xref: /openbmc/linux/net/can/isotp.c (revision 227a0655)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  * - take care of the tx-queue-len as traffic shaping is still on the TODO list
18  *
19  * Copyright (c) 2020 Volkswagen Group Electronic Research
20  * All rights reserved.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the above copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. Neither the name of Volkswagen nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * Alternatively, provided that this notice is retained in full, this
35  * software may be distributed under the terms of the GNU General
36  * Public License ("GPL") version 2, in which case the provisions of the
37  * GPL apply INSTEAD OF those given above.
38  *
39  * The provided data structures and external interfaces from this code
40  * are not restricted to be used by modules with a GPL compatible license.
41  *
42  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
53  * DAMAGE.
54  */
55 
56 #include <linux/module.h>
57 #include <linux/init.h>
58 #include <linux/interrupt.h>
59 #include <linux/spinlock.h>
60 #include <linux/hrtimer.h>
61 #include <linux/wait.h>
62 #include <linux/uio.h>
63 #include <linux/net.h>
64 #include <linux/netdevice.h>
65 #include <linux/socket.h>
66 #include <linux/if_arp.h>
67 #include <linux/skbuff.h>
68 #include <linux/can.h>
69 #include <linux/can/core.h>
70 #include <linux/can/skb.h>
71 #include <linux/can/isotp.h>
72 #include <linux/slab.h>
73 #include <net/sock.h>
74 #include <net/net_namespace.h>
75 
76 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
77 MODULE_LICENSE("Dual BSD/GPL");
78 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
79 MODULE_ALIAS("can-proto-6");
80 
81 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
82 
83 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
84 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
85 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
86 
87 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
88  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
89  * this between user space and kernel space. For now increase the static buffer
90  * to something about 8 kbyte to be able to test this new functionality.
91  */
92 #define MAX_MSG_LENGTH 8200
93 
94 /* N_PCI type values in bits 7-4 of N_PCI bytes */
95 #define N_PCI_SF 0x00	/* single frame */
96 #define N_PCI_FF 0x10	/* first frame */
97 #define N_PCI_CF 0x20	/* consecutive frame */
98 #define N_PCI_FC 0x30	/* flow control */
99 
100 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
101 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
102 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
103 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
104 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
105 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
106 
107 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
108 
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0		/* clear to send */
111 #define ISOTP_FC_WT 1		/* wait */
112 #define ISOTP_FC_OVFLW 2	/* overflow */
113 
114 enum {
115 	ISOTP_IDLE = 0,
116 	ISOTP_WAIT_FIRST_FC,
117 	ISOTP_WAIT_FC,
118 	ISOTP_WAIT_DATA,
119 	ISOTP_SENDING
120 };
121 
122 struct tpcon {
123 	unsigned int idx;
124 	unsigned int len;
125 	u32 state;
126 	u8 bs;
127 	u8 sn;
128 	u8 ll_dl;
129 	u8 buf[MAX_MSG_LENGTH + 1];
130 };
131 
132 struct isotp_sock {
133 	struct sock sk;
134 	int bound;
135 	int ifindex;
136 	canid_t txid;
137 	canid_t rxid;
138 	ktime_t tx_gap;
139 	ktime_t lastrxcf_tstamp;
140 	struct hrtimer rxtimer, txtimer;
141 	struct can_isotp_options opt;
142 	struct can_isotp_fc_options rxfc, txfc;
143 	struct can_isotp_ll_options ll;
144 	u32 force_tx_stmin;
145 	u32 force_rx_stmin;
146 	struct tpcon rx, tx;
147 	struct list_head notifier;
148 	wait_queue_head_t wait;
149 	spinlock_t rx_lock; /* protect single thread state machine */
150 };
151 
152 static LIST_HEAD(isotp_notifier_list);
153 static DEFINE_SPINLOCK(isotp_notifier_lock);
154 static struct isotp_sock *isotp_busy_notifier;
155 
156 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
157 {
158 	return (struct isotp_sock *)sk;
159 }
160 
161 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
162 {
163 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
164 					     rxtimer);
165 	struct sock *sk = &so->sk;
166 
167 	if (so->rx.state == ISOTP_WAIT_DATA) {
168 		/* we did not get new data frames in time */
169 
170 		/* report 'connection timed out' */
171 		sk->sk_err = ETIMEDOUT;
172 		if (!sock_flag(sk, SOCK_DEAD))
173 			sk_error_report(sk);
174 
175 		/* reset rx state */
176 		so->rx.state = ISOTP_IDLE;
177 	}
178 
179 	return HRTIMER_NORESTART;
180 }
181 
182 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
183 {
184 	struct net_device *dev;
185 	struct sk_buff *nskb;
186 	struct canfd_frame *ncf;
187 	struct isotp_sock *so = isotp_sk(sk);
188 	int can_send_ret;
189 
190 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
191 	if (!nskb)
192 		return 1;
193 
194 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
195 	if (!dev) {
196 		kfree_skb(nskb);
197 		return 1;
198 	}
199 
200 	can_skb_reserve(nskb);
201 	can_skb_prv(nskb)->ifindex = dev->ifindex;
202 	can_skb_prv(nskb)->skbcnt = 0;
203 
204 	nskb->dev = dev;
205 	can_skb_set_owner(nskb, sk);
206 	ncf = (struct canfd_frame *)nskb->data;
207 	skb_put_zero(nskb, so->ll.mtu);
208 
209 	/* create & send flow control reply */
210 	ncf->can_id = so->txid;
211 
212 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
213 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
214 		ncf->len = CAN_MAX_DLEN;
215 	} else {
216 		ncf->len = ae + FC_CONTENT_SZ;
217 	}
218 
219 	ncf->data[ae] = N_PCI_FC | flowstatus;
220 	ncf->data[ae + 1] = so->rxfc.bs;
221 	ncf->data[ae + 2] = so->rxfc.stmin;
222 
223 	if (ae)
224 		ncf->data[0] = so->opt.ext_address;
225 
226 	ncf->flags = so->ll.tx_flags;
227 
228 	can_send_ret = can_send(nskb, 1);
