1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 static void queue_con(struct ceph_connection *con); 171 static void cancel_con(struct ceph_connection *con); 172 static void ceph_con_workfn(struct work_struct *); 173 static void con_fault(struct ceph_connection *con); 174 175 /* 176 * Nicely render a sockaddr as a string. An array of formatted 177 * strings is used, to approximate reentrancy. 178 */ 179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 183 184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 185 static atomic_t addr_str_seq = ATOMIC_INIT(0); 186 187 static struct page *zero_page; /* used in certain error cases */ 188 189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 190 { 191 int i; 192 char *s; 193 struct sockaddr_storage ss = addr->in_addr; /* align */ 194 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 196 197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 198 s = addr_str[i]; 199 200 switch (ss.ss_family) { 201 case AF_INET: 202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 203 ntohs(in4->sin_port)); 204 break; 205 206 case AF_INET6: 207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 208 ntohs(in6->sin6_port)); 209 break; 210 211 default: 212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 213 ss.ss_family); 214 } 215 216 return s; 217 } 218 EXPORT_SYMBOL(ceph_pr_addr); 219 220 static void encode_my_addr(struct ceph_messenger *msgr) 221 { 222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 223 ceph_encode_addr(&msgr->my_enc_addr); 224 } 225 226 /* 227 * work queue for all reading and writing to/from the socket. 228 */ 229 static struct workqueue_struct *ceph_msgr_wq; 230 231 static int ceph_msgr_slab_init(void) 232 { 233 BUG_ON(ceph_msg_cache); 234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 235 if (!ceph_msg_cache) 236 return -ENOMEM; 237 238 return 0; 239 } 240 241 static void ceph_msgr_slab_exit(void) 242 { 243 BUG_ON(!ceph_msg_cache); 244 kmem_cache_destroy(ceph_msg_cache); 245 ceph_msg_cache = NULL; 246 } 247 248 static void _ceph_msgr_exit(void) 249 { 250 if (ceph_msgr_wq) { 251 destroy_workqueue(ceph_msgr_wq); 252 ceph_msgr_wq = NULL; 253 } 254 255 BUG_ON(zero_page == NULL); 256 put_page(zero_page); 257 zero_page = NULL; 258 259 ceph_msgr_slab_exit(); 260 } 261 262 int __init ceph_msgr_init(void) 263 { 264 if (ceph_msgr_slab_init()) 265 return -ENOMEM; 266 267 BUG_ON(zero_page != NULL); 268 zero_page = ZERO_PAGE(0); 269 get_page(zero_page); 270 271 /* 272 * The number of active work items is limited by the number of 273 * connections, so leave @max_active at default. 274 */ 275 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 276 if (ceph_msgr_wq) 277 return 0; 278 279 pr_err("msgr_init failed to create workqueue\n"); 280 _ceph_msgr_exit(); 281 282 return -ENOMEM; 283 } 284 285 void ceph_msgr_exit(void) 286 { 287 BUG_ON(ceph_msgr_wq == NULL); 288 289 _ceph_msgr_exit(); 290 } 291 292 void ceph_msgr_flush(void) 293 { 294 flush_workqueue(ceph_msgr_wq); 295 } 296 EXPORT_SYMBOL(ceph_msgr_flush); 297 298 /* Connection socket state transition functions */ 299 300 static void con_sock_state_init(struct ceph_connection *con) 301 { 302 int old_state; 303 304 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 305 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 306 printk("%s: unexpected old state %d\n", __func__, old_state); 307 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 308 CON_SOCK_STATE_CLOSED); 309 } 310 311 static void con_sock_state_connecting(struct ceph_connection *con) 312 { 313 int old_state; 314 315 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 316 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 317 printk("%s: unexpected old state %d\n", __func__, old_state); 318 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 319 CON_SOCK_STATE_CONNECTING); 320 } 321 322 static void con_sock_state_connected(struct ceph_connection *con) 323 { 324 int old_state; 325 326 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 327 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 328 printk("%s: unexpected old state %d\n", __func__, old_state); 329 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 330 CON_SOCK_STATE_CONNECTED); 331 } 332 333 static void con_sock_state_closing(struct ceph_connection *con) 334 { 335 int old_state; 336 337 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 338 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 339 old_state != CON_SOCK_STATE_CONNECTED && 340 old_state != CON_SOCK_STATE_CLOSING)) 341 printk("%s: unexpected old state %d\n", __func__, old_state); 342 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 343 CON_SOCK_STATE_CLOSING); 344 } 345 346 static void con_sock_state_closed(struct ceph_connection *con) 347 { 348 int old_state; 349 350 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 351 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 352 old_state != CON_SOCK_STATE_CLOSING && 353 old_state != CON_SOCK_STATE_CONNECTING && 354 old_state != CON_SOCK_STATE_CLOSED)) 355 printk("%s: unexpected old state %d\n", __func__, old_state); 356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 357 CON_SOCK_STATE_CLOSED); 358 } 359 360 /* 361 * socket callback functions 362 */ 363 364 /* data available on socket, or listen socket received a connect */ 365 static void ceph_sock_data_ready(struct sock *sk) 366 { 367 struct ceph_connection *con = sk->sk_user_data; 368 if (atomic_read(&con->msgr->stopping)) { 369 return; 370 } 371 372 if (sk->sk_state != TCP_CLOSE_WAIT) { 373 dout("%s on %p state = %lu, queueing work\n", __func__, 374 con, con->state); 375 queue_con(con); 376 } 377 } 378 379 /* socket has buffer space for writing */ 380 static void ceph_sock_write_space(struct sock *sk) 381 { 382 struct ceph_connection *con = sk->sk_user_data; 383 384 /* only queue to workqueue if there is data we want to write, 385 * and there is sufficient space in the socket buffer to accept 386 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 387 * doesn't get called again until try_write() fills the socket 388 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 389 * and net/core/stream.c:sk_stream_write_space(). 390 */ 391 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 392 if (sk_stream_is_writeable(sk)) { 393 dout("%s %p queueing write work\n", __func__, con); 394 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 395 queue_con(con); 396 } 397 } else { 398 dout("%s %p nothing to write\n", __func__, con); 399 } 400 } 401 402 /* socket's state has changed */ 403 static void ceph_sock_state_change(struct sock *sk) 404 { 405 struct ceph_connection *con = sk->sk_user_data; 406 407 dout("%s %p state = %lu sk_state = %u\n", __func__, 408 con, con->state, sk->sk_state); 409 410 switch (sk->sk_state) { 411 case TCP_CLOSE: 412 dout("%s TCP_CLOSE\n", __func__); 413 /* fall through */ 414 case TCP_CLOSE_WAIT: 415 dout("%s TCP_CLOSE_WAIT\n", __func__); 416 con_sock_state_closing(con); 417 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 418 queue_con(con); 419 break; 420 case TCP_ESTABLISHED: 421 dout("%s TCP_ESTABLISHED\n", __func__); 422 con_sock_state_connected(con); 423 queue_con(con); 424 break; 425 default: /* Everything else is uninteresting */ 426 break; 427 } 428 } 429 430 /* 431 * set up socket callbacks 432 */ 433 static void set_sock_callbacks(struct socket *sock, 434 struct ceph_connection *con) 435 { 436 struct sock *sk = sock->sk; 437 sk->sk_user_data = con; 438 sk->sk_data_ready = ceph_sock_data_ready; 439 sk->sk_write_space = ceph_sock_write_space; 440 sk->sk_state_change = ceph_sock_state_change; 441 } 442 443 444 /* 445 * socket helpers 446 */ 447 448 /* 449 * initiate connection to a remote socket. 450 */ 451 static int ceph_tcp_connect(struct ceph_connection *con) 452 { 453 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 454 struct socket *sock; 455 unsigned int noio_flag; 456 int ret; 457 458 BUG_ON(con->sock); 459 460 /* sock_create_kern() allocates with GFP_KERNEL */ 461 noio_flag = memalloc_noio_save(); 462 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 463 SOCK_STREAM, IPPROTO_TCP, &sock); 464 memalloc_noio_restore(noio_flag); 465 if (ret) 466 return ret; 467 sock->sk->sk_allocation = GFP_NOFS; 468 469 #ifdef CONFIG_LOCKDEP 470 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 471 #endif 472 473 set_sock_callbacks(sock, con); 474 475 dout("connect %s\n", ceph_pr_addr(&con->peer_addr)); 476 477 con_sock_state_connecting(con); 478 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 479 O_NONBLOCK); 480 if (ret == -EINPROGRESS) { 481 dout("connect %s EINPROGRESS sk_state = %u\n", 482 ceph_pr_addr(&con->peer_addr), 483 sock->sk->sk_state); 484 } else if (ret < 0) { 485 pr_err("connect %s error %d\n", 486 ceph_pr_addr(&con->peer_addr), ret); 487 sock_release(sock); 488 return ret; 489 } 490 491 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 492 int optval = 1; 493 494 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 495 (char *)&optval, sizeof(optval)); 496 if (ret) 497 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 498 ret); 499 } 500 501 con->sock = sock; 502 return 0; 503 } 504 505 /* 506 * If @buf is NULL, discard up to @len bytes. 507 */ 508 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 509 { 510 struct kvec iov = {buf, len}; 511 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 512 int r; 513 514 if (!buf) 515 msg.msg_flags |= MSG_TRUNC; 516 517 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len); 518 r = sock_recvmsg(sock, &msg, msg.msg_flags); 519 if (r == -EAGAIN) 520 r = 0; 521 return r; 522 } 523 524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 525 int page_offset, size_t length) 526 { 527 struct bio_vec bvec = { 528 .bv_page = page, 529 .bv_offset = page_offset, 530 .bv_len = length 531 }; 532 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 533 int r; 534 535 BUG_ON(page_offset + length > PAGE_SIZE); 536 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length); 537 r = sock_recvmsg(sock, &msg, msg.msg_flags); 538 if (r == -EAGAIN) 539 r = 0; 540 return r; 541 } 542 543 /* 544 * write something. @more is true if caller will be sending more data 545 * shortly. 546 */ 547 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 548 size_t kvlen, size_t len, bool more) 549 { 550 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 551 int r; 552 553 if (more) 554 msg.msg_flags |= MSG_MORE; 555 else 556 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 557 558 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 559 if (r == -EAGAIN) 560 r = 0; 561 return r; 562 } 563 564 /* 565 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST 566 */ 567 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 568 int offset, size_t size, int more) 569 { 570 ssize_t (*sendpage)(struct socket *sock, struct page *page, 571 int offset, size_t size, int flags); 572 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more; 573 int ret; 574 575 /* 576 * sendpage cannot properly handle pages with page_count == 0, 577 * we need to fall back to sendmsg if that's the case. 578 * 579 * Same goes for slab pages: skb_can_coalesce() allows 580 * coalescing neighboring slab objects into a single frag which 581 * triggers one of hardened usercopy checks. 582 */ 583 if (page_count(page) >= 1 && !PageSlab(page)) 584 sendpage = sock->ops->sendpage; 585 else 586 sendpage = sock_no_sendpage; 587 588 ret = sendpage(sock, page, offset, size, flags); 589 if (ret == -EAGAIN) 590 ret = 0; 591 592 return ret; 593 } 594 595 /* 596 * Shutdown/close the socket for the given connection. 