xref: /openbmc/linux/net/ceph/messenger.c (revision 160b8e75)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166 
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170 
171 /*
172  * When skipping (ignoring) a block of input we read it into a "skip
173  * buffer," which is this many bytes in size.
174  */
175 #define SKIP_BUF_SIZE	1024
176 
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181 
182 /*
183  * Nicely render a sockaddr as a string.  An array of formatted
184  * strings is used, to approximate reentrancy.
185  */
186 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
187 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
190 
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193 
194 static struct page *zero_page;		/* used in certain error cases */
195 
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 	int i;
199 	char *s;
200 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202 
203 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 	s = addr_str[i];
205 
206 	switch (ss->ss_family) {
207 	case AF_INET:
208 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 			 ntohs(in4->sin_port));
210 		break;
211 
212 	case AF_INET6:
213 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 			 ntohs(in6->sin6_port));
215 		break;
216 
217 	default:
218 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 			 ss->ss_family);
220 	}
221 
222 	return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225 
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 	ceph_encode_addr(&msgr->my_enc_addr);
230 }
231 
232 /*
233  * work queue for all reading and writing to/from the socket.
234  */
235 static struct workqueue_struct *ceph_msgr_wq;
236 
237 static int ceph_msgr_slab_init(void)
238 {
239 	BUG_ON(ceph_msg_cache);
240 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 	if (!ceph_msg_cache)
242 		return -ENOMEM;
243 
244 	BUG_ON(ceph_msg_data_cache);
245 	ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 	if (ceph_msg_data_cache)
247 		return 0;
248 
249 	kmem_cache_destroy(ceph_msg_cache);
250 	ceph_msg_cache = NULL;
251 
252 	return -ENOMEM;
253 }
254 
255 static void ceph_msgr_slab_exit(void)
256 {
257 	BUG_ON(!ceph_msg_data_cache);
258 	kmem_cache_destroy(ceph_msg_data_cache);
259 	ceph_msg_data_cache = NULL;
260 
261 	BUG_ON(!ceph_msg_cache);
262 	kmem_cache_destroy(ceph_msg_cache);
263 	ceph_msg_cache = NULL;
264 }
265 
266 static void _ceph_msgr_exit(void)
267 {
268 	if (ceph_msgr_wq) {
269 		destroy_workqueue(ceph_msgr_wq);
270 		ceph_msgr_wq = NULL;
271 	}
272 
273 	BUG_ON(zero_page == NULL);
274 	put_page(zero_page);
275 	zero_page = NULL;
276 
277 	ceph_msgr_slab_exit();
278 }
279 
280 int ceph_msgr_init(void)
281 {
282 	if (ceph_msgr_slab_init())
283 		return -ENOMEM;
284 
285 	BUG_ON(zero_page != NULL);
286 	zero_page = ZERO_PAGE(0);
287 	get_page(zero_page);
288 
289 	/*
290 	 * The number of active work items is limited by the number of
291 	 * connections, so leave @max_active at default.
292 	 */
293 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 	if (ceph_msgr_wq)
295 		return 0;
296 
297 	pr_err("msgr_init failed to create workqueue\n");
298 	_ceph_msgr_exit();
299 
300 	return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303 
304 void ceph_msgr_exit(void)
305 {
306 	BUG_ON(ceph_msgr_wq == NULL);
307 
308 	_ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311 
312 void ceph_msgr_flush(void)
313 {
314 	flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317 
318 /* Connection socket state transition functions */
319 
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 	int old_state;
323 
324 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 		printk("%s: unexpected old state %d\n", __func__, old_state);
327 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 	     CON_SOCK_STATE_CLOSED);
329 }
330 
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 	int old_state;
334 
335 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 		printk("%s: unexpected old state %d\n", __func__, old_state);
338 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 	     CON_SOCK_STATE_CONNECTING);
340 }
341 
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 	int old_state;
345 
346 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 		printk("%s: unexpected old state %d\n", __func__, old_state);
349 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 	     CON_SOCK_STATE_CONNECTED);
351 }
352 
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 	int old_state;
356 
357 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 			old_state != CON_SOCK_STATE_CONNECTED &&
360 			old_state != CON_SOCK_STATE_CLOSING))
361 		printk("%s: unexpected old state %d\n", __func__, old_state);
362 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 	     CON_SOCK_STATE_CLOSING);
364 }
365 
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 	int old_state;
369 
370 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 		    old_state != CON_SOCK_STATE_CLOSING &&
373 		    old_state != CON_SOCK_STATE_CONNECTING &&
374 		    old_state != CON_SOCK_STATE_CLOSED))
375 		printk("%s: unexpected old state %d\n", __func__, old_state);
376 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 	     CON_SOCK_STATE_CLOSED);
378 }
379 
380 /*
381  * socket callback functions
382  */
383 
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 	struct ceph_connection *con = sk->sk_user_data;
388 	if (atomic_read(&con->msgr->stopping)) {
389 		return;
390 	}
391 
392 	if (sk->sk_state != TCP_CLOSE_WAIT) {
393 		dout("%s on %p state = %lu, queueing work\n", __func__,
394 		     con, con->state);
395 		queue_con(con);
396 	}
397 }
398 
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 	struct ceph_connection *con = sk->sk_user_data;
403 
404 	/* only queue to workqueue if there is data we want to write,
405 	 * and there is sufficient space in the socket buffer to accept
406 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
407 	 * doesn't get called again until try_write() fills the socket
408 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 	 * and net/core/stream.c:sk_stream_write_space().
410 	 */
411 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 		if (sk_stream_is_writeable(sk)) {
413 			dout("%s %p queueing write work\n", __func__, con);
414 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 			queue_con(con);
416 		}
417 	} else {
418 		dout("%s %p nothing to write\n", __func__, con);
419 	}
420 }
421 
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 	struct ceph_connection *con = sk->sk_user_data;
426 
427 	dout("%s %p state = %lu sk_state = %u\n", __func__,
428 	     con, con->state, sk->sk_state);
429 
430 	switch (sk->sk_state) {
431 	case TCP_CLOSE:
432 		dout("%s TCP_CLOSE\n", __func__);
433 		/* fall through */
434 	case TCP_CLOSE_WAIT:
435 		dout("%s TCP_CLOSE_WAIT\n", __func__);
436 		con_sock_state_closing(con);
437 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 		queue_con(con);
439 		break;
440 	case TCP_ESTABLISHED:
441 		dout("%s TCP_ESTABLISHED\n", __func__);
442 		con_sock_state_connected(con);
443 		queue_con(con);
444 		break;
445 	default:	/* Everything else is uninteresting */
446 		break;
447 	}
448 }
449 
450 /*
451  * set up socket callbacks
452  */
453 static void set_sock_callbacks(struct socket *sock,
454 			       struct ceph_connection *con)
455 {
456 	struct sock *sk = sock->sk;
457 	sk->sk_user_data = con;
458 	sk->sk_data_ready = ceph_sock_data_ready;
459 	sk->sk_write_space = ceph_sock_write_space;
460 	sk->sk_state_change = ceph_sock_state_change;
461 }
462 
463 
464 /*
465  * socket helpers
466  */
467 
468 /*
469  * initiate connection to a remote socket.
470  */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 	struct socket *sock;
475 	unsigned int noio_flag;
476 	int ret;
477 
478 	BUG_ON(con->sock);
479 
480 	/* sock_create_kern() allocates with GFP_KERNEL */
481 	noio_flag = memalloc_noio_save();
482 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
483 			       SOCK_STREAM, IPPROTO_TCP, &sock);
484 	memalloc_noio_restore(noio_flag);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		return ret;
509 	}
510 
511 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
512 		int optval = 1;
513 
514 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
515 					(char *)&optval, sizeof(optval));
516 		if (ret)
517 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 			       ret);
519 	}
520 
521 	con->sock = sock;
522 	return 0;
523 }
524 
525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
526 {
527 	struct kvec iov = {buf, len};
528 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
529 	int r;
530 
531 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
532 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
533 	if (r == -EAGAIN)
534 		r = 0;
535 	return r;
536 }
537 
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 		     int page_offset, size_t length)
540 {
541 	struct bio_vec bvec = {
542 		.bv_page = page,
543 		.bv_offset = page_offset,
544 		.bv_len = length
545 	};
546 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 	int r;
548 
549 	BUG_ON(page_offset + length > PAGE_SIZE);
550 	iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
551 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
552 	if (r == -EAGAIN)
553 		r = 0;
554 	return r;
555 }
556 
557 /*
558  * write something.  @more is true if caller will be sending more data
559  * shortly.
560  */
561 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
562 		     size_t kvlen, size_t len, int more)
563 {
564 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
565 	int r;
566 
567 	if (more)
568 		msg.msg_flags |= MSG_MORE;
569 	else
570 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
571 
572 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
573 	if (r == -EAGAIN)
574 		r = 0;
575 	return r;
576 }
577 
578 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
579 		     int offset, size_t size, bool more)
580 {
581 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
582 	int ret;
583 
584 	ret = kernel_sendpage(sock, page, offset, size, flags);
585 	if (ret == -EAGAIN)
586 		ret = 0;
587 
588 	return ret;
589 }
590 
591 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
592 		     int offset, size_t size, bool more)
593 {
594 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
595 	struct bio_vec bvec;
596 	int ret;
597 
598 	/* sendpage cannot properly handle pages with page_count == 0,
599 	 * we need to fallback to sendmsg if that's the case */
600 	if (page_count(page) >= 1)
601 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
602 
603 	bvec.bv_page = page;
604 	bvec.bv_offset = offset;
605 	bvec.bv_len = size;
606 
607 	if (more)
608 		msg.msg_flags |= MSG_MORE;
609 	else
610 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
611 
612 	iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
613 	ret = sock_sendmsg(sock, &msg);
614 	if (ret == -EAGAIN)
615 		ret = 0;
616 
617 	return ret;
618 }
619 
620 /*
621  * Shutdown/close the socket for the given connection.
622  */
623 static int con_close_socket(struct ceph_connection *con)
624 {
625 	int rc = 0;
626 
627 	dout("con_close_socket on %p sock %p\n", con, con->sock);
628 	if (con->sock) {
629 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
630 		sock_release(con->sock);
631 		con->sock = NULL;
632 	}
633 
634 	/*
635 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
636 	 * independent of the connection mutex, and we could have
637 	 * received a socket close event before we had the chance to
638 	 * shut the socket down.
639 	 */
640 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
641 
642 	con_sock_state_closed(con);
643 	return rc;
644 }
645 
646 /*
647  * Reset a connection.  Discard all incoming and outgoing messages
648  * and clear *_seq state.
649  */
650 static void ceph_msg_remove(struct ceph_msg *msg)
651 {
652 	list_del_init(&msg->list_head);
653 
654 	ceph_msg_put(msg);
655 }
656 static void ceph_msg_remove_list(struct list_head *head)
657 {
658 	while (!list_empty(head)) {
659 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
660 							list_head);
661 		ceph_msg_remove(msg);
662 	}
663 }
664 
665 static void reset_connection(struct ceph_connection *con)
666 {
667 	/* reset connection, out_queue, msg_ and connect_seq */
668 	/* discard existing out_queue and msg_seq */
669 	dout("reset_connection %p\n", con);
670 	ceph_msg_remove_list(&con->out_queue);
671 	ceph_msg_remove_list(&con->out_sent);
672 
673 	if (con->in_msg) {
674 		BUG_ON(con->in_msg->con != con);
675 		ceph_msg_put(con->in_msg);
676 		con->in_msg = NULL;
677 	}
678 
679 	con->connect_seq = 0;
680 	con->out_seq = 0;
681 	if (con->out_msg) {
682 		BUG_ON(con->out_msg->con != con);
683 		ceph_msg_put(con->out_msg);
684 		con->out_msg = NULL;
685 	}
686 	con->in_seq = 0;
687 	con->in_seq_acked = 0;
688 
689 	con->out_skip = 0;
690 }
691 
692 /*
693  * mark a peer down.  drop any open connections.
