xref: /openbmc/linux/net/can/isotp.c (revision a583bf18)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 64 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 66000
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 
108 /* Flow Status given in FC frame */
109 #define ISOTP_FC_CTS 0		/* clear to send */
110 #define ISOTP_FC_WT 1		/* wait */
111 #define ISOTP_FC_OVFLW 2	/* overflow */
112 
113 enum {
114 	ISOTP_IDLE = 0,
115 	ISOTP_WAIT_FIRST_FC,
116 	ISOTP_WAIT_FC,
117 	ISOTP_WAIT_DATA,
118 	ISOTP_SENDING
119 };
120 
121 struct tpcon {
122 	unsigned int idx;
123 	unsigned int len;
124 	u32 state;
125 	u8 bs;
126 	u8 sn;
127 	u8 ll_dl;
128 	u8 buf[MAX_MSG_LENGTH + 1];
129 };
130 
131 struct isotp_sock {
132 	struct sock sk;
133 	int bound;
134 	int ifindex;
135 	canid_t txid;
136 	canid_t rxid;
137 	ktime_t tx_gap;
138 	ktime_t lastrxcf_tstamp;
139 	struct hrtimer rxtimer, txtimer;
140 	struct can_isotp_options opt;
141 	struct can_isotp_fc_options rxfc, txfc;
142 	struct can_isotp_ll_options ll;
143 	u32 frame_txtime;
144 	u32 force_tx_stmin;
145 	u32 force_rx_stmin;
146 	u32 cfecho; /* consecutive frame echo tag */
147 	struct tpcon rx, tx;
148 	struct list_head notifier;
149 	wait_queue_head_t wait;
150 	spinlock_t rx_lock; /* protect single thread state machine */
151 };
152 
153 static LIST_HEAD(isotp_notifier_list);
154 static DEFINE_SPINLOCK(isotp_notifier_lock);
155 static struct isotp_sock *isotp_busy_notifier;
156 
157 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
158 {
159 	return (struct isotp_sock *)sk;
160 }
161 
162 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
163 {
164 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
165 					     rxtimer);
166 	struct sock *sk = &so->sk;
167 
168 	if (so->rx.state == ISOTP_WAIT_DATA) {
169 		/* we did not get new data frames in time */
170 
171 		/* report 'connection timed out' */
172 		sk->sk_err = ETIMEDOUT;
173 		if (!sock_flag(sk, SOCK_DEAD))
174 			sk_error_report(sk);
175 
176 		/* reset rx state */
177 		so->rx.state = ISOTP_IDLE;
178 	}
179 
180 	return HRTIMER_NORESTART;
181 }
182 
183 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
184 {
185 	struct net_device *dev;
186 	struct sk_buff *nskb;
187 	struct canfd_frame *ncf;
188 	struct isotp_sock *so = isotp_sk(sk);
189 	int can_send_ret;
190 
191 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
192 	if (!nskb)
193 		return 1;
194 
195 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
196 	if (!dev) {
197 		kfree_skb(nskb);
198 		return 1;
199 	}
200 
201 	can_skb_reserve(nskb);
202 	can_skb_prv(nskb)->ifindex = dev->ifindex;
203 	can_skb_prv(nskb)->skbcnt = 0;
204 
205 	nskb->dev = dev;
206 	can_skb_set_owner(nskb, sk);
207 	ncf = (struct canfd_frame *)nskb->data;
208 	skb_put_zero(nskb, so->ll.mtu);
209 
210 	/* create & send flow control reply */
211 	ncf->can_id = so->txid;
212 
213 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
214 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
215 		ncf->len = CAN_MAX_DLEN;
216 	} else {
217 		ncf->len = ae + FC_CONTENT_SZ;
218 	}
219 
220 	ncf->data[ae] = N_PCI_FC | flowstatus;
221 	ncf->data[ae + 1] = so->rxfc.bs;
222 	ncf->data[ae + 2] = so->rxfc.stmin;
223 
224 	if (ae)
225 		ncf->data[0] = so->opt.ext_address;
226 
227 	ncf->flags = so->ll.tx_flags;
228 
229 	can_send_ret = can_send(nskb, 1);
230 	if (can_send_ret)
231 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
232 			       __func__, ERR_PTR(can_send_ret));
233 
234 	dev_put(dev);
235 
236 	/* reset blocksize counter */
237 	so->rx.bs = 0;
238 
239 	/* reset last CF frame rx timestamp for rx stmin enforcement */
240 	so->lastrxcf_tstamp = ktime_set(0, 0);
241 
242 	/* start rx timeout watchdog */
243 	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
244 	return 0;
245 }
246 
247 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
248 {
249 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
250 
251 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
252 
253 	memset(addr, 0, sizeof(*addr));
254 	addr->can_family = AF_CAN;
255 	addr->can_ifindex = skb->dev->ifindex;
256 
257 	if (sock_queue_rcv_skb(sk, skb) < 0)
258 		kfree_skb(skb);
259 }
260 
261 static u8 padlen(u8 datalen)
262 {
263 	static const u8 plen[] = {
264 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
265 		12, 12, 12, 12,			/* 9 - 12 */
266 		16, 16, 16, 16,			/* 13 - 16 */
267 		20, 20, 20, 20,			/* 17 - 20 */
268 		24, 24, 24, 24,			/* 21 - 24 */
269 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
270 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
271 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
272 	};
273 
274 	if (datalen > 48)
275 		return 64;
276 
277 	return plen[datalen];
278 }
279 
280 /* check for length optimization and return 1/true when the check fails */
281 static int check_optimized(struct canfd_frame *cf, int start_index)
282 {
283 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
284 	 * padding would start at this point. E.g. if the padding would
285 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
286 	 * Note: The data[] index starts with zero.
287 	 */
288 	if (cf->len <= CAN_MAX_DLEN)
289 		return (cf->len != start_index);
290 
291 	/* This relation is also valid in the non-linear DLC range, where
292 	 * we need to take care of the minimal next possible CAN_DL.