229 	if (can_send_ret)
230 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
231 			       __func__, ERR_PTR(can_send_ret));
232 
233 	dev_put(dev);
234 
235 	/* reset blocksize counter */
236 	so->rx.bs = 0;
237 
238 	/* reset last CF frame rx timestamp for rx stmin enforcement */
239 	so->lastrxcf_tstamp = ktime_set(0, 0);
240 
241 	/* start rx timeout watchdog */
242 	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
243 	return 0;
244 }
245 
246 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
247 {
248 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
249 
250 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
251 
252 	memset(addr, 0, sizeof(*addr));
253 	addr->can_family = AF_CAN;
254 	addr->can_ifindex = skb->dev->ifindex;
255 
256 	if (sock_queue_rcv_skb(sk, skb) < 0)
257 		kfree_skb(skb);
258 }
259 
260 static u8 padlen(u8 datalen)
261 {
262 	static const u8 plen[] = {
263 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
264 		12, 12, 12, 12,			/* 9 - 12 */
265 		16, 16, 16, 16,			/* 13 - 16 */
266 		20, 20, 20, 20,			/* 17 - 20 */
267 		24, 24, 24, 24,			/* 21 - 24 */
268 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
269 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
270 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
271 	};
272 
273 	if (datalen > 48)
274 		return 64;
275 
276 	return plen[datalen];
277 }
278 
279 /* check for length optimization and return 1/true when the check fails */
280 static int check_optimized(struct canfd_frame *cf, int start_index)
281 {
282 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
283 	 * padding would start at this point. E.g. if the padding would
284 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
285 	 * Note: The data[] index starts with zero.
286 	 */
287 	if (cf->len <= CAN_MAX_DLEN)
288 		return (cf->len != start_index);
289 
290 	/* This relation is also valid in the non-linear DLC range, where
291 	 * we need to take care of the minimal next possible CAN_DL.
292 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
293 	 * But as cf->len can only take discrete values from 12, .., 64 at this
294 	 * point the padlen(cf->len) is always equal to cf->len.
295 	 */
296 	return (cf->len != padlen(start_index));
297 }
298 
299 /* check padding and return 1/true when the check fails */
300 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
301 		     int start_index, u8 content)
302 {
303 	int i;
304 
305 	/* no RX_PADDING value => check length of optimized frame length */
306 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
307 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
308 			return check_optimized(cf, start_index);
309 
310 		/* no valid test against empty value => ignore frame */
311 		return 1;
312 	}
313 
314 	/* check datalength of correctly padded CAN frame */
315 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
316 	    cf->len != padlen(cf->len))
317 		return 1;
318 
319 	/* check padding content */
320 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
321 		for (i = start_index; i < cf->len; i++)
322 			if (cf->data[i] != content)
323 				return 1;
324 	}
325 	return 0;
326 }
327 
328 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
329 {
330 	struct sock *sk = &so->sk;
331 
332 	if (so->tx.state != ISOTP_WAIT_FC &&
333 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
334 		return 0;
335 
336 	hrtimer_cancel(&so->txtimer);
337 
338 	if ((cf->len < ae + FC_CONTENT_SZ) ||
339 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
340 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
341 		/* malformed PDU - report 'not a data message' */
342 		sk->sk_err = EBADMSG;
343 		if (!sock_flag(sk, SOCK_DEAD))
344 			sk_error_report(sk);
345 
346 		so->tx.state = ISOTP_IDLE;
347 		wake_up_interruptible(&so->wait);
348 		return 1;
349 	}
350 
351 	/* get communication parameters only from the first FC frame */
352 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
353 		so->txfc.bs = cf->data[ae + 1];
354 		so->txfc.stmin = cf->data[ae + 2];
355 
356 		/* fix wrong STmin values according spec */
357 		if (so->txfc.stmin > 0x7F &&
358 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
359 			so->txfc.stmin = 0x7F;
360 
361 		so->tx_gap = ktime_set(0, 0);
362 		/* add transmission time for CAN frame N_As */
363 		so->tx_gap = ktime_add_ns(so->tx_gap, so->opt.frame_txtime);
364 		/* add waiting time for consecutive frames N_Cs */
365 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
366 			so->tx_gap = ktime_add_ns(so->tx_gap,
367 						  so->force_tx_stmin);
368 		else if (so->txfc.stmin < 0x80)
369 			so->tx_gap = ktime_add_ns(so->tx_gap,
370 						  so->txfc.stmin * 1000000);
371 		else
372 			so->tx_gap = ktime_add_ns(so->tx_gap,
373 						  (so->txfc.stmin - 0xF0)
374 						  * 100000);
375 		so->tx.state = ISOTP_WAIT_FC;
376 	}
377 
378 	switch (cf->data[ae] & 0x0F) {
379 	case ISOTP_FC_CTS:
380 		so->tx.bs = 0;
381 		so->tx.state = ISOTP_SENDING;
382 		/* start cyclic timer for sending CF frame */
383 		hrtimer_start(&so->txtimer, so->tx_gap,
384 			      HRTIMER_MODE_REL_SOFT);
385 		break;
386 
387 	case ISOTP_FC_WT:
388 		/* start timer to wait for next FC frame */
389 		hrtimer_start(&so->txtimer, ktime_set(1, 0),
390 			      HRTIMER_MODE_REL_SOFT);
391 		break;
392 
393 	case ISOTP_FC_OVFLW:
394 		/* overflow on receiver side - report 'message too long' */
395 		sk->sk_err = EMSGSIZE;
396 		if (!sock_flag(sk, SOCK_DEAD))
397 			sk_error_report(sk);
398 		fallthrough;
399 
400 	default:
401 		/* stop this tx job */
402 		so->tx.state = ISOTP_IDLE;
403 		wake_up_interruptible(&so->wait);
404 	}
405 	return 0;
406 }
407 
408 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
409 			struct sk_buff *skb, int len)
410 {
411 	struct isotp_sock *so = isotp_sk(sk);
412 	struct sk_buff *nskb;
413 
414 	hrtimer_cancel(&so->rxtimer);
415 	so->rx.state = ISOTP_IDLE;
416 
417 	if (!len || len > cf->len - pcilen)
418 		return 1;
