xref: /openbmc/linux/net/ceph/crypto.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include <linux/ceph/ceph_debug.h>
4  
5  #include <linux/err.h>
6  #include <linux/scatterlist.h>
7  #include <linux/sched.h>
8  #include <linux/slab.h>
9  #include <crypto/aes.h>
10  #include <crypto/skcipher.h>
11  #include <linux/key-type.h>
12  #include <linux/sched/mm.h>
13  
14  #include <keys/ceph-type.h>
15  #include <keys/user-type.h>
16  #include <linux/ceph/decode.h>
17  #include "crypto.h"
18  
19  /*
20   * Set ->key and ->tfm.  The rest of the key should be filled in before
21   * this function is called.
22   */
23  static int set_secret(struct ceph_crypto_key *key, void *buf)
24  {
25  	unsigned int noio_flag;
26  	int ret;
27  
28  	key->key = NULL;
29  	key->tfm = NULL;
30  
31  	switch (key->type) {
32  	case CEPH_CRYPTO_NONE:
33  		return 0; /* nothing to do */
34  	case CEPH_CRYPTO_AES:
35  		break;
36  	default:
37  		return -ENOTSUPP;
38  	}
39  
40  	if (!key->len)
41  		return -EINVAL;
42  
43  	key->key = kmemdup(buf, key->len, GFP_NOIO);
44  	if (!key->key) {
45  		ret = -ENOMEM;
46  		goto fail;
47  	}
48  
49  	/* crypto_alloc_sync_skcipher() allocates with GFP_KERNEL */
50  	noio_flag = memalloc_noio_save();
51  	key->tfm = crypto_alloc_sync_skcipher("cbc(aes)", 0, 0);
52  	memalloc_noio_restore(noio_flag);
53  	if (IS_ERR(key->tfm)) {
54  		ret = PTR_ERR(key->tfm);
55  		key->tfm = NULL;
56  		goto fail;
57  	}
58  
59  	ret = crypto_sync_skcipher_setkey(key->tfm, key->key, key->len);
60  	if (ret)
61  		goto fail;
62  
63  	return 0;
64  
65  fail:
66  	ceph_crypto_key_destroy(key);
67  	return ret;
68  }
69  
70  int ceph_crypto_key_clone(struct ceph_crypto_key *dst,
71  			  const struct ceph_crypto_key *src)
72  {
73  	memcpy(dst, src, sizeof(struct ceph_crypto_key));
74  	return set_secret(dst, src->key);
75  }
76  
77  int ceph_crypto_key_encode(struct ceph_crypto_key *key, void **p, void *end)
78  {
79  	if (*p + sizeof(u16) + sizeof(key->created) +
80  	    sizeof(u16) + key->len > end)
81  		return -ERANGE;
82  	ceph_encode_16(p, key->type);
83  	ceph_encode_copy(p, &key->created, sizeof(key->created));
84  	ceph_encode_16(p, key->len);
85  	ceph_encode_copy(p, key->key, key->len);
86  	return 0;
87  }
88  
89  int ceph_crypto_key_decode(struct ceph_crypto_key *key, void **p, void *end)
90  {
91  	int ret;
92  
93  	ceph_decode_need(p, end, 2*sizeof(u16) + sizeof(key->created), bad);
94  	key->type = ceph_decode_16(p);
95  	ceph_decode_copy(p, &key->created, sizeof(key->created));
96  	key->len = ceph_decode_16(p);
97  	ceph_decode_need(p, end, key->len, bad);
98  	ret = set_secret(key, *p);
99  	*p += key->len;
100  	return ret;
101  
102  bad:
103  	dout("failed to decode crypto key\n");
104  	return -EINVAL;
105  }
106  
107  int ceph_crypto_key_unarmor(struct ceph_crypto_key *key, const char *inkey)
108  {
109  	int inlen = strlen(inkey);
110  	int blen = inlen * 3 / 4;
111  	void *buf, *p;
112  	int ret;
113  
114  	dout("crypto_key_unarmor %s\n", inkey);
115  	buf = kmalloc(blen, GFP_NOFS);
116  	if (!buf)
117  		return -ENOMEM;
118  	blen = ceph_unarmor(buf, inkey, inkey+inlen);
119  	if (blen < 0) {
120  		kfree(buf);
121  		return blen;
122  	}
123  
124  	p = buf;
125  	ret = ceph_crypto_key_decode(key, &p, p + blen);
126  	kfree(buf);
127  	if (ret)
128  		return ret;
129  	dout("crypto_key_unarmor key %p type %d len %d\n", key,
130  	     key->type, key->len);
131  	return 0;
132  }
133  
134  void ceph_crypto_key_destroy(struct ceph_crypto_key *key)
135  {
136  	if (key) {
137  		kfree(key->key);
138  		key->key = NULL;
139  		if (key->tfm) {
140  			crypto_free_sync_skcipher(key->tfm);
141  			key->tfm = NULL;
142  		}
143  	}
144  }
145  
146  static const u8 *aes_iv = (u8 *)CEPH_AES_IV;
147  
148  /*
149   * Should be used for buffers allocated with ceph_kvmalloc().