597 */ 598 static int con_close_socket(struct ceph_connection *con) 599 { 600 int rc = 0; 601 602 dout("con_close_socket on %p sock %p\n", con, con->sock); 603 if (con->sock) { 604 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 605 sock_release(con->sock); 606 con->sock = NULL; 607 } 608 609 /* 610 * Forcibly clear the SOCK_CLOSED flag. It gets set 611 * independent of the connection mutex, and we could have 612 * received a socket close event before we had the chance to 613 * shut the socket down. 614 */ 615 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 616 617 con_sock_state_closed(con); 618 return rc; 619 } 620 621 /* 622 * Reset a connection. Discard all incoming and outgoing messages 623 * and clear *_seq state. 624 */ 625 static void ceph_msg_remove(struct ceph_msg *msg) 626 { 627 list_del_init(&msg->list_head); 628 629 ceph_msg_put(msg); 630 } 631 static void ceph_msg_remove_list(struct list_head *head) 632 { 633 while (!list_empty(head)) { 634 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 635 list_head); 636 ceph_msg_remove(msg); 637 } 638 } 639 640 static void reset_connection(struct ceph_connection *con) 641 { 642 /* reset connection, out_queue, msg_ and connect_seq */ 643 /* discard existing out_queue and msg_seq */ 644 dout("reset_connection %p\n", con); 645 ceph_msg_remove_list(&con->out_queue); 646 ceph_msg_remove_list(&con->out_sent); 647 648 if (con->in_msg) { 649 BUG_ON(con->in_msg->con != con); 650 ceph_msg_put(con->in_msg); 651 con->in_msg = NULL; 652 } 653 654 con->connect_seq = 0; 655 con->out_seq = 0; 656 if (con->out_msg) { 657 BUG_ON(con->out_msg->con != con); 658 ceph_msg_put(con->out_msg); 659 con->out_msg = NULL; 660 } 661 con->in_seq = 0; 662 con->in_seq_acked = 0; 663 664 con->out_skip = 0; 665 } 666 667 /* 668 * mark a peer down. drop any open connections. 669 */ 670 void ceph_con_close(struct ceph_connection *con) 671 { 672 mutex_lock(&con->mutex); 673 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 674 con->state = CON_STATE_CLOSED; 675 676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 678 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 679 con_flag_clear(con, CON_FLAG_BACKOFF); 680 681 reset_connection(con); 682 con->peer_global_seq = 0; 683 cancel_con(con); 684 con_close_socket(con); 685 mutex_unlock(&con->mutex); 686 } 687 EXPORT_SYMBOL(ceph_con_close); 688 689 /* 690 * Reopen a closed connection, with a new peer address. 691 */ 692 void ceph_con_open(struct ceph_connection *con, 693 __u8 entity_type, __u64 entity_num, 694 struct ceph_entity_addr *addr) 695 { 696 mutex_lock(&con->mutex); 697 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 698 699 WARN_ON(con->state != CON_STATE_CLOSED); 700 con->state = CON_STATE_PREOPEN; 701 702 con->peer_name.type = (__u8) entity_type; 703 con->peer_name.num = cpu_to_le64(entity_num); 704 705 memcpy(&con->peer_addr, addr, sizeof(*addr)); 706 con->delay = 0; /* reset backoff memory */ 707 mutex_unlock(&con->mutex); 708 queue_con(con); 709 } 710 EXPORT_SYMBOL(ceph_con_open); 711 712 /* 713 * return true if this connection ever successfully opened 714 */ 715 bool ceph_con_opened(struct ceph_connection *con) 716 { 717 return con->connect_seq > 0; 718 } 719 720 /* 721 * initialize a new connection. 722 */ 723 void ceph_con_init(struct ceph_connection *con, void *private, 724 const struct ceph_connection_operations *ops, 725 struct ceph_messenger *msgr) 726 { 727 dout("con_init %p\n", con); 728 memset(con, 0, sizeof(*con)); 729 con->private = private; 730 con->ops = ops; 731 con->msgr = msgr; 732 733 con_sock_state_init(con); 734 735 mutex_init(&con->mutex); 736 INIT_LIST_HEAD(&con->out_queue); 737 INIT_LIST_HEAD(&con->out_sent); 738 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 739 740 con->state = CON_STATE_CLOSED; 741 } 742 EXPORT_SYMBOL(ceph_con_init); 743 744 745 /* 746 * We maintain a global counter to order connection attempts. Get 747 * a unique seq greater than @gt. 748 */ 749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 750 { 751 u32 ret; 752 753 spin_lock(&msgr->global_seq_lock); 754 if (msgr->global_seq < gt) 755 msgr->global_seq = gt; 756 ret = ++msgr->global_seq; 757 spin_unlock(&msgr->global_seq_lock); 758 return ret; 759 } 760 761 static void con_out_kvec_reset(struct ceph_connection *con) 762 { 763 BUG_ON(con->out_skip); 764 765 con->out_kvec_left = 0; 766 con->out_kvec_bytes = 0; 767 con->out_kvec_cur = &con->out_kvec[0]; 768 } 769 770 static void con_out_kvec_add(struct ceph_connection *con, 771 size_t size, void *data) 772 { 773 int index = con->out_kvec_left; 774 775 BUG_ON(con->out_skip); 776 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 777 778 con->out_kvec[index].iov_len = size; 779 con->out_kvec[index].iov_base = data; 780 con->out_kvec_left++; 781 con->out_kvec_bytes += size; 782 } 783 784 /* 785 * Chop off a kvec from the end. Return residual number of bytes for 786 * that kvec, i.e. how many bytes would have been written if the kvec 787 * hadn't been nuked. 788 */ 789 static int con_out_kvec_skip(struct ceph_connection *con) 790 { 791 int off = con->out_kvec_cur - con->out_kvec; 792 int skip = 0; 793 794 if (con->out_kvec_bytes > 0) { 795 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 796 BUG_ON(con->out_kvec_bytes < skip); 797 BUG_ON(!con->out_kvec_left); 798 con->out_kvec_bytes -= skip; 799 con->out_kvec_left--; 800 } 801 802 return skip; 803 } 804 805 #ifdef CONFIG_BLOCK 806 807 /* 808 * For a bio data item, a piece is whatever remains of the next 809 * entry in the current bio iovec, or the first entry in the next 810 * bio in the list. 811 */ 812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 813 size_t length) 814 { 815 struct ceph_msg_data *data = cursor->data; 816 struct ceph_bio_iter *it = &cursor->bio_iter; 817 818 cursor->resid = min_t(size_t, length, data->bio_length); 819 *it = data->bio_pos; 820 if (cursor->resid < it->iter.bi_size) 821 it->iter.bi_size = cursor->resid; 822 823 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 824 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 825 } 826 827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 828 size_t *page_offset, 829 size_t *length) 830 { 831 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 832 cursor->bio_iter.iter); 833 834 *page_offset = bv.bv_offset; 835 *length = bv.bv_len; 836 return bv.bv_page; 837 } 838 839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 840 size_t bytes) 841 { 842 struct ceph_bio_iter *it = &cursor->bio_iter; 843 struct page *page = bio_iter_page(it->bio, it->iter); 844 845 BUG_ON(bytes > cursor->resid); 846 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 847 cursor->resid -= bytes; 848 bio_advance_iter(it->bio, &it->iter, bytes); 849 850 if (!cursor->resid) { 851 BUG_ON(!cursor->last_piece); 852 return false; /* no more data */ 853 } 854 855 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 856 page == bio_iter_page(it->bio, it->iter))) 857 return false; /* more bytes to process in this segment */ 858 859 if (!it->iter.bi_size) { 860 it->bio = it->bio->bi_next; 861 it->iter = it->bio->bi_iter; 862 if (cursor->resid < it->iter.bi_size) 863 it->iter.bi_size = cursor->resid; 864 } 865 866 BUG_ON(cursor->last_piece); 867 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 868 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 869 return true; 870 } 871 #endif /* CONFIG_BLOCK */ 872 873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 874 size_t length) 875 { 876 struct ceph_msg_data *data = cursor->data; 877 struct bio_vec *bvecs = data->bvec_pos.bvecs; 878 879 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 880 cursor->bvec_iter = data->bvec_pos.iter; 881 cursor->bvec_iter.bi_size = cursor->resid; 882 883 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 884 cursor->last_piece = 885 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 886 } 887 888 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 889 size_t *page_offset, 890 size_t *length) 891 { 892 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 893 cursor->bvec_iter); 894 895 *page_offset = bv.bv_offset; 896 *length = bv.bv_len; 897 return bv.bv_page; 898 } 899 900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 901 size_t bytes) 902 { 903 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 904 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 905 906 BUG_ON(bytes > cursor->resid); 907 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 908 cursor->resid -= bytes; 909 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 910 911 if (!cursor->resid) { 912 BUG_ON(!cursor->last_piece); 913 return false; /* no more data */ 914 } 915 916 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 917 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 918 return false; /* more bytes to process in this segment */ 919 920 BUG_ON(cursor->last_piece); 921 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 922 cursor->last_piece = 923 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 924 return true; 925 } 926 927 /* 928 * For a page array, a piece comes from the first page in the array 929 * that has not already been fully consumed. 930 */ 931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 932 size_t length) 933 { 934 struct ceph_msg_data *data = cursor->data; 935 int page_count; 936 937 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 938 939 BUG_ON(!data->pages); 940 BUG_ON(!data->length); 941 942 cursor->resid = min(length, data->length); 943 page_count = calc_pages_for(data->alignment, (u64)data->length); 944 cursor->page_offset = data->alignment & ~PAGE_MASK; 945 cursor->page_index = 0; 946 BUG_ON(page_count > (int)USHRT_MAX); 947 cursor->page_count = (unsigned short)page_count; 948 BUG_ON(length > SIZE_MAX - cursor->page_offset); 949 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 950 } 951 952 static struct page * 953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 954 size_t *page_offset, size_t *length) 955 { 956 struct ceph_msg_data *data = cursor->data; 957 958 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 959 960 BUG_ON(cursor->page_index >= cursor->page_count); 961 BUG_ON(cursor->page_offset >= PAGE_SIZE); 962 963 *page_offset = cursor->page_offset; 964 if (cursor->last_piece) 965 *length = cursor->resid; 966 else 967 *length = PAGE_SIZE - *page_offset; 968 969 return data->pages[cursor->page_index]; 970 } 971 972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 973 size_t bytes) 974 { 975 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 976 977 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 978 979 /* Advance the cursor page offset */ 980 981 cursor->resid -= bytes; 982 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 983 if (!bytes || cursor->page_offset) 984 return false; /* more bytes to process in the current page */ 985 986 if (!cursor->resid) 987 return false; /* no more data */ 988 989 /* Move on to the next page; offset is already at 0 */ 990 991 BUG_ON(cursor->page_index >= cursor->page_count); 992 cursor->page_index++; 993 cursor->last_piece = cursor->resid <= PAGE_SIZE; 994 995 return true; 996 } 997 998 /* 999 * For a pagelist, a piece is whatever remains to be consumed in the 1000 * first page in the list, or the front of the next page. 1001 */ 1002 static void 1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1004 size_t length) 1005 { 1006 struct ceph_msg_data *data = cursor->data; 1007 struct ceph_pagelist *pagelist; 1008 struct page *page; 1009 1010 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1011 1012 pagelist = data->pagelist; 1013 BUG_ON(!pagelist); 1014 1015 if (!length) 1016 return; /* pagelist can be assigned but empty */ 1017 1018 BUG_ON(list_empty(&pagelist->head)); 