1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 21 #include <linux/ceph/ceph_features.h> 22 #include <linux/ceph/libceph.h> 23 #include <linux/ceph/messenger.h> 24 #include <linux/ceph/decode.h> 25 #include <linux/ceph/pagelist.h> 26 #include <linux/export.h> 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 160 /* static tag bytes (protocol control messages) */ 161 static char tag_msg = CEPH_MSGR_TAG_MSG; 162 static char tag_ack = CEPH_MSGR_TAG_ACK; 163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 static void queue_con(struct ceph_connection *con); 171 static void cancel_con(struct ceph_connection *con); 172 static void ceph_con_workfn(struct work_struct *); 173 static void con_fault(struct ceph_connection *con); 174 175 /* 176 * Nicely render a sockaddr as a string. An array of formatted 177 * strings is used, to approximate reentrancy. 178 */ 179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 183 184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 185 static atomic_t addr_str_seq = ATOMIC_INIT(0); 186 187 static struct page *zero_page; /* used in certain error cases */ 188 189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 190 { 191 int i; 192 char *s; 193 struct sockaddr_storage ss = addr->in_addr; /* align */ 194 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 196 197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 198 s = addr_str[i]; 199 200 switch (ss.ss_family) { 201 case AF_INET: 202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 203 ntohs(in4->sin_port)); 204 break; 205 206 case AF_INET6: 207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 208 ntohs(in6->sin6_port)); 209 break; 210 211 default: 212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 213 ss.ss_family); 214 } 215 216 return s; 217 } 218 EXPORT_SYMBOL(ceph_pr_addr); 219 220 static void encode_my_addr(struct ceph_messenger *msgr) 221 { 222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 223 ceph_encode_addr(&msgr->my_enc_addr); 224 } 225 226 /* 227 * work queue for all reading and writing to/from the socket. 228 */ 229 static struct workqueue_struct *ceph_msgr_wq; 230 231 static int ceph_msgr_slab_init(void) 232 { 233 BUG_ON(ceph_msg_cache); 234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 235 if (!ceph_msg_cache) 236 return -ENOMEM; 237 238 return 0; 239 } 240 241 static void ceph_msgr_slab_exit(void) 242 { 243 BUG_ON(!ceph_msg_cache); 244 kmem_cache_destroy(ceph_msg_cache); 245 ceph_msg_cache = NULL; 246 } 247 248 static void _ceph_msgr_exit(void) 249 { 250 if (ceph_msgr_wq) { 251 destroy_workqueue(ceph_msgr_wq); 252 ceph_msgr_wq = NULL; 253 } 254 255 BUG_ON(zero_page == NULL); 256 put_page(zero_page); 257 zero_page = NULL; 258 259 ceph_msgr_slab_exit(); 260 } 261 262 int __init ceph_msgr_init(void) 263 { 264 if (ceph_msgr_slab_init()) 265 return -ENOMEM; 266 267 BUG_ON(zero_page != NULL); 268 zero_page = ZERO_PAGE(0); 269 get_page(zero_page); 270 271 /* 272 * The number of active work items is limited by the number of 273 * connections, so leave @max_active at default. 274 */ 275 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 276 if (ceph_msgr_wq) 277 return 0; 278 279 pr_err("msgr_init failed to create workqueue\n"); 280 _ceph_msgr_exit(); 281 282 return -ENOMEM; 283 } 284 285 void ceph_msgr_exit(void) 286 { 287 BUG_ON(ceph_msgr_wq == NULL); 288 289 _ceph_msgr_exit(); 290 } 291 292 void ceph_msgr_flush(void) 293 { 294 flush_workqueue(ceph_msgr_wq); 295 } 296 EXPORT_SYMBOL(ceph_msgr_flush); 297 298 /* Connection socket state transition functions */ 299 300 static void con_sock_state_init(struct ceph_connection *con) 301 { 302 int old_state; 303 304 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 305 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 306 printk("%s: unexpected old state %d\n", __func__, old_state); 307 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 308 CON_SOCK_STATE_CLOSED); 309 } 310 311 static void con_sock_state_connecting(struct ceph_connection *con) 312 { 313 int old_state; 314 315 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 316 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 317 printk("%s: unexpected old state %d\n", __func__, old_state); 318 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 319 CON_SOCK_STATE_CONNECTING); 320 } 321 322 static void con_sock_state_connected(struct ceph_connection *con) 323 { 324 int old_state; 325 326 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 327 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 328 printk("%s: unexpected old state %d\n", __func__, old_state); 329 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 330 CON_SOCK_STATE_CONNECTED); 331 } 332 333 static void con_sock_state_closing(struct ceph_connection *con) 334 { 335 int old_state; 336 337 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 338 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 339 old_state != CON_SOCK_STATE_CONNECTED && 340 old_state != CON_SOCK_STATE_CLOSING)) 341 printk("%s: unexpected old state %d\n", __func__, old_state); 342 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 343 CON_SOCK_STATE_CLOSING); 344 } 345 346 static void con_sock_state_closed(struct ceph_connection *con) 347 { 348 int old_state; 349 350 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 351 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 352 old_state != CON_SOCK_STATE_CLOSING && 353 old_state != CON_SOCK_STATE_CONNECTING && 354 old_state != CON_SOCK_STATE_CLOSED)) 355 printk("%s: unexpected old state %d\n", __func__, old_state); 356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 357 CON_SOCK_STATE_CLOSED); 358 } 359 360 /* 361 * socket callback functions 362 */ 363 364 /* data available on socket, or listen socket received a connect */ 365 static void ceph_sock_data_ready(struct sock *sk) 366 { 367 struct ceph_connection *con = sk->sk_user_data; 368 if (atomic_read(&con->msgr->stopping)) { 369 return; 370 } 371 372 if (sk->sk_state != TCP_CLOSE_WAIT) { 373 dout("%s on %p state = %lu, queueing work\n", __func__, 374 con, con->state); 375 queue_con(con); 376 } 377 } 378 379 /* socket has buffer space for writing */ 380 static void ceph_sock_write_space(struct sock *sk) 381 { 382 struct ceph_connection *con = sk->sk_user_data; 383 384 /* only queue to workqueue if there is data we want to write, 385 * and there is sufficient space in the socket buffer to accept 386 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 387 * doesn't get called again until try_write() fills the socket 388 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 389 * and net/core/stream.c:sk_stream_write_space(). 390 */ 391 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 392 if (sk_stream_is_writeable(sk)) { 393 dout("%s %p queueing write work\n", __func__, con); 394 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 395 queue_con(con); 396 } 397 } else { 398 dout("%s %p nothing to write\n", __func__, con); 399 } 400 } 401 402 /* socket's state has changed */ 403 static void ceph_sock_state_change(struct sock *sk) 404 { 405 struct ceph_connection *con = sk->sk_user_data; 406 407 dout("%s %p state = %lu sk_state = %u\n", __func__, 408 con, con->state, sk->sk_state); 409 410 switch (sk->sk_state) { 411 case TCP_CLOSE: 412 dout("%s TCP_CLOSE\n", __func__); 413 /* fall through */ 414 case TCP_CLOSE_WAIT: 415 dout("%s TCP_CLOSE_WAIT\n", __func__); 416 con_sock_state_closing(con); 417 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 418 queue_con(con); 419 break; 420 case TCP_ESTABLISHED: 421 dout("%s TCP_ESTABLISHED\n", __func__); 422 con_sock_state_connected(con); 423 queue_con(con); 424 break; 425 default: /* Everything else is uninteresting */ 426 break; 427 } 428 } 429 430 /* 431 * set up socket callbacks 432 */ 433 static void set_sock_callbacks(struct socket *sock, 434 struct ceph_connection *con) 435 { 436 struct sock *sk = sock->sk; 437 sk->sk_user_data = con; 438 sk->sk_data_ready = ceph_sock_data_ready; 439 sk->sk_write_space = ceph_sock_write_space; 440 sk->sk_state_change = ceph_sock_state_change; 441 } 442 443 444 /* 445 * socket helpers 446 */ 447 448 /* 449 * initiate connection to a remote socket. 450 */ 451 static int ceph_tcp_connect(struct ceph_connection *con) 452 { 453 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 454 struct socket *sock; 455 unsigned int noio_flag; 456 int ret; 457 458 BUG_ON(con->sock); 459 460 /* sock_create_kern() allocates with GFP_KERNEL */ 461 noio_flag = memalloc_noio_save(); 462 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 463 SOCK_STREAM, IPPROTO_TCP, &sock); 464 memalloc_noio_restore(noio_flag); 465 if (ret) 466 return ret; 467 sock->sk->sk_allocation = GFP_NOFS; 468 469 #ifdef CONFIG_LOCKDEP 470 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 471 #endif 472 473 set_sock_callbacks(sock, con); 474 475 dout("connect %s\n", ceph_pr_addr(&con->peer_addr)); 476 477 con_sock_state_connecting(con); 478 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss), 479 O_NONBLOCK); 480 if (ret == -EINPROGRESS) { 481 dout("connect %s EINPROGRESS sk_state = %u\n", 482 ceph_pr_addr(&con->peer_addr), 483 sock->sk->sk_state); 484 } else if (ret < 0) { 485 pr_err("connect %s error %d\n", 486 ceph_pr_addr(&con->peer_addr), ret); 487 sock_release(sock); 488 return ret; 489 } 490 491 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) { 492 int optval = 1; 493 494 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, 495 (char *)&optval, sizeof(optval)); 496 if (ret) 497 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", 498 ret); 499 } 500 501 con->sock = sock; 502 return 0; 503 } 504 505 /* 506 * If @buf is NULL, discard up to @len bytes. 507 */ 508 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 509 { 510 struct kvec iov = {buf, len}; 511 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 512 int r; 513 514 if (!buf) 515 msg.msg_flags |= MSG_TRUNC; 516 517 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len); 518 r = sock_recvmsg(sock, &msg, msg.msg_flags); 519 if (r == -EAGAIN) 520 r = 0; 521 return r; 522 } 523 524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 525 int page_offset, size_t length) 526 { 527 struct bio_vec bvec = { 528 .bv_page = page, 529 .bv_offset = page_offset, 530 .bv_len = length 531 }; 532 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 533 int r; 534 535 BUG_ON(page_offset + length > PAGE_SIZE); 536 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length); 537 r = sock_recvmsg(sock, &msg, msg.msg_flags); 538 if (r == -EAGAIN) 539 r = 0; 540 return r; 541 } 542 543 /* 544 * write something. @more is true if caller will be sending more data 545 * shortly. 546 */ 547 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 548 size_t kvlen, size_t len, bool more) 549 { 550 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 551 int r; 552 553 if (more) 554 msg.msg_flags |= MSG_MORE; 555 else 556 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 557 558 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 559 if (r == -EAGAIN) 560 r = 0; 561 return r; 562 } 563 564 /* 565 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST 566 */ 567 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 568 int offset, size_t size, int more) 569 { 570 ssize_t (*sendpage)(struct socket *sock, struct page *page, 571 int offset, size_t size, int flags); 572 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more; 573 int ret; 574 575 /* 576 * sendpage cannot properly handle pages with page_count == 0, 577 * we need to fall back to sendmsg if that's the case. 578 * 579 * Same goes for slab pages: skb_can_coalesce() allows 580 * coalescing neighboring slab objects into a single frag which 581 * triggers one of hardened usercopy checks. 