xref: /openbmc/linux/net/can/isotp.c (revision 5b8d9ee0)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 64 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 66000
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
108 
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0		/* clear to send */
111 #define ISOTP_FC_WT 1		/* wait */
112 #define ISOTP_FC_OVFLW 2	/* overflow */
113 
114 enum {
115 	ISOTP_IDLE = 0,
116 	ISOTP_WAIT_FIRST_FC,
117 	ISOTP_WAIT_FC,
118 	ISOTP_WAIT_DATA,
119 	ISOTP_SENDING
120 };
121 
122 struct tpcon {
123 	unsigned int idx;
124 	unsigned int len;
125 	u32 state;
126 	u8 bs;
127 	u8 sn;
128 	u8 ll_dl;
129 	u8 buf[MAX_MSG_LENGTH + 1];
130 };
131 
132 struct isotp_sock {
133 	struct sock sk;
134 	int bound;
135 	int ifindex;
136 	canid_t txid;
137 	canid_t rxid;
138 	ktime_t tx_gap;
139 	ktime_t lastrxcf_tstamp;
140 	struct hrtimer rxtimer, txtimer;
141 	struct can_isotp_options opt;
142 	struct can_isotp_fc_options rxfc, txfc;
143 	struct can_isotp_ll_options ll;
144 	u32 frame_txtime;
145 	u32 force_tx_stmin;
146 	u32 force_rx_stmin;
147 	u32 cfecho; /* consecutive frame echo tag */
148 	struct tpcon rx, tx;
149 	struct list_head notifier;
150 	wait_queue_head_t wait;
151 	spinlock_t rx_lock; /* protect single thread state machine */
152 };
153 
154 static LIST_HEAD(isotp_notifier_list);
155 static DEFINE_SPINLOCK(isotp_notifier_lock);
156 static struct isotp_sock *isotp_busy_notifier;
157 
158 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
159 {
160 	return (struct isotp_sock *)sk;
161 }
162 
163 static u32 isotp_bc_flags(struct isotp_sock *so)
164 {
165 	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
166 }
167 
168 static bool isotp_register_rxid(struct isotp_sock *so)
169 {
170 	/* no broadcast modes => register rx_id for FC frame reception */
171 	return (isotp_bc_flags(so) == 0);
172 }
173 
174 static bool isotp_register_txecho(struct isotp_sock *so)
175 {
176 	/* all modes but SF_BROADCAST register for tx echo skbs */
177 	return (isotp_bc_flags(so) != CAN_ISOTP_SF_BROADCAST);
178 }
179 
180 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
181 {
182 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
183 					     rxtimer);
184 	struct sock *sk = &so->sk;
185 
186 	if (so->rx.state == ISOTP_WAIT_DATA) {
187 		/* we did not get new data frames in time */
188 
189 		/* report 'connection timed out' */
190 		sk->sk_err = ETIMEDOUT;
191 		if (!sock_flag(sk, SOCK_DEAD))
192 			sk_error_report(sk);
193 
194 		/* reset rx state */
195 		so->rx.state = ISOTP_IDLE;
196 	}
197 
198 	return HRTIMER_NORESTART;
199 }
200 
201 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
202 {
203 	struct net_device *dev;
204 	struct sk_buff *nskb;
205 	struct canfd_frame *ncf;
206 	struct isotp_sock *so = isotp_sk(sk);
207 	int can_send_ret;
208 
209 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
210 	if (!nskb)
211 		return 1;
212 
213 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
214 	if (!dev) {
215 		kfree_skb(nskb);
216 		return 1;
217 	}
218 
219 	can_skb_reserve(nskb);
220 	can_skb_prv(nskb)->ifindex = dev->ifindex;
221 	can_skb_prv(nskb)->skbcnt = 0;
222 
223 	nskb->dev = dev;
224 	can_skb_set_owner(nskb, sk);
225 	ncf = (struct canfd_frame *)nskb->data;
226 	skb_put_zero(nskb, so->ll.mtu);
227 
228 	/* create & send flow control reply */
229 	ncf->can_id = so->txid;
230 
231 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
232 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
233 		ncf->len = CAN_MAX_DLEN;
234 	} else {
235 		ncf->len = ae + FC_CONTENT_SZ;
236 	}
237 
238 	ncf->data[ae] = N_PCI_FC | flowstatus;
239 	ncf->data[ae + 1] = so->rxfc.bs;
240 	ncf->data[ae + 2] = so->rxfc.stmin;
241 
242 	if (ae)
243 		ncf->data[0] = so->opt.ext_address;
244 
245 	ncf->flags = so->ll.tx_flags;
246 
247 	can_send_ret = can_send(nskb, 1);
248 	if (can_send_ret)
249 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
250 			       __func__, ERR_PTR(can_send_ret));
251 
252 	dev_put(dev);
253 
254 	/* reset blocksize counter */
255 	so->rx.bs = 0;
256 
257 	/* reset last CF frame rx timestamp for rx stmin enforcement */
258 	so->lastrxcf_tstamp = ktime_set(0, 0);
259 
260 	/* start rx timeout watchdog */
261 	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
262 	return 0;
263 }
264 
265 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
266 {
267 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
268 
269 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
270 
271 	memset(addr, 0, sizeof(*addr));
272 	addr->can_family = AF_CAN;
273 	addr->can_ifindex = skb->dev->ifindex;
274 
275 	if (sock_queue_rcv_skb(sk, skb) < 0)
276 		kfree_skb(skb);
277 }
278 
279 static u8 padlen(u8 datalen)
280 {
281 	static const u8 plen[] = {
282 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
283 		12, 12, 12, 12,			/* 9 - 12 */
284 		16, 16, 16, 16,			/* 13 - 16 */
285 		20, 20, 20, 20,			/* 17 - 20 */
286 		24, 24, 24, 24,			/* 21 - 24 */
287 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
288 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
289 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
290 	};
291 
292 	if (datalen > 48)
293 		return 64;
294 
295 	return plen[datalen];
296 }
297 
298 /* check for length optimization and return 1/true when the check fails */
299 static int check_optimized(struct canfd_frame *cf, int start_index)
300 {
301 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
302 	 * padding would start at this point. E.g. if the padding would
303 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
304 	 * Note: The data[] index starts with zero.