150   * Currently these are encrypt out-buffer (ceph_buffer) and decrypt
151   * in-buffer (msg front).
152   *
153   * Dispose of @sgt with teardown_sgtable().
154   *
155   * @prealloc_sg is to avoid memory allocation inside sg_alloc_table()
156   * in cases where a single sg is sufficient.  No attempt to reduce the
157   * number of sgs by squeezing physically contiguous pages together is
158   * made though, for simplicity.
159   */
160  static int setup_sgtable(struct sg_table *sgt, struct scatterlist *prealloc_sg,
161  			 const void *buf, unsigned int buf_len)
162  {
163  	struct scatterlist *sg;
164  	const bool is_vmalloc = is_vmalloc_addr(buf);
165  	unsigned int off = offset_in_page(buf);
166  	unsigned int chunk_cnt = 1;
167  	unsigned int chunk_len = PAGE_ALIGN(off + buf_len);
168  	int i;
169  	int ret;
170  
171  	if (buf_len == 0) {
172  		memset(sgt, 0, sizeof(*sgt));
173  		return -EINVAL;
174  	}
175  
176  	if (is_vmalloc) {
177  		chunk_cnt = chunk_len >> PAGE_SHIFT;
178  		chunk_len = PAGE_SIZE;
179  	}
180  
181  	if (chunk_cnt > 1) {
182  		ret = sg_alloc_table(sgt, chunk_cnt, GFP_NOFS);
183  		if (ret)
184  			return ret;
185  	} else {
186  		WARN_ON(chunk_cnt != 1);
187  		sg_init_table(prealloc_sg, 1);
188  		sgt->sgl = prealloc_sg;
189  		sgt->nents = sgt->orig_nents = 1;
190  	}
191  
192  	for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
193  		struct page *page;
194  		unsigned int len = min(chunk_len - off, buf_len);
195  
196  		if (is_vmalloc)
197  			page = vmalloc_to_page(buf);
198  		else
199  			page = virt_to_page(buf);
200  
201  		sg_set_page(sg, page, len, off);
202  
203  		off = 0;
204  		buf += len;
205  		buf_len -= len;
206  	}
207  	WARN_ON(buf_len != 0);
208  
209  	return 0;
210  }
211  
212  static void teardown_sgtable(struct sg_table *sgt)
213  {
214  	if (sgt->orig_nents > 1)
215  		sg_free_table(sgt);
216  }
217  
218  static int ceph_aes_crypt(const struct ceph_crypto_key *key, bool encrypt,
219  			  void *buf, int buf_len, int in_len, int *pout_len)
220  {
221  	SYNC_SKCIPHER_REQUEST_ON_STACK(req, key->tfm);
222  	struct sg_table sgt;
223  	struct scatterlist prealloc_sg;
224  	char iv[AES_BLOCK_SIZE] __aligned(8);
225  	int pad_byte = AES_BLOCK_SIZE - (in_len & (AES_BLOCK_SIZE - 1));
226  	int crypt_len = encrypt ? in_len + pad_byte : in_len;
227  	int ret;
228  
229  	WARN_ON(crypt_len > buf_len);
230  	if (encrypt)
231  		memset(buf + in_len, pad_byte, pad_byte);
232  	ret = setup_sgtable(&sgt, &prealloc_sg, buf, crypt_len);
233  	if (ret)
234  		return ret;
235  
236  	memcpy(iv, aes_iv, AES_BLOCK_SIZE);
237  	skcipher_request_set_sync_tfm(req, key->tfm);
238  	skcipher_request_set_callback(req, 0, NULL, NULL);
239  	skcipher_request_set_crypt(req, sgt.sgl, sgt.sgl, crypt_len, iv);
240  
241  	/*
242  	print_hex_dump(KERN_ERR, "key: ", DUMP_PREFIX_NONE, 16, 1,
243  		       key->key, key->len, 1);
244  	print_hex_dump(KERN_ERR, " in: ", DUMP_PREFIX_NONE, 16, 1,