1019 page = list_first_entry(&pagelist->head, struct page, lru); 1020 1021 cursor->resid = min(length, pagelist->length); 1022 cursor->page = page; 1023 cursor->offset = 0; 1024 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1025 } 1026 1027 static struct page * 1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1029 size_t *page_offset, size_t *length) 1030 { 1031 struct ceph_msg_data *data = cursor->data; 1032 struct ceph_pagelist *pagelist; 1033 1034 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1035 1036 pagelist = data->pagelist; 1037 BUG_ON(!pagelist); 1038 1039 BUG_ON(!cursor->page); 1040 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1041 1042 /* offset of first page in pagelist is always 0 */ 1043 *page_offset = cursor->offset & ~PAGE_MASK; 1044 if (cursor->last_piece) 1045 *length = cursor->resid; 1046 else 1047 *length = PAGE_SIZE - *page_offset; 1048 1049 return cursor->page; 1050 } 1051 1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1053 size_t bytes) 1054 { 1055 struct ceph_msg_data *data = cursor->data; 1056 struct ceph_pagelist *pagelist; 1057 1058 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1059 1060 pagelist = data->pagelist; 1061 BUG_ON(!pagelist); 1062 1063 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1064 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1065 1066 /* Advance the cursor offset */ 1067 1068 cursor->resid -= bytes; 1069 cursor->offset += bytes; 1070 /* offset of first page in pagelist is always 0 */ 1071 if (!bytes || cursor->offset & ~PAGE_MASK) 1072 return false; /* more bytes to process in the current page */ 1073 1074 if (!cursor->resid) 1075 return false; /* no more data */ 1076 1077 /* Move on to the next page */ 1078 1079 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1080 cursor->page = list_next_entry(cursor->page, lru); 1081 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1082 1083 return true; 1084 } 1085 1086 /* 1087 * Message data is handled (sent or received) in pieces, where each 1088 * piece resides on a single page. The network layer might not 1089 * consume an entire piece at once. A data item's cursor keeps 1090 * track of which piece is next to process and how much remains to 1091 * be processed in that piece. It also tracks whether the current 1092 * piece is the last one in the data item. 1093 */ 1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1095 { 1096 size_t length = cursor->total_resid; 1097 1098 switch (cursor->data->type) { 1099 case CEPH_MSG_DATA_PAGELIST: 1100 ceph_msg_data_pagelist_cursor_init(cursor, length); 1101 break; 1102 case CEPH_MSG_DATA_PAGES: 1103 ceph_msg_data_pages_cursor_init(cursor, length); 1104 break; 1105 #ifdef CONFIG_BLOCK 1106 case CEPH_MSG_DATA_BIO: 1107 ceph_msg_data_bio_cursor_init(cursor, length); 1108 break; 1109 #endif /* CONFIG_BLOCK */ 1110 case CEPH_MSG_DATA_BVECS: 1111 ceph_msg_data_bvecs_cursor_init(cursor, length); 1112 break; 1113 case CEPH_MSG_DATA_NONE: 1114 default: 1115 /* BUG(); */ 1116 break; 1117 } 1118 cursor->need_crc = true; 1119 } 1120 1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1122 { 1123 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1124 1125 BUG_ON(!length); 1126 BUG_ON(length > msg->data_length); 1127 BUG_ON(!msg->num_data_items); 1128 1129 cursor->total_resid = length; 1130 cursor->data = msg->data; 1131 1132 __ceph_msg_data_cursor_init(cursor); 1133 } 1134 1135 /* 1136 * Return the page containing the next piece to process for a given 1137 * data item, and supply the page offset and length of that piece. 1138 * Indicate whether this is the last piece in this data item. 1139 */ 1140 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1141 size_t *page_offset, size_t *length, 1142 bool *last_piece) 1143 { 1144 struct page *page; 1145 1146 switch (cursor->data->type) { 1147 case CEPH_MSG_DATA_PAGELIST: 1148 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1149 break; 1150 case CEPH_MSG_DATA_PAGES: 1151 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1152 break; 1153 #ifdef CONFIG_BLOCK 1154 case CEPH_MSG_DATA_BIO: 1155 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1156 break; 1157 #endif /* CONFIG_BLOCK */ 1158 case CEPH_MSG_DATA_BVECS: 1159 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1160 break; 1161 case CEPH_MSG_DATA_NONE: 1162 default: 1163 page = NULL; 1164 break; 1165 } 1166 1167 BUG_ON(!page); 1168 BUG_ON(*page_offset + *length > PAGE_SIZE); 1169 BUG_ON(!*length); 1170 BUG_ON(*length > cursor->resid); 1171 if (last_piece) 1172 *last_piece = cursor->last_piece; 1173 1174 return page; 1175 } 1176 1177 /* 1178 * Returns true if the result moves the cursor on to the next piece 1179 * of the data item. 1180 */ 1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1182 size_t bytes) 1183 { 1184 bool new_piece; 1185 1186 BUG_ON(bytes > cursor->resid); 1187 switch (cursor->data->type) { 1188 case CEPH_MSG_DATA_PAGELIST: 1189 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1190 break; 1191 case CEPH_MSG_DATA_PAGES: 1192 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1193 break; 1194 #ifdef CONFIG_BLOCK 1195 case CEPH_MSG_DATA_BIO: 1196 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1197 break; 1198 #endif /* CONFIG_BLOCK */ 1199 case CEPH_MSG_DATA_BVECS: 1200 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1201 break; 1202 case CEPH_MSG_DATA_NONE: 1203 default: 1204 BUG(); 1205 break; 1206 } 1207 cursor->total_resid -= bytes; 1208 1209 if (!cursor->resid && cursor->total_resid) { 1210 WARN_ON(!cursor->last_piece); 1211 cursor->data++; 1212 __ceph_msg_data_cursor_init(cursor); 1213 new_piece = true; 1214 } 1215 cursor->need_crc = new_piece; 1216 } 1217 1218 static size_t sizeof_footer(struct ceph_connection *con) 1219 { 1220 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1221 sizeof(struct ceph_msg_footer) : 1222 sizeof(struct ceph_msg_footer_old); 1223 } 1224 1225 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1226 { 1227 /* Initialize data cursor */ 1228 1229 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1230 } 1231 1232 /* 1233 * Prepare footer for currently outgoing message, and finish things 1234 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1235 */ 1236 static void prepare_write_message_footer(struct ceph_connection *con) 1237 { 1238 struct ceph_msg *m = con->out_msg; 1239 1240 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1241 1242 dout("prepare_write_message_footer %p\n", con); 1243 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1244 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1245 if (con->ops->sign_message) 1246 con->ops->sign_message(m); 1247 else 1248 m->footer.sig = 0; 1249 } else { 1250 m->old_footer.flags = m->footer.flags; 1251 } 1252 con->out_more = m->more_to_follow; 1253 con->out_msg_done = true; 1254 } 1255 1256 /* 1257 * Prepare headers for the next outgoing message. 1258 */ 1259 static void prepare_write_message(struct ceph_connection *con) 1260 { 1261 struct ceph_msg *m; 1262 u32 crc; 1263 1264 con_out_kvec_reset(con); 1265 con->out_msg_done = false; 1266 1267 /* Sneak an ack in there first? If we can get it into the same 1268 * TCP packet that's a good thing. */ 1269 if (con->in_seq > con->in_seq_acked) { 1270 con->in_seq_acked = con->in_seq; 1271 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1272 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1273 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1274 &con->out_temp_ack); 1275 } 1276 1277 BUG_ON(list_empty(&con->out_queue)); 1278 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1279 con->out_msg = m; 1280 BUG_ON(m->con != con); 1281 1282 /* put message on sent list */ 1283 ceph_msg_get(m); 1284 list_move_tail(&m->list_head, &con->out_sent); 1285 1286 /* 1287 * only assign outgoing seq # if we haven't sent this message 1288 * yet. if it is requeued, resend with it's original seq. 1289 */ 1290 if (m->needs_out_seq) { 1291 m->hdr.seq = cpu_to_le64(++con->out_seq); 1292 m->needs_out_seq = false; 1293 1294 if (con->ops->reencode_message) 1295 con->ops->reencode_message(m); 1296 } 1297 1298 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1299 m, con->out_seq, le16_to_cpu(m->hdr.type), 1300 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1301 m->data_length); 1302 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1303 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1304 1305 /* tag + hdr + front + middle */ 1306 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1307 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1308 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1309 1310 if (m->middle) 1311 con_out_kvec_add(con, m->middle->vec.iov_len, 1312 m->middle->vec.iov_base); 1313 1314 /* fill in hdr crc and finalize hdr */ 1315 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1316 con->out_msg->hdr.crc = cpu_to_le32(crc); 1317 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1318 1319 /* fill in front and middle crc, footer */ 1320 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1321 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1322 if (m->middle) { 1323 crc = crc32c(0, m->middle->vec.iov_base, 1324 m->middle->vec.iov_len); 1325 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1326 } else 1327 con->out_msg->footer.middle_crc = 0; 1328 dout("%s front_crc %u middle_crc %u\n", __func__, 1329 le32_to_cpu(con->out_msg->footer.front_crc), 1330 le32_to_cpu(con->out_msg->footer.middle_crc)); 1331 con->out_msg->footer.flags = 0; 1332 1333 /* is there a data payload? */ 1334 con->out_msg->footer.data_crc = 0; 1335 if (m->data_length) { 1336 prepare_message_data(con->out_msg, m->data_length); 1337 con->out_more = 1; /* data + footer will follow */ 1338 } else { 1339 /* no, queue up footer too and be done */ 1340 prepare_write_message_footer(con); 1341 } 1342 1343 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1344 } 1345 1346 /* 1347 * Prepare an ack. 1348 */ 1349 static void prepare_write_ack(struct ceph_connection *con) 1350 { 1351 dout("prepare_write_ack %p %llu -> %llu\n", con, 1352 con->in_seq_acked, con->in_seq); 1353 con->in_seq_acked = con->in_seq; 1354 1355 con_out_kvec_reset(con); 1356 1357 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1358 1359 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1360 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1361 &con->out_temp_ack); 1362 1363 con->out_more = 1; /* more will follow.. eventually.. */ 1364 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1365 } 1366 1367 /* 1368 * Prepare to share the seq during handshake 1369 */ 1370 static void prepare_write_seq(struct ceph_connection *con) 1371 { 1372 dout("prepare_write_seq %p %llu -> %llu\n", con, 1373 con->in_seq_acked, con->in_seq); 1374 con->in_seq_acked = con->in_seq; 1375 1376 con_out_kvec_reset(con); 1377 1378 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1379 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1380 &con->out_temp_ack); 1381 1382 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1383 } 1384 1385 /* 1386 * Prepare to write keepalive byte. 1387 */ 1388 static void prepare_write_keepalive(struct ceph_connection *con) 1389 { 1390 dout("prepare_write_keepalive %p\n", con); 1391 con_out_kvec_reset(con); 1392 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1393 struct timespec64 now; 1394 1395 ktime_get_real_ts64(&now); 1396 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1397 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1398 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1399 &con->out_temp_keepalive2); 1400 } else { 1401 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1402 } 1403 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1404 } 1405 1406 /* 1407 * Connection negotiation. 