582 */ 583 if (page_count(page) >= 1 && !PageSlab(page)) 584 sendpage = sock->ops->sendpage; 585 else 586 sendpage = sock_no_sendpage; 587 588 ret = sendpage(sock, page, offset, size, flags); 589 if (ret == -EAGAIN) 590 ret = 0; 591 592 return ret; 593 } 594 595 /* 596 * Shutdown/close the socket for the given connection. 597 */ 598 static int con_close_socket(struct ceph_connection *con) 599 { 600 int rc = 0; 601 602 dout("con_close_socket on %p sock %p\n", con, con->sock); 603 if (con->sock) { 604 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 605 sock_release(con->sock); 606 con->sock = NULL; 607 } 608 609 /* 610 * Forcibly clear the SOCK_CLOSED flag. It gets set 611 * independent of the connection mutex, and we could have 612 * received a socket close event before we had the chance to 613 * shut the socket down. 614 */ 615 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 616 617 con_sock_state_closed(con); 618 return rc; 619 } 620 621 /* 622 * Reset a connection. Discard all incoming and outgoing messages 623 * and clear *_seq state. 624 */ 625 static void ceph_msg_remove(struct ceph_msg *msg) 626 { 627 list_del_init(&msg->list_head); 628 629 ceph_msg_put(msg); 630 } 631 static void ceph_msg_remove_list(struct list_head *head) 632 { 633 while (!list_empty(head)) { 634 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 635 list_head); 636 ceph_msg_remove(msg); 637 } 638 } 639 640 static void reset_connection(struct ceph_connection *con) 641 { 642 /* reset connection, out_queue, msg_ and connect_seq */ 643 /* discard existing out_queue and msg_seq */ 644 dout("reset_connection %p\n", con); 645 ceph_msg_remove_list(&con->out_queue); 646 ceph_msg_remove_list(&con->out_sent); 647 648 if (con->in_msg) { 649 BUG_ON(con->in_msg->con != con); 650 ceph_msg_put(con->in_msg); 651 con->in_msg = NULL; 652 } 653 654 con->connect_seq = 0; 655 con->out_seq = 0; 656 if (con->out_msg) { 657 BUG_ON(con->out_msg->con != con); 658 ceph_msg_put(con->out_msg); 659 con->out_msg = NULL; 660 } 661 con->in_seq = 0; 662 con->in_seq_acked = 0; 663 664 con->out_skip = 0; 665 } 666 667 /* 668 * mark a peer down. drop any open connections. 669 */ 670 void ceph_con_close(struct ceph_connection *con) 671 { 672 mutex_lock(&con->mutex); 673 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 674 con->state = CON_STATE_CLOSED; 675 676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 678 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 679 con_flag_clear(con, CON_FLAG_BACKOFF); 680 681 reset_connection(con); 682 con->peer_global_seq = 0; 683 cancel_con(con); 684 con_close_socket(con); 685 mutex_unlock(&con->mutex); 686 } 687 EXPORT_SYMBOL(ceph_con_close); 688 689 /* 690 * Reopen a closed connection, with a new peer address. 691 */ 692 void ceph_con_open(struct ceph_connection *con, 693 __u8 entity_type, __u64 entity_num, 694 struct ceph_entity_addr *addr) 695 { 696 mutex_lock(&con->mutex); 697 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 698 699 WARN_ON(con->state != CON_STATE_CLOSED); 700 con->state = CON_STATE_PREOPEN; 701 702 con->peer_name.type = (__u8) entity_type; 703 con->peer_name.num = cpu_to_le64(entity_num); 704 705 memcpy(&con->peer_addr, addr, sizeof(*addr)); 706 con->delay = 0; /* reset backoff memory */ 707 mutex_unlock(&con->mutex); 708 queue_con(con); 709 } 710 EXPORT_SYMBOL(ceph_con_open); 711 712 /* 713 * return true if this connection ever successfully opened 714 */ 715 bool ceph_con_opened(struct ceph_connection *con) 716 { 717 return con->connect_seq > 0; 718 } 719 720 /* 721 * initialize a new connection. 722 */ 723 void ceph_con_init(struct ceph_connection *con, void *private, 724 const struct ceph_connection_operations *ops, 725 struct ceph_messenger *msgr) 726 { 727 dout("con_init %p\n", con); 728 memset(con, 0, sizeof(*con)); 729 con->private = private; 730 con->ops = ops; 731 con->msgr = msgr; 732 733 con_sock_state_init(con); 734 735 mutex_init(&con->mutex); 736 INIT_LIST_HEAD(&con->out_queue); 737 INIT_LIST_HEAD(&con->out_sent); 738 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 739 740 con->state = CON_STATE_CLOSED; 741 } 742 EXPORT_SYMBOL(ceph_con_init); 743 744 745 /* 746 * We maintain a global counter to order connection attempts. Get 747 * a unique seq greater than @gt. 748 */ 749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 750 { 751 u32 ret; 752 753 spin_lock(&msgr->global_seq_lock); 754 if (msgr->global_seq < gt) 755 msgr->global_seq = gt; 756 ret = ++msgr->global_seq; 757 spin_unlock(&msgr->global_seq_lock); 758 return ret; 759 } 760 761 static void con_out_kvec_reset(struct ceph_connection *con) 762 { 763 BUG_ON(con->out_skip); 764 765 con->out_kvec_left = 0; 766 con->out_kvec_bytes = 0; 767 con->out_kvec_cur = &con->out_kvec[0]; 768 } 769 770 static void con_out_kvec_add(struct ceph_connection *con, 771 size_t size, void *data) 772 { 773 int index = con->out_kvec_left; 774 775 BUG_ON(con->out_skip); 776 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 777 778 con->out_kvec[index].iov_len = size; 779 con->out_kvec[index].iov_base = data; 780 con->out_kvec_left++; 781 con->out_kvec_bytes += size; 782 } 783 784 /* 785 * Chop off a kvec from the end. Return residual number of bytes for 786 * that kvec, i.e. how many bytes would have been written if the kvec 787 * hadn't been nuked. 788 */ 789 static int con_out_kvec_skip(struct ceph_connection *con) 790 { 791 int off = con->out_kvec_cur - con->out_kvec; 792 int skip = 0; 793 794 if (con->out_kvec_bytes > 0) { 795 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len; 796 BUG_ON(con->out_kvec_bytes < skip); 797 BUG_ON(!con->out_kvec_left); 798 con->out_kvec_bytes -= skip; 799 con->out_kvec_left--; 800 } 801 802 return skip; 803 } 804 805 #ifdef CONFIG_BLOCK 806 807 /* 808 * For a bio data item, a piece is whatever remains of the next 809 * entry in the current bio iovec, or the first entry in the next 810 * bio in the list. 811 */ 812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 813 size_t length) 814 { 815 struct ceph_msg_data *data = cursor->data; 816 struct ceph_bio_iter *it = &cursor->bio_iter; 817 818 cursor->resid = min_t(size_t, length, data->bio_length); 819 *it = data->bio_pos; 820 if (cursor->resid < it->iter.bi_size) 821 it->iter.bi_size = cursor->resid; 822 823 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 824 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 825 } 826 827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 828 size_t *page_offset, 829 size_t *length) 830 { 831 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 832 cursor->bio_iter.iter); 833 834 *page_offset = bv.bv_offset; 835 *length = bv.bv_len; 836 return bv.bv_page; 837 } 838 839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 840 size_t bytes) 841 { 842 struct ceph_bio_iter *it = &cursor->bio_iter; 843 struct page *page = bio_iter_page(it->bio, it->iter); 844 845 BUG_ON(bytes > cursor->resid); 846 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 847 cursor->resid -= bytes; 848 bio_advance_iter(it->bio, &it->iter, bytes); 849 850 if (!cursor->resid) { 851 BUG_ON(!cursor->last_piece); 852 return false; /* no more data */ 853 } 854 855 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 856 page == bio_iter_page(it->bio, it->iter))) 857 return false; /* more bytes to process in this segment */ 858 859 if (!it->iter.bi_size) { 860 it->bio = it->bio->bi_next; 861 it->iter = it->bio->bi_iter; 862 if (cursor->resid < it->iter.bi_size) 863 it->iter.bi_size = cursor->resid; 864 } 865 866 BUG_ON(cursor->last_piece); 867 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 868 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter); 869 return true; 870 } 871 #endif /* CONFIG_BLOCK */ 872 873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 874 size_t length) 875 { 876 struct ceph_msg_data *data = cursor->data; 877 struct bio_vec *bvecs = data->bvec_pos.bvecs; 878 879 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 880 cursor->bvec_iter = data->bvec_pos.iter; 881 cursor->bvec_iter.bi_size = cursor->resid; 882 883 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 884 cursor->last_piece = 885 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 886 } 887 888 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 889 size_t *page_offset, 890 size_t *length) 891 { 892 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 893 cursor->bvec_iter); 894 895 *page_offset = bv.bv_offset; 896 *length = bv.bv_len; 897 return bv.bv_page; 898 } 899 900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 901 size_t bytes) 902 { 903 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 904 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 905 906 BUG_ON(bytes > cursor->resid); 907 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 908 cursor->resid -= bytes; 909 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 910 911 if (!cursor->resid) { 912 BUG_ON(!cursor->last_piece); 913 return false; /* no more data */ 914 } 915 916 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 917 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 918 return false; /* more bytes to process in this segment */ 919 920 BUG_ON(cursor->last_piece); 921 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 922 cursor->last_piece = 923 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter); 924 return true; 925 } 926 927 /* 928 * For a page array, a piece comes from the first page in the array 929 * that has not already been fully consumed. 930 */ 931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 932 size_t length) 933 { 934 struct ceph_msg_data *data = cursor->data; 935 int page_count; 936 937 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 938 939 BUG_ON(!data->pages); 940 BUG_ON(!data->length); 941 942 cursor->resid = min(length, data->length); 943 page_count = calc_pages_for(data->alignment, (u64)data->length); 944 cursor->page_offset = data->alignment & ~PAGE_MASK; 945 cursor->page_index = 0; 946 BUG_ON(page_count > (int)USHRT_MAX); 947 cursor->page_count = (unsigned short)page_count; 948 BUG_ON(length > SIZE_MAX - cursor->page_offset); 949 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 950 } 951 952 static struct page * 953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 954 size_t *page_offset, size_t *length) 955 { 956 struct ceph_msg_data *data = cursor->data; 957 958 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 959 960 BUG_ON(cursor->page_index >= cursor->page_count); 961 BUG_ON(cursor->page_offset >= PAGE_SIZE); 962 963 *page_offset = cursor->page_offset; 964 if (cursor->last_piece) 965 *length = cursor->resid; 966 else 967 *length = PAGE_SIZE - *page_offset; 968 969 return data->pages[cursor->page_index]; 970 } 971 972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 973 size_t bytes) 974 { 975 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 976 977 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 978 979 /* Advance the cursor page offset */ 980 981 cursor->resid -= bytes; 982 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 983 if (!bytes || cursor->page_offset) 984 return false; /* more bytes to process in the current page */ 985 986 if (!cursor->resid) 987 return false; /* no more data */ 988 989 /* Move on to the next page; offset is already at 0 */ 990 991 BUG_ON(cursor->page_index >= cursor->page_count); 992 cursor->page_index++; 993 cursor->last_piece = cursor->resid <= PAGE_SIZE; 994 995 return true; 996 } 997 998 /* 999 * For a pagelist, a piece is whatever remains to be consumed in the 1000 * first page in the list, or the front of the next page. 1001 */ 1002 static void 1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 1004 size_t length) 1005 { 1006 struct