305 	 */
306 	if (cf->len <= CAN_MAX_DLEN)
307 		return (cf->len != start_index);
308 
309 	/* This relation is also valid in the non-linear DLC range, where
310 	 * we need to take care of the minimal next possible CAN_DL.
311 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
312 	 * But as cf->len can only take discrete values from 12, .., 64 at this
313 	 * point the padlen(cf->len) is always equal to cf->len.
314 	 */
315 	return (cf->len != padlen(start_index));
316 }
317 
318 /* check padding and return 1/true when the check fails */
319 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
320 		     int start_index, u8 content)
321 {
322 	int i;
323 
324 	/* no RX_PADDING value => check length of optimized frame length */
325 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
326 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
327 			return check_optimized(cf, start_index);
328 
329 		/* no valid test against empty value => ignore frame */
330 		return 1;
331 	}
332 
333 	/* check datalength of correctly padded CAN frame */
334 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
335 	    cf->len != padlen(cf->len))
336 		return 1;
337 
338 	/* check padding content */
339 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
340 		for (i = start_index; i < cf->len; i++)
341 			if (cf->data[i] != content)
342 				return 1;
343 	}
344 	return 0;
345 }
346 
347 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
348 {
349 	struct sock *sk = &so->sk;
350 
351 	if (so->tx.state != ISOTP_WAIT_FC &&
352 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
353 		return 0;
354 
355 	hrtimer_cancel(&so->txtimer);
356 
357 	if ((cf->len < ae + FC_CONTENT_SZ) ||
358 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
359 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
360 		/* malformed PDU - report 'not a data message' */
361 		sk->sk_err = EBADMSG;
362 		if (!sock_flag(sk, SOCK_DEAD))
363 			sk_error_report(sk);
364 
365 		so->tx.state = ISOTP_IDLE;
366 		wake_up_interruptible(&so->wait);
367 		return 1;
368 	}
369 
370 	/* get communication parameters only from the first FC frame */
371 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
372 		so->txfc.bs = cf->data[ae + 1];
373 		so->txfc.stmin = cf->data[ae + 2];
374 
375 		/* fix wrong STmin values according spec */
376 		if (so->txfc.stmin > 0x7F &&
377 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
378 			so->txfc.stmin = 0x7F;
379 
380 		so->tx_gap = ktime_set(0, 0);
381 		/* add transmission time for CAN frame N_As */
382 		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
383 		/* add waiting time for consecutive frames N_Cs */
384 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
385 			so->tx_gap = ktime_add_ns(so->tx_gap,
386 						  so->force_tx_stmin);
387 		else if (so->txfc.stmin < 0x80)
388 			so->tx_gap = ktime_add_ns(so->tx_gap,
389 						  so->txfc.stmin * 1000000);
390 		else
391 			so->tx_gap = ktime_add_ns(so->tx_gap,
392 						  (so->txfc.stmin - 0xF0)
393 						  * 100000);
394 		so->tx.state = ISOTP_WAIT_FC;
395 	}
396 
397 	switch (cf->data[ae] & 0x0F) {
398 	case ISOTP_FC_CTS:
399 		so->tx.bs = 0;
400 		so->tx.state = ISOTP_SENDING;
401 		/* start cyclic timer for sending CF frame */
402 		hrtimer_start(&so->txtimer, so->tx_gap,
403 			      HRTIMER_MODE_REL_SOFT);
404 		break;
405 
406 	case ISOTP_FC_WT:
407 		/* start timer to wait for next FC frame */
408 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
409 			      HRTIMER_MODE_REL_SOFT);
410 		break;
411 
412 	case ISOTP_FC_OVFLW:
413 		/* overflow on receiver side - report 'message too long' */
414 		sk->sk_err = EMSGSIZE;
415 		if (!sock_flag(sk, SOCK_DEAD))
416 			sk_error_report(sk);
417 		fallthrough;
418 
419 	default:
420 		/* stop this tx job */
421 		so->tx.state = ISOTP_IDLE;
422 		wake_up_interruptible(&so->wait);
423 	}
424 	return 0;
425 }
426 
427 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
428 			struct sk_buff *skb, int len)
429 {
430 	struct isotp_sock *so = isotp_sk(sk);
431 	struct sk_buff *nskb;
432 
433 	hrtimer_cancel(&so->rxtimer);
434 	so->rx.state = ISOTP_IDLE;
435 
436 	if (!len || len > cf->len - pcilen)
437 		return 1;
438 
439 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
440 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
441 		/* malformed PDU - report 'not a data message' */
442 		sk->sk_err = EBADMSG;
443 		if (!sock_flag(sk, SOCK_DEAD))
444 			sk_error_report(sk);
445 		return 1;
446 	}
447 
448 	nskb = alloc_skb(len, gfp_any());
449 	if (!nskb)
450 		return 1;
451 
452 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
453 
454 	nskb->tstamp = skb->tstamp;
455 	nskb->dev = skb->dev;
456 	isotp_rcv_skb(nskb, sk);
457 	return 0;
458 }
459 
460 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
461 {
462 	struct isotp_sock *so = isotp_sk(sk);
463 	int i;
464 	int off;
465 	int ff_pci_sz;
466 
467 	hrtimer_cancel(&so->rxtimer);
468 	so->rx.state = ISOTP_IDLE;
469 
470 	/* get the used sender LL_DL from the (first) CAN frame data length */
471 	so->rx.ll_dl = padlen(cf->len);
472 
473 	/* the first frame has to use the entire frame up to LL_DL length */
474 	if (cf->len != so->rx.ll_dl)
475 		return 1;
476 
477 	/* get the FF_DL */
478 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
479 	so->rx.len += cf->data[ae + 1];
480 
481 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
482 	if (so->rx.len) {
483 		ff_pci_sz = FF_PCI_SZ12;
484 	} else {
485 		/* FF_DL = 0 => get real length from next 4 bytes */
486 		so->rx.len = cf->data[ae + 2] << 24;
487 		so->rx.len += cf->data[ae + 3] << 16;
488 		so->rx.len += cf->data[ae + 4] << 8;
489 		so->rx.len += cf->data[ae + 5];
490 		ff_pci_sz = FF_PCI_SZ32;
491 	}
492 