245  		       buf, crypt_len, 1);
246  	*/
247  	if (encrypt)
248  		ret = crypto_skcipher_encrypt(req);
249  	else
250  		ret = crypto_skcipher_decrypt(req);
251  	skcipher_request_zero(req);
252  	if (ret) {
253  		pr_err("%s %scrypt failed: %d\n", __func__,
254  		       encrypt ? "en" : "de", ret);
255  		goto out_sgt;
256  	}
257  	/*
258  	print_hex_dump(KERN_ERR, "out: ", DUMP_PREFIX_NONE, 16, 1,
259  		       buf, crypt_len, 1);
260  	*/
261  
262  	if (encrypt) {
263  		*pout_len = crypt_len;
264  	} else {
265  		pad_byte = *(char *)(buf + in_len - 1);
266  		if (pad_byte > 0 && pad_byte <= AES_BLOCK_SIZE &&
267  		    in_len >= pad_byte) {
268  			*pout_len = in_len - pad_byte;
269  		} else {
270  			pr_err("%s got bad padding %d on in_len %d\n",
271  			       __func__, pad_byte, in_len);
272  			ret = -EPERM;
273  			goto out_sgt;
274  		}
275  	}
276  
277  out_sgt:
278  	teardown_sgtable(&sgt);
279  	return ret;
280  }
281  
282  int ceph_crypt(const struct ceph_crypto_key *key, bool encrypt,
283  	       void *buf, int buf_len, int in_len, int *pout_len)
284  {
285  	switch (key->type) {
286  	case CEPH_CRYPTO_NONE:
287  		*pout_len = in_len;
288  		return 0;
289  	case CEPH_CRYPTO_AES:
290  		return ceph_aes_crypt(key, encrypt, buf, buf_len, in_len,
291  				      pout_len);
292  	default:
293  		return -ENOTSUPP;
294  	}
295  }
296  
297  static int ceph_key_preparse(struct key_preparsed_payload *prep)
298  {
299  	struct ceph_crypto_key *ckey;
300  	size_t datalen = prep->datalen;
301  	int ret;
302  	void *p;
303  
304  	ret = -EINVAL;
305  	if (datalen <= 0 || datalen > 32767 || !prep->data)
306  		goto err;
307  
308  	ret = -ENOMEM;
309  	ckey = kmalloc(sizeof(*ckey), GFP_KERNEL);
310  	if (!ckey)
311  		goto err;
312  
313  	/* TODO ceph_crypto_key_decode should really take const input */
314  	p = (void *)prep->data;
315  	ret = ceph_crypto_key_decode(ckey, &p, (char*)prep->data+datalen);
316  	if (ret < 0)
317  		goto err_ckey;
318  
319  	prep->payload.data[0] = ckey;
320  	prep->quotalen = datalen;
321  	return 0;
322  
323  err_ckey:
324  	kfree(ckey);
325  err:
326  	return ret;
327  }
328  
329  static void ceph_key_free_preparse(struct key_preparsed_payload *prep)
330  {
331  	struct ceph_crypto_key *ckey = prep->payload.data[0];
332  	ceph_crypto_key_destroy(ckey);
333  	kfree(ckey);
334  }
335  
336  static void ceph_key_destroy(struct key *key)
337  {
338  	struct ceph_crypto_key *ckey = key->payload.data[0];
339  
340  	ceph_crypto_key_destroy(ckey);
341  	kfree(ckey);
342  }
343  
344  struct key_type key_type_ceph = {
345  	.name		= "ceph",
346  	.preparse	= ceph_key_preparse,
347  	.free_preparse	= ceph_key_free_preparse,
348  	.instantiate	= generic_key_instantiate,
349  	.destroy	= ceph_key_destroy,
350  };
351  
352  int __init ceph_crypto_init(void)
353  {
354  	return register_key_type(&key_type_ceph);
355  }
356  
357  void ceph_crypto_shutdown(void)
358  {
359  	unregister_key_type(&key_type_ceph);
360  }
361