ceph_msg_data *data = cursor->data; 1007 struct ceph_pagelist *pagelist; 1008 struct page *page; 1009 1010 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1011 1012 pagelist = data->pagelist; 1013 BUG_ON(!pagelist); 1014 1015 if (!length) 1016 return; /* pagelist can be assigned but empty */ 1017 1018 BUG_ON(list_empty(&pagelist->head)); 1019 page = list_first_entry(&pagelist->head, struct page, lru); 1020 1021 cursor->resid = min(length, pagelist->length); 1022 cursor->page = page; 1023 cursor->offset = 0; 1024 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1025 } 1026 1027 static struct page * 1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 1029 size_t *page_offset, size_t *length) 1030 { 1031 struct ceph_msg_data *data = cursor->data; 1032 struct ceph_pagelist *pagelist; 1033 1034 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1035 1036 pagelist = data->pagelist; 1037 BUG_ON(!pagelist); 1038 1039 BUG_ON(!cursor->page); 1040 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1041 1042 /* offset of first page in pagelist is always 0 */ 1043 *page_offset = cursor->offset & ~PAGE_MASK; 1044 if (cursor->last_piece) 1045 *length = cursor->resid; 1046 else 1047 *length = PAGE_SIZE - *page_offset; 1048 1049 return cursor->page; 1050 } 1051 1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1053 size_t bytes) 1054 { 1055 struct ceph_msg_data *data = cursor->data; 1056 struct ceph_pagelist *pagelist; 1057 1058 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1059 1060 pagelist = data->pagelist; 1061 BUG_ON(!pagelist); 1062 1063 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1064 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1065 1066 /* Advance the cursor offset */ 1067 1068 cursor->resid -= bytes; 1069 cursor->offset += bytes; 1070 /* offset of first page in pagelist is always 0 */ 1071 if (!bytes || cursor->offset & ~PAGE_MASK) 1072 return false; /* more bytes to process in the current page */ 1073 1074 if (!cursor->resid) 1075 return false; /* no more data */ 1076 1077 /* Move on to the next page */ 1078 1079 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1080 cursor->page = list_next_entry(cursor->page, lru); 1081 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1082 1083 return true; 1084 } 1085 1086 /* 1087 * Message data is handled (sent or received) in pieces, where each 1088 * piece resides on a single page. The network layer might not 1089 * consume an entire piece at once. A data item's cursor keeps 1090 * track of which piece is next to process and how much remains to 1091 * be processed in that piece. It also tracks whether the current 1092 * piece is the last one in the data item. 1093 */ 1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1095 { 1096 size_t length = cursor->total_resid; 1097 1098 switch (cursor->data->type) { 1099 case CEPH_MSG_DATA_PAGELIST: 1100 ceph_msg_data_pagelist_cursor_init(cursor, length); 1101 break; 1102 case CEPH_MSG_DATA_PAGES: 1103 ceph_msg_data_pages_cursor_init(cursor, length); 1104 break; 1105 #ifdef CONFIG_BLOCK 1106 case CEPH_MSG_DATA_BIO: 1107 ceph_msg_data_bio_cursor_init(cursor, length); 1108 break; 1109 #endif /* CONFIG_BLOCK */ 1110 case CEPH_MSG_DATA_BVECS: 1111 ceph_msg_data_bvecs_cursor_init(cursor, length); 1112 break; 1113 case CEPH_MSG_DATA_NONE: 1114 default: 1115 /* BUG(); */ 1116 break; 1117 } 1118 cursor->need_crc = true; 1119 } 1120 1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1122 { 1123 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1124 1125 BUG_ON(!length); 1126 BUG_ON(length > msg->data_length); 1127 BUG_ON(!msg->num_data_items); 1128 1129 cursor->total_resid = length; 1130 cursor->data = msg->data; 1131 1132 __ceph_msg_data_cursor_init(cursor); 1133 } 1134 1135 /* 1136 * Return the page containing the next piece to process for a given 1137 * data item, and supply the page offset and length of that piece. 1138 * Indicate whether this is the last piece in this data item. 1139 */ 1140 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1141 size_t *page_offset, size_t *length, 1142 bool *last_piece) 1143 { 1144 struct page *page; 1145 1146 switch (cursor->data->type) { 1147 case CEPH_MSG_DATA_PAGELIST: 1148 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1149 break; 1150 case CEPH_MSG_DATA_PAGES: 1151 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1152 break; 1153 #ifdef CONFIG_BLOCK 1154 case CEPH_MSG_DATA_BIO: 1155 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1156 break; 1157 #endif /* CONFIG_BLOCK */ 1158 case CEPH_MSG_DATA_BVECS: 1159 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1160 break; 1161 case CEPH_MSG_DATA_NONE: 1162 default: 1163 page = NULL; 1164 break; 1165 } 1166 1167 BUG_ON(!page); 1168 BUG_ON(*page_offset + *length > PAGE_SIZE); 1169 BUG_ON(!*length); 1170 BUG_ON(*length > cursor->resid); 1171 if (last_piece) 1172 *last_piece = cursor->last_piece; 1173 1174 return page; 1175 } 1176 1177 /* 1178 * Returns true if the result moves the cursor on to the next piece 1179 * of the data item. 1180 */ 1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1182 size_t bytes) 1183 { 1184 bool new_piece; 1185 1186 BUG_ON(bytes > cursor->resid); 1187 switch (cursor->data->type) { 1188 case CEPH_MSG_DATA_PAGELIST: 1189 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1190 break; 1191 case CEPH_MSG_DATA_PAGES: 1192 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1193 break; 1194 #ifdef CONFIG_BLOCK 1195 case CEPH_MSG_DATA_BIO: 1196 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1197 break; 1198 #endif /* CONFIG_BLOCK */ 1199 case CEPH_MSG_DATA_BVECS: 1200 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1201 break; 1202 case CEPH_MSG_DATA_NONE: 1203 default: 1204 BUG(); 1205 break; 1206 } 1207 cursor->total_resid -= bytes; 1208 1209 if (!cursor->resid && cursor->total_resid) { 1210 WARN_ON(!cursor->last_piece); 1211 cursor->data++; 1212 __ceph_msg_data_cursor_init(cursor); 1213 new_piece = true; 1214 } 1215 cursor->need_crc = new_piece; 1216 } 1217 1218 static size_t sizeof_footer(struct ceph_connection *con) 1219 { 1220 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ? 1221 sizeof(struct ceph_msg_footer) : 1222 sizeof(struct ceph_msg_footer_old); 1223 } 1224 1225 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1226 { 1227 /* Initialize data cursor */ 1228 1229 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1230 } 1231 1232 /* 1233 * Prepare footer for currently outgoing message, and finish things 1234 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1235 */ 1236 static void prepare_write_message_footer(struct ceph_connection *con) 1237 { 1238 struct ceph_msg *m = con->out_msg; 1239 1240 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1241 1242 dout("prepare_write_message_footer %p\n", con); 1243 con_out_kvec_add(con, sizeof_footer(con), &m->footer); 1244 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { 1245 if (con->ops->sign_message) 1246 con->ops->sign_message(m); 1247 else 1248 m->footer.sig = 0; 1249 } else { 1250 m->old_footer.flags = m->footer.flags; 1251 } 1252 con->out_more = m->more_to_follow; 1253 con->out_msg_done = true; 1254 } 1255 1256 /* 1257 * Prepare headers for the next outgoing message. 1258 */ 1259 static void prepare_write_message(struct ceph_connection *con) 1260 { 1261 struct ceph_msg *m; 1262 u32 crc; 1263 1264 con_out_kvec_reset(con); 1265 con->out_msg_done = false; 1266 1267 /* Sneak an ack in there first? If we can get it into the same 1268 * TCP packet that's a good thing. */ 1269 if (con->in_seq > con->in_seq_acked) { 1270 con->in_seq_acked = con->in_seq; 1271 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1272 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1273 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1274 &con->out_temp_ack); 1275 } 1276 1277 BUG_ON(list_empty(&con->out_queue)); 1278 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1279 con->out_msg = m; 1280 BUG_ON(m->con != con); 1281 1282 /* put message on sent list */ 1283 ceph_msg_get(m); 1284 list_move_tail(&m->list_head, &con->out_sent); 1285 1286 /* 1287 * only assign outgoing seq # if we haven't sent this message 1288 * yet. if it is requeued, resend with it's original seq. 1289 */ 1290 if (m->needs_out_seq) { 1291 m->hdr.seq = cpu_to_le64(++con->out_seq); 1292 m->needs_out_seq = false; 1293 1294 if (con->ops->reencode_message) 1295 con->ops->reencode_message(m); 1296 } 1297 1298 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1299 m, con->out_seq, le16_to_cpu(m->hdr.type), 1300 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1301 m->data_length); 1302 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len)); 1303 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1304 1305 /* tag + hdr + front + middle */ 1306 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1307 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr); 1308 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1309 1310 if (m->middle) 1311 con_out_kvec_add(con, m->middle->vec.iov_len, 1312 m->middle->vec.iov_base); 1313 1314 /* fill in hdr crc and finalize hdr */ 1315 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1316 con->out_msg->hdr.crc = cpu_to_le32(crc); 1317 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr)); 1318 1319 /* fill in front and middle crc, footer */ 1320 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1321 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1322 if (m->middle) { 1323 crc = crc32c(0, m->middle->vec.iov_base, 1324 m->middle->vec.iov_len); 1325 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1326 } else 1327 con->out_msg->footer.middle_crc = 0; 1328 dout("%s front_crc %u middle_crc %u\n", __func__, 1329 le32_to_cpu(con->out_msg->footer.front_crc), 1330 le32_to_cpu(con->out_msg->footer.middle_crc)); 1331 con->out_msg->footer.flags = 0; 1332 1333 /* is there a data payload? */ 1334 con->out_msg->footer.data_crc = 0; 1335 if (m->data_length) { 1336 prepare_message_data(con->out_msg, m->data_length); 1337 con->out_more = 1; /* data + footer will follow */ 1338 } else { 1339 /* no, queue up footer too and be done */ 1340 prepare_write_message_footer(con); 1341 } 1342 1343 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1344 } 1345 1346 /* 1347 * Prepare an ack. 1348 */ 1349 static void prepare_write_ack(struct ceph_connection *con) 1350 { 1351 dout("prepare_write_ack %p %llu -> %llu\n", con, 1352 con->in_seq_acked, con->in_seq); 1353 con->in_seq_acked = con->in_seq; 1354 1355 con_out_kvec_reset(con); 1356 1357 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1358 1359 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1360 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1361 &con->out_temp_ack); 1362 1363 con->out_more = 1; /* more will follow.. eventually.. */ 1364 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1365 } 1366 1367 /* 1368 * Prepare to share the seq during handshake 1369 */ 1370 static void prepare_write_seq(struct ceph_connection *con) 1371 { 1372 dout("prepare_write_seq %p %llu -> %llu\n", con, 1373 con->in_seq_acked, con->in_seq); 1374 con->in_seq_acked = con->in_seq; 1375 1376 con_out_kvec_reset(con); 1377 1378 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1379 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1380 &con->out_temp_ack); 1381 1382 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1383 } 1384 1385 /* 1386 * Prepare to write keepalive byte. 1387 */ 1388 static void prepare_write_keepalive(struct ceph_connection *con) 1389 { 1390 dout("prepare_write_keepalive %p\n", con); 1391 con_out_kvec_reset(con); 1392 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) { 1393 struct timespec64 now; 1394 1395 ktime_get_real_ts64(&now); 1396 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2); 1397 ceph_encode_timespec64(&con->out_temp_keepalive2, &now); 1398 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2), 1399 &con->out_temp_keepalive2); 1400 } else { 1401 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive); 1402 } 1403 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1404 } 1405 1406 /* 1407 * Connection negotiation. 