293 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
294 	 * But as cf->len can only take discrete values from 12, .., 64 at this
295 	 * point the padlen(cf->len) is always equal to cf->len.
296 	 */
297 	return (cf->len != padlen(start_index));
298 }
299 
300 /* check padding and return 1/true when the check fails */
301 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
302 		     int start_index, u8 content)
303 {
304 	int i;
305 
306 	/* no RX_PADDING value => check length of optimized frame length */
307 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
308 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
309 			return check_optimized(cf, start_index);
310 
311 		/* no valid test against empty value => ignore frame */
312 		return 1;
313 	}
314 
315 	/* check datalength of correctly padded CAN frame */
316 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
317 	    cf->len != padlen(cf->len))
318 		return 1;
319 
320 	/* check padding content */
321 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
322 		for (i = start_index; i < cf->len; i++)
323 			if (cf->data[i] != content)
324 				return 1;
325 	}
326 	return 0;
327 }
328 
329 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
330 {
331 	struct sock *sk = &so->sk;
332 
333 	if (so->tx.state != ISOTP_WAIT_FC &&
334 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
335 		return 0;
336 
337 	hrtimer_cancel(&so->txtimer);
338 
339 	if ((cf->len < ae + FC_CONTENT_SZ) ||
340 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
341 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
342 		/* malformed PDU - report 'not a data message' */
343 		sk->sk_err = EBADMSG;
344 		if (!sock_flag(sk, SOCK_DEAD))
345 			sk_error_report(sk);
346 
347 		so->tx.state = ISOTP_IDLE;
348 		wake_up_interruptible(&so->wait);
349 		return 1;
350 	}
351 
352 	/* get communication parameters only from the first FC frame */
353 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
354 		so->txfc.bs = cf->data[ae + 1];
355 		so->txfc.stmin = cf->data[ae + 2];
356 
357 		/* fix wrong STmin values according spec */
358 		if (so->txfc.stmin > 0x7F &&
359 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
360 			so->txfc.stmin = 0x7F;
361 
362 		so->tx_gap = ktime_set(0, 0);
363 		/* add transmission time for CAN frame N_As */
364 		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
365 		/* add waiting time for consecutive frames N_Cs */
366 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
367 			so->tx_gap = ktime_add_ns(so->tx_gap,
368 						  so->force_tx_stmin);
369 		else if (so->txfc.stmin < 0x80)
370 			so->tx_gap = ktime_add_ns(so->tx_gap,
371 						  so->txfc.stmin * 1000000);
372 		else
373 			so->tx_gap = ktime_add_ns(so->tx_gap,
374 						  (so->txfc.stmin - 0xF0)
375 						  * 100000);
376 		so->tx.state = ISOTP_WAIT_FC;
377 	}
378 
379 	switch (cf->data[ae] & 0x0F) {
380 	case ISOTP_FC_CTS:
381 		so->tx.bs = 0;
382 		so->tx.state = ISOTP_SENDING;
383 		/* start cyclic timer for sending CF frame */
384 		hrtimer_start(&so->txtimer, so->tx_gap,
385 			      HRTIMER_MODE_REL_SOFT);
386 		break;
387 
388 	case ISOTP_FC_WT:
389 		/* start timer to wait for next FC frame */
390 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
391 			      HRTIMER_MODE_REL_SOFT);
392 		break;
393 
394 	case ISOTP_FC_OVFLW:
395 		/* overflow on receiver side - report 'message too long' */
396 		sk->sk_err = EMSGSIZE;
397 		if (!sock_flag(sk, SOCK_DEAD))
398 			sk_error_report(sk);
399 		fallthrough;
400 
401 	default:
402 		/* stop this tx job */
403 		so->tx.state = ISOTP_IDLE;
404 		wake_up_interruptible(&so->wait);
405 	}
406 	return 0;
407 }
408 
409 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
410 			struct sk_buff *skb, int len)
411 {
412 	struct isotp_sock *so = isotp_sk(sk);
413 	struct sk_buff *nskb;
414 
415 	hrtimer_cancel(&so->rxtimer);
416 	so->rx.state = ISOTP_IDLE;
417 
418 	if (!len || len > cf->len - pcilen)
419 		return 1;
420 
421 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
422 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
423 		/* malformed PDU - report 'not a data message' */
424 		sk->sk_err = EBADMSG;
425 		if (!sock_flag(sk, SOCK_DEAD))
426 			sk_error_report(sk);
427 		return 1;
428 	}
429 
430 	nskb = alloc_skb(len, gfp_any());
431 	if (!nskb)
432 		return 1;
433 
434 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
435 
436 	nskb->tstamp = skb->tstamp;
437 	nskb->dev = skb->dev;
438 	isotp_rcv_skb(nskb, sk);
439 	return 0;
440 }
441 
442 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
443 {
444 	struct isotp_sock *so = isotp_sk(sk);
445 	int i;
446 	int off;
447 	int ff_pci_sz;
448 
449 	hrtimer_cancel(&so->rxtimer);
450 	so->rx.state = ISOTP_IDLE;
451 
452 	/* get the used sender LL_DL from the (first) CAN frame data length */
453 	so->rx.ll_dl = padlen(cf->len);
454 
455 	/* the first frame has to use the entire frame up to LL_DL length */
456 	if (cf->len != so->rx.ll_dl)
457 		return 1;
458 
459 	/* get the FF_DL */
460 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
461 	so->rx.len += cf->data[ae + 1];
462 
463 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
464 	if (so->rx.len) {
465 		ff_pci_sz = FF_PCI_SZ12;
466 	} else {
467 		/* FF_DL = 0 => get real length from next 4 bytes */
468 		so->rx.len = cf->data[ae + 2] << 24;
469 		so->rx.len += cf->data[ae + 3] << 16;
470 		so->rx.len += cf->data[ae + 4] << 8;
471 		so->rx.len += cf->data[ae + 5];
472 		ff_pci_sz = FF_PCI_SZ32;
473 	}
474 
475 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
476 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
477 