1408 */ 1409 1410 static int get_connect_authorizer(struct ceph_connection *con) 1411 { 1412 struct ceph_auth_handshake *auth; 1413 int auth_proto; 1414 1415 if (!con->ops->get_authorizer) { 1416 con->auth = NULL; 1417 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1418 con->out_connect.authorizer_len = 0; 1419 return 0; 1420 } 1421 1422 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1423 if (IS_ERR(auth)) 1424 return PTR_ERR(auth); 1425 1426 con->auth = auth; 1427 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1428 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1429 return 0; 1430 } 1431 1432 /* 1433 * We connected to a peer and are saying hello. 1434 */ 1435 static void prepare_write_banner(struct ceph_connection *con) 1436 { 1437 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1438 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1439 &con->msgr->my_enc_addr); 1440 1441 con->out_more = 0; 1442 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1443 } 1444 1445 static void __prepare_write_connect(struct ceph_connection *con) 1446 { 1447 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1448 if (con->auth) 1449 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1450 con->auth->authorizer_buf); 1451 1452 con->out_more = 0; 1453 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1454 } 1455 1456 static int prepare_write_connect(struct ceph_connection *con) 1457 { 1458 unsigned int global_seq = get_global_seq(con->msgr, 0); 1459 int proto; 1460 int ret; 1461 1462 switch (con->peer_name.type) { 1463 case CEPH_ENTITY_TYPE_MON: 1464 proto = CEPH_MONC_PROTOCOL; 1465 break; 1466 case CEPH_ENTITY_TYPE_OSD: 1467 proto = CEPH_OSDC_PROTOCOL; 1468 break; 1469 case CEPH_ENTITY_TYPE_MDS: 1470 proto = CEPH_MDSC_PROTOCOL; 1471 break; 1472 default: 1473 BUG(); 1474 } 1475 1476 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1477 con->connect_seq, global_seq, proto); 1478 1479 con->out_connect.features = 1480 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1481 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1482 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1483 con->out_connect.global_seq = cpu_to_le32(global_seq); 1484 con->out_connect.protocol_version = cpu_to_le32(proto); 1485 con->out_connect.flags = 0; 1486 1487 ret = get_connect_authorizer(con); 1488 if (ret) 1489 return ret; 1490 1491 __prepare_write_connect(con); 1492 return 0; 1493 } 1494 1495 /* 1496 * write as much of pending kvecs to the socket as we can. 1497 * 1 -> done 1498 * 0 -> socket full, but more to do 1499 * <0 -> error 1500 */ 1501 static int write_partial_kvec(struct ceph_connection *con) 1502 { 1503 int ret; 1504 1505 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1506 while (con->out_kvec_bytes > 0) { 1507 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1508 con->out_kvec_left, con->out_kvec_bytes, 1509 con->out_more); 1510 if (ret <= 0) 1511 goto out; 1512 con->out_kvec_bytes -= ret; 1513 if (con->out_kvec_bytes == 0) 1514 break; /* done */ 1515 1516 /* account for full iov entries consumed */ 1517 while (ret >= con->out_kvec_cur->iov_len) { 1518 BUG_ON(!con->out_kvec_left); 1519 ret -= con->out_kvec_cur->iov_len; 1520 con->out_kvec_cur++; 1521 con->out_kvec_left--; 1522 } 1523 /* and for a partially-consumed entry */ 1524 if (ret) { 1525 con->out_kvec_cur->iov_len -= ret; 1526 con->out_kvec_cur->iov_base += ret; 1527 } 1528 } 1529 con->out_kvec_left = 0; 1530 ret = 1; 1531 out: 1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1533 con->out_kvec_bytes, con->out_kvec_left, ret); 1534 return ret; /* done! */ 1535 } 1536 1537 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1538 unsigned int page_offset, 1539 unsigned int length) 1540 { 1541 char *kaddr; 1542 1543 kaddr = kmap(page); 1544 BUG_ON(kaddr == NULL); 1545 crc = crc32c(crc, kaddr + page_offset, length); 1546 kunmap(page); 1547 1548 return crc; 1549 } 1550 /* 1551 * Write as much message data payload as we can. If we finish, queue 1552 * up the footer. 1553 * 1 -> done, footer is now queued in out_kvec[]. 1554 * 0 -> socket full, but more to do 1555 * <0 -> error 1556 */ 1557 static int write_partial_message_data(struct ceph_connection *con) 1558 { 1559 struct ceph_msg *msg = con->out_msg; 1560 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1561 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1562 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1563 u32 crc; 1564 1565 dout("%s %p msg %p\n", __func__, con, msg); 1566 1567 if (!msg->num_data_items) 1568 return -EINVAL; 1569 1570 /* 1571 * Iterate through each page that contains data to be 1572 * written, and send as much as possible for each. 1573 * 1574 * If we are calculating the data crc (the default), we will 1575 * need to map the page. If we have no pages, they have 1576 * been revoked, so use the zero page. 1577 */ 1578 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1579 while (cursor->total_resid) { 1580 struct page *page; 1581 size_t page_offset; 1582 size_t length; 1583 int ret; 1584 1585 if (!cursor->resid) { 1586 ceph_msg_data_advance(cursor, 0); 1587 continue; 1588 } 1589 1590 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 1591 if (length == cursor->total_resid) 1592 more = MSG_MORE; 1593 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length, 1594 more); 1595 if (ret <= 0) { 1596 if (do_datacrc) 1597 msg->footer.data_crc = cpu_to_le32(crc); 1598 1599 return ret; 1600 } 1601 if (do_datacrc && cursor->need_crc) 1602 crc = ceph_crc32c_page(crc, page, page_offset, length); 1603 ceph_msg_data_advance(cursor, (size_t)ret); 1604 } 1605 1606 dout("%s %p msg %p done\n", __func__, con, msg); 1607 1608 /* prepare and queue up footer, too */ 1609 if (do_datacrc) 1610 msg->footer.data_crc = cpu_to_le32(crc); 1611 else 1612 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1613 con_out_kvec_reset(con); 1614 prepare_write_message_footer(con); 1615 1616 return 1; /* must return > 0 to indicate success */ 1617 } 1618 1619 /* 1620 * write some zeros 1621 */ 1622 static int write_partial_skip(struct ceph_connection *con) 1623 { 1624 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1625 int ret; 1626 1627 dout("%s %p %d left\n", __func__, con, con->out_skip); 1628 while (con->out_skip > 0) { 1629 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1630 1631 if (size == con->out_skip) 1632 more = MSG_MORE; 1633 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more); 1634 if (ret <= 0) 1635 goto out; 1636 con->out_skip -= ret; 1637 } 1638 ret = 1; 1639 out: 1640 return ret; 1641 } 1642 1643 /* 1644 * Prepare to read connection handshake, or an ack. 1645 */ 1646 static void prepare_read_banner(struct ceph_connection *con) 1647 { 1648 dout("prepare_read_banner %p\n", con); 1649 con->in_base_pos = 0; 1650 } 1651 1652 static void prepare_read_connect(struct ceph_connection *con) 1653 { 1654 dout("prepare_read_connect %p\n", con); 1655 con->in_base_pos = 0; 1656 } 1657 1658 static void prepare_read_ack(struct ceph_connection *con) 1659 { 1660 dout("prepare_read_ack %p\n", con); 1661 con->in_base_pos = 0; 1662 } 1663 1664 static void prepare_read_seq(struct ceph_connection *con) 1665 { 1666 dout("prepare_read_seq %p\n", con); 1667 con->in_base_pos = 0; 1668 con->in_tag = CEPH_MSGR_TAG_SEQ; 1669 } 1670 1671 static void prepare_read_tag(struct ceph_connection *con) 1672 { 1673 dout("prepare_read_tag %p\n", con); 1674 con->in_base_pos = 0; 1675 con->in_tag = CEPH_MSGR_TAG_READY; 1676 } 1677 1678 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1679 { 1680 dout("prepare_read_keepalive_ack %p\n", con); 1681 con->in_base_pos = 0; 1682 } 1683 1684 /* 1685 * Prepare to read a message. 1686 */ 1687 static int prepare_read_message(struct ceph_connection *con) 1688 { 1689 dout("prepare_read_message %p\n", con); 1690 BUG_ON(con->in_msg != NULL); 1691 con->in_base_pos = 0; 1692 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1693 return 0; 1694 } 1695 1696 1697 static int read_partial(struct ceph_connection *con, 1698 int end, int size, void *object) 1699 { 1700 while (con->in_base_pos < end) { 1701 int left = end - con->in_base_pos; 1702 int have = size - left; 1703 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1704 if (ret <= 0) 1705 return ret; 1706 con->in_base_pos += ret; 1707 } 1708 return 1; 1709 } 1710 1711 1712 /* 1713 * Read all or part of the connect-side handshake on a new connection 1714 */ 1715 static int read_partial_banner(struct ceph_connection *con) 1716 { 1717 int size; 1718 int end; 1719 int ret; 1720 1721 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1722 1723 /* peer's banner */ 1724 size = strlen(CEPH_BANNER); 1725 end = size; 1726 ret = read_partial(con, end, size, con->in_banner); 1727 if (ret <= 0) 1728 goto out; 1729 1730 size = sizeof (con->actual_peer_addr); 1731 end += size; 1732 ret = read_partial(con, end, size, &con->actual_peer_addr); 1733 if (ret <= 0) 1734 goto out; 1735 1736 size = sizeof (con->peer_addr_for_me); 1737 end += size; 1738 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1739 if (ret <= 0) 1740 goto out; 1741 1742 out: 1743 return ret; 1744 } 1745 1746 static int read_partial_connect(struct ceph_connection *con) 1747 { 1748 int size; 1749 int end; 1750 int ret; 1751 1752 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1753 1754 size = sizeof (con->in_reply); 1755 end = size; 1756 ret = read_partial(con, end, size, &con->in_reply); 1757 if (ret <= 0) 1758 goto out; 1759 1760 if (con->auth) { 1761 size = le32_to_cpu(con->in_reply.authorizer_len); 1762 if (size > con->auth->authorizer_reply_buf_len) { 1763 pr_err("authorizer reply too big: %d > %zu\n", size, 1764 con->auth->authorizer_reply_buf_len); 1765 ret = -EINVAL; 1766 goto out; 1767 } 1768 1769 end += size; 1770 ret = read_partial(con, end, size, 1771 con->auth->authorizer_reply_buf); 1772 if (ret <= 0) 1773 goto out; 1774 } 1775 1776 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1777 con, (int)con->in_reply.tag, 1778 le32_to_cpu(con->in_reply.connect_seq), 1779 le32_to_cpu(con->in_reply.global_seq)); 1780 out: 1781 return ret; 1782 } 1783 1784 /* 1785 * Verify the hello banner looks okay. 1786 */ 1787 static int verify_hello(struct ceph_connection *con) 1788 { 1789 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1790 pr_err("connect to %s got bad banner\n", 1791 ceph_pr_addr(&con->peer_addr)); 1792 con->error_msg = "protocol error, bad banner"; 1793 return -1; 1794 } 1795 return 0; 1796 } 1797 1798 static bool addr_is_blank(struct ceph_entity_addr *addr) 1799 { 1800 struct sockaddr_storage ss = addr->in_addr; /* align */ 1801 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1802 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1803 1804 switch (ss.ss_family) { 1805 case AF_INET: 1806 return addr4->s_addr == htonl(INADDR_ANY); 1807 case AF_INET6: 1808 return ipv6_addr_any(addr6); 1809 default: 1810 return true; 1811 } 1812 } 1813 1814 static int addr_port(struct ceph_entity_addr *addr) 1815 { 1816 switch (get_unaligned(&addr->in_addr.ss_family)) { 1817 case AF_INET: 1818 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1819 case AF_INET6: 1820 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1821 } 1822 return 0; 1823 } 1824 1825 static void addr_set_port(struct ceph_entity_addr *addr, int p) 1826 { 1827 switch (get_unaligned(&addr->in_addr.ss_family)) { 1828 case AF_INET: 1829 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1830 break; 1831 case AF_INET6: 1832 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1833 break; 1834 } 1835 } 1836 1837 /* 1838 * Unlike other *_pton function semantics, zero indicates success. 