1408 */ 1409 1410 static int get_connect_authorizer(struct ceph_connection *con) 1411 { 1412 struct ceph_auth_handshake *auth; 1413 int auth_proto; 1414 1415 if (!con->ops->get_authorizer) { 1416 con->auth = NULL; 1417 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1418 con->out_connect.authorizer_len = 0; 1419 return 0; 1420 } 1421 1422 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry); 1423 if (IS_ERR(auth)) 1424 return PTR_ERR(auth); 1425 1426 con->auth = auth; 1427 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1428 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len); 1429 return 0; 1430 } 1431 1432 /* 1433 * We connected to a peer and are saying hello. 1434 */ 1435 static void prepare_write_banner(struct ceph_connection *con) 1436 { 1437 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1438 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1439 &con->msgr->my_enc_addr); 1440 1441 con->out_more = 0; 1442 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1443 } 1444 1445 static void __prepare_write_connect(struct ceph_connection *con) 1446 { 1447 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect); 1448 if (con->auth) 1449 con_out_kvec_add(con, con->auth->authorizer_buf_len, 1450 con->auth->authorizer_buf); 1451 1452 con->out_more = 0; 1453 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1454 } 1455 1456 static int prepare_write_connect(struct ceph_connection *con) 1457 { 1458 unsigned int global_seq = get_global_seq(con->msgr, 0); 1459 int proto; 1460 int ret; 1461 1462 switch (con->peer_name.type) { 1463 case CEPH_ENTITY_TYPE_MON: 1464 proto = CEPH_MONC_PROTOCOL; 1465 break; 1466 case CEPH_ENTITY_TYPE_OSD: 1467 proto = CEPH_OSDC_PROTOCOL; 1468 break; 1469 case CEPH_ENTITY_TYPE_MDS: 1470 proto = CEPH_MDSC_PROTOCOL; 1471 break; 1472 default: 1473 BUG(); 1474 } 1475 1476 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1477 con->connect_seq, global_seq, proto); 1478 1479 con->out_connect.features = 1480 cpu_to_le64(from_msgr(con->msgr)->supported_features); 1481 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1482 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1483 con->out_connect.global_seq = cpu_to_le32(global_seq); 1484 con->out_connect.protocol_version = cpu_to_le32(proto); 1485 con->out_connect.flags = 0; 1486 1487 ret = get_connect_authorizer(con); 1488 if (ret) 1489 return ret; 1490 1491 __prepare_write_connect(con); 1492 return 0; 1493 } 1494 1495 /* 1496 * write as much of pending kvecs to the socket as we can. 1497 * 1 -> done 1498 * 0 -> socket full, but more to do 1499 * <0 -> error 1500 */ 1501 static int write_partial_kvec(struct ceph_connection *con) 1502 { 1503 int ret; 1504 1505 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1506 while (con->out_kvec_bytes > 0) { 1507 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1508 con->out_kvec_left, con->out_kvec_bytes, 1509 con->out_more); 1510 if (ret <= 0) 1511 goto out; 1512 con->out_kvec_bytes -= ret; 1513 if (con->out_kvec_bytes == 0) 1514 break; /* done */ 1515 1516 /* account for full iov entries consumed */ 1517 while (ret >= con->out_kvec_cur->iov_len) { 1518 BUG_ON(!con->out_kvec_left); 1519 ret -= con->out_kvec_cur->iov_len; 1520 con->out_kvec_cur++; 1521 con->out_kvec_left--; 1522 } 1523 /* and for a partially-consumed entry */ 1524 if (ret) { 1525 con->out_kvec_cur->iov_len -= ret; 1526 con->out_kvec_cur->iov_base += ret; 1527 } 1528 } 1529 con->out_kvec_left = 0; 1530 ret = 1; 1531 out: 1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1533 con->out_kvec_bytes, con->out_kvec_left, ret); 1534 return ret; /* done! */ 1535 } 1536 1537 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1538 unsigned int page_offset, 1539 unsigned int length) 1540 { 1541 char *kaddr; 1542 1543 kaddr = kmap(page); 1544 BUG_ON(kaddr == NULL); 1545 crc = crc32c(crc, kaddr + page_offset, length); 1546 kunmap(page); 1547 1548 return crc; 1549 } 1550 /* 1551 * Write as much message data payload as we can. If we finish, queue 1552 * up the footer. 1553 * 1 -> done, footer is now queued in out_kvec[]. 1554 * 0 -> socket full, but more to do 1555 * <0 -> error 1556 */ 1557 static int write_partial_message_data(struct ceph_connection *con) 1558 { 1559 struct ceph_msg *msg = con->out_msg; 1560 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1561 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 1562 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1563 u32 crc; 1564 1565 dout("%s %p msg %p\n", __func__, con, msg); 1566 1567 if (!msg->num_data_items) 1568 return -EINVAL; 1569 1570 /* 1571 * Iterate through each page that contains data to be 1572 * written, and send as much as possible for each. 1573 * 1574 * If we are calculating the data crc (the default), we will 1575 * need to map the page. If we have no pages, they have 1576 * been revoked, so use the zero page. 1577 */ 1578 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1579 while (cursor->total_resid) { 1580 struct page *page; 1581 size_t page_offset; 1582 size_t length; 1583 int ret; 1584 1585 if (!cursor->resid) { 1586 ceph_msg_data_advance(cursor, 0); 1587 continue; 1588 } 1589 1590 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 1591 if (length == cursor->total_resid) 1592 more = MSG_MORE; 1593 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length, 1594 more); 1595 if (ret <= 0) { 1596 if (do_datacrc) 1597 msg->footer.data_crc = cpu_to_le32(crc); 1598 1599 return ret; 1600 } 1601 if (do_datacrc && cursor->need_crc) 1602 crc = ceph_crc32c_page(crc, page, page_offset, length); 1603 ceph_msg_data_advance(cursor, (size_t)ret); 1604 } 1605 1606 dout("%s %p msg %p done\n", __func__, con, msg); 1607 1608 /* prepare and queue up footer, too */ 1609 if (do_datacrc) 1610 msg->footer.data_crc = cpu_to_le32(crc); 1611 else 1612 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1613 con_out_kvec_reset(con); 1614 prepare_write_message_footer(con); 1615 1616 return 1; /* must return > 0 to indicate success */ 1617 } 1618 1619 /* 1620 * write some zeros 1621 */ 1622 static int write_partial_skip(struct ceph_connection *con) 1623 { 1624 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST; 1625 int ret; 1626 1627 dout("%s %p %d left\n", __func__, con, con->out_skip); 1628 while (con->out_skip > 0) { 1629 size_t size = min(con->out_skip, (int) PAGE_SIZE); 1630 1631 if (size == con->out_skip) 1632 more = MSG_MORE; 1633 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more); 1634 if (ret <= 0) 1635 goto out; 1636 con->out_skip -= ret; 1637 } 1638 ret = 1; 1639 out: 1640 return ret; 1641 } 1642 1643 /* 1644 * Prepare to read connection handshake, or an ack. 1645 */ 1646 static void prepare_read_banner(struct ceph_connection *con) 1647 { 1648 dout("prepare_read_banner %p\n", con); 1649 con->in_base_pos = 0; 1650 } 1651 1652 static void prepare_read_connect(struct ceph_connection *con) 1653 { 1654 dout("prepare_read_connect %p\n", con); 1655 con->in_base_pos = 0; 1656 } 1657 1658 static void prepare_read_ack(struct ceph_connection *con) 1659 { 1660 dout("prepare_read_ack %p\n", con); 1661 con->in_base_pos = 0; 1662 } 1663 1664 static void prepare_read_seq(struct ceph_connection *con) 1665 { 1666 dout("prepare_read_seq %p\n", con); 1667 con->in_base_pos = 0; 1668 con->in_tag = CEPH_MSGR_TAG_SEQ; 1669 } 1670 1671 static void prepare_read_tag(struct ceph_connection *con) 1672 { 1673 dout("prepare_read_tag %p\n", con); 1674 con->in_base_pos = 0; 1675 con->in_tag = CEPH_MSGR_TAG_READY; 1676 } 1677 1678 static void prepare_read_keepalive_ack(struct ceph_connection *con) 1679 { 1680 dout("prepare_read_keepalive_ack %p\n", con); 1681 con->in_base_pos = 0; 1682 } 1683 1684 /* 1685 * Prepare to read a message. 1686 */ 1687 static int prepare_read_message(struct ceph_connection *con) 1688 { 1689 dout("prepare_read_message %p\n", con); 1690 BUG_ON(con->in_msg != NULL); 1691 con->in_base_pos = 0; 1692 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1693 return 0; 1694 } 1695 1696 1697 static int read_partial(struct ceph_connection *con, 1698 int end, int size, void *object) 1699 { 1700 while (con->in_base_pos < end) { 1701 int left = end - con->in_base_pos; 1702 int have = size - left; 1703 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1704 if (ret <= 0) 1705 return ret; 1706 con->in_base_pos += ret; 1707 } 1708 return 1; 1709 } 1710 1711 1712 /* 1713 * Read all or part of the connect-side handshake on a new connection 1714 */ 1715 static int read_partial_banner(struct ceph_connection *con) 1716 { 1717 int size; 1718 int end; 1719 int ret; 1720 1721 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1722 1723 /* peer's banner */ 1724 size = strlen(CEPH_BANNER); 1725 end = size; 1726 ret = read_partial(con, end, size, con->in_banner); 1727 if (ret <= 0) 1728 goto out; 1729 1730 size = sizeof (con->actual_peer_addr); 1731 end += size; 1732 ret = read_partial(con, end, size, &con->actual_peer_addr); 1733 if (ret <= 0) 1734 goto out; 1735 1736 size = sizeof (con->peer_addr_for_me); 1737 end += size; 1738 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1739 if (ret <= 0) 1740 goto out; 1741 1742 out: 1743 return ret; 1744 } 1745 1746 static int read_partial_connect(struct ceph_connection *con) 1747 { 1748 int size; 1749 int end; 1750 int ret; 1751 1752 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1753 1754 size = sizeof (con->in_reply); 1755 end = size; 1756 ret = read_partial(con, end, size, &con->in_reply); 1757 if (ret <= 0) 1758 goto out; 1759 1760 if (con->auth) { 1761 size = le32_to_cpu(con->in_reply.authorizer_len); 1762 if (size > con->auth->authorizer_reply_buf_len) { 1763 pr_err("authorizer reply too big: %d > %zu\n", size, 1764 con->auth->authorizer_reply_buf_len); 1765 ret = -EINVAL; 1766 goto out; 1767 } 1768 1769 end += size; 1770 ret = read_partial(con, end, size, 1771 con->auth->authorizer_reply_buf); 1772 if (ret <= 0) 1773 goto out; 1774 } 1775 1776 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1777 con, (int)con->in_reply.tag, 1778 le32_to_cpu(con->in_reply.connect_seq), 1779 le32_to_cpu(con->in_reply.global_seq)); 1780 out: 1781 return ret; 1782 } 1783 1784 /* 1785 * Verify the hello banner looks okay. 1786 */ 1787 static int verify_hello(struct ceph_connection *con) 1788 { 1789 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1790 pr_err("connect to %s got bad banner\n", 1791 ceph_pr_addr(&con->peer_addr)); 1792 con->error_msg = "protocol error, bad banner"; 1793 return -1; 1794 } 1795 return 0; 1796 } 1797 1798 static bool addr_is_blank(struct ceph_entity_addr *addr) 1799 { 1800 struct sockaddr_storage ss = addr->in_addr; /* align */ 1801 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1802 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1803 1804 switch (ss.ss_family) { 1805 case AF_INET: 1806 return addr4->s_addr == htonl(INADDR_ANY); 1807 case AF_INET6: 1808 return ipv6_addr_any(addr6); 1809 default: 1810 return true; 1811 } 1812 } 1813 1814 static int addr_port(struct ceph_entity_addr *addr) 1815 { 1816 switch (get_unaligned(&addr->in_addr.ss_family)) { 1817 case AF_INET: 1818 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1819 case AF_INET6: 1820 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1821 } 1822 return 0; 1823 } 1824 1825 static void addr_set_port(struct ceph_entity_addr *addr, int p) 1826 { 1827 switch (get_unaligned(&addr->in_addr.ss_family)) { 1828 case AF_INET: 1829 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1830 break; 1831 case AF_INET6: 1832 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1833 break; 1834 } 1835 } 1836 1837 /* 1838 * Unlike other *_pton function semantics, zero indicates success. 