1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 * Send feedback to <socketcan-users@lists.berlios.de> 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/init.h> 47 #include <linux/kmod.h> 48 #include <linux/slab.h> 49 #include <linux/list.h> 50 #include <linux/spinlock.h> 51 #include <linux/rcupdate.h> 52 #include <linux/uaccess.h> 53 #include <linux/net.h> 54 #include <linux/netdevice.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_arp.h> 58 #include <linux/skbuff.h> 59 #include <linux/can.h> 60 #include <linux/can/core.h> 61 #include <net/net_namespace.h> 62 #include <net/sock.h> 63 64 #include "af_can.h" 65 66 static __initdata const char banner[] = KERN_INFO 67 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 68 69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 70 MODULE_LICENSE("Dual BSD/GPL"); 71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 72 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 73 74 MODULE_ALIAS_NETPROTO(PF_CAN); 75 76 static int stats_timer __read_mostly = 1; 77 module_param(stats_timer, int, S_IRUGO); 78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 79 80 HLIST_HEAD(can_rx_dev_list); 81 static struct dev_rcv_lists can_rx_alldev_list; 82 static DEFINE_SPINLOCK(can_rcvlists_lock); 83 84 static struct kmem_cache *rcv_cache __read_mostly; 85 86 /* table of registered CAN protocols */ 87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 88 static DEFINE_SPINLOCK(proto_tab_lock); 89 90 struct timer_list can_stattimer; /* timer for statistics update */ 91 struct s_stats can_stats; /* packet statistics */ 92 struct s_pstats can_pstats; /* receive list statistics */ 93 94 /* 95 * af_can socket functions 96 */ 97 98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 99 { 100 struct sock *sk = sock->sk; 101 102 switch (cmd) { 103 104 case SIOCGSTAMP: 105 return sock_get_timestamp(sk, (struct timeval __user *)arg); 106 107 default: 108 return -ENOIOCTLCMD; 109 } 110 } 111 112 static void can_sock_destruct(struct sock *sk) 113 { 114 skb_queue_purge(&sk->sk_receive_queue); 115 } 116 117 static int can_create(struct net *net, struct socket *sock, int protocol) 118 { 119 struct sock *sk; 120 struct can_proto *cp; 121 int err = 0; 122 123 sock->state = SS_UNCONNECTED; 124 125 if (protocol < 0 || protocol >= CAN_NPROTO) 126 return -EINVAL; 127 128 if (net != &init_net) 129 return -EAFNOSUPPORT; 130 131 #ifdef CONFIG_MODULES 132 /* try to load protocol module kernel is modular */ 133 if (!proto_tab[protocol]) { 134 err = request_module("can-proto-%d", protocol); 135 136 /* 137 * In case of error we only print a message but don't 138 * return the error code immediately. Below we will 139 * return -EPROTONOSUPPORT 140 */ 141 if (err && printk_ratelimit()) 142 printk(KERN_ERR "can: request_module " 143 "(can-proto-%d) failed.\n", protocol); 144 } 145 #endif 146 147 spin_lock(&proto_tab_lock); 148 cp = proto_tab[protocol]; 149 if (cp && !try_module_get(cp->prot->owner)) 150 cp = NULL; 151 spin_unlock(&proto_tab_lock); 152 153 /* check for available protocol and correct usage */ 154 155 if (!cp) 156 return -EPROTONOSUPPORT; 157 158 if (cp->type != sock->type) { 159 err = -EPROTONOSUPPORT; 160 goto errout; 161 } 162 163 if (cp->capability >= 0 && !capable(cp->capability)) { 164 err = -EPERM; 165 goto errout; 166 } 167 168 sock->ops = cp->ops; 169 170 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 171 if (!sk) { 172 err = -ENOMEM; 173 goto errout; 174 } 175 176 sock_init_data(sock, sk); 177 sk->sk_destruct = can_sock_destruct; 178 179 if (sk->sk_prot->init) 180 err = sk->sk_prot->init(sk); 181 182 if (err) { 183 /* release sk on errors */ 184 sock_orphan(sk); 185 sock_put(sk); 186 } 187 188 errout: 189 module_put(cp->prot->owner); 190 return err; 191 } 192 193 /* 194 * af_can tx path 195 */ 196 197 /** 198 * can_send - transmit a CAN frame (optional with local loopback) 199 * @skb: pointer to socket buffer with CAN frame in data section 200 * @loop: loopback for listeners on local CAN sockets (recommended default!) 