694  */
695 void ceph_con_close(struct ceph_connection *con)
696 {
697 	mutex_lock(&con->mutex);
698 	dout("con_close %p peer %s\n", con,
699 	     ceph_pr_addr(&con->peer_addr.in_addr));
700 	con->state = CON_STATE_CLOSED;
701 
702 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
703 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
704 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
705 	con_flag_clear(con, CON_FLAG_BACKOFF);
706 
707 	reset_connection(con);
708 	con->peer_global_seq = 0;
709 	cancel_con(con);
710 	con_close_socket(con);
711 	mutex_unlock(&con->mutex);
712 }
713 EXPORT_SYMBOL(ceph_con_close);
714 
715 /*
716  * Reopen a closed connection, with a new peer address.
717  */
718 void ceph_con_open(struct ceph_connection *con,
719 		   __u8 entity_type, __u64 entity_num,
720 		   struct ceph_entity_addr *addr)
721 {
722 	mutex_lock(&con->mutex);
723 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
724 
725 	WARN_ON(con->state != CON_STATE_CLOSED);
726 	con->state = CON_STATE_PREOPEN;
727 
728 	con->peer_name.type = (__u8) entity_type;
729 	con->peer_name.num = cpu_to_le64(entity_num);
730 
731 	memcpy(&con->peer_addr, addr, sizeof(*addr));
732 	con->delay = 0;      /* reset backoff memory */
733 	mutex_unlock(&con->mutex);
734 	queue_con(con);
735 }
736 EXPORT_SYMBOL(ceph_con_open);
737 
738 /*
739  * return true if this connection ever successfully opened
740  */
741 bool ceph_con_opened(struct ceph_connection *con)
742 {
743 	return con->connect_seq > 0;
744 }
745 
746 /*
747  * initialize a new connection.
748  */
749 void ceph_con_init(struct ceph_connection *con, void *private,
750 	const struct ceph_connection_operations *ops,
751 	struct ceph_messenger *msgr)
752 {
753 	dout("con_init %p\n", con);
754 	memset(con, 0, sizeof(*con));
755 	con->private = private;
756 	con->ops = ops;
757 	con->msgr = msgr;
758 
759 	con_sock_state_init(con);
760 
761 	mutex_init(&con->mutex);
762 	INIT_LIST_HEAD(&con->out_queue);
763 	INIT_LIST_HEAD(&con->out_sent);
764 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
765 
766 	con->state = CON_STATE_CLOSED;
767 }
768 EXPORT_SYMBOL(ceph_con_init);
769 
770 
771 /*
772  * We maintain a global counter to order connection attempts.  Get
773  * a unique seq greater than @gt.
774  */
775 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
776 {
777 	u32 ret;
778 
779 	spin_lock(&msgr->global_seq_lock);
780 	if (msgr->global_seq < gt)
781 		msgr->global_seq = gt;
782 	ret = ++msgr->global_seq;
783 	spin_unlock(&msgr->global_seq_lock);
784 	return ret;
785 }
786 
787 static void con_out_kvec_reset(struct ceph_connection *con)
788 {
789 	BUG_ON(con->out_skip);
790 
791 	con->out_kvec_left = 0;
792 	con->out_kvec_bytes = 0;
793 	con->out_kvec_cur = &con->out_kvec[0];
794 }
795 
796 static void con_out_kvec_add(struct ceph_connection *con,
797 				size_t size, void *data)
798 {
799 	int index = con->out_kvec_left;
800 
801 	BUG_ON(con->out_skip);
802 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
803 
804 	con->out_kvec[index].iov_len = size;
805 	con->out_kvec[index].iov_base = data;
806 	con->out_kvec_left++;
807 	con->out_kvec_bytes += size;
808 }
809 
810 /*
811  * Chop off a kvec from the end.  Return residual number of bytes for
812  * that kvec, i.e. how many bytes would have been written if the kvec
813  * hadn't been nuked.
814  */
815 static int con_out_kvec_skip(struct ceph_connection *con)
816 {
817 	int off = con->out_kvec_cur - con->out_kvec;
818 	int skip = 0;
819 
820 	if (con->out_kvec_bytes > 0) {
821 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
822 		BUG_ON(con->out_kvec_bytes < skip);
823 		BUG_ON(!con->out_kvec_left);
824 		con->out_kvec_bytes -= skip;
825 		con->out_kvec_left--;
826 	}
827 
828 	return skip;
829 }
830 
831 #ifdef CONFIG_BLOCK
832 
833 /*
834  * For a bio data item, a piece is whatever remains of the next
835  * entry in the current bio iovec, or the first entry in the next
836  * bio in the list.
837  */
838 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
839 					size_t length)
840 {
841 	struct ceph_msg_data *data = cursor->data;
842 	struct bio *bio;
843 
844 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
845 
846 	bio = data->bio;
847 	BUG_ON(!bio);
848 
849 	cursor->resid = min(length, data->bio_length);
850 	cursor->bio = bio;
851 	cursor->bvec_iter = bio->bi_iter;
852 	cursor->last_piece =
853 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
854 }
855 
856 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
857 						size_t *page_offset,
858 						size_t *length)
859 {
860 	struct ceph_msg_data *data = cursor->data;
861 	struct bio *bio;
862 	struct bio_vec bio_vec;
863 
864 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
865 
866 	bio = cursor->bio;
867 	BUG_ON(!bio);
868 
869 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
870 
871 	*page_offset = (size_t) bio_vec.bv_offset;
872 	BUG_ON(*page_offset >= PAGE_SIZE);
873 	if (cursor->last_piece) /* pagelist offset is always 0 */
874 		*length = cursor->resid;
875 	else
876 		*length = (size_t) bio_vec.bv_len;
877 	BUG_ON(*length > cursor->resid);
878 	BUG_ON(*page_offset + *length > PAGE_SIZE);
879 
880 	return bio_vec.bv_page;
881 }
882 
883 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
884 					size_t bytes)
885 {
886 	struct bio *bio;
887 	struct bio_vec bio_vec;
888 
889 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
890 
891 	bio = cursor->bio;
892 	BUG_ON(!bio);
893 
894 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
895 
896 	/* Advance the cursor offset */
897 
898 	BUG_ON(cursor->resid < bytes);
899 	cursor->resid -= bytes;
900 
901 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
902 
903 	if (bytes < bio_vec.bv_len)
904 		return false;	/* more bytes to process in this segment */
905 
906 	/* Move on to the next segment, and possibly the next bio */
907 
908 	if (!cursor->bvec_iter.bi_size) {
909 		bio = bio->bi_next;
910 		cursor->bio = bio;
911 		if (bio)
912 			cursor->bvec_iter = bio->bi_iter;
913 		else
914 			memset(&cursor->bvec_iter, 0,
915 			       sizeof(cursor->bvec_iter));
916 	}
917 
918 	if (!cursor->last_piece) {
919 		BUG_ON(!cursor->resid);
920 		BUG_ON(!bio);
921 		/* A short read is OK, so use <= rather than == */
922 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
923 			cursor->last_piece = true;
924 	}
925 
926 	return true;
927 }
928 #endif /* CONFIG_BLOCK */
929 
930 /*
931  * For a page array, a piece comes from the first page in the array
932  * that has not already been fully consumed.
933  */
934 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
935 					size_t length)
936 {
937 	struct ceph_msg_data *data = cursor->data;
938 	int page_count;
939 
940 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
941 
942 	BUG_ON(!data->pages);
943 	BUG_ON(!data->length);
944 
945 	cursor->resid = min(length, data->length);
946 	page_count = calc_pages_for(data->alignment, (u64)data->length);
947 	cursor->page_offset = data->alignment & ~PAGE_MASK;
948 	cursor->page_index = 0;
949 	BUG_ON(page_count > (int)USHRT_MAX);
950 	cursor->page_count = (unsigned short)page_count;
951 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
952 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
953 }
954 
955 static struct page *
956 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
957 					size_t *page_offset, size_t *length)
958 {
959 	struct ceph_msg_data *data = cursor->data;
960 
961 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
962 
963 	BUG_ON(cursor->page_index >= cursor->page_count);
964 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
965 
966 	*page_offset = cursor->page_offset;
967 	if (cursor->last_piece)
968 		*length = cursor->resid;
969 	else
970 		*length = PAGE_SIZE - *page_offset;
971 
972 	return data->pages[cursor->page_index];
973 }
974 
975 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
976 						size_t bytes)
977 {
978 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
979 
980 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
981 
982 	/* Advance the cursor page offset */
983 
984 	cursor->resid -= bytes;
985 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
986 	if (!bytes || cursor->page_offset)
987 		return false;	/* more bytes to process in the current page */
988 
989 	if (!cursor->resid)
990 		return false;   /* no more data */
991 
992 	/* Move on to the next page; offset is already at 0 */
993 
994 	BUG_ON(cursor->page_index >= cursor->page_count);
995 	cursor->page_index++;
996 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
997 
998 	return true;
999 }
1000 
1001 /*
1002  * For a pagelist, a piece is whatever remains to be consumed in the
1003  * first page in the list, or the front of the next page.
1004  */
1005 static void
1006 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1007 					size_t length)
1008 {
1009 	struct ceph_msg_data *data = cursor->data;
1010 	struct ceph_pagelist *pagelist;
1011 	struct page *page;
1012 
1013 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014 
1015 	pagelist = data->pagelist;
1016 	BUG_ON(!pagelist);
1017 
1018 	if (!length)
1019 		return;		/* pagelist can be assigned but empty */
1020 
1021 	BUG_ON(list_empty(&pagelist->head));
1022 	page = list_first_entry(&pagelist->head, struct page, lru);
1023 
1024 	cursor->resid = min(length, pagelist->length);
1025 	cursor->page = page;
1026 	cursor->offset = 0;
1027 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1028 }
1029 
1030 static struct page *
1031 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1032 				size_t *page_offset, size_t *length)
1033 {
1034 	struct ceph_msg_data *data = cursor->data;
1035 	struct ceph_pagelist *pagelist;
1036 
1037 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1038 
1039 	pagelist = data->pagelist;
1040 	BUG_ON(!pagelist);
1041 
1042 	BUG_ON(!cursor->page);
1043 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1044 
1045 	/* offset of first page in pagelist is always 0 */
1046 	*page_offset = cursor->offset & ~PAGE_MASK;
1047 	if (cursor->last_piece)
1048 		*length = cursor->resid;
1049 	else
1050 		*length = PAGE_SIZE - *page_offset;
1051 
1052 	return cursor->page;
1053 }
1054 
1055 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1056 						size_t bytes)
1057 {
1058 	struct ceph_msg_data *data = cursor->data;
1059 	struct ceph_pagelist *pagelist;
1060 
1061 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1062 
1063 	pagelist = data->pagelist;
1064 	BUG_ON(!pagelist);
1065 
1066 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1067 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1068 
1069 	/* Advance the cursor offset */
1070 
1071 	cursor->resid -= bytes;
1072 	cursor->offset += bytes;
1073 	/* offset of first page in pagelist is always 0 */
1074 	if (!bytes || cursor->offset & ~PAGE_MASK)
1075 		return false;	/* more bytes to process in the current page */
1076 
1077 	if (!cursor->resid)
1078 		return false;   /* no more data */
1079 
1080 	/* Move on to the next page */
1081 
1082 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1083 	cursor->page = list_next_entry(cursor->page, lru);
1084 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1085 
1086 	return true;
1087 }
1088 
1089 /*
1090  * Message data is handled (sent or received) in pieces, where each
1091  * piece resides on a single page.  The network layer might not
1092  * consume an entire piece at once.  A data item's cursor keeps
1093  * track of which piece is next to process and how much remains to
1094  * be processed in that piece.  It also tracks whether the current
1095  * piece is the last one in the data item.