478 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
479 		return 1;
480 
481 	if (so->rx.len > MAX_MSG_LENGTH) {
482 		/* send FC frame with overflow status */
483 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
484 		return 1;
485 	}
486 
487 	/* copy the first received data bytes */
488 	so->rx.idx = 0;
489 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
490 		so->rx.buf[so->rx.idx++] = cf->data[i];
491 
492 	/* initial setup for this pdu reception */
493 	so->rx.sn = 1;
494 	so->rx.state = ISOTP_WAIT_DATA;
495 
496 	/* no creation of flow control frames */
497 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
498 		return 0;
499 
500 	/* send our first FC frame */
501 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
502 	return 0;
503 }
504 
505 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
506 			struct sk_buff *skb)
507 {
508 	struct isotp_sock *so = isotp_sk(sk);
509 	struct sk_buff *nskb;
510 	int i;
511 
512 	if (so->rx.state != ISOTP_WAIT_DATA)
513 		return 0;
514 
515 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
516 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
517 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
518 		    so->force_rx_stmin)
519 			return 0;
520 
521 		so->lastrxcf_tstamp = skb->tstamp;
522 	}
523 
524 	hrtimer_cancel(&so->rxtimer);
525 
526 	/* CFs are never longer than the FF */
527 	if (cf->len > so->rx.ll_dl)
528 		return 1;
529 
530 	/* CFs have usually the LL_DL length */
531 	if (cf->len < so->rx.ll_dl) {
532 		/* this is only allowed for the last CF */
533 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
534 			return 1;
535 	}
536 
537 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
538 		/* wrong sn detected - report 'illegal byte sequence' */
539 		sk->sk_err = EILSEQ;
540 		if (!sock_flag(sk, SOCK_DEAD))
541 			sk_error_report(sk);
542 
543 		/* reset rx state */
544 		so->rx.state = ISOTP_IDLE;
545 		return 1;
546 	}
547 	so->rx.sn++;
548 	so->rx.sn %= 16;
549 
550 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
551 		so->rx.buf[so->rx.idx++] = cf->data[i];
552 		if (so->rx.idx >= so->rx.len)
553 			break;
554 	}
555 
556 	if (so->rx.idx >= so->rx.len) {
557 		/* we are done */
558 		so->rx.state = ISOTP_IDLE;
559 
560 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
561 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
562 			/* malformed PDU - report 'not a data message' */
563 			sk->sk_err = EBADMSG;
564 			if (!sock_flag(sk, SOCK_DEAD))
565 				sk_error_report(sk);
566 			return 1;
567 		}
568 
569 		nskb = alloc_skb(so->rx.len, gfp_any());
570 		if (!nskb)
571 			return 1;
572 
573 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
574 		       so->rx.len);
575 
576 		nskb->tstamp = skb->tstamp;
577 		nskb->dev = skb->dev;
578 		isotp_rcv_skb(nskb, sk);
579 		return 0;
580 	}
581 
582 	/* perform blocksize handling, if enabled */
583 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
584 		/* start rx timeout watchdog */
585 		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
586 			      HRTIMER_MODE_REL_SOFT);
587 		return 0;
588 	}
589 
590 	/* no creation of flow control frames */
591 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
592 		return 0;
593 
594 	/* we reached the specified blocksize so->rxfc.bs */
595 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
596 	return 0;
597 }
598 
599 static void isotp_rcv(struct sk_buff *skb, void *data)
600 {
601 	struct sock *sk = (struct sock *)data;
602 	struct isotp_sock *so = isotp_sk(sk);
603 	struct canfd_frame *cf;
604 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
605 	u8 n_pci_type, sf_dl;
606 
607 	/* Strictly receive only frames with the configured MTU size
608 	 * => clear separation of CAN2.0 / CAN FD transport channels
609 	 */
610 	if (skb->len != so->ll.mtu)
611 		return;
612 
613 	cf = (struct canfd_frame *)skb->data;
614 
615 	/* if enabled: check reception of my configured extended address */
616 	if (ae && cf->data[0] != so->opt.rx_ext_address)
617 		return;
618 
619 	n_pci_type = cf->data[ae] & 0xF0;
620 
621 	/* Make sure the state changes and data structures stay consistent at
622 	 * CAN frame reception time. This locking is not needed in real world
623 	 * use cases but the inconsistency can be triggered with syzkaller.
624 	 */
625 	spin_lock(&so->rx_lock);
626 
627 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
628 		/* check rx/tx path half duplex expectations */
629 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
630 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
631 			goto out_unlock;
632 	}
633 
634 	switch (n_pci_type) {
635 	case N_PCI_FC:
636 		/* tx path: flow control frame containing the FC parameters */
637 		isotp_rcv_fc(so, cf, ae);
638 		break;
639 
640 	case N_PCI_SF:
641 		/* rx path: single frame
642 		 *
643 		 * As we do not have a rx.ll_dl configuration, we can only test
644 		 * if the CAN frames payload length matches the LL_DL == 8
645 		 * requirements - no matter if it's CAN 2.0 or CAN FD
646 		 */
647 
648 		/* get the SF_DL from the N_PCI byte */
649 		sf_dl = cf->data[ae] & 0x0F;
650 
651 		if (cf->len <= CAN_MAX_DLEN) {
652 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
653 		} else {
654 			if (skb->len == CANFD_MTU) {
655 				/* We have a CAN FD frame and CAN_DL is greater than 8:
656 				 * Only frames with the SF_DL == 0 ESC value are valid.
657 				 *
658 				 * If so take care of the increased SF PCI size
659 				 * (SF_PCI_SZ8) to point to the message content behind
660 				 * the extended SF PCI info and get the real SF_DL
661 				 * length value from the formerly first data byte.