201 * 202 * Due to the loopback this routine must not be called from hardirq context. 203 * 204 * Return: 205 * 0 on success 206 * -ENETDOWN when the selected interface is down 207 * -ENOBUFS on full driver queue (see net_xmit_errno()) 208 * -ENOMEM when local loopback failed at calling skb_clone() 209 * -EPERM when trying to send on a non-CAN interface 210 * -EINVAL when the skb->data does not contain a valid CAN frame 211 */ 212 int can_send(struct sk_buff *skb, int loop) 213 { 214 struct sk_buff *newskb = NULL; 215 struct can_frame *cf = (struct can_frame *)skb->data; 216 int err; 217 218 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) { 219 kfree_skb(skb); 220 return -EINVAL; 221 } 222 223 if (skb->dev->type != ARPHRD_CAN) { 224 kfree_skb(skb); 225 return -EPERM; 226 } 227 228 if (!(skb->dev->flags & IFF_UP)) { 229 kfree_skb(skb); 230 return -ENETDOWN; 231 } 232 233 skb->protocol = htons(ETH_P_CAN); 234 skb_reset_network_header(skb); 235 skb_reset_transport_header(skb); 236 237 if (loop) { 238 /* local loopback of sent CAN frames */ 239 240 /* indication for the CAN driver: do loopback */ 241 skb->pkt_type = PACKET_LOOPBACK; 242 243 /* 244 * The reference to the originating sock may be required 245 * by the receiving socket to check whether the frame is 246 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 247 * Therefore we have to ensure that skb->sk remains the 248 * reference to the originating sock by restoring skb->sk 249 * after each skb_clone() or skb_orphan() usage. 250 */ 251 252 if (!(skb->dev->flags & IFF_ECHO)) { 253 /* 254 * If the interface is not capable to do loopback 255 * itself, we do it here. 256 */ 257 newskb = skb_clone(skb, GFP_ATOMIC); 258 if (!newskb) { 259 kfree_skb(skb); 260 return -ENOMEM; 261 } 262 263 newskb->sk = skb->sk; 264 newskb->ip_summed = CHECKSUM_UNNECESSARY; 265 newskb->pkt_type = PACKET_BROADCAST; 266 } 267 } else { 268 /* indication for the CAN driver: no loopback required */ 269 skb->pkt_type = PACKET_HOST; 270 } 271 272 /* send to netdevice */ 273 err = dev_queue_xmit(skb); 274 if (err > 0) 275 err = net_xmit_errno(err); 276 277 if (err) { 278 kfree_skb(newskb); 279 return err; 280 } 281 282 if (newskb) 283 netif_rx_ni(newskb); 284 285 /* update statistics */ 286 can_stats.tx_frames++; 287 can_stats.tx_frames_delta++; 288 289 return 0; 290 } 291 EXPORT_SYMBOL(can_send); 292 293 /* 294 * af_can rx path 295 */ 296 297 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 298 { 299 struct dev_rcv_lists *d = NULL; 300 struct hlist_node *n; 301 302 /* 303 * find receive list for this device 304 * 305 * The hlist_for_each_entry*() macros curse through the list 306 * using the pointer variable n and set d to the containing 307 * struct in each list iteration. Therefore, after list 308 * iteration, d is unmodified when the list is empty, and it 309 * points to last list element, when the list is non-empty 310 * but no match in the loop body is found. I.e. d is *not* 311 * NULL when no match is found. We can, however, use the 312 * cursor variable n to decide if a match was found. 313 */ 314 315 hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) { 316 if (d->dev == dev) 317 break; 318 } 319 320 return n ? d : NULL; 321 } 322 323 /** 324 * find_rcv_list - determine optimal filterlist inside device filter struct 325 * @can_id: pointer to CAN identifier of a given can_filter 326 * @mask: pointer to CAN mask of a given can_filter 327 * @d: pointer to the device filter struct 328 * 329 * Description: 330 * Returns the optimal filterlist to reduce the filter handling in the 331 * receive path. This function is called by service functions that need 332 * to register or unregister a can_filter in the filter lists. 