xref: /openbmc/linux/net/ceph/messenger.c (revision 07c7c6bf)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174 
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
180 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
183 
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186 
187 static struct page *zero_page;		/* used in certain error cases */
188 
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191 	int i;
192 	char *s;
193 	struct sockaddr_storage ss = addr->in_addr; /* align */
194 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196 
197 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 	s = addr_str[i];
199 
200 	switch (ss.ss_family) {
201 	case AF_INET:
202 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
203 			 ntohs(in4->sin_port));
204 		break;
205 
206 	case AF_INET6:
207 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
208 			 ntohs(in6->sin6_port));
209 		break;
210 
211 	default:
212 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
213 			 ss.ss_family);
214 	}
215 
216 	return s;
217 }
218 EXPORT_SYMBOL(ceph_pr_addr);
219 
220 static void encode_my_addr(struct ceph_messenger *msgr)
221 {
222 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
223 	ceph_encode_addr(&msgr->my_enc_addr);
224 }
225 
226 /*
227  * work queue for all reading and writing to/from the socket.
228  */
229 static struct workqueue_struct *ceph_msgr_wq;
230 
231 static int ceph_msgr_slab_init(void)
232 {
233 	BUG_ON(ceph_msg_cache);
234 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
235 	if (!ceph_msg_cache)
236 		return -ENOMEM;
237 
238 	return 0;
239 }
240 
241 static void ceph_msgr_slab_exit(void)
242 {
243 	BUG_ON(!ceph_msg_cache);
244 	kmem_cache_destroy(ceph_msg_cache);
245 	ceph_msg_cache = NULL;
246 }
247 
248 static void _ceph_msgr_exit(void)
249 {
250 	if (ceph_msgr_wq) {
251 		destroy_workqueue(ceph_msgr_wq);
252 		ceph_msgr_wq = NULL;
253 	}
254 
255 	BUG_ON(zero_page == NULL);
256 	put_page(zero_page);
257 	zero_page = NULL;
258 
259 	ceph_msgr_slab_exit();
260 }
261 
262 int __init ceph_msgr_init(void)
263 {
264 	if (ceph_msgr_slab_init())
265 		return -ENOMEM;
266 
267 	BUG_ON(zero_page != NULL);
268 	zero_page = ZERO_PAGE(0);
269 	get_page(zero_page);
270 
271 	/*
272 	 * The number of active work items is limited by the number of
273 	 * connections, so leave @max_active at default.
274 	 */
275 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
276 	if (ceph_msgr_wq)
277 		return 0;
278 
279 	pr_err("msgr_init failed to create workqueue\n");
280 	_ceph_msgr_exit();
281 
282 	return -ENOMEM;
283 }
284 
285 void ceph_msgr_exit(void)
286 {
287 	BUG_ON(ceph_msgr_wq == NULL);
288 
289 	_ceph_msgr_exit();
290 }
291 
292 void ceph_msgr_flush(void)
293 {
294 	flush_workqueue(ceph_msgr_wq);
295 }
296 EXPORT_SYMBOL(ceph_msgr_flush);
297 
298 /* Connection socket state transition functions */
299 
300 static void con_sock_state_init(struct ceph_connection *con)
301 {
302 	int old_state;
303 
304 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
305 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
306 		printk("%s: unexpected old state %d\n", __func__, old_state);
307 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
308 	     CON_SOCK_STATE_CLOSED);
309 }
310 
311 static void con_sock_state_connecting(struct ceph_connection *con)
312 {
313 	int old_state;
314 
315 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
316 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
317 		printk("%s: unexpected old state %d\n", __func__, old_state);
318 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
319 	     CON_SOCK_STATE_CONNECTING);
320 }
321 
322 static void con_sock_state_connected(struct ceph_connection *con)
323 {
324 	int old_state;
325 
326 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
327 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
328 		printk("%s: unexpected old state %d\n", __func__, old_state);
329 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
330 	     CON_SOCK_STATE_CONNECTED);
331 }
332 
333 static void con_sock_state_closing(struct ceph_connection *con)
334 {
335 	int old_state;
336 
337 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
338 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
339 			old_state != CON_SOCK_STATE_CONNECTED &&
340 			old_state != CON_SOCK_STATE_CLOSING))
341 		printk("%s: unexpected old state %d\n", __func__, old_state);
342 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
343 	     CON_SOCK_STATE_CLOSING);
344 }
345 
346 static void con_sock_state_closed(struct ceph_connection *con)
347 {
348 	int old_state;
349 
350 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
351 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
352 		    old_state != CON_SOCK_STATE_CLOSING &&
353 		    old_state != CON_SOCK_STATE_CONNECTING &&
354 		    old_state != CON_SOCK_STATE_CLOSED))
355 		printk("%s: unexpected old state %d\n", __func__, old_state);
356 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 	     CON_SOCK_STATE_CLOSED);
358 }
359 
360 /*
361  * socket callback functions
362  */
363 
364 /* data available on socket, or listen socket received a connect */
365 static void ceph_sock_data_ready(struct sock *sk)
366 {
367 	struct ceph_connection *con = sk->sk_user_data;
368 	if (atomic_read(&con->msgr->stopping)) {
369 		return;
370 	}
371 
372 	if (sk->sk_state != TCP_CLOSE_WAIT) {
373 		dout("%s on %p state = %lu, queueing work\n", __func__,
374 		     con, con->state);
375 		queue_con(con);
376 	}
377 }
378 
379 /* socket has buffer space for writing */
380 static void ceph_sock_write_space(struct sock *sk)
381 {
382 	struct ceph_connection *con = sk->sk_user_data;
383 
384 	/* only queue to workqueue if there is data we want to write,
385 	 * and there is sufficient space in the socket buffer to accept
386 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
387 	 * doesn't get called again until try_write() fills the socket
388 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
389 	 * and net/core/stream.c:sk_stream_write_space().
390 	 */
391 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
392 		if (sk_stream_is_writeable(sk)) {
393 			dout("%s %p queueing write work\n", __func__, con);
394 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
395 			queue_con(con);
396 		}
397 	} else {
398 		dout("%s %p nothing to write\n", __func__, con);
399 	}
400 }
401 
402 /* socket's state has changed */
403 static void ceph_sock_state_change(struct sock *sk)
404 {
405 	struct ceph_connection *con = sk->sk_user_data;
406 
407 	dout("%s %p state = %lu sk_state = %u\n", __func__,
408 	     con, con->state, sk->sk_state);
409 
410 	switch (sk->sk_state) {
411 	case TCP_CLOSE:
412 		dout("%s TCP_CLOSE\n", __func__);
413 		/* fall through */
414 	case TCP_CLOSE_WAIT:
415 		dout("%s TCP_CLOSE_WAIT\n", __func__);
416 		con_sock_state_closing(con);
417 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
418 		queue_con(con);
419 		break;
420 	case TCP_ESTABLISHED:
421 		dout("%s TCP_ESTABLISHED\n", __func__);
422 		con_sock_state_connected(con);
423 		queue_con(con);
424 		break;
425 	default:	/* Everything else is uninteresting */
426 		break;
427 	}
428 }
429 
430 /*
431  * set up socket callbacks
432  */
433 static void set_sock_callbacks(struct socket *sock,
434 			       struct ceph_connection *con)
435 {
436 	struct sock *sk = sock->sk;
437 	sk->sk_user_data = con;
438 	sk->sk_data_ready = ceph_sock_data_ready;
439 	sk->sk_write_space = ceph_sock_write_space;
440 	sk->sk_state_change = ceph_sock_state_change;
441 }
442 
443 
444 /*
445  * socket helpers
446  */
447 
448 /*
449  * initiate connection to a remote socket.
450  */
451 static int ceph_tcp_connect(struct ceph_connection *con)
452 {
453 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
454 	struct socket *sock;
455 	unsigned int noio_flag;
456 	int ret;
457 
458 	BUG_ON(con->sock);
459 
460 	/* sock_create_kern() allocates with GFP_KERNEL */
461 	noio_flag = memalloc_noio_save();
462 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
463 			       SOCK_STREAM, IPPROTO_TCP, &sock);
464 	memalloc_noio_restore(noio_flag);
465 	if (ret)
466 		return ret;
467 	sock->sk->sk_allocation = GFP_NOFS;
468 
469 #ifdef CONFIG_LOCKDEP
470 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
471 #endif
472 
473 	set_sock_callbacks(sock, con);
474 
475 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
476 
477 	con_sock_state_connecting(con);
478 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
479 				 O_NONBLOCK);
480 	if (ret == -EINPROGRESS) {
481 		dout("connect %s EINPROGRESS sk_state = %u\n",
482 		     ceph_pr_addr(&con->peer_addr),
483 		     sock->sk->sk_state);
484 	} else if (ret < 0) {
485 		pr_err("connect %s error %d\n",
486 		       ceph_pr_addr(&con->peer_addr), ret);
487 		sock_release(sock);
488 		return ret;
489 	}
490 
491 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
492 		int optval = 1;
493 
494 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
495 					(char *)&optval, sizeof(optval));
496 		if (ret)
497 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
498 			       ret);
499 	}
500 
501 	con->sock = sock;
502 	return 0;
503 }
504 
505 /*
506  * If @buf is NULL, discard up to @len bytes.
507  */
508 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
509 {
510 	struct kvec iov = {buf, len};
511 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
512 	int r;
513 
514 	if (!buf)
515 		msg.msg_flags |= MSG_TRUNC;
516 
517 	iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
518 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
519 	if (r == -EAGAIN)
520 		r = 0;
521 	return r;
522 }
523 
524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
525 		     int page_offset, size_t length)
526 {
527 	struct bio_vec bvec = {
528 		.bv_page = page,
529 		.bv_offset = page_offset,
530 		.bv_len = length
531 	};
532 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
533 	int r;
534 
535 	BUG_ON(page_offset + length > PAGE_SIZE);
536 	iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
537 	r = sock_recvmsg(sock, &msg, msg.msg_flags);
538 	if (r == -EAGAIN)
539 		r = 0;
540 	return r;
541 }
542 
543 /*
544  * write something.  @more is true if caller will be sending more data
545  * shortly.
546  */
547 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
548 			    size_t kvlen, size_t len, bool more)
549 {
550 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
551 	int r;
552 
553 	if (more)
554 		msg.msg_flags |= MSG_MORE;
555 	else
556 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
557 
558 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
559 	if (r == -EAGAIN)
560 		r = 0;
561 	return r;
562 }
563 
564 /*
565  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
566  */
567 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
568 			     int offset, size_t size, int more)
569 {
570 	ssize_t (*sendpage)(struct socket *sock, struct page *page,
571 			    int offset, size_t size, int flags);
572 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
573 	int ret;
574 
575 	/*
576 	 * sendpage cannot properly handle pages with page_count == 0,
577 	 * we need to fall back to sendmsg if that's the case.
578 	 *
579 	 * Same goes for slab pages: skb_can_coalesce() allows
580 	 * coalescing neighboring slab objects into a single frag which
581 	 * triggers one of hardened usercopy checks.
582 	 */
583 	if (page_count(page) >= 1 && !PageSlab(page))
584 		sendpage = sock->ops->sendpage;
585 	else
586 		sendpage = sock_no_sendpage;
587 
588 	ret = sendpage(sock, page, offset, size, flags);
589 	if (ret == -EAGAIN)
590 		ret = 0;
591 
592 	return ret;
593 }
594 
595 /*
596  * Shutdown/close the socket for the given connection.
597  */
598 static int con_close_socket(struct ceph_connection *con)
599 {
600 	int rc = 0;
601 
602 	dout("con_close_socket on %p sock %p\n", con, con->sock);
603 	if (con->sock) {
604 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
605 		sock_release(con->sock);
606 		con->sock = NULL;
607 	}
608 
609 	/*
610 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
611 	 * independent of the connection mutex, and we could have
612 	 * received a socket close event before we had the chance to
613 	 * shut the socket down.
614 	 */
615 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
616 
617 	con_sock_state_closed(con);
618 	return rc;
619 }
620 
621 /*
622  * Reset a connection.  Discard all incoming and outgoing messages
623  * and clear *_seq state.