662 				 */
663 				if (sf_dl == 0)
664 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
665 						     cf->data[SF_PCI_SZ4 + ae]);
666 			}
667 		}
668 		break;
669 
670 	case N_PCI_FF:
671 		/* rx path: first frame */
672 		isotp_rcv_ff(sk, cf, ae);
673 		break;
674 
675 	case N_PCI_CF:
676 		/* rx path: consecutive frame */
677 		isotp_rcv_cf(sk, cf, ae, skb);
678 		break;
679 	}
680 
681 out_unlock:
682 	spin_unlock(&so->rx_lock);
683 }
684 
685 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
686 				 int ae, int off)
687 {
688 	int pcilen = N_PCI_SZ + ae + off;
689 	int space = so->tx.ll_dl - pcilen;
690 	int num = min_t(int, so->tx.len - so->tx.idx, space);
691 	int i;
692 
693 	cf->can_id = so->txid;
694 	cf->len = num + pcilen;
695 
696 	if (num < space) {
697 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
698 			/* user requested padding */
699 			cf->len = padlen(cf->len);
700 			memset(cf->data, so->opt.txpad_content, cf->len);
701 		} else if (cf->len > CAN_MAX_DLEN) {
702 			/* mandatory padding for CAN FD frames */
703 			cf->len = padlen(cf->len);
704 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
705 			       cf->len);
706 		}
707 	}
708 
709 	for (i = 0; i < num; i++)
710 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
711 
712 	if (ae)
713 		cf->data[0] = so->opt.ext_address;
714 }
715 
716 static void isotp_send_cframe(struct isotp_sock *so)
717 {
718 	struct sock *sk = &so->sk;
719 	struct sk_buff *skb;
720 	struct net_device *dev;
721 	struct canfd_frame *cf;
722 	int can_send_ret;
723 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
724 
725 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
726 	if (!dev)
727 		return;
728 
729 	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
730 	if (!skb) {
731 		dev_put(dev);
732 		return;
733 	}
734 
735 	can_skb_reserve(skb);
736 	can_skb_prv(skb)->ifindex = dev->ifindex;
737 	can_skb_prv(skb)->skbcnt = 0;
738 
739 	cf = (struct canfd_frame *)skb->data;
740 	skb_put_zero(skb, so->ll.mtu);
741 
742 	/* create consecutive frame */
743 	isotp_fill_dataframe(cf, so, ae, 0);
744 
745 	/* place consecutive frame N_PCI in appropriate index */
746 	cf->data[ae] = N_PCI_CF | so->tx.sn++;
747 	so->tx.sn %= 16;
748 	so->tx.bs++;
749 
750 	cf->flags = so->ll.tx_flags;
751 
752 	skb->dev = dev;
753 	can_skb_set_owner(skb, sk);
754 
755 	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
756 	if (so->cfecho)
757 		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
758 
759 	/* set consecutive frame echo tag */
760 	so->cfecho = *(u32 *)cf->data;
761 
762 	/* send frame with local echo enabled */
763 	can_send_ret = can_send(skb, 1);
764 	if (can_send_ret) {
765 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
766 			       __func__, ERR_PTR(can_send_ret));
767 		if (can_send_ret == -ENOBUFS)
768 			pr_notice_once("can-isotp: tx queue is full\n");
769 	}
770 	dev_put(dev);
771 }
772 
773 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
774 				int ae)
775 {
776 	int i;
777 	int ff_pci_sz;
778 
779 	cf->can_id = so->txid;
780 	cf->len = so->tx.ll_dl;
781 	if (ae)
782 		cf->data[0] = so->opt.ext_address;
783 
784 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
785 	if (so->tx.len > 4095) {
786 		/* use 32 bit FF_DL notation */
787 		cf->data[ae] = N_PCI_FF;
788 		cf->data[ae + 1] = 0;
789 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
790 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
791 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
792 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
793 		ff_pci_sz = FF_PCI_SZ32;
794 	} else {
795 		/* use 12 bit FF_DL notation */
796 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
797 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
798 		ff_pci_sz = FF_PCI_SZ12;
799 	}
800 
801 	/* add first data bytes depending on ae */
802 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
803 		cf->data[i] = so->tx.buf[so->tx.idx++];
804 
805 	so->tx.sn = 1;
806 	so->tx.state = ISOTP_WAIT_FIRST_FC;
807 }
808 
809 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
810 {
811 	struct sock *sk = (struct sock *)data;
812 	struct isotp_sock *so = isotp_sk(sk);
813 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
814 
815 	/* only handle my own local echo skb's */
816 	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
817 		return;
818 
819 	/* cancel local echo timeout */
820 	hrtimer_cancel(&so->txtimer);
821 
822 	/* local echo skb with consecutive frame has been consumed */
823 	so->cfecho = 0;
824 
825 	if (so->tx.idx >= so->tx.len) {
826 		/* we are done */
827 		so->tx.state = ISOTP_IDLE;
828 		wake_up_interruptible(&so->wait);
829 		return;
830 	}
831 
832 	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
833 		/* stop and wait for FC with timeout */
834 		so->tx.state = ISOTP_WAIT_FC;
835 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
836 			      HRTIMER_MODE_REL_SOFT);
837 		return;
838 	}
839 
840 	/* no gap between data frames needed => use burst mode */
841 	if (!so->tx_gap) {
842 		isotp_send_cframe(so);
843 		return;
844 	}
845 
846 	/* start timer to send next consecutive frame with correct delay */