419 
420 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
421 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
422 		/* malformed PDU - report 'not a data message' */
423 		sk->sk_err = EBADMSG;
424 		if (!sock_flag(sk, SOCK_DEAD))
425 			sk_error_report(sk);
426 		return 1;
427 	}
428 
429 	nskb = alloc_skb(len, gfp_any());
430 	if (!nskb)
431 		return 1;
432 
433 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
434 
435 	nskb->tstamp = skb->tstamp;
436 	nskb->dev = skb->dev;
437 	isotp_rcv_skb(nskb, sk);
438 	return 0;
439 }
440 
441 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
442 {
443 	struct isotp_sock *so = isotp_sk(sk);
444 	int i;
445 	int off;
446 	int ff_pci_sz;
447 
448 	hrtimer_cancel(&so->rxtimer);
449 	so->rx.state = ISOTP_IDLE;
450 
451 	/* get the used sender LL_DL from the (first) CAN frame data length */
452 	so->rx.ll_dl = padlen(cf->len);
453 
454 	/* the first frame has to use the entire frame up to LL_DL length */
455 	if (cf->len != so->rx.ll_dl)
456 		return 1;
457 
458 	/* get the FF_DL */
459 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
460 	so->rx.len += cf->data[ae + 1];
461 
462 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
463 	if (so->rx.len) {
464 		ff_pci_sz = FF_PCI_SZ12;
465 	} else {
466 		/* FF_DL = 0 => get real length from next 4 bytes */
467 		so->rx.len = cf->data[ae + 2] << 24;
468 		so->rx.len += cf->data[ae + 3] << 16;
469 		so->rx.len += cf->data[ae + 4] << 8;
470 		so->rx.len += cf->data[ae + 5];
471 		ff_pci_sz = FF_PCI_SZ32;
472 	}
473 
474 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
475 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
476 
477 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
478 		return 1;
479 
480 	if (so->rx.len > MAX_MSG_LENGTH) {
481 		/* send FC frame with overflow status */
482 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
483 		return 1;
484 	}
485 
486 	/* copy the first received data bytes */
487 	so->rx.idx = 0;
488 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
489 		so->rx.buf[so->rx.idx++] = cf->data[i];
490 
491 	/* initial setup for this pdu reception */
492 	so->rx.sn = 1;
493 	so->rx.state = ISOTP_WAIT_DATA;
494 
495 	/* no creation of flow control frames */
496 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
497 		return 0;
498 
499 	/* send our first FC frame */
500 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
501 	return 0;
502 }
503 
504 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
505 			struct sk_buff *skb)
506 {
507 	struct isotp_sock *so = isotp_sk(sk);
508 	struct sk_buff *nskb;
509 	int i;
510 
511 	if (so->rx.state != ISOTP_WAIT_DATA)
512 		return 0;
513 
514 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
515 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
516 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
517 		    so->force_rx_stmin)
518 			return 0;
519 
520 		so->lastrxcf_tstamp = skb->tstamp;
521 	}
522 
523 	hrtimer_cancel(&so->rxtimer);
524 
525 	/* CFs are never longer than the FF */
526 	if (cf->len > so->rx.ll_dl)
527 		return 1;
528 
529 	/* CFs have usually the LL_DL length */
530 	if (cf->len < so->rx.ll_dl) {
531 		/* this is only allowed for the last CF */
532 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
533 			return 1;
534 	}
535 
536 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
537 		/* wrong sn detected - report 'illegal byte sequence' */
538 		sk->sk_err = EILSEQ;
539 		if (!sock_flag(sk, SOCK_DEAD))
540 			sk_error_report(sk);
541 
542 		/* reset rx state */
543 		so->rx.state = ISOTP_IDLE;
544 		return 1;
545 	}
546 	so->rx.sn++;
547 	so->rx.sn %= 16;
548 
549 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
550 		so->rx.buf[so->rx.idx++] = cf->data[i];
551 		if (so->rx.idx >= so->rx.len)
552 			break;
553 	}
554 
555 	if (so->rx.idx >= so->rx.len) {
556 		/* we are done */
557 		so->rx.state = ISOTP_IDLE;
558 
559 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
560 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
561 			/* malformed PDU - report 'not a data message' */
562 			sk->sk_err = EBADMSG;
563 			if (!sock_flag(sk, SOCK_DEAD))
564 				sk_error_report(sk);
565 			return 1;
566 		}
567 
568 		nskb = alloc_skb(so->rx.len, gfp_any());
569 		if (!nskb)
570 			return 1;
571 
572 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
573 		       so->rx.len);
574 
575 		nskb->tstamp = skb->tstamp;
576 		nskb->dev = skb->dev;
577 		isotp_rcv_skb(nskb, sk);
578 		return 0;
579 	}
580 
581 	/* perform blocksize handling, if enabled */
582 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
583 		/* start rx timeout watchdog */
584 		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
585 			      HRTIMER_MODE_REL_SOFT);
586 		return 0;
587 	}
588 
589 	/* no creation of flow control frames */
590 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
591 		return 0;
592 
593 	/* we reached the specified blocksize so->rxfc.bs */
594 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
595 	return 0;
596 }
597 
598 static void isotp_rcv(struct sk_buff *skb, void *data)
599 {
600 	struct sock *sk = (struct sock *)data;
601 	struct isotp_sock *so = isotp_sk(sk);
602 	struct canfd_frame *cf;
603 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
604 	u8 n_pci_type, sf_dl;
605 
606 	/* Strictly receive only frames with the configured MTU size
607 	 * => clear separation of CAN2.0 / CAN FD transport channels
608 	 */
609 	if (skb->len != so->ll.mtu)
610 		return;
611 
612 	cf = (struct canfd_frame *)skb->data;
613 
614 	/* if enabled: check reception of my configured extended address */
615 	if (ae && cf->data[0] != so->opt.rx_ext_address)
616 		return;
617 
618 	n_pci_type = cf->data[ae] & 0xF0;
619 
620 	/* Make sure the state changes and data structures stay consistent at
621 	 * CAN frame reception time. This locking is not needed in real world
622 	 * use cases but the inconsistency can be triggered with syzkaller.