1839 */ 1840 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1841 char delim, const char **ipend) 1842 { 1843 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1844 1845 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1846 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1847 return 0; 1848 } 1849 1850 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1851 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1852 return 0; 1853 } 1854 1855 return -EINVAL; 1856 } 1857 1858 /* 1859 * Extract hostname string and resolve using kernel DNS facility. 1860 */ 1861 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1862 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1863 struct ceph_entity_addr *addr, char delim, const char **ipend) 1864 { 1865 const char *end, *delim_p; 1866 char *colon_p, *ip_addr = NULL; 1867 int ip_len, ret; 1868 1869 /* 1870 * The end of the hostname occurs immediately preceding the delimiter or 1871 * the port marker (':') where the delimiter takes precedence. 1872 */ 1873 delim_p = memchr(name, delim, namelen); 1874 colon_p = memchr(name, ':', namelen); 1875 1876 if (delim_p && colon_p) 1877 end = delim_p < colon_p ? delim_p : colon_p; 1878 else if (!delim_p && colon_p) 1879 end = colon_p; 1880 else { 1881 end = delim_p; 1882 if (!end) /* case: hostname:/ */ 1883 end = name + namelen; 1884 } 1885 1886 if (end <= name) 1887 return -EINVAL; 1888 1889 /* do dns_resolve upcall */ 1890 ip_len = dns_query(current->nsproxy->net_ns, 1891 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1892 if (ip_len > 0) 1893 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1894 else 1895 ret = -ESRCH; 1896 1897 kfree(ip_addr); 1898 1899 *ipend = end; 1900 1901 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1902 ret, ret ? "failed" : ceph_pr_addr(addr)); 1903 1904 return ret; 1905 } 1906 #else 1907 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1908 struct ceph_entity_addr *addr, char delim, const char **ipend) 1909 { 1910 return -EINVAL; 1911 } 1912 #endif 1913 1914 /* 1915 * Parse a server name (IP or hostname). If a valid IP address is not found 1916 * then try to extract a hostname to resolve using userspace DNS upcall. 1917 */ 1918 static int ceph_parse_server_name(const char *name, size_t namelen, 1919 struct ceph_entity_addr *addr, char delim, const char **ipend) 1920 { 1921 int ret; 1922 1923 ret = ceph_pton(name, namelen, addr, delim, ipend); 1924 if (ret) 1925 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1926 1927 return ret; 1928 } 1929 1930 /* 1931 * Parse an ip[:port] list into an addr array. Use the default 1932 * monitor port if a port isn't specified. 1933 */ 1934 int ceph_parse_ips(const char *c, const char *end, 1935 struct ceph_entity_addr *addr, 1936 int max_count, int *count) 1937 { 1938 int i, ret = -EINVAL; 1939 const char *p = c; 1940 1941 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1942 for (i = 0; i < max_count; i++) { 1943 const char *ipend; 1944 int port; 1945 char delim = ','; 1946 1947 if (*p == '[') { 1948 delim = ']'; 1949 p++; 1950 } 1951 1952 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend); 1953 if (ret) 1954 goto bad; 1955 ret = -EINVAL; 1956 1957 p = ipend; 1958 1959 if (delim == ']') { 1960 if (*p != ']') { 1961 dout("missing matching ']'\n"); 1962 goto bad; 1963 } 1964 p++; 1965 } 1966 1967 /* port? */ 1968 if (p < end && *p == ':') { 1969 port = 0; 1970 p++; 1971 while (p < end && *p >= '0' && *p <= '9') { 1972 port = (port * 10) + (*p - '0'); 1973 p++; 1974 } 1975 if (port == 0) 1976 port = CEPH_MON_PORT; 1977 else if (port > 65535) 1978 goto bad; 1979 } else { 1980 port = CEPH_MON_PORT; 1981 } 1982 1983 addr_set_port(&addr[i], port); 1984 1985 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i])); 1986 1987 if (p == end) 1988 break; 1989 if (*p != ',') 1990 goto bad; 1991 p++; 1992 } 1993 1994 if (p != end) 1995 goto bad; 1996 1997 if (count) 1998 *count = i + 1; 1999 return 0; 2000 2001 bad: 2002 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2003 return ret; 2004 } 2005 EXPORT_SYMBOL(ceph_parse_ips); 2006 2007 static int process_banner(struct ceph_connection *con) 2008 { 2009 dout("process_banner on %p\n", con); 2010 2011 if (verify_hello(con) < 0) 2012 return -1; 2013 2014 ceph_decode_addr(&con->actual_peer_addr); 2015 ceph_decode_addr(&con->peer_addr_for_me); 2016 2017 /* 2018 * Make sure the other end is who we wanted. note that the other 2019 * end may not yet know their ip address, so if it's 0.0.0.0, give 2020 * them the benefit of the doubt. 2021 */ 2022 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2023 sizeof(con->peer_addr)) != 0 && 2024 !(addr_is_blank(&con->actual_peer_addr) && 2025 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2026 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2027 ceph_pr_addr(&con->peer_addr), 2028 (int)le32_to_cpu(con->peer_addr.nonce), 2029 ceph_pr_addr(&con->actual_peer_addr), 2030 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2031 con->error_msg = "wrong peer at address"; 2032 return -1; 2033 } 2034 2035 /* 2036 * did we learn our address? 2037 */ 2038 if (addr_is_blank(&con->msgr->inst.addr)) { 2039 int port = addr_port(&con->msgr->inst.addr); 2040 2041 memcpy(&con->msgr->inst.addr.in_addr, 2042 &con->peer_addr_for_me.in_addr, 2043 sizeof(con->peer_addr_for_me.in_addr)); 2044 addr_set_port(&con->msgr->inst.addr, port); 2045 encode_my_addr(con->msgr); 2046 dout("process_banner learned my addr is %s\n", 2047 ceph_pr_addr(&con->msgr->inst.addr)); 2048 } 2049 2050 return 0; 2051 } 2052 2053 static int process_connect(struct ceph_connection *con) 2054 { 2055 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2056 u64 req_feat = from_msgr(con->msgr)->required_features; 2057 u64 server_feat = le64_to_cpu(con->in_reply.features); 2058 int ret; 2059 2060 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2061 2062 if (con->auth) { 2063 int len = le32_to_cpu(con->in_reply.authorizer_len); 2064 2065 /* 2066 * Any connection that defines ->get_authorizer() 2067 * should also define ->add_authorizer_challenge() and 2068 * ->verify_authorizer_reply(). 2069 * 2070 * See get_connect_authorizer(). 2071 */ 2072 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2073 ret = con->ops->add_authorizer_challenge( 2074 con, con->auth->authorizer_reply_buf, len); 2075 if (ret < 0) 2076 return ret; 2077 2078 con_out_kvec_reset(con); 2079 __prepare_write_connect(con); 2080 prepare_read_connect(con); 2081 return 0; 2082 } 2083 2084 if (len) { 2085 ret = con->ops->verify_authorizer_reply(con); 2086 if (ret < 0) { 2087 con->error_msg = "bad authorize reply"; 2088 return ret; 2089 } 2090 } 2091 } 2092 2093 switch (con->in_reply.tag) { 2094 case CEPH_MSGR_TAG_FEATURES: 2095 pr_err("%s%lld %s feature set mismatch," 2096 " my %llx < server's %llx, missing %llx\n", 2097 ENTITY_NAME(con->peer_name), 2098 ceph_pr_addr(&con->peer_addr), 2099 sup_feat, server_feat, server_feat & ~sup_feat); 2100 con->error_msg = "missing required protocol features"; 2101 reset_connection(con); 2102 return -1; 2103 2104 case CEPH_MSGR_TAG_BADPROTOVER: 2105 pr_err("%s%lld %s protocol version mismatch," 2106 " my %d != server's %d\n", 2107 ENTITY_NAME(con->peer_name), 2108 ceph_pr_addr(&con->peer_addr), 2109 le32_to_cpu(con->out_connect.protocol_version), 2110 le32_to_cpu(con->in_reply.protocol_version)); 2111 con->error_msg = "protocol version mismatch"; 2112 reset_connection(con); 2113 return -1; 2114 2115 case CEPH_MSGR_TAG_BADAUTHORIZER: 2116 con->auth_retry++; 2117 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2118 con->auth_retry); 2119 if (con->auth_retry == 2) { 2120 con->error_msg = "connect authorization failure"; 2121 return -1; 2122 } 2123 con_out_kvec_reset(con); 2124 ret = prepare_write_connect(con); 2125 if (ret < 0) 2126 return ret; 2127 prepare_read_connect(con); 2128 break; 2129 2130 case CEPH_MSGR_TAG_RESETSESSION: 2131 /* 2132 * If we connected with a large connect_seq but the peer 2133 * has no record of a session with us (no connection, or 2134 * connect_seq == 0), they will send RESETSESION to indicate 2135 * that they must have reset their session, and may have 2136 * dropped messages. 2137 */ 2138 dout("process_connect got RESET peer seq %u\n", 2139 le32_to_cpu(con->in_reply.connect_seq)); 2140 pr_err("%s%lld %s connection reset\n", 2141 ENTITY_NAME(con->peer_name), 2142 ceph_pr_addr(&con->peer_addr)); 2143 reset_connection(con); 2144 con_out_kvec_reset(con); 2145 ret = prepare_write_connect(con); 2146 if (ret < 0) 2147 return ret; 2148 prepare_read_connect(con); 2149 2150 /* Tell ceph about it. */ 2151 mutex_unlock(&con->mutex); 2152 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2153 if (con->ops->peer_reset) 2154 con->ops->peer_reset(con); 2155 mutex_lock(&con->mutex); 2156 if (con->state != CON_STATE_NEGOTIATING) 2157 return -EAGAIN; 2158 break; 2159 2160 case CEPH_MSGR_TAG_RETRY_SESSION: 2161 /* 2162 * If we sent a smaller connect_seq than the peer has, try 2163 * again with a larger value. 2164 */ 2165 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2166 le32_to_cpu(con->out_connect.connect_seq), 2167 le32_to_cpu(con->in_reply.connect_seq)); 2168 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2169 con_out_kvec_reset(con); 2170 ret = prepare_write_connect(con); 2171 if (ret < 0) 2172 return ret; 2173 prepare_read_connect(con); 2174 break; 2175 2176 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2177 /* 2178 * If we sent a smaller global_seq than the peer has, try 2179 * again with a larger value. 2180 */ 2181 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2182 con->peer_global_seq, 2183 le32_to_cpu(con->in_reply.global_seq)); 2184 get_global_seq(con->msgr, 2185 le32_to_cpu(con->in_reply.global_seq)); 2186 con_out_kvec_reset(con); 2187 ret = prepare_write_connect(con); 2188 if (ret < 0) 2189 return ret; 2190 prepare_read_connect(con); 2191 break; 2192 2193 case CEPH_MSGR_TAG_SEQ: 2194 case CEPH_MSGR_TAG_READY: 2195 if (req_feat & ~server_feat) { 2196 pr_err("%s%lld %s protocol feature mismatch," 2197 " my required %llx > server's %llx, need %llx\n", 2198 ENTITY_NAME(con->peer_name), 2199 ceph_pr_addr(&con->peer_addr), 2200 req_feat, server_feat, req_feat & ~server_feat); 2201 con->error_msg = "missing required protocol features"; 2202 reset_connection(con); 2203 return -1; 2204 } 2205 2206 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2207 con->state = CON_STATE_OPEN; 2208 con->auth_retry = 0; /* we authenticated; clear flag */ 2209 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2210 con->connect_seq++; 2211 con->peer_features = server_feat; 2212 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2213 con->peer_global_seq, 2214 le32_to_cpu(con->in_reply.connect_seq), 2215 con->connect_seq); 2216 WARN_ON(con->connect_seq != 2217 le32_to_cpu(con->in_reply.connect_seq)); 2218 2219 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2220 con_flag_set(con, CON_FLAG_LOSSYTX); 2221 2222 con->delay = 0; /* reset backoff memory */ 2223 2224 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2225 prepare_write_seq(con); 2226 prepare_read_seq(con); 2227 } else { 2228 prepare_read_tag(con); 2229 } 2230 break; 2231 2232 case CEPH_MSGR_TAG_WAIT: 2233 /* 2234 * If there is a connection race (we are opening 2235 * connections to each other), one of us may just have 2236 * to WAIT. This shouldn't happen if we are the 2237 * client. 