847 	hrtimer_start(&so->txtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
848 }
849 
850 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
851 {
852 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
853 					     txtimer);
854 	struct sock *sk = &so->sk;
855 	enum hrtimer_restart restart = HRTIMER_NORESTART;
856 
857 	switch (so->tx.state) {
858 	case ISOTP_SENDING:
859 
860 		/* cfecho should be consumed by isotp_rcv_echo() here */
861 		if (!so->cfecho) {
862 			/* start timeout for unlikely lost echo skb */
863 			hrtimer_set_expires(&so->txtimer,
864 					    ktime_add(ktime_get(),
865 						      ktime_set(2, 0)));
866 			restart = HRTIMER_RESTART;
867 
868 			/* push out the next consecutive frame */
869 			isotp_send_cframe(so);
870 			break;
871 		}
872 
873 		/* cfecho has not been cleared in isotp_rcv_echo() */
874 		pr_notice_once("can-isotp: cfecho %08X timeout\n", so->cfecho);
875 		fallthrough;
876 
877 	case ISOTP_WAIT_FC:
878 	case ISOTP_WAIT_FIRST_FC:
879 
880 		/* we did not get any flow control frame in time */
881 
882 		/* report 'communication error on send' */
883 		sk->sk_err = ECOMM;
884 		if (!sock_flag(sk, SOCK_DEAD))
885 			sk_error_report(sk);
886 
887 		/* reset tx state */
888 		so->tx.state = ISOTP_IDLE;
889 		wake_up_interruptible(&so->wait);
890 		break;
891 
892 	default:
893 		WARN_ON_ONCE(1);
894 	}
895 
896 	return restart;
897 }
898 
899 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
900 {
901 	struct sock *sk = sock->sk;
902 	struct isotp_sock *so = isotp_sk(sk);
903 	u32 old_state = so->tx.state;
904 	struct sk_buff *skb;
905 	struct net_device *dev;
906 	struct canfd_frame *cf;
907 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
908 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
909 	s64 hrtimer_sec = 0;
910 	int off;
911 	int err;
912 
913 	if (!so->bound)
914 		return -EADDRNOTAVAIL;
915 
916 	/* we do not support multiple buffers - for now */
917 	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
918 	    wq_has_sleeper(&so->wait)) {
919 		if (msg->msg_flags & MSG_DONTWAIT) {
920 			err = -EAGAIN;
921 			goto err_out;
922 		}
923 
924 		/* wait for complete transmission of current pdu */
925 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
926 		if (err)
927 			goto err_out;
928 	}
929 
930 	if (!size || size > MAX_MSG_LENGTH) {
931 		err = -EINVAL;
932 		goto err_out_drop;
933 	}
934 
935 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
936 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
937 
938 	/* does the given data fit into a single frame for SF_BROADCAST? */
939 	if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
940 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
941 		err = -EINVAL;
942 		goto err_out_drop;
943 	}
944 
945 	err = memcpy_from_msg(so->tx.buf, msg, size);
946 	if (err < 0)
947 		goto err_out_drop;
948 
949 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
950 	if (!dev) {
951 		err = -ENXIO;
952 		goto err_out_drop;
953 	}
954 
955 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
956 				  msg->msg_flags & MSG_DONTWAIT, &err);
957 	if (!skb) {
958 		dev_put(dev);
959 		goto err_out_drop;
960 	}
961 
962 	can_skb_reserve(skb);
963 	can_skb_prv(skb)->ifindex = dev->ifindex;
964 	can_skb_prv(skb)->skbcnt = 0;
965 
966 	so->tx.len = size;
967 	so->tx.idx = 0;
968 
969 	cf = (struct canfd_frame *)skb->data;
970 	skb_put_zero(skb, so->ll.mtu);
971 
972 	/* check for single frame transmission depending on TX_DL */
973 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
974 		/* The message size generally fits into a SingleFrame - good.
975 		 *
976 		 * SF_DL ESC offset optimization:
977 		 *
978 		 * When TX_DL is greater 8 but the message would still fit
979 		 * into a 8 byte CAN frame, we can omit the offset.
980 		 * This prevents a protocol caused length extension from
981 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
982 		 */
983 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
984 			off = 0;
985 
986 		isotp_fill_dataframe(cf, so, ae, off);
987 
988 		/* place single frame N_PCI w/o length in appropriate index */
989 		cf->data[ae] = N_PCI_SF;
990 
991 		/* place SF_DL size value depending on the SF_DL ESC offset */
992 		if (off)
993 			cf->data[SF_PCI_SZ4 + ae] = size;
994 		else
995 			cf->data[ae] |= size;
996 
997 		so->tx.state = ISOTP_IDLE;
998 		wake_up_interruptible(&so->wait);
999 
1000 		/* don't enable wait queue for a single frame transmission */
1001 		wait_tx_done = 0;
1002 	} else {
1003 		/* send first frame and wait for FC */
1004 
1005 		isotp_create_fframe(cf, so, ae);
1006 
1007 		/* start timeout for FC */
1008 		hrtimer_sec = 1;
1009 		hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1010 			      HRTIMER_MODE_REL_SOFT);
1011 	}
1012 
1013 	/* send the first or only CAN frame */
1014 	cf->flags = so->ll.tx_flags;
1015 
1016 	skb->dev = dev;
1017 	skb->sk = sk;
1018 	err = can_send(skb, 1);
1019 	dev_put(dev);
1020 	if (err) {
1021 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1022 			       __func__, ERR_PTR(err));
1023 
1024 		/* no transmission -> no timeout monitoring */
1025 		if (hrtimer_sec)
1026 			hrtimer_cancel(&so->txtimer);
1027 