624  */
625 static void ceph_msg_remove(struct ceph_msg *msg)
626 {
627 	list_del_init(&msg->list_head);
628 
629 	ceph_msg_put(msg);
630 }
631 static void ceph_msg_remove_list(struct list_head *head)
632 {
633 	while (!list_empty(head)) {
634 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
635 							list_head);
636 		ceph_msg_remove(msg);
637 	}
638 }
639 
640 static void reset_connection(struct ceph_connection *con)
641 {
642 	/* reset connection, out_queue, msg_ and connect_seq */
643 	/* discard existing out_queue and msg_seq */
644 	dout("reset_connection %p\n", con);
645 	ceph_msg_remove_list(&con->out_queue);
646 	ceph_msg_remove_list(&con->out_sent);
647 
648 	if (con->in_msg) {
649 		BUG_ON(con->in_msg->con != con);
650 		ceph_msg_put(con->in_msg);
651 		con->in_msg = NULL;
652 	}
653 
654 	con->connect_seq = 0;
655 	con->out_seq = 0;
656 	if (con->out_msg) {
657 		BUG_ON(con->out_msg->con != con);
658 		ceph_msg_put(con->out_msg);
659 		con->out_msg = NULL;
660 	}
661 	con->in_seq = 0;
662 	con->in_seq_acked = 0;
663 
664 	con->out_skip = 0;
665 }
666 
667 /*
668  * mark a peer down.  drop any open connections.
669  */
670 void ceph_con_close(struct ceph_connection *con)
671 {
672 	mutex_lock(&con->mutex);
673 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
674 	con->state = CON_STATE_CLOSED;
675 
676 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
677 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 	con_flag_clear(con, CON_FLAG_BACKOFF);
680 
681 	reset_connection(con);
682 	con->peer_global_seq = 0;
683 	cancel_con(con);
684 	con_close_socket(con);
685 	mutex_unlock(&con->mutex);
686 }
687 EXPORT_SYMBOL(ceph_con_close);
688 
689 /*
690  * Reopen a closed connection, with a new peer address.
691  */
692 void ceph_con_open(struct ceph_connection *con,
693 		   __u8 entity_type, __u64 entity_num,
694 		   struct ceph_entity_addr *addr)
695 {
696 	mutex_lock(&con->mutex);
697 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
698 
699 	WARN_ON(con->state != CON_STATE_CLOSED);
700 	con->state = CON_STATE_PREOPEN;
701 
702 	con->peer_name.type = (__u8) entity_type;
703 	con->peer_name.num = cpu_to_le64(entity_num);
704 
705 	memcpy(&con->peer_addr, addr, sizeof(*addr));
706 	con->delay = 0;      /* reset backoff memory */
707 	mutex_unlock(&con->mutex);
708 	queue_con(con);
709 }
710 EXPORT_SYMBOL(ceph_con_open);
711 
712 /*
713  * return true if this connection ever successfully opened
714  */
715 bool ceph_con_opened(struct ceph_connection *con)
716 {
717 	return con->connect_seq > 0;
718 }
719 
720 /*
721  * initialize a new connection.
722  */
723 void ceph_con_init(struct ceph_connection *con, void *private,
724 	const struct ceph_connection_operations *ops,
725 	struct ceph_messenger *msgr)
726 {
727 	dout("con_init %p\n", con);
728 	memset(con, 0, sizeof(*con));
729 	con->private = private;
730 	con->ops = ops;
731 	con->msgr = msgr;
732 
733 	con_sock_state_init(con);
734 
735 	mutex_init(&con->mutex);
736 	INIT_LIST_HEAD(&con->out_queue);
737 	INIT_LIST_HEAD(&con->out_sent);
738 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
739 
740 	con->state = CON_STATE_CLOSED;
741 }
742 EXPORT_SYMBOL(ceph_con_init);
743 
744 
745 /*
746  * We maintain a global counter to order connection attempts.  Get
747  * a unique seq greater than @gt.
748  */
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
750 {
751 	u32 ret;
752 
753 	spin_lock(&msgr->global_seq_lock);
754 	if (msgr->global_seq < gt)
755 		msgr->global_seq = gt;
756 	ret = ++msgr->global_seq;
757 	spin_unlock(&msgr->global_seq_lock);
758 	return ret;
759 }
760 
761 static void con_out_kvec_reset(struct ceph_connection *con)
762 {
763 	BUG_ON(con->out_skip);
764 
765 	con->out_kvec_left = 0;
766 	con->out_kvec_bytes = 0;
767 	con->out_kvec_cur = &con->out_kvec[0];
768 }
769 
770 static void con_out_kvec_add(struct ceph_connection *con,
771 				size_t size, void *data)
772 {
773 	int index = con->out_kvec_left;
774 
775 	BUG_ON(con->out_skip);
776 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
777 
778 	con->out_kvec[index].iov_len = size;
779 	con->out_kvec[index].iov_base = data;
780 	con->out_kvec_left++;
781 	con->out_kvec_bytes += size;
782 }
783 
784 /*
785  * Chop off a kvec from the end.  Return residual number of bytes for
786  * that kvec, i.e. how many bytes would have been written if the kvec
787  * hadn't been nuked.
788  */
789 static int con_out_kvec_skip(struct ceph_connection *con)
790 {
791 	int off = con->out_kvec_cur - con->out_kvec;
792 	int skip = 0;
793 
794 	if (con->out_kvec_bytes > 0) {
795 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
796 		BUG_ON(con->out_kvec_bytes < skip);
797 		BUG_ON(!con->out_kvec_left);
798 		con->out_kvec_bytes -= skip;
799 		con->out_kvec_left--;
800 	}
801 
802 	return skip;
803 }
804 
805 #ifdef CONFIG_BLOCK
806 
807 /*
808  * For a bio data item, a piece is whatever remains of the next
809  * entry in the current bio iovec, or the first entry in the next
810  * bio in the list.
811  */
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
813 					size_t length)
814 {
815 	struct ceph_msg_data *data = cursor->data;
816 	struct ceph_bio_iter *it = &cursor->bio_iter;
817 
818 	cursor->resid = min_t(size_t, length, data->bio_length);
819 	*it = data->bio_pos;
820 	if (cursor->resid < it->iter.bi_size)
821 		it->iter.bi_size = cursor->resid;
822 
823 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
824 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
825 }
826 
827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
828 						size_t *page_offset,
829 						size_t *length)
830 {
831 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
832 					   cursor->bio_iter.iter);
833 
834 	*page_offset = bv.bv_offset;
835 	*length = bv.bv_len;
836 	return bv.bv_page;
837 }
838 
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840 					size_t bytes)
841 {
842 	struct ceph_bio_iter *it = &cursor->bio_iter;
843 	struct page *page = bio_iter_page(it->bio, it->iter);
844 
845 	BUG_ON(bytes > cursor->resid);
846 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
847 	cursor->resid -= bytes;
848 	bio_advance_iter(it->bio, &it->iter, bytes);
849 
850 	if (!cursor->resid) {
851 		BUG_ON(!cursor->last_piece);
852 		return false;   /* no more data */
853 	}
854 
855 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
856 		       page == bio_iter_page(it->bio, it->iter)))
857 		return false;	/* more bytes to process in this segment */
858 
859 	if (!it->iter.bi_size) {
860 		it->bio = it->bio->bi_next;
861 		it->iter = it->bio->bi_iter;
862 		if (cursor->resid < it->iter.bi_size)
863 			it->iter.bi_size = cursor->resid;
864 	}
865 
866 	BUG_ON(cursor->last_piece);
867 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
868 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
869 	return true;
870 }
871 #endif /* CONFIG_BLOCK */
872 
873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
874 					size_t length)
875 {
876 	struct ceph_msg_data *data = cursor->data;
877 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
878 
879 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
880 	cursor->bvec_iter = data->bvec_pos.iter;
881 	cursor->bvec_iter.bi_size = cursor->resid;
882 
883 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
884 	cursor->last_piece =
885 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
886 }
887 
888 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
889 						size_t *page_offset,
890 						size_t *length)
891 {
892 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
893 					   cursor->bvec_iter);
894 
895 	*page_offset = bv.bv_offset;
896 	*length = bv.bv_len;
897 	return bv.bv_page;
898 }
899 
900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
901 					size_t bytes)
902 {
903 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
904 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
905 
906 	BUG_ON(bytes > cursor->resid);
907 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
908 	cursor->resid -= bytes;
909 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
910 
911 	if (!cursor->resid) {
912 		BUG_ON(!cursor->last_piece);
913 		return false;   /* no more data */
914 	}
915 
916 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
917 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
918 		return false;	/* more bytes to process in this segment */
919 
920 	BUG_ON(cursor->last_piece);
921 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
922 	cursor->last_piece =
923 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
924 	return true;
925 }
926 
927 /*
928  * For a page array, a piece comes from the first page in the array
929  * that has not already been fully consumed.
930  */
931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
932 					size_t length)
933 {
934 	struct ceph_msg_data *data = cursor->data;
935 	int page_count;
936 
937 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
938 
939 	BUG_ON(!data->pages);
940 	BUG_ON(!data->length);
941 
942 	cursor->resid = min(length, data->length);
943 	page_count = calc_pages_for(data->alignment, (u64)data->length);
944 	cursor->page_offset = data->alignment & ~PAGE_MASK;
945 	cursor->page_index = 0;
946 	BUG_ON(page_count > (int)USHRT_MAX);
947 	cursor->page_count = (unsigned short)page_count;
948 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
949 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
950 }
951 
952 static struct page *
953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
954 					size_t *page_offset, size_t *length)
955 {
956 	struct ceph_msg_data *data = cursor->data;
957 
958 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
959 
960 	BUG_ON(cursor->page_index >= cursor->page_count);
961 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
962 
963 	*page_offset = cursor->page_offset;
964 	if (cursor->last_piece)
965 		*length = cursor->resid;
966 	else
967 		*length = PAGE_SIZE - *page_offset;
968 
969 	return data->pages[cursor->page_index];
970 }
971 
972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
973 						size_t bytes)
974 {
975 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
976 
977 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
978 
979 	/* Advance the cursor page offset */
980 
981 	cursor->resid -= bytes;
982 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
983 	if (!bytes || cursor->page_offset)
984 		return false;	/* more bytes to process in the current page */
985 
986 	if (!cursor->resid)
987 		return false;   /* no more data */
988 
989 	/* Move on to the next page; offset is already at 0 */
990 
991 	BUG_ON(cursor->page_index >= cursor->page_count);
992 	cursor->page_index++;
993 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
994 
995 	return true;
996 }
997 
998 /*
999  * For a pagelist, a piece is whatever remains to be consumed in the
1000  * first page in the list, or the front of the next page.
1001  */
1002 static void
1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1004 					size_t length)
1005 {
1006 	struct ceph_msg_data *data = cursor->data;
1007 	struct ceph_pagelist *pagelist;
1008 	struct page *page;
1009 
1010 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1011 
1012 	pagelist = data->pagelist;
1013 	BUG_ON(!pagelist);
1014 
1015 	if (!length)
1016 		return;		/* pagelist can be assigned but empty */
1017 
1018 	BUG_ON(list_empty(&pagelist->head));
1019 	page = list_first_entry(&pagelist->head, struct page, lru);
1020 
1021 	cursor->resid = min(length, pagelist->length);
1022 	cursor->page = page;
1023 	cursor->offset = 0;
1024 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1025 }
1026 
1027 static struct page *
1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1029 				size_t *page_offset, size_t *length)
1030 {
1031 	struct ceph_msg_data *data = cursor->data;
1032 	struct ceph_pagelist *pagelist;
1033 
1034 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1035 
1036 	pagelist = data->pagelist;
1037 	BUG_ON(!pagelist);
1038 
1039 	BUG_ON(!cursor->page);
1040 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1041 
1042 	/* offset of first page in pagelist is always 0 */
1043 	*page_offset = cursor->offset & ~PAGE_MASK;
1044 	if (cursor->last_piece)
1045 		*length = cursor->resid;
1046 	else
1047 		*length = PAGE_SIZE - *page_offset;
1048 
1049 	return cursor->page;
1050 }
1051 
1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1053 						size_t bytes)
1054 {
1055 	struct ceph_msg_data *data = cursor->data;
1056 	struct ceph_pagelist *pagelist;
1057 
1058 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1059 
1060 	pagelist = data->pagelist;
1061 	BUG_ON(!pagelist);
1062 
1063 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1064 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1065 
1066 	/* Advance the cursor offset */
1067 
1068 	cursor->resid -= bytes;
1069 	cursor->offset += bytes;
1070 	/* offset of first page in pagelist is always 0 */
1071 	if (!bytes || cursor->offset & ~PAGE_MASK)
1072 		return false;	/* more bytes to process in the current page */
1073 
1074 	if (!cursor->resid)
1075 		return false;   /* no more data */
1076 
1077 	/* Move on to the next page */
1078 
1079 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1080 	cursor->page = list_next_entry(cursor->page, lru);
1081 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1082 
1083 	return true;
1084 }
1085 
1086 /*
1087  * Message data is handled (sent or received) in pieces, where each
1088  * piece resides on a single page.  The network layer might not
1089  * consume an entire piece at once.  A data item's cursor keeps
1090  * track of which piece is next to process and how much remains to
1091  * be processed in that piece.  It also tracks whether the current
1092  * piece is the last one in the data item.