333 * 334 * A filter matches in general, when 335 * 336 * <received_can_id> & mask == can_id & mask 337 * 338 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 339 * relevant bits for the filter. 340 * 341 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 342 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames 343 * there is a special filterlist and a special rx path filter handling. 344 * 345 * Return: 346 * Pointer to optimal filterlist for the given can_id/mask pair. 347 * Constistency checked mask. 348 * Reduced can_id to have a preprocessed filter compare value. 349 */ 350 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 351 struct dev_rcv_lists *d) 352 { 353 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 354 355 /* filter for error frames in extra filterlist */ 356 if (*mask & CAN_ERR_FLAG) { 357 /* clear CAN_ERR_FLAG in filter entry */ 358 *mask &= CAN_ERR_MASK; 359 return &d->rx[RX_ERR]; 360 } 361 362 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 363 364 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 365 366 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 367 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 368 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 369 370 /* reduce condition testing at receive time */ 371 *can_id &= *mask; 372 373 /* inverse can_id/can_mask filter */ 374 if (inv) 375 return &d->rx[RX_INV]; 376 377 /* mask == 0 => no condition testing at receive time */ 378 if (!(*mask)) 379 return &d->rx[RX_ALL]; 380 381 /* extra filterlists for the subscription of a single non-RTR can_id */ 382 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) 383 && !(*can_id & CAN_RTR_FLAG)) { 384 385 if (*can_id & CAN_EFF_FLAG) { 386 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) { 387 /* RFC: a future use-case for hash-tables? */ 388 return &d->rx[RX_EFF]; 389 } 390 } else { 391 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 392 return &d->rx_sff[*can_id]; 393 } 394 } 395 396 /* default: filter via can_id/can_mask */ 397 return &d->rx[RX_FIL]; 398 } 399 400 /** 401 * can_rx_register - subscribe CAN frames from a specific interface 402 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 403 * @can_id: CAN identifier (see description) 404 * @mask: CAN mask (see description) 405 * @func: callback function on filter match 406 * @data: returned parameter for callback function 407 * @ident: string for calling module indentification 408 * 409 * Description: 410 * Invokes the callback function with the received sk_buff and the given 411 * parameter 'data' on a matching receive filter. A filter matches, when 412 * 413 * <received_can_id> & mask == can_id & mask 414 * 415 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 416 * filter for error frames (CAN_ERR_FLAG bit set in mask). 417 * 418 * The provided pointer to the sk_buff is guaranteed to be valid as long as 419 * the callback function is running. The callback function must *not* free 420 * the given sk_buff while processing it's task. When the given sk_buff is 421 * needed after the end of the callback function it must be cloned inside 422 * the callback function with skb_clone(). 