1028 		goto err_out_drop;
1029 	}
1030 
1031 	if (wait_tx_done) {
1032 		/* wait for complete transmission of current pdu */
1033 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1034 
1035 		if (sk->sk_err)
1036 			return -sk->sk_err;
1037 	}
1038 
1039 	return size;
1040 
1041 err_out_drop:
1042 	/* drop this PDU and unlock a potential wait queue */
1043 	old_state = ISOTP_IDLE;
1044 err_out:
1045 	so->tx.state = old_state;
1046 	if (so->tx.state == ISOTP_IDLE)
1047 		wake_up_interruptible(&so->wait);
1048 
1049 	return err;
1050 }
1051 
1052 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1053 			 int flags)
1054 {
1055 	struct sock *sk = sock->sk;
1056 	struct sk_buff *skb;
1057 	struct isotp_sock *so = isotp_sk(sk);
1058 	int noblock = flags & MSG_DONTWAIT;
1059 	int ret = 0;
1060 
1061 	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1062 		return -EINVAL;
1063 
1064 	if (!so->bound)
1065 		return -EADDRNOTAVAIL;
1066 
1067 	flags &= ~MSG_DONTWAIT;
1068 	skb = skb_recv_datagram(sk, flags, noblock, &ret);
1069 	if (!skb)
1070 		return ret;
1071 
1072 	if (size < skb->len)
1073 		msg->msg_flags |= MSG_TRUNC;
1074 	else
1075 		size = skb->len;
1076 
1077 	ret = memcpy_to_msg(msg, skb->data, size);
1078 	if (ret < 0)
1079 		goto out_err;
1080 
1081 	sock_recv_timestamp(msg, sk, skb);
1082 
1083 	if (msg->msg_name) {
1084 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1085 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1086 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1087 	}
1088 
1089 	/* set length of return value */
1090 	ret = (flags & MSG_TRUNC) ? skb->len : size;
1091 
1092 out_err:
1093 	skb_free_datagram(sk, skb);
1094 
1095 	return ret;
1096 }
1097 
1098 static int isotp_release(struct socket *sock)
1099 {
1100 	struct sock *sk = sock->sk;
1101 	struct isotp_sock *so;
1102 	struct net *net;
1103 
1104 	if (!sk)
1105 		return 0;
1106 
1107 	so = isotp_sk(sk);
1108 	net = sock_net(sk);
1109 
1110 	/* wait for complete transmission of current pdu */
1111 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1112 
1113 	spin_lock(&isotp_notifier_lock);
1114 	while (isotp_busy_notifier == so) {
1115 		spin_unlock(&isotp_notifier_lock);
1116 		schedule_timeout_uninterruptible(1);
1117 		spin_lock(&isotp_notifier_lock);
1118 	}
1119 	list_del(&so->notifier);
1120 	spin_unlock(&isotp_notifier_lock);
1121 
1122 	lock_sock(sk);
1123 
1124 	/* remove current filters & unregister */
1125 	if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1126 		if (so->ifindex) {
1127 			struct net_device *dev;
1128 
1129 			dev = dev_get_by_index(net, so->ifindex);
1130 			if (dev) {
1131 				can_rx_unregister(net, dev, so->rxid,
1132 						  SINGLE_MASK(so->rxid),
1133 						  isotp_rcv, sk);
1134 				can_rx_unregister(net, dev, so->txid,
1135 						  SINGLE_MASK(so->txid),
1136 						  isotp_rcv_echo, sk);
1137 				dev_put(dev);
1138 				synchronize_rcu();
1139 			}
1140 		}
1141 	}
1142 
1143 	hrtimer_cancel(&so->txtimer);
1144 	hrtimer_cancel(&so->rxtimer);
1145 
1146 	so->ifindex = 0;
1147 	so->bound = 0;
1148 
1149 	sock_orphan(sk);
1150 	sock->sk = NULL;
1151 
1152 	release_sock(sk);
1153 	sock_put(sk);
1154 
1155 	return 0;
1156 }
1157 
1158 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1159 {
1160 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1161 	struct sock *sk = sock->sk;
1162 	struct isotp_sock *so = isotp_sk(sk);
1163 	struct net *net = sock_net(sk);
1164 	int ifindex;
1165 	struct net_device *dev;
1166 	canid_t tx_id, rx_id;
1167 	int err = 0;
1168 	int notify_enetdown = 0;
1169 	int do_rx_reg = 1;
1170 
1171 	if (len < ISOTP_MIN_NAMELEN)
1172 		return -EINVAL;
1173 
1174 	/* sanitize tx/rx CAN identifiers */
1175 	tx_id = addr->can_addr.tp.tx_id;
1176 	if (tx_id & CAN_EFF_FLAG)
1177 		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1178 	else
1179 		tx_id &= CAN_SFF_MASK;
1180 
1181 	rx_id = addr->can_addr.tp.rx_id;
1182 	if (rx_id & CAN_EFF_FLAG)
1183 		rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1184 	else
1185 		rx_id &= CAN_SFF_MASK;
1186 
1187 	if (!addr->can_ifindex)
1188 		return -ENODEV;
1189 
1190 	lock_sock(sk);
1191 
1192 	if (so->bound) {
1193 		err = -EINVAL;
1194 		goto out;
1195 	}
1196 
1197 	/* do not register frame reception for functional addressing */
1198 	if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1199 		do_rx_reg = 0;
1200 
1201 	/* do not validate rx address for functional addressing */
1202 	if (do_rx_reg && rx_id == tx_id) {
1203 		err = -EADDRNOTAVAIL;
1204 		goto out;
1205 	}
1206 
1207 	dev = dev_get_by_index(net, addr->can_ifindex);
1208 	if (!dev) {
1209 		err = -ENODEV;
1210 		goto out;
1211 	}
1212 	if (dev->type != ARPHRD_CAN) {
1213 		dev_put(dev);
1214 		err = -ENODEV;
1215 		goto out;
1216 	}
1217 	if (dev->mtu < so->ll.mtu) {
1218 		dev_put(dev);
1219 		err = -EINVAL;
1220 		goto out;
1221 	}
1222 	if (!(dev->flags & IFF_UP))
1223 		notify_enetdown = 1;
1224 
1225 	ifindex = dev->ifindex;
1226 
1227 	if (do_rx_reg) {
1228 		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1229 				isotp_rcv, sk, "isotp", sk);
1230 
1231 		/* no consecutive frame echo skb in flight */
1232 		so->cfecho = 0;
1233 