493 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
494 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
495 
496 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
497 		return 1;
498 
499 	if (so->rx.len > MAX_MSG_LENGTH) {
500 		/* send FC frame with overflow status */
501 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
502 		return 1;
503 	}
504 
505 	/* copy the first received data bytes */
506 	so->rx.idx = 0;
507 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
508 		so->rx.buf[so->rx.idx++] = cf->data[i];
509 
510 	/* initial setup for this pdu reception */
511 	so->rx.sn = 1;
512 	so->rx.state = ISOTP_WAIT_DATA;
513 
514 	/* no creation of flow control frames */
515 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
516 		return 0;
517 
518 	/* send our first FC frame */
519 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
520 	return 0;
521 }
522 
523 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
524 			struct sk_buff *skb)
525 {
526 	struct isotp_sock *so = isotp_sk(sk);
527 	struct sk_buff *nskb;
528 	int i;
529 
530 	if (so->rx.state != ISOTP_WAIT_DATA)
531 		return 0;
532 
533 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
534 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
535 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
536 		    so->force_rx_stmin)
537 			return 0;
538 
539 		so->lastrxcf_tstamp = skb->tstamp;
540 	}
541 
542 	hrtimer_cancel(&so->rxtimer);
543 
544 	/* CFs are never longer than the FF */
545 	if (cf->len > so->rx.ll_dl)
546 		return 1;
547 
548 	/* CFs have usually the LL_DL length */
549 	if (cf->len < so->rx.ll_dl) {
550 		/* this is only allowed for the last CF */
551 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
552 			return 1;
553 	}
554 
555 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
556 		/* wrong sn detected - report 'illegal byte sequence' */
557 		sk->sk_err = EILSEQ;
558 		if (!sock_flag(sk, SOCK_DEAD))
559 			sk_error_report(sk);
560 
561 		/* reset rx state */
562 		so->rx.state = ISOTP_IDLE;
563 		return 1;
564 	}
565 	so->rx.sn++;
566 	so->rx.sn %= 16;
567 
568 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
569 		so->rx.buf[so->rx.idx++] = cf->data[i];
570 		if (so->rx.idx >= so->rx.len)
571 			break;
572 	}
573 
574 	if (so->rx.idx >= so->rx.len) {
575 		/* we are done */
576 		so->rx.state = ISOTP_IDLE;
577 
578 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
579 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
580 			/* malformed PDU - report 'not a data message' */
581 			sk->sk_err = EBADMSG;
582 			if (!sock_flag(sk, SOCK_DEAD))
583 				sk_error_report(sk);
584 			return 1;
585 		}
586 
587 		nskb = alloc_skb(so->rx.len, gfp_any());
588 		if (!nskb)
589 			return 1;
590 
591 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
592 		       so->rx.len);
593 
594 		nskb->tstamp = skb->tstamp;
595 		nskb->dev = skb->dev;
596 		isotp_rcv_skb(nskb, sk);
597 		return 0;
598 	}
599 
600 	/* perform blocksize handling, if enabled */
601 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
602 		/* start rx timeout watchdog */
603 		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
604 			      HRTIMER_MODE_REL_SOFT);
605 		return 0;
606 	}
607 
608 	/* no creation of flow control frames */
609 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
610 		return 0;
611 
612 	/* we reached the specified blocksize so->rxfc.bs */
613 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
614 	return 0;
615 }
616 
617 static void isotp_rcv(struct sk_buff *skb, void *data)
618 {
619 	struct sock *sk = (struct sock *)data;
620 	struct isotp_sock *so = isotp_sk(sk);
621 	struct canfd_frame *cf;
622 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
623 	u8 n_pci_type, sf_dl;
624 
625 	/* Strictly receive only frames with the configured MTU size
626 	 * => clear separation of CAN2.0 / CAN FD transport channels
627 	 */
628 	if (skb->len != so->ll.mtu)
629 		return;
630 
631 	cf = (struct canfd_frame *)skb->data;
632 
633 	/* if enabled: check reception of my configured extended address */
634 	if (ae && cf->data[0] != so->opt.rx_ext_address)
635 		return;
636 
637 	n_pci_type = cf->data[ae] & 0xF0;
638 
639 	/* Make sure the state changes and data structures stay consistent at
640 	 * CAN frame reception time. This locking is not needed in real world
641 	 * use cases but the inconsistency can be triggered with syzkaller.
642 	 */
643 	spin_lock(&so->rx_lock);
644 
645 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
646 		/* check rx/tx path half duplex expectations */
647 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
648 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
649 			goto out_unlock;
650 	}
651 
652 	switch (n_pci_type) {
653 	case N_PCI_FC:
654 		/* tx path: flow control frame containing the FC parameters */
655 		isotp_rcv_fc(so, cf, ae);
656 		break;
657 
658 	case N_PCI_SF:
659 		/* rx path: single frame
660 		 *
661 		 * As we do not have a rx.ll_dl configuration, we can only test
662 		 * if the CAN frames payload length matches the LL_DL == 8
663 		 * requirements - no matter if it's CAN 2.0 or CAN FD
664 		 */
665 
666 		/* get the SF_DL from the N_PCI byte */
667 		sf_dl = cf->data[ae] & 0x0F;
668 
669 		if (cf->len <= CAN_MAX_DLEN) {
670 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
671 		} else {
672 			if (skb->len == CANFD_MTU) {
673 				/* We have a CAN FD frame and CAN_DL is greater than 8:
674 				 * Only frames with the SF_DL == 0 ESC value are valid.
675 				 *
676 				 * If so take care of the increased SF PCI size
677 				 * (SF_PCI_SZ8) to point to the message content behind
678 				 * the extended SF PCI info and get the real SF_DL
679 				 * length value from the formerly first data byte.