1093  */
1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1095 {
1096 	size_t length = cursor->total_resid;
1097 
1098 	switch (cursor->data->type) {
1099 	case CEPH_MSG_DATA_PAGELIST:
1100 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1101 		break;
1102 	case CEPH_MSG_DATA_PAGES:
1103 		ceph_msg_data_pages_cursor_init(cursor, length);
1104 		break;
1105 #ifdef CONFIG_BLOCK
1106 	case CEPH_MSG_DATA_BIO:
1107 		ceph_msg_data_bio_cursor_init(cursor, length);
1108 		break;
1109 #endif /* CONFIG_BLOCK */
1110 	case CEPH_MSG_DATA_BVECS:
1111 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1112 		break;
1113 	case CEPH_MSG_DATA_NONE:
1114 	default:
1115 		/* BUG(); */
1116 		break;
1117 	}
1118 	cursor->need_crc = true;
1119 }
1120 
1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1122 {
1123 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1124 
1125 	BUG_ON(!length);
1126 	BUG_ON(length > msg->data_length);
1127 	BUG_ON(!msg->num_data_items);
1128 
1129 	cursor->total_resid = length;
1130 	cursor->data = msg->data;
1131 
1132 	__ceph_msg_data_cursor_init(cursor);
1133 }
1134 
1135 /*
1136  * Return the page containing the next piece to process for a given
1137  * data item, and supply the page offset and length of that piece.
1138  * Indicate whether this is the last piece in this data item.
1139  */
1140 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1141 					size_t *page_offset, size_t *length,
1142 					bool *last_piece)
1143 {
1144 	struct page *page;
1145 
1146 	switch (cursor->data->type) {
1147 	case CEPH_MSG_DATA_PAGELIST:
1148 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1149 		break;
1150 	case CEPH_MSG_DATA_PAGES:
1151 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1152 		break;
1153 #ifdef CONFIG_BLOCK
1154 	case CEPH_MSG_DATA_BIO:
1155 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1156 		break;
1157 #endif /* CONFIG_BLOCK */
1158 	case CEPH_MSG_DATA_BVECS:
1159 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1160 		break;
1161 	case CEPH_MSG_DATA_NONE:
1162 	default:
1163 		page = NULL;
1164 		break;
1165 	}
1166 
1167 	BUG_ON(!page);
1168 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1169 	BUG_ON(!*length);
1170 	BUG_ON(*length > cursor->resid);
1171 	if (last_piece)
1172 		*last_piece = cursor->last_piece;
1173 
1174 	return page;
1175 }
1176 
1177 /*
1178  * Returns true if the result moves the cursor on to the next piece
1179  * of the data item.
1180  */
1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1182 				  size_t bytes)
1183 {
1184 	bool new_piece;
1185 
1186 	BUG_ON(bytes > cursor->resid);
1187 	switch (cursor->data->type) {
1188 	case CEPH_MSG_DATA_PAGELIST:
1189 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1190 		break;
1191 	case CEPH_MSG_DATA_PAGES:
1192 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1193 		break;
1194 #ifdef CONFIG_BLOCK
1195 	case CEPH_MSG_DATA_BIO:
1196 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1197 		break;
1198 #endif /* CONFIG_BLOCK */
1199 	case CEPH_MSG_DATA_BVECS:
1200 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1201 		break;
1202 	case CEPH_MSG_DATA_NONE:
1203 	default:
1204 		BUG();
1205 		break;
1206 	}
1207 	cursor->total_resid -= bytes;
1208 
1209 	if (!cursor->resid && cursor->total_resid) {
1210 		WARN_ON(!cursor->last_piece);
1211 		cursor->data++;
1212 		__ceph_msg_data_cursor_init(cursor);
1213 		new_piece = true;
1214 	}
1215 	cursor->need_crc = new_piece;
1216 }
1217 
1218 static size_t sizeof_footer(struct ceph_connection *con)
1219 {
1220 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1221 	    sizeof(struct ceph_msg_footer) :
1222 	    sizeof(struct ceph_msg_footer_old);
1223 }
1224 
1225 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1226 {
1227 	/* Initialize data cursor */
1228 
1229 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1230 }
1231 
1232 /*
1233  * Prepare footer for currently outgoing message, and finish things
1234  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1235  */
1236 static void prepare_write_message_footer(struct ceph_connection *con)
1237 {
1238 	struct ceph_msg *m = con->out_msg;
1239 
1240 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1241 
1242 	dout("prepare_write_message_footer %p\n", con);
1243 	con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1244 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1245 		if (con->ops->sign_message)
1246 			con->ops->sign_message(m);
1247 		else
1248 			m->footer.sig = 0;
1249 	} else {
1250 		m->old_footer.flags = m->footer.flags;
1251 	}
1252 	con->out_more = m->more_to_follow;
1253 	con->out_msg_done = true;
1254 }
1255 
1256 /*
1257  * Prepare headers for the next outgoing message.
1258  */
1259 static void prepare_write_message(struct ceph_connection *con)
1260 {
1261 	struct ceph_msg *m;
1262 	u32 crc;
1263 
1264 	con_out_kvec_reset(con);
1265 	con->out_msg_done = false;
1266 
1267 	/* Sneak an ack in there first?  If we can get it into the same
1268 	 * TCP packet that's a good thing. */
1269 	if (con->in_seq > con->in_seq_acked) {
1270 		con->in_seq_acked = con->in_seq;
1271 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1273 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1274 			&con->out_temp_ack);
1275 	}
1276 
1277 	BUG_ON(list_empty(&con->out_queue));
1278 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1279 	con->out_msg = m;
1280 	BUG_ON(m->con != con);
1281 
1282 	/* put message on sent list */
1283 	ceph_msg_get(m);
1284 	list_move_tail(&m->list_head, &con->out_sent);
1285 
1286 	/*
1287 	 * only assign outgoing seq # if we haven't sent this message
1288 	 * yet.  if it is requeued, resend with it's original seq.
1289 	 */
1290 	if (m->needs_out_seq) {
1291 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1292 		m->needs_out_seq = false;
1293 
1294 		if (con->ops->reencode_message)
1295 			con->ops->reencode_message(m);
1296 	}
1297 
1298 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1299 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1300 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1301 	     m->data_length);
1302 	WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1303 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1304 
1305 	/* tag + hdr + front + middle */
1306 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1307 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1308 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1309 
1310 	if (m->middle)
1311 		con_out_kvec_add(con, m->middle->vec.iov_len,
1312 			m->middle->vec.iov_base);
1313 
1314 	/* fill in hdr crc and finalize hdr */
1315 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1316 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1317 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1318 
1319 	/* fill in front and middle crc, footer */
1320 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1321 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1322 	if (m->middle) {
1323 		crc = crc32c(0, m->middle->vec.iov_base,
1324 				m->middle->vec.iov_len);
1325 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1326 	} else
1327 		con->out_msg->footer.middle_crc = 0;
1328 	dout("%s front_crc %u middle_crc %u\n", __func__,
1329 	     le32_to_cpu(con->out_msg->footer.front_crc),
1330 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1331 	con->out_msg->footer.flags = 0;
1332 
1333 	/* is there a data payload? */
1334 	con->out_msg->footer.data_crc = 0;
1335 	if (m->data_length) {
1336 		prepare_message_data(con->out_msg, m->data_length);
1337 		con->out_more = 1;  /* data + footer will follow */
1338 	} else {
1339 		/* no, queue up footer too and be done */
1340 		prepare_write_message_footer(con);
1341 	}
1342 
1343 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1344 }
1345 
1346 /*
1347  * Prepare an ack.
1348  */
1349 static void prepare_write_ack(struct ceph_connection *con)
1350 {
1351 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1352 	     con->in_seq_acked, con->in_seq);
1353 	con->in_seq_acked = con->in_seq;
1354 
1355 	con_out_kvec_reset(con);
1356 
1357 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1358 
1359 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1360 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1361 				&con->out_temp_ack);
1362 
1363 	con->out_more = 1;  /* more will follow.. eventually.. */
1364 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1365 }
1366 
1367 /*
1368  * Prepare to share the seq during handshake
1369  */
1370 static void prepare_write_seq(struct ceph_connection *con)
1371 {
1372 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1373 	     con->in_seq_acked, con->in_seq);
1374 	con->in_seq_acked = con->in_seq;
1375 
1376 	con_out_kvec_reset(con);
1377 
1378 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1379 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1380 			 &con->out_temp_ack);
1381 
1382 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1383 }
1384 
1385 /*
1386  * Prepare to write keepalive byte.
1387  */
1388 static void prepare_write_keepalive(struct ceph_connection *con)
1389 {
1390 	dout("prepare_write_keepalive %p\n", con);
1391 	con_out_kvec_reset(con);
1392 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1393 		struct timespec64 now;
1394 
1395 		ktime_get_real_ts64(&now);
1396 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1397 		ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1398 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1399 				 &con->out_temp_keepalive2);
1400 	} else {
1401 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1402 	}
1403 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1404 }
1405 
1406 /*
1407  * Connection negotiation.
1408  */
1409 
1410 static int get_connect_authorizer(struct ceph_connection *con)
1411 {
1412 	struct ceph_auth_handshake *auth;
1413 	int auth_proto;
1414 
1415 	if (!con->ops->get_authorizer) {
1416 		con->auth = NULL;
1417 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1418 		con->out_connect.authorizer_len = 0;
1419 		return 0;
1420 	}
1421 
1422 	auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1423 	if (IS_ERR(auth))
1424 		return PTR_ERR(auth);
1425 
1426 	con->auth = auth;
1427 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1428 	con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1429 	return 0;
1430 }
1431 
1432 /*
1433  * We connected to a peer and are saying hello.
1434  */
1435 static void prepare_write_banner(struct ceph_connection *con)
1436 {
1437 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1438 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1439 					&con->msgr->my_enc_addr);
1440 
1441 	con->out_more = 0;
1442 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1443 }
1444 
1445 static void __prepare_write_connect(struct ceph_connection *con)
1446 {
1447 	con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1448 	if (con->auth)
1449 		con_out_kvec_add(con, con->auth->authorizer_buf_len,
1450 				 con->auth->authorizer_buf);
1451 
1452 	con->out_more = 0;
1453 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1454 }
1455 
1456 static int prepare_write_connect(struct ceph_connection *con)
1457 {
1458 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1459 	int proto;
1460 	int ret;
1461 
1462 	switch (con->peer_name.type) {
1463 	case CEPH_ENTITY_TYPE_MON:
1464 		proto = CEPH_MONC_PROTOCOL;
1465 		break;
1466 	case CEPH_ENTITY_TYPE_OSD:
1467 		proto = CEPH_OSDC_PROTOCOL;
1468 		break;
1469 	case CEPH_ENTITY_TYPE_MDS:
1470 		proto = CEPH_MDSC_PROTOCOL;
1471 		break;
1472 	default:
1473 		BUG();
1474 	}
1475 
1476 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1477 	     con->connect_seq, global_seq, proto);
1478 
1479 	con->out_connect.features =
1480 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1481 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1482 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1483 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1484 	con->out_connect.protocol_version = cpu_to_le32(proto);
1485 	con->out_connect.flags = 0;
1486 
1487 	ret = get_connect_authorizer(con);
1488 	if (ret)
1489 		return ret;
1490 
1491 	__prepare_write_connect(con);
1492 	return 0;
1493 }
1494 
1495 /*
1496  * write as much of pending kvecs to the socket as we can.