2238 */ 2239 con->error_msg = "protocol error, got WAIT as client"; 2240 return -1; 2241 2242 default: 2243 con->error_msg = "protocol error, garbage tag during connect"; 2244 return -1; 2245 } 2246 return 0; 2247 } 2248 2249 2250 /* 2251 * read (part of) an ack 2252 */ 2253 static int read_partial_ack(struct ceph_connection *con) 2254 { 2255 int size = sizeof (con->in_temp_ack); 2256 int end = size; 2257 2258 return read_partial(con, end, size, &con->in_temp_ack); 2259 } 2260 2261 /* 2262 * We can finally discard anything that's been acked. 2263 */ 2264 static void process_ack(struct ceph_connection *con) 2265 { 2266 struct ceph_msg *m; 2267 u64 ack = le64_to_cpu(con->in_temp_ack); 2268 u64 seq; 2269 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2270 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2271 2272 /* 2273 * In the reconnect case, con_fault() has requeued messages 2274 * in out_sent. We should cleanup old messages according to 2275 * the reconnect seq. 2276 */ 2277 while (!list_empty(list)) { 2278 m = list_first_entry(list, struct ceph_msg, list_head); 2279 if (reconnect && m->needs_out_seq) 2280 break; 2281 seq = le64_to_cpu(m->hdr.seq); 2282 if (seq > ack) 2283 break; 2284 dout("got ack for seq %llu type %d at %p\n", seq, 2285 le16_to_cpu(m->hdr.type), m); 2286 m->ack_stamp = jiffies; 2287 ceph_msg_remove(m); 2288 } 2289 2290 prepare_read_tag(con); 2291 } 2292 2293 2294 static int read_partial_message_section(struct ceph_connection *con, 2295 struct kvec *section, 2296 unsigned int sec_len, u32 *crc) 2297 { 2298 int ret, left; 2299 2300 BUG_ON(!section); 2301 2302 while (section->iov_len < sec_len) { 2303 BUG_ON(section->iov_base == NULL); 2304 left = sec_len - section->iov_len; 2305 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2306 section->iov_len, left); 2307 if (ret <= 0) 2308 return ret; 2309 section->iov_len += ret; 2310 } 2311 if (section->iov_len == sec_len) 2312 *crc = crc32c(0, section->iov_base, section->iov_len); 2313 2314 return 1; 2315 } 2316 2317 static int read_partial_msg_data(struct ceph_connection *con) 2318 { 2319 struct ceph_msg *msg = con->in_msg; 2320 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2321 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2322 struct page *page; 2323 size_t page_offset; 2324 size_t length; 2325 u32 crc = 0; 2326 int ret; 2327 2328 if (!msg->num_data_items) 2329 return -EIO; 2330 2331 if (do_datacrc) 2332 crc = con->in_data_crc; 2333 while (cursor->total_resid) { 2334 if (!cursor->resid) { 2335 ceph_msg_data_advance(cursor, 0); 2336 continue; 2337 } 2338 2339 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2340 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2341 if (ret <= 0) { 2342 if (do_datacrc) 2343 con->in_data_crc = crc; 2344 2345 return ret; 2346 } 2347 2348 if (do_datacrc) 2349 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2350 ceph_msg_data_advance(cursor, (size_t)ret); 2351 } 2352 if (do_datacrc) 2353 con->in_data_crc = crc; 2354 2355 return 1; /* must return > 0 to indicate success */ 2356 } 2357 2358 /* 2359 * read (part of) a message. 2360 */ 2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2362 2363 static int read_partial_message(struct ceph_connection *con) 2364 { 2365 struct ceph_msg *m = con->in_msg; 2366 int size; 2367 int end; 2368 int ret; 2369 unsigned int front_len, middle_len, data_len; 2370 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2371 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2372 u64 seq; 2373 u32 crc; 2374 2375 dout("read_partial_message con %p msg %p\n", con, m); 2376 2377 /* header */ 2378 size = sizeof (con->in_hdr); 2379 end = size; 2380 ret = read_partial(con, end, size, &con->in_hdr); 2381 if (ret <= 0) 2382 return ret; 2383 2384 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2385 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2386 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2387 crc, con->in_hdr.crc); 2388 return -EBADMSG; 2389 } 2390 2391 front_len = le32_to_cpu(con->in_hdr.front_len); 2392 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2393 return -EIO; 2394 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2395 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2396 return -EIO; 2397 data_len = le32_to_cpu(con->in_hdr.data_len); 2398 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2399 return -EIO; 2400 2401 /* verify seq# */ 2402 seq = le64_to_cpu(con->in_hdr.seq); 2403 if ((s64)seq - (s64)con->in_seq < 1) { 2404 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2405 ENTITY_NAME(con->peer_name), 2406 ceph_pr_addr(&con->peer_addr), 2407 seq, con->in_seq + 1); 2408 con->in_base_pos = -front_len - middle_len - data_len - 2409 sizeof_footer(con); 2410 con->in_tag = CEPH_MSGR_TAG_READY; 2411 return 1; 2412 } else if ((s64)seq - (s64)con->in_seq > 1) { 2413 pr_err("read_partial_message bad seq %lld expected %lld\n", 2414 seq, con->in_seq + 1); 2415 con->error_msg = "bad message sequence # for incoming message"; 2416 return -EBADE; 2417 } 2418 2419 /* allocate message? */ 2420 if (!con->in_msg) { 2421 int skip = 0; 2422 2423 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2424 front_len, data_len); 2425 ret = ceph_con_in_msg_alloc(con, &skip); 2426 if (ret < 0) 2427 return ret; 2428 2429 BUG_ON(!con->in_msg ^ skip); 2430 if (skip) { 2431 /* skip this message */ 2432 dout("alloc_msg said skip message\n"); 2433 con->in_base_pos = -front_len - middle_len - data_len - 2434 sizeof_footer(con); 2435 con->in_tag = CEPH_MSGR_TAG_READY; 2436 con->in_seq++; 2437 return 1; 2438 } 2439 2440 BUG_ON(!con->in_msg); 2441 BUG_ON(con->in_msg->con != con); 2442 m = con->in_msg; 2443 m->front.iov_len = 0; /* haven't read it yet */ 2444 if (m->middle) 2445 m->middle->vec.iov_len = 0; 2446 2447 /* prepare for data payload, if any */ 2448 2449 if (data_len) 2450 prepare_message_data(con->in_msg, data_len); 2451 } 2452 2453 /* front */ 2454 ret = read_partial_message_section(con, &m->front, front_len, 2455 &con->in_front_crc); 2456 if (ret <= 0) 2457 return ret; 2458 2459 /* middle */ 2460 if (m->middle) { 2461 ret = read_partial_message_section(con, &m->middle->vec, 2462 middle_len, 2463 &con->in_middle_crc); 2464 if (ret <= 0) 2465 return ret; 2466 } 2467 2468 /* (page) data */ 2469 if (data_len) { 2470 ret = read_partial_msg_data(con); 2471 if (ret <= 0) 2472 return ret; 2473 } 2474 2475 /* footer */ 2476 size = sizeof_footer(con); 2477 end += size; 2478 ret = read_partial(con, end, size, &m->footer); 2479 if (ret <= 0) 2480 return ret; 2481 2482 if (!need_sign) { 2483 m->footer.flags = m->old_footer.flags; 2484 m->footer.sig = 0; 2485 } 2486 2487 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2488 m, front_len, m->footer.front_crc, middle_len, 2489 m->footer.middle_crc, data_len, m->footer.data_crc); 2490 2491 /* crc ok? */ 2492 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2493 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2494 m, con->in_front_crc, m->footer.front_crc); 2495 return -EBADMSG; 2496 } 2497 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2498 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2499 m, con->in_middle_crc, m->footer.middle_crc); 2500 return -EBADMSG; 2501 } 2502 if (do_datacrc && 2503 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2504 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2505 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2506 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2507 return -EBADMSG; 2508 } 2509 2510 if (need_sign && con->ops->check_message_signature && 2511 con->ops->check_message_signature(m)) { 2512 pr_err("read_partial_message %p signature check failed\n", m); 2513 return -EBADMSG; 2514 } 2515 2516 return 1; /* done! */ 2517 } 2518 2519 /* 2520 * Process message. This happens in the worker thread. The callback should 2521 * be careful not to do anything that waits on other incoming messages or it 2522 * may deadlock. 2523 */ 2524 static void process_message(struct ceph_connection *con) 2525 { 2526 struct ceph_msg *msg = con->in_msg; 2527 2528 BUG_ON(con->in_msg->con != con); 2529 con->in_msg = NULL; 2530 2531 /* if first message, set peer_name */ 2532 if (con->peer_name.type == 0) 2533 con->peer_name = msg->hdr.src; 2534 2535 con->in_seq++; 2536 mutex_unlock(&con->mutex); 2537 2538 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2539 msg, le64_to_cpu(msg->hdr.seq), 2540 ENTITY_NAME(msg->hdr.src), 2541 le16_to_cpu(msg->hdr.type), 2542 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2543 le32_to_cpu(msg->hdr.front_len), 2544 le32_to_cpu(msg->hdr.data_len), 2545 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2546 con->ops->dispatch(con, msg); 2547 2548 mutex_lock(&con->mutex); 2549 } 2550 2551 static int read_keepalive_ack(struct ceph_connection *con) 2552 { 2553 struct ceph_timespec ceph_ts; 2554 size_t size = sizeof(ceph_ts); 2555 int ret = read_partial(con, size, size, &ceph_ts); 2556 if (ret <= 0) 2557 return ret; 2558 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2559 prepare_read_tag(con); 2560 return 1; 2561 } 2562 2563 /* 2564 * Write something to the socket. Called in a worker thread when the 2565 * socket appears to be writeable and we have something ready to send. 2566 */ 2567 static int try_write(struct ceph_connection *con) 2568 { 2569 int ret = 1; 2570 2571 dout("try_write start %p state %lu\n", con, con->state); 2572 if (con->state != CON_STATE_PREOPEN && 2573 con->state != CON_STATE_CONNECTING && 2574 con->state != CON_STATE_NEGOTIATING && 2575 con->state != CON_STATE_OPEN) 2576 return 0; 2577 2578 /* open the socket first? */ 2579 if (con->state == CON_STATE_PREOPEN) { 2580 BUG_ON(con->sock); 2581 con->state = CON_STATE_CONNECTING; 2582 2583 con_out_kvec_reset(con); 2584 prepare_write_banner(con); 2585 prepare_read_banner(con); 2586 2587 BUG_ON(con->in_msg); 2588 con->in_tag = CEPH_MSGR_TAG_READY; 2589 dout("try_write initiating connect on %p new state %lu\n", 2590 con, con->state); 2591 ret = ceph_tcp_connect(con); 2592 if (ret < 0) { 2593 con->error_msg = "connect error"; 2594 goto out; 2595 } 2596 } 2597 2598 more: 2599 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2600 BUG_ON(!con->sock); 2601 2602 /* kvec data queued? */ 2603 if (con->out_kvec_left) { 2604 ret = write_partial_kvec(con); 2605 if (ret <= 0) 2606 goto out; 2607 } 2608 if (con->out_skip) { 2609 ret = write_partial_skip(con); 2610 if (ret <= 0) 2611 goto out; 2612 } 2613 2614 /* msg pages? */ 2615 if (con->out_msg) { 2616 if (con->out_msg_done) { 2617 ceph_msg_put(con->out_msg); 2618 con->out_msg = NULL; /* we're done with this one */ 2619 goto do_next; 2620 } 2621 2622 ret = write_partial_message_data(con); 2623 if (ret == 1) 2624 goto more; /* we need to send the footer, too! */ 2625 if (ret == 0) 2626 goto out; 2627 if (ret < 0) { 2628 dout("try_write write_partial_message_data err %d\n", 2629 ret); 2630 goto out; 2631 } 2632 } 2633 2634 do_next: 2635 if (con->state == CON_STATE_OPEN) { 2636 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2637 prepare_write_keepalive(con); 2638 goto more; 2639 } 2640 /* is anything else pending? */ 2641 if (!list_empty(&con->out_queue)) { 2642 prepare_write_message(con); 2643 goto more; 2644 } 2645 if (con->in_seq > con->in_seq_acked) { 2646 prepare_write_ack(con); 2647 goto more; 2648 } 2649 } 2650 2651 /* Nothing to do! */ 2652 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2653 dout("try_write nothing else to write.\n"); 2654 ret = 0; 2655 out: 2656 dout("try_write done on %p ret %d\n", con, ret); 2657 return ret; 2658 } 2659 2660 /* 2661 * Read what we can from the socket. 