1096  */
1097 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1098 {
1099 	size_t length = cursor->total_resid;
1100 
1101 	switch (cursor->data->type) {
1102 	case CEPH_MSG_DATA_PAGELIST:
1103 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1104 		break;
1105 	case CEPH_MSG_DATA_PAGES:
1106 		ceph_msg_data_pages_cursor_init(cursor, length);
1107 		break;
1108 #ifdef CONFIG_BLOCK
1109 	case CEPH_MSG_DATA_BIO:
1110 		ceph_msg_data_bio_cursor_init(cursor, length);
1111 		break;
1112 #endif /* CONFIG_BLOCK */
1113 	case CEPH_MSG_DATA_NONE:
1114 	default:
1115 		/* BUG(); */
1116 		break;
1117 	}
1118 	cursor->need_crc = true;
1119 }
1120 
1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1122 {
1123 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1124 	struct ceph_msg_data *data;
1125 
1126 	BUG_ON(!length);
1127 	BUG_ON(length > msg->data_length);
1128 	BUG_ON(list_empty(&msg->data));
1129 
1130 	cursor->data_head = &msg->data;
1131 	cursor->total_resid = length;
1132 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1133 	cursor->data = data;
1134 
1135 	__ceph_msg_data_cursor_init(cursor);
1136 }
1137 
1138 /*
1139  * Return the page containing the next piece to process for a given
1140  * data item, and supply the page offset and length of that piece.
1141  * Indicate whether this is the last piece in this data item.
1142  */
1143 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1144 					size_t *page_offset, size_t *length,
1145 					bool *last_piece)
1146 {
1147 	struct page *page;
1148 
1149 	switch (cursor->data->type) {
1150 	case CEPH_MSG_DATA_PAGELIST:
1151 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1152 		break;
1153 	case CEPH_MSG_DATA_PAGES:
1154 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1155 		break;
1156 #ifdef CONFIG_BLOCK
1157 	case CEPH_MSG_DATA_BIO:
1158 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1159 		break;
1160 #endif /* CONFIG_BLOCK */
1161 	case CEPH_MSG_DATA_NONE:
1162 	default:
1163 		page = NULL;
1164 		break;
1165 	}
1166 	BUG_ON(!page);
1167 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1168 	BUG_ON(!*length);
1169 	if (last_piece)
1170 		*last_piece = cursor->last_piece;
1171 
1172 	return page;
1173 }
1174 
1175 /*
1176  * Returns true if the result moves the cursor on to the next piece
1177  * of the data item.
1178  */
1179 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1180 				  size_t bytes)
1181 {
1182 	bool new_piece;
1183 
1184 	BUG_ON(bytes > cursor->resid);
1185 	switch (cursor->data->type) {
1186 	case CEPH_MSG_DATA_PAGELIST:
1187 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1188 		break;
1189 	case CEPH_MSG_DATA_PAGES:
1190 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1191 		break;
1192 #ifdef CONFIG_BLOCK
1193 	case CEPH_MSG_DATA_BIO:
1194 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1195 		break;
1196 #endif /* CONFIG_BLOCK */
1197 	case CEPH_MSG_DATA_NONE:
1198 	default:
1199 		BUG();
1200 		break;
1201 	}
1202 	cursor->total_resid -= bytes;
1203 
1204 	if (!cursor->resid && cursor->total_resid) {
1205 		WARN_ON(!cursor->last_piece);
1206 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1207 		cursor->data = list_next_entry(cursor->data, links);
1208 		__ceph_msg_data_cursor_init(cursor);
1209 		new_piece = true;
1210 	}
1211 	cursor->need_crc = new_piece;
1212 }
1213 
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 	    sizeof(struct ceph_msg_footer) :
1218 	    sizeof(struct ceph_msg_footer_old);
1219 }
1220 
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 	BUG_ON(!msg);
1224 	BUG_ON(!data_len);
1225 
1226 	/* Initialize data cursor */
1227 
1228 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229 }
1230 
1231 /*
1232  * Prepare footer for currently outgoing message, and finish things
1233  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1234  */
1235 static void prepare_write_message_footer(struct ceph_connection *con)
1236 {
1237 	struct ceph_msg *m = con->out_msg;
1238 
1239 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240 
1241 	dout("prepare_write_message_footer %p\n", con);
1242 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244 		if (con->ops->sign_message)
1245 			con->ops->sign_message(m);
1246 		else
1247 			m->footer.sig = 0;
1248 	} else {
1249 		m->old_footer.flags = m->footer.flags;
1250 	}
1251 	con->out_more = m->more_to_follow;
1252 	con->out_msg_done = true;
1253 }
1254 
1255 /*
1256  * Prepare headers for the next outgoing message.
1257  */
1258 static void prepare_write_message(struct ceph_connection *con)
1259 {
1260 	struct ceph_msg *m;
1261 	u32 crc;
1262 
1263 	con_out_kvec_reset(con);
1264 	con->out_msg_done = false;
1265 
1266 	/* Sneak an ack in there first?  If we can get it into the same
1267 	 * TCP packet that's a good thing. */
1268 	if (con->in_seq > con->in_seq_acked) {
1269 		con->in_seq_acked = con->in_seq;
1270 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273 			&con->out_temp_ack);
1274 	}
1275 
1276 	BUG_ON(list_empty(&con->out_queue));
1277 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278 	con->out_msg = m;
1279 	BUG_ON(m->con != con);
1280 
1281 	/* put message on sent list */
1282 	ceph_msg_get(m);
1283 	list_move_tail(&m->list_head, &con->out_sent);
1284 
1285 	/*
1286 	 * only assign outgoing seq # if we haven't sent this message
1287 	 * yet.  if it is requeued, resend with it's original seq.
1288 	 */
1289 	if (m->needs_out_seq) {
1290 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1291 		m->needs_out_seq = false;
1292 
1293 		if (con->ops->reencode_message)
1294 			con->ops->reencode_message(m);
1295 	}
1296 
1297 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1298 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1299 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1300 	     m->data_length);
1301 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1302 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1303 
1304 	/* tag + hdr + front + middle */
1305 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1306 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1307 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1308 
1309 	if (m->middle)
1310 		con_out_kvec_add(con, m->middle->vec.iov_len,
1311 			m->middle->vec.iov_base);
1312 
1313 	/* fill in hdr crc and finalize hdr */
1314 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1315 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1316 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1317 
1318 	/* fill in front and middle crc, footer */
1319 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1320 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1321 	if (m->middle) {
1322 		crc = crc32c(0, m->middle->vec.iov_base,
1323 				m->middle->vec.iov_len);
1324 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1325 	} else
1326 		con->out_msg->footer.middle_crc = 0;
1327 	dout("%s front_crc %u middle_crc %u\n", __func__,
1328 	     le32_to_cpu(con->out_msg->footer.front_crc),
1329 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1330 	con->out_msg->footer.flags = 0;
1331 
1332 	/* is there a data payload? */
1333 	con->out_msg->footer.data_crc = 0;
1334 	if (m->data_length) {
1335 		prepare_message_data(con->out_msg, m->data_length);
1336 		con->out_more = 1;  /* data + footer will follow */
1337 	} else {
1338 		/* no, queue up footer too and be done */
1339 		prepare_write_message_footer(con);
1340 	}
1341 
1342 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1343 }
1344 
1345 /*
1346  * Prepare an ack.
1347  */
1348 static void prepare_write_ack(struct ceph_connection *con)
1349 {
1350 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1351 	     con->in_seq_acked, con->in_seq);
1352 	con->in_seq_acked = con->in_seq;
1353 
1354 	con_out_kvec_reset(con);
1355 
1356 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1357 
1358 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1359 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1360 				&con->out_temp_ack);
1361 
1362 	con->out_more = 1;  /* more will follow.. eventually.. */
1363 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1364 }
1365 
1366 /*
1367  * Prepare to share the seq during handshake
1368  */
1369 static void prepare_write_seq(struct ceph_connection *con)
1370 {
1371 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1372 	     con->in_seq_acked, con->in_seq);
1373 	con->in_seq_acked = con->in_seq;
1374 
1375 	con_out_kvec_reset(con);
1376 
1377 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1378 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1379 			 &con->out_temp_ack);
1380 
1381 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1382 }
1383 
1384 /*
1385  * Prepare to write keepalive byte.
1386  */
1387 static void prepare_write_keepalive(struct ceph_connection *con)
1388 {
1389 	dout("prepare_write_keepalive %p\n", con);
1390 	con_out_kvec_reset(con);
1391 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1392 		struct timespec now;
1393 
1394 		ktime_get_real_ts(&now);
1395 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1396 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1397 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1398 				 &con->out_temp_keepalive2);
1399 	} else {
1400 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1401 	}
1402 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1403 }
1404 
1405 /*
1406  * Connection negotiation.
1407  */
1408 
1409 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1410 						int *auth_proto)
1411 {
1412 	struct ceph_auth_handshake *auth;
1413 
1414 	if (!con->ops->get_authorizer) {
1415 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1416 		con->out_connect.authorizer_len = 0;
1417 		return NULL;
1418 	}
1419 
1420 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1421 	if (IS_ERR(auth))
1422 		return auth;
1423 
1424 	con->auth_reply_buf = auth->authorizer_reply_buf;
1425 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1426 	return auth;
1427 }
1428 
1429 /*
1430  * We connected to a peer and are saying hello.
1431  */
1432 static void prepare_write_banner(struct ceph_connection *con)
1433 {
1434 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1435 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1436 					&con->msgr->my_enc_addr);
1437 
1438 	con->out_more = 0;
1439 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1440 }
1441 
1442 static int prepare_write_connect(struct ceph_connection *con)
1443 {
1444 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1445 	int proto;
1446 	int auth_proto;
1447 	struct ceph_auth_handshake *auth;
1448 
1449 	switch (con->peer_name.type) {
1450 	case CEPH_ENTITY_TYPE_MON:
1451 		proto = CEPH_MONC_PROTOCOL;
1452 		break;
1453 	case CEPH_ENTITY_TYPE_OSD:
1454 		proto = CEPH_OSDC_PROTOCOL;
1455 		break;
1456 	case CEPH_ENTITY_TYPE_MDS:
1457 		proto = CEPH_MDSC_PROTOCOL;
1458 		break;
1459 	default:
1460 		BUG();
1461 	}
1462 
1463 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1464 	     con->connect_seq, global_seq, proto);
1465 
1466 	con->out_connect.features =
1467 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1468 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1469 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1470 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1471 	con->out_connect.protocol_version = cpu_to_le32(proto);
1472 	con->out_connect.flags = 0;
1473 
1474 	auth_proto = CEPH_AUTH_UNKNOWN;
1475 	auth = get_connect_authorizer(con, &auth_proto);
1476 	if (IS_ERR(auth))
1477 		return PTR_ERR(auth);
1478 
1479 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1480 	con->out_connect.authorizer_len = auth ?
1481 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1482 
1483 	con_out_kvec_add(con, sizeof (con->out_connect),
1484 					&con->out_connect);
1485 	if (auth && auth->authorizer_buf_len)
1486 		con_out_kvec_add(con, auth->authorizer_buf_len,
1487 					auth->authorizer_buf);
1488 
1489 	con->out_more = 0;
1490 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1491 
1492 	return 0;
1493 }
1494 
1495 /*
1496  * write as much of pending kvecs to the socket as we can.
1497  *  1 -> done
1498  *  0 -> socket full, but more to do
1499  * <0 -> error
1500  */
1501 static int write_partial_kvec(struct ceph_connection *con)
1502 {
1503 	int ret;
1504 
1505 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506 	while (con->out_kvec_bytes > 0) {
1507 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508 				       con->out_kvec_left, con->out_kvec_bytes,
1509 				       con->out_more);
1510 		if (ret <= 0)
1511 			goto out;
1512 		con->out_kvec_bytes -= ret;
1513 		if (con->out_kvec_bytes == 0)
1514 			break;            /* done */
1515 
1516 		/* account for full iov entries consumed */
1517 		while (ret >= con->out_kvec_cur->iov_len) {
1518 			BUG_ON(!con->out_kvec_left);
1519 			ret -= con->out_kvec_cur->iov_len;
1520 			con->out_kvec_cur++;
1521 			con->out_kvec_left--;
1522 		}
1523 		/* and for a partially-consumed entry */
1524 		if (ret) {
1525 			con->out_kvec_cur->iov_len -= ret;
1526 			con->out_kvec_cur->iov_base += ret;
1527 		}
1528 	}
1529 	con->out_kvec_left = 0;
1530 	ret = 1;
1531 out:
1532 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1534 	return ret;  /* done! */
1535 }
1536 
1537 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538 				unsigned int page_offset,
1539 				unsigned int length)
1540 {
1541 	char *kaddr;
1542 
1543 	kaddr = kmap(page);
1544 	BUG_ON(kaddr == NULL);
1545 	crc = crc32c(crc, kaddr + page_offset, length);
1546 	kunmap(page);
1547 
1548 	return crc;
1549 }
1550 /*
1551  * Write as much message data payload as we can.  If we finish, queue
1552  * up the footer.