623 	 */
624 	spin_lock(&so->rx_lock);
625 
626 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
627 		/* check rx/tx path half duplex expectations */
628 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
629 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
630 			goto out_unlock;
631 	}
632 
633 	switch (n_pci_type) {
634 	case N_PCI_FC:
635 		/* tx path: flow control frame containing the FC parameters */
636 		isotp_rcv_fc(so, cf, ae);
637 		break;
638 
639 	case N_PCI_SF:
640 		/* rx path: single frame
641 		 *
642 		 * As we do not have a rx.ll_dl configuration, we can only test
643 		 * if the CAN frames payload length matches the LL_DL == 8
644 		 * requirements - no matter if it's CAN 2.0 or CAN FD
645 		 */
646 
647 		/* get the SF_DL from the N_PCI byte */
648 		sf_dl = cf->data[ae] & 0x0F;
649 
650 		if (cf->len <= CAN_MAX_DLEN) {
651 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
652 		} else {
653 			if (skb->len == CANFD_MTU) {
654 				/* We have a CAN FD frame and CAN_DL is greater than 8:
655 				 * Only frames with the SF_DL == 0 ESC value are valid.
656 				 *
657 				 * If so take care of the increased SF PCI size
658 				 * (SF_PCI_SZ8) to point to the message content behind
659 				 * the extended SF PCI info and get the real SF_DL
660 				 * length value from the formerly first data byte.
661 				 */
662 				if (sf_dl == 0)
663 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
664 						     cf->data[SF_PCI_SZ4 + ae]);
665 			}
666 		}
667 		break;
668 
669 	case N_PCI_FF:
670 		/* rx path: first frame */
671 		isotp_rcv_ff(sk, cf, ae);
672 		break;
673 
674 	case N_PCI_CF:
675 		/* rx path: consecutive frame */
676 		isotp_rcv_cf(sk, cf, ae, skb);
677 		break;
678 	}
679 
680 out_unlock:
681 	spin_unlock(&so->rx_lock);
682 }
683 
684 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
685 				 int ae, int off)
686 {
687 	int pcilen = N_PCI_SZ + ae + off;
688 	int space = so->tx.ll_dl - pcilen;
689 	int num = min_t(int, so->tx.len - so->tx.idx, space);
690 	int i;
691 
692 	cf->can_id = so->txid;
693 	cf->len = num + pcilen;
694 
695 	if (num < space) {
696 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
697 			/* user requested padding */
698 			cf->len = padlen(cf->len);
699 			memset(cf->data, so->opt.txpad_content, cf->len);
700 		} else if (cf->len > CAN_MAX_DLEN) {
701 			/* mandatory padding for CAN FD frames */
702 			cf->len = padlen(cf->len);
703 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
704 			       cf->len);
705 		}
706 	}
707 
708 	for (i = 0; i < num; i++)
709 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
710 
711 	if (ae)
712 		cf->data[0] = so->opt.ext_address;
713 }
714 
715 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
716 				int ae)
717 {
718 	int i;
719 	int ff_pci_sz;
720 
721 	cf->can_id = so->txid;
722 	cf->len = so->tx.ll_dl;
723 	if (ae)
724 		cf->data[0] = so->opt.ext_address;
725 
726 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
727 	if (so->tx.len > 4095) {
728 		/* use 32 bit FF_DL notation */
729 		cf->data[ae] = N_PCI_FF;
730 		cf->data[ae + 1] = 0;
731 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
732 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
733 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
734 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
735 		ff_pci_sz = FF_PCI_SZ32;
736 	} else {
737 		/* use 12 bit FF_DL notation */
738 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
739 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
740 		ff_pci_sz = FF_PCI_SZ12;
741 	}
742 
743 	/* add first data bytes depending on ae */
744 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
745 		cf->data[i] = so->tx.buf[so->tx.idx++];
746 
747 	so->tx.sn = 1;
748 	so->tx.state = ISOTP_WAIT_FIRST_FC;
749 }
750 
751 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
752 {
753 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
754 					     txtimer);
755 	struct sock *sk = &so->sk;
756 	struct sk_buff *skb;
757 	struct net_device *dev;
758 	struct canfd_frame *cf;
759 	enum hrtimer_restart restart = HRTIMER_NORESTART;
760 	int can_send_ret;
761 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
762 
763 	switch (so->tx.state) {
764 	case ISOTP_WAIT_FC:
765 	case ISOTP_WAIT_FIRST_FC:
766 
767 		/* we did not get any flow control frame in time */
768 
769 		/* report 'communication error on send' */
770 		sk->sk_err = ECOMM;
771 		if (!sock_flag(sk, SOCK_DEAD))
772 			sk_error_report(sk);
773 
774 		/* reset tx state */
775 		so->tx.state = ISOTP_IDLE;