2662 */ 2663 static int try_read(struct ceph_connection *con) 2664 { 2665 int ret = -1; 2666 2667 more: 2668 dout("try_read start on %p state %lu\n", con, con->state); 2669 if (con->state != CON_STATE_CONNECTING && 2670 con->state != CON_STATE_NEGOTIATING && 2671 con->state != CON_STATE_OPEN) 2672 return 0; 2673 2674 BUG_ON(!con->sock); 2675 2676 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2677 con->in_base_pos); 2678 2679 if (con->state == CON_STATE_CONNECTING) { 2680 dout("try_read connecting\n"); 2681 ret = read_partial_banner(con); 2682 if (ret <= 0) 2683 goto out; 2684 ret = process_banner(con); 2685 if (ret < 0) 2686 goto out; 2687 2688 con->state = CON_STATE_NEGOTIATING; 2689 2690 /* 2691 * Received banner is good, exchange connection info. 2692 * Do not reset out_kvec, as sending our banner raced 2693 * with receiving peer banner after connect completed. 2694 */ 2695 ret = prepare_write_connect(con); 2696 if (ret < 0) 2697 goto out; 2698 prepare_read_connect(con); 2699 2700 /* Send connection info before awaiting response */ 2701 goto out; 2702 } 2703 2704 if (con->state == CON_STATE_NEGOTIATING) { 2705 dout("try_read negotiating\n"); 2706 ret = read_partial_connect(con); 2707 if (ret <= 0) 2708 goto out; 2709 ret = process_connect(con); 2710 if (ret < 0) 2711 goto out; 2712 goto more; 2713 } 2714 2715 WARN_ON(con->state != CON_STATE_OPEN); 2716 2717 if (con->in_base_pos < 0) { 2718 /* 2719 * skipping + discarding content. 2720 */ 2721 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2722 if (ret <= 0) 2723 goto out; 2724 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2725 con->in_base_pos += ret; 2726 if (con->in_base_pos) 2727 goto more; 2728 } 2729 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2730 /* 2731 * what's next? 2732 */ 2733 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2734 if (ret <= 0) 2735 goto out; 2736 dout("try_read got tag %d\n", (int)con->in_tag); 2737 switch (con->in_tag) { 2738 case CEPH_MSGR_TAG_MSG: 2739 prepare_read_message(con); 2740 break; 2741 case CEPH_MSGR_TAG_ACK: 2742 prepare_read_ack(con); 2743 break; 2744 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2745 prepare_read_keepalive_ack(con); 2746 break; 2747 case CEPH_MSGR_TAG_CLOSE: 2748 con_close_socket(con); 2749 con->state = CON_STATE_CLOSED; 2750 goto out; 2751 default: 2752 goto bad_tag; 2753 } 2754 } 2755 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2756 ret = read_partial_message(con); 2757 if (ret <= 0) { 2758 switch (ret) { 2759 case -EBADMSG: 2760 con->error_msg = "bad crc/signature"; 2761 /* fall through */ 2762 case -EBADE: 2763 ret = -EIO; 2764 break; 2765 case -EIO: 2766 con->error_msg = "io error"; 2767 break; 2768 } 2769 goto out; 2770 } 2771 if (con->in_tag == CEPH_MSGR_TAG_READY) 2772 goto more; 2773 process_message(con); 2774 if (con->state == CON_STATE_OPEN) 2775 prepare_read_tag(con); 2776 goto more; 2777 } 2778 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2779 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2780 /* 2781 * the final handshake seq exchange is semantically 2782 * equivalent to an ACK 2783 */ 2784 ret = read_partial_ack(con); 2785 if (ret <= 0) 2786 goto out; 2787 process_ack(con); 2788 goto more; 2789 } 2790 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2791 ret = read_keepalive_ack(con); 2792 if (ret <= 0) 2793 goto out; 2794 goto more; 2795 } 2796 2797 out: 2798 dout("try_read done on %p ret %d\n", con, ret); 2799 return ret; 2800 2801 bad_tag: 2802 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2803 con->error_msg = "protocol error, garbage tag"; 2804 ret = -1; 2805 goto out; 2806 } 2807 2808 2809 /* 2810 * Atomically queue work on a connection after the specified delay. 2811 * Bump @con reference to avoid races with connection teardown. 2812 * Returns 0 if work was queued, or an error code otherwise. 2813 */ 2814 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2815 { 2816 if (!con->ops->get(con)) { 2817 dout("%s %p ref count 0\n", __func__, con); 2818 return -ENOENT; 2819 } 2820 2821 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2822 dout("%s %p - already queued\n", __func__, con); 2823 con->ops->put(con); 2824 return -EBUSY; 2825 } 2826 2827 dout("%s %p %lu\n", __func__, con, delay); 2828 return 0; 2829 } 2830 2831 static void queue_con(struct ceph_connection *con) 2832 { 2833 (void) queue_con_delay(con, 0); 2834 } 2835 2836 static void cancel_con(struct ceph_connection *con) 2837 { 2838 if (cancel_delayed_work(&con->work)) { 2839 dout("%s %p\n", __func__, con); 2840 con->ops->put(con); 2841 } 2842 } 2843 2844 static bool con_sock_closed(struct ceph_connection *con) 2845 { 2846 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2847 return false; 2848 2849 #define CASE(x) \ 2850 case CON_STATE_ ## x: \ 2851 con->error_msg = "socket closed (con state " #x ")"; \ 2852 break; 2853 2854 switch (con->state) { 2855 CASE(CLOSED); 2856 CASE(PREOPEN); 2857 CASE(CONNECTING); 2858 CASE(NEGOTIATING); 2859 CASE(OPEN); 2860 CASE(STANDBY); 2861 default: 2862 pr_warn("%s con %p unrecognized state %lu\n", 2863 __func__, con, con->state); 2864 con->error_msg = "unrecognized con state"; 2865 BUG(); 2866 break; 2867 } 2868 #undef CASE 2869 2870 return true; 2871 } 2872 2873 static bool con_backoff(struct ceph_connection *con) 2874 { 2875 int ret; 2876 2877 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2878 return false; 2879 2880 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2881 if (ret) { 2882 dout("%s: con %p FAILED to back off %lu\n", __func__, 2883 con, con->delay); 2884 BUG_ON(ret == -ENOENT); 2885 con_flag_set(con, CON_FLAG_BACKOFF); 2886 } 2887 2888 return true; 2889 } 2890 2891 /* Finish fault handling; con->mutex must *not* be held here */ 2892 2893 static void con_fault_finish(struct ceph_connection *con) 2894 { 2895 dout("%s %p\n", __func__, con); 2896 2897 /* 2898 * in case we faulted due to authentication, invalidate our 2899 * current tickets so that we can get new ones. 2900 */ 2901 if (con->auth_retry) { 2902 dout("auth_retry %d, invalidating\n", con->auth_retry); 2903 if (con->ops->invalidate_authorizer) 2904 con->ops->invalidate_authorizer(con); 2905 con->auth_retry = 0; 2906 } 2907 2908 if (con->ops->fault) 2909 con->ops->fault(con); 2910 } 2911 2912 /* 2913 * Do some work on a connection. Drop a connection ref when we're done. 2914 */ 2915 static void ceph_con_workfn(struct work_struct *work) 2916 { 2917 struct ceph_connection *con = container_of(work, struct ceph_connection, 2918 work.work); 2919 bool fault; 2920 2921 mutex_lock(&con->mutex); 2922 while (true) { 2923 int ret; 2924 2925 if ((fault = con_sock_closed(con))) { 2926 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2927 break; 2928 } 2929 if (con_backoff(con)) { 2930 dout("%s: con %p BACKOFF\n", __func__, con); 2931 break; 2932 } 2933 if (con->state == CON_STATE_STANDBY) { 2934 dout("%s: con %p STANDBY\n", __func__, con); 2935 break; 2936 } 2937 if (con->state == CON_STATE_CLOSED) { 2938 dout("%s: con %p CLOSED\n", __func__, con); 2939 BUG_ON(con->sock); 2940 break; 2941 } 2942 if (con->state == CON_STATE_PREOPEN) { 2943 dout("%s: con %p PREOPEN\n", __func__, con); 2944 BUG_ON(con->sock); 2945 } 2946 2947 ret = try_read(con); 2948 if (ret < 0) { 2949 if (ret == -EAGAIN) 2950 continue; 2951 if (!con->error_msg) 2952 con->error_msg = "socket error on read"; 2953 fault = true; 2954 break; 2955 } 2956 2957 ret = try_write(con); 2958 if (ret < 0) { 2959 if (ret == -EAGAIN) 2960 continue; 2961 if (!con->error_msg) 2962 con->error_msg = "socket error on write"; 2963 fault = true; 2964 } 2965 2966 break; /* If we make it to here, we're done */ 2967 } 2968 if (fault) 2969 con_fault(con); 2970 mutex_unlock(&con->mutex); 2971 2972 if (fault) 2973 con_fault_finish(con); 2974 2975 con->ops->put(con); 2976 } 2977 2978 /* 2979 * Generic error/fault handler. A retry mechanism is used with 2980 * exponential backoff 2981 */ 2982 static void con_fault(struct ceph_connection *con) 2983 { 2984 dout("fault %p state %lu to peer %s\n", 2985 con, con->state, ceph_pr_addr(&con->peer_addr)); 2986 2987 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2988 ceph_pr_addr(&con->peer_addr), con->error_msg); 2989 con->error_msg = NULL; 2990 2991 WARN_ON(con->state != CON_STATE_CONNECTING && 2992 con->state != CON_STATE_NEGOTIATING && 2993 con->state != CON_STATE_OPEN); 2994 2995 con_close_socket(con); 2996 2997 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2998 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2999 con->state = CON_STATE_CLOSED; 3000 return; 3001 } 3002 3003 if (con->in_msg) { 3004 BUG_ON(con->in_msg->con != con); 3005 ceph_msg_put(con->in_msg); 3006 con->in_msg = NULL; 3007 } 3008 3009 /* Requeue anything that hasn't been acked */ 3010 list_splice_init(&con->out_sent, &con->out_queue); 3011 3012 /* If there are no messages queued or keepalive pending, place 3013 * the connection in a STANDBY state */ 3014 if (list_empty(&con->out_queue) && 3015 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3016 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3017 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3018 con->state = CON_STATE_STANDBY; 3019 } else { 3020 /* retry after a delay. */ 3021 con->state = CON_STATE_PREOPEN; 3022 if (con->delay == 0) 3023 con->delay = BASE_DELAY_INTERVAL; 3024 else if (con->delay < MAX_DELAY_INTERVAL) 3025 con->delay *= 2; 3026 con_flag_set(con, CON_FLAG_BACKOFF); 3027 queue_con(con); 3028 } 3029 } 3030 3031 3032 3033 /* 3034 * initialize a new messenger instance 3035 */ 3036 void ceph_messenger_init(struct ceph_messenger *msgr, 3037 struct ceph_entity_addr *myaddr) 3038 { 3039 spin_lock_init(&msgr->global_seq_lock); 3040 3041 if (myaddr) 3042 msgr->inst.addr = *myaddr; 3043 3044 /* select a random nonce */ 3045 msgr->inst.addr.type = 0; 3046 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3047 encode_my_addr(msgr); 3048 3049 atomic_set(&msgr->stopping, 0); 3050 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3051 3052 dout("%s %p\n", __func__, msgr); 3053 } 3054 EXPORT_SYMBOL(ceph_messenger_init); 3055 3056 void ceph_messenger_fini(struct ceph_messenger *msgr) 3057 { 3058 put_net(read_pnet(&msgr->net)); 3059 } 3060 EXPORT_SYMBOL(ceph_messenger_fini); 3061 3062 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3063 { 3064 if (msg->con) 3065 msg->con->ops->put(msg->con); 3066 3067 msg->con = con ? con->ops->get(con) : NULL; 3068 BUG_ON(msg->con != con); 3069 } 3070 3071 static void clear_standby(struct ceph_connection *con) 3072 { 3073 /* come back from STANDBY? */ 3074 if (con->state == CON_STATE_STANDBY) { 3075 dout("clear_standby %p and ++connect_seq\n", con); 3076 con->state = CON_STATE_PREOPEN; 3077 con->connect_seq++; 3078 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3079 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3080 } 3081 } 3082 3083 /* 3084 * Queue up an outgoing message on the given connection. 