1839 */ 1840 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1841 char delim, const char **ipend) 1842 { 1843 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1844 1845 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1846 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1847 return 0; 1848 } 1849 1850 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1851 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1852 return 0; 1853 } 1854 1855 return -EINVAL; 1856 } 1857 1858 /* 1859 * Extract hostname string and resolve using kernel DNS facility. 1860 */ 1861 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1862 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1863 struct ceph_entity_addr *addr, char delim, const char **ipend) 1864 { 1865 const char *end, *delim_p; 1866 char *colon_p, *ip_addr = NULL; 1867 int ip_len, ret; 1868 1869 /* 1870 * The end of the hostname occurs immediately preceding the delimiter or 1871 * the port marker (':') where the delimiter takes precedence. 1872 */ 1873 delim_p = memchr(name, delim, namelen); 1874 colon_p = memchr(name, ':', namelen); 1875 1876 if (delim_p && colon_p) 1877 end = delim_p < colon_p ? delim_p : colon_p; 1878 else if (!delim_p && colon_p) 1879 end = colon_p; 1880 else { 1881 end = delim_p; 1882 if (!end) /* case: hostname:/ */ 1883 end = name + namelen; 1884 } 1885 1886 if (end <= name) 1887 return -EINVAL; 1888 1889 /* do dns_resolve upcall */ 1890 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL, false); 1891 if (ip_len > 0) 1892 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1893 else 1894 ret = -ESRCH; 1895 1896 kfree(ip_addr); 1897 1898 *ipend = end; 1899 1900 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1901 ret, ret ? "failed" : ceph_pr_addr(addr)); 1902 1903 return ret; 1904 } 1905 #else 1906 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1907 struct ceph_entity_addr *addr, char delim, const char **ipend) 1908 { 1909 return -EINVAL; 1910 } 1911 #endif 1912 1913 /* 1914 * Parse a server name (IP or hostname). If a valid IP address is not found 1915 * then try to extract a hostname to resolve using userspace DNS upcall. 1916 */ 1917 static int ceph_parse_server_name(const char *name, size_t namelen, 1918 struct ceph_entity_addr *addr, char delim, const char **ipend) 1919 { 1920 int ret; 1921 1922 ret = ceph_pton(name, namelen, addr, delim, ipend); 1923 if (ret) 1924 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1925 1926 return ret; 1927 } 1928 1929 /* 1930 * Parse an ip[:port] list into an addr array. Use the default 1931 * monitor port if a port isn't specified. 1932 */ 1933 int ceph_parse_ips(const char *c, const char *end, 1934 struct ceph_entity_addr *addr, 1935 int max_count, int *count) 1936 { 1937 int i, ret = -EINVAL; 1938 const char *p = c; 1939 1940 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1941 for (i = 0; i < max_count; i++) { 1942 const char *ipend; 1943 int port; 1944 char delim = ','; 1945 1946 if (*p == '[') { 1947 delim = ']'; 1948 p++; 1949 } 1950 1951 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend); 1952 if (ret) 1953 goto bad; 1954 ret = -EINVAL; 1955 1956 p = ipend; 1957 1958 if (delim == ']') { 1959 if (*p != ']') { 1960 dout("missing matching ']'\n"); 1961 goto bad; 1962 } 1963 p++; 1964 } 1965 1966 /* port? */ 1967 if (p < end && *p == ':') { 1968 port = 0; 1969 p++; 1970 while (p < end && *p >= '0' && *p <= '9') { 1971 port = (port * 10) + (*p - '0'); 1972 p++; 1973 } 1974 if (port == 0) 1975 port = CEPH_MON_PORT; 1976 else if (port > 65535) 1977 goto bad; 1978 } else { 1979 port = CEPH_MON_PORT; 1980 } 1981 1982 addr_set_port(&addr[i], port); 1983 1984 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i])); 1985 1986 if (p == end) 1987 break; 1988 if (*p != ',') 1989 goto bad; 1990 p++; 1991 } 1992 1993 if (p != end) 1994 goto bad; 1995 1996 if (count) 1997 *count = i + 1; 1998 return 0; 1999 2000 bad: 2001 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 2002 return ret; 2003 } 2004 EXPORT_SYMBOL(ceph_parse_ips); 2005 2006 static int process_banner(struct ceph_connection *con) 2007 { 2008 dout("process_banner on %p\n", con); 2009 2010 if (verify_hello(con) < 0) 2011 return -1; 2012 2013 ceph_decode_addr(&con->actual_peer_addr); 2014 ceph_decode_addr(&con->peer_addr_for_me); 2015 2016 /* 2017 * Make sure the other end is who we wanted. note that the other 2018 * end may not yet know their ip address, so if it's 0.0.0.0, give 2019 * them the benefit of the doubt. 2020 */ 2021 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 2022 sizeof(con->peer_addr)) != 0 && 2023 !(addr_is_blank(&con->actual_peer_addr) && 2024 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 2025 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 2026 ceph_pr_addr(&con->peer_addr), 2027 (int)le32_to_cpu(con->peer_addr.nonce), 2028 ceph_pr_addr(&con->actual_peer_addr), 2029 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 2030 con->error_msg = "wrong peer at address"; 2031 return -1; 2032 } 2033 2034 /* 2035 * did we learn our address? 2036 */ 2037 if (addr_is_blank(&con->msgr->inst.addr)) { 2038 int port = addr_port(&con->msgr->inst.addr); 2039 2040 memcpy(&con->msgr->inst.addr.in_addr, 2041 &con->peer_addr_for_me.in_addr, 2042 sizeof(con->peer_addr_for_me.in_addr)); 2043 addr_set_port(&con->msgr->inst.addr, port); 2044 encode_my_addr(con->msgr); 2045 dout("process_banner learned my addr is %s\n", 2046 ceph_pr_addr(&con->msgr->inst.addr)); 2047 } 2048 2049 return 0; 2050 } 2051 2052 static int process_connect(struct ceph_connection *con) 2053 { 2054 u64 sup_feat = from_msgr(con->msgr)->supported_features; 2055 u64 req_feat = from_msgr(con->msgr)->required_features; 2056 u64 server_feat = le64_to_cpu(con->in_reply.features); 2057 int ret; 2058 2059 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 2060 2061 if (con->auth) { 2062 int len = le32_to_cpu(con->in_reply.authorizer_len); 2063 2064 /* 2065 * Any connection that defines ->get_authorizer() 2066 * should also define ->add_authorizer_challenge() and 2067 * ->verify_authorizer_reply(). 2068 * 2069 * See get_connect_authorizer(). 2070 */ 2071 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) { 2072 ret = con->ops->add_authorizer_challenge( 2073 con, con->auth->authorizer_reply_buf, len); 2074 if (ret < 0) 2075 return ret; 2076 2077 con_out_kvec_reset(con); 2078 __prepare_write_connect(con); 2079 prepare_read_connect(con); 2080 return 0; 2081 } 2082 2083 if (len) { 2084 ret = con->ops->verify_authorizer_reply(con); 2085 if (ret < 0) { 2086 con->error_msg = "bad authorize reply"; 2087 return ret; 2088 } 2089 } 2090 } 2091 2092 switch (con->in_reply.tag) { 2093 case CEPH_MSGR_TAG_FEATURES: 2094 pr_err("%s%lld %s feature set mismatch," 2095 " my %llx < server's %llx, missing %llx\n", 2096 ENTITY_NAME(con->peer_name), 2097 ceph_pr_addr(&con->peer_addr), 2098 sup_feat, server_feat, server_feat & ~sup_feat); 2099 con->error_msg = "missing required protocol features"; 2100 reset_connection(con); 2101 return -1; 2102 2103 case CEPH_MSGR_TAG_BADPROTOVER: 2104 pr_err("%s%lld %s protocol version mismatch," 2105 " my %d != server's %d\n", 2106 ENTITY_NAME(con->peer_name), 2107 ceph_pr_addr(&con->peer_addr), 2108 le32_to_cpu(con->out_connect.protocol_version), 2109 le32_to_cpu(con->in_reply.protocol_version)); 2110 con->error_msg = "protocol version mismatch"; 2111 reset_connection(con); 2112 return -1; 2113 2114 case CEPH_MSGR_TAG_BADAUTHORIZER: 2115 con->auth_retry++; 2116 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2117 con->auth_retry); 2118 if (con->auth_retry == 2) { 2119 con->error_msg = "connect authorization failure"; 2120 return -1; 2121 } 2122 con_out_kvec_reset(con); 2123 ret = prepare_write_connect(con); 2124 if (ret < 0) 2125 return ret; 2126 prepare_read_connect(con); 2127 break; 2128 2129 case CEPH_MSGR_TAG_RESETSESSION: 2130 /* 2131 * If we connected with a large connect_seq but the peer 2132 * has no record of a session with us (no connection, or 2133 * connect_seq == 0), they will send RESETSESION to indicate 2134 * that they must have reset their session, and may have 2135 * dropped messages. 2136 */ 2137 dout("process_connect got RESET peer seq %u\n", 2138 le32_to_cpu(con->in_reply.connect_seq)); 2139 pr_err("%s%lld %s connection reset\n", 2140 ENTITY_NAME(con->peer_name), 2141 ceph_pr_addr(&con->peer_addr)); 2142 reset_connection(con); 2143 con_out_kvec_reset(con); 2144 ret = prepare_write_connect(con); 2145 if (ret < 0) 2146 return ret; 2147 prepare_read_connect(con); 2148 2149 /* Tell ceph about it. */ 2150 mutex_unlock(&con->mutex); 2151 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2152 if (con->ops->peer_reset) 2153 con->ops->peer_reset(con); 2154 mutex_lock(&con->mutex); 2155 if (con->state != CON_STATE_NEGOTIATING) 2156 return -EAGAIN; 2157 break; 2158 2159 case CEPH_MSGR_TAG_RETRY_SESSION: 2160 /* 2161 * If we sent a smaller connect_seq than the peer has, try 2162 * again with a larger value. 2163 */ 2164 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2165 le32_to_cpu(con->out_connect.connect_seq), 2166 le32_to_cpu(con->in_reply.connect_seq)); 2167 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2168 con_out_kvec_reset(con); 2169 ret = prepare_write_connect(con); 2170 if (ret < 0) 2171 return ret; 2172 prepare_read_connect(con); 2173 break; 2174 2175 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2176 /* 2177 * If we sent a smaller global_seq than the peer has, try 2178 * again with a larger value. 2179 */ 2180 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2181 con->peer_global_seq, 2182 le32_to_cpu(con->in_reply.global_seq)); 2183 get_global_seq(con->msgr, 2184 le32_to_cpu(con->in_reply.global_seq)); 2185 con_out_kvec_reset(con); 2186 ret = prepare_write_connect(con); 2187 if (ret < 0) 2188 return ret; 2189 prepare_read_connect(con); 2190 break; 2191 2192 case CEPH_MSGR_TAG_SEQ: 2193 case CEPH_MSGR_TAG_READY: 2194 if (req_feat & ~server_feat) { 2195 pr_err("%s%lld %s protocol feature mismatch," 2196 " my required %llx > server's %llx, need %llx\n", 2197 ENTITY_NAME(con->peer_name), 2198 ceph_pr_addr(&con->peer_addr), 2199 req_feat, server_feat, req_feat & ~server_feat); 2200 con->error_msg = "missing required protocol features"; 2201 reset_connection(con); 2202 return -1; 2203 } 2204 2205 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2206 con->state = CON_STATE_OPEN; 2207 con->auth_retry = 0; /* we authenticated; clear flag */ 2208 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2209 con->connect_seq++; 2210 con->peer_features = server_feat; 2211 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2212 con->peer_global_seq, 2213 le32_to_cpu(con->in_reply.connect_seq), 2214 con->connect_seq); 2215 WARN_ON(con->connect_seq != 2216 le32_to_cpu(con->in_reply.connect_seq)); 2217 2218 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2219 con_flag_set(con, CON_FLAG_LOSSYTX); 2220 2221 con->delay = 0; /* reset backoff memory */ 2222 2223 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2224 prepare_write_seq(con); 2225 prepare_read_seq(con); 2226 } else { 2227 prepare_read_tag(con); 2228 } 2229 break; 2230 2231 case CEPH_MSGR_TAG_WAIT: 2232 /* 2233 * If there is a connection race (we are opening 2234 * connections to each other), one of us may just have 2235 * to WAIT. This shouldn't happen if we are the 2236 * client. 