680 				 */
681 				if (sf_dl == 0)
682 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
683 						     cf->data[SF_PCI_SZ4 + ae]);
684 			}
685 		}
686 		break;
687 
688 	case N_PCI_FF:
689 		/* rx path: first frame */
690 		isotp_rcv_ff(sk, cf, ae);
691 		break;
692 
693 	case N_PCI_CF:
694 		/* rx path: consecutive frame */
695 		isotp_rcv_cf(sk, cf, ae, skb);
696 		break;
697 	}
698 
699 out_unlock:
700 	spin_unlock(&so->rx_lock);
701 }
702 
703 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
704 				 int ae, int off)
705 {
706 	int pcilen = N_PCI_SZ + ae + off;
707 	int space = so->tx.ll_dl - pcilen;
708 	int num = min_t(int, so->tx.len - so->tx.idx, space);
709 	int i;
710 
711 	cf->can_id = so->txid;
712 	cf->len = num + pcilen;
713 
714 	if (num < space) {
715 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
716 			/* user requested padding */
717 			cf->len = padlen(cf->len);
718 			memset(cf->data, so->opt.txpad_content, cf->len);
719 		} else if (cf->len > CAN_MAX_DLEN) {
720 			/* mandatory padding for CAN FD frames */
721 			cf->len = padlen(cf->len);
722 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
723 			       cf->len);
724 		}
725 	}
726 
727 	for (i = 0; i < num; i++)
728 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
729 
730 	if (ae)
731 		cf->data[0] = so->opt.ext_address;
732 }
733 
734 static void isotp_send_cframe(struct isotp_sock *so)
735 {
736 	struct sock *sk = &so->sk;
737 	struct sk_buff *skb;
738 	struct net_device *dev;
739 	struct canfd_frame *cf;
740 	int can_send_ret;
741 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
742 
743 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
744 	if (!dev)
745 		return;
746 
747 	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
748 	if (!skb) {
749 		dev_put(dev);
750 		return;
751 	}
752 
753 	can_skb_reserve(skb);
754 	can_skb_prv(skb)->ifindex = dev->ifindex;
755 	can_skb_prv(skb)->skbcnt = 0;
756 
757 	cf = (struct canfd_frame *)skb->data;
758 	skb_put_zero(skb, so->ll.mtu);
759 
760 	/* create consecutive frame */
761 	isotp_fill_dataframe(cf, so, ae, 0);
762 
763 	/* place consecutive frame N_PCI in appropriate index */
764 	cf->data[ae] = N_PCI_CF | so->tx.sn++;
765 	so->tx.sn %= 16;
766 	so->tx.bs++;
767 
768 	cf->flags = so->ll.tx_flags;
769 
770 	skb->dev = dev;
771 	can_skb_set_owner(skb, sk);
772 
773 	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
774 	if (so->cfecho)
775 		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
776 
777 	/* set consecutive frame echo tag */
778 	so->cfecho = *(u32 *)cf->data;
779 
780 	/* send frame with local echo enabled */
781 	can_send_ret = can_send(skb, 1);
782 	if (can_send_ret) {
783 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
784 			       __func__, ERR_PTR(can_send_ret));
785 		if (can_send_ret == -ENOBUFS)
786 			pr_notice_once("can-isotp: tx queue is full\n");
787 	}
788 	dev_put(dev);
789 }
790 
791 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
792 				int ae)
793 {
794 	int i;
795 	int ff_pci_sz;
796 
797 	cf->can_id = so->txid;
798 	cf->len = so->tx.ll_dl;
799 	if (ae)
800 		cf->data[0] = so->opt.ext_address;
801 
802 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
803 	if (so->tx.len > 4095) {
804 		/* use 32 bit FF_DL notation */
805 		cf->data[ae] = N_PCI_FF;
806 		cf->data[ae + 1] = 0;
807 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
808 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
809 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
810 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
811 		ff_pci_sz = FF_PCI_SZ32;
812 	} else {
813 		/* use 12 bit FF_DL notation */
814 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
815 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
816 		ff_pci_sz = FF_PCI_SZ12;
817 	}
818 
819 	/* add first data bytes depending on ae */
820 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
821 		cf->data[i] = so->tx.buf[so->tx.idx++];
822 
823 	so->tx.sn = 1;
824 }
825 
826 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
827 {
828 	struct sock *sk = (struct sock *)data;
829 	struct isotp_sock *so = isotp_sk(sk);
830 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
831 
832 	/* only handle my own local echo skb's */
833 	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
834 		return;
835 
836 	/* cancel local echo timeout */
837 	hrtimer_cancel(&so->txtimer);
838 
839 	/* local echo skb with consecutive frame has been consumed */
840 	so->cfecho = 0;
841 
842 	if (so->tx.idx >= so->tx.len) {
843 		/* we are done */
844 		so->tx.state = ISOTP_IDLE;
845 		wake_up_interruptible(&so->wait);
846 		return;
847 	}
848 
849 	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
850 		/* stop and wait for FC with timeout */
851 		so->tx.state = ISOTP_WAIT_FC;
852 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
853 			      HRTIMER_MODE_REL_SOFT);
854 		return;
855 	}
856 
857 	/* no gap between data frames needed => use burst mode */
858 	if (!so->tx_gap) {
859 		isotp_send_cframe(so);
860 		return;
861 	}
862 
863 	/* start timer to send next consecutive frame with correct delay */
864 	hrtimer_start(&so->txtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
865 }
866 
867 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
868 {
869 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
870 					     txtimer);
871 	struct sock *sk = &so->sk;
872 	enum hrtimer_restart restart = HRTIMER_NORESTART;
873 
874 	switch (so->tx.state) {