1553  *  1 -> done, footer is now queued in out_kvec[].
1554  *  0 -> socket full, but more to do
1555  * <0 -> error
1556  */
1557 static int write_partial_message_data(struct ceph_connection *con)
1558 {
1559 	struct ceph_msg *msg = con->out_msg;
1560 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562 	u32 crc;
1563 
1564 	dout("%s %p msg %p\n", __func__, con, msg);
1565 
1566 	if (list_empty(&msg->data))
1567 		return -EINVAL;
1568 
1569 	/*
1570 	 * Iterate through each page that contains data to be
1571 	 * written, and send as much as possible for each.
1572 	 *
1573 	 * If we are calculating the data crc (the default), we will
1574 	 * need to map the page.  If we have no pages, they have
1575 	 * been revoked, so use the zero page.
1576 	 */
1577 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1578 	while (cursor->resid) {
1579 		struct page *page;
1580 		size_t page_offset;
1581 		size_t length;
1582 		bool last_piece;
1583 		int ret;
1584 
1585 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1586 					  &last_piece);
1587 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1588 					length, !last_piece);
1589 		if (ret <= 0) {
1590 			if (do_datacrc)
1591 				msg->footer.data_crc = cpu_to_le32(crc);
1592 
1593 			return ret;
1594 		}
1595 		if (do_datacrc && cursor->need_crc)
1596 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1597 		ceph_msg_data_advance(cursor, (size_t)ret);
1598 	}
1599 
1600 	dout("%s %p msg %p done\n", __func__, con, msg);
1601 
1602 	/* prepare and queue up footer, too */
1603 	if (do_datacrc)
1604 		msg->footer.data_crc = cpu_to_le32(crc);
1605 	else
1606 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1607 	con_out_kvec_reset(con);
1608 	prepare_write_message_footer(con);
1609 
1610 	return 1;	/* must return > 0 to indicate success */
1611 }
1612 
1613 /*
1614  * write some zeros
1615  */
1616 static int write_partial_skip(struct ceph_connection *con)
1617 {
1618 	int ret;
1619 
1620 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1621 	while (con->out_skip > 0) {
1622 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1623 
1624 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1625 		if (ret <= 0)
1626 			goto out;
1627 		con->out_skip -= ret;
1628 	}
1629 	ret = 1;
1630 out:
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Prepare to read connection handshake, or an ack.
1636  */
1637 static void prepare_read_banner(struct ceph_connection *con)
1638 {
1639 	dout("prepare_read_banner %p\n", con);
1640 	con->in_base_pos = 0;
1641 }
1642 
1643 static void prepare_read_connect(struct ceph_connection *con)
1644 {
1645 	dout("prepare_read_connect %p\n", con);
1646 	con->in_base_pos = 0;
1647 }
1648 
1649 static void prepare_read_ack(struct ceph_connection *con)
1650 {
1651 	dout("prepare_read_ack %p\n", con);
1652 	con->in_base_pos = 0;
1653 }
1654 
1655 static void prepare_read_seq(struct ceph_connection *con)
1656 {
1657 	dout("prepare_read_seq %p\n", con);
1658 	con->in_base_pos = 0;
1659 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1660 }
1661 
1662 static void prepare_read_tag(struct ceph_connection *con)
1663 {
1664 	dout("prepare_read_tag %p\n", con);
1665 	con->in_base_pos = 0;
1666 	con->in_tag = CEPH_MSGR_TAG_READY;
1667 }
1668 
1669 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1670 {
1671 	dout("prepare_read_keepalive_ack %p\n", con);
1672 	con->in_base_pos = 0;
1673 }
1674 
1675 /*
1676  * Prepare to read a message.
1677  */
1678 static int prepare_read_message(struct ceph_connection *con)
1679 {
1680 	dout("prepare_read_message %p\n", con);
1681 	BUG_ON(con->in_msg != NULL);
1682 	con->in_base_pos = 0;
1683 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1684 	return 0;
1685 }
1686 
1687 
1688 static int read_partial(struct ceph_connection *con,
1689 			int end, int size, void *object)
1690 {
1691 	while (con->in_base_pos < end) {
1692 		int left = end - con->in_base_pos;
1693 		int have = size - left;
1694 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1695 		if (ret <= 0)
1696 			return ret;
1697 		con->in_base_pos += ret;
1698 	}
1699 	return 1;
1700 }
1701 
1702 
1703 /*
1704  * Read all or part of the connect-side handshake on a new connection
1705  */
1706 static int read_partial_banner(struct ceph_connection *con)
1707 {
1708 	int size;
1709 	int end;
1710 	int ret;
1711 
1712 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1713 
1714 	/* peer's banner */
1715 	size = strlen(CEPH_BANNER);
1716 	end = size;
1717 	ret = read_partial(con, end, size, con->in_banner);
1718 	if (ret <= 0)
1719 		goto out;
1720 
1721 	size = sizeof (con->actual_peer_addr);
1722 	end += size;
1723 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1724 	if (ret <= 0)
1725 		goto out;
1726 
1727 	size = sizeof (con->peer_addr_for_me);
1728 	end += size;
1729 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1730 	if (ret <= 0)
1731 		goto out;
1732 
1733 out:
1734 	return ret;
1735 }
1736 
1737 static int read_partial_connect(struct ceph_connection *con)
1738 {
1739 	int size;
1740 	int end;
1741 	int ret;
1742 
1743 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1744 
1745 	size = sizeof (con->in_reply);
1746 	end = size;
1747 	ret = read_partial(con, end, size, &con->in_reply);
1748 	if (ret <= 0)
1749 		goto out;
1750 
1751 	size = le32_to_cpu(con->in_reply.authorizer_len);
1752 	end += size;
1753 	ret = read_partial(con, end, size, con->auth_reply_buf);
1754 	if (ret <= 0)
1755 		goto out;
1756 
1757 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1758 	     con, (int)con->in_reply.tag,
1759 	     le32_to_cpu(con->in_reply.connect_seq),
1760 	     le32_to_cpu(con->in_reply.global_seq));
1761 out:
1762 	return ret;
1763 
1764 }
1765 
1766 /*
1767  * Verify the hello banner looks okay.
1768  */
1769 static int verify_hello(struct ceph_connection *con)
1770 {
1771 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1772 		pr_err("connect to %s got bad banner\n",
1773 		       ceph_pr_addr(&con->peer_addr.in_addr));
1774 		con->error_msg = "protocol error, bad banner";
1775 		return -1;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static bool addr_is_blank(struct sockaddr_storage *ss)
1781 {
1782 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1783 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1784 
1785 	switch (ss->ss_family) {
1786 	case AF_INET:
1787 		return addr->s_addr == htonl(INADDR_ANY);
1788 	case AF_INET6:
1789 		return ipv6_addr_any(addr6);
1790 	default:
1791 		return true;
1792 	}
1793 }
1794 
1795 static int addr_port(struct sockaddr_storage *ss)
1796 {
1797 	switch (ss->ss_family) {
1798 	case AF_INET:
1799 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1800 	case AF_INET6:
1801 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1802 	}
1803 	return 0;
1804 }
1805 
1806 static void addr_set_port(struct sockaddr_storage *ss, int p)
1807 {
1808 	switch (ss->ss_family) {
1809 	case AF_INET:
1810 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1811 		break;
1812 	case AF_INET6:
1813 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1814 		break;
1815 	}
1816 }
1817 
1818 /*
1819  * Unlike other *_pton function semantics, zero indicates success.
1820  */
1821 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1822 		char delim, const char **ipend)
1823 {
1824 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1825 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1826 
1827 	memset(ss, 0, sizeof(*ss));
1828 
1829 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1830 		ss->ss_family = AF_INET;
1831 		return 0;
1832 	}
1833 
1834 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1835 		ss->ss_family = AF_INET6;
1836 		return 0;
1837 	}
1838 
1839 	return -EINVAL;
1840 }
1841 
1842 /*
1843  * Extract hostname string and resolve using kernel DNS facility.
1844  */
1845 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1846 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1847 		struct sockaddr_storage *ss, char delim, const char **ipend)
1848 {
1849 	const char *end, *delim_p;
1850 	char *colon_p, *ip_addr = NULL;
1851 	int ip_len, ret;
1852 
1853 	/*
1854 	 * The end of the hostname occurs immediately preceding the delimiter or
1855 	 * the port marker (':') where the delimiter takes precedence.
1856 	 */
1857 	delim_p = memchr(name, delim, namelen);
1858 	colon_p = memchr(name, ':', namelen);
1859 
1860 	if (delim_p && colon_p)
1861 		end = delim_p < colon_p ? delim_p : colon_p;
1862 	else if (!delim_p && colon_p)
1863 		end = colon_p;
1864 	else {
1865 		end = delim_p;
1866 		if (!end) /* case: hostname:/ */
1867 			end = name + namelen;
1868 	}
1869 
1870 	if (end <= name)
1871 		return -EINVAL;
1872 
1873 	/* do dns_resolve upcall */
1874 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1875 	if (ip_len > 0)
1876 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1877 	else
1878 		ret = -ESRCH;
1879 
1880 	kfree(ip_addr);
1881 
1882 	*ipend = end;
1883 
1884 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1885 			ret, ret ? "failed" : ceph_pr_addr(ss));
1886 
1887 	return ret;
1888 }
1889 #else
1890 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1891 		struct sockaddr_storage *ss, char delim, const char **ipend)
1892 {
1893 	return -EINVAL;
1894 }
1895 #endif
1896 
1897 /*
1898  * Parse a server name (IP or hostname). If a valid IP address is not found
1899  * then try to extract a hostname to resolve using userspace DNS upcall.
1900  */
1901 static int ceph_parse_server_name(const char *name, size_t namelen,
1902 			struct sockaddr_storage *ss, char delim, const char **ipend)
1903 {
1904 	int ret;
1905 
1906 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1907 	if (ret)
1908 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Parse an ip[:port] list into an addr array.  Use the default
1915  * monitor port if a port isn't specified.
1916  */
1917 int ceph_parse_ips(const char *c, const char *end,
1918 		   struct ceph_entity_addr *addr,
1919 		   int max_count, int *count)
1920 {
1921 	int i, ret = -EINVAL;
1922 	const char *p = c;
1923 
1924 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1925 	for (i = 0; i < max_count; i++) {
1926 		const char *ipend;
1927 		struct sockaddr_storage *ss = &addr[i].in_addr;
1928 		int port;
1929 		char delim = ',';
1930 
1931 		if (*p == '[') {
1932 			delim = ']';
1933 			p++;
1934 		}
1935 
1936 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1937 		if (ret)
1938 			goto bad;
1939 		ret = -EINVAL;
1940 
1941 		p = ipend;
1942 
1943 		if (delim == ']') {
1944 			if (*p != ']') {
1945 				dout("missing matching ']'\n");
1946 				goto bad;
1947 			}
1948 			p++;
1949 		}
1950 
1951 		/* port? */
1952 		if (p < end && *p == ':') {
1953 			port = 0;
1954 			p++;
1955 			while (p < end && *p >= '0' && *p <= '9') {
1956 				port = (port * 10) + (*p - '0');
1957 				p++;
1958 			}
1959 			if (port == 0)
1960 				port = CEPH_MON_PORT;
1961 			else if (port > 65535)
1962 				goto bad;
1963 		} else {
1964 			port = CEPH_MON_PORT;
1965 		}
1966 
1967 		addr_set_port(ss, port);
1968 
1969 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1970 
1971 		if (p == end)
1972 			break;
1973 		if (*p != ',')
1974 			goto bad;
1975 		p++;
1976 	}
1977 
1978 	if (p != end)
1979 		goto bad;
1980 
1981 	if (count)
1982 		*count = i + 1;
1983 	return 0;
1984 
1985 bad:
1986 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1987 	return ret;
1988 }
1989 EXPORT_SYMBOL(ceph_parse_ips);
1990 
1991 static int process_banner(struct ceph_connection *con)
1992 {
1993 	dout("process_banner on %p\n", con);
1994 
1995 	if (verify_hello(con) < 0)
1996 		return -1;
1997 
1998 	ceph_decode_addr(&con->actual_peer_addr);
1999 	ceph_decode_addr(&con->peer_addr_for_me);
2000 
2001 	/*
2002 	 * Make sure the other end is who we wanted.  note that the other
2003 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2004 	 * them the benefit of the doubt.