776 		wake_up_interruptible(&so->wait);
777 		break;
778 
779 	case ISOTP_SENDING:
780 
781 		/* push out the next segmented pdu */
782 		dev = dev_get_by_index(sock_net(sk), so->ifindex);
783 		if (!dev)
784 			break;
785 
786 isotp_tx_burst:
787 		skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
788 				GFP_ATOMIC);
789 		if (!skb) {
790 			dev_put(dev);
791 			break;
792 		}
793 
794 		can_skb_reserve(skb);
795 		can_skb_prv(skb)->ifindex = dev->ifindex;
796 		can_skb_prv(skb)->skbcnt = 0;
797 
798 		cf = (struct canfd_frame *)skb->data;
799 		skb_put_zero(skb, so->ll.mtu);
800 
801 		/* create consecutive frame */
802 		isotp_fill_dataframe(cf, so, ae, 0);
803 
804 		/* place consecutive frame N_PCI in appropriate index */
805 		cf->data[ae] = N_PCI_CF | so->tx.sn++;
806 		so->tx.sn %= 16;
807 		so->tx.bs++;
808 
809 		cf->flags = so->ll.tx_flags;
810 
811 		skb->dev = dev;
812 		can_skb_set_owner(skb, sk);
813 
814 		can_send_ret = can_send(skb, 1);
815 		if (can_send_ret) {
816 			pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
817 				       __func__, ERR_PTR(can_send_ret));
818 			if (can_send_ret == -ENOBUFS)
819 				pr_notice_once("can-isotp: tx queue is full, increasing txqueuelen may prevent this error\n");
820 		}
821 		if (so->tx.idx >= so->tx.len) {
822 			/* we are done */
823 			so->tx.state = ISOTP_IDLE;
824 			dev_put(dev);
825 			wake_up_interruptible(&so->wait);
826 			break;
827 		}
828 
829 		if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
830 			/* stop and wait for FC */
831 			so->tx.state = ISOTP_WAIT_FC;
832 			dev_put(dev);
833 			hrtimer_set_expires(&so->txtimer,
834 					    ktime_add(ktime_get(),
835 						      ktime_set(1, 0)));
836 			restart = HRTIMER_RESTART;
837 			break;
838 		}
839 
840 		/* no gap between data frames needed => use burst mode */
841 		if (!so->tx_gap)
842 			goto isotp_tx_burst;
843 
844 		/* start timer to send next data frame with correct delay */
845 		dev_put(dev);
846 		hrtimer_set_expires(&so->txtimer,
847 				    ktime_add(ktime_get(), so->tx_gap));
848 		restart = HRTIMER_RESTART;
849 		break;
850 
851 	default:
852 		WARN_ON_ONCE(1);
853 	}
854 
855 	return restart;
856 }
857 
858 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
859 {
860 	struct sock *sk = sock->sk;
861 	struct isotp_sock *so = isotp_sk(sk);
862 	u32 old_state = so->tx.state;
863 	struct sk_buff *skb;
864 	struct net_device *dev;
865 	struct canfd_frame *cf;
866 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
867 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
868 	int off;
869 	int err;
870 
871 	if (!so->bound)
872 		return -EADDRNOTAVAIL;
873 
874 	/* we do not support multiple buffers - for now */
875 	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
876 	    wq_has_sleeper(&so->wait)) {
877 		if (msg->msg_flags & MSG_DONTWAIT) {
878 			err = -EAGAIN;
879 			goto err_out;
880 		}
881 
882 		/* wait for complete transmission of current pdu */
883 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
884 		if (err)
885 			goto err_out;
886 	}
887 
888 	if (!size || size > MAX_MSG_LENGTH) {
889 		err = -EINVAL;
890 		goto err_out_drop;
891 	}
892 
893 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
894 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
895 
896 	/* does the given data fit into a single frame for SF_BROADCAST? */
897 	if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
898 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
899 		err = -EINVAL;
900 		goto err_out_drop;
901 	}
902 
903 	err = memcpy_from_msg(so->tx.buf, msg, size);
904 	if (err < 0)
905 		goto err_out_drop;
906 
907 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
908 	if (!dev) {
909 		err = -ENXIO;
910 		goto err_out_drop;
911 	}
912 
913 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
914 				  msg->msg_flags & MSG_DONTWAIT, &err);
915 	if (!skb) {
916 		dev_put(dev);
917 		goto err_out_drop;
918 	}
919 
920 	can_skb_reserve(skb);
921 	can_skb_prv(skb)->ifindex = dev->ifindex;
922 	can_skb_prv(skb)->skbcnt = 0;
923 
924 	so->tx.len = size;
925 	so->tx.idx = 0;
926 
927 	cf = (struct canfd_frame *)skb->data;
928 	skb_put_zero(skb, so->ll.mtu);
929 
930 	/* check for single frame transmission depending on TX_DL */
931 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
932 		/* The message size generally fits into a SingleFrame - good.
933 		 *
934 		 * SF_DL ESC offset optimization:
935 		 *
936 		 * When TX_DL is greater 8 but the message would still fit
937 		 * into a 8 byte CAN frame, we can omit the offset.