875 	case ISOTP_SENDING:
876 
877 		/* cfecho should be consumed by isotp_rcv_echo() here */
878 		if (!so->cfecho) {
879 			/* start timeout for unlikely lost echo skb */
880 			hrtimer_set_expires(&so->txtimer,
881 					    ktime_add(ktime_get(),
882 						      ktime_set(2, 0)));
883 			restart = HRTIMER_RESTART;
884 
885 			/* push out the next consecutive frame */
886 			isotp_send_cframe(so);
887 			break;
888 		}
889 
890 		/* cfecho has not been cleared in isotp_rcv_echo() */
891 		pr_notice_once("can-isotp: cfecho %08X timeout\n", so->cfecho);
892 		fallthrough;
893 
894 	case ISOTP_WAIT_FC:
895 	case ISOTP_WAIT_FIRST_FC:
896 
897 		/* we did not get any flow control frame in time */
898 
899 		/* report 'communication error on send' */
900 		sk->sk_err = ECOMM;
901 		if (!sock_flag(sk, SOCK_DEAD))
902 			sk_error_report(sk);
903 
904 		/* reset tx state */
905 		so->tx.state = ISOTP_IDLE;
906 		wake_up_interruptible(&so->wait);
907 		break;
908 
909 	default:
910 		WARN_ON_ONCE(1);
911 	}
912 
913 	return restart;
914 }
915 
916 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
917 {
918 	struct sock *sk = sock->sk;
919 	struct isotp_sock *so = isotp_sk(sk);
920 	u32 old_state = so->tx.state;
921 	struct sk_buff *skb;
922 	struct net_device *dev;
923 	struct canfd_frame *cf;
924 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
925 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
926 	s64 hrtimer_sec = 0;
927 	int off;
928 	int err;
929 
930 	if (!so->bound)
931 		return -EADDRNOTAVAIL;
932 
933 	/* we do not support multiple buffers - for now */
934 	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
935 	    wq_has_sleeper(&so->wait)) {
936 		if (msg->msg_flags & MSG_DONTWAIT) {
937 			err = -EAGAIN;
938 			goto err_out;
939 		}
940 
941 		/* wait for complete transmission of current pdu */
942 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
943 		if (err)
944 			goto err_out;
945 	}
946 
947 	if (!size || size > MAX_MSG_LENGTH) {
948 		err = -EINVAL;
949 		goto err_out_drop;
950 	}
951 
952 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
953 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
954 
955 	/* does the given data fit into a single frame for SF_BROADCAST? */
956 	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
957 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
958 		err = -EINVAL;
959 		goto err_out_drop;
960 	}
961 
962 	err = memcpy_from_msg(so->tx.buf, msg, size);
963 	if (err < 0)
964 		goto err_out_drop;
965 
966 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
967 	if (!dev) {
968 		err = -ENXIO;
969 		goto err_out_drop;
970 	}
971 
972 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
973 				  msg->msg_flags & MSG_DONTWAIT, &err);
974 	if (!skb) {
975 		dev_put(dev);
976 		goto err_out_drop;
977 	}
978 
979 	can_skb_reserve(skb);
980 	can_skb_prv(skb)->ifindex = dev->ifindex;
981 	can_skb_prv(skb)->skbcnt = 0;
982 
983 	so->tx.len = size;
984 	so->tx.idx = 0;
985 
986 	cf = (struct canfd_frame *)skb->data;
987 	skb_put_zero(skb, so->ll.mtu);
988 
989 	/* check for single frame transmission depending on TX_DL */
990 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
991 		/* The message size generally fits into a SingleFrame - good.
992 		 *
993 		 * SF_DL ESC offset optimization:
994 		 *
995 		 * When TX_DL is greater 8 but the message would still fit
996 		 * into a 8 byte CAN frame, we can omit the offset.
997 		 * This prevents a protocol caused length extension from
998 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
999 		 */
1000 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1001 			off = 0;
1002 
1003 		isotp_fill_dataframe(cf, so, ae, off);
1004 
1005 		/* place single frame N_PCI w/o length in appropriate index */
1006 		cf->data[ae] = N_PCI_SF;
1007 
1008 		/* place SF_DL size value depending on the SF_DL ESC offset */
1009 		if (off)
1010 			cf->data[SF_PCI_SZ4 + ae] = size;
1011 		else
1012 			cf->data[ae] |= size;
1013 
1014 		so->tx.state = ISOTP_IDLE;
1015 		wake_up_interruptible(&so->wait);
1016 
1017 		/* don't enable wait queue for a single frame transmission */
1018 		wait_tx_done = 0;
1019 	} else {
1020 		/* send first frame */
1021 
1022 		isotp_create_fframe(cf, so, ae);
1023 
1024 		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1025 			/* set timer for FC-less operation (STmin = 0) */
1026 			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1027 				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1028 			else
1029 				so->tx_gap = ktime_set(0, so->frame_txtime);
1030 
1031 			/* disable wait for FCs due to activated block size */
1032 			so->txfc.bs = 0;
1033 
1034 			/* cfecho should have been zero'ed by init */
1035 			if (so->cfecho)
1036 				pr_notice_once("can-isotp: no fc cfecho %08X\n",
1037 					       so->cfecho);
1038 
1039 			/* set consecutive frame echo tag */
1040 			so->cfecho = *(u32 *)cf->data;
1041 
1042 			/* switch directly to ISOTP_SENDING state */
1043 			so->tx.state = ISOTP_SENDING;
1044 
1045 			/* start timeout for unlikely lost echo skb */
1046 			hrtimer_sec = 2;
1047 		} else {
1048 			/* standard flow control check */
1049 			so->tx.state = ISOTP_WAIT_FIRST_FC;
1050 
1051 			/* start timeout for FC */
1052 			hrtimer_sec = 1;
1053 		}
1054 
1055 		hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1056 			      HRTIMER_MODE_REL_SOFT);
1057 	}
1058 
1059 	/* send the first or only CAN frame */
1060 	cf->flags = so->ll.tx_flags;
1061 
1062 	skb->dev = dev;