2005 	 */
2006 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2007 		   sizeof(con->peer_addr)) != 0 &&
2008 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2009 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2010 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2011 			ceph_pr_addr(&con->peer_addr.in_addr),
2012 			(int)le32_to_cpu(con->peer_addr.nonce),
2013 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2014 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2015 		con->error_msg = "wrong peer at address";
2016 		return -1;
2017 	}
2018 
2019 	/*
2020 	 * did we learn our address?
2021 	 */
2022 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2023 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2024 
2025 		memcpy(&con->msgr->inst.addr.in_addr,
2026 		       &con->peer_addr_for_me.in_addr,
2027 		       sizeof(con->peer_addr_for_me.in_addr));
2028 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2029 		encode_my_addr(con->msgr);
2030 		dout("process_banner learned my addr is %s\n",
2031 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int process_connect(struct ceph_connection *con)
2038 {
2039 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2040 	u64 req_feat = from_msgr(con->msgr)->required_features;
2041 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2042 	int ret;
2043 
2044 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2045 
2046 	if (con->auth_reply_buf) {
2047 		/*
2048 		 * Any connection that defines ->get_authorizer()
2049 		 * should also define ->verify_authorizer_reply().
2050 		 * See get_connect_authorizer().
2051 		 */
2052 		ret = con->ops->verify_authorizer_reply(con);
2053 		if (ret < 0) {
2054 			con->error_msg = "bad authorize reply";
2055 			return ret;
2056 		}
2057 	}
2058 
2059 	switch (con->in_reply.tag) {
2060 	case CEPH_MSGR_TAG_FEATURES:
2061 		pr_err("%s%lld %s feature set mismatch,"
2062 		       " my %llx < server's %llx, missing %llx\n",
2063 		       ENTITY_NAME(con->peer_name),
2064 		       ceph_pr_addr(&con->peer_addr.in_addr),
2065 		       sup_feat, server_feat, server_feat & ~sup_feat);
2066 		con->error_msg = "missing required protocol features";
2067 		reset_connection(con);
2068 		return -1;
2069 
2070 	case CEPH_MSGR_TAG_BADPROTOVER:
2071 		pr_err("%s%lld %s protocol version mismatch,"
2072 		       " my %d != server's %d\n",
2073 		       ENTITY_NAME(con->peer_name),
2074 		       ceph_pr_addr(&con->peer_addr.in_addr),
2075 		       le32_to_cpu(con->out_connect.protocol_version),
2076 		       le32_to_cpu(con->in_reply.protocol_version));
2077 		con->error_msg = "protocol version mismatch";
2078 		reset_connection(con);
2079 		return -1;
2080 
2081 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2082 		con->auth_retry++;
2083 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2084 		     con->auth_retry);
2085 		if (con->auth_retry == 2) {
2086 			con->error_msg = "connect authorization failure";
2087 			return -1;
2088 		}
2089 		con_out_kvec_reset(con);
2090 		ret = prepare_write_connect(con);
2091 		if (ret < 0)
2092 			return ret;
2093 		prepare_read_connect(con);
2094 		break;
2095 
2096 	case CEPH_MSGR_TAG_RESETSESSION:
2097 		/*
2098 		 * If we connected with a large connect_seq but the peer
2099 		 * has no record of a session with us (no connection, or
2100 		 * connect_seq == 0), they will send RESETSESION to indicate
2101 		 * that they must have reset their session, and may have
2102 		 * dropped messages.
2103 		 */
2104 		dout("process_connect got RESET peer seq %u\n",
2105 		     le32_to_cpu(con->in_reply.connect_seq));
2106 		pr_err("%s%lld %s connection reset\n",
2107 		       ENTITY_NAME(con->peer_name),
2108 		       ceph_pr_addr(&con->peer_addr.in_addr));
2109 		reset_connection(con);
2110 		con_out_kvec_reset(con);
2111 		ret = prepare_write_connect(con);
2112 		if (ret < 0)
2113 			return ret;
2114 		prepare_read_connect(con);
2115 
2116 		/* Tell ceph about it. */
2117 		mutex_unlock(&con->mutex);
2118 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2119 		if (con->ops->peer_reset)
2120 			con->ops->peer_reset(con);
2121 		mutex_lock(&con->mutex);
2122 		if (con->state != CON_STATE_NEGOTIATING)
2123 			return -EAGAIN;
2124 		break;
2125 
2126 	case CEPH_MSGR_TAG_RETRY_SESSION:
2127 		/*
2128 		 * If we sent a smaller connect_seq than the peer has, try
2129 		 * again with a larger value.
2130 		 */
2131 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2132 		     le32_to_cpu(con->out_connect.connect_seq),
2133 		     le32_to_cpu(con->in_reply.connect_seq));
2134 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2135 		con_out_kvec_reset(con);
2136 		ret = prepare_write_connect(con);
2137 		if (ret < 0)
2138 			return ret;
2139 		prepare_read_connect(con);
2140 		break;
2141 
2142 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2143 		/*
2144 		 * If we sent a smaller global_seq than the peer has, try
2145 		 * again with a larger value.
2146 		 */
2147 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2148 		     con->peer_global_seq,
2149 		     le32_to_cpu(con->in_reply.global_seq));
2150 		get_global_seq(con->msgr,
2151 			       le32_to_cpu(con->in_reply.global_seq));
2152 		con_out_kvec_reset(con);
2153 		ret = prepare_write_connect(con);
2154 		if (ret < 0)
2155 			return ret;
2156 		prepare_read_connect(con);
2157 		break;
2158 
2159 	case CEPH_MSGR_TAG_SEQ:
2160 	case CEPH_MSGR_TAG_READY:
2161 		if (req_feat & ~server_feat) {
2162 			pr_err("%s%lld %s protocol feature mismatch,"
2163 			       " my required %llx > server's %llx, need %llx\n",
2164 			       ENTITY_NAME(con->peer_name),
2165 			       ceph_pr_addr(&con->peer_addr.in_addr),
2166 			       req_feat, server_feat, req_feat & ~server_feat);
2167 			con->error_msg = "missing required protocol features";
2168 			reset_connection(con);
2169 			return -1;
2170 		}
2171 
2172 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2173 		con->state = CON_STATE_OPEN;
2174 		con->auth_retry = 0;    /* we authenticated; clear flag */
2175 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2176 		con->connect_seq++;
2177 		con->peer_features = server_feat;
2178 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2179 		     con->peer_global_seq,
2180 		     le32_to_cpu(con->in_reply.connect_seq),
2181 		     con->connect_seq);
2182 		WARN_ON(con->connect_seq !=
2183 			le32_to_cpu(con->in_reply.connect_seq));
2184 
2185 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2186 			con_flag_set(con, CON_FLAG_LOSSYTX);
2187 
2188 		con->delay = 0;      /* reset backoff memory */
2189 
2190 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2191 			prepare_write_seq(con);
2192 			prepare_read_seq(con);
2193 		} else {
2194 			prepare_read_tag(con);
2195 		}
2196 		break;
2197 
2198 	case CEPH_MSGR_TAG_WAIT:
2199 		/*
2200 		 * If there is a connection race (we are opening
2201 		 * connections to each other), one of us may just have
2202 		 * to WAIT.  This shouldn't happen if we are the
2203 		 * client.
2204 		 */
2205 		con->error_msg = "protocol error, got WAIT as client";
2206 		return -1;
2207 
2208 	default:
2209 		con->error_msg = "protocol error, garbage tag during connect";
2210 		return -1;
2211 	}
2212 	return 0;
2213 }
2214 
2215 
2216 /*
2217  * read (part of) an ack
2218  */
2219 static int read_partial_ack(struct ceph_connection *con)
2220 {
2221 	int size = sizeof (con->in_temp_ack);
2222 	int end = size;
2223 
2224 	return read_partial(con, end, size, &con->in_temp_ack);
2225 }
2226 
2227 /*
2228  * We can finally discard anything that's been acked.
2229  */
2230 static void process_ack(struct ceph_connection *con)
2231 {
2232 	struct ceph_msg *m;
2233 	u64 ack = le64_to_cpu(con->in_temp_ack);
2234 	u64 seq;
2235 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2236 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2237 
2238 	/*
2239 	 * In the reconnect case, con_fault() has requeued messages
2240 	 * in out_sent. We should cleanup old messages according to
2241 	 * the reconnect seq.
2242 	 */
2243 	while (!list_empty(list)) {
2244 		m = list_first_entry(list, struct ceph_msg, list_head);
2245 		if (reconnect && m->needs_out_seq)
2246 			break;
2247 		seq = le64_to_cpu(m->hdr.seq);
2248 		if (seq > ack)
2249 			break;
2250 		dout("got ack for seq %llu type %d at %p\n", seq,
2251 		     le16_to_cpu(m->hdr.type), m);
2252 		m->ack_stamp = jiffies;
2253 		ceph_msg_remove(m);
2254 	}
2255 
2256 	prepare_read_tag(con);
2257 }
2258 
2259 
2260 static int read_partial_message_section(struct ceph_connection *con,
2261 					struct kvec *section,
2262 					unsigned int sec_len, u32 *crc)
2263 {
2264 	int ret, left;
2265 
2266 	BUG_ON(!section);
2267 
2268 	while (section->iov_len < sec_len) {
2269 		BUG_ON(section->iov_base == NULL);
2270 		left = sec_len - section->iov_len;
2271 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2272 				       section->iov_len, left);
2273 		if (ret <= 0)
2274 			return ret;
2275 		section->iov_len += ret;
2276 	}
2277 	if (section->iov_len == sec_len)
2278 		*crc = crc32c(0, section->iov_base, section->iov_len);
2279 
2280 	return 1;
2281 }
2282 
2283 static int read_partial_msg_data(struct ceph_connection *con)
2284 {
2285 	struct ceph_msg *msg = con->in_msg;
2286 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2287 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2288 	struct page *page;
2289 	size_t page_offset;
2290 	size_t length;
2291 	u32 crc = 0;
2292 	int ret;
2293 
2294 	BUG_ON(!msg);
2295 	if (list_empty(&msg->data))
2296 		return -EIO;
2297 
2298 	if (do_datacrc)
2299 		crc = con->in_data_crc;
2300 	while (cursor->resid) {
2301 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2302 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2303 		if (ret <= 0) {
2304 			if (do_datacrc)
2305 				con->in_data_crc = crc;
2306 
2307 			return ret;
2308 		}
2309 
2310 		if (do_datacrc)
2311 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2312 		ceph_msg_data_advance(cursor, (size_t)ret);
2313 	}
2314 	if (do_datacrc)
2315 		con->in_data_crc = crc;
2316 
2317 	return 1;	/* must return > 0 to indicate success */
2318 }
2319 
2320 /*
2321  * read (part of) a message.