3085 */ 3086 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3087 { 3088 /* set src+dst */ 3089 msg->hdr.src = con->msgr->inst.name; 3090 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3091 msg->needs_out_seq = true; 3092 3093 mutex_lock(&con->mutex); 3094 3095 if (con->state == CON_STATE_CLOSED) { 3096 dout("con_send %p closed, dropping %p\n", con, msg); 3097 ceph_msg_put(msg); 3098 mutex_unlock(&con->mutex); 3099 return; 3100 } 3101 3102 msg_con_set(msg, con); 3103 3104 BUG_ON(!list_empty(&msg->list_head)); 3105 list_add_tail(&msg->list_head, &con->out_queue); 3106 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3107 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3108 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3109 le32_to_cpu(msg->hdr.front_len), 3110 le32_to_cpu(msg->hdr.middle_len), 3111 le32_to_cpu(msg->hdr.data_len)); 3112 3113 clear_standby(con); 3114 mutex_unlock(&con->mutex); 3115 3116 /* if there wasn't anything waiting to send before, queue 3117 * new work */ 3118 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3119 queue_con(con); 3120 } 3121 EXPORT_SYMBOL(ceph_con_send); 3122 3123 /* 3124 * Revoke a message that was previously queued for send 3125 */ 3126 void ceph_msg_revoke(struct ceph_msg *msg) 3127 { 3128 struct ceph_connection *con = msg->con; 3129 3130 if (!con) { 3131 dout("%s msg %p null con\n", __func__, msg); 3132 return; /* Message not in our possession */ 3133 } 3134 3135 mutex_lock(&con->mutex); 3136 if (!list_empty(&msg->list_head)) { 3137 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3138 list_del_init(&msg->list_head); 3139 msg->hdr.seq = 0; 3140 3141 ceph_msg_put(msg); 3142 } 3143 if (con->out_msg == msg) { 3144 BUG_ON(con->out_skip); 3145 /* footer */ 3146 if (con->out_msg_done) { 3147 con->out_skip += con_out_kvec_skip(con); 3148 } else { 3149 BUG_ON(!msg->data_length); 3150 con->out_skip += sizeof_footer(con); 3151 } 3152 /* data, middle, front */ 3153 if (msg->data_length) 3154 con->out_skip += msg->cursor.total_resid; 3155 if (msg->middle) 3156 con->out_skip += con_out_kvec_skip(con); 3157 con->out_skip += con_out_kvec_skip(con); 3158 3159 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3160 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3161 msg->hdr.seq = 0; 3162 con->out_msg = NULL; 3163 ceph_msg_put(msg); 3164 } 3165 3166 mutex_unlock(&con->mutex); 3167 } 3168 3169 /* 3170 * Revoke a message that we may be reading data into 3171 */ 3172 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3173 { 3174 struct ceph_connection *con = msg->con; 3175 3176 if (!con) { 3177 dout("%s msg %p null con\n", __func__, msg); 3178 return; /* Message not in our possession */ 3179 } 3180 3181 mutex_lock(&con->mutex); 3182 if (con->in_msg == msg) { 3183 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3184 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3185 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3186 3187 /* skip rest of message */ 3188 dout("%s %p msg %p revoked\n", __func__, con, msg); 3189 con->in_base_pos = con->in_base_pos - 3190 sizeof(struct ceph_msg_header) - 3191 front_len - 3192 middle_len - 3193 data_len - 3194 sizeof(struct ceph_msg_footer); 3195 ceph_msg_put(con->in_msg); 3196 con->in_msg = NULL; 3197 con->in_tag = CEPH_MSGR_TAG_READY; 3198 con->in_seq++; 3199 } else { 3200 dout("%s %p in_msg %p msg %p no-op\n", 3201 __func__, con, con->in_msg, msg); 3202 } 3203 mutex_unlock(&con->mutex); 3204 } 3205 3206 /* 3207 * Queue a keepalive byte to ensure the tcp connection is alive. 3208 */ 3209 void ceph_con_keepalive(struct ceph_connection *con) 3210 { 3211 dout("con_keepalive %p\n", con); 3212 mutex_lock(&con->mutex); 3213 clear_standby(con); 3214 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING); 3215 mutex_unlock(&con->mutex); 3216 3217 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3218 queue_con(con); 3219 } 3220 EXPORT_SYMBOL(ceph_con_keepalive); 3221 3222 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3223 unsigned long interval) 3224 { 3225 if (interval > 0 && 3226 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3227 struct timespec64 now; 3228 struct timespec64 ts; 3229 ktime_get_real_ts64(&now); 3230 jiffies_to_timespec64(interval, &ts); 3231 ts = timespec64_add(con->last_keepalive_ack, ts); 3232 return timespec64_compare(&now, &ts) >= 0; 3233 } 3234 return false; 3235 } 3236 3237 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 3238 { 3239 BUG_ON(msg->num_data_items >= msg->max_data_items); 3240 return &msg->data[msg->num_data_items++]; 3241 } 3242 3243 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3244 { 3245 if (data->type == CEPH_MSG_DATA_PAGELIST) 3246 ceph_pagelist_release(data->pagelist); 3247 } 3248 3249 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3250 size_t length, size_t alignment) 3251 { 3252 struct ceph_msg_data *data; 3253 3254 BUG_ON(!pages); 3255 BUG_ON(!length); 3256 3257 data = ceph_msg_data_add(msg); 3258 data->type = CEPH_MSG_DATA_PAGES; 3259 data->pages = pages; 3260 data->length = length; 3261 data->alignment = alignment & ~PAGE_MASK; 3262 3263 msg->data_length += length; 3264 } 3265 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3266 3267 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3268 struct ceph_pagelist *pagelist) 3269 { 3270 struct ceph_msg_data *data; 3271 3272 BUG_ON(!pagelist); 3273 BUG_ON(!pagelist->length); 3274 3275 data = ceph_msg_data_add(msg); 3276 data->type = CEPH_MSG_DATA_PAGELIST; 3277 refcount_inc(&pagelist->refcnt); 3278 data->pagelist = pagelist; 3279 3280 msg->data_length += pagelist->length; 3281 } 3282 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3283 3284 #ifdef CONFIG_BLOCK 3285 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3286 u32 length) 3287 { 3288 struct ceph_msg_data *data; 3289 3290 data = ceph_msg_data_add(msg); 3291 data->type = CEPH_MSG_DATA_BIO; 3292 data->bio_pos = *bio_pos; 3293 data->bio_length = length; 3294 3295 msg->data_length += length; 3296 } 3297 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3298 #endif /* CONFIG_BLOCK */ 3299 3300 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3301 struct ceph_bvec_iter *bvec_pos) 3302 { 3303 struct ceph_msg_data *data; 3304 3305 data = ceph_msg_data_add(msg); 3306 data->type = CEPH_MSG_DATA_BVECS; 3307 data->bvec_pos = *bvec_pos; 3308 3309 msg->data_length += bvec_pos->iter.bi_size; 3310 } 3311 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3312 3313 /* 3314 * construct a new message with given type, size 3315 * the new msg has a ref count of 1. 3316 */ 3317 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 3318 gfp_t flags, bool can_fail) 3319 { 3320 struct ceph_msg *m; 3321 3322 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3323 if (m == NULL) 3324 goto out; 3325 3326 m->hdr.type = cpu_to_le16(type); 3327 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3328 m->hdr.front_len = cpu_to_le32(front_len); 3329 3330 INIT_LIST_HEAD(&m->list_head); 3331 kref_init(&m->kref); 3332 3333 /* front */ 3334 if (front_len) { 3335 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3336 if (m->front.iov_base == NULL) { 3337 dout("ceph_msg_new can't allocate %d bytes\n", 3338 front_len); 3339 goto out2; 3340 } 3341 } else { 3342 m->front.iov_base = NULL; 3343 } 3344 m->front_alloc_len = m->front.iov_len = front_len; 3345 3346 if (max_data_items) { 3347 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 3348 flags); 3349 if (!m->data) 3350 goto out2; 3351 3352 m->max_data_items = max_data_items; 3353 } 3354 3355 dout("ceph_msg_new %p front %d\n", m, front_len); 3356 return m; 3357 3358 out2: 3359 ceph_msg_put(m); 3360 out: 3361 if (!can_fail) { 3362 pr_err("msg_new can't create type %d front %d\n", type, 3363 front_len); 3364 WARN_ON(1); 3365 } else { 3366 dout("msg_new can't create type %d front %d\n", type, 3367 front_len); 3368 } 3369 return NULL; 3370 } 3371 EXPORT_SYMBOL(ceph_msg_new2); 3372 3373 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3374 bool can_fail) 3375 { 3376 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 3377 } 3378 EXPORT_SYMBOL(ceph_msg_new); 3379 3380 /* 3381 * Allocate "middle" portion of a message, if it is needed and wasn't 3382 * allocated by alloc_msg. This allows us to read a small fixed-size 3383 * per-type header in the front and then gracefully fail (i.e., 3384 * propagate the error to the caller based on info in the front) when 3385 * the middle is too large. 3386 */ 3387 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3388 { 3389 int type = le16_to_cpu(msg->hdr.type); 3390 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3391 3392 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3393 ceph_msg_type_name(type), middle_len); 3394 BUG_ON(!middle_len); 3395 BUG_ON(msg->middle); 3396 3397 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3398 if (!msg->middle) 3399 return -ENOMEM; 3400 return 0; 3401 } 3402 3403 /* 3404 * Allocate a message for receiving an incoming message on a 3405 * connection, and save the result in con->in_msg. Uses the 3406 * connection's private alloc_msg op if available. 3407 * 3408 * Returns 0 on success, or a negative error code. 3409 * 3410 * On success, if we set *skip = 1: 3411 * - the next message should be skipped and ignored. 3412 * - con->in_msg == NULL 3413 * or if we set *skip = 0: 3414 * - con->in_msg is non-null. 3415 * On error (ENOMEM, EAGAIN, ...), 3416 * - con->in_msg == NULL 3417 */ 3418 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3419 { 3420 struct ceph_msg_header *hdr = &con->in_hdr; 3421 int middle_len = le32_to_cpu(hdr->middle_len); 3422 struct ceph_msg *msg; 3423 int ret = 0; 3424 3425 BUG_ON(con->in_msg != NULL); 3426 BUG_ON(!con->ops->alloc_msg); 3427 3428 mutex_unlock(&con->mutex); 3429 msg = con->ops->alloc_msg(con, hdr, skip); 3430 mutex_lock(&con->mutex); 3431 if (con->state != CON_STATE_OPEN) { 3432 if (msg) 3433 ceph_msg_put(msg); 3434 return -EAGAIN; 3435 } 3436 if (msg) { 3437 BUG_ON(*skip); 3438 msg_con_set(msg, con); 3439 con->in_msg = msg; 3440 } else { 3441 /* 3442 * Null message pointer means either we should skip 3443 * this message or we couldn't allocate memory. The 3444 * former is not an error. 3445 */ 3446 if (*skip) 3447 return 0; 3448 3449 con->error_msg = "error allocating memory for incoming message"; 3450 return -ENOMEM; 3451 } 3452 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3453 3454 if (middle_len && !con->in_msg->middle) { 3455 ret = ceph_alloc_middle(con, con->in_msg); 3456 if (ret < 0) { 3457 ceph_msg_put(con->in_msg); 3458 con->in_msg = NULL; 3459 } 3460 } 3461 3462 return ret; 3463 } 3464 3465 3466 /* 3467 * Free a generically kmalloc'd message. 3468 */ 3469 static void ceph_msg_free(struct ceph_msg *m) 3470 { 3471 dout("%s %p\n", __func__, m); 3472 kvfree(m->front.iov_base); 3473 kfree(m->data); 3474 kmem_cache_free(ceph_msg_cache, m); 3475 } 3476 3477 static void ceph_msg_release(struct kref *kref) 3478 { 3479 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3480 int i; 3481 3482 dout("%s %p\n", __func__, m); 3483 WARN_ON(!list_empty(&m->list_head)); 3484 3485 msg_con_set(m, NULL); 3486 3487 /* drop middle, data, if any */ 3488 if (m->middle) { 3489 ceph_buffer_put(m->middle); 3490 m->middle = NULL; 3491 } 3492 3493 for (i = 0; i < m->num_data_items; i++) 3494 ceph_msg_data_destroy(&m->data[i]); 3495 3496 if (m->pool) 3497 ceph_msgpool_put(m->pool, m); 3498 else 3499 ceph_msg_free(m); 3500 } 3501 3502 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3503 { 3504 dout("%s %p (was %d)\n", __func__, msg, 3505 kref_read(&msg->kref)); 3506 kref_get(&msg->kref); 3507 return msg; 3508 } 3509 EXPORT_SYMBOL(ceph_msg_get); 3510 3511 void ceph_msg_put(struct ceph_msg *msg) 3512 { 3513 dout("%s %p (was %d)\n", __func__, msg, 3514 kref_read(&msg->kref)); 3515 kref_put(&msg->kref, ceph_msg_release); 3516 } 3517 EXPORT_SYMBOL(ceph_msg_put); 3518 3519 void ceph_msg_dump(struct ceph_msg *msg) 3520 { 3521 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3522 msg->front_alloc_len, msg->data_length); 3523 print_hex_dump(KERN_DEBUG, "header: ", 3524 DUMP_PREFIX_OFFSET, 16, 1, 3525 &msg->hdr, sizeof(msg->hdr), true); 3526 print_hex_dump(KERN_DEBUG, " front: ", 3527 DUMP_PREFIX_OFFSET, 16, 1, 3528 msg->front.iov_base, msg->front.iov_len, true); 3529 if (msg->middle) 3530 print_hex_dump(KERN_DEBUG, "middle: ", 3531 DUMP_PREFIX_OFFSET, 16, 1, 3532 msg->middle->vec.iov_base, 3533 msg->middle->vec.iov_len, true); 3534 print_hex_dump(KERN_DEBUG, "footer: ", 3535 DUMP_PREFIX_OFFSET, 16, 1, 3536 &msg->footer, sizeof(msg->footer), true); 3537 } 3538 EXPORT_SYMBOL(ceph_msg_dump); 3539