1063 	skb->sk = sk;
1064 	err = can_send(skb, 1);
1065 	dev_put(dev);
1066 	if (err) {
1067 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1068 			       __func__, ERR_PTR(err));
1069 
1070 		/* no transmission -> no timeout monitoring */
1071 		if (hrtimer_sec)
1072 			hrtimer_cancel(&so->txtimer);
1073 
1074 		/* reset consecutive frame echo tag */
1075 		so->cfecho = 0;
1076 
1077 		goto err_out_drop;
1078 	}
1079 
1080 	if (wait_tx_done) {
1081 		/* wait for complete transmission of current pdu */
1082 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1083 
1084 		if (sk->sk_err)
1085 			return -sk->sk_err;
1086 	}
1087 
1088 	return size;
1089 
1090 err_out_drop:
1091 	/* drop this PDU and unlock a potential wait queue */
1092 	old_state = ISOTP_IDLE;
1093 err_out:
1094 	so->tx.state = old_state;
1095 	if (so->tx.state == ISOTP_IDLE)
1096 		wake_up_interruptible(&so->wait);
1097 
1098 	return err;
1099 }
1100 
1101 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1102 			 int flags)
1103 {
1104 	struct sock *sk = sock->sk;
1105 	struct sk_buff *skb;
1106 	struct isotp_sock *so = isotp_sk(sk);
1107 	int ret = 0;
1108 
1109 	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1110 		return -EINVAL;
1111 
1112 	if (!so->bound)
1113 		return -EADDRNOTAVAIL;
1114 
1115 	skb = skb_recv_datagram(sk, flags, &ret);
1116 	if (!skb)
1117 		return ret;
1118 
1119 	if (size < skb->len)
1120 		msg->msg_flags |= MSG_TRUNC;
1121 	else
1122 		size = skb->len;
1123 
1124 	ret = memcpy_to_msg(msg, skb->data, size);
1125 	if (ret < 0)
1126 		goto out_err;
1127 
1128 	sock_recv_timestamp(msg, sk, skb);
1129 
1130 	if (msg->msg_name) {
1131 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1132 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1133 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1134 	}
1135 
1136 	/* set length of return value */
1137 	ret = (flags & MSG_TRUNC) ? skb->len : size;
1138 
1139 out_err:
1140 	skb_free_datagram(sk, skb);
1141 
1142 	return ret;
1143 }
1144 
1145 static int isotp_release(struct socket *sock)
1146 {
1147 	struct sock *sk = sock->sk;
1148 	struct isotp_sock *so;
1149 	struct net *net;
1150 
1151 	if (!sk)
1152 		return 0;
1153 
1154 	so = isotp_sk(sk);
1155 	net = sock_net(sk);
1156 
1157 	/* wait for complete transmission of current pdu */
1158 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1159 
1160 	spin_lock(&isotp_notifier_lock);
1161 	while (isotp_busy_notifier == so) {
1162 		spin_unlock(&isotp_notifier_lock);
1163 		schedule_timeout_uninterruptible(1);
1164 		spin_lock(&isotp_notifier_lock);
1165 	}
1166 	list_del(&so->notifier);
1167 	spin_unlock(&isotp_notifier_lock);
1168 
1169 	lock_sock(sk);
1170 
1171 	/* remove current filters & unregister */
1172 	if (so->bound && isotp_register_txecho(so)) {
1173 		if (so->ifindex) {
1174 			struct net_device *dev;
1175 
1176 			dev = dev_get_by_index(net, so->ifindex);
1177 			if (dev) {
1178 				if (isotp_register_rxid(so))
1179 					can_rx_unregister(net, dev, so->rxid,
1180 							  SINGLE_MASK(so->rxid),
1181 							  isotp_rcv, sk);
1182 
1183 				can_rx_unregister(net, dev, so->txid,
1184 						  SINGLE_MASK(so->txid),
1185 						  isotp_rcv_echo, sk);
1186 				dev_put(dev);
1187 				synchronize_rcu();
1188 			}
1189 		}
1190 	}
1191 
1192 	hrtimer_cancel(&so->txtimer);
1193 	hrtimer_cancel(&so->rxtimer);
1194 
1195 	so->ifindex = 0;
1196 	so->bound = 0;
1197 
1198 	sock_orphan(sk);
1199 	sock->sk = NULL;
1200 
1201 	release_sock(sk);
1202 	sock_put(sk);
1203 
1204 	return 0;
1205 }
1206 
1207 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1208 {
1209 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1210 	struct sock *sk = sock->sk;
1211 	struct isotp_sock *so = isotp_sk(sk);
1212 	struct net *net = sock_net(sk);
1213 	int ifindex;
1214 	struct net_device *dev;
1215 	canid_t tx_id = addr->can_addr.tp.tx_id;
1216 	canid_t rx_id = addr->can_addr.tp.rx_id;
1217 	int err = 0;
1218 	int notify_enetdown = 0;
1219 
1220 	if (len < ISOTP_MIN_NAMELEN)
1221 		return -EINVAL;
1222 
1223 	/* sanitize tx CAN identifier */
1224 	if (tx_id & CAN_EFF_FLAG)
1225 		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1226 	else
1227 		tx_id &= CAN_SFF_MASK;
1228 
1229 	/* give feedback on wrong CAN-ID value */
1230 	if (tx_id != addr->can_addr.tp.tx_id)
1231 		return -EINVAL;
1232 
1233 	/* sanitize rx CAN identifier (if needed) */
1234 	if (isotp_register_rxid(so)) {
1235 		if (rx_id & CAN_EFF_FLAG)
1236 			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1237 		else
1238 			rx_id &= CAN_SFF_MASK;
1239 
1240 		/* give feedback on wrong CAN-ID value */
1241 		if (rx_id != addr->can_addr.tp.rx_id)
1242 			return -EINVAL;
1243 	}
1244 
1245 	if (!addr->can_ifindex)
1246 		return -ENODEV;
1247 
1248 	lock_sock(sk);
1249 
1250 	if (so->bound) {
1251 		err = -EINVAL;
1252 		goto out;
1253 	}
1254 
1255 	/* ensure different CAN IDs when the rx_id is to be registered */
1256 	if (isotp_register_rxid(so) && rx_id == tx_id) {
1257 		err = -EADDRNOTAVAIL;
1258 		goto out;
1259 	}
1260 
1261 	dev = dev_get_by_index(net, addr->can_ifindex);
1262 	if (!dev) {
1263 		err = -ENODEV;
1264 		goto out;
1265 	}
1266 	if (dev->type != ARPHRD_CAN) {
1267 		dev_put(dev);
1268 		err = -ENODEV;
1269 		goto out;
1270 	}
1271 	if (dev->mtu < so->ll.mtu) {
1272 		dev_put(dev);
1273 		err = -EINVAL;
1274 		goto out;
1275 	}
1276 	if (!(dev->flags & IFF_UP))
1277 		notify_enetdown = 1;
1278 
1279 	ifindex = dev->ifindex;
1280 
1281 	if (isotp_register_rxid(so))