2322  */
2323 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2324 
2325 static int read_partial_message(struct ceph_connection *con)
2326 {
2327 	struct ceph_msg *m = con->in_msg;
2328 	int size;
2329 	int end;
2330 	int ret;
2331 	unsigned int front_len, middle_len, data_len;
2332 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2333 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2334 	u64 seq;
2335 	u32 crc;
2336 
2337 	dout("read_partial_message con %p msg %p\n", con, m);
2338 
2339 	/* header */
2340 	size = sizeof (con->in_hdr);
2341 	end = size;
2342 	ret = read_partial(con, end, size, &con->in_hdr);
2343 	if (ret <= 0)
2344 		return ret;
2345 
2346 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2347 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2348 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2349 		       crc, con->in_hdr.crc);
2350 		return -EBADMSG;
2351 	}
2352 
2353 	front_len = le32_to_cpu(con->in_hdr.front_len);
2354 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2355 		return -EIO;
2356 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2358 		return -EIO;
2359 	data_len = le32_to_cpu(con->in_hdr.data_len);
2360 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2361 		return -EIO;
2362 
2363 	/* verify seq# */
2364 	seq = le64_to_cpu(con->in_hdr.seq);
2365 	if ((s64)seq - (s64)con->in_seq < 1) {
2366 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367 			ENTITY_NAME(con->peer_name),
2368 			ceph_pr_addr(&con->peer_addr.in_addr),
2369 			seq, con->in_seq + 1);
2370 		con->in_base_pos = -front_len - middle_len - data_len -
2371 			sizeof_footer(con);
2372 		con->in_tag = CEPH_MSGR_TAG_READY;
2373 		return 1;
2374 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2375 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2376 		       seq, con->in_seq + 1);
2377 		con->error_msg = "bad message sequence # for incoming message";
2378 		return -EBADE;
2379 	}
2380 
2381 	/* allocate message? */
2382 	if (!con->in_msg) {
2383 		int skip = 0;
2384 
2385 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2386 		     front_len, data_len);
2387 		ret = ceph_con_in_msg_alloc(con, &skip);
2388 		if (ret < 0)
2389 			return ret;
2390 
2391 		BUG_ON(!con->in_msg ^ skip);
2392 		if (skip) {
2393 			/* skip this message */
2394 			dout("alloc_msg said skip message\n");
2395 			con->in_base_pos = -front_len - middle_len - data_len -
2396 				sizeof_footer(con);
2397 			con->in_tag = CEPH_MSGR_TAG_READY;
2398 			con->in_seq++;
2399 			return 1;
2400 		}
2401 
2402 		BUG_ON(!con->in_msg);
2403 		BUG_ON(con->in_msg->con != con);
2404 		m = con->in_msg;
2405 		m->front.iov_len = 0;    /* haven't read it yet */
2406 		if (m->middle)
2407 			m->middle->vec.iov_len = 0;
2408 
2409 		/* prepare for data payload, if any */
2410 
2411 		if (data_len)
2412 			prepare_message_data(con->in_msg, data_len);
2413 	}
2414 
2415 	/* front */
2416 	ret = read_partial_message_section(con, &m->front, front_len,
2417 					   &con->in_front_crc);
2418 	if (ret <= 0)
2419 		return ret;
2420 
2421 	/* middle */
2422 	if (m->middle) {
2423 		ret = read_partial_message_section(con, &m->middle->vec,
2424 						   middle_len,
2425 						   &con->in_middle_crc);
2426 		if (ret <= 0)
2427 			return ret;
2428 	}
2429 
2430 	/* (page) data */
2431 	if (data_len) {
2432 		ret = read_partial_msg_data(con);
2433 		if (ret <= 0)
2434 			return ret;
2435 	}
2436 
2437 	/* footer */
2438 	size = sizeof_footer(con);
2439 	end += size;
2440 	ret = read_partial(con, end, size, &m->footer);
2441 	if (ret <= 0)
2442 		return ret;
2443 
2444 	if (!need_sign) {
2445 		m->footer.flags = m->old_footer.flags;
2446 		m->footer.sig = 0;
2447 	}
2448 
2449 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2450 	     m, front_len, m->footer.front_crc, middle_len,
2451 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2452 
2453 	/* crc ok? */
2454 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2455 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2456 		       m, con->in_front_crc, m->footer.front_crc);
2457 		return -EBADMSG;
2458 	}
2459 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2460 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2461 		       m, con->in_middle_crc, m->footer.middle_crc);
2462 		return -EBADMSG;
2463 	}
2464 	if (do_datacrc &&
2465 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2466 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2467 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2468 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2469 		return -EBADMSG;
2470 	}
2471 
2472 	if (need_sign && con->ops->check_message_signature &&
2473 	    con->ops->check_message_signature(m)) {
2474 		pr_err("read_partial_message %p signature check failed\n", m);
2475 		return -EBADMSG;
2476 	}
2477 
2478 	return 1; /* done! */
2479 }
2480 
2481 /*
2482  * Process message.  This happens in the worker thread.  The callback should
2483  * be careful not to do anything that waits on other incoming messages or it
2484  * may deadlock.
2485  */
2486 static void process_message(struct ceph_connection *con)
2487 {
2488 	struct ceph_msg *msg = con->in_msg;
2489 
2490 	BUG_ON(con->in_msg->con != con);
2491 	con->in_msg = NULL;
2492 
2493 	/* if first message, set peer_name */
2494 	if (con->peer_name.type == 0)
2495 		con->peer_name = msg->hdr.src;
2496 
2497 	con->in_seq++;
2498 	mutex_unlock(&con->mutex);
2499 
2500 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2501 	     msg, le64_to_cpu(msg->hdr.seq),
2502 	     ENTITY_NAME(msg->hdr.src),
2503 	     le16_to_cpu(msg->hdr.type),
2504 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2505 	     le32_to_cpu(msg->hdr.front_len),
2506 	     le32_to_cpu(msg->hdr.data_len),
2507 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2508 	con->ops->dispatch(con, msg);
2509 
2510 	mutex_lock(&con->mutex);
2511 }
2512 
2513 static int read_keepalive_ack(struct ceph_connection *con)
2514 {
2515 	struct ceph_timespec ceph_ts;
2516 	size_t size = sizeof(ceph_ts);
2517 	int ret = read_partial(con, size, size, &ceph_ts);
2518 	if (ret <= 0)
2519 		return ret;
2520 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2521 	prepare_read_tag(con);
2522 	return 1;
2523 }
2524 
2525 /*
2526  * Write something to the socket.  Called in a worker thread when the
2527  * socket appears to be writeable and we have something ready to send.
2528  */
2529 static int try_write(struct ceph_connection *con)
2530 {
2531 	int ret = 1;
2532 
2533 	dout("try_write start %p state %lu\n", con, con->state);
2534 
2535 more:
2536 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2537 
2538 	/* open the socket first? */
2539 	if (con->state == CON_STATE_PREOPEN) {
2540 		BUG_ON(con->sock);
2541 		con->state = CON_STATE_CONNECTING;
2542 
2543 		con_out_kvec_reset(con);
2544 		prepare_write_banner(con);
2545 		prepare_read_banner(con);
2546 
2547 		BUG_ON(con->in_msg);
2548 		con->in_tag = CEPH_MSGR_TAG_READY;
2549 		dout("try_write initiating connect on %p new state %lu\n",
2550 		     con, con->state);
2551 		ret = ceph_tcp_connect(con);
2552 		if (ret < 0) {
2553 			con->error_msg = "connect error";
2554 			goto out;
2555 		}
2556 	}
2557 
2558 more_kvec:
2559 	/* kvec data queued? */
2560 	if (con->out_kvec_left) {
2561 		ret = write_partial_kvec(con);
2562 		if (ret <= 0)
2563 			goto out;
2564 	}
2565 	if (con->out_skip) {
2566 		ret = write_partial_skip(con);
2567 		if (ret <= 0)
2568 			goto out;
2569 	}
2570 
2571 	/* msg pages? */
2572 	if (con->out_msg) {
2573 		if (con->out_msg_done) {
2574 			ceph_msg_put(con->out_msg);
2575 			con->out_msg = NULL;   /* we're done with this one */
2576 			goto do_next;
2577 		}
2578 
2579 		ret = write_partial_message_data(con);
2580 		if (ret == 1)
2581 			goto more_kvec;  /* we need to send the footer, too! */
2582 		if (ret == 0)
2583 			goto out;
2584 		if (ret < 0) {
2585 			dout("try_write write_partial_message_data err %d\n",
2586 			     ret);
2587 			goto out;
2588 		}
2589 	}
2590 
2591 do_next:
2592 	if (con->state == CON_STATE_OPEN) {
2593 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2594 			prepare_write_keepalive(con);
2595 			goto more;
2596 		}
2597 		/* is anything else pending? */
2598 		if (!list_empty(&con->out_queue)) {
2599 			prepare_write_message(con);
2600 			goto more;
2601 		}
2602 		if (con->in_seq > con->in_seq_acked) {
2603 			prepare_write_ack(con);
2604 			goto more;
2605 		}
2606 	}
2607 
2608 	/* Nothing to do! */
2609 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2610 	dout("try_write nothing else to write.\n");
2611 	ret = 0;
2612 out:
2613 	dout("try_write done on %p ret %d\n", con, ret);
2614 	return ret;
2615 }
2616 
2617 
2618 
2619 /*
2620  * Read what we can from the socket.
2621  */
2622 static int try_read(struct ceph_connection *con)
2623 {
2624 	int ret = -1;
2625 
2626 more:
2627 	dout("try_read start on %p state %lu\n", con, con->state);
2628 	if (con->state != CON_STATE_CONNECTING &&
2629 	    con->state != CON_STATE_NEGOTIATING &&
2630 	    con->state != CON_STATE_OPEN)
2631 		return 0;
2632 
2633 	BUG_ON(!con->sock);
2634 
2635 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2636 	     con->in_base_pos);
2637 
2638 	if (con->state == CON_STATE_CONNECTING) {
2639 		dout("try_read connecting\n");
2640 		ret = read_partial_banner(con);
2641 		if (ret <= 0)
2642 			goto out;
2643 		ret = process_banner(con);
2644 		if (ret < 0)
2645 			goto out;
2646 
2647 		con->state = CON_STATE_NEGOTIATING;
2648 
2649 		/*
2650 		 * Received banner is good, exchange connection info.
2651 		 * Do not reset out_kvec, as sending our banner raced
2652 		 * with receiving peer banner after connect completed.
2653 		 */
2654 		ret = prepare_write_connect(con);
2655 		if (ret < 0)
2656 			goto out;
2657 		prepare_read_connect(con);
2658 
2659 		/* Send connection info before awaiting response */
2660 		goto out;
2661 	}
2662 
2663 	if (con->state == CON_STATE_NEGOTIATING) {
2664 		dout("try_read negotiating\n");
2665 		ret = read_partial_connect(con);
2666 		if (ret <= 0)
2667 			goto out;
2668 		ret = process_connect(con);
2669 		if (ret < 0)
2670 			goto out;
2671 		goto more;
2672 	}
2673 
2674 	WARN_ON(con->state != CON_STATE_OPEN);
2675 
2676 	if (con->in_base_pos < 0) {
2677 		/*
2678 		 * skipping + discarding content.
2679 		 *
2680 		 * FIXME: there must be a better way to do this!
2681 		 */
2682 		static char buf[SKIP_BUF_SIZE];
2683 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2684 
2685 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2686 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2687 		if (ret <= 0)
2688 			goto out;
2689 		con->in_base_pos += ret;
2690 		if (con->in_base_pos)
2691 			goto more;
2692 	}
2693 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2694 		/*
2695 		 * what's next?