2237 */ 2238 con->error_msg = "protocol error, got WAIT as client"; 2239 return -1; 2240 2241 default: 2242 con->error_msg = "protocol error, garbage tag during connect"; 2243 return -1; 2244 } 2245 return 0; 2246 } 2247 2248 2249 /* 2250 * read (part of) an ack 2251 */ 2252 static int read_partial_ack(struct ceph_connection *con) 2253 { 2254 int size = sizeof (con->in_temp_ack); 2255 int end = size; 2256 2257 return read_partial(con, end, size, &con->in_temp_ack); 2258 } 2259 2260 /* 2261 * We can finally discard anything that's been acked. 2262 */ 2263 static void process_ack(struct ceph_connection *con) 2264 { 2265 struct ceph_msg *m; 2266 u64 ack = le64_to_cpu(con->in_temp_ack); 2267 u64 seq; 2268 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ); 2269 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent; 2270 2271 /* 2272 * In the reconnect case, con_fault() has requeued messages 2273 * in out_sent. We should cleanup old messages according to 2274 * the reconnect seq. 2275 */ 2276 while (!list_empty(list)) { 2277 m = list_first_entry(list, struct ceph_msg, list_head); 2278 if (reconnect && m->needs_out_seq) 2279 break; 2280 seq = le64_to_cpu(m->hdr.seq); 2281 if (seq > ack) 2282 break; 2283 dout("got ack for seq %llu type %d at %p\n", seq, 2284 le16_to_cpu(m->hdr.type), m); 2285 m->ack_stamp = jiffies; 2286 ceph_msg_remove(m); 2287 } 2288 2289 prepare_read_tag(con); 2290 } 2291 2292 2293 static int read_partial_message_section(struct ceph_connection *con, 2294 struct kvec *section, 2295 unsigned int sec_len, u32 *crc) 2296 { 2297 int ret, left; 2298 2299 BUG_ON(!section); 2300 2301 while (section->iov_len < sec_len) { 2302 BUG_ON(section->iov_base == NULL); 2303 left = sec_len - section->iov_len; 2304 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2305 section->iov_len, left); 2306 if (ret <= 0) 2307 return ret; 2308 section->iov_len += ret; 2309 } 2310 if (section->iov_len == sec_len) 2311 *crc = crc32c(0, section->iov_base, section->iov_len); 2312 2313 return 1; 2314 } 2315 2316 static int read_partial_msg_data(struct ceph_connection *con) 2317 { 2318 struct ceph_msg *msg = con->in_msg; 2319 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2320 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2321 struct page *page; 2322 size_t page_offset; 2323 size_t length; 2324 u32 crc = 0; 2325 int ret; 2326 2327 if (!msg->num_data_items) 2328 return -EIO; 2329 2330 if (do_datacrc) 2331 crc = con->in_data_crc; 2332 while (cursor->total_resid) { 2333 if (!cursor->resid) { 2334 ceph_msg_data_advance(cursor, 0); 2335 continue; 2336 } 2337 2338 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL); 2339 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2340 if (ret <= 0) { 2341 if (do_datacrc) 2342 con->in_data_crc = crc; 2343 2344 return ret; 2345 } 2346 2347 if (do_datacrc) 2348 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2349 ceph_msg_data_advance(cursor, (size_t)ret); 2350 } 2351 if (do_datacrc) 2352 con->in_data_crc = crc; 2353 2354 return 1; /* must return > 0 to indicate success */ 2355 } 2356 2357 /* 2358 * read (part of) a message. 2359 */ 2360 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2361 2362 static int read_partial_message(struct ceph_connection *con) 2363 { 2364 struct ceph_msg *m = con->in_msg; 2365 int size; 2366 int end; 2367 int ret; 2368 unsigned int front_len, middle_len, data_len; 2369 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC); 2370 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); 2371 u64 seq; 2372 u32 crc; 2373 2374 dout("read_partial_message con %p msg %p\n", con, m); 2375 2376 /* header */ 2377 size = sizeof (con->in_hdr); 2378 end = size; 2379 ret = read_partial(con, end, size, &con->in_hdr); 2380 if (ret <= 0) 2381 return ret; 2382 2383 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2384 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2385 pr_err("read_partial_message bad hdr crc %u != expected %u\n", 2386 crc, con->in_hdr.crc); 2387 return -EBADMSG; 2388 } 2389 2390 front_len = le32_to_cpu(con->in_hdr.front_len); 2391 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2392 return -EIO; 2393 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2394 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2395 return -EIO; 2396 data_len = le32_to_cpu(con->in_hdr.data_len); 2397 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2398 return -EIO; 2399 2400 /* verify seq# */ 2401 seq = le64_to_cpu(con->in_hdr.seq); 2402 if ((s64)seq - (s64)con->in_seq < 1) { 2403 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2404 ENTITY_NAME(con->peer_name), 2405 ceph_pr_addr(&con->peer_addr), 2406 seq, con->in_seq + 1); 2407 con->in_base_pos = -front_len - middle_len - data_len - 2408 sizeof_footer(con); 2409 con->in_tag = CEPH_MSGR_TAG_READY; 2410 return 1; 2411 } else if ((s64)seq - (s64)con->in_seq > 1) { 2412 pr_err("read_partial_message bad seq %lld expected %lld\n", 2413 seq, con->in_seq + 1); 2414 con->error_msg = "bad message sequence # for incoming message"; 2415 return -EBADE; 2416 } 2417 2418 /* allocate message? */ 2419 if (!con->in_msg) { 2420 int skip = 0; 2421 2422 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2423 front_len, data_len); 2424 ret = ceph_con_in_msg_alloc(con, &skip); 2425 if (ret < 0) 2426 return ret; 2427 2428 BUG_ON(!con->in_msg ^ skip); 2429 if (skip) { 2430 /* skip this message */ 2431 dout("alloc_msg said skip message\n"); 2432 con->in_base_pos = -front_len - middle_len - data_len - 2433 sizeof_footer(con); 2434 con->in_tag = CEPH_MSGR_TAG_READY; 2435 con->in_seq++; 2436 return 1; 2437 } 2438 2439 BUG_ON(!con->in_msg); 2440 BUG_ON(con->in_msg->con != con); 2441 m = con->in_msg; 2442 m->front.iov_len = 0; /* haven't read it yet */ 2443 if (m->middle) 2444 m->middle->vec.iov_len = 0; 2445 2446 /* prepare for data payload, if any */ 2447 2448 if (data_len) 2449 prepare_message_data(con->in_msg, data_len); 2450 } 2451 2452 /* front */ 2453 ret = read_partial_message_section(con, &m->front, front_len, 2454 &con->in_front_crc); 2455 if (ret <= 0) 2456 return ret; 2457 2458 /* middle */ 2459 if (m->middle) { 2460 ret = read_partial_message_section(con, &m->middle->vec, 2461 middle_len, 2462 &con->in_middle_crc); 2463 if (ret <= 0) 2464 return ret; 2465 } 2466 2467 /* (page) data */ 2468 if (data_len) { 2469 ret = read_partial_msg_data(con); 2470 if (ret <= 0) 2471 return ret; 2472 } 2473 2474 /* footer */ 2475 size = sizeof_footer(con); 2476 end += size; 2477 ret = read_partial(con, end, size, &m->footer); 2478 if (ret <= 0) 2479 return ret; 2480 2481 if (!need_sign) { 2482 m->footer.flags = m->old_footer.flags; 2483 m->footer.sig = 0; 2484 } 2485 2486 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2487 m, front_len, m->footer.front_crc, middle_len, 2488 m->footer.middle_crc, data_len, m->footer.data_crc); 2489 2490 /* crc ok? */ 2491 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2492 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2493 m, con->in_front_crc, m->footer.front_crc); 2494 return -EBADMSG; 2495 } 2496 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2497 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2498 m, con->in_middle_crc, m->footer.middle_crc); 2499 return -EBADMSG; 2500 } 2501 if (do_datacrc && 2502 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2503 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2504 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2505 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2506 return -EBADMSG; 2507 } 2508 2509 if (need_sign && con->ops->check_message_signature && 2510 con->ops->check_message_signature(m)) { 2511 pr_err("read_partial_message %p signature check failed\n", m); 2512 return -EBADMSG; 2513 } 2514 2515 return 1; /* done! */ 2516 } 2517 2518 /* 2519 * Process message. This happens in the worker thread. The callback should 2520 * be careful not to do anything that waits on other incoming messages or it 2521 * may deadlock. 2522 */ 2523 static void process_message(struct ceph_connection *con) 2524 { 2525 struct ceph_msg *msg = con->in_msg; 2526 2527 BUG_ON(con->in_msg->con != con); 2528 con->in_msg = NULL; 2529 2530 /* if first message, set peer_name */ 2531 if (con->peer_name.type == 0) 2532 con->peer_name = msg->hdr.src; 2533 2534 con->in_seq++; 2535 mutex_unlock(&con->mutex); 2536 2537 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2538 msg, le64_to_cpu(msg->hdr.seq), 2539 ENTITY_NAME(msg->hdr.src), 2540 le16_to_cpu(msg->hdr.type), 2541 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2542 le32_to_cpu(msg->hdr.front_len), 2543 le32_to_cpu(msg->hdr.data_len), 2544 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2545 con->ops->dispatch(con, msg); 2546 2547 mutex_lock(&con->mutex); 2548 } 2549 2550 static int read_keepalive_ack(struct ceph_connection *con) 2551 { 2552 struct ceph_timespec ceph_ts; 2553 size_t size = sizeof(ceph_ts); 2554 int ret = read_partial(con, size, size, &ceph_ts); 2555 if (ret <= 0) 2556 return ret; 2557 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts); 2558 prepare_read_tag(con); 2559 return 1; 2560 } 2561 2562 /* 2563 * Write something to the socket. Called in a worker thread when the 2564 * socket appears to be writeable and we have something ready to send. 2565 */ 2566 static int try_write(struct ceph_connection *con) 2567 { 2568 int ret = 1; 2569 2570 dout("try_write start %p state %lu\n", con, con->state); 2571 if (con->state != CON_STATE_PREOPEN && 2572 con->state != CON_STATE_CONNECTING && 2573 con->state != CON_STATE_NEGOTIATING && 2574 con->state != CON_STATE_OPEN) 2575 return 0; 2576 2577 /* open the socket first? */ 2578 if (con->state == CON_STATE_PREOPEN) { 2579 BUG_ON(con->sock); 2580 con->state = CON_STATE_CONNECTING; 2581 2582 con_out_kvec_reset(con); 2583 prepare_write_banner(con); 2584 prepare_read_banner(con); 2585 2586 BUG_ON(con->in_msg); 2587 con->in_tag = CEPH_MSGR_TAG_READY; 2588 dout("try_write initiating connect on %p new state %lu\n", 2589 con, con->state); 2590 ret = ceph_tcp_connect(con); 2591 if (ret < 0) { 2592 con->error_msg = "connect error"; 2593 goto out; 2594 } 2595 } 2596 2597 more: 2598 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2599 BUG_ON(!con->sock); 2600 2601 /* kvec data queued? */ 2602 if (con->out_kvec_left) { 2603 ret = write_partial_kvec(con); 2604 if (ret <= 0) 2605 goto out; 2606 } 2607 if (con->out_skip) { 2608 ret = write_partial_skip(con); 2609 if (ret <= 0) 2610 goto out; 2611 } 2612 2613 /* msg pages? */ 2614 if (con->out_msg) { 2615 if (con->out_msg_done) { 2616 ceph_msg_put(con->out_msg); 2617 con->out_msg = NULL; /* we're done with this one */ 2618 goto do_next; 2619 } 2620 2621 ret = write_partial_message_data(con); 2622 if (ret == 1) 2623 goto more; /* we need to send the footer, too! */ 2624 if (ret == 0) 2625 goto out; 2626 if (ret < 0) { 2627 dout("try_write write_partial_message_data err %d\n", 2628 ret); 2629 goto out; 2630 } 2631 } 2632 2633 do_next: 2634 if (con->state == CON_STATE_OPEN) { 2635 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2636 prepare_write_keepalive(con); 2637 goto more; 2638 } 2639 /* is anything else pending? */ 2640 if (!list_empty(&con->out_queue)) { 2641 prepare_write_message(con); 2642 goto more; 2643 } 2644 if (con->in_seq > con->in_seq_acked) { 2645 prepare_write_ack(con); 2646 goto more; 2647 } 2648 } 2649 2650 /* Nothing to do! */ 2651 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2652 dout("try_write nothing else to write.\n"); 2653 ret = 0; 2654 out: 2655 dout("try_write done on %p ret %d\n", con, ret); 2656 return ret; 2657 } 2658 2659 /* 2660 * Read what we can from the socket. 