423 * 424 * Return: 425 * 0 on success 426 * -ENOMEM on missing cache mem to create subscription entry 427 * -ENODEV unknown device 428 */ 429 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 430 void (*func)(struct sk_buff *, void *), void *data, 431 char *ident) 432 { 433 struct receiver *r; 434 struct hlist_head *rl; 435 struct dev_rcv_lists *d; 436 int err = 0; 437 438 /* insert new receiver (dev,canid,mask) -> (func,data) */ 439 440 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 441 if (!r) 442 return -ENOMEM; 443 444 spin_lock(&can_rcvlists_lock); 445 446 d = find_dev_rcv_lists(dev); 447 if (d) { 448 rl = find_rcv_list(&can_id, &mask, d); 449 450 r->can_id = can_id; 451 r->mask = mask; 452 r->matches = 0; 453 r->func = func; 454 r->data = data; 455 r->ident = ident; 456 457 hlist_add_head_rcu(&r->list, rl); 458 d->entries++; 459 460 can_pstats.rcv_entries++; 461 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 462 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 463 } else { 464 kmem_cache_free(rcv_cache, r); 465 err = -ENODEV; 466 } 467 468 spin_unlock(&can_rcvlists_lock); 469 470 return err; 471 } 472 EXPORT_SYMBOL(can_rx_register); 473 474 /* 475 * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal 476 */ 477 static void can_rx_delete_device(struct rcu_head *rp) 478 { 479 struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu); 480 481 kfree(d); 482 } 483 484 /* 485 * can_rx_delete_receiver - rcu callback for single receiver entry removal 486 */ 487 static void can_rx_delete_receiver(struct rcu_head *rp) 488 { 489 struct receiver *r = container_of(rp, struct receiver, rcu); 490 491 kmem_cache_free(rcv_cache, r); 492 } 493 494 /** 495 * can_rx_unregister - unsubscribe CAN frames from a specific interface 496 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 497 * @can_id: CAN identifier 498 * @mask: CAN mask 499 * @func: callback function on filter match 500 * @data: returned parameter for callback function 501 * 502 * Description: 503 * Removes subscription entry depending on given (subscription) values. 504 */ 505 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 506 void (*func)(struct sk_buff *, void *), void *data) 507 { 508 struct receiver *r = NULL; 509 struct hlist_head *rl; 510 struct hlist_node *next; 511 struct dev_rcv_lists *d; 512 513 spin_lock(&can_rcvlists_lock); 514 515 d = find_dev_rcv_lists(dev); 516 if (!d) { 517 printk(KERN_ERR "BUG: receive list not found for " 518 "dev %s, id %03X, mask %03X\n", 519 DNAME(dev), can_id, mask); 520 goto out; 521 } 522 523 rl = find_rcv_list(&can_id, &mask, d); 524 525 /* 526 * Search the receiver list for the item to delete. This should 527 * exist, since no receiver may be unregistered that hasn't 528 * been registered before. 529 */ 530 531 hlist_for_each_entry_rcu(r, next, rl, list) { 532 if (r->can_id == can_id && r->mask == mask 533 && r->func == func && r->data == data) 534 break; 535 } 536 537 /* 538 * Check for bugs in CAN protocol implementations: 539 * If no matching list item was found, the list cursor variable next 540 * will be NULL, while r will point to the last item of the list. 541 */ 542 543 if (!next) { 544 printk(KERN_ERR "BUG: receive list entry not found for " 545 "dev %s, id %03X, mask %03X\n", 546 DNAME(dev), can_id, mask); 547 r = NULL; 548 d = NULL; 549 goto out; 550 } 551 552 hlist_del_rcu(&r->list); 553 d->entries--; 554 555 if (can_pstats.rcv_entries > 0) 556 can_pstats.rcv_entries--; 557 558 /* remove device structure requested by NETDEV_UNREGISTER */ 559 if (d->remove_on_zero_entries && !d->entries) 560 hlist_del_rcu(&d->list); 561 else 562 d = NULL; 563 564 out: 565 spin_unlock(&can_rcvlists_lock); 566 567 /* schedule the receiver item for deletion */ 568 if (r) 569 call_rcu(&r->rcu, can_rx_delete_receiver); 570 571 /* schedule the device structure for deletion */ 572 if (d) 573 call_rcu(&d->rcu, can_rx_delete_device); 574 } 575 EXPORT_SYMBOL(can_rx_unregister); 576 577 static inline void deliver(struct sk_buff *skb, struct receiver *r) 578 { 579 r->func(skb, r->data); 580 r->matches++; 581 } 582 583 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 584 { 585 struct receiver *r; 586 struct hlist_node *n; 587 int matches = 0; 588 struct can_frame *cf = (struct can_frame *)skb->data; 589 canid_t can_id = cf->can_id; 590 591 if (d->entries == 0) 592 return 0; 593 