2696 		 */
2697 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2698 		if (ret <= 0)
2699 			goto out;
2700 		dout("try_read got tag %d\n", (int)con->in_tag);
2701 		switch (con->in_tag) {
2702 		case CEPH_MSGR_TAG_MSG:
2703 			prepare_read_message(con);
2704 			break;
2705 		case CEPH_MSGR_TAG_ACK:
2706 			prepare_read_ack(con);
2707 			break;
2708 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2709 			prepare_read_keepalive_ack(con);
2710 			break;
2711 		case CEPH_MSGR_TAG_CLOSE:
2712 			con_close_socket(con);
2713 			con->state = CON_STATE_CLOSED;
2714 			goto out;
2715 		default:
2716 			goto bad_tag;
2717 		}
2718 	}
2719 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2720 		ret = read_partial_message(con);
2721 		if (ret <= 0) {
2722 			switch (ret) {
2723 			case -EBADMSG:
2724 				con->error_msg = "bad crc/signature";
2725 				/* fall through */
2726 			case -EBADE:
2727 				ret = -EIO;
2728 				break;
2729 			case -EIO:
2730 				con->error_msg = "io error";
2731 				break;
2732 			}
2733 			goto out;
2734 		}
2735 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2736 			goto more;
2737 		process_message(con);
2738 		if (con->state == CON_STATE_OPEN)
2739 			prepare_read_tag(con);
2740 		goto more;
2741 	}
2742 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2743 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2744 		/*
2745 		 * the final handshake seq exchange is semantically
2746 		 * equivalent to an ACK
2747 		 */
2748 		ret = read_partial_ack(con);
2749 		if (ret <= 0)
2750 			goto out;
2751 		process_ack(con);
2752 		goto more;
2753 	}
2754 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2755 		ret = read_keepalive_ack(con);
2756 		if (ret <= 0)
2757 			goto out;
2758 		goto more;
2759 	}
2760 
2761 out:
2762 	dout("try_read done on %p ret %d\n", con, ret);
2763 	return ret;
2764 
2765 bad_tag:
2766 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2767 	con->error_msg = "protocol error, garbage tag";
2768 	ret = -1;
2769 	goto out;
2770 }
2771 
2772 
2773 /*
2774  * Atomically queue work on a connection after the specified delay.
2775  * Bump @con reference to avoid races with connection teardown.
2776  * Returns 0 if work was queued, or an error code otherwise.
2777  */
2778 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2779 {
2780 	if (!con->ops->get(con)) {
2781 		dout("%s %p ref count 0\n", __func__, con);
2782 		return -ENOENT;
2783 	}
2784 
2785 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2786 		dout("%s %p - already queued\n", __func__, con);
2787 		con->ops->put(con);
2788 		return -EBUSY;
2789 	}
2790 
2791 	dout("%s %p %lu\n", __func__, con, delay);
2792 	return 0;
2793 }
2794 
2795 static void queue_con(struct ceph_connection *con)
2796 {
2797 	(void) queue_con_delay(con, 0);
2798 }
2799 
2800 static void cancel_con(struct ceph_connection *con)
2801 {
2802 	if (cancel_delayed_work(&con->work)) {
2803 		dout("%s %p\n", __func__, con);
2804 		con->ops->put(con);
2805 	}
2806 }
2807 
2808 static bool con_sock_closed(struct ceph_connection *con)
2809 {
2810 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2811 		return false;
2812 
2813 #define CASE(x)								\
2814 	case CON_STATE_ ## x:						\
2815 		con->error_msg = "socket closed (con state " #x ")";	\
2816 		break;
2817 
2818 	switch (con->state) {
2819 	CASE(CLOSED);
2820 	CASE(PREOPEN);
2821 	CASE(CONNECTING);
2822 	CASE(NEGOTIATING);
2823 	CASE(OPEN);
2824 	CASE(STANDBY);
2825 	default:
2826 		pr_warn("%s con %p unrecognized state %lu\n",
2827 			__func__, con, con->state);
2828 		con->error_msg = "unrecognized con state";
2829 		BUG();
2830 		break;
2831 	}
2832 #undef CASE
2833 
2834 	return true;
2835 }
2836 
2837 static bool con_backoff(struct ceph_connection *con)
2838 {
2839 	int ret;
2840 
2841 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2842 		return false;
2843 
2844 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2845 	if (ret) {
2846 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2847 			con, con->delay);
2848 		BUG_ON(ret == -ENOENT);
2849 		con_flag_set(con, CON_FLAG_BACKOFF);
2850 	}
2851 
2852 	return true;
2853 }
2854 
2855 /* Finish fault handling; con->mutex must *not* be held here */
2856 
2857 static void con_fault_finish(struct ceph_connection *con)
2858 {
2859 	dout("%s %p\n", __func__, con);
2860 
2861 	/*
2862 	 * in case we faulted due to authentication, invalidate our
2863 	 * current tickets so that we can get new ones.
2864 	 */
2865 	if (con->auth_retry) {
2866 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2867 		if (con->ops->invalidate_authorizer)
2868 			con->ops->invalidate_authorizer(con);
2869 		con->auth_retry = 0;
2870 	}
2871 
2872 	if (con->ops->fault)
2873 		con->ops->fault(con);
2874 }
2875 
2876 /*
2877  * Do some work on a connection.  Drop a connection ref when we're done.
2878  */
2879 static void ceph_con_workfn(struct work_struct *work)
2880 {
2881 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2882 						   work.work);
2883 	bool fault;
2884 
2885 	mutex_lock(&con->mutex);
2886 	while (true) {
2887 		int ret;
2888 
2889 		if ((fault = con_sock_closed(con))) {
2890 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2891 			break;
2892 		}
2893 		if (con_backoff(con)) {
2894 			dout("%s: con %p BACKOFF\n", __func__, con);
2895 			break;
2896 		}
2897 		if (con->state == CON_STATE_STANDBY) {
2898 			dout("%s: con %p STANDBY\n", __func__, con);
2899 			break;
2900 		}
2901 		if (con->state == CON_STATE_CLOSED) {
2902 			dout("%s: con %p CLOSED\n", __func__, con);
2903 			BUG_ON(con->sock);
2904 			break;
2905 		}
2906 		if (con->state == CON_STATE_PREOPEN) {
2907 			dout("%s: con %p PREOPEN\n", __func__, con);
2908 			BUG_ON(con->sock);
2909 		}
2910 
2911 		ret = try_read(con);
2912 		if (ret < 0) {
2913 			if (ret == -EAGAIN)
2914 				continue;
2915 			if (!con->error_msg)
2916 				con->error_msg = "socket error on read";
2917 			fault = true;
2918 			break;
2919 		}
2920 
2921 		ret = try_write(con);
2922 		if (ret < 0) {
2923 			if (ret == -EAGAIN)
2924 				continue;
2925 			if (!con->error_msg)
2926 				con->error_msg = "socket error on write";
2927 			fault = true;
2928 		}
2929 
2930 		break;	/* If we make it to here, we're done */
2931 	}
2932 	if (fault)
2933 		con_fault(con);
2934 	mutex_unlock(&con->mutex);
2935 
2936 	if (fault)
2937 		con_fault_finish(con);
2938 
2939 	con->ops->put(con);
2940 }
2941 
2942 /*
2943  * Generic error/fault handler.  A retry mechanism is used with
2944  * exponential backoff
2945  */
2946 static void con_fault(struct ceph_connection *con)
2947 {
2948 	dout("fault %p state %lu to peer %s\n",
2949 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2950 
2951 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2952 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2953 	con->error_msg = NULL;
2954 
2955 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2956 	       con->state != CON_STATE_NEGOTIATING &&
2957 	       con->state != CON_STATE_OPEN);
2958 
2959 	con_close_socket(con);
2960 
2961 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2962 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2963 		con->state = CON_STATE_CLOSED;
2964 		return;
2965 	}
2966 
2967 	if (con->in_msg) {
2968 		BUG_ON(con->in_msg->con != con);
2969 		ceph_msg_put(con->in_msg);
2970 		con->in_msg = NULL;
2971 	}
2972 
2973 	/* Requeue anything that hasn't been acked */
2974 	list_splice_init(&con->out_sent, &con->out_queue);
2975 
2976 	/* If there are no messages queued or keepalive pending, place
2977 	 * the connection in a STANDBY state */
2978 	if (list_empty(&con->out_queue) &&
2979 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2980 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2981 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2982 		con->state = CON_STATE_STANDBY;
2983 	} else {
2984 		/* retry after a delay. */
2985 		con->state = CON_STATE_PREOPEN;
2986 		if (con->delay == 0)
2987 			con->delay = BASE_DELAY_INTERVAL;
2988 		else if (con->delay < MAX_DELAY_INTERVAL)
2989 			con->delay *= 2;
2990 		con_flag_set(con, CON_FLAG_BACKOFF);
2991 		queue_con(con);
2992 	}
2993 }
2994 
2995 
2996 
2997 /*
2998  * initialize a new messenger instance
2999  */
3000 void ceph_messenger_init(struct ceph_messenger *msgr,
3001 			 struct ceph_entity_addr *myaddr)
3002 {
3003 	spin_lock_init(&msgr->global_seq_lock);
3004 
3005 	if (myaddr)
3006 		msgr->inst.addr = *myaddr;
3007 
3008 	/* select a random nonce */
3009 	msgr->inst.addr.type = 0;
3010 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3011 	encode_my_addr(msgr);
3012 
3013 	atomic_set(&msgr->stopping, 0);
3014 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3015 
3016 	dout("%s %p\n", __func__, msgr);
3017 }
3018 EXPORT_SYMBOL(ceph_messenger_init);
3019 
3020 void ceph_messenger_fini(struct ceph_messenger *msgr)
3021 {
3022 	put_net(read_pnet(&msgr->net));
3023 }
3024 EXPORT_SYMBOL(ceph_messenger_fini);
3025 
3026 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3027 {
3028 	if (msg->con)
3029 		msg->con->ops->put(msg->con);
3030 
3031 	msg->con = con ? con->ops->get(con) : NULL;
3032 	BUG_ON(msg->con != con);
3033 }
3034 
3035 static void clear_standby(struct ceph_connection *con)
3036 {
3037 	/* come back from STANDBY? */
3038 	if (con->state == CON_STATE_STANDBY) {
3039 		dout("clear_standby %p and ++connect_seq\n", con);
3040 		con->state = CON_STATE_PREOPEN;
3041 		con->connect_seq++;
3042 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3043 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3044 	}
3045 }
3046 
3047 /*
3048  * Queue up an outgoing message on the given connection.
3049  */
3050 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3051 {
3052 	/* set src+dst */
3053 	msg->hdr.src = con->msgr->inst.name;
3054 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3055 	msg->needs_out_seq = true;
3056 
3057 	mutex_lock(&con->mutex);
3058 
3059 	if (con->state == CON_STATE_CLOSED) {
3060 		dout("con_send %p closed, dropping %p\n", con, msg);
3061 		ceph_msg_put(msg);
3062 		mutex_unlock(&con->mutex);
3063 		return;
3064 	}
3065 
3066 	msg_con_set(msg, con);
3067 
3068 	BUG_ON(!list_empty(&msg->list_head));
3069 	list_add_tail(&msg->list_head, &con->out_queue);
3070 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3071 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3072 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3073 	     le32_to_cpu(msg->hdr.front_len),
3074 	     le32_to_cpu(msg->hdr.middle_len),
3075 	     le32_to_cpu(msg->hdr.data_len));
3076 
3077 	clear_standby(con);
3078 	mutex_unlock(&con->mutex);
3079 
3080 	/* if there wasn't anything waiting to send before, queue
3081 	 * new work */
3082 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3083 		queue_con(con);
3084 }
3085 EXPORT_SYMBOL(ceph_con_send);
3086 
3087 /*
3088  * Revoke a message that was previously queued for send
3089  */
3090 void ceph_msg_revoke(struct ceph_msg *msg)
3091 {
3092 	struct ceph_connection *con = msg->con;
3093 
3094 	if (!con) {
3095 		dout("%s msg %p null con\n", __func__, msg);
3096 		return;		/* Message not in our possession */
3097 	}
3098 
3099 	mutex_lock(&con->mutex);
3100 	if (!list_empty(&msg->list_head)) {
3101 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3102 		list_del_init(&msg->list_head);
3103 		msg->hdr.seq = 0;
3104 
3105 		ceph_msg_put(msg);
3106 	}
3107 	if (con->out_msg == msg) {
3108 		BUG_ON(con->out_skip);
3109 		/* footer */
3110 		if (con->out_msg_done) {
3111 			con->out_skip += con_out_kvec_skip(con);
3112 		} else {
3113 			BUG_ON(!msg->data_length);
3114 			con->out_skip += sizeof_footer(con);
3115 		}
3116 		/* data, middle, front */
3117 		if (msg->data_length)
3118 			con->out_skip += msg->cursor.total_resid;
3119 		if (msg->middle)
3120 			con->out_skip += con_out_kvec_skip(con);
3121 		con->out_skip += con_out_kvec_skip(con);
3122 
3123 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3124 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3125 		msg->hdr.seq = 0;
3126 		con->out_msg = NULL;
3127 		ceph_msg_put(msg);
3128 	}
3129 
3130 	mutex_unlock(&con->mutex);
3131 }
3132 
3133 /*
3134  * Revoke a message that we may be reading data into
3135  */
3136 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3137 {
3138 	struct ceph_connection *con = msg->con;
3139 
3140 	if (!con) {
3141 		dout("%s msg %p null con\n", __func__, msg);
3142 		return;		/* Message not in our possession */
3143 	}
3144 
3145 	mutex_lock(&con->mutex);
3146 	if (con->in_msg == msg) {
3147 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3148 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3149 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3150 
3151 		/* skip rest of message */
3152 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3153 		con->in_base_pos = con->in_base_pos -
3154 				sizeof(struct ceph_msg_header) -
3155 				front_len -
3156 				middle_len -
3157 				data_len -
3158 				sizeof(struct ceph_msg_footer);
3159 		ceph_msg_put(con->in_msg);
3160 		con->in_msg = NULL;
3161 		con->in_tag = CEPH_MSGR_TAG_READY;
3162 		con->in_seq++;
3163 	} else {
3164 		dout("%s %p in_msg %p msg %p no-op\n",
3165 		     __func__, con, con->in_msg, msg);
3166 	}
3167 	mutex_unlock(&con->mutex);
3168 }
3169 
3170 /*
3171  * Queue a keepalive byte to ensure the tcp connection is alive.