1282 		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1283 				isotp_rcv, sk, "isotp", sk);
1284 
1285 	if (isotp_register_txecho(so)) {
1286 		/* no consecutive frame echo skb in flight */
1287 		so->cfecho = 0;
1288 
1289 		/* register for echo skb's */
1290 		can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1291 				isotp_rcv_echo, sk, "isotpe", sk);
1292 	}
1293 
1294 	dev_put(dev);
1295 
1296 	/* switch to new settings */
1297 	so->ifindex = ifindex;
1298 	so->rxid = rx_id;
1299 	so->txid = tx_id;
1300 	so->bound = 1;
1301 
1302 out:
1303 	release_sock(sk);
1304 
1305 	if (notify_enetdown) {
1306 		sk->sk_err = ENETDOWN;
1307 		if (!sock_flag(sk, SOCK_DEAD))
1308 			sk_error_report(sk);
1309 	}
1310 
1311 	return err;
1312 }
1313 
1314 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1315 {
1316 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1317 	struct sock *sk = sock->sk;
1318 	struct isotp_sock *so = isotp_sk(sk);
1319 
1320 	if (peer)
1321 		return -EOPNOTSUPP;
1322 
1323 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1324 	addr->can_family = AF_CAN;
1325 	addr->can_ifindex = so->ifindex;
1326 	addr->can_addr.tp.rx_id = so->rxid;
1327 	addr->can_addr.tp.tx_id = so->txid;
1328 
1329 	return ISOTP_MIN_NAMELEN;
1330 }
1331 
1332 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1333 			    sockptr_t optval, unsigned int optlen)
1334 {
1335 	struct sock *sk = sock->sk;
1336 	struct isotp_sock *so = isotp_sk(sk);
1337 	int ret = 0;
1338 
1339 	if (so->bound)
1340 		return -EISCONN;
1341 
1342 	switch (optname) {
1343 	case CAN_ISOTP_OPTS:
1344 		if (optlen != sizeof(struct can_isotp_options))
1345 			return -EINVAL;
1346 
1347 		if (copy_from_sockptr(&so->opt, optval, optlen))
1348 			return -EFAULT;
1349 
1350 		/* no separate rx_ext_address is given => use ext_address */
1351 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1352 			so->opt.rx_ext_address = so->opt.ext_address;
1353 
1354 		/* these broadcast flags are not allowed together */
1355 		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1356 			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1357 			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1358 
1359 			/* give user feedback on wrong config attempt */
1360 			ret = -EINVAL;
1361 		}
1362 
1363 		/* check for frame_txtime changes (0 => no changes) */
1364 		if (so->opt.frame_txtime) {
1365 			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1366 				so->frame_txtime = 0;
1367 			else
1368 				so->frame_txtime = so->opt.frame_txtime;
1369 		}
1370 		break;
1371 
1372 	case CAN_ISOTP_RECV_FC:
1373 		if (optlen != sizeof(struct can_isotp_fc_options))
1374 			return -EINVAL;
1375 
1376 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1377 			return -EFAULT;
1378 		break;
1379 
1380 	case CAN_ISOTP_TX_STMIN:
1381 		if (optlen != sizeof(u32))
1382 			return -EINVAL;
1383 
1384 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1385 			return -EFAULT;
1386 		break;
1387 
1388 	case CAN_ISOTP_RX_STMIN:
1389 		if (optlen != sizeof(u32))
1390 			return -EINVAL;
1391 
1392 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1393 			return -EFAULT;
1394 		break;
1395 
1396 	case CAN_ISOTP_LL_OPTS:
1397 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1398 			struct can_isotp_ll_options ll;
1399 
1400 			if (copy_from_sockptr(&ll, optval, optlen))
1401 				return -EFAULT;
1402 
1403 			/* check for correct ISO 11898-1 DLC data length */
1404 			if (ll.tx_dl != padlen(ll.tx_dl))
1405 				return -EINVAL;
1406 
1407 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1408 				return -EINVAL;
1409 
1410 			if (ll.mtu == CAN_MTU &&
1411 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1412 				return -EINVAL;
1413 
1414 			memcpy(&so->ll, &ll, sizeof(ll));
1415 
1416 			/* set ll_dl for tx path to similar place as for rx */
1417 			so->tx.ll_dl = ll.tx_dl;
1418 		} else {
1419 			return -EINVAL;
1420 		}
1421 		break;
1422 
1423 	default:
1424 		ret = -ENOPROTOOPT;
1425 	}
1426 
1427 	return ret;
1428 }
1429 
1430 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1431 			    sockptr_t optval, unsigned int optlen)
1432 
1433 {
1434 	struct sock *sk = sock->sk;
1435 	int ret;
1436 
1437 	if (level != SOL_CAN_ISOTP)
1438 		return -EINVAL;
1439 
1440 	lock_sock(sk);
1441 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1442 	release_sock(sk);
1443 	return ret;
1444 }
1445 
1446 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1447 			    char __user *optval, int __user *optlen)
1448 {
1449 	struct sock *sk = sock->sk;
1450 	struct isotp_sock *so = isotp_sk(sk);
1451 	int len;
1452 	void *val;
1453 
1454 	if (level != SOL_CAN_ISOTP)
1455 		return -EINVAL;
1456 	if (get_user(len, optlen))
1457 		return -EFAULT;
1458 	if (len < 0)
1459 		return -EINVAL;
1460 
1461 	switch (optname) {
1462 	case CAN_ISOTP_OPTS:
1463 		len = min_t(int, len, sizeof(struct can_isotp_options));
1464 		val = &so->opt;
1465 		break;
1466 
1467 	case CAN_ISOTP_RECV_FC:
1468 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1469 		val = &so->rxfc;
1470 		break;
1471 
1472 	case CAN_ISOTP_TX_STMIN:
1473 		len = min_t(int, len, sizeof(u32));
1474 		val = &so->force_tx_stmin;
1475 		break;
1476 
1477 	case CAN_ISOTP_RX_STMIN:
1478 		len = min_t(int, len, sizeof(u32));
1479 		val = &so->force_rx_stmin;
1480 		break;
1481 
1482 	case CAN_ISOTP_LL_OPTS:
1483 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1484 		val = &so->ll;
1485 		break;
1486 
1487 	default:
1488 		return -ENOPROTOOPT;
1489 	}
1490 
1491 	if (put_user(len, optlen))
1492 		return -EFAULT;
1493 	if (copy_to_user(optval, val, len))
1494 		return -EFAULT;
1495 	return 0;
1496 }
1497 
1498 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1499 			 struct net_device *dev)
1500 {
1501 	struct sock *sk = &so->sk;
1502 
1503 	if (!net_eq(dev_net(dev), sock_net(sk)))
1504 		return;
1505 
1506 	if (so->ifindex != dev->ifindex)
1507 		return;
1508 
1509 	switch (msg) {
1510 	case NETDEV_UNREGISTER:
1511 		lock_sock(sk);
1512 		/* remove current filters & unregister */
1513 		if (so->bound && isotp_register_txecho(so)) {
1514 			if (isotp_register_rxid(so))
1515 				can_rx_unregister(dev_net(dev), dev, so->rxid,
1516 						  SINGLE_MASK(so->rxid),
1517 						  isotp_rcv, sk);
1518 
1519 			can_rx_unregister(dev_net(dev), dev, so->txid,
1520 					  SINGLE_MASK(so->txid),
1521 					  isotp_rcv_echo, sk);
1522 		}
1523 
1524 		so->ifindex = 0;
1525 		so->bound  = 0;
1526 		release_sock(sk);
1527 
1528 		sk->sk_err = ENODEV;
1529 		if (!sock_flag(sk, SOCK_DEAD))
1530 			sk_error_report(sk);
1531 		break;
1532 
1533 	case NETDEV_DOWN:
1534 		sk->sk_err = ENETDOWN;
1535 		if (!sock_flag(sk, SOCK_DEAD))
1536 			sk_error_report(sk);
1537 		break;
1538 	}
1539 }
1540 
1541 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1542 			  void *ptr)
1543 {
1544 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1545 
1546 	if (dev->type != ARPHRD_CAN)
1547 		return NOTIFY_DONE;
1548 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1549 		return NOTIFY_DONE;
1550 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1551 		return NOTIFY_DONE;
1552 
1553 	spin_lock(&isotp_notifier_lock);
1554 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1555 		spin_unlock(&isotp_notifier_lock);
1556 		isotp_notify(isotp_busy_notifier, msg, dev);
1557 		spin_lock(&isotp_notifier_lock);
1558 	}
1559 	isotp_busy_notifier = NULL;
1560 	spin_unlock(&isotp_notifier_lock);
1561 	return NOTIFY_DONE;
1562 }
1563 
1564 static int isotp_init(struct sock *sk)
1565 {
1566 	struct isotp_sock *so = isotp_sk(sk);
1567 
1568 	so->ifindex = 0;
1569 	so->bound = 0;
1570 
1571 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1572 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1573 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1574 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1575 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1576 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1577 	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1578 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1579 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1580 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1581 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1582 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1583 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1584 
1585 	/* set ll_dl for tx path to similar place as for rx */
1586 	so->tx.ll_dl = so->ll.tx_dl;
1587 
1588 	so->rx.state = ISOTP_IDLE;
1589 	so->tx.state = ISOTP_IDLE;
1590 
1591 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1592 	so->rxtimer.function = isotp_rx_timer_handler;
1593 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1594 	so->txtimer.function = isotp_tx_timer_handler;
1595 
1596 	init_waitqueue_head(&so->wait);
1597 	spin_lock_init(&so->rx_lock);
1598 
1599 	spin_lock(&isotp_notifier_lock);
1600 	list_add_tail(&so->notifier, &isotp_notifier_list);
1601 	spin_unlock(&isotp_notifier_lock);
1602 
1603 	return 0;
1604 }
1605 
1606 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1607 				  unsigned long arg)
1608 {
1609 	/* no ioctls for socket layer -> hand it down to NIC layer */
1610 	return -ENOIOCTLCMD;
1611 }
1612 
1613 static const struct proto_ops isotp_ops = {
1614 	.family = PF_CAN,
1615 	.release = isotp_release,
1616 	.bind = isotp_bind,
1617 	.connect = sock_no_connect,
1618 	.socketpair = sock_no_socketpair,
1619 	.accept = sock_no_accept,
1620 	.getname = isotp_getname,
1621 	.poll = datagram_poll,
1622 	.ioctl = isotp_sock_no_ioctlcmd,
1623 	.gettstamp = sock_gettstamp,
1624 	.listen = sock_no_listen,
1625 	.shutdown = sock_no_shutdown,
1626 	.setsockopt = isotp_setsockopt,
1627 	.getsockopt = isotp_getsockopt,
1628 	.sendmsg = isotp_sendmsg,
1629 	.recvmsg = isotp_recvmsg,
1630 	.mmap = sock_no_mmap,
1631 	.sendpage = sock_no_sendpage,
1632 };
1633 
1634 static struct proto isotp_proto __read_mostly = {
1635 	.name = "CAN_ISOTP",
1636 	.owner = THIS_MODULE,
1637 	.obj_size = sizeof(struct isotp_sock),
1638 	.init = isotp_init,
1639 };
1640 
1641 static const struct can_proto isotp_can_proto = {
1642 	.type = SOCK_DGRAM,
1643 	.protocol = CAN_ISOTP,
1644 	.ops = &isotp_ops,
1645 	.prot = &isotp_proto,
1646 };
1647 
1648 static struct notifier_block canisotp_notifier = {
1649 	.notifier_call = isotp_notifier
1650 };
1651 
1652 static __init int isotp_module_init(void)
1653 {
1654 	int err;
1655 
1656 	pr_info("can: isotp protocol\n");
1657 
1658 	err = can_proto_register(&isotp_can_proto);
1659 	if (err < 0)
1660 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1661 	else
1662 		register_netdevice_notifier(&canisotp_notifier);
1663 
1664 	return err;
1665 }
1666 
1667 static __exit void isotp_module_exit(void)
1668 {
1669 	can_proto_unregister(&isotp_can_proto);
1670 	unregister_netdevice_notifier(&canisotp_notifier);
1671 }
1672 
1673 module_init(isotp_module_init);
1674 module_exit(isotp_module_exit);
1675