938 		 * This prevents a protocol caused length extension from
939 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
940 		 */
941 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
942 			off = 0;
943 
944 		isotp_fill_dataframe(cf, so, ae, off);
945 
946 		/* place single frame N_PCI w/o length in appropriate index */
947 		cf->data[ae] = N_PCI_SF;
948 
949 		/* place SF_DL size value depending on the SF_DL ESC offset */
950 		if (off)
951 			cf->data[SF_PCI_SZ4 + ae] = size;
952 		else
953 			cf->data[ae] |= size;
954 
955 		so->tx.state = ISOTP_IDLE;
956 		wake_up_interruptible(&so->wait);
957 
958 		/* don't enable wait queue for a single frame transmission */
959 		wait_tx_done = 0;
960 	} else {
961 		/* send first frame and wait for FC */
962 
963 		isotp_create_fframe(cf, so, ae);
964 
965 		/* start timeout for FC */
966 		hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
967 	}
968 
969 	/* send the first or only CAN frame */
970 	cf->flags = so->ll.tx_flags;
971 
972 	skb->dev = dev;
973 	skb->sk = sk;
974 	err = can_send(skb, 1);
975 	dev_put(dev);
976 	if (err) {
977 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
978 			       __func__, ERR_PTR(err));
979 		goto err_out_drop;
980 	}
981 
982 	if (wait_tx_done) {
983 		/* wait for complete transmission of current pdu */
984 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
985 
986 		if (sk->sk_err)
987 			return -sk->sk_err;
988 	}
989 
990 	return size;
991 
992 err_out_drop:
993 	/* drop this PDU and unlock a potential wait queue */
994 	old_state = ISOTP_IDLE;
995 err_out:
996 	so->tx.state = old_state;
997 	if (so->tx.state == ISOTP_IDLE)
998 		wake_up_interruptible(&so->wait);
999 
1000 	return err;
1001 }
1002 
1003 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1004 			 int flags)
1005 {
1006 	struct sock *sk = sock->sk;
1007 	struct sk_buff *skb;
1008 	int err = 0;
1009 	int noblock;
1010 
1011 	noblock = flags & MSG_DONTWAIT;
1012 	flags &= ~MSG_DONTWAIT;
1013 
1014 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1015 	if (!skb)
1016 		return err;
1017 
1018 	if (size < skb->len)
1019 		msg->msg_flags |= MSG_TRUNC;
1020 	else
1021 		size = skb->len;
1022 
1023 	err = memcpy_to_msg(msg, skb->data, size);
1024 	if (err < 0) {
1025 		skb_free_datagram(sk, skb);
1026 		return err;
1027 	}
1028 
1029 	sock_recv_timestamp(msg, sk, skb);
1030 
1031 	if (msg->msg_name) {
1032 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1033 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1034 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1035 	}
1036 
1037 	skb_free_datagram(sk, skb);
1038 
1039 	return size;
1040 }
1041 
1042 static int isotp_release(struct socket *sock)
1043 {
1044 	struct sock *sk = sock->sk;
1045 	struct isotp_sock *so;
1046 	struct net *net;
1047 
1048 	if (!sk)
1049 		return 0;
1050 
1051 	so = isotp_sk(sk);
1052 	net = sock_net(sk);
1053 
1054 	/* wait for complete transmission of current pdu */
1055 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1056 
1057 	spin_lock(&isotp_notifier_lock);
1058 	while (isotp_busy_notifier == so) {
1059 		spin_unlock(&isotp_notifier_lock);
1060 		schedule_timeout_uninterruptible(1);
1061 		spin_lock(&isotp_notifier_lock);
1062 	}
1063 	list_del(&so->notifier);
1064 	spin_unlock(&isotp_notifier_lock);
1065 
1066 	lock_sock(sk);
1067 
1068 	/* remove current filters & unregister */
1069 	if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1070 		if (so->ifindex) {
1071 			struct net_device *dev;
1072 
1073 			dev = dev_get_by_index(net, so->ifindex);
1074 			if (dev) {
1075 				can_rx_unregister(net, dev, so->rxid,
1076 						  SINGLE_MASK(so->rxid),
1077 						  isotp_rcv, sk);
1078 				dev_put(dev);
1079 				synchronize_rcu();
1080 			}
1081 		}
1082 	}
1083 
1084 	hrtimer_cancel(&so->txtimer);
1085 	hrtimer_cancel(&so->rxtimer);
1086 
1087 	so->ifindex = 0;
1088 	so->bound = 0;
1089 
1090 	sock_orphan(sk);
1091 	sock->sk = NULL;
1092 
1093 	release_sock(sk);
1094 	sock_put(sk);
1095 
1096 	return 0;
1097 }
1098 
1099 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1100 {
1101 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1102 	struct sock *sk = sock->sk;
1103 	struct isotp_sock *so = isotp_sk(sk);
1104 	struct net *net = sock_net(sk);
1105 	int ifindex;
1106 	struct net_device *dev;
1107 	int err = 0;
1108 	int notify_enetdown = 0;
1109 	int do_rx_reg = 1;
1110 
1111 	if (len < ISOTP_MIN_NAMELEN)
1112 		return -EINVAL;
1113 
1114 	if (addr->can_addr.tp.tx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
1115 		return -EADDRNOTAVAIL;
1116 
1117 	if (!addr->can_ifindex)
1118 		return -ENODEV;
1119 
1120 	lock_sock(sk);
1121 
1122 	/* do not register frame reception for functional addressing */
1123 	if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1124 		do_rx_reg = 0;
1125 
1126 	/* do not validate rx address for functional addressing */
1127 	if (do_rx_reg) {
1128 		if (addr->can_addr.tp.rx_id == addr->can_addr.tp.tx_id) {
1129 			err = -EADDRNOTAVAIL;
1130 			goto out;
1131 		}
1132 
1133 		if (addr->can_addr.tp.rx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG)) {
1134 			err = -EADDRNOTAVAIL;
1135 			goto out;
1136 		}
1137 	}
1138 
1139 	if (so->bound && addr->can_ifindex == so->ifindex &&
1140 	    addr->can_addr.tp.rx_id == so->rxid &&
1141 	    addr->can_addr.tp.tx_id == so->txid)