2661 */ 2662 static int try_read(struct ceph_connection *con) 2663 { 2664 int ret = -1; 2665 2666 more: 2667 dout("try_read start on %p state %lu\n", con, con->state); 2668 if (con->state != CON_STATE_CONNECTING && 2669 con->state != CON_STATE_NEGOTIATING && 2670 con->state != CON_STATE_OPEN) 2671 return 0; 2672 2673 BUG_ON(!con->sock); 2674 2675 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2676 con->in_base_pos); 2677 2678 if (con->state == CON_STATE_CONNECTING) { 2679 dout("try_read connecting\n"); 2680 ret = read_partial_banner(con); 2681 if (ret <= 0) 2682 goto out; 2683 ret = process_banner(con); 2684 if (ret < 0) 2685 goto out; 2686 2687 con->state = CON_STATE_NEGOTIATING; 2688 2689 /* 2690 * Received banner is good, exchange connection info. 2691 * Do not reset out_kvec, as sending our banner raced 2692 * with receiving peer banner after connect completed. 2693 */ 2694 ret = prepare_write_connect(con); 2695 if (ret < 0) 2696 goto out; 2697 prepare_read_connect(con); 2698 2699 /* Send connection info before awaiting response */ 2700 goto out; 2701 } 2702 2703 if (con->state == CON_STATE_NEGOTIATING) { 2704 dout("try_read negotiating\n"); 2705 ret = read_partial_connect(con); 2706 if (ret <= 0) 2707 goto out; 2708 ret = process_connect(con); 2709 if (ret < 0) 2710 goto out; 2711 goto more; 2712 } 2713 2714 WARN_ON(con->state != CON_STATE_OPEN); 2715 2716 if (con->in_base_pos < 0) { 2717 /* 2718 * skipping + discarding content. 2719 */ 2720 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos); 2721 if (ret <= 0) 2722 goto out; 2723 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos); 2724 con->in_base_pos += ret; 2725 if (con->in_base_pos) 2726 goto more; 2727 } 2728 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2729 /* 2730 * what's next? 2731 */ 2732 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2733 if (ret <= 0) 2734 goto out; 2735 dout("try_read got tag %d\n", (int)con->in_tag); 2736 switch (con->in_tag) { 2737 case CEPH_MSGR_TAG_MSG: 2738 prepare_read_message(con); 2739 break; 2740 case CEPH_MSGR_TAG_ACK: 2741 prepare_read_ack(con); 2742 break; 2743 case CEPH_MSGR_TAG_KEEPALIVE2_ACK: 2744 prepare_read_keepalive_ack(con); 2745 break; 2746 case CEPH_MSGR_TAG_CLOSE: 2747 con_close_socket(con); 2748 con->state = CON_STATE_CLOSED; 2749 goto out; 2750 default: 2751 goto bad_tag; 2752 } 2753 } 2754 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2755 ret = read_partial_message(con); 2756 if (ret <= 0) { 2757 switch (ret) { 2758 case -EBADMSG: 2759 con->error_msg = "bad crc/signature"; 2760 /* fall through */ 2761 case -EBADE: 2762 ret = -EIO; 2763 break; 2764 case -EIO: 2765 con->error_msg = "io error"; 2766 break; 2767 } 2768 goto out; 2769 } 2770 if (con->in_tag == CEPH_MSGR_TAG_READY) 2771 goto more; 2772 process_message(con); 2773 if (con->state == CON_STATE_OPEN) 2774 prepare_read_tag(con); 2775 goto more; 2776 } 2777 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2778 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2779 /* 2780 * the final handshake seq exchange is semantically 2781 * equivalent to an ACK 2782 */ 2783 ret = read_partial_ack(con); 2784 if (ret <= 0) 2785 goto out; 2786 process_ack(con); 2787 goto more; 2788 } 2789 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) { 2790 ret = read_keepalive_ack(con); 2791 if (ret <= 0) 2792 goto out; 2793 goto more; 2794 } 2795 2796 out: 2797 dout("try_read done on %p ret %d\n", con, ret); 2798 return ret; 2799 2800 bad_tag: 2801 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2802 con->error_msg = "protocol error, garbage tag"; 2803 ret = -1; 2804 goto out; 2805 } 2806 2807 2808 /* 2809 * Atomically queue work on a connection after the specified delay. 2810 * Bump @con reference to avoid races with connection teardown. 2811 * Returns 0 if work was queued, or an error code otherwise. 2812 */ 2813 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2814 { 2815 if (!con->ops->get(con)) { 2816 dout("%s %p ref count 0\n", __func__, con); 2817 return -ENOENT; 2818 } 2819 2820 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2821 dout("%s %p - already queued\n", __func__, con); 2822 con->ops->put(con); 2823 return -EBUSY; 2824 } 2825 2826 dout("%s %p %lu\n", __func__, con, delay); 2827 return 0; 2828 } 2829 2830 static void queue_con(struct ceph_connection *con) 2831 { 2832 (void) queue_con_delay(con, 0); 2833 } 2834 2835 static void cancel_con(struct ceph_connection *con) 2836 { 2837 if (cancel_delayed_work(&con->work)) { 2838 dout("%s %p\n", __func__, con); 2839 con->ops->put(con); 2840 } 2841 } 2842 2843 static bool con_sock_closed(struct ceph_connection *con) 2844 { 2845 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2846 return false; 2847 2848 #define CASE(x) \ 2849 case CON_STATE_ ## x: \ 2850 con->error_msg = "socket closed (con state " #x ")"; \ 2851 break; 2852 2853 switch (con->state) { 2854 CASE(CLOSED); 2855 CASE(PREOPEN); 2856 CASE(CONNECTING); 2857 CASE(NEGOTIATING); 2858 CASE(OPEN); 2859 CASE(STANDBY); 2860 default: 2861 pr_warn("%s con %p unrecognized state %lu\n", 2862 __func__, con, con->state); 2863 con->error_msg = "unrecognized con state"; 2864 BUG(); 2865 break; 2866 } 2867 #undef CASE 2868 2869 return true; 2870 } 2871 2872 static bool con_backoff(struct ceph_connection *con) 2873 { 2874 int ret; 2875 2876 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2877 return false; 2878 2879 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2880 if (ret) { 2881 dout("%s: con %p FAILED to back off %lu\n", __func__, 2882 con, con->delay); 2883 BUG_ON(ret == -ENOENT); 2884 con_flag_set(con, CON_FLAG_BACKOFF); 2885 } 2886 2887 return true; 2888 } 2889 2890 /* Finish fault handling; con->mutex must *not* be held here */ 2891 2892 static void con_fault_finish(struct ceph_connection *con) 2893 { 2894 dout("%s %p\n", __func__, con); 2895 2896 /* 2897 * in case we faulted due to authentication, invalidate our 2898 * current tickets so that we can get new ones. 2899 */ 2900 if (con->auth_retry) { 2901 dout("auth_retry %d, invalidating\n", con->auth_retry); 2902 if (con->ops->invalidate_authorizer) 2903 con->ops->invalidate_authorizer(con); 2904 con->auth_retry = 0; 2905 } 2906 2907 if (con->ops->fault) 2908 con->ops->fault(con); 2909 } 2910 2911 /* 2912 * Do some work on a connection. Drop a connection ref when we're done. 2913 */ 2914 static void ceph_con_workfn(struct work_struct *work) 2915 { 2916 struct ceph_connection *con = container_of(work, struct ceph_connection, 2917 work.work); 2918 bool fault; 2919 2920 mutex_lock(&con->mutex); 2921 while (true) { 2922 int ret; 2923 2924 if ((fault = con_sock_closed(con))) { 2925 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2926 break; 2927 } 2928 if (con_backoff(con)) { 2929 dout("%s: con %p BACKOFF\n", __func__, con); 2930 break; 2931 } 2932 if (con->state == CON_STATE_STANDBY) { 2933 dout("%s: con %p STANDBY\n", __func__, con); 2934 break; 2935 } 2936 if (con->state == CON_STATE_CLOSED) { 2937 dout("%s: con %p CLOSED\n", __func__, con); 2938 BUG_ON(con->sock); 2939 break; 2940 } 2941 if (con->state == CON_STATE_PREOPEN) { 2942 dout("%s: con %p PREOPEN\n", __func__, con); 2943 BUG_ON(con->sock); 2944 } 2945 2946 ret = try_read(con); 2947 if (ret < 0) { 2948 if (ret == -EAGAIN) 2949 continue; 2950 if (!con->error_msg) 2951 con->error_msg = "socket error on read"; 2952 fault = true; 2953 break; 2954 } 2955 2956 ret = try_write(con); 2957 if (ret < 0) { 2958 if (ret == -EAGAIN) 2959 continue; 2960 if (!con->error_msg) 2961 con->error_msg = "socket error on write"; 2962 fault = true; 2963 } 2964 2965 break; /* If we make it to here, we're done */ 2966 } 2967 if (fault) 2968 con_fault(con); 2969 mutex_unlock(&con->mutex); 2970 2971 if (fault) 2972 con_fault_finish(con); 2973 2974 con->ops->put(con); 2975 } 2976 2977 /* 2978 * Generic error/fault handler. A retry mechanism is used with 2979 * exponential backoff 2980 */ 2981 static void con_fault(struct ceph_connection *con) 2982 { 2983 dout("fault %p state %lu to peer %s\n", 2984 con, con->state, ceph_pr_addr(&con->peer_addr)); 2985 2986 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2987 ceph_pr_addr(&con->peer_addr), con->error_msg); 2988 con->error_msg = NULL; 2989 2990 WARN_ON(con->state != CON_STATE_CONNECTING && 2991 con->state != CON_STATE_NEGOTIATING && 2992 con->state != CON_STATE_OPEN); 2993 2994 con_close_socket(con); 2995 2996 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2997 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2998 con->state = CON_STATE_CLOSED; 2999 return; 3000 } 3001 3002 if (con->in_msg) { 3003 BUG_ON(con->in_msg->con != con); 3004 ceph_msg_put(con->in_msg); 3005 con->in_msg = NULL; 3006 } 3007 3008 /* Requeue anything that hasn't been acked */ 3009 list_splice_init(&con->out_sent, &con->out_queue); 3010 3011 /* If there are no messages queued or keepalive pending, place 3012 * the connection in a STANDBY state */ 3013 if (list_empty(&con->out_queue) && 3014 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 3015 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 3016 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 3017 con->state = CON_STATE_STANDBY; 3018 } else { 3019 /* retry after a delay. */ 3020 con->state = CON_STATE_PREOPEN; 3021 if (con->delay == 0) 3022 con->delay = BASE_DELAY_INTERVAL; 3023 else if (con->delay < MAX_DELAY_INTERVAL) 3024 con->delay *= 2; 3025 con_flag_set(con, CON_FLAG_BACKOFF); 3026 queue_con(con); 3027 } 3028 } 3029 3030 3031 3032 /* 3033 * initialize a new messenger instance 3034 */ 3035 void ceph_messenger_init(struct ceph_messenger *msgr, 3036 struct ceph_entity_addr *myaddr) 3037 { 3038 spin_lock_init(&msgr->global_seq_lock); 3039 3040 if (myaddr) 3041 msgr->inst.addr = *myaddr; 3042 3043 /* select a random nonce */ 3044 msgr->inst.addr.type = 0; 3045 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 3046 encode_my_addr(msgr); 3047 3048 atomic_set(&msgr->stopping, 0); 3049 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 3050 3051 dout("%s %p\n", __func__, msgr); 3052 } 3053 EXPORT_SYMBOL(ceph_messenger_init); 3054 3055 void ceph_messenger_fini(struct ceph_messenger *msgr) 3056 { 3057 put_net(read_pnet(&msgr->net)); 3058 } 3059 EXPORT_SYMBOL(ceph_messenger_fini); 3060 3061 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 3062 { 3063 if (msg->con) 3064 msg->con->ops->put(msg->con); 3065 3066 msg->con = con ? con->ops->get(con) : NULL; 3067 BUG_ON(msg->con != con); 3068 } 3069 3070 static void clear_standby(struct ceph_connection *con) 3071 { 3072 /* come back from STANDBY? */ 3073 if (con->state == CON_STATE_STANDBY) { 3074 dout("clear_standby %p and ++connect_seq\n", con); 3075 con->state = CON_STATE_PREOPEN; 3076 con->connect_seq++; 3077 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 3078 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 3079 } 3080 } 3081 3082 /* 3083 * Queue up an outgoing message on the given connection. 