594 if (can_id & CAN_ERR_FLAG) { 595 /* check for error frame entries only */ 596 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) { 597 if (can_id & r->mask) { 598 deliver(skb, r); 599 matches++; 600 } 601 } 602 return matches; 603 } 604 605 /* check for unfiltered entries */ 606 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) { 607 deliver(skb, r); 608 matches++; 609 } 610 611 /* check for can_id/mask entries */ 612 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) { 613 if ((can_id & r->mask) == r->can_id) { 614 deliver(skb, r); 615 matches++; 616 } 617 } 618 619 /* check for inverted can_id/mask entries */ 620 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) { 621 if ((can_id & r->mask) != r->can_id) { 622 deliver(skb, r); 623 matches++; 624 } 625 } 626 627 /* check filterlists for single non-RTR can_ids */ 628 if (can_id & CAN_RTR_FLAG) 629 return matches; 630 631 if (can_id & CAN_EFF_FLAG) { 632 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) { 633 if (r->can_id == can_id) { 634 deliver(skb, r); 635 matches++; 636 } 637 } 638 } else { 639 can_id &= CAN_SFF_MASK; 640 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) { 641 deliver(skb, r); 642 matches++; 643 } 644 } 645 646 return matches; 647 } 648 649 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 650 struct packet_type *pt, struct net_device *orig_dev) 651 { 652 struct dev_rcv_lists *d; 653 struct can_frame *cf = (struct can_frame *)skb->data; 654 int matches; 655 656 if (!net_eq(dev_net(dev), &init_net)) 657 goto drop; 658 659 if (WARN_ONCE(dev->type != ARPHRD_CAN || 660 skb->len != sizeof(struct can_frame) || 661 cf->can_dlc > 8, 662 "PF_CAN: dropped non conform skbuf: " 663 "dev type %d, len %d, can_dlc %d\n", 664 dev->type, skb->len, cf->can_dlc)) 665 goto drop; 666 667 /* update statistics */ 668 can_stats.rx_frames++; 669 can_stats.rx_frames_delta++; 670 671 rcu_read_lock(); 672 673 /* deliver the packet to sockets listening on all devices */ 674 matches = can_rcv_filter(&can_rx_alldev_list, skb); 675 676 /* find receive list for this device */ 677 d = find_dev_rcv_lists(dev); 678 if (d) 679 matches += can_rcv_filter(d, skb); 680 681 rcu_read_unlock(); 682 683 /* consume the skbuff allocated by the netdevice driver */ 684 consume_skb(skb); 685 686 if (matches > 0) { 687 can_stats.matches++; 688 can_stats.matches_delta++; 689 } 690 691 return NET_RX_SUCCESS; 692 693 drop: 694 kfree_skb(skb); 695 return NET_RX_DROP; 696 } 697 698 /* 699 * af_can protocol functions 700 */ 701 702 /** 703 * can_proto_register - register CAN transport protocol 704 * @cp: pointer to CAN protocol structure 705 * 706 * Return: 707 * 0 on success 708 * -EINVAL invalid (out of range) protocol number 709 * -EBUSY protocol already in use 710 * -ENOBUF if proto_register() fails 711 */ 712 int can_proto_register(struct can_proto *cp) 713 { 714 int proto = cp->protocol; 715 int err = 0; 716 717 if (proto < 0 || proto >= CAN_NPROTO) { 718 printk(KERN_ERR "can: protocol number %d out of range\n", 719 proto); 720 return -EINVAL; 721 } 722 723 err = proto_register(cp->prot, 0); 724 if (err < 0) 725 return err; 726 727 spin_lock(&proto_tab_lock); 728 if (proto_tab[proto]) { 729 printk(KERN_ERR "can: protocol %d already registered\n", 730 proto); 731 err = -EBUSY; 732 } else { 733 proto_tab[proto] = cp; 734 735 /* use generic ioctl function if not defined by module */ 736 if (!cp->ops->ioctl) 737 cp->ops->ioctl = can_ioctl; 738 } 739 spin_unlock(&proto_tab_lock); 740 741 if (err < 0) 742 proto_unregister(cp->prot); 743 744 return err; 745 } 746 EXPORT_SYMBOL(can_proto_register); 747 748 /** 749 * can_proto_unregister - unregister CAN transport protocol 750 * @cp: pointer to CAN protocol structure 751 */ 752 void can_proto_unregister(struct can_proto *cp) 753 { 754 int proto = cp->protocol; 755