1142 		goto out;
1143 
1144 	dev = dev_get_by_index(net, addr->can_ifindex);
1145 	if (!dev) {
1146 		err = -ENODEV;
1147 		goto out;
1148 	}
1149 	if (dev->type != ARPHRD_CAN) {
1150 		dev_put(dev);
1151 		err = -ENODEV;
1152 		goto out;
1153 	}
1154 	if (dev->mtu < so->ll.mtu) {
1155 		dev_put(dev);
1156 		err = -EINVAL;
1157 		goto out;
1158 	}
1159 	if (!(dev->flags & IFF_UP))
1160 		notify_enetdown = 1;
1161 
1162 	ifindex = dev->ifindex;
1163 
1164 	if (do_rx_reg)
1165 		can_rx_register(net, dev, addr->can_addr.tp.rx_id,
1166 				SINGLE_MASK(addr->can_addr.tp.rx_id),
1167 				isotp_rcv, sk, "isotp", sk);
1168 
1169 	dev_put(dev);
1170 
1171 	if (so->bound && do_rx_reg) {
1172 		/* unregister old filter */
1173 		if (so->ifindex) {
1174 			dev = dev_get_by_index(net, so->ifindex);
1175 			if (dev) {
1176 				can_rx_unregister(net, dev, so->rxid,
1177 						  SINGLE_MASK(so->rxid),
1178 						  isotp_rcv, sk);
1179 				dev_put(dev);
1180 			}
1181 		}
1182 	}
1183 
1184 	/* switch to new settings */
1185 	so->ifindex = ifindex;
1186 	so->rxid = addr->can_addr.tp.rx_id;
1187 	so->txid = addr->can_addr.tp.tx_id;
1188 	so->bound = 1;
1189 
1190 out:
1191 	release_sock(sk);
1192 
1193 	if (notify_enetdown) {
1194 		sk->sk_err = ENETDOWN;
1195 		if (!sock_flag(sk, SOCK_DEAD))
1196 			sk_error_report(sk);
1197 	}
1198 
1199 	return err;
1200 }
1201 
1202 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1203 {
1204 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1205 	struct sock *sk = sock->sk;
1206 	struct isotp_sock *so = isotp_sk(sk);
1207 
1208 	if (peer)
1209 		return -EOPNOTSUPP;
1210 
1211 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1212 	addr->can_family = AF_CAN;
1213 	addr->can_ifindex = so->ifindex;
1214 	addr->can_addr.tp.rx_id = so->rxid;
1215 	addr->can_addr.tp.tx_id = so->txid;
1216 
1217 	return ISOTP_MIN_NAMELEN;
1218 }
1219 
1220 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1221 			    sockptr_t optval, unsigned int optlen)
1222 {
1223 	struct sock *sk = sock->sk;
1224 	struct isotp_sock *so = isotp_sk(sk);
1225 	int ret = 0;
1226 
1227 	if (so->bound)
1228 		return -EISCONN;
1229 
1230 	switch (optname) {
1231 	case CAN_ISOTP_OPTS:
1232 		if (optlen != sizeof(struct can_isotp_options))
1233 			return -EINVAL;
1234 
1235 		if (copy_from_sockptr(&so->opt, optval, optlen))
1236 			return -EFAULT;
1237 
1238 		/* no separate rx_ext_address is given => use ext_address */
1239 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1240 			so->opt.rx_ext_address = so->opt.ext_address;
1241 		break;
1242 
1243 	case CAN_ISOTP_RECV_FC:
1244 		if (optlen != sizeof(struct can_isotp_fc_options))
1245 			return -EINVAL;
1246 
1247 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1248 			return -EFAULT;
1249 		break;
1250 
1251 	case CAN_ISOTP_TX_STMIN:
1252 		if (optlen != sizeof(u32))
1253 			return -EINVAL;
1254 
1255 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1256 			return -EFAULT;
1257 		break;
1258 
1259 	case CAN_ISOTP_RX_STMIN:
1260 		if (optlen != sizeof(u32))
1261 			return -EINVAL;
1262 
1263 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1264 			return -EFAULT;
1265 		break;
1266 
1267 	case CAN_ISOTP_LL_OPTS:
1268 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1269 			struct can_isotp_ll_options ll;
1270 
1271 			if (copy_from_sockptr(&ll, optval, optlen))
1272 				return -EFAULT;
1273 
1274 			/* check for correct ISO 11898-1 DLC data length */
1275 			if (ll.tx_dl != padlen(ll.tx_dl))
1276 				return -EINVAL;
1277 
1278 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1279 				return -EINVAL;
1280 
1281 			if (ll.mtu == CAN_MTU &&
1282 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1283 				return -EINVAL;
1284 
1285 			memcpy(&so->ll, &ll, sizeof(ll));
1286 
1287 			/* set ll_dl for tx path to similar place as for rx */
1288 			so->tx.ll_dl = ll.tx_dl;
1289 		} else {
1290 			return -EINVAL;
1291 		}
1292 		break;
1293 
1294 	default:
1295 		ret = -ENOPROTOOPT;
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1302 			    sockptr_t optval, unsigned int optlen)
1303 
1304 {
1305 	struct sock *sk = sock->sk;
1306 	int ret;
1307 
1308 	if (level != SOL_CAN_ISOTP)
1309 		return -EINVAL;
1310 
1311 	lock_sock(sk);
1312 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1313 	release_sock(sk);
1314 	return ret;
1315 }
1316 
1317 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1318 			    char __user *optval, int __user *optlen)
1319 {
1320 	struct sock *sk = sock->sk;
1321 	struct isotp_sock *so = isotp_sk(sk);
1322 	int len;
1323 	void *val;
1324 
1325 	if (level != SOL_CAN_ISOTP)
1326 		return -EINVAL;
1327 	if (get_user(len, optlen))
1328 		return -EFAULT;
1329 	if (len < 0)
1330 		return -EINVAL;
1331 
1332 	switch (optname) {
1333 	case CAN_ISOTP_OPTS:
1334 		len = min_t(int, len, sizeof(struct can_isotp_options));
1335 		val = &so->opt;
1336 		break;
1337 
1338 	case CAN_ISOTP_RECV_FC:
1339 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1340 		val = &so->rxfc;
1341 		break;
1342 
1343 	case CAN_ISOTP_TX_STMIN:
1344 		len = min_t(int, len, sizeof(u32));
1345 		val = &so->force_tx_stmin;
1346 		break;
1347 
1348 	case CAN_ISOTP_RX_STMIN:
1349 		len = min_t(int, len, sizeof(u32));
1350 		val = &so->force_rx_stmin;
1351 		break;
1352 
1353 	case CAN_ISOTP_LL_OPTS:
1354 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1355 		val = &so->ll;
1356 		break;
1357 
1358 	default:
1359 		return -ENOPROTOOPT;
1360 	}
1361 
1362 	if (put_user(len, optlen))
1363 		return -EFAULT;
1364 	if (copy_to_user(optval, val, len))
1365 		return -EFAULT;
1366 	return 0;
1367 }
1368 
1369 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1370 			 struct net_device *dev)
1371 {
1372 	struct sock *sk = &so->sk;
1373 
1374 	if (!net_eq(dev_net(dev), sock_net(sk)))
1375 		return;
1376 
1377 	if (so->ifindex != dev->ifindex)
1378 		return;
1379 
1380 	switch (msg) {
1381 	case NETDEV_UNREGISTER:
1382 		lock_sock(sk);
1383 		/* remove current filters & unregister */
1384 		if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1385 			can_rx_unregister(dev_net(dev), dev, so->rxid,
1386 					  SINGLE_MASK(so->rxid),
1387 					  isotp_rcv, sk);
1388 
1389 		so->ifindex = 0;
1390 		so->bound  = 0;
1391 		release_sock(sk);
1392 
1393 		sk->sk_err = ENODEV;
1394 		if (!sock_flag(sk, SOCK_DEAD))
1395 			sk_error_report(sk);
1396 		break;
1397 
1398 	case NETDEV_DOWN:
1399 		sk->sk_err = ENETDOWN;
1400 		if (!sock_flag(sk, SOCK_DEAD))
1401 			sk_error_report(sk);
1402 		break;
1403 	}
1404 }
1405 
1406 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1407 			  void *ptr)
1408 {
1409 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1410 
1411 	if (dev->type != ARPHRD_CAN)
1412 		return NOTIFY_DONE;
1413 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1414 		return NOTIFY_DONE;
1415 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1416 		return NOTIFY_DONE;
1417 
1418 	spin_lock(&isotp_notifier_lock);
1419 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1420 		spin_unlock(&isotp_notifier_lock);
1421 		isotp_notify(isotp_busy_notifier, msg, dev);
1422 		spin_lock(&isotp_notifier_lock);
1423 	}
1424 	isotp_busy_notifier = NULL;
1425 	spin_unlock(&isotp_notifier_lock);
1426 	return NOTIFY_DONE;
1427 }
1428 
1429 static int isotp_init(struct sock *sk)
1430 {
1431 	struct isotp_sock *so = isotp_sk(sk);
1432 
1433 	so->ifindex = 0;
1434 	so->bound = 0;
1435 
1436 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1437 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1438 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1439 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1440 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1441 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1442 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1443 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1444 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1445 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1446 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1447 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1448 
1449 	/* set ll_dl for tx path to similar place as for rx */
1450 	so->tx.ll_dl = so->ll.tx_dl;
1451 
1452 	so->rx.state = ISOTP_IDLE;
1453 	so->tx.state = ISOTP_IDLE;
1454 
1455 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1456 	so->rxtimer.function = isotp_rx_timer_handler;
1457 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1458 	so->txtimer.function = isotp_tx_timer_handler;
1459 
1460 	init_waitqueue_head(&so->wait);
1461 	spin_lock_init(&so->rx_lock);
1462 
1463 	spin_lock(&isotp_notifier_lock);
1464 	list_add_tail(&so->notifier, &isotp_notifier_list);
1465 	spin_unlock(&isotp_notifier_lock);
1466 
1467 	return 0;
1468 }
1469 
1470 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1471 				  unsigned long arg)
1472 {
1473 	/* no ioctls for socket layer -> hand it down to NIC layer */
1474 	return -ENOIOCTLCMD;
1475 }
1476 
1477 static const struct proto_ops isotp_ops = {
1478 	.family = PF_CAN,
1479 	.release = isotp_release,
1480 	.bind = isotp_bind,
1481 	.connect = sock_no_connect,
1482 	.socketpair = sock_no_socketpair,
1483 	.accept = sock_no_accept,
1484 	.getname = isotp_getname,
1485 	.poll = datagram_poll,
1486 	.ioctl = isotp_sock_no_ioctlcmd,
1487 	.gettstamp = sock_gettstamp,
1488 	.listen = sock_no_listen,
1489 	.shutdown = sock_no_shutdown,
1490 	.setsockopt = isotp_setsockopt,
1491 	.getsockopt = isotp_getsockopt,
1492 	.sendmsg = isotp_sendmsg,
1493 	.recvmsg = isotp_recvmsg,
1494 	.mmap = sock_no_mmap,
1495 	.sendpage = sock_no_sendpage,
1496 };
1497 
1498 static struct proto isotp_proto __read_mostly = {
1499 	.name = "CAN_ISOTP",
1500 	.owner = THIS_MODULE,
1501 	.obj_size = sizeof(struct isotp_sock),
1502 	.init = isotp_init,
1503 };
1504 
1505 static const struct can_proto isotp_can_proto = {
1506 	.type = SOCK_DGRAM,
1507 	.protocol = CAN_ISOTP,
1508 	.ops = &isotp_ops,
1509 	.prot = &isotp_proto,
1510 };
1511 
1512 static struct notifier_block canisotp_notifier = {
1513 	.notifier_call = isotp_notifier
1514 };
1515 
1516 static __init int isotp_module_init(void)
1517 {
1518 	int err;
1519 
1520 	pr_info("can: isotp protocol\n");
1521 
1522 	err = can_proto_register(&isotp_can_proto);
1523 	if (err < 0)
1524 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1525 	else
1526 		register_netdevice_notifier(&canisotp_notifier);
1527 
1528 	return err;
1529 }
1530 
1531 static __exit void isotp_module_exit(void)
1532 {
1533 	can_proto_unregister(&isotp_can_proto);
1534 	unregister_netdevice_notifier(&canisotp_notifier);
1535 }
1536 
1537 module_init(isotp_module_init);
1538 module_exit(isotp_module_exit);
1539