1234 		/* register for echo skb's */
1235 		can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1236 				isotp_rcv_echo, sk, "isotpe", sk);
1237 	}
1238 
1239 	dev_put(dev);
1240 
1241 	/* switch to new settings */
1242 	so->ifindex = ifindex;
1243 	so->rxid = rx_id;
1244 	so->txid = tx_id;
1245 	so->bound = 1;
1246 
1247 out:
1248 	release_sock(sk);
1249 
1250 	if (notify_enetdown) {
1251 		sk->sk_err = ENETDOWN;
1252 		if (!sock_flag(sk, SOCK_DEAD))
1253 			sk_error_report(sk);
1254 	}
1255 
1256 	return err;
1257 }
1258 
1259 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1260 {
1261 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1262 	struct sock *sk = sock->sk;
1263 	struct isotp_sock *so = isotp_sk(sk);
1264 
1265 	if (peer)
1266 		return -EOPNOTSUPP;
1267 
1268 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1269 	addr->can_family = AF_CAN;
1270 	addr->can_ifindex = so->ifindex;
1271 	addr->can_addr.tp.rx_id = so->rxid;
1272 	addr->can_addr.tp.tx_id = so->txid;
1273 
1274 	return ISOTP_MIN_NAMELEN;
1275 }
1276 
1277 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1278 			    sockptr_t optval, unsigned int optlen)
1279 {
1280 	struct sock *sk = sock->sk;
1281 	struct isotp_sock *so = isotp_sk(sk);
1282 	int ret = 0;
1283 
1284 	if (so->bound)
1285 		return -EISCONN;
1286 
1287 	switch (optname) {
1288 	case CAN_ISOTP_OPTS:
1289 		if (optlen != sizeof(struct can_isotp_options))
1290 			return -EINVAL;
1291 
1292 		if (copy_from_sockptr(&so->opt, optval, optlen))
1293 			return -EFAULT;
1294 
1295 		/* no separate rx_ext_address is given => use ext_address */
1296 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1297 			so->opt.rx_ext_address = so->opt.ext_address;
1298 
1299 		/* check for frame_txtime changes (0 => no changes) */
1300 		if (so->opt.frame_txtime) {
1301 			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1302 				so->frame_txtime = 0;
1303 			else
1304 				so->frame_txtime = so->opt.frame_txtime;
1305 		}
1306 		break;
1307 
1308 	case CAN_ISOTP_RECV_FC:
1309 		if (optlen != sizeof(struct can_isotp_fc_options))
1310 			return -EINVAL;
1311 
1312 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1313 			return -EFAULT;
1314 		break;
1315 
1316 	case CAN_ISOTP_TX_STMIN:
1317 		if (optlen != sizeof(u32))
1318 			return -EINVAL;
1319 
1320 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1321 			return -EFAULT;
1322 		break;
1323 
1324 	case CAN_ISOTP_RX_STMIN:
1325 		if (optlen != sizeof(u32))
1326 			return -EINVAL;
1327 
1328 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1329 			return -EFAULT;
1330 		break;
1331 
1332 	case CAN_ISOTP_LL_OPTS:
1333 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1334 			struct can_isotp_ll_options ll;
1335 
1336 			if (copy_from_sockptr(&ll, optval, optlen))
1337 				return -EFAULT;
1338 
1339 			/* check for correct ISO 11898-1 DLC data length */
1340 			if (ll.tx_dl != padlen(ll.tx_dl))
1341 				return -EINVAL;
1342 
1343 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1344 				return -EINVAL;
1345 
1346 			if (ll.mtu == CAN_MTU &&
1347 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1348 				return -EINVAL;
1349 
1350 			memcpy(&so->ll, &ll, sizeof(ll));
1351 
1352 			/* set ll_dl for tx path to similar place as for rx */
1353 			so->tx.ll_dl = ll.tx_dl;
1354 		} else {
1355 			return -EINVAL;
1356 		}
1357 		break;
1358 
1359 	default:
1360 		ret = -ENOPROTOOPT;
1361 	}
1362 
1363 	return ret;
1364 }
1365 
1366 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1367 			    sockptr_t optval, unsigned int optlen)
1368 
1369 {
1370 	struct sock *sk = sock->sk;
1371 	int ret;
1372 
1373 	if (level != SOL_CAN_ISOTP)
1374 		return -EINVAL;
1375 
1376 	lock_sock(sk);
1377 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1378 	release_sock(sk);
1379 	return ret;
1380 }
1381 
1382 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1383 			    char __user *optval, int __user *optlen)
1384 {
1385 	struct sock *sk = sock->sk;
1386 	struct isotp_sock *so = isotp_sk(sk);
1387 	int len;
1388 	void *val;
1389 
1390 	if (level != SOL_CAN_ISOTP)
1391 		return -EINVAL;
1392 	if (get_user(len, optlen))
1393 		return -EFAULT;
1394 	if (len < 0)
1395 		return -EINVAL;
1396 
1397 	switch (optname) {
1398 	case CAN_ISOTP_OPTS:
1399 		len = min_t(int, len, sizeof(struct can_isotp_options));
1400 		val = &so->opt;
1401 		break;
1402 
1403 	case CAN_ISOTP_RECV_FC:
1404 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1405 		val = &so->rxfc;
1406 		break;
1407 
1408 	case CAN_ISOTP_TX_STMIN:
1409 		len = min_t(int, len, sizeof(u32));
1410 		val = &so->force_tx_stmin;
1411 		break;
1412 
1413 	case CAN_ISOTP_RX_STMIN:
1414 		len = min_t(int, len, sizeof(u32));
1415 		val = &so->force_rx_stmin;
1416 		break;
1417 
1418 	case CAN_ISOTP_LL_OPTS:
1419 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1420 		val = &so->ll;
1421 		break;
1422 
1423 	default:
1424 		return -ENOPROTOOPT;
1425 	}
1426 
1427 	if (put_user(len, optlen))
1428 		return -EFAULT;
1429 	if (copy_to_user(optval, val, len))
1430 		return -EFAULT;
1431 	return 0;
1432 }
1433 
1434 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1435 			 struct net_device *dev)