1497  *  1 -> done
1498  *  0 -> socket full, but more to do
1499  * <0 -> error
1500  */
1501 static int write_partial_kvec(struct ceph_connection *con)
1502 {
1503 	int ret;
1504 
1505 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506 	while (con->out_kvec_bytes > 0) {
1507 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508 				       con->out_kvec_left, con->out_kvec_bytes,
1509 				       con->out_more);
1510 		if (ret <= 0)
1511 			goto out;
1512 		con->out_kvec_bytes -= ret;
1513 		if (con->out_kvec_bytes == 0)
1514 			break;            /* done */
1515 
1516 		/* account for full iov entries consumed */
1517 		while (ret >= con->out_kvec_cur->iov_len) {
1518 			BUG_ON(!con->out_kvec_left);
1519 			ret -= con->out_kvec_cur->iov_len;
1520 			con->out_kvec_cur++;
1521 			con->out_kvec_left--;
1522 		}
1523 		/* and for a partially-consumed entry */
1524 		if (ret) {
1525 			con->out_kvec_cur->iov_len -= ret;
1526 			con->out_kvec_cur->iov_base += ret;
1527 		}
1528 	}
1529 	con->out_kvec_left = 0;
1530 	ret = 1;
1531 out:
1532 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1534 	return ret;  /* done! */
1535 }
1536 
1537 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538 				unsigned int page_offset,
1539 				unsigned int length)
1540 {
1541 	char *kaddr;
1542 
1543 	kaddr = kmap(page);
1544 	BUG_ON(kaddr == NULL);
1545 	crc = crc32c(crc, kaddr + page_offset, length);
1546 	kunmap(page);
1547 
1548 	return crc;
1549 }
1550 /*
1551  * Write as much message data payload as we can.  If we finish, queue
1552  * up the footer.
1553  *  1 -> done, footer is now queued in out_kvec[].
1554  *  0 -> socket full, but more to do
1555  * <0 -> error
1556  */
1557 static int write_partial_message_data(struct ceph_connection *con)
1558 {
1559 	struct ceph_msg *msg = con->out_msg;
1560 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1563 	u32 crc;
1564 
1565 	dout("%s %p msg %p\n", __func__, con, msg);
1566 
1567 	if (!msg->num_data_items)
1568 		return -EINVAL;
1569 
1570 	/*
1571 	 * Iterate through each page that contains data to be
1572 	 * written, and send as much as possible for each.
1573 	 *
1574 	 * If we are calculating the data crc (the default), we will
1575 	 * need to map the page.  If we have no pages, they have
1576 	 * been revoked, so use the zero page.
1577 	 */
1578 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1579 	while (cursor->total_resid) {
1580 		struct page *page;
1581 		size_t page_offset;
1582 		size_t length;
1583 		int ret;
1584 
1585 		if (!cursor->resid) {
1586 			ceph_msg_data_advance(cursor, 0);
1587 			continue;
1588 		}
1589 
1590 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1591 		if (length == cursor->total_resid)
1592 			more = MSG_MORE;
1593 		ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1594 					more);
1595 		if (ret <= 0) {
1596 			if (do_datacrc)
1597 				msg->footer.data_crc = cpu_to_le32(crc);
1598 
1599 			return ret;
1600 		}
1601 		if (do_datacrc && cursor->need_crc)
1602 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1603 		ceph_msg_data_advance(cursor, (size_t)ret);
1604 	}
1605 
1606 	dout("%s %p msg %p done\n", __func__, con, msg);
1607 
1608 	/* prepare and queue up footer, too */
1609 	if (do_datacrc)
1610 		msg->footer.data_crc = cpu_to_le32(crc);
1611 	else
1612 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1613 	con_out_kvec_reset(con);
1614 	prepare_write_message_footer(con);
1615 
1616 	return 1;	/* must return > 0 to indicate success */
1617 }
1618 
1619 /*
1620  * write some zeros
1621  */
1622 static int write_partial_skip(struct ceph_connection *con)
1623 {
1624 	int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1625 	int ret;
1626 
1627 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1628 	while (con->out_skip > 0) {
1629 		size_t size = min(con->out_skip, (int) PAGE_SIZE);
1630 
1631 		if (size == con->out_skip)
1632 			more = MSG_MORE;
1633 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1634 		if (ret <= 0)
1635 			goto out;
1636 		con->out_skip -= ret;
1637 	}
1638 	ret = 1;
1639 out:
1640 	return ret;
1641 }
1642 
1643 /*
1644  * Prepare to read connection handshake, or an ack.
1645  */
1646 static void prepare_read_banner(struct ceph_connection *con)
1647 {
1648 	dout("prepare_read_banner %p\n", con);
1649 	con->in_base_pos = 0;
1650 }
1651 
1652 static void prepare_read_connect(struct ceph_connection *con)
1653 {
1654 	dout("prepare_read_connect %p\n", con);
1655 	con->in_base_pos = 0;
1656 }
1657 
1658 static void prepare_read_ack(struct ceph_connection *con)
1659 {
1660 	dout("prepare_read_ack %p\n", con);
1661 	con->in_base_pos = 0;
1662 }
1663 
1664 static void prepare_read_seq(struct ceph_connection *con)
1665 {
1666 	dout("prepare_read_seq %p\n", con);
1667 	con->in_base_pos = 0;
1668 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1669 }
1670 
1671 static void prepare_read_tag(struct ceph_connection *con)
1672 {
1673 	dout("prepare_read_tag %p\n", con);
1674 	con->in_base_pos = 0;
1675 	con->in_tag = CEPH_MSGR_TAG_READY;
1676 }
1677 
1678 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1679 {
1680 	dout("prepare_read_keepalive_ack %p\n", con);
1681 	con->in_base_pos = 0;
1682 }
1683 
1684 /*
1685  * Prepare to read a message.
1686  */
1687 static int prepare_read_message(struct ceph_connection *con)
1688 {
1689 	dout("prepare_read_message %p\n", con);
1690 	BUG_ON(con->in_msg != NULL);
1691 	con->in_base_pos = 0;
1692 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1693 	return 0;
1694 }
1695 
1696 
1697 static int read_partial(struct ceph_connection *con,
1698 			int end, int size, void *object)
1699 {
1700 	while (con->in_base_pos < end) {
1701 		int left = end - con->in_base_pos;
1702 		int have = size - left;
1703 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1704 		if (ret <= 0)
1705 			return ret;
1706 		con->in_base_pos += ret;
1707 	}
1708 	return 1;
1709 }
1710 
1711 
1712 /*
1713  * Read all or part of the connect-side handshake on a new connection
1714  */
1715 static int read_partial_banner(struct ceph_connection *con)
1716 {
1717 	int size;
1718 	int end;
1719 	int ret;
1720 
1721 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1722 
1723 	/* peer's banner */
1724 	size = strlen(CEPH_BANNER);
1725 	end = size;
1726 	ret = read_partial(con, end, size, con->in_banner);
1727 	if (ret <= 0)
1728 		goto out;
1729 
1730 	size = sizeof (con->actual_peer_addr);
1731 	end += size;
1732 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1733 	if (ret <= 0)
1734 		goto out;
1735 
1736 	size = sizeof (con->peer_addr_for_me);
1737 	end += size;
1738 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1739 	if (ret <= 0)
1740 		goto out;
1741 
1742 out:
1743 	return ret;
1744 }
1745 
1746 static int read_partial_connect(struct ceph_connection *con)
1747 {
1748 	int size;
1749 	int end;
1750 	int ret;
1751 
1752 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1753 
1754 	size = sizeof (con->in_reply);
1755 	end = size;
1756 	ret = read_partial(con, end, size, &con->in_reply);
1757 	if (ret <= 0)
1758 		goto out;
1759 
1760 	if (con->auth) {
1761 		size = le32_to_cpu(con->in_reply.authorizer_len);
1762 		if (size > con->auth->authorizer_reply_buf_len) {
1763 			pr_err("authorizer reply too big: %d > %zu\n", size,
1764 			       con->auth->authorizer_reply_buf_len);
1765 			ret = -EINVAL;
1766 			goto out;
1767 		}
1768 
1769 		end += size;
1770 		ret = read_partial(con, end, size,
1771 				   con->auth->authorizer_reply_buf);
1772 		if (ret <= 0)
1773 			goto out;
1774 	}
1775 
1776 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1777 	     con, (int)con->in_reply.tag,
1778 	     le32_to_cpu(con->in_reply.connect_seq),
1779 	     le32_to_cpu(con->in_reply.global_seq));
1780 out:
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Verify the hello banner looks okay.
1786  */
1787 static int verify_hello(struct ceph_connection *con)
1788 {
1789 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1790 		pr_err("connect to %s got bad banner\n",
1791 		       ceph_pr_addr(&con->peer_addr));
1792 		con->error_msg = "protocol error, bad banner";
1793 		return -1;
1794 	}
1795 	return 0;
1796 }
1797 
1798 static bool addr_is_blank(struct ceph_entity_addr *addr)
1799 {
1800 	struct sockaddr_storage ss = addr->in_addr; /* align */
1801 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1802 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1803 
1804 	switch (ss.ss_family) {
1805 	case AF_INET:
1806 		return addr4->s_addr == htonl(INADDR_ANY);
1807 	case AF_INET6:
1808 		return ipv6_addr_any(addr6);
1809 	default:
1810 		return true;
1811 	}
1812 }
1813 
1814 static int addr_port(struct ceph_entity_addr *addr)
1815 {
1816 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1817 	case AF_INET:
1818 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1819 	case AF_INET6:
1820 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1821 	}
1822 	return 0;
1823 }
1824 
1825 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1826 {
1827 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1828 	case AF_INET:
1829 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1830 		break;
1831 	case AF_INET6:
1832 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1833 		break;
1834 	}
1835 }
1836 
1837 /*
1838  * Unlike other *_pton function semantics, zero indicates success.
1839  */
1840 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1841 		char delim, const char **ipend)
1842 {
1843 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1844 
1845 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1846 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1847 		return 0;
1848 	}
1849 
1850 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1851 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1852 		return 0;
1853 	}
1854 
1855 	return -EINVAL;
1856 }
1857 
1858 /*
1859  * Extract hostname string and resolve using kernel DNS facility.
1860  */
1861 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1862 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1863 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1864 {
1865 	const char *end, *delim_p;
1866 	char *colon_p, *ip_addr = NULL;
1867 	int ip_len, ret;
1868 
1869 	/*
1870 	 * The end of the hostname occurs immediately preceding the delimiter or
1871 	 * the port marker (':') where the delimiter takes precedence.
1872 	 */
1873 	delim_p = memchr(name, delim, namelen);
1874 	colon_p = memchr(name, ':', namelen);
1875 
1876 	if (delim_p && colon_p)
1877 		end = delim_p < colon_p ? delim_p : colon_p;
1878 	else if (!delim_p && colon_p)
1879 		end = colon_p;
1880 	else {
1881 		end = delim_p;
1882 		if (!end) /* case: hostname:/ */
1883 			end = name + namelen;
1884 	}
1885 
1886 	if (end <= name)
1887 		return -EINVAL;
1888 
1889 	/* do dns_resolve upcall */
1890 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL, false);
1891 	if (ip_len > 0)
1892 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1893 	else
1894 		ret = -ESRCH;
1895 
1896 	kfree(ip_addr);
1897 
1898 	*ipend = end;
1899 
1900 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1901 			ret, ret ? "failed" : ceph_pr_addr(addr));
1902 
1903 	return ret;
1904 }
1905 #else
1906 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1907 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1908 {
1909 	return -EINVAL;
1910 }
1911 #endif
1912 
1913 /*
1914  * Parse a server name (IP or hostname). If a valid IP address is not found
1915  * then try to extract a hostname to resolve using userspace DNS upcall.
1916  */
1917 static int ceph_parse_server_name(const char *name, size_t namelen,
1918 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1919 {
1920 	int ret;
1921 
1922 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1923 	if (ret)
1924 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1925 
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Parse an ip[:port] list into an addr array.  Use the default
1931  * monitor port if a port isn't specified.
1932  */
1933 int ceph_parse_ips(const char *c, const char *end,
1934 		   struct ceph_entity_addr *addr,
1935 		   int max_count, int *count)
1936 {
1937 	int i, ret = -EINVAL;
1938 	const char *p = c;
1939 
1940 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1941 	for (i = 0; i < max_count; i++) {
1942 		const char *ipend;
1943 		int port;
1944 		char delim = ',';
1945 
1946 		if (*p == '[') {
1947 			delim = ']';
1948 			p++;
1949 		}
1950 
1951 		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1952 		if (ret)
1953 			goto bad;
1954 		ret = -EINVAL;
1955 
1956 		p = ipend;
1957 
1958 		if (delim == ']') {
1959 			if (*p != ']') {
1960 				dout("missing matching ']'\n");
1961 				goto bad;
1962 			}
1963 			p++;
1964 		}
1965 
1966 		/* port? */
1967 		if (p < end && *p == ':') {
1968 			port = 0;
1969 			p++;
1970 			while (p < end && *p >= '0' && *p <= '9') {
1971 				port = (port * 10) + (*p - '0');
1972 				p++;
1973 			}
1974 			if (port == 0)
1975 				port = CEPH_MON_PORT;
1976 			else if (port > 65535)
1977 				goto bad;
1978 		} else {
1979 			port = CEPH_MON_PORT;
1980 		}
1981 
1982 		addr_set_port(&addr[i], port);
1983 
1984 		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1985 
1986 		if (p == end)
1987 			break;
1988 		if (*p != ',')
1989 			goto bad;
1990 		p++;
1991 	}
1992 
1993 	if (p != end)
1994 		goto bad;
1995 
1996 	if (count)
1997 		*count = i + 1;
1998 	return 0;
1999 
2000 bad:
2001 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2002 	return ret;
2003 }
2004 EXPORT_SYMBOL(ceph_parse_ips);
2005 
2006 static int process_banner(struct ceph_connection *con)
2007 {
2008 	dout("process_banner on %p\n", con);
2009 
2010 	if (verify_hello(con) < 0)
2011 		return -1;
2012 
2013 	ceph_decode_addr(&con->actual_peer_addr);
2014 	ceph_decode_addr(&con->peer_addr_for_me);
2015 
2016 	/*
2017 	 * Make sure the other end is who we wanted.  note that the other
2018 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2019 	 * them the benefit of the doubt.