3084 */ 3085 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 3086 { 3087 /* set src+dst */ 3088 msg->hdr.src = con->msgr->inst.name; 3089 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 3090 msg->needs_out_seq = true; 3091 3092 mutex_lock(&con->mutex); 3093 3094 if (con->state == CON_STATE_CLOSED) { 3095 dout("con_send %p closed, dropping %p\n", con, msg); 3096 ceph_msg_put(msg); 3097 mutex_unlock(&con->mutex); 3098 return; 3099 } 3100 3101 msg_con_set(msg, con); 3102 3103 BUG_ON(!list_empty(&msg->list_head)); 3104 list_add_tail(&msg->list_head, &con->out_queue); 3105 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 3106 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 3107 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 3108 le32_to_cpu(msg->hdr.front_len), 3109 le32_to_cpu(msg->hdr.middle_len), 3110 le32_to_cpu(msg->hdr.data_len)); 3111 3112 clear_standby(con); 3113 mutex_unlock(&con->mutex); 3114 3115 /* if there wasn't anything waiting to send before, queue 3116 * new work */ 3117 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3118 queue_con(con); 3119 } 3120 EXPORT_SYMBOL(ceph_con_send); 3121 3122 /* 3123 * Revoke a message that was previously queued for send 3124 */ 3125 void ceph_msg_revoke(struct ceph_msg *msg) 3126 { 3127 struct ceph_connection *con = msg->con; 3128 3129 if (!con) { 3130 dout("%s msg %p null con\n", __func__, msg); 3131 return; /* Message not in our possession */ 3132 } 3133 3134 mutex_lock(&con->mutex); 3135 if (!list_empty(&msg->list_head)) { 3136 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 3137 list_del_init(&msg->list_head); 3138 msg->hdr.seq = 0; 3139 3140 ceph_msg_put(msg); 3141 } 3142 if (con->out_msg == msg) { 3143 BUG_ON(con->out_skip); 3144 /* footer */ 3145 if (con->out_msg_done) { 3146 con->out_skip += con_out_kvec_skip(con); 3147 } else { 3148 BUG_ON(!msg->data_length); 3149 con->out_skip += sizeof_footer(con); 3150 } 3151 /* data, middle, front */ 3152 if (msg->data_length) 3153 con->out_skip += msg->cursor.total_resid; 3154 if (msg->middle) 3155 con->out_skip += con_out_kvec_skip(con); 3156 con->out_skip += con_out_kvec_skip(con); 3157 3158 dout("%s %p msg %p - was sending, will write %d skip %d\n", 3159 __func__, con, msg, con->out_kvec_bytes, con->out_skip); 3160 msg->hdr.seq = 0; 3161 con->out_msg = NULL; 3162 ceph_msg_put(msg); 3163 } 3164 3165 mutex_unlock(&con->mutex); 3166 } 3167 3168 /* 3169 * Revoke a message that we may be reading data into 3170 */ 3171 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3172 { 3173 struct ceph_connection *con = msg->con; 3174 3175 if (!con) { 3176 dout("%s msg %p null con\n", __func__, msg); 3177 return; /* Message not in our possession */ 3178 } 3179 3180 mutex_lock(&con->mutex); 3181 if (con->in_msg == msg) { 3182 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3183 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3184 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3185 3186 /* skip rest of message */ 3187 dout("%s %p msg %p revoked\n", __func__, con, msg); 3188 con->in_base_pos = con->in_base_pos - 3189 sizeof(struct ceph_msg_header) - 3190 front_len - 3191 middle_len - 3192 data_len - 3193 sizeof(struct ceph_msg_footer); 3194 ceph_msg_put(con->in_msg); 3195 con->in_msg = NULL; 3196 con->in_tag = CEPH_MSGR_TAG_READY; 3197 con->in_seq++; 3198 } else { 3199 dout("%s %p in_msg %p msg %p no-op\n", 3200 __func__, con, con->in_msg, msg); 3201 } 3202 mutex_unlock(&con->mutex); 3203 } 3204 3205 /* 3206 * Queue a keepalive byte to ensure the tcp connection is alive. 3207 */ 3208 void ceph_con_keepalive(struct ceph_connection *con) 3209 { 3210 dout("con_keepalive %p\n", con); 3211 mutex_lock(&con->mutex); 3212 clear_standby(con); 3213 con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING); 3214 mutex_unlock(&con->mutex); 3215 3216 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3217 queue_con(con); 3218 } 3219 EXPORT_SYMBOL(ceph_con_keepalive); 3220 3221 bool ceph_con_keepalive_expired(struct ceph_connection *con, 3222 unsigned long interval) 3223 { 3224 if (interval > 0 && 3225 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 3226 struct timespec64 now; 3227 struct timespec64 ts; 3228 ktime_get_real_ts64(&now); 3229 jiffies_to_timespec64(interval, &ts); 3230 ts = timespec64_add(con->last_keepalive_ack, ts); 3231 return timespec64_compare(&now, &ts) >= 0; 3232 } 3233 return false; 3234 } 3235 3236 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 3237 { 3238 BUG_ON(msg->num_data_items >= msg->max_data_items); 3239 return &msg->data[msg->num_data_items++]; 3240 } 3241 3242 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3243 { 3244 if (data->type == CEPH_MSG_DATA_PAGELIST) 3245 ceph_pagelist_release(data->pagelist); 3246 } 3247 3248 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3249 size_t length, size_t alignment) 3250 { 3251 struct ceph_msg_data *data; 3252 3253 BUG_ON(!pages); 3254 BUG_ON(!length); 3255 3256 data = ceph_msg_data_add(msg); 3257 data->type = CEPH_MSG_DATA_PAGES; 3258 data->pages = pages; 3259 data->length = length; 3260 data->alignment = alignment & ~PAGE_MASK; 3261 3262 msg->data_length += length; 3263 } 3264 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3265 3266 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3267 struct ceph_pagelist *pagelist) 3268 { 3269 struct ceph_msg_data *data; 3270 3271 BUG_ON(!pagelist); 3272 BUG_ON(!pagelist->length); 3273 3274 data = ceph_msg_data_add(msg); 3275 data->type = CEPH_MSG_DATA_PAGELIST; 3276 refcount_inc(&pagelist->refcnt); 3277 data->pagelist = pagelist; 3278 3279 msg->data_length += pagelist->length; 3280 } 3281 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3282 3283 #ifdef CONFIG_BLOCK 3284 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 3285 u32 length) 3286 { 3287 struct ceph_msg_data *data; 3288 3289 data = ceph_msg_data_add(msg); 3290 data->type = CEPH_MSG_DATA_BIO; 3291 data->bio_pos = *bio_pos; 3292 data->bio_length = length; 3293 3294 msg->data_length += length; 3295 } 3296 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3297 #endif /* CONFIG_BLOCK */ 3298 3299 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 3300 struct ceph_bvec_iter *bvec_pos) 3301 { 3302 struct ceph_msg_data *data; 3303 3304 data = ceph_msg_data_add(msg); 3305 data->type = CEPH_MSG_DATA_BVECS; 3306 data->bvec_pos = *bvec_pos; 3307 3308 msg->data_length += bvec_pos->iter.bi_size; 3309 } 3310 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 3311 3312 /* 3313 * construct a new message with given type, size 3314 * the new msg has a ref count of 1. 3315 */ 3316 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 3317 gfp_t flags, bool can_fail) 3318 { 3319 struct ceph_msg *m; 3320 3321 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3322 if (m == NULL) 3323 goto out; 3324 3325 m->hdr.type = cpu_to_le16(type); 3326 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3327 m->hdr.front_len = cpu_to_le32(front_len); 3328 3329 INIT_LIST_HEAD(&m->list_head); 3330 kref_init(&m->kref); 3331 3332 /* front */ 3333 if (front_len) { 3334 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3335 if (m->front.iov_base == NULL) { 3336 dout("ceph_msg_new can't allocate %d bytes\n", 3337 front_len); 3338 goto out2; 3339 } 3340 } else { 3341 m->front.iov_base = NULL; 3342 } 3343 m->front_alloc_len = m->front.iov_len = front_len; 3344 3345 if (max_data_items) { 3346 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 3347 flags); 3348 if (!m->data) 3349 goto out2; 3350 3351 m->max_data_items = max_data_items; 3352 } 3353 3354 dout("ceph_msg_new %p front %d\n", m, front_len); 3355 return m; 3356 3357 out2: 3358 ceph_msg_put(m); 3359 out: 3360 if (!can_fail) { 3361 pr_err("msg_new can't create type %d front %d\n", type, 3362 front_len); 3363 WARN_ON(1); 3364 } else { 3365 dout("msg_new can't create type %d front %d\n", type, 3366 front_len); 3367 } 3368 return NULL; 3369 } 3370 EXPORT_SYMBOL(ceph_msg_new2); 3371 3372 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3373 bool can_fail) 3374 { 3375 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 3376 } 3377 EXPORT_SYMBOL(ceph_msg_new); 3378 3379 /* 3380 * Allocate "middle" portion of a message, if it is needed and wasn't 3381 * allocated by alloc_msg. This allows us to read a small fixed-size 3382 * per-type header in the front and then gracefully fail (i.e., 3383 * propagate the error to the caller based on info in the front) when 3384 * the middle is too large. 3385 */ 3386 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3387 { 3388 int type = le16_to_cpu(msg->hdr.type); 3389 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3390 3391 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3392 ceph_msg_type_name(type), middle_len); 3393 BUG_ON(!middle_len); 3394 BUG_ON(msg->middle); 3395 3396 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3397 if (!msg->middle) 3398 return -ENOMEM; 3399 return 0; 3400 } 3401 3402 /* 3403 * Allocate a message for receiving an incoming message on a 3404 * connection, and save the result in con->in_msg. Uses the 3405 * connection's private alloc_msg op if available. 3406 * 3407 * Returns 0 on success, or a negative error code. 3408 * 3409 * On success, if we set *skip = 1: 3410 * - the next message should be skipped and ignored. 3411 * - con->in_msg == NULL 3412 * or if we set *skip = 0: 3413 * - con->in_msg is non-null. 3414 * On error (ENOMEM, EAGAIN, ...), 3415 * - con->in_msg == NULL 3416 */ 3417 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3418 { 3419 struct ceph_msg_header *hdr = &con->in_hdr; 3420 int middle_len = le32_to_cpu(hdr->middle_len); 3421 struct ceph_msg *msg; 3422 int ret = 0; 3423 3424 BUG_ON(con->in_msg != NULL); 3425 BUG_ON(!con->ops->alloc_msg); 3426 3427 mutex_unlock(&con->mutex); 3428 msg = con->ops->alloc_msg(con, hdr, skip); 3429 mutex_lock(&con->mutex); 3430 if (con->state != CON_STATE_OPEN) { 3431 if (msg) 3432 ceph_msg_put(msg); 3433 return -EAGAIN; 3434 } 3435 if (msg) { 3436 BUG_ON(*skip); 3437 msg_con_set(msg, con); 3438 con->in_msg = msg; 3439 } else { 3440 /* 3441 * Null message pointer means either we should skip 3442 * this message or we couldn't allocate memory. The 3443 * former is not an error. 3444 */ 3445 if (*skip) 3446 return 0; 3447 3448 con->error_msg = "error allocating memory for incoming message"; 3449 return -ENOMEM; 3450 } 3451 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3452 3453 if (middle_len && !con->in_msg->middle) { 3454 ret = ceph_alloc_middle(con, con->in_msg); 3455 if (ret < 0) { 3456 ceph_msg_put(con->in_msg); 3457 con->in_msg = NULL; 3458 } 3459 } 3460 3461 return ret; 3462 } 3463 3464 3465 /* 3466 * Free a generically kmalloc'd message. 3467 */ 3468 static void ceph_msg_free(struct ceph_msg *m) 3469 { 3470 dout("%s %p\n", __func__, m); 3471 kvfree(m->front.iov_base); 3472 kfree(m->data); 3473 kmem_cache_free(ceph_msg_cache, m); 3474 } 3475 3476 static void ceph_msg_release(struct kref *kref) 3477 { 3478 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3479 int i; 3480 3481 dout("%s %p\n", __func__, m); 3482 WARN_ON(!list_empty(&m->list_head)); 3483 3484 msg_con_set(m, NULL); 3485 3486 /* drop middle, data, if any */ 3487 if (m->middle) { 3488 ceph_buffer_put(m->middle); 3489 m->middle = NULL; 3490 } 3491 3492 for (i = 0; i < m->num_data_items; i++) 3493 ceph_msg_data_destroy(&m->data[i]); 3494 3495 if (m->pool) 3496 ceph_msgpool_put(m->pool, m); 3497 else 3498 ceph_msg_free(m); 3499 } 3500 3501 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3502 { 3503 dout("%s %p (was %d)\n", __func__, msg, 3504 kref_read(&msg->kref)); 3505 kref_get(&msg->kref); 3506 return msg; 3507 } 3508 EXPORT_SYMBOL(ceph_msg_get); 3509 3510 void ceph_msg_put(struct ceph_msg *msg) 3511 { 3512 dout("%s %p (was %d)\n", __func__, msg, 3513 kref_read(&msg->kref)); 3514 kref_put(&msg->kref, ceph_msg_release); 3515 } 3516 EXPORT_SYMBOL(ceph_msg_put); 3517 3518 void ceph_msg_dump(struct ceph_msg *msg) 3519 { 3520 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3521 msg->front_alloc_len, msg->data_length); 3522 print_hex_dump(KERN_DEBUG, "header: ", 3523 DUMP_PREFIX_OFFSET, 16, 1, 3524 &msg->hdr, sizeof(msg->hdr), true); 3525 print_hex_dump(KERN_DEBUG, " front: ", 3526 DUMP_PREFIX_OFFSET, 16, 1, 3527 msg->front.iov_base, msg->front.iov_len, true); 3528 if (msg->middle) 3529 print_hex_dump(KERN_DEBUG, "middle: ", 3530 DUMP_PREFIX_OFFSET, 16, 1, 3531 msg->middle->vec.iov_base, 3532 msg->middle->vec.iov_len, true); 3533 print_hex_dump(KERN_DEBUG, "footer: ", 3534 DUMP_PREFIX_OFFSET, 16, 1, 3535 &msg->footer, sizeof(msg->footer), true); 3536 } 3537 EXPORT_SYMBOL(ceph_msg_dump); 3538