1436 {
1437 	struct sock *sk = &so->sk;
1438 
1439 	if (!net_eq(dev_net(dev), sock_net(sk)))
1440 		return;
1441 
1442 	if (so->ifindex != dev->ifindex)
1443 		return;
1444 
1445 	switch (msg) {
1446 	case NETDEV_UNREGISTER:
1447 		lock_sock(sk);
1448 		/* remove current filters & unregister */
1449 		if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1450 			can_rx_unregister(dev_net(dev), dev, so->rxid,
1451 					  SINGLE_MASK(so->rxid),
1452 					  isotp_rcv, sk);
1453 			can_rx_unregister(dev_net(dev), dev, so->txid,
1454 					  SINGLE_MASK(so->txid),
1455 					  isotp_rcv_echo, sk);
1456 		}
1457 
1458 		so->ifindex = 0;
1459 		so->bound  = 0;
1460 		release_sock(sk);
1461 
1462 		sk->sk_err = ENODEV;
1463 		if (!sock_flag(sk, SOCK_DEAD))
1464 			sk_error_report(sk);
1465 		break;
1466 
1467 	case NETDEV_DOWN:
1468 		sk->sk_err = ENETDOWN;
1469 		if (!sock_flag(sk, SOCK_DEAD))
1470 			sk_error_report(sk);
1471 		break;
1472 	}
1473 }
1474 
1475 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1476 			  void *ptr)
1477 {
1478 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1479 
1480 	if (dev->type != ARPHRD_CAN)
1481 		return NOTIFY_DONE;
1482 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1483 		return NOTIFY_DONE;
1484 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1485 		return NOTIFY_DONE;
1486 
1487 	spin_lock(&isotp_notifier_lock);
1488 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1489 		spin_unlock(&isotp_notifier_lock);
1490 		isotp_notify(isotp_busy_notifier, msg, dev);
1491 		spin_lock(&isotp_notifier_lock);
1492 	}
1493 	isotp_busy_notifier = NULL;
1494 	spin_unlock(&isotp_notifier_lock);
1495 	return NOTIFY_DONE;
1496 }
1497 
1498 static int isotp_init(struct sock *sk)
1499 {
1500 	struct isotp_sock *so = isotp_sk(sk);
1501 
1502 	so->ifindex = 0;
1503 	so->bound = 0;
1504 
1505 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1506 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1507 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1508 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1509 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1510 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1511 	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1512 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1513 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1514 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1515 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1516 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1517 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1518 
1519 	/* set ll_dl for tx path to similar place as for rx */
1520 	so->tx.ll_dl = so->ll.tx_dl;
1521 
1522 	so->rx.state = ISOTP_IDLE;
1523 	so->tx.state = ISOTP_IDLE;
1524 
1525 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1526 	so->rxtimer.function = isotp_rx_timer_handler;
1527 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1528 	so->txtimer.function = isotp_tx_timer_handler;
1529 
1530 	init_waitqueue_head(&so->wait);
1531 	spin_lock_init(&so->rx_lock);
1532 
1533 	spin_lock(&isotp_notifier_lock);
1534 	list_add_tail(&so->notifier, &isotp_notifier_list);
1535 	spin_unlock(&isotp_notifier_lock);
1536 
1537 	return 0;
1538 }
1539 
1540 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1541 				  unsigned long arg)
1542 {
1543 	/* no ioctls for socket layer -> hand it down to NIC layer */
1544 	return -ENOIOCTLCMD;
1545 }
1546 
1547 static const struct proto_ops isotp_ops = {
1548 	.family = PF_CAN,
1549 	.release = isotp_release,
1550 	.bind = isotp_bind,
1551 	.connect = sock_no_connect,
1552 	.socketpair = sock_no_socketpair,
1553 	.accept = sock_no_accept,
1554 	.getname = isotp_getname,
1555 	.poll = datagram_poll,
1556 	.ioctl = isotp_sock_no_ioctlcmd,
1557 	.gettstamp = sock_gettstamp,
1558 	.listen = sock_no_listen,
1559 	.shutdown = sock_no_shutdown,
1560 	.setsockopt = isotp_setsockopt,
1561 	.getsockopt = isotp_getsockopt,
1562 	.sendmsg = isotp_sendmsg,
1563 	.recvmsg = isotp_recvmsg,
1564 	.mmap = sock_no_mmap,
1565 	.sendpage = sock_no_sendpage,
1566 };
1567 
1568 static struct proto isotp_proto __read_mostly = {
1569 	.name = "CAN_ISOTP",
1570 	.owner = THIS_MODULE,
1571 	.obj_size = sizeof(struct isotp_sock),
1572 	.init = isotp_init,
1573 };
1574 
1575 static const struct can_proto isotp_can_proto = {
1576 	.type = SOCK_DGRAM,
1577 	.protocol = CAN_ISOTP,
1578 	.ops = &isotp_ops,
1579 	.prot = &isotp_proto,
1580 };
1581 
1582 static struct notifier_block canisotp_notifier = {
1583 	.notifier_call = isotp_notifier
1584 };
1585 
1586 static __init int isotp_module_init(void)
1587 {
1588 	int err;
1589 
1590 	pr_info("can: isotp protocol\n");
1591 
1592 	err = can_proto_register(&isotp_can_proto);
1593 	if (err < 0)
1594 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1595 	else
1596 		register_netdevice_notifier(&canisotp_notifier);
1597 
1598 	return err;
1599 }
1600 
1601 static __exit void isotp_module_exit(void)
1602 {
1603 	can_proto_unregister(&isotp_can_proto);
1604 	unregister_netdevice_notifier(&canisotp_notifier);
1605 }
1606 
1607 module_init(isotp_module_init);
1608 module_exit(isotp_module_exit);
1609