2020 	 */
2021 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2022 		   sizeof(con->peer_addr)) != 0 &&
2023 	    !(addr_is_blank(&con->actual_peer_addr) &&
2024 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2025 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2026 			ceph_pr_addr(&con->peer_addr),
2027 			(int)le32_to_cpu(con->peer_addr.nonce),
2028 			ceph_pr_addr(&con->actual_peer_addr),
2029 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2030 		con->error_msg = "wrong peer at address";
2031 		return -1;
2032 	}
2033 
2034 	/*
2035 	 * did we learn our address?
2036 	 */
2037 	if (addr_is_blank(&con->msgr->inst.addr)) {
2038 		int port = addr_port(&con->msgr->inst.addr);
2039 
2040 		memcpy(&con->msgr->inst.addr.in_addr,
2041 		       &con->peer_addr_for_me.in_addr,
2042 		       sizeof(con->peer_addr_for_me.in_addr));
2043 		addr_set_port(&con->msgr->inst.addr, port);
2044 		encode_my_addr(con->msgr);
2045 		dout("process_banner learned my addr is %s\n",
2046 		     ceph_pr_addr(&con->msgr->inst.addr));
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int process_connect(struct ceph_connection *con)
2053 {
2054 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2055 	u64 req_feat = from_msgr(con->msgr)->required_features;
2056 	u64 server_feat = le64_to_cpu(con->in_reply.features);
2057 	int ret;
2058 
2059 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2060 
2061 	if (con->auth) {
2062 		int len = le32_to_cpu(con->in_reply.authorizer_len);
2063 
2064 		/*
2065 		 * Any connection that defines ->get_authorizer()
2066 		 * should also define ->add_authorizer_challenge() and
2067 		 * ->verify_authorizer_reply().
2068 		 *
2069 		 * See get_connect_authorizer().
2070 		 */
2071 		if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2072 			ret = con->ops->add_authorizer_challenge(
2073 				    con, con->auth->authorizer_reply_buf, len);
2074 			if (ret < 0)
2075 				return ret;
2076 
2077 			con_out_kvec_reset(con);
2078 			__prepare_write_connect(con);
2079 			prepare_read_connect(con);
2080 			return 0;
2081 		}
2082 
2083 		if (len) {
2084 			ret = con->ops->verify_authorizer_reply(con);
2085 			if (ret < 0) {
2086 				con->error_msg = "bad authorize reply";
2087 				return ret;
2088 			}
2089 		}
2090 	}
2091 
2092 	switch (con->in_reply.tag) {
2093 	case CEPH_MSGR_TAG_FEATURES:
2094 		pr_err("%s%lld %s feature set mismatch,"
2095 		       " my %llx < server's %llx, missing %llx\n",
2096 		       ENTITY_NAME(con->peer_name),
2097 		       ceph_pr_addr(&con->peer_addr),
2098 		       sup_feat, server_feat, server_feat & ~sup_feat);
2099 		con->error_msg = "missing required protocol features";
2100 		reset_connection(con);
2101 		return -1;
2102 
2103 	case CEPH_MSGR_TAG_BADPROTOVER:
2104 		pr_err("%s%lld %s protocol version mismatch,"
2105 		       " my %d != server's %d\n",
2106 		       ENTITY_NAME(con->peer_name),
2107 		       ceph_pr_addr(&con->peer_addr),
2108 		       le32_to_cpu(con->out_connect.protocol_version),
2109 		       le32_to_cpu(con->in_reply.protocol_version));
2110 		con->error_msg = "protocol version mismatch";
2111 		reset_connection(con);
2112 		return -1;
2113 
2114 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2115 		con->auth_retry++;
2116 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117 		     con->auth_retry);
2118 		if (con->auth_retry == 2) {
2119 			con->error_msg = "connect authorization failure";
2120 			return -1;
2121 		}
2122 		con_out_kvec_reset(con);
2123 		ret = prepare_write_connect(con);
2124 		if (ret < 0)
2125 			return ret;
2126 		prepare_read_connect(con);
2127 		break;
2128 
2129 	case CEPH_MSGR_TAG_RESETSESSION:
2130 		/*
2131 		 * If we connected with a large connect_seq but the peer
2132 		 * has no record of a session with us (no connection, or
2133 		 * connect_seq == 0), they will send RESETSESION to indicate
2134 		 * that they must have reset their session, and may have
2135 		 * dropped messages.
2136 		 */
2137 		dout("process_connect got RESET peer seq %u\n",
2138 		     le32_to_cpu(con->in_reply.connect_seq));
2139 		pr_err("%s%lld %s connection reset\n",
2140 		       ENTITY_NAME(con->peer_name),
2141 		       ceph_pr_addr(&con->peer_addr));
2142 		reset_connection(con);
2143 		con_out_kvec_reset(con);
2144 		ret = prepare_write_connect(con);
2145 		if (ret < 0)
2146 			return ret;
2147 		prepare_read_connect(con);
2148 
2149 		/* Tell ceph about it. */
2150 		mutex_unlock(&con->mutex);
2151 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152 		if (con->ops->peer_reset)
2153 			con->ops->peer_reset(con);
2154 		mutex_lock(&con->mutex);
2155 		if (con->state != CON_STATE_NEGOTIATING)
2156 			return -EAGAIN;
2157 		break;
2158 
2159 	case CEPH_MSGR_TAG_RETRY_SESSION:
2160 		/*
2161 		 * If we sent a smaller connect_seq than the peer has, try
2162 		 * again with a larger value.
2163 		 */
2164 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165 		     le32_to_cpu(con->out_connect.connect_seq),
2166 		     le32_to_cpu(con->in_reply.connect_seq));
2167 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168 		con_out_kvec_reset(con);
2169 		ret = prepare_write_connect(con);
2170 		if (ret < 0)
2171 			return ret;
2172 		prepare_read_connect(con);
2173 		break;
2174 
2175 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176 		/*
2177 		 * If we sent a smaller global_seq than the peer has, try
2178 		 * again with a larger value.
2179 		 */
2180 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181 		     con->peer_global_seq,
2182 		     le32_to_cpu(con->in_reply.global_seq));
2183 		get_global_seq(con->msgr,
2184 			       le32_to_cpu(con->in_reply.global_seq));
2185 		con_out_kvec_reset(con);
2186 		ret = prepare_write_connect(con);
2187 		if (ret < 0)
2188 			return ret;
2189 		prepare_read_connect(con);
2190 		break;
2191 
2192 	case CEPH_MSGR_TAG_SEQ:
2193 	case CEPH_MSGR_TAG_READY:
2194 		if (req_feat & ~server_feat) {
2195 			pr_err("%s%lld %s protocol feature mismatch,"
2196 			       " my required %llx > server's %llx, need %llx\n",
2197 			       ENTITY_NAME(con->peer_name),
2198 			       ceph_pr_addr(&con->peer_addr),
2199 			       req_feat, server_feat, req_feat & ~server_feat);
2200 			con->error_msg = "missing required protocol features";
2201 			reset_connection(con);
2202 			return -1;
2203 		}
2204 
2205 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206 		con->state = CON_STATE_OPEN;
2207 		con->auth_retry = 0;    /* we authenticated; clear flag */
2208 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209 		con->connect_seq++;
2210 		con->peer_features = server_feat;
2211 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212 		     con->peer_global_seq,
2213 		     le32_to_cpu(con->in_reply.connect_seq),
2214 		     con->connect_seq);
2215 		WARN_ON(con->connect_seq !=
2216 			le32_to_cpu(con->in_reply.connect_seq));
2217 
2218 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219 			con_flag_set(con, CON_FLAG_LOSSYTX);
2220 
2221 		con->delay = 0;      /* reset backoff memory */
2222 
2223 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224 			prepare_write_seq(con);
2225 			prepare_read_seq(con);
2226 		} else {
2227 			prepare_read_tag(con);
2228 		}
2229 		break;
2230 
2231 	case CEPH_MSGR_TAG_WAIT:
2232 		/*
2233 		 * If there is a connection race (we are opening
2234 		 * connections to each other), one of us may just have
2235 		 * to WAIT.  This shouldn't happen if we are the
2236 		 * client.
2237 		 */
2238 		con->error_msg = "protocol error, got WAIT as client";
2239 		return -1;
2240 
2241 	default:
2242 		con->error_msg = "protocol error, garbage tag during connect";
2243 		return -1;
2244 	}
2245 	return 0;
2246 }
2247 
2248 
2249 /*
2250  * read (part of) an ack
2251  */
2252 static int read_partial_ack(struct ceph_connection *con)
2253 {
2254 	int size = sizeof (con->in_temp_ack);
2255 	int end = size;
2256 
2257 	return read_partial(con, end, size, &con->in_temp_ack);
2258 }
2259 
2260 /*
2261  * We can finally discard anything that's been acked.
2262  */
2263 static void process_ack(struct ceph_connection *con)
2264 {
2265 	struct ceph_msg *m;
2266 	u64 ack = le64_to_cpu(con->in_temp_ack);
2267 	u64 seq;
2268 	bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269 	struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270 
2271 	/*
2272 	 * In the reconnect case, con_fault() has requeued messages
2273 	 * in out_sent. We should cleanup old messages according to
2274 	 * the reconnect seq.
2275 	 */
2276 	while (!list_empty(list)) {
2277 		m = list_first_entry(list, struct ceph_msg, list_head);
2278 		if (reconnect && m->needs_out_seq)
2279 			break;
2280 		seq = le64_to_cpu(m->hdr.seq);
2281 		if (seq > ack)
2282 			break;
2283 		dout("got ack for seq %llu type %d at %p\n", seq,
2284 		     le16_to_cpu(m->hdr.type), m);
2285 		m->ack_stamp = jiffies;
2286 		ceph_msg_remove(m);
2287 	}
2288 
2289 	prepare_read_tag(con);
2290 }
2291 
2292 
2293 static int read_partial_message_section(struct ceph_connection *con,
2294 					struct kvec *section,
2295 					unsigned int sec_len, u32 *crc)
2296 {
2297 	int ret, left;
2298 
2299 	BUG_ON(!section);
2300 
2301 	while (section->iov_len < sec_len) {
2302 		BUG_ON(section->iov_base == NULL);
2303 		left = sec_len - section->iov_len;
2304 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305 				       section->iov_len, left);
2306 		if (ret <= 0)
2307 			return ret;
2308 		section->iov_len += ret;
2309 	}
2310 	if (section->iov_len == sec_len)
2311 		*crc = crc32c(0, section->iov_base, section->iov_len);
2312 
2313 	return 1;
2314 }
2315 
2316 static int read_partial_msg_data(struct ceph_connection *con)
2317 {
2318 	struct ceph_msg *msg = con->in_msg;
2319 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321 	struct page *page;
2322 	size_t page_offset;
2323 	size_t length;
2324 	u32 crc = 0;
2325 	int ret;
2326 
2327 	if (!msg->num_data_items)
2328 		return -EIO;
2329 
2330 	if (do_datacrc)
2331 		crc = con->in_data_crc;
2332 	while (cursor->total_resid) {
2333 		if (!cursor->resid) {
2334 			ceph_msg_data_advance(cursor, 0);
2335 			continue;
2336 		}
2337 
2338 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2339 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2340 		if (ret <= 0) {
2341 			if (do_datacrc)
2342 				con->in_data_crc = crc;
2343 
2344 			return ret;
2345 		}
2346 
2347 		if (do_datacrc)
2348 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2349 		ceph_msg_data_advance(cursor, (size_t)ret);
2350 	}
2351 	if (do_datacrc)
2352 		con->in_data_crc = crc;
2353 
2354 	return 1;	/* must return > 0 to indicate success */
2355 }
2356 
2357 /*
2358  * read (part of) a message.