3172  */
3173 void ceph_con_keepalive(struct ceph_connection *con)
3174 {
3175 	dout("con_keepalive %p\n", con);
3176 	mutex_lock(&con->mutex);
3177 	clear_standby(con);
3178 	mutex_unlock(&con->mutex);
3179 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3180 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3181 		queue_con(con);
3182 }
3183 EXPORT_SYMBOL(ceph_con_keepalive);
3184 
3185 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3186 			       unsigned long interval)
3187 {
3188 	if (interval > 0 &&
3189 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3190 		struct timespec now;
3191 		struct timespec ts;
3192 		ktime_get_real_ts(&now);
3193 		jiffies_to_timespec(interval, &ts);
3194 		ts = timespec_add(con->last_keepalive_ack, ts);
3195 		return timespec_compare(&now, &ts) >= 0;
3196 	}
3197 	return false;
3198 }
3199 
3200 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3201 {
3202 	struct ceph_msg_data *data;
3203 
3204 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3205 		return NULL;
3206 
3207 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3208 	if (!data)
3209 		return NULL;
3210 
3211 	data->type = type;
3212 	INIT_LIST_HEAD(&data->links);
3213 
3214 	return data;
3215 }
3216 
3217 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3218 {
3219 	if (!data)
3220 		return;
3221 
3222 	WARN_ON(!list_empty(&data->links));
3223 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3224 		ceph_pagelist_release(data->pagelist);
3225 	kmem_cache_free(ceph_msg_data_cache, data);
3226 }
3227 
3228 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3229 		size_t length, size_t alignment)
3230 {
3231 	struct ceph_msg_data *data;
3232 
3233 	BUG_ON(!pages);
3234 	BUG_ON(!length);
3235 
3236 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3237 	BUG_ON(!data);
3238 	data->pages = pages;
3239 	data->length = length;
3240 	data->alignment = alignment & ~PAGE_MASK;
3241 
3242 	list_add_tail(&data->links, &msg->data);
3243 	msg->data_length += length;
3244 }
3245 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3246 
3247 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3248 				struct ceph_pagelist *pagelist)
3249 {
3250 	struct ceph_msg_data *data;
3251 
3252 	BUG_ON(!pagelist);
3253 	BUG_ON(!pagelist->length);
3254 
3255 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3256 	BUG_ON(!data);
3257 	data->pagelist = pagelist;
3258 
3259 	list_add_tail(&data->links, &msg->data);
3260 	msg->data_length += pagelist->length;
3261 }
3262 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3263 
3264 #ifdef	CONFIG_BLOCK
3265 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3266 		size_t length)
3267 {
3268 	struct ceph_msg_data *data;
3269 
3270 	BUG_ON(!bio);
3271 
3272 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3273 	BUG_ON(!data);
3274 	data->bio = bio;
3275 	data->bio_length = length;
3276 
3277 	list_add_tail(&data->links, &msg->data);
3278 	msg->data_length += length;
3279 }
3280 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3281 #endif	/* CONFIG_BLOCK */
3282 
3283 /*
3284  * construct a new message with given type, size
3285  * the new msg has a ref count of 1.
3286  */
3287 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3288 			      bool can_fail)
3289 {
3290 	struct ceph_msg *m;
3291 
3292 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3293 	if (m == NULL)
3294 		goto out;
3295 
3296 	m->hdr.type = cpu_to_le16(type);
3297 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3298 	m->hdr.front_len = cpu_to_le32(front_len);
3299 
3300 	INIT_LIST_HEAD(&m->list_head);
3301 	kref_init(&m->kref);
3302 	INIT_LIST_HEAD(&m->data);
3303 
3304 	/* front */
3305 	if (front_len) {
3306 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3307 		if (m->front.iov_base == NULL) {
3308 			dout("ceph_msg_new can't allocate %d bytes\n",
3309 			     front_len);
3310 			goto out2;
3311 		}
3312 	} else {
3313 		m->front.iov_base = NULL;
3314 	}
3315 	m->front_alloc_len = m->front.iov_len = front_len;
3316 
3317 	dout("ceph_msg_new %p front %d\n", m, front_len);
3318 	return m;
3319 
3320 out2:
3321 	ceph_msg_put(m);
3322 out:
3323 	if (!can_fail) {
3324 		pr_err("msg_new can't create type %d front %d\n", type,
3325 		       front_len);
3326 		WARN_ON(1);
3327 	} else {
3328 		dout("msg_new can't create type %d front %d\n", type,
3329 		     front_len);
3330 	}
3331 	return NULL;
3332 }
3333 EXPORT_SYMBOL(ceph_msg_new);
3334 
3335 /*
3336  * Allocate "middle" portion of a message, if it is needed and wasn't
3337  * allocated by alloc_msg.  This allows us to read a small fixed-size
3338  * per-type header in the front and then gracefully fail (i.e.,
3339  * propagate the error to the caller based on info in the front) when
3340  * the middle is too large.
3341  */
3342 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3343 {
3344 	int type = le16_to_cpu(msg->hdr.type);
3345 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3346 
3347 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3348 	     ceph_msg_type_name(type), middle_len);
3349 	BUG_ON(!middle_len);
3350 	BUG_ON(msg->middle);
3351 
3352 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3353 	if (!msg->middle)
3354 		return -ENOMEM;
3355 	return 0;
3356 }
3357 
3358 /*
3359  * Allocate a message for receiving an incoming message on a
3360  * connection, and save the result in con->in_msg.  Uses the
3361  * connection's private alloc_msg op if available.
3362  *
3363  * Returns 0 on success, or a negative error code.
3364  *
3365  * On success, if we set *skip = 1:
3366  *  - the next message should be skipped and ignored.
3367  *  - con->in_msg == NULL
3368  * or if we set *skip = 0:
3369  *  - con->in_msg is non-null.
3370  * On error (ENOMEM, EAGAIN, ...),
3371  *  - con->in_msg == NULL
3372  */
3373 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3374 {
3375 	struct ceph_msg_header *hdr = &con->in_hdr;
3376 	int middle_len = le32_to_cpu(hdr->middle_len);
3377 	struct ceph_msg *msg;
3378 	int ret = 0;
3379 
3380 	BUG_ON(con->in_msg != NULL);
3381 	BUG_ON(!con->ops->alloc_msg);
3382 
3383 	mutex_unlock(&con->mutex);
3384 	msg = con->ops->alloc_msg(con, hdr, skip);
3385 	mutex_lock(&con->mutex);
3386 	if (con->state != CON_STATE_OPEN) {
3387 		if (msg)
3388 			ceph_msg_put(msg);
3389 		return -EAGAIN;
3390 	}
3391 	if (msg) {
3392 		BUG_ON(*skip);
3393 		msg_con_set(msg, con);
3394 		con->in_msg = msg;
3395 	} else {
3396 		/*
3397 		 * Null message pointer means either we should skip
3398 		 * this message or we couldn't allocate memory.  The
3399 		 * former is not an error.
3400 		 */
3401 		if (*skip)
3402 			return 0;
3403 
3404 		con->error_msg = "error allocating memory for incoming message";
3405 		return -ENOMEM;
3406 	}
3407 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3408 
3409 	if (middle_len && !con->in_msg->middle) {
3410 		ret = ceph_alloc_middle(con, con->in_msg);
3411 		if (ret < 0) {
3412 			ceph_msg_put(con->in_msg);
3413 			con->in_msg = NULL;
3414 		}
3415 	}
3416 
3417 	return ret;
3418 }
3419 
3420 
3421 /*
3422  * Free a generically kmalloc'd message.
3423  */
3424 static void ceph_msg_free(struct ceph_msg *m)
3425 {
3426 	dout("%s %p\n", __func__, m);
3427 	kvfree(m->front.iov_base);
3428 	kmem_cache_free(ceph_msg_cache, m);
3429 }
3430 
3431 static void ceph_msg_release(struct kref *kref)
3432 {
3433 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3434 	struct ceph_msg_data *data, *next;
3435 
3436 	dout("%s %p\n", __func__, m);
3437 	WARN_ON(!list_empty(&m->list_head));
3438 
3439 	msg_con_set(m, NULL);
3440 
3441 	/* drop middle, data, if any */
3442 	if (m->middle) {
3443 		ceph_buffer_put(m->middle);
3444 		m->middle = NULL;
3445 	}
3446 
3447 	list_for_each_entry_safe(data, next, &m->data, links) {
3448 		list_del_init(&data->links);
3449 		ceph_msg_data_destroy(data);
3450 	}
3451 	m->data_length = 0;
3452 
3453 	if (m->pool)
3454 		ceph_msgpool_put(m->pool, m);
3455 	else
3456 		ceph_msg_free(m);
3457 }
3458 
3459 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3460 {
3461 	dout("%s %p (was %d)\n", __func__, msg,
3462 	     kref_read(&msg->kref));
3463 	kref_get(&msg->kref);
3464 	return msg;
3465 }
3466 EXPORT_SYMBOL(ceph_msg_get);
3467 
3468 void ceph_msg_put(struct ceph_msg *msg)
3469 {
3470 	dout("%s %p (was %d)\n", __func__, msg,
3471 	     kref_read(&msg->kref));
3472 	kref_put(&msg->kref, ceph_msg_release);
3473 }
3474 EXPORT_SYMBOL(ceph_msg_put);
3475 
3476 void ceph_msg_dump(struct ceph_msg *msg)
3477 {
3478 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3479 		 msg->front_alloc_len, msg->data_length);
3480 	print_hex_dump(KERN_DEBUG, "header: ",
3481 		       DUMP_PREFIX_OFFSET, 16, 1,
3482 		       &msg->hdr, sizeof(msg->hdr), true);
3483 	print_hex_dump(KERN_DEBUG, " front: ",
3484 		       DUMP_PREFIX_OFFSET, 16, 1,
3485 		       msg->front.iov_base, msg->front.iov_len, true);
3486 	if (msg->middle)
3487 		print_hex_dump(KERN_DEBUG, "middle: ",
3488 			       DUMP_PREFIX_OFFSET, 16, 1,
3489 			       msg->middle->vec.iov_base,
3490 			       msg->middle->vec.iov_len, true);
3491 	print_hex_dump(KERN_DEBUG, "footer: ",
3492 		       DUMP_PREFIX_OFFSET, 16, 1,
3493 		       &msg->footer, sizeof(msg->footer), true);
3494 }
3495 EXPORT_SYMBOL(ceph_msg_dump);
3496