847 
848 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
849 
850 	bio = cursor->bio;
851 	BUG_ON(!bio);
852 
853 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
854 
855 	/* Advance the cursor offset */
856 
857 	BUG_ON(cursor->resid < bytes);
858 	cursor->resid -= bytes;
859 
860 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
861 
862 	if (bytes < bio_vec.bv_len)
863 		return false;	/* more bytes to process in this segment */
864 
865 	/* Move on to the next segment, and possibly the next bio */
866 
867 	if (!cursor->bvec_iter.bi_size) {
868 		bio = bio->bi_next;
869 		cursor->bio = bio;
870 		if (bio)
871 			cursor->bvec_iter = bio->bi_iter;
872 		else
873 			memset(&cursor->bvec_iter, 0,
874 			       sizeof(cursor->bvec_iter));
875 	}
876 
877 	if (!cursor->last_piece) {
878 		BUG_ON(!cursor->resid);
879 		BUG_ON(!bio);
880 		/* A short read is OK, so use <= rather than == */
881 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
882 			cursor->last_piece = true;
883 	}
884 
885 	return true;
886 }
887 #endif /* CONFIG_BLOCK */
888 
889 /*
890  * For a page array, a piece comes from the first page in the array
891  * that has not already been fully consumed.
892  */
893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
894 					size_t length)
895 {
896 	struct ceph_msg_data *data = cursor->data;
897 	int page_count;
898 
899 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
900 
901 	BUG_ON(!data->pages);
902 	BUG_ON(!data->length);
903 
904 	cursor->resid = min(length, data->length);
905 	page_count = calc_pages_for(data->alignment, (u64)data->length);
906 	cursor->page_offset = data->alignment & ~PAGE_MASK;
907 	cursor->page_index = 0;
908 	BUG_ON(page_count > (int)USHRT_MAX);
909 	cursor->page_count = (unsigned short)page_count;
910 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
911 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
912 }
913 
914 static struct page *
915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
916 					size_t *page_offset, size_t *length)
917 {
918 	struct ceph_msg_data *data = cursor->data;
919 
920 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
921 
922 	BUG_ON(cursor->page_index >= cursor->page_count);
923 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
924 
925 	*page_offset = cursor->page_offset;
926 	if (cursor->last_piece)
927 		*length = cursor->resid;
928 	else
929 		*length = PAGE_SIZE - *page_offset;
930 
931 	return data->pages[cursor->page_index];
932 }
933 
934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
935 						size_t bytes)
936 {
937 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
938 
939 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
940 
941 	/* Advance the cursor page offset */
942 
943 	cursor->resid -= bytes;
944 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
945 	if (!bytes || cursor->page_offset)
946 		return false;	/* more bytes to process in the current page */
947 
948 	if (!cursor->resid)
949 		return false;   /* no more data */
950 
951 	/* Move on to the next page; offset is already at 0 */
952 
953 	BUG_ON(cursor->page_index >= cursor->page_count);
954 	cursor->page_index++;
955 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
956 
957 	return true;
958 }
959 
960 /*
961  * For a pagelist, a piece is whatever remains to be consumed in the
962  * first page in the list, or the front of the next page.
963  */
964 static void
965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
966 					size_t length)
967 {
968 	struct ceph_msg_data *data = cursor->data;
969 	struct ceph_pagelist *pagelist;
970 	struct page *page;
971 
972 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
973 
974 	pagelist = data->pagelist;
975 	BUG_ON(!pagelist);
976 
977 	if (!length)
978 		return;		/* pagelist can be assigned but empty */
979 
980 	BUG_ON(list_empty(&pagelist->head));
981 	page = list_first_entry(&pagelist->head, struct page, lru);
982 
983 	cursor->resid = min(length, pagelist->length);
984 	cursor->page = page;
985 	cursor->offset = 0;
986 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
987 }
988 
989 static struct page *
990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
991 				size_t *page_offset, size_t *length)
992 {
993 	struct ceph_msg_data *data = cursor->data;
994 	struct ceph_pagelist *pagelist;
995 
996 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
997 
998 	pagelist = data->pagelist;
999 	BUG_ON(!pagelist);
1000 
1001 	BUG_ON(!cursor->page);
1002 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1003 
1004 	/* offset of first page in pagelist is always 0 */
1005 	*page_offset = cursor->offset & ~PAGE_MASK;
1006 	if (cursor->last_piece)
1007 		*length = cursor->resid;
1008 	else
1009 		*length = PAGE_SIZE - *page_offset;
1010 
1011 	return cursor->page;
1012 }
1013 
1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1015 						size_t bytes)
1016 {
1017 	struct ceph_msg_data *data = cursor->data;
1018 	struct ceph_pagelist *pagelist;
1019 
1020 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1021 
1022 	pagelist = data->pagelist;
1023 	BUG_ON(!pagelist);
1024 
1025 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1026 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1027 
1028 	/* Advance the cursor offset */
1029 
1030 	cursor->resid -= bytes;
1031 	cursor->offset += bytes;
1032 	/* offset of first page in pagelist is always 0 */
1033 	if (!bytes || cursor->offset & ~PAGE_MASK)
1034 		return false;	/* more bytes to process in the current page */
1035 
1036 	if (!cursor->resid)
1037 		return false;   /* no more data */
1038 
1039 	/* Move on to the next page */
1040 
1041 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1042 	cursor->page = list_entry_next(cursor->page, lru);
1043 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1044 
1045 	return true;
1046 }
1047 
1048 /*
1049  * Message data is handled (sent or received) in pieces, where each
1050  * piece resides on a single page.  The network layer might not
1051  * consume an entire piece at once.  A data item's cursor keeps
1052  * track of which piece is next to process and how much remains to
1053  * be processed in that piece.  It also tracks whether the current
1054  * piece is the last one in the data item.
1055  */
1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1057 {
1058 	size_t length = cursor->total_resid;
1059 
1060 	switch (cursor->data->type) {
1061 	case CEPH_MSG_DATA_PAGELIST:
1062 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1063 		break;
1064 	case CEPH_MSG_DATA_PAGES:
1065 		ceph_msg_data_pages_cursor_init(cursor, length);
1066 		break;
1067 #ifdef CONFIG_BLOCK
1068 	case CEPH_MSG_DATA_BIO:
1069 		ceph_msg_data_bio_cursor_init(cursor, length);
1070 		break;
1071 #endif /* CONFIG_BLOCK */
1072 	case CEPH_MSG_DATA_NONE:
1073 	default:
1074 		/* BUG(); */
1075 		break;
1076 	}
1077 	cursor->need_crc = true;
1078 }
1079 
1080 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1081 {
1082 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1083 	struct ceph_msg_data *data;
1084 
1085 	BUG_ON(!length);
1086 	BUG_ON(length > msg->data_length);
1087 	BUG_ON(list_empty(&msg->data));
1088 
1089 	cursor->data_head = &msg->data;
1090 	cursor->total_resid = length;
1091 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1092 	cursor->data = data;
1093 
1094 	__ceph_msg_data_cursor_init(cursor);
1095 }
1096 
1097 /*
1098  * Return the page containing the next piece to process for a given
1099  * data item, and supply the page offset and length of that piece.
1100  * Indicate whether this is the last piece in this data item.
1101  */
1102 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1103 					size_t *page_offset, size_t *length,
1104 					bool *last_piece)
1105 {
1106 	struct page *page;
1107 
1108 	switch (cursor->data->type) {
1109 	case CEPH_MSG_DATA_PAGELIST:
1110 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1111 		break;
1112 	case CEPH_MSG_DATA_PAGES:
1113 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1114 		break;
1115 #ifdef CONFIG_BLOCK
1116 	case CEPH_MSG_DATA_BIO:
1117 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1118 		break;
1119 #endif /* CONFIG_BLOCK */
1120 	case CEPH_MSG_DATA_NONE:
1121 	default:
1122 		page = NULL;
1123 		break;
1124 	}
1125 	BUG_ON(!page);
1126 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1127 	BUG_ON(!*length);
1128 	if (last_piece)
1129 		*last_piece = cursor->last_piece;
1130 
1131 	return page;
1132 }
1133 
1134 /*
1135  * Returns true if the result moves the cursor on to the next piece
1136  * of the data item.
1137  */
1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1139 				size_t bytes)
1140 {
1141 	bool new_piece;
1142 
1143 	BUG_ON(bytes > cursor->resid);
1144 	switch (cursor->data->type) {
1145 	case CEPH_MSG_DATA_PAGELIST:
1146 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1147 		break;
1148 	case CEPH_MSG_DATA_PAGES:
1149 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1150 		break;
1151 #ifdef CONFIG_BLOCK
1152 	case CEPH_MSG_DATA_BIO:
1153 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1154 		break;
1155 #endif /* CONFIG_BLOCK */
1156 	case CEPH_MSG_DATA_NONE:
1157 	default:
1158 		BUG();
1159 		break;
1160 	}
1161 	cursor->total_resid -= bytes;
1162 
1163 	if (!cursor->resid && cursor->total_resid) {
1164 		WARN_ON(!cursor->last_piece);
1165 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1166 		cursor->data = list_entry_next(cursor->data, links);
1167 		__ceph_msg_data_cursor_init(cursor);
1168 		new_piece = true;
1169 	}
1170 	cursor->need_crc = new_piece;
1171 
1172 	return new_piece;
1173 }
1174 
1175 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1176 {
1177 	BUG_ON(!msg);
1178 	BUG_ON(!data_len);
1179 
1180 	/* Initialize data cursor */
1181 
1182 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1183 }
1184 
1185 /*
1186  * Prepare footer for currently outgoing message, and finish things
1187  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1188  */
1189 static void prepare_write_message_footer(struct ceph_connection *con)
1190 {
1191 	struct ceph_msg *m = con->out_msg;
1192 	int v = con->out_kvec_left;
1193 
1194 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1195 
1196 	dout("prepare_write_message_footer %p\n", con);
1197 	con->out_kvec_is_msg = true;
1198 	con->out_kvec[v].iov_base = &m->footer;
1199 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1200 		if (con->ops->sign_message)
1201 			con->ops->sign_message(con, m);
1202 		else
1203 			m->footer.sig = 0;
1204 		con->out_kvec[v].iov_len = sizeof(m->footer);
1205 		con->out_kvec_bytes += sizeof(m->footer);
1206 	} else {
1207 		m->old_footer.flags = m->footer.flags;
1208 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1209 		con->out_kvec_bytes += sizeof(m->old_footer);
1210 	}
1211 	con->out_kvec_left++;
1212 	con->out_more = m->more_to_follow;
1213 	con->out_msg_done = true;
1214 }
1215 
1216 /*
1217  * Prepare headers for the next outgoing message.
1218  */
1219 static void prepare_write_message(struct ceph_connection *con)
1220 {
1221 	struct ceph_msg *m;
1222 	u32 crc;
1223 
1224 	con_out_kvec_reset(con);
1225 	con->out_kvec_is_msg = true;
1226 	con->out_msg_done = false;
1227 
1228 	/* Sneak an ack in there first?  If we can get it into the same
1229 	 * TCP packet that's a good thing. */
1230 	if (con->in_seq > con->in_seq_acked) {
1231 		con->in_seq_acked = con->in_seq;
1232 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1233 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1234 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1235 			&con->out_temp_ack);
1236 	}
1237 
1238 	BUG_ON(list_empty(&con->out_queue));
1239 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1240 	con->out_msg = m;
1241 	BUG_ON(m->con != con);
1242 
1243 	/* put message on sent list */
1244 	ceph_msg_get(m);
1245 	list_move_tail(&m->list_head, &con->out_sent);
1246 
1247 	/*
1248 	 * only assign outgoing seq # if we haven't sent this message
1249 	 * yet.  if it is requeued, resend with it's original seq.
1250 	 */
1251 	if (m->needs_out_seq) {
1252 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1253 		m->needs_out_seq = false;
1254 	}
1255 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1256 
1257 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1258 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1259 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1260 	     m->data_length);
1261 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1262 
1263 	/* tag + hdr + front + middle */
1264 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1265 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1266 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1267 
1268 	if (m->middle)
1269 		con_out_kvec_add(con, m->middle->vec.iov_len,
1270 			m->middle->vec.iov_base);
1271 
1272 	/* fill in crc (except data pages), footer */
1273 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1274 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1275 	con->out_msg->footer.flags = 0;
1276 
1277 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1278 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1279 	if (m->middle) {
1280 		crc = crc32c(0, m->middle->vec.iov_base,
1281 				m->middle->vec.iov_len);
1282 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1283 	} else
1284 		con->out_msg->footer.middle_crc = 0;
1285 	dout("%s front_crc %u middle_crc %u\n", __func__,
1286 	     le32_to_cpu(con->out_msg->footer.front_crc),
1287 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1288 
1289 	/* is there a data payload? */
1290 	con->out_msg->footer.data_crc = 0;
1291 	if (m->data_length) {
1292 		prepare_message_data(con->out_msg, m->data_length);
1293 		con->out_more = 1;  /* data + footer will follow */
1294 	} else {
1295 		/* no, queue up footer too and be done */
1296 		prepare_write_message_footer(con);
1297 	}
1298 
1299 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1300 }
1301 
1302 /*
1303  * Prepare an ack.
1304  */
1305 static void prepare_write_ack(struct ceph_connection *con)
1306 {
1307 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1308 	     con->in_seq_acked, con->in_seq);
1309 	con->in_seq_acked = con->in_seq;
1310 
1311 	con_out_kvec_reset(con);
1312 
1313 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1314 
1315 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1316 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1317 				&con->out_temp_ack);
1318 
1319 	con->out_more = 1;  /* more will follow.. eventually.. */
1320 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1321 }
1322 
1323 /*
1324  * Prepare to share the seq during handshake
1325  */
1326 static void prepare_write_seq(struct ceph_connection *con)
1327 {
1328 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1329 	     con->in_seq_acked, con->in_seq);
1330 	con->in_seq_acked = con->in_seq;
1331 
1332 	con_out_kvec_reset(con);
1333 
1334 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1335 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1336 			 &con->out_temp_ack);
1337 
1338 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339 }
1340 
1341 /*
1342  * Prepare to write keepalive byte.
1343  */
1344 static void prepare_write_keepalive(struct ceph_connection *con)
1345 {
1346 	dout("prepare_write_keepalive %p\n", con);
1347 	con_out_kvec_reset(con);
1348 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1349 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1350 }
1351 
1352 /*
1353  * Connection negotiation.
1354  */
1355 
1356 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1357 						int *auth_proto)
1358 {
1359 	struct ceph_auth_handshake *auth;
1360 
1361 	if (!con->ops->get_authorizer) {
1362 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1363 		con->out_connect.authorizer_len = 0;
1364 		return NULL;
1365 	}
1366 
1367 	/* Can't hold the mutex while getting authorizer */
1368 	mutex_unlock(&con->mutex);
1369 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1370 	mutex_lock(&con->mutex);
1371 
1372 	if (IS_ERR(auth))
1373 		return auth;
1374 	if (con->state != CON_STATE_NEGOTIATING)
1375 		return ERR_PTR(-EAGAIN);
1376 
1377 	con->auth_reply_buf = auth->authorizer_reply_buf;
1378 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1379 	return auth;
1380 }
1381 
1382 /*
1383  * We connected to a peer and are saying hello.
1384  */
1385 static void prepare_write_banner(struct ceph_connection *con)
1386 {
1387 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1388 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1389 					&con->msgr->my_enc_addr);
1390 
1391 	con->out_more = 0;
1392 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1393 }
1394 
1395 static int prepare_write_connect(struct ceph_connection *con)
1396 {
1397 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1398 	int proto;
1399 	int auth_proto;
1400 	struct ceph_auth_handshake *auth;
1401 
1402 	switch (con->peer_name.type) {
1403 	case CEPH_ENTITY_TYPE_MON:
1404 		proto = CEPH_MONC_PROTOCOL;
1405 		break;
1406 	case CEPH_ENTITY_TYPE_OSD:
1407 		proto = CEPH_OSDC_PROTOCOL;
1408 		break;
1409 	case CEPH_ENTITY_TYPE_MDS:
1410 		proto = CEPH_MDSC_PROTOCOL;
1411 		break;
1412 	default:
1413 		BUG();
1414 	}
1415 
1416 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1417 	     con->connect_seq, global_seq, proto);
1418 
1419 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1420 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1421 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1422 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1423 	con->out_connect.protocol_version = cpu_to_le32(proto);
1424 	con->out_connect.flags = 0;
1425 
1426 	auth_proto = CEPH_AUTH_UNKNOWN;
1427 	auth = get_connect_authorizer(con, &auth_proto);
1428 	if (IS_ERR(auth))
1429 		return PTR_ERR(auth);
1430 
1431 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1432 	con->out_connect.authorizer_len = auth ?
1433 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1434 
1435 	con_out_kvec_add(con, sizeof (con->out_connect),
1436 					&con->out_connect);
1437 	if (auth && auth->authorizer_buf_len)
1438 		con_out_kvec_add(con, auth->authorizer_buf_len,
1439 					auth->authorizer_buf);
1440 
1441 	con->out_more = 0;
1442 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * write as much of pending kvecs to the socket as we can.
1449  *  1 -> done
1450  *  0 -> socket full, but more to do
1451  * <0 -> error
1452  */
1453 static int write_partial_kvec(struct ceph_connection *con)
1454 {
1455 	int ret;
1456 
1457 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1458 	while (con->out_kvec_bytes > 0) {
1459 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1460 				       con->out_kvec_left, con->out_kvec_bytes,
1461 				       con->out_more);
1462 		if (ret <= 0)
1463 			goto out;
1464 		con->out_kvec_bytes -= ret;
1465 		if (con->out_kvec_bytes == 0)
1466 			break;            /* done */
1467 
1468 		/* account for full iov entries consumed */
1469 		while (ret >= con->out_kvec_cur->iov_len) {
1470 			BUG_ON(!con->out_kvec_left);
1471 			ret -= con->out_kvec_cur->iov_len;
1472 			con->out_kvec_cur++;
1473 			con->out_kvec_left--;
1474 		}
1475 		/* and for a partially-consumed entry */
1476 		if (ret) {
1477 			con->out_kvec_cur->iov_len -= ret;
1478 			con->out_kvec_cur->iov_base += ret;
1479 		}
1480 	}
1481 	con->out_kvec_left = 0;
1482 	con->out_kvec_is_msg = false;
1483 	ret = 1;
1484 out:
1485 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1486 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1487 	return ret;  /* done! */
1488 }
1489 
1490 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1491 				unsigned int page_offset,
1492 				unsigned int length)
1493 {
1494 	char *kaddr;
1495 
1496 	kaddr = kmap(page);
1497 	BUG_ON(kaddr == NULL);
1498 	crc = crc32c(crc, kaddr + page_offset, length);
1499 	kunmap(page);
1500 
1501 	return crc;
1502 }
1503 /*
1504  * Write as much message data payload as we can.  If we finish, queue
1505  * up the footer.
1506  *  1 -> done, footer is now queued in out_kvec[].
1507  *  0 -> socket full, but more to do
1508  * <0 -> error
1509  */
1510 static int write_partial_message_data(struct ceph_connection *con)
1511 {
1512 	struct ceph_msg *msg = con->out_msg;
1513 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1514 	bool do_datacrc = !con->msgr->nocrc;
1515 	u32 crc;
1516 
1517 	dout("%s %p msg %p\n", __func__, con, msg);
1518 
1519 	if (list_empty(&msg->data))
1520 		return -EINVAL;
1521 
1522 	/*
1523 	 * Iterate through each page that contains data to be
1524 	 * written, and send as much as possible for each.
1525 	 *
1526 	 * If we are calculating the data crc (the default), we will
1527 	 * need to map the page.  If we have no pages, they have
1528 	 * been revoked, so use the zero page.
1529 	 */
1530 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1531 	while (cursor->resid) {
1532 		struct page *page;
1533 		size_t page_offset;
1534 		size_t length;
1535 		bool last_piece;
1536 		bool need_crc;
1537 		int ret;
1538 
1539 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1540 							&last_piece);
1541 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1542 				      length, last_piece);
1543 		if (ret <= 0) {
1544 			if (do_datacrc)
1545 				msg->footer.data_crc = cpu_to_le32(crc);
1546 
1547 			return ret;
1548 		}
1549 		if (do_datacrc && cursor->need_crc)
1550 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1551 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1552 	}
1553 
1554 	dout("%s %p msg %p done\n", __func__, con, msg);
1555 
1556 	/* prepare and queue up footer, too */
1557 	if (do_datacrc)
1558 		msg->footer.data_crc = cpu_to_le32(crc);
1559 	else
1560 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1561 	con_out_kvec_reset(con);
1562 	prepare_write_message_footer(con);
1563 
1564 	return 1;	/* must return > 0 to indicate success */
1565 }
1566 
1567 /*
1568  * write some zeros
1569  */
1570 static int write_partial_skip(struct ceph_connection *con)
1571 {
1572 	int ret;
1573 
1574 	while (con->out_skip > 0) {
1575 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1576 
1577 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1578 		if (ret <= 0)
1579 			goto out;
1580 		con->out_skip -= ret;
1581 	}
1582 	ret = 1;
1583 out:
1584 	return ret;
1585 }
1586 
1587 /*
1588  * Prepare to read connection handshake, or an ack.
1589  */
1590 static void prepare_read_banner(struct ceph_connection *con)
1591 {
1592 	dout("prepare_read_banner %p\n", con);
1593 	con->in_base_pos = 0;
1594 }
1595 
1596 static void prepare_read_connect(struct ceph_connection *con)
1597 {
1598 	dout("prepare_read_connect %p\n", con);
1599 	con->in_base_pos = 0;
1600 }
1601 
1602 static void prepare_read_ack(struct ceph_connection *con)
1603 {
1604 	dout("prepare_read_ack %p\n", con);
1605 	con->in_base_pos = 0;
1606 }
1607 
1608 static void prepare_read_seq(struct ceph_connection *con)
1609 {
1610 	dout("prepare_read_seq %p\n", con);
1611 	con->in_base_pos = 0;
1612 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1613 }
1614 
1615 static void prepare_read_tag(struct ceph_connection *con)
1616 {
1617 	dout("prepare_read_tag %p\n", con);
1618 	con->in_base_pos = 0;
1619 	con->in_tag = CEPH_MSGR_TAG_READY;
1620 }
1621 
1622 /*
1623  * Prepare to read a message.
1624  */
1625 static int prepare_read_message(struct ceph_connection *con)
1626 {
1627 	dout("prepare_read_message %p\n", con);
1628 	BUG_ON(con->in_msg != NULL);
1629 	con->in_base_pos = 0;
1630 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1631 	return 0;
1632 }
1633 
1634 
1635 static int read_partial(struct ceph_connection *con,
1636 			int end, int size, void *object)
1637 {
1638 	while (con->in_base_pos < end) {
1639 		int left = end - con->in_base_pos;
1640 		int have = size - left;
1641 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1642 		if (ret <= 0)
1643 			return ret;
1644 		con->in_base_pos += ret;
1645 	}
1646 	return 1;
1647 }
1648 
1649 
1650 /*
1651  * Read all or part of the connect-side handshake on a new connection
1652  */
1653 static int read_partial_banner(struct ceph_connection *con)
1654 {
1655 	int size;
1656 	int end;
1657 	int ret;
1658 
1659 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1660 
1661 	/* peer's banner */
1662 	size = strlen(CEPH_BANNER);
1663 	end = size;
1664 	ret = read_partial(con, end, size, con->in_banner);
1665 	if (ret <= 0)
1666 		goto out;
1667 
1668 	size = sizeof (con->actual_peer_addr);
1669 	end += size;
1670 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1671 	if (ret <= 0)
1672 		goto out;
1673 
1674 	size = sizeof (con->peer_addr_for_me);
1675 	end += size;
1676 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1677 	if (ret <= 0)
1678 		goto out;
1679 
1680 out:
1681 	return ret;
1682 }
1683 
1684 static int read_partial_connect(struct ceph_connection *con)
1685 {
1686 	int size;
1687 	int end;
1688 	int ret;
1689 
1690 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1691 
1692 	size = sizeof (con->in_reply);
1693 	end = size;
1694 	ret = read_partial(con, end, size, &con->in_reply);
1695 	if (ret <= 0)
1696 		goto out;
1697 
1698 	size = le32_to_cpu(con->in_reply.authorizer_len);
1699 	end += size;
1700 	ret = read_partial(con, end, size, con->auth_reply_buf);
1701 	if (ret <= 0)
1702 		goto out;
1703 
1704 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1705 	     con, (int)con->in_reply.tag,
1706 	     le32_to_cpu(con->in_reply.connect_seq),
1707 	     le32_to_cpu(con->in_reply.global_seq));
1708 out:
1709 	return ret;
1710 
1711 }
1712 
1713 /*
1714  * Verify the hello banner looks okay.
1715  */
1716 static int verify_hello(struct ceph_connection *con)
1717 {
1718 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1719 		pr_err("connect to %s got bad banner\n",
1720 		       ceph_pr_addr(&con->peer_addr.in_addr));
1721 		con->error_msg = "protocol error, bad banner";
1722 		return -1;
1723 	}
1724 	return 0;
1725 }
1726 
1727 static bool addr_is_blank(struct sockaddr_storage *ss)
1728 {
1729 	switch (ss->ss_family) {
1730 	case AF_INET:
1731 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1732 	case AF_INET6:
1733 		return
1734 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1735 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1736 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1737 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1738 	}
1739 	return false;
1740 }
1741 
1742 static int addr_port(struct sockaddr_storage *ss)
1743 {
1744 	switch (ss->ss_family) {
1745 	case AF_INET:
1746 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1747 	case AF_INET6:
1748 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1749 	}
1750 	return 0;
1751 }
1752 
1753 static void addr_set_port(struct sockaddr_storage *ss, int p)
1754 {
1755 	switch (ss->ss_family) {
1756 	case AF_INET:
1757 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1758 		break;
1759 	case AF_INET6:
1760 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1761 		break;
1762 	}
1763 }
1764 
1765 /*
1766  * Unlike other *_pton function semantics, zero indicates success.
1767  */
1768 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1769 		char delim, const char **ipend)
1770 {
1771 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1772 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1773 
1774 	memset(ss, 0, sizeof(*ss));
1775 
1776 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1777 		ss->ss_family = AF_INET;
1778 		return 0;
1779 	}
1780 
1781 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1782 		ss->ss_family = AF_INET6;
1783 		return 0;
1784 	}
1785 
1786 	return -EINVAL;
1787 }
1788 
1789 /*
1790  * Extract hostname string and resolve using kernel DNS facility.
1791  */
1792 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1793 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1794 		struct sockaddr_storage *ss, char delim, const char **ipend)
1795 {
1796 	const char *end, *delim_p;
1797 	char *colon_p, *ip_addr = NULL;
1798 	int ip_len, ret;
1799 
1800 	/*
1801 	 * The end of the hostname occurs immediately preceding the delimiter or
1802 	 * the port marker (':') where the delimiter takes precedence.
1803 	 */
1804 	delim_p = memchr(name, delim, namelen);
1805 	colon_p = memchr(name, ':', namelen);
1806 
1807 	if (delim_p && colon_p)
1808 		end = delim_p < colon_p ? delim_p : colon_p;
1809 	else if (!delim_p && colon_p)
1810 		end = colon_p;
1811 	else {
1812 		end = delim_p;
1813 		if (!end) /* case: hostname:/ */
1814 			end = name + namelen;
1815 	}
1816 
1817 	if (end <= name)
1818 		return -EINVAL;
1819 
1820 	/* do dns_resolve upcall */
1821 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1822 	if (ip_len > 0)
1823 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1824 	else
1825 		ret = -ESRCH;
1826 
1827 	kfree(ip_addr);
1828 
1829 	*ipend = end;
1830 
1831 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1832 			ret, ret ? "failed" : ceph_pr_addr(ss));
1833 
1834 	return ret;
1835 }
1836 #else
1837 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1838 		struct sockaddr_storage *ss, char delim, const char **ipend)
1839 {
1840 	return -EINVAL;
1841 }
1842 #endif
1843 
1844 /*
1845  * Parse a server name (IP or hostname). If a valid IP address is not found
1846  * then try to extract a hostname to resolve using userspace DNS upcall.
1847  */
1848 static int ceph_parse_server_name(const char *name, size_t namelen,
1849 			struct sockaddr_storage *ss, char delim, const char **ipend)
1850 {
1851 	int ret;
1852 
1853 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1854 	if (ret)
1855 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1856 
1857 	return ret;
1858 }
1859 
1860 /*
1861  * Parse an ip[:port] list into an addr array.  Use the default
1862  * monitor port if a port isn't specified.
1863  */
1864 int ceph_parse_ips(const char *c, const char *end,
1865 		   struct ceph_entity_addr *addr,
1866 		   int max_count, int *count)
1867 {
1868 	int i, ret = -EINVAL;
1869 	const char *p = c;
1870 
1871 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1872 	for (i = 0; i < max_count; i++) {
1873 		const char *ipend;
1874 		struct sockaddr_storage *ss = &addr[i].in_addr;
1875 		int port;
1876 		char delim = ',';
1877 
1878 		if (*p == '[') {
1879 			delim = ']';
1880 			p++;
1881 		}
1882 
1883 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1884 		if (ret)
1885 			goto bad;
1886 		ret = -EINVAL;
1887 
1888 		p = ipend;
1889 
1890 		if (delim == ']') {
1891 			if (*p != ']') {
1892 				dout("missing matching ']'\n");
1893 				goto bad;
1894 			}
1895 			p++;
1896 		}
1897 
1898 		/* port? */
1899 		if (p < end && *p == ':') {
1900 			port = 0;
1901 			p++;
1902 			while (p < end && *p >= '0' && *p <= '9') {
1903 				port = (port * 10) + (*p - '0');
1904 				p++;
1905 			}
1906 			if (port == 0)
1907 				port = CEPH_MON_PORT;
1908 			else if (port > 65535)
1909 				goto bad;
1910 		} else {
1911 			port = CEPH_MON_PORT;
1912 		}
1913 
1914 		addr_set_port(ss, port);
1915 
1916 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1917 
1918 		if (p == end)
1919 			break;
1920 		if (*p != ',')
1921 			goto bad;
1922 		p++;
1923 	}
1924 
1925 	if (p != end)
1926 		goto bad;
1927 
1928 	if (count)
1929 		*count = i + 1;
1930 	return 0;
1931 
1932 bad:
1933 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL(ceph_parse_ips);
1937 
1938 static int process_banner(struct ceph_connection *con)
1939 {
1940 	dout("process_banner on %p\n", con);
1941 
1942 	if (verify_hello(con) < 0)
1943 		return -1;
1944 
1945 	ceph_decode_addr(&con->actual_peer_addr);
1946 	ceph_decode_addr(&con->peer_addr_for_me);
1947 
1948 	/*
1949 	 * Make sure the other end is who we wanted.  note that the other
1950 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1951 	 * them the benefit of the doubt.
1952 	 */
1953 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1954 		   sizeof(con->peer_addr)) != 0 &&
1955 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1956 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1957 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1958 			ceph_pr_addr(&con->peer_addr.in_addr),
1959 			(int)le32_to_cpu(con->peer_addr.nonce),
1960 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1961 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1962 		con->error_msg = "wrong peer at address";
1963 		return -1;
1964 	}
1965 
1966 	/*
1967 	 * did we learn our address?
1968 	 */
1969 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1970 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1971 
1972 		memcpy(&con->msgr->inst.addr.in_addr,
1973 		       &con->peer_addr_for_me.in_addr,
1974 		       sizeof(con->peer_addr_for_me.in_addr));
1975 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1976 		encode_my_addr(con->msgr);
1977 		dout("process_banner learned my addr is %s\n",
1978 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int process_connect(struct ceph_connection *con)
1985 {
1986 	u64 sup_feat = con->msgr->supported_features;
1987 	u64 req_feat = con->msgr->required_features;
1988 	u64 server_feat = ceph_sanitize_features(
1989 				le64_to_cpu(con->in_reply.features));
1990 	int ret;
1991 
1992 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1993 
1994 	switch (con->in_reply.tag) {
1995 	case CEPH_MSGR_TAG_FEATURES:
1996 		pr_err("%s%lld %s feature set mismatch,"
1997 		       " my %llx < server's %llx, missing %llx\n",
1998 		       ENTITY_NAME(con->peer_name),
1999 		       ceph_pr_addr(&con->peer_addr.in_addr),
2000 		       sup_feat, server_feat, server_feat & ~sup_feat);
2001 		con->error_msg = "missing required protocol features";
2002 		reset_connection(con);
2003 		return -1;
2004 
2005 	case CEPH_MSGR_TAG_BADPROTOVER:
2006 		pr_err("%s%lld %s protocol version mismatch,"
2007 		       " my %d != server's %d\n",
2008 		       ENTITY_NAME(con->peer_name),
2009 		       ceph_pr_addr(&con->peer_addr.in_addr),
2010 		       le32_to_cpu(con->out_connect.protocol_version),
2011 		       le32_to_cpu(con->in_reply.protocol_version));
2012 		con->error_msg = "protocol version mismatch";
2013 		reset_connection(con);
2014 		return -1;
2015 
2016 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2017 		con->auth_retry++;
2018 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2019 		     con->auth_retry);
2020 		if (con->auth_retry == 2) {
2021 			con->error_msg = "connect authorization failure";
2022 			return -1;
2023 		}
2024 		con_out_kvec_reset(con);
2025 		ret = prepare_write_connect(con);
2026 		if (ret < 0)
2027 			return ret;
2028 		prepare_read_connect(con);
2029 		break;
2030 
2031 	case CEPH_MSGR_TAG_RESETSESSION:
2032 		/*
2033 		 * If we connected with a large connect_seq but the peer
2034 		 * has no record of a session with us (no connection, or
2035 		 * connect_seq == 0), they will send RESETSESION to indicate
2036 		 * that they must have reset their session, and may have
2037 		 * dropped messages.
2038 		 */
2039 		dout("process_connect got RESET peer seq %u\n",
2040 		     le32_to_cpu(con->in_reply.connect_seq));
2041 		pr_err("%s%lld %s connection reset\n",
2042 		       ENTITY_NAME(con->peer_name),
2043 		       ceph_pr_addr(&con->peer_addr.in_addr));
2044 		reset_connection(con);
2045 		con_out_kvec_reset(con);
2046 		ret = prepare_write_connect(con);
2047 		if (ret < 0)
2048 			return ret;
2049 		prepare_read_connect(con);
2050 
2051 		/* Tell ceph about it. */
2052 		mutex_unlock(&con->mutex);
2053 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2054 		if (con->ops->peer_reset)
2055 			con->ops->peer_reset(con);
2056 		mutex_lock(&con->mutex);
2057 		if (con->state != CON_STATE_NEGOTIATING)
2058 			return -EAGAIN;
2059 		break;
2060 
2061 	case CEPH_MSGR_TAG_RETRY_SESSION:
2062 		/*
2063 		 * If we sent a smaller connect_seq than the peer has, try
2064 		 * again with a larger value.
2065 		 */
2066 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2067 		     le32_to_cpu(con->out_connect.connect_seq),
2068 		     le32_to_cpu(con->in_reply.connect_seq));
2069 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2070 		con_out_kvec_reset(con);
2071 		ret = prepare_write_connect(con);
2072 		if (ret < 0)
2073 			return ret;
2074 		prepare_read_connect(con);
2075 		break;
2076 
2077 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2078 		/*
2079 		 * If we sent a smaller global_seq than the peer has, try
2080 		 * again with a larger value.
2081 		 */
2082 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2083 		     con->peer_global_seq,
2084 		     le32_to_cpu(con->in_reply.global_seq));
2085 		get_global_seq(con->msgr,
2086 			       le32_to_cpu(con->in_reply.global_seq));
2087 		con_out_kvec_reset(con);
2088 		ret = prepare_write_connect(con);
2089 		if (ret < 0)
2090 			return ret;
2091 		prepare_read_connect(con);
2092 		break;
2093 
2094 	case CEPH_MSGR_TAG_SEQ:
2095 	case CEPH_MSGR_TAG_READY:
2096 		if (req_feat & ~server_feat) {
2097 			pr_err("%s%lld %s protocol feature mismatch,"
2098 			       " my required %llx > server's %llx, need %llx\n",
2099 			       ENTITY_NAME(con->peer_name),
2100 			       ceph_pr_addr(&con->peer_addr.in_addr),
2101 			       req_feat, server_feat, req_feat & ~server_feat);
2102 			con->error_msg = "missing required protocol features";
2103 			reset_connection(con);
2104 			return -1;
2105 		}
2106 
2107 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2108 		con->state = CON_STATE_OPEN;
2109 		con->auth_retry = 0;    /* we authenticated; clear flag */
2110 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2111 		con->connect_seq++;
2112 		con->peer_features = server_feat;
2113 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2114 		     con->peer_global_seq,
2115 		     le32_to_cpu(con->in_reply.connect_seq),
2116 		     con->connect_seq);
2117 		WARN_ON(con->connect_seq !=
2118 			le32_to_cpu(con->in_reply.connect_seq));
2119 
2120 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2121 			con_flag_set(con, CON_FLAG_LOSSYTX);
2122 
2123 		con->delay = 0;      /* reset backoff memory */
2124 
2125 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2126 			prepare_write_seq(con);
2127 			prepare_read_seq(con);
2128 		} else {
2129 			prepare_read_tag(con);
2130 		}
2131 		break;
2132 
2133 	case CEPH_MSGR_TAG_WAIT:
2134 		/*
2135 		 * If there is a connection race (we are opening
2136 		 * connections to each other), one of us may just have
2137 		 * to WAIT.  This shouldn't happen if we are the
2138 		 * client.
2139 		 */
2140 		pr_err("process_connect got WAIT as client\n");
2141 		con->error_msg = "protocol error, got WAIT as client";
2142 		return -1;
2143 
2144 	default:
2145 		pr_err("connect protocol error, will retry\n");
2146 		con->error_msg = "protocol error, garbage tag during connect";
2147 		return -1;
2148 	}
2149 	return 0;
2150 }
2151 
2152 
2153 /*
2154  * read (part of) an ack
2155  */
2156 static int read_partial_ack(struct ceph_connection *con)
2157 {
2158 	int size = sizeof (con->in_temp_ack);
2159 	int end = size;
2160 
2161 	return read_partial(con, end, size, &con->in_temp_ack);
2162 }
2163 
2164 /*
2165  * We can finally discard anything that's been acked.
2166  */
2167 static void process_ack(struct ceph_connection *con)
2168 {
2169 	struct ceph_msg *m;
2170 	u64 ack = le64_to_cpu(con->in_temp_ack);
2171 	u64 seq;
2172 
2173 	while (!list_empty(&con->out_sent)) {
2174 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2175 				     list_head);
2176 		seq = le64_to_cpu(m->hdr.seq);
2177 		if (seq > ack)
2178 			break;
2179 		dout("got ack for seq %llu type %d at %p\n", seq,
2180 		     le16_to_cpu(m->hdr.type), m);
2181 		m->ack_stamp = jiffies;
2182 		ceph_msg_remove(m);
2183 	}
2184 	prepare_read_tag(con);
2185 }
2186 
2187 
2188 static int read_partial_message_section(struct ceph_connection *con,
2189 					struct kvec *section,
2190 					unsigned int sec_len, u32 *crc)
2191 {
2192 	int ret, left;
2193 
2194 	BUG_ON(!section);
2195 
2196 	while (section->iov_len < sec_len) {
2197 		BUG_ON(section->iov_base == NULL);
2198 		left = sec_len - section->iov_len;
2199 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2200 				       section->iov_len, left);
2201 		if (ret <= 0)
2202 			return ret;
2203 		section->iov_len += ret;
2204 	}
2205 	if (section->iov_len == sec_len)
2206 		*crc = crc32c(0, section->iov_base, section->iov_len);
2207 
2208 	return 1;
2209 }
2210 
2211 static int read_partial_msg_data(struct ceph_connection *con)
2212 {
2213 	struct ceph_msg *msg = con->in_msg;
2214 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2215 	const bool do_datacrc = !con->msgr->nocrc;
2216 	struct page *page;
2217 	size_t page_offset;
2218 	size_t length;
2219 	u32 crc = 0;
2220 	int ret;
2221 
2222 	BUG_ON(!msg);
2223 	if (list_empty(&msg->data))
2224 		return -EIO;
2225 
2226 	if (do_datacrc)
2227 		crc = con->in_data_crc;
2228 	while (cursor->resid) {
2229 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2230 							NULL);
2231 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2232 		if (ret <= 0) {
2233 			if (do_datacrc)
2234 				con->in_data_crc = crc;
2235 
2236 			return ret;
2237 		}
2238 
2239 		if (do_datacrc)
2240 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2241 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2242 	}
2243 	if (do_datacrc)
2244 		con->in_data_crc = crc;
2245 
2246 	return 1;	/* must return > 0 to indicate success */
2247 }
2248 
2249 /*
2250  * read (part of) a message.
2251  */
2252 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2253 
2254 static int read_partial_message(struct ceph_connection *con)
2255 {
2256 	struct ceph_msg *m = con->in_msg;
2257 	int size;
2258 	int end;
2259 	int ret;
2260 	unsigned int front_len, middle_len, data_len;
2261 	bool do_datacrc = !con->msgr->nocrc;
2262 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2263 	u64 seq;
2264 	u32 crc;
2265 
2266 	dout("read_partial_message con %p msg %p\n", con, m);
2267 
2268 	/* header */
2269 	size = sizeof (con->in_hdr);
2270 	end = size;
2271 	ret = read_partial(con, end, size, &con->in_hdr);
2272 	if (ret <= 0)
2273 		return ret;
2274 
2275 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2276 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2277 		pr_err("read_partial_message bad hdr "
2278 		       " crc %u != expected %u\n",
2279 		       crc, con->in_hdr.crc);
2280 		return -EBADMSG;
2281 	}
2282 
2283 	front_len = le32_to_cpu(con->in_hdr.front_len);
2284 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2285 		return -EIO;
2286 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2287 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2288 		return -EIO;
2289 	data_len = le32_to_cpu(con->in_hdr.data_len);
2290 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2291 		return -EIO;
2292 
2293 	/* verify seq# */
2294 	seq = le64_to_cpu(con->in_hdr.seq);
2295 	if ((s64)seq - (s64)con->in_seq < 1) {
2296 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2297 			ENTITY_NAME(con->peer_name),
2298 			ceph_pr_addr(&con->peer_addr.in_addr),
2299 			seq, con->in_seq + 1);
2300 		con->in_base_pos = -front_len - middle_len - data_len -
2301 			sizeof(m->footer);
2302 		con->in_tag = CEPH_MSGR_TAG_READY;
2303 		return 0;
2304 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2305 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2306 		       seq, con->in_seq + 1);
2307 		con->error_msg = "bad message sequence # for incoming message";
2308 		return -EBADMSG;
2309 	}
2310 
2311 	/* allocate message? */
2312 	if (!con->in_msg) {
2313 		int skip = 0;
2314 
2315 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2316 		     front_len, data_len);
2317 		ret = ceph_con_in_msg_alloc(con, &skip);
2318 		if (ret < 0)
2319 			return ret;
2320 
2321 		BUG_ON(!con->in_msg ^ skip);
2322 		if (con->in_msg && data_len > con->in_msg->data_length) {
2323 			pr_warn("%s skipping long message (%u > %zd)\n",
2324 				__func__, data_len, con->in_msg->data_length);
2325 			ceph_msg_put(con->in_msg);
2326 			con->in_msg = NULL;
2327 			skip = 1;
2328 		}
2329 		if (skip) {
2330 			/* skip this message */
2331 			dout("alloc_msg said skip message\n");
2332 			con->in_base_pos = -front_len - middle_len - data_len -
2333 				sizeof(m->footer);
2334 			con->in_tag = CEPH_MSGR_TAG_READY;
2335 			con->in_seq++;
2336 			return 0;
2337 		}
2338 
2339 		BUG_ON(!con->in_msg);
2340 		BUG_ON(con->in_msg->con != con);
2341 		m = con->in_msg;
2342 		m->front.iov_len = 0;    /* haven't read it yet */
2343 		if (m->middle)
2344 			m->middle->vec.iov_len = 0;
2345 
2346 		/* prepare for data payload, if any */
2347 
2348 		if (data_len)
2349 			prepare_message_data(con->in_msg, data_len);
2350 	}
2351 
2352 	/* front */
2353 	ret = read_partial_message_section(con, &m->front, front_len,
2354 					   &con->in_front_crc);
2355 	if (ret <= 0)
2356 		return ret;
2357 
2358 	/* middle */
2359 	if (m->middle) {
2360 		ret = read_partial_message_section(con, &m->middle->vec,
2361 						   middle_len,
2362 						   &con->in_middle_crc);
2363 		if (ret <= 0)
2364 			return ret;
2365 	}
2366 
2367 	/* (page) data */
2368 	if (data_len) {
2369 		ret = read_partial_msg_data(con);
2370 		if (ret <= 0)
2371 			return ret;
2372 	}
2373 
2374 	/* footer */
2375 	if (need_sign)
2376 		size = sizeof(m->footer);
2377 	else
2378 		size = sizeof(m->old_footer);
2379 
2380 	end += size;
2381 	ret = read_partial(con, end, size, &m->footer);
2382 	if (ret <= 0)
2383 		return ret;
2384 
2385 	if (!need_sign) {
2386 		m->footer.flags = m->old_footer.flags;
2387 		m->footer.sig = 0;
2388 	}
2389 
2390 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2391 	     m, front_len, m->footer.front_crc, middle_len,
2392 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2393 
2394 	/* crc ok? */
2395 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2396 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2397 		       m, con->in_front_crc, m->footer.front_crc);
2398 		return -EBADMSG;
2399 	}
2400 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2401 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2402 		       m, con->in_middle_crc, m->footer.middle_crc);
2403 		return -EBADMSG;
2404 	}
2405 	if (do_datacrc &&
2406 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2407 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2408 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2409 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2410 		return -EBADMSG;
2411 	}
2412 
2413 	if (need_sign && con->ops->check_message_signature &&
2414 	    con->ops->check_message_signature(con, m)) {
2415 		pr_err("read_partial_message %p signature check failed\n", m);
2416 		return -EBADMSG;
2417 	}
2418 
2419 	return 1; /* done! */
2420 }
2421 
2422 /*
2423  * Process message.  This happens in the worker thread.  The callback should
2424  * be careful not to do anything that waits on other incoming messages or it
2425  * may deadlock.
2426  */
2427 static void process_message(struct ceph_connection *con)
2428 {
2429 	struct ceph_msg *msg;
2430 
2431 	BUG_ON(con->in_msg->con != con);
2432 	con->in_msg->con = NULL;
2433 	msg = con->in_msg;
2434 	con->in_msg = NULL;
2435 	con->ops->put(con);
2436 
2437 	/* if first message, set peer_name */
2438 	if (con->peer_name.type == 0)
2439 		con->peer_name = msg->hdr.src;
2440 
2441 	con->in_seq++;
2442 	mutex_unlock(&con->mutex);
2443 
2444 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2445 	     msg, le64_to_cpu(msg->hdr.seq),
2446 	     ENTITY_NAME(msg->hdr.src),
2447 	     le16_to_cpu(msg->hdr.type),
2448 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2449 	     le32_to_cpu(msg->hdr.front_len),
2450 	     le32_to_cpu(msg->hdr.data_len),
2451 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2452 	con->ops->dispatch(con, msg);
2453 
2454 	mutex_lock(&con->mutex);
2455 }
2456 
2457 
2458 /*
2459  * Write something to the socket.  Called in a worker thread when the
2460  * socket appears to be writeable and we have something ready to send.
2461  */
2462 static int try_write(struct ceph_connection *con)
2463 {
2464 	int ret = 1;
2465 
2466 	dout("try_write start %p state %lu\n", con, con->state);
2467 
2468 more:
2469 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2470 
2471 	/* open the socket first? */
2472 	if (con->state == CON_STATE_PREOPEN) {
2473 		BUG_ON(con->sock);
2474 		con->state = CON_STATE_CONNECTING;
2475 
2476 		con_out_kvec_reset(con);
2477 		prepare_write_banner(con);
2478 		prepare_read_banner(con);
2479 
2480 		BUG_ON(con->in_msg);
2481 		con->in_tag = CEPH_MSGR_TAG_READY;
2482 		dout("try_write initiating connect on %p new state %lu\n",
2483 		     con, con->state);
2484 		ret = ceph_tcp_connect(con);
2485 		if (ret < 0) {
2486 			con->error_msg = "connect error";
2487 			goto out;
2488 		}
2489 	}
2490 
2491 more_kvec:
2492 	/* kvec data queued? */
2493 	if (con->out_skip) {
2494 		ret = write_partial_skip(con);
2495 		if (ret <= 0)
2496 			goto out;
2497 	}
2498 	if (con->out_kvec_left) {
2499 		ret = write_partial_kvec(con);
2500 		if (ret <= 0)
2501 			goto out;
2502 	}
2503 
2504 	/* msg pages? */
2505 	if (con->out_msg) {
2506 		if (con->out_msg_done) {
2507 			ceph_msg_put(con->out_msg);
2508 			con->out_msg = NULL;   /* we're done with this one */
2509 			goto do_next;
2510 		}
2511 
2512 		ret = write_partial_message_data(con);
2513 		if (ret == 1)
2514 			goto more_kvec;  /* we need to send the footer, too! */
2515 		if (ret == 0)
2516 			goto out;
2517 		if (ret < 0) {
2518 			dout("try_write write_partial_message_data err %d\n",
2519 			     ret);
2520 			goto out;
2521 		}
2522 	}
2523 
2524 do_next:
2525 	if (con->state == CON_STATE_OPEN) {
2526 		/* is anything else pending? */
2527 		if (!list_empty(&con->out_queue)) {
2528 			prepare_write_message(con);
2529 			goto more;
2530 		}
2531 		if (con->in_seq > con->in_seq_acked) {
2532 			prepare_write_ack(con);
2533 			goto more;
2534 		}
2535 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2536 			prepare_write_keepalive(con);
2537 			goto more;
2538 		}
2539 	}
2540 
2541 	/* Nothing to do! */
2542 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2543 	dout("try_write nothing else to write.\n");
2544 	ret = 0;
2545 out:
2546 	dout("try_write done on %p ret %d\n", con, ret);
2547 	return ret;
2548 }
2549 
2550 
2551 
2552 /*
2553  * Read what we can from the socket.
2554  */
2555 static int try_read(struct ceph_connection *con)
2556 {
2557 	int ret = -1;
2558 
2559 more:
2560 	dout("try_read start on %p state %lu\n", con, con->state);
2561 	if (con->state != CON_STATE_CONNECTING &&
2562 	    con->state != CON_STATE_NEGOTIATING &&
2563 	    con->state != CON_STATE_OPEN)
2564 		return 0;
2565 
2566 	BUG_ON(!con->sock);
2567 
2568 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2569 	     con->in_base_pos);
2570 
2571 	if (con->state == CON_STATE_CONNECTING) {
2572 		dout("try_read connecting\n");
2573 		ret = read_partial_banner(con);
2574 		if (ret <= 0)
2575 			goto out;
2576 		ret = process_banner(con);
2577 		if (ret < 0)
2578 			goto out;
2579 
2580 		con->state = CON_STATE_NEGOTIATING;
2581 
2582 		/*
2583 		 * Received banner is good, exchange connection info.
2584 		 * Do not reset out_kvec, as sending our banner raced
2585 		 * with receiving peer banner after connect completed.
2586 		 */
2587 		ret = prepare_write_connect(con);
2588 		if (ret < 0)
2589 			goto out;
2590 		prepare_read_connect(con);
2591 
2592 		/* Send connection info before awaiting response */
2593 		goto out;
2594 	}
2595 
2596 	if (con->state == CON_STATE_NEGOTIATING) {
2597 		dout("try_read negotiating\n");
2598 		ret = read_partial_connect(con);
2599 		if (ret <= 0)
2600 			goto out;
2601 		ret = process_connect(con);
2602 		if (ret < 0)
2603 			goto out;
2604 		goto more;
2605 	}
2606 
2607 	WARN_ON(con->state != CON_STATE_OPEN);
2608 
2609 	if (con->in_base_pos < 0) {
2610 		/*
2611 		 * skipping + discarding content.
2612 		 *
2613 		 * FIXME: there must be a better way to do this!
2614 		 */
2615 		static char buf[SKIP_BUF_SIZE];
2616 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2617 
2618 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2619 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2620 		if (ret <= 0)
2621 			goto out;
2622 		con->in_base_pos += ret;
2623 		if (con->in_base_pos)
2624 			goto more;
2625 	}
2626 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2627 		/*
2628 		 * what's next?
2629 		 */
2630 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2631 		if (ret <= 0)
2632 			goto out;
2633 		dout("try_read got tag %d\n", (int)con->in_tag);
2634 		switch (con->in_tag) {
2635 		case CEPH_MSGR_TAG_MSG:
2636 			prepare_read_message(con);
2637 			break;
2638 		case CEPH_MSGR_TAG_ACK:
2639 			prepare_read_ack(con);
2640 			break;
2641 		case CEPH_MSGR_TAG_CLOSE:
2642 			con_close_socket(con);
2643 			con->state = CON_STATE_CLOSED;
2644 			goto out;
2645 		default:
2646 			goto bad_tag;
2647 		}
2648 	}
2649 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2650 		ret = read_partial_message(con);
2651 		if (ret <= 0) {
2652 			switch (ret) {
2653 			case -EBADMSG:
2654 				con->error_msg = "bad crc";
2655 				ret = -EIO;
2656 				break;
2657 			case -EIO:
2658 				con->error_msg = "io error";
2659 				break;
2660 			}
2661 			goto out;
2662 		}
2663 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2664 			goto more;
2665 		process_message(con);
2666 		if (con->state == CON_STATE_OPEN)
2667 			prepare_read_tag(con);
2668 		goto more;
2669 	}
2670 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2671 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2672 		/*
2673 		 * the final handshake seq exchange is semantically
2674 		 * equivalent to an ACK
2675 		 */
2676 		ret = read_partial_ack(con);
2677 		if (ret <= 0)
2678 			goto out;
2679 		process_ack(con);
2680 		goto more;
2681 	}
2682 
2683 out:
2684 	dout("try_read done on %p ret %d\n", con, ret);
2685 	return ret;
2686 
2687 bad_tag:
2688 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2689 	con->error_msg = "protocol error, garbage tag";
2690 	ret = -1;
2691 	goto out;
2692 }
2693 
2694 
2695 /*
2696  * Atomically queue work on a connection after the specified delay.
2697  * Bump @con reference to avoid races with connection teardown.
2698  * Returns 0 if work was queued, or an error code otherwise.
2699  */
2700 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2701 {
2702 	if (!con->ops->get(con)) {
2703 		dout("%s %p ref count 0\n", __func__, con);
2704 		return -ENOENT;
2705 	}
2706 
2707 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2708 		dout("%s %p - already queued\n", __func__, con);
2709 		con->ops->put(con);
2710 		return -EBUSY;
2711 	}
2712 
2713 	dout("%s %p %lu\n", __func__, con, delay);
2714 	return 0;
2715 }
2716 
2717 static void queue_con(struct ceph_connection *con)
2718 {
2719 	(void) queue_con_delay(con, 0);
2720 }
2721 
2722 static void cancel_con(struct ceph_connection *con)
2723 {
2724 	if (cancel_delayed_work(&con->work)) {
2725 		dout("%s %p\n", __func__, con);
2726 		con->ops->put(con);
2727 	}
2728 }
2729 
2730 static bool con_sock_closed(struct ceph_connection *con)
2731 {
2732 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2733 		return false;
2734 
2735 #define CASE(x)								\
2736 	case CON_STATE_ ## x:						\
2737 		con->error_msg = "socket closed (con state " #x ")";	\
2738 		break;
2739 
2740 	switch (con->state) {
2741 	CASE(CLOSED);
2742 	CASE(PREOPEN);
2743 	CASE(CONNECTING);
2744 	CASE(NEGOTIATING);
2745 	CASE(OPEN);
2746 	CASE(STANDBY);
2747 	default:
2748 		pr_warn("%s con %p unrecognized state %lu\n",
2749 			__func__, con, con->state);
2750 		con->error_msg = "unrecognized con state";
2751 		BUG();
2752 		break;
2753 	}
2754 #undef CASE
2755 
2756 	return true;
2757 }
2758 
2759 static bool con_backoff(struct ceph_connection *con)
2760 {
2761 	int ret;
2762 
2763 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2764 		return false;
2765 
2766 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2767 	if (ret) {
2768 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2769 			con, con->delay);
2770 		BUG_ON(ret == -ENOENT);
2771 		con_flag_set(con, CON_FLAG_BACKOFF);
2772 	}
2773 
2774 	return true;
2775 }
2776 
2777 /* Finish fault handling; con->mutex must *not* be held here */
2778 
2779 static void con_fault_finish(struct ceph_connection *con)
2780 {
2781 	/*
2782 	 * in case we faulted due to authentication, invalidate our
2783 	 * current tickets so that we can get new ones.
2784 	 */
2785 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2786 		dout("calling invalidate_authorizer()\n");
2787 		con->ops->invalidate_authorizer(con);
2788 	}
2789 
2790 	if (con->ops->fault)
2791 		con->ops->fault(con);
2792 }
2793 
2794 /*
2795  * Do some work on a connection.  Drop a connection ref when we're done.
2796  */
2797 static void con_work(struct work_struct *work)
2798 {
2799 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2800 						   work.work);
2801 	unsigned long pflags = current->flags;
2802 	bool fault;
2803 
2804 	current->flags |= PF_MEMALLOC;
2805 
2806 	mutex_lock(&con->mutex);
2807 	while (true) {
2808 		int ret;
2809 
2810 		if ((fault = con_sock_closed(con))) {
2811 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2812 			break;
2813 		}
2814 		if (con_backoff(con)) {
2815 			dout("%s: con %p BACKOFF\n", __func__, con);
2816 			break;
2817 		}
2818 		if (con->state == CON_STATE_STANDBY) {
2819 			dout("%s: con %p STANDBY\n", __func__, con);
2820 			break;
2821 		}
2822 		if (con->state == CON_STATE_CLOSED) {
2823 			dout("%s: con %p CLOSED\n", __func__, con);
2824 			BUG_ON(con->sock);
2825 			break;
2826 		}
2827 		if (con->state == CON_STATE_PREOPEN) {
2828 			dout("%s: con %p PREOPEN\n", __func__, con);
2829 			BUG_ON(con->sock);
2830 		}
2831 
2832 		ret = try_read(con);
2833 		if (ret < 0) {
2834 			if (ret == -EAGAIN)
2835 				continue;
2836 			con->error_msg = "socket error on read";
2837 			fault = true;
2838 			break;
2839 		}
2840 
2841 		ret = try_write(con);
2842 		if (ret < 0) {
2843 			if (ret == -EAGAIN)
2844 				continue;
2845 			con->error_msg = "socket error on write";
2846 			fault = true;
2847 		}
2848 
2849 		break;	/* If we make it to here, we're done */
2850 	}
2851 	if (fault)
2852 		con_fault(con);
2853 	mutex_unlock(&con->mutex);
2854 
2855 	if (fault)
2856 		con_fault_finish(con);
2857 
2858 	con->ops->put(con);
2859 
2860 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
2861 }
2862 
2863 /*
2864  * Generic error/fault handler.  A retry mechanism is used with
2865  * exponential backoff
2866  */
2867 static void con_fault(struct ceph_connection *con)
2868 {
2869 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2870 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2871 	dout("fault %p state %lu to peer %s\n",
2872 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2873 
2874 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2875 	       con->state != CON_STATE_NEGOTIATING &&
2876 	       con->state != CON_STATE_OPEN);
2877 
2878 	con_close_socket(con);
2879 
2880 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2881 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2882 		con->state = CON_STATE_CLOSED;
2883 		return;
2884 	}
2885 
2886 	if (con->in_msg) {
2887 		BUG_ON(con->in_msg->con != con);
2888 		con->in_msg->con = NULL;
2889 		ceph_msg_put(con->in_msg);
2890 		con->in_msg = NULL;
2891 		con->ops->put(con);
2892 	}
2893 
2894 	/* Requeue anything that hasn't been acked */
2895 	list_splice_init(&con->out_sent, &con->out_queue);
2896 
2897 	/* If there are no messages queued or keepalive pending, place
2898 	 * the connection in a STANDBY state */
2899 	if (list_empty(&con->out_queue) &&
2900 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2901 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2902 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2903 		con->state = CON_STATE_STANDBY;
2904 	} else {
2905 		/* retry after a delay. */
2906 		con->state = CON_STATE_PREOPEN;
2907 		if (con->delay == 0)
2908 			con->delay = BASE_DELAY_INTERVAL;
2909 		else if (con->delay < MAX_DELAY_INTERVAL)
2910 			con->delay *= 2;
2911 		con_flag_set(con, CON_FLAG_BACKOFF);
2912 		queue_con(con);
2913 	}
2914 }
2915 
2916 
2917 
2918 /*
2919  * initialize a new messenger instance
2920  */
2921 void ceph_messenger_init(struct ceph_messenger *msgr,
2922 			struct ceph_entity_addr *myaddr,
2923 			u64 supported_features,
2924 			u64 required_features,
2925 			bool nocrc)
2926 {
2927 	msgr->supported_features = supported_features;
2928 	msgr->required_features = required_features;
2929 
2930 	spin_lock_init(&msgr->global_seq_lock);
2931 
2932 	if (myaddr)
2933 		msgr->inst.addr = *myaddr;
2934 
2935 	/* select a random nonce */
2936 	msgr->inst.addr.type = 0;
2937 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2938 	encode_my_addr(msgr);
2939 	msgr->nocrc = nocrc;
2940 
2941 	atomic_set(&msgr->stopping, 0);
2942 
2943 	dout("%s %p\n", __func__, msgr);
2944 }
2945 EXPORT_SYMBOL(ceph_messenger_init);
2946 
2947 static void clear_standby(struct ceph_connection *con)
2948 {
2949 	/* come back from STANDBY? */
2950 	if (con->state == CON_STATE_STANDBY) {
2951 		dout("clear_standby %p and ++connect_seq\n", con);
2952 		con->state = CON_STATE_PREOPEN;
2953 		con->connect_seq++;
2954 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2955 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2956 	}
2957 }
2958 
2959 /*
2960  * Queue up an outgoing message on the given connection.
2961  */
2962 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2963 {
2964 	/* set src+dst */
2965 	msg->hdr.src = con->msgr->inst.name;
2966 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2967 	msg->needs_out_seq = true;
2968 
2969 	mutex_lock(&con->mutex);
2970 
2971 	if (con->state == CON_STATE_CLOSED) {
2972 		dout("con_send %p closed, dropping %p\n", con, msg);
2973 		ceph_msg_put(msg);
2974 		mutex_unlock(&con->mutex);
2975 		return;
2976 	}
2977 
2978 	BUG_ON(msg->con != NULL);
2979 	msg->con = con->ops->get(con);
2980 	BUG_ON(msg->con == NULL);
2981 
2982 	BUG_ON(!list_empty(&msg->list_head));
2983 	list_add_tail(&msg->list_head, &con->out_queue);
2984 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2985 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2986 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2987 	     le32_to_cpu(msg->hdr.front_len),
2988 	     le32_to_cpu(msg->hdr.middle_len),
2989 	     le32_to_cpu(msg->hdr.data_len));
2990 
2991 	clear_standby(con);
2992 	mutex_unlock(&con->mutex);
2993 
2994 	/* if there wasn't anything waiting to send before, queue
2995 	 * new work */
2996 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2997 		queue_con(con);
2998 }
2999 EXPORT_SYMBOL(ceph_con_send);
3000 
3001 /*
3002  * Revoke a message that was previously queued for send
3003  */
3004 void ceph_msg_revoke(struct ceph_msg *msg)
3005 {
3006 	struct ceph_connection *con = msg->con;
3007 
3008 	if (!con)
3009 		return;		/* Message not in our possession */
3010 
3011 	mutex_lock(&con->mutex);
3012 	if (!list_empty(&msg->list_head)) {
3013 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3014 		list_del_init(&msg->list_head);
3015 		BUG_ON(msg->con == NULL);
3016 		msg->con->ops->put(msg->con);
3017 		msg->con = NULL;
3018 		msg->hdr.seq = 0;
3019 
3020 		ceph_msg_put(msg);
3021 	}
3022 	if (con->out_msg == msg) {
3023 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3024 		con->out_msg = NULL;
3025 		if (con->out_kvec_is_msg) {
3026 			con->out_skip = con->out_kvec_bytes;
3027 			con->out_kvec_is_msg = false;
3028 		}
3029 		msg->hdr.seq = 0;
3030 
3031 		ceph_msg_put(msg);
3032 	}
3033 	mutex_unlock(&con->mutex);
3034 }
3035 
3036 /*
3037  * Revoke a message that we may be reading data into
3038  */
3039 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3040 {
3041 	struct ceph_connection *con;
3042 
3043 	BUG_ON(msg == NULL);
3044 	if (!msg->con) {
3045 		dout("%s msg %p null con\n", __func__, msg);
3046 
3047 		return;		/* Message not in our possession */
3048 	}
3049 
3050 	con = msg->con;
3051 	mutex_lock(&con->mutex);
3052 	if (con->in_msg == msg) {
3053 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3054 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3055 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3056 
3057 		/* skip rest of message */
3058 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3059 		con->in_base_pos = con->in_base_pos -
3060 				sizeof(struct ceph_msg_header) -
3061 				front_len -
3062 				middle_len -
3063 				data_len -
3064 				sizeof(struct ceph_msg_footer);
3065 		ceph_msg_put(con->in_msg);
3066 		con->in_msg = NULL;
3067 		con->in_tag = CEPH_MSGR_TAG_READY;
3068 		con->in_seq++;
3069 	} else {
3070 		dout("%s %p in_msg %p msg %p no-op\n",
3071 		     __func__, con, con->in_msg, msg);
3072 	}
3073 	mutex_unlock(&con->mutex);
3074 }
3075 
3076 /*
3077  * Queue a keepalive byte to ensure the tcp connection is alive.
3078  */
3079 void ceph_con_keepalive(struct ceph_connection *con)
3080 {
3081 	dout("con_keepalive %p\n", con);
3082 	mutex_lock(&con->mutex);
3083 	clear_standby(con);
3084 	mutex_unlock(&con->mutex);
3085 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3086 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3087 		queue_con(con);
3088 }
3089 EXPORT_SYMBOL(ceph_con_keepalive);
3090 
3091 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3092 {
3093 	struct ceph_msg_data *data;
3094 
3095 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3096 		return NULL;
3097 
3098 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3099 	if (data)
3100 		data->type = type;
3101 	INIT_LIST_HEAD(&data->links);
3102 
3103 	return data;
3104 }
3105 
3106 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3107 {
3108 	if (!data)
3109 		return;
3110 
3111 	WARN_ON(!list_empty(&data->links));
3112 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3113 		ceph_pagelist_release(data->pagelist);
3114 	kmem_cache_free(ceph_msg_data_cache, data);
3115 }
3116 
3117 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3118 		size_t length, size_t alignment)
3119 {
3120 	struct ceph_msg_data *data;
3121 
3122 	BUG_ON(!pages);
3123 	BUG_ON(!length);
3124 
3125 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3126 	BUG_ON(!data);
3127 	data->pages = pages;
3128 	data->length = length;
3129 	data->alignment = alignment & ~PAGE_MASK;
3130 
3131 	list_add_tail(&data->links, &msg->data);
3132 	msg->data_length += length;
3133 }
3134 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3135 
3136 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3137 				struct ceph_pagelist *pagelist)
3138 {
3139 	struct ceph_msg_data *data;
3140 
3141 	BUG_ON(!pagelist);
3142 	BUG_ON(!pagelist->length);
3143 
3144 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3145 	BUG_ON(!data);
3146 	data->pagelist = pagelist;
3147 
3148 	list_add_tail(&data->links, &msg->data);
3149 	msg->data_length += pagelist->length;
3150 }
3151 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3152 
3153 #ifdef	CONFIG_BLOCK
3154 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3155 		size_t length)
3156 {
3157 	struct ceph_msg_data *data;
3158 
3159 	BUG_ON(!bio);
3160 
3161 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3162 	BUG_ON(!data);
3163 	data->bio = bio;
3164 	data->bio_length = length;
3165 
3166 	list_add_tail(&data->links, &msg->data);
3167 	msg->data_length += length;
3168 }
3169 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3170 #endif	/* CONFIG_BLOCK */
3171 
3172 /*
3173  * construct a new message with given type, size
3174  * the new msg has a ref count of 1.
3175  */
3176 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3177 			      bool can_fail)
3178 {
3179 	struct ceph_msg *m;
3180 
3181 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3182 	if (m == NULL)
3183 		goto out;
3184 
3185 	m->hdr.type = cpu_to_le16(type);
3186 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3187 	m->hdr.front_len = cpu_to_le32(front_len);
3188 
3189 	INIT_LIST_HEAD(&m->list_head);
3190 	kref_init(&m->kref);
3191 	INIT_LIST_HEAD(&m->data);
3192 
3193 	/* front */
3194 	if (front_len) {
3195 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3196 		if (m->front.iov_base == NULL) {
3197 			dout("ceph_msg_new can't allocate %d bytes\n",
3198 			     front_len);
3199 			goto out2;
3200 		}
3201 	} else {
3202 		m->front.iov_base = NULL;
3203 	}
3204 	m->front_alloc_len = m->front.iov_len = front_len;
3205 
3206 	dout("ceph_msg_new %p front %d\n", m, front_len);
3207 	return m;
3208 
3209 out2:
3210 	ceph_msg_put(m);
3211 out:
3212 	if (!can_fail) {
3213 		pr_err("msg_new can't create type %d front %d\n", type,
3214 		       front_len);
3215 		WARN_ON(1);
3216 	} else {
3217 		dout("msg_new can't create type %d front %d\n", type,
3218 		     front_len);
3219 	}
3220 	return NULL;
3221 }
3222 EXPORT_SYMBOL(ceph_msg_new);
3223 
3224 /*
3225  * Allocate "middle" portion of a message, if it is needed and wasn't
3226  * allocated by alloc_msg.  This allows us to read a small fixed-size
3227  * per-type header in the front and then gracefully fail (i.e.,
3228  * propagate the error to the caller based on info in the front) when
3229  * the middle is too large.
3230  */
3231 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3232 {
3233 	int type = le16_to_cpu(msg->hdr.type);
3234 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3235 
3236 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3237 	     ceph_msg_type_name(type), middle_len);
3238 	BUG_ON(!middle_len);
3239 	BUG_ON(msg->middle);
3240 
3241 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3242 	if (!msg->middle)
3243 		return -ENOMEM;
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Allocate a message for receiving an incoming message on a
3249  * connection, and save the result in con->in_msg.  Uses the
3250  * connection's private alloc_msg op if available.
3251  *
3252  * Returns 0 on success, or a negative error code.
3253  *
3254  * On success, if we set *skip = 1:
3255  *  - the next message should be skipped and ignored.
3256  *  - con->in_msg == NULL
3257  * or if we set *skip = 0:
3258  *  - con->in_msg is non-null.
3259  * On error (ENOMEM, EAGAIN, ...),
3260  *  - con->in_msg == NULL
3261  */
3262 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3263 {
3264 	struct ceph_msg_header *hdr = &con->in_hdr;
3265 	int middle_len = le32_to_cpu(hdr->middle_len);
3266 	struct ceph_msg *msg;
3267 	int ret = 0;
3268 
3269 	BUG_ON(con->in_msg != NULL);
3270 	BUG_ON(!con->ops->alloc_msg);
3271 
3272 	mutex_unlock(&con->mutex);
3273 	msg = con->ops->alloc_msg(con, hdr, skip);
3274 	mutex_lock(&con->mutex);
3275 	if (con->state != CON_STATE_OPEN) {
3276 		if (msg)
3277 			ceph_msg_put(msg);
3278 		return -EAGAIN;
3279 	}
3280 	if (msg) {
3281 		BUG_ON(*skip);
3282 		con->in_msg = msg;
3283 		con->in_msg->con = con->ops->get(con);
3284 		BUG_ON(con->in_msg->con == NULL);
3285 	} else {
3286 		/*
3287 		 * Null message pointer means either we should skip
3288 		 * this message or we couldn't allocate memory.  The
3289 		 * former is not an error.
3290 		 */
3291 		if (*skip)
3292 			return 0;
3293 		con->error_msg = "error allocating memory for incoming message";
3294 
3295 		return -ENOMEM;
3296 	}
3297 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3298 
3299 	if (middle_len && !con->in_msg->middle) {
3300 		ret = ceph_alloc_middle(con, con->in_msg);
3301 		if (ret < 0) {
3302 			ceph_msg_put(con->in_msg);
3303 			con->in_msg = NULL;
3304 		}
3305 	}
3306 
3307 	return ret;
3308 }
3309 
3310 
3311 /*
3312  * Free a generically kmalloc'd message.
3313  */
3314 static void ceph_msg_free(struct ceph_msg *m)
3315 {
3316 	dout("%s %p\n", __func__, m);
3317 	kvfree(m->front.iov_base);
3318 	kmem_cache_free(ceph_msg_cache, m);
3319 }
3320 
3321 static void ceph_msg_release(struct kref *kref)
3322 {
3323 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3324 	LIST_HEAD(data);
3325 	struct list_head *links;
3326 	struct list_head *next;
3327 
3328 	dout("%s %p\n", __func__, m);
3329 	WARN_ON(!list_empty(&m->list_head));
3330 
3331 	/* drop middle, data, if any */
3332 	if (m->middle) {
3333 		ceph_buffer_put(m->middle);
3334 		m->middle = NULL;
3335 	}
3336 
3337 	list_splice_init(&m->data, &data);
3338 	list_for_each_safe(links, next, &data) {
3339 		struct ceph_msg_data *data;
3340 
3341 		data = list_entry(links, struct ceph_msg_data, links);
3342 		list_del_init(links);
3343 		ceph_msg_data_destroy(data);
3344 	}
3345 	m->data_length = 0;
3346 
3347 	if (m->pool)
3348 		ceph_msgpool_put(m->pool, m);
3349 	else
3350 		ceph_msg_free(m);
3351 }
3352 
3353 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3354 {
3355 	dout("%s %p (was %d)\n", __func__, msg,
3356 	     atomic_read(&msg->kref.refcount));
3357 	kref_get(&msg->kref);
3358 	return msg;
3359 }
3360 EXPORT_SYMBOL(ceph_msg_get);
3361 
3362 void ceph_msg_put(struct ceph_msg *msg)
3363 {
3364 	dout("%s %p (was %d)\n", __func__, msg,
3365 	     atomic_read(&msg->kref.refcount));
3366 	kref_put(&msg->kref, ceph_msg_release);
3367 }
3368 EXPORT_SYMBOL(ceph_msg_put);
3369 
3370 void ceph_msg_dump(struct ceph_msg *msg)
3371 {
3372 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3373 		 msg->front_alloc_len, msg->data_length);
3374 	print_hex_dump(KERN_DEBUG, "header: ",
3375 		       DUMP_PREFIX_OFFSET, 16, 1,
3376 		       &msg->hdr, sizeof(msg->hdr), true);
3377 	print_hex_dump(KERN_DEBUG, " front: ",
3378 		       DUMP_PREFIX_OFFSET, 16, 1,
3379 		       msg->front.iov_base, msg->front.iov_len, true);
3380 	if (msg->middle)
3381 		print_hex_dump(KERN_DEBUG, "middle: ",
3382 			       DUMP_PREFIX_OFFSET, 16, 1,
3383 			       msg->middle->vec.iov_base,
3384 			       msg->middle->vec.iov_len, true);
3385 	print_hex_dump(KERN_DEBUG, "footer: ",
3386 		       DUMP_PREFIX_OFFSET, 16, 1,
3387 		       &msg->footer, sizeof(msg->footer), true);
3388 }
3389 EXPORT_SYMBOL(ceph_msg_dump);
3390