2359  */
2360 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2361 
2362 static int read_partial_message(struct ceph_connection *con)
2363 {
2364 	struct ceph_msg *m = con->in_msg;
2365 	int size;
2366 	int end;
2367 	int ret;
2368 	unsigned int front_len, middle_len, data_len;
2369 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2370 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2371 	u64 seq;
2372 	u32 crc;
2373 
2374 	dout("read_partial_message con %p msg %p\n", con, m);
2375 
2376 	/* header */
2377 	size = sizeof (con->in_hdr);
2378 	end = size;
2379 	ret = read_partial(con, end, size, &con->in_hdr);
2380 	if (ret <= 0)
2381 		return ret;
2382 
2383 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2384 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2385 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2386 		       crc, con->in_hdr.crc);
2387 		return -EBADMSG;
2388 	}
2389 
2390 	front_len = le32_to_cpu(con->in_hdr.front_len);
2391 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2392 		return -EIO;
2393 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2394 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2395 		return -EIO;
2396 	data_len = le32_to_cpu(con->in_hdr.data_len);
2397 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2398 		return -EIO;
2399 
2400 	/* verify seq# */
2401 	seq = le64_to_cpu(con->in_hdr.seq);
2402 	if ((s64)seq - (s64)con->in_seq < 1) {
2403 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2404 			ENTITY_NAME(con->peer_name),
2405 			ceph_pr_addr(&con->peer_addr),
2406 			seq, con->in_seq + 1);
2407 		con->in_base_pos = -front_len - middle_len - data_len -
2408 			sizeof_footer(con);
2409 		con->in_tag = CEPH_MSGR_TAG_READY;
2410 		return 1;
2411 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2412 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2413 		       seq, con->in_seq + 1);
2414 		con->error_msg = "bad message sequence # for incoming message";
2415 		return -EBADE;
2416 	}
2417 
2418 	/* allocate message? */
2419 	if (!con->in_msg) {
2420 		int skip = 0;
2421 
2422 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2423 		     front_len, data_len);
2424 		ret = ceph_con_in_msg_alloc(con, &skip);
2425 		if (ret < 0)
2426 			return ret;
2427 
2428 		BUG_ON(!con->in_msg ^ skip);
2429 		if (skip) {
2430 			/* skip this message */
2431 			dout("alloc_msg said skip message\n");
2432 			con->in_base_pos = -front_len - middle_len - data_len -
2433 				sizeof_footer(con);
2434 			con->in_tag = CEPH_MSGR_TAG_READY;
2435 			con->in_seq++;
2436 			return 1;
2437 		}
2438 
2439 		BUG_ON(!con->in_msg);
2440 		BUG_ON(con->in_msg->con != con);
2441 		m = con->in_msg;
2442 		m->front.iov_len = 0;    /* haven't read it yet */
2443 		if (m->middle)
2444 			m->middle->vec.iov_len = 0;
2445 
2446 		/* prepare for data payload, if any */
2447 
2448 		if (data_len)
2449 			prepare_message_data(con->in_msg, data_len);
2450 	}
2451 
2452 	/* front */
2453 	ret = read_partial_message_section(con, &m->front, front_len,
2454 					   &con->in_front_crc);
2455 	if (ret <= 0)
2456 		return ret;
2457 
2458 	/* middle */
2459 	if (m->middle) {
2460 		ret = read_partial_message_section(con, &m->middle->vec,
2461 						   middle_len,
2462 						   &con->in_middle_crc);
2463 		if (ret <= 0)
2464 			return ret;
2465 	}
2466 
2467 	/* (page) data */
2468 	if (data_len) {
2469 		ret = read_partial_msg_data(con);
2470 		if (ret <= 0)
2471 			return ret;
2472 	}
2473 
2474 	/* footer */
2475 	size = sizeof_footer(con);
2476 	end += size;
2477 	ret = read_partial(con, end, size, &m->footer);
2478 	if (ret <= 0)
2479 		return ret;
2480 
2481 	if (!need_sign) {
2482 		m->footer.flags = m->old_footer.flags;
2483 		m->footer.sig = 0;
2484 	}
2485 
2486 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2487 	     m, front_len, m->footer.front_crc, middle_len,
2488 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2489 
2490 	/* crc ok? */
2491 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2492 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2493 		       m, con->in_front_crc, m->footer.front_crc);
2494 		return -EBADMSG;
2495 	}
2496 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2497 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2498 		       m, con->in_middle_crc, m->footer.middle_crc);
2499 		return -EBADMSG;
2500 	}
2501 	if (do_datacrc &&
2502 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2503 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2504 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2505 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2506 		return -EBADMSG;
2507 	}
2508 
2509 	if (need_sign && con->ops->check_message_signature &&
2510 	    con->ops->check_message_signature(m)) {
2511 		pr_err("read_partial_message %p signature check failed\n", m);
2512 		return -EBADMSG;
2513 	}
2514 
2515 	return 1; /* done! */
2516 }
2517 
2518 /*
2519  * Process message.  This happens in the worker thread.  The callback should
2520  * be careful not to do anything that waits on other incoming messages or it
2521  * may deadlock.
2522  */
2523 static void process_message(struct ceph_connection *con)
2524 {
2525 	struct ceph_msg *msg = con->in_msg;
2526 
2527 	BUG_ON(con->in_msg->con != con);
2528 	con->in_msg = NULL;
2529 
2530 	/* if first message, set peer_name */
2531 	if (con->peer_name.type == 0)
2532 		con->peer_name = msg->hdr.src;
2533 
2534 	con->in_seq++;
2535 	mutex_unlock(&con->mutex);
2536 
2537 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2538 	     msg, le64_to_cpu(msg->hdr.seq),
2539 	     ENTITY_NAME(msg->hdr.src),
2540 	     le16_to_cpu(msg->hdr.type),
2541 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2542 	     le32_to_cpu(msg->hdr.front_len),
2543 	     le32_to_cpu(msg->hdr.data_len),
2544 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2545 	con->ops->dispatch(con, msg);
2546 
2547 	mutex_lock(&con->mutex);
2548 }
2549 
2550 static int read_keepalive_ack(struct ceph_connection *con)
2551 {
2552 	struct ceph_timespec ceph_ts;
2553 	size_t size = sizeof(ceph_ts);
2554 	int ret = read_partial(con, size, size, &ceph_ts);
2555 	if (ret <= 0)
2556 		return ret;
2557 	ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2558 	prepare_read_tag(con);
2559 	return 1;
2560 }
2561 
2562 /*
2563  * Write something to the socket.  Called in a worker thread when the
2564  * socket appears to be writeable and we have something ready to send.
2565  */
2566 static int try_write(struct ceph_connection *con)
2567 {
2568 	int ret = 1;
2569 
2570 	dout("try_write start %p state %lu\n", con, con->state);
2571 	if (con->state != CON_STATE_PREOPEN &&
2572 	    con->state != CON_STATE_CONNECTING &&
2573 	    con->state != CON_STATE_NEGOTIATING &&
2574 	    con->state != CON_STATE_OPEN)
2575 		return 0;
2576 
2577 	/* open the socket first? */
2578 	if (con->state == CON_STATE_PREOPEN) {
2579 		BUG_ON(con->sock);
2580 		con->state = CON_STATE_CONNECTING;
2581 
2582 		con_out_kvec_reset(con);
2583 		prepare_write_banner(con);
2584 		prepare_read_banner(con);
2585 
2586 		BUG_ON(con->in_msg);
2587 		con->in_tag = CEPH_MSGR_TAG_READY;
2588 		dout("try_write initiating connect on %p new state %lu\n",
2589 		     con, con->state);
2590 		ret = ceph_tcp_connect(con);
2591 		if (ret < 0) {
2592 			con->error_msg = "connect error";
2593 			goto out;
2594 		}
2595 	}
2596 
2597 more:
2598 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2599 	BUG_ON(!con->sock);
2600 
2601 	/* kvec data queued? */
2602 	if (con->out_kvec_left) {
2603 		ret = write_partial_kvec(con);
2604 		if (ret <= 0)
2605 			goto out;
2606 	}
2607 	if (con->out_skip) {
2608 		ret = write_partial_skip(con);
2609 		if (ret <= 0)
2610 			goto out;
2611 	}
2612 
2613 	/* msg pages? */
2614 	if (con->out_msg) {
2615 		if (con->out_msg_done) {
2616 			ceph_msg_put(con->out_msg);
2617 			con->out_msg = NULL;   /* we're done with this one */
2618 			goto do_next;
2619 		}
2620 
2621 		ret = write_partial_message_data(con);
2622 		if (ret == 1)
2623 			goto more;  /* we need to send the footer, too! */
2624 		if (ret == 0)
2625 			goto out;
2626 		if (ret < 0) {
2627 			dout("try_write write_partial_message_data err %d\n",
2628 			     ret);
2629 			goto out;
2630 		}
2631 	}
2632 
2633 do_next:
2634 	if (con->state == CON_STATE_OPEN) {
2635 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2636 			prepare_write_keepalive(con);
2637 			goto more;
2638 		}
2639 		/* is anything else pending? */
2640 		if (!list_empty(&con->out_queue)) {
2641 			prepare_write_message(con);
2642 			goto more;
2643 		}
2644 		if (con->in_seq > con->in_seq_acked) {
2645 			prepare_write_ack(con);
2646 			goto more;
2647 		}
2648 	}
2649 
2650 	/* Nothing to do! */
2651 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2652 	dout("try_write nothing else to write.\n");
2653 	ret = 0;
2654 out:
2655 	dout("try_write done on %p ret %d\n", con, ret);
2656 	return ret;
2657 }
2658 
2659 /*
2660  * Read what we can from the socket.
2661  */
2662 static int try_read(struct ceph_connection *con)
2663 {
2664 	int ret = -1;
2665 
2666 more:
2667 	dout("try_read start on %p state %lu\n", con, con->state);
2668 	if (con->state != CON_STATE_CONNECTING &&
2669 	    con->state != CON_STATE_NEGOTIATING &&
2670 	    con->state != CON_STATE_OPEN)
2671 		return 0;
2672 
2673 	BUG_ON(!con->sock);
2674 
2675 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2676 	     con->in_base_pos);
2677 
2678 	if (con->state == CON_STATE_CONNECTING) {
2679 		dout("try_read connecting\n");
2680 		ret = read_partial_banner(con);
2681 		if (ret <= 0)
2682 			goto out;
2683 		ret = process_banner(con);
2684 		if (ret < 0)
2685 			goto out;
2686 
2687 		con->state = CON_STATE_NEGOTIATING;
2688 
2689 		/*
2690 		 * Received banner is good, exchange connection info.
2691 		 * Do not reset out_kvec, as sending our banner raced
2692 		 * with receiving peer banner after connect completed.
2693 		 */
2694 		ret = prepare_write_connect(con);
2695 		if (ret < 0)
2696 			goto out;
2697 		prepare_read_connect(con);
2698 
2699 		/* Send connection info before awaiting response */
2700 		goto out;
2701 	}
2702 
2703 	if (con->state == CON_STATE_NEGOTIATING) {
2704 		dout("try_read negotiating\n");
2705 		ret = read_partial_connect(con);
2706 		if (ret <= 0)
2707 			goto out;
2708 		ret = process_connect(con);
2709 		if (ret < 0)
2710 			goto out;
2711 		goto more;
2712 	}
2713 
2714 	WARN_ON(con->state != CON_STATE_OPEN);
2715 
2716 	if (con->in_base_pos < 0) {
2717 		/*
2718 		 * skipping + discarding content.
2719 		 */
2720 		ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2721 		if (ret <= 0)
2722 			goto out;
2723 		dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2724 		con->in_base_pos += ret;
2725 		if (con->in_base_pos)
2726 			goto more;
2727 	}
2728 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2729 		/*
2730 		 * what's next?
2731 		 */
2732 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2733 		if (ret <= 0)
2734 			goto out;
2735 		dout("try_read got tag %d\n", (int)con->in_tag);
2736 		switch (con->in_tag) {
2737 		case CEPH_MSGR_TAG_MSG:
2738 			prepare_read_message(con);
2739 			break;
2740 		case CEPH_MSGR_TAG_ACK:
2741 			prepare_read_ack(con);
2742 			break;
2743 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2744 			prepare_read_keepalive_ack(con);
2745 			break;
2746 		case CEPH_MSGR_TAG_CLOSE:
2747 			con_close_socket(con);
2748 			con->state = CON_STATE_CLOSED;
2749 			goto out;
2750 		default:
2751 			goto bad_tag;
2752 		}
2753 	}
2754 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2755 		ret = read_partial_message(con);
2756 		if (ret <= 0) {
2757 			switch (ret) {
2758 			case -EBADMSG:
2759 				con->error_msg = "bad crc/signature";
2760 				/* fall through */
2761 			case -EBADE:
2762 				ret = -EIO;
2763 				break;
2764 			case -EIO:
2765 				con->error_msg = "io error";
2766 				break;
2767 			}
2768 			goto out;
2769 		}
2770 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2771 			goto more;
2772 		process_message(con);
2773 		if (con->state == CON_STATE_OPEN)
2774 			prepare_read_tag(con);
2775 		goto more;
2776 	}
2777 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2778 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2779 		/*
2780 		 * the final handshake seq exchange is semantically
2781 		 * equivalent to an ACK
2782 		 */
2783 		ret = read_partial_ack(con);
2784 		if (ret <= 0)
2785 			goto out;
2786 		process_ack(con);
2787 		goto more;
2788 	}
2789 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2790 		ret = read_keepalive_ack(con);
2791 		if (ret <= 0)
2792 			goto out;
2793 		goto more;
2794 	}
2795 
2796 out:
2797 	dout("try_read done on %p ret %d\n", con, ret);
2798 	return ret;
2799 
2800 bad_tag:
2801 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2802 	con->error_msg = "protocol error, garbage tag";
2803 	ret = -1;
2804 	goto out;
2805 }
2806 
2807 
2808 /*
2809  * Atomically queue work on a connection after the specified delay.
2810  * Bump @con reference to avoid races with connection teardown.
2811  * Returns 0 if work was queued, or an error code otherwise.
2812  */
2813 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2814 {
2815 	if (!con->ops->get(con)) {
2816 		dout("%s %p ref count 0\n", __func__, con);
2817 		return -ENOENT;
2818 	}
2819 
2820 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2821 		dout("%s %p - already queued\n", __func__, con);
2822 		con->ops->put(con);
2823 		return -EBUSY;
2824 	}
2825 
2826 	dout("%s %p %lu\n", __func__, con, delay);
2827 	return 0;
2828 }
2829 
2830 static void queue_con(struct ceph_connection *con)
2831 {
2832 	(void) queue_con_delay(con, 0);
2833 }
2834 
2835 static void cancel_con(struct ceph_connection *con)
2836 {
2837 	if (cancel_delayed_work(&con->work)) {
2838 		dout("%s %p\n", __func__, con);
2839 		con->ops->put(con);
2840 	}
2841 }
2842 
2843 static bool con_sock_closed(struct ceph_connection *con)
2844 {
2845 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2846 		return false;
2847 
2848 #define CASE(x)								\
2849 	case CON_STATE_ ## x:						\
2850 		con->error_msg = "socket closed (con state " #x ")";	\
2851 		break;
2852 
2853 	switch (con->state) {
2854 	CASE(CLOSED);
2855 	CASE(PREOPEN);
2856 	CASE(CONNECTING);
2857 	CASE(NEGOTIATING);
2858 	CASE(OPEN);
2859 	CASE(STANDBY);
2860 	default:
2861 		pr_warn("%s con %p unrecognized state %lu\n",
2862 			__func__, con, con->state);
2863 		con->error_msg = "unrecognized con state";
2864 		BUG();
2865 		break;
2866 	}
2867 #undef CASE
2868 
2869 	return true;
2870 }
2871 
2872 static bool con_backoff(struct ceph_connection *con)
2873 {
2874 	int ret;
2875 
2876 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2877 		return false;
2878 
2879 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2880 	if (ret) {
2881 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2882 			con, con->delay);
2883 		BUG_ON(ret == -ENOENT);
2884 		con_flag_set(con, CON_FLAG_BACKOFF);
2885 	}
2886 
2887 	return true;
2888 }
2889 
2890 /* Finish fault handling; con->mutex must *not* be held here */
2891 
2892 static void con_fault_finish(struct ceph_connection *con)
2893 {
2894 	dout("%s %p\n", __func__, con);
2895 
2896 	/*
2897 	 * in case we faulted due to authentication, invalidate our
2898 	 * current tickets so that we can get new ones.
2899 	 */
2900 	if (con->auth_retry) {
2901 		dout("auth_retry %d, invalidating\n", con->auth_retry);
2902 		if (con->ops->invalidate_authorizer)
2903 			con->ops->invalidate_authorizer(con);
2904 		con->auth_retry = 0;
2905 	}
2906 
2907 	if (con->ops->fault)
2908 		con->ops->fault(con);
2909 }
2910 
2911 /*
2912  * Do some work on a connection.  Drop a connection ref when we're done.
2913  */
2914 static void ceph_con_workfn(struct work_struct *work)
2915 {
2916 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2917 						   work.work);
2918 	bool fault;
2919 
2920 	mutex_lock(&con->mutex);
2921 	while (true) {
2922 		int ret;
2923 
2924 		if ((fault = con_sock_closed(con))) {
2925 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2926 			break;
2927 		}
2928 		if (con_backoff(con)) {
2929 			dout("%s: con %p BACKOFF\n", __func__, con);
2930 			break;
2931 		}
2932 		if (con->state == CON_STATE_STANDBY) {
2933 			dout("%s: con %p STANDBY\n", __func__, con);
2934 			break;
2935 		}
2936 		if (con->state == CON_STATE_CLOSED) {
2937 			dout("%s: con %p CLOSED\n", __func__, con);
2938 			BUG_ON(con->sock);
2939 			break;
2940 		}
2941 		if (con->state == CON_STATE_PREOPEN) {
2942 			dout("%s: con %p PREOPEN\n", __func__, con);
2943 			BUG_ON(con->sock);
2944 		}
2945 
2946 		ret = try_read(con);
2947 		if (ret < 0) {
2948 			if (ret == -EAGAIN)
2949 				continue;
2950 			if (!con->error_msg)
2951 				con->error_msg = "socket error on read";
2952 			fault = true;
2953 			break;
2954 		}
2955 
2956 		ret = try_write(con);
2957 		if (ret < 0) {
2958 			if (ret == -EAGAIN)
2959 				continue;
2960 			if (!con->error_msg)
2961 				con->error_msg = "socket error on write";
2962 			fault = true;
2963 		}
2964 
2965 		break;	/* If we make it to here, we're done */
2966 	}
2967 	if (fault)
2968 		con_fault(con);
2969 	mutex_unlock(&con->mutex);
2970 
2971 	if (fault)
2972 		con_fault_finish(con);
2973 
2974 	con->ops->put(con);
2975 }
2976 
2977 /*
2978  * Generic error/fault handler.  A retry mechanism is used with
2979  * exponential backoff
2980  */
2981 static void con_fault(struct ceph_connection *con)
2982 {
2983 	dout("fault %p state %lu to peer %s\n",
2984 	     con, con->state, ceph_pr_addr(&con->peer_addr));
2985 
2986 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2987 		ceph_pr_addr(&con->peer_addr), con->error_msg);
2988 	con->error_msg = NULL;
2989 
2990 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2991 	       con->state != CON_STATE_NEGOTIATING &&
2992 	       con->state != CON_STATE_OPEN);
2993 
2994 	con_close_socket(con);
2995 
2996 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2997 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2998 		con->state = CON_STATE_CLOSED;
2999 		return;
3000 	}
3001 
3002 	if (con->in_msg) {
3003 		BUG_ON(con->in_msg->con != con);
3004 		ceph_msg_put(con->in_msg);
3005 		con->in_msg = NULL;
3006 	}
3007 
3008 	/* Requeue anything that hasn't been acked */
3009 	list_splice_init(&con->out_sent, &con->out_queue);
3010 
3011 	/* If there are no messages queued or keepalive pending, place
3012 	 * the connection in a STANDBY state */
3013 	if (list_empty(&con->out_queue) &&
3014 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3015 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3016 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3017 		con->state = CON_STATE_STANDBY;
3018 	} else {
3019 		/* retry after a delay. */
3020 		con->state = CON_STATE_PREOPEN;
3021 		if (con->delay == 0)
3022 			con->delay = BASE_DELAY_INTERVAL;
3023 		else if (con->delay < MAX_DELAY_INTERVAL)
3024 			con->delay *= 2;
3025 		con_flag_set(con, CON_FLAG_BACKOFF);
3026 		queue_con(con);
3027 	}
3028 }
3029 
3030 
3031 
3032 /*
3033  * initialize a new messenger instance
3034  */
3035 void ceph_messenger_init(struct ceph_messenger *msgr,
3036 			 struct ceph_entity_addr *myaddr)
3037 {
3038 	spin_lock_init(&msgr->global_seq_lock);
3039 
3040 	if (myaddr)
3041 		msgr->inst.addr = *myaddr;
3042 
3043 	/* select a random nonce */
3044 	msgr->inst.addr.type = 0;
3045 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3046 	encode_my_addr(msgr);
3047 
3048 	atomic_set(&msgr->stopping, 0);
3049 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3050 
3051 	dout("%s %p\n", __func__, msgr);
3052 }
3053 EXPORT_SYMBOL(ceph_messenger_init);
3054 
3055 void ceph_messenger_fini(struct ceph_messenger *msgr)
3056 {
3057 	put_net(read_pnet(&msgr->net));
3058 }
3059 EXPORT_SYMBOL(ceph_messenger_fini);
3060 
3061 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3062 {
3063 	if (msg->con)
3064 		msg->con->ops->put(msg->con);
3065 
3066 	msg->con = con ? con->ops->get(con) : NULL;
3067 	BUG_ON(msg->con != con);
3068 }
3069 
3070 static void clear_standby(struct ceph_connection *con)
3071 {
3072 	/* come back from STANDBY? */
3073 	if (con->state == CON_STATE_STANDBY) {
3074 		dout("clear_standby %p and ++connect_seq\n", con);
3075 		con->state = CON_STATE_PREOPEN;
3076 		con->connect_seq++;
3077 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3078 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3079 	}
3080 }
3081 
3082 /*
3083  * Queue up an outgoing message on the given connection.
3084  */
3085 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3086 {
3087 	/* set src+dst */
3088 	msg->hdr.src = con->msgr->inst.name;
3089 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3090 	msg->needs_out_seq = true;
3091 
3092 	mutex_lock(&con->mutex);
3093 
3094 	if (con->state == CON_STATE_CLOSED) {
3095 		dout("con_send %p closed, dropping %p\n", con, msg);
3096 		ceph_msg_put(msg);
3097 		mutex_unlock(&con->mutex);
3098 		return;
3099 	}
3100 
3101 	msg_con_set(msg, con);
3102 
3103 	BUG_ON(!list_empty(&msg->list_head));
3104 	list_add_tail(&msg->list_head, &con->out_queue);
3105 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3106 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3107 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3108 	     le32_to_cpu(msg->hdr.front_len),
3109 	     le32_to_cpu(msg->hdr.middle_len),
3110 	     le32_to_cpu(msg->hdr.data_len));
3111 
3112 	clear_standby(con);
3113 	mutex_unlock(&con->mutex);
3114 
3115 	/* if there wasn't anything waiting to send before, queue
3116 	 * new work */
3117 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3118 		queue_con(con);
3119 }
3120 EXPORT_SYMBOL(ceph_con_send);
3121 
3122 /*
3123  * Revoke a message that was previously queued for send
3124  */
3125 void ceph_msg_revoke(struct ceph_msg *msg)
3126 {
3127 	struct ceph_connection *con = msg->con;
3128 
3129 	if (!con) {
3130 		dout("%s msg %p null con\n", __func__, msg);
3131 		return;		/* Message not in our possession */
3132 	}
3133 
3134 	mutex_lock(&con->mutex);
3135 	if (!list_empty(&msg->list_head)) {
3136 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3137 		list_del_init(&msg->list_head);
3138 		msg->hdr.seq = 0;
3139 
3140 		ceph_msg_put(msg);
3141 	}
3142 	if (con->out_msg == msg) {
3143 		BUG_ON(con->out_skip);
3144 		/* footer */
3145 		if (con->out_msg_done) {
3146 			con->out_skip += con_out_kvec_skip(con);
3147 		} else {
3148 			BUG_ON(!msg->data_length);
3149 			con->out_skip += sizeof_footer(con);
3150 		}
3151 		/* data, middle, front */
3152 		if (msg->data_length)
3153 			con->out_skip += msg->cursor.total_resid;
3154 		if (msg->middle)
3155 			con->out_skip += con_out_kvec_skip(con);
3156 		con->out_skip += con_out_kvec_skip(con);
3157 
3158 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3159 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3160 		msg->hdr.seq = 0;
3161 		con->out_msg = NULL;
3162 		ceph_msg_put(msg);
3163 	}
3164 
3165 	mutex_unlock(&con->mutex);
3166 }
3167 
3168 /*
3169  * Revoke a message that we may be reading data into
3170  */
3171 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3172 {
3173 	struct ceph_connection *con = msg->con;
3174 
3175 	if (!con) {
3176 		dout("%s msg %p null con\n", __func__, msg);
3177 		return;		/* Message not in our possession */
3178 	}
3179 
3180 	mutex_lock(&con->mutex);
3181 	if (con->in_msg == msg) {
3182 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3183 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3184 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3185 
3186 		/* skip rest of message */
3187 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3188 		con->in_base_pos = con->in_base_pos -
3189 				sizeof(struct ceph_msg_header) -
3190 				front_len -
3191 				middle_len -
3192 				data_len -
3193 				sizeof(struct ceph_msg_footer);
3194 		ceph_msg_put(con->in_msg);
3195 		con->in_msg = NULL;
3196 		con->in_tag = CEPH_MSGR_TAG_READY;
3197 		con->in_seq++;
3198 	} else {
3199 		dout("%s %p in_msg %p msg %p no-op\n",
3200 		     __func__, con, con->in_msg, msg);
3201 	}
3202 	mutex_unlock(&con->mutex);
3203 }
3204 
3205 /*
3206  * Queue a keepalive byte to ensure the tcp connection is alive.
3207  */
3208 void ceph_con_keepalive(struct ceph_connection *con)
3209 {
3210 	dout("con_keepalive %p\n", con);
3211 	mutex_lock(&con->mutex);
3212 	clear_standby(con);
3213 	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3214 	mutex_unlock(&con->mutex);
3215 
3216 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3217 		queue_con(con);
3218 }
3219 EXPORT_SYMBOL(ceph_con_keepalive);
3220 
3221 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3222 			       unsigned long interval)
3223 {
3224 	if (interval > 0 &&
3225 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3226 		struct timespec64 now;
3227 		struct timespec64 ts;
3228 		ktime_get_real_ts64(&now);
3229 		jiffies_to_timespec64(interval, &ts);
3230 		ts = timespec64_add(con->last_keepalive_ack, ts);
3231 		return timespec64_compare(&now, &ts) >= 0;
3232 	}
3233 	return false;
3234 }
3235 
3236 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3237 {
3238 	BUG_ON(msg->num_data_items >= msg->max_data_items);
3239 	return &msg->data[msg->num_data_items++];
3240 }
3241 
3242 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3243 {
3244 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3245 		ceph_pagelist_release(data->pagelist);
3246 }
3247 
3248 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3249 		size_t length, size_t alignment)
3250 {
3251 	struct ceph_msg_data *data;
3252 
3253 	BUG_ON(!pages);
3254 	BUG_ON(!length);
3255 
3256 	data = ceph_msg_data_add(msg);
3257 	data->type = CEPH_MSG_DATA_PAGES;
3258 	data->pages = pages;
3259 	data->length = length;
3260 	data->alignment = alignment & ~PAGE_MASK;
3261 
3262 	msg->data_length += length;
3263 }
3264 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3265 
3266 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3267 				struct ceph_pagelist *pagelist)
3268 {
3269 	struct ceph_msg_data *data;
3270 
3271 	BUG_ON(!pagelist);
3272 	BUG_ON(!pagelist->length);
3273 
3274 	data = ceph_msg_data_add(msg);
3275 	data->type = CEPH_MSG_DATA_PAGELIST;
3276 	refcount_inc(&pagelist->refcnt);
3277 	data->pagelist = pagelist;
3278 
3279 	msg->data_length += pagelist->length;
3280 }
3281 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3282 
3283 #ifdef	CONFIG_BLOCK
3284 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3285 			   u32 length)
3286 {
3287 	struct ceph_msg_data *data;
3288 
3289 	data = ceph_msg_data_add(msg);
3290 	data->type = CEPH_MSG_DATA_BIO;
3291 	data->bio_pos = *bio_pos;
3292 	data->bio_length = length;
3293 
3294 	msg->data_length += length;
3295 }
3296 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3297 #endif	/* CONFIG_BLOCK */
3298 
3299 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3300 			     struct ceph_bvec_iter *bvec_pos)
3301 {
3302 	struct ceph_msg_data *data;
3303 
3304 	data = ceph_msg_data_add(msg);
3305 	data->type = CEPH_MSG_DATA_BVECS;
3306 	data->bvec_pos = *bvec_pos;
3307 
3308 	msg->data_length += bvec_pos->iter.bi_size;
3309 }
3310 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3311 
3312 /*
3313  * construct a new message with given type, size
3314  * the new msg has a ref count of 1.
3315  */
3316 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3317 			       gfp_t flags, bool can_fail)
3318 {
3319 	struct ceph_msg *m;
3320 
3321 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3322 	if (m == NULL)
3323 		goto out;
3324 
3325 	m->hdr.type = cpu_to_le16(type);
3326 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3327 	m->hdr.front_len = cpu_to_le32(front_len);
3328 
3329 	INIT_LIST_HEAD(&m->list_head);
3330 	kref_init(&m->kref);
3331 
3332 	/* front */
3333 	if (front_len) {
3334 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3335 		if (m->front.iov_base == NULL) {
3336 			dout("ceph_msg_new can't allocate %d bytes\n",
3337 			     front_len);
3338 			goto out2;
3339 		}
3340 	} else {
3341 		m->front.iov_base = NULL;
3342 	}
3343 	m->front_alloc_len = m->front.iov_len = front_len;
3344 
3345 	if (max_data_items) {
3346 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3347 					flags);
3348 		if (!m->data)
3349 			goto out2;
3350 
3351 		m->max_data_items = max_data_items;
3352 	}
3353 
3354 	dout("ceph_msg_new %p front %d\n", m, front_len);
3355 	return m;
3356 
3357 out2:
3358 	ceph_msg_put(m);
3359 out:
3360 	if (!can_fail) {
3361 		pr_err("msg_new can't create type %d front %d\n", type,
3362 		       front_len);
3363 		WARN_ON(1);
3364 	} else {
3365 		dout("msg_new can't create type %d front %d\n", type,
3366 		     front_len);
3367 	}
3368 	return NULL;
3369 }
3370 EXPORT_SYMBOL(ceph_msg_new2);
3371 
3372 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3373 			      bool can_fail)
3374 {
3375 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3376 }
3377 EXPORT_SYMBOL(ceph_msg_new);
3378 
3379 /*
3380  * Allocate "middle" portion of a message, if it is needed and wasn't
3381  * allocated by alloc_msg.  This allows us to read a small fixed-size
3382  * per-type header in the front and then gracefully fail (i.e.,
3383  * propagate the error to the caller based on info in the front) when
3384  * the middle is too large.
3385  */
3386 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3387 {
3388 	int type = le16_to_cpu(msg->hdr.type);
3389 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3390 
3391 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3392 	     ceph_msg_type_name(type), middle_len);
3393 	BUG_ON(!middle_len);
3394 	BUG_ON(msg->middle);
3395 
3396 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3397 	if (!msg->middle)
3398 		return -ENOMEM;
3399 	return 0;
3400 }
3401 
3402 /*
3403  * Allocate a message for receiving an incoming message on a
3404  * connection, and save the result in con->in_msg.  Uses the
3405  * connection's private alloc_msg op if available.
3406  *
3407  * Returns 0 on success, or a negative error code.
3408  *
3409  * On success, if we set *skip = 1:
3410  *  - the next message should be skipped and ignored.
3411  *  - con->in_msg == NULL
3412  * or if we set *skip = 0:
3413  *  - con->in_msg is non-null.
3414  * On error (ENOMEM, EAGAIN, ...),
3415  *  - con->in_msg == NULL
3416  */
3417 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3418 {
3419 	struct ceph_msg_header *hdr = &con->in_hdr;
3420 	int middle_len = le32_to_cpu(hdr->middle_len);
3421 	struct ceph_msg *msg;
3422 	int ret = 0;
3423 
3424 	BUG_ON(con->in_msg != NULL);
3425 	BUG_ON(!con->ops->alloc_msg);
3426 
3427 	mutex_unlock(&con->mutex);
3428 	msg = con->ops->alloc_msg(con, hdr, skip);
3429 	mutex_lock(&con->mutex);
3430 	if (con->state != CON_STATE_OPEN) {
3431 		if (msg)
3432 			ceph_msg_put(msg);
3433 		return -EAGAIN;
3434 	}
3435 	if (msg) {
3436 		BUG_ON(*skip);
3437 		msg_con_set(msg, con);
3438 		con->in_msg = msg;
3439 	} else {
3440 		/*
3441 		 * Null message pointer means either we should skip
3442 		 * this message or we couldn't allocate memory.  The
3443 		 * former is not an error.
3444 		 */
3445 		if (*skip)
3446 			return 0;
3447 
3448 		con->error_msg = "error allocating memory for incoming message";
3449 		return -ENOMEM;
3450 	}
3451 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3452 
3453 	if (middle_len && !con->in_msg->middle) {
3454 		ret = ceph_alloc_middle(con, con->in_msg);
3455 		if (ret < 0) {
3456 			ceph_msg_put(con->in_msg);
3457 			con->in_msg = NULL;
3458 		}
3459 	}
3460 
3461 	return ret;
3462 }
3463 
3464 
3465 /*
3466  * Free a generically kmalloc'd message.
3467  */
3468 static void ceph_msg_free(struct ceph_msg *m)
3469 {
3470 	dout("%s %p\n", __func__, m);
3471 	kvfree(m->front.iov_base);
3472 	kfree(m->data);
3473 	kmem_cache_free(ceph_msg_cache, m);
3474 }
3475 
3476 static void ceph_msg_release(struct kref *kref)
3477 {
3478 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3479 	int i;
3480 
3481 	dout("%s %p\n", __func__, m);
3482 	WARN_ON(!list_empty(&m->list_head));
3483 
3484 	msg_con_set(m, NULL);
3485 
3486 	/* drop middle, data, if any */
3487 	if (m->middle) {
3488 		ceph_buffer_put(m->middle);
3489 		m->middle = NULL;
3490 	}
3491 
3492 	for (i = 0; i < m->num_data_items; i++)
3493 		ceph_msg_data_destroy(&m->data[i]);
3494 
3495 	if (m->pool)
3496 		ceph_msgpool_put(m->pool, m);
3497 	else
3498 		ceph_msg_free(m);
3499 }
3500 
3501 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3502 {
3503 	dout("%s %p (was %d)\n", __func__, msg,
3504 	     kref_read(&msg->kref));
3505 	kref_get(&msg->kref);
3506 	return msg;
3507 }
3508 EXPORT_SYMBOL(ceph_msg_get);
3509 
3510 void ceph_msg_put(struct ceph_msg *msg)
3511 {
3512 	dout("%s %p (was %d)\n", __func__, msg,
3513 	     kref_read(&msg->kref));
3514 	kref_put(&msg->kref, ceph_msg_release);
3515 }
3516 EXPORT_SYMBOL(ceph_msg_put);
3517 
3518 void ceph_msg_dump(struct ceph_msg *msg)
3519 {
3520 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3521 		 msg->front_alloc_len, msg->data_length);
3522 	print_hex_dump(KERN_DEBUG, "header: ",
3523 		       DUMP_PREFIX_OFFSET, 16, 1,
3524 		       &msg->hdr, sizeof(msg->hdr), true);
3525 	print_hex_dump(KERN_DEBUG, " front: ",
3526 		       DUMP_PREFIX_OFFSET, 16, 1,
3527 		       msg->front.iov_base, msg->front.iov_len, true);
3528 	if (msg->middle)
3529 		print_hex_dump(KERN_DEBUG, "middle: ",
3530 			       DUMP_PREFIX_OFFSET, 16, 1,
3531 			       msg->middle->vec.iov_base,
3532 			       msg->middle->vec.iov_len, true);
3533 	print_hex_dump(KERN_DEBUG, "footer: ",
3534 		       DUMP_PREFIX_OFFSET, 16, 1,
3535 		       &msg->footer, sizeof(msg->footer), true);
3536 }
3537 EXPORT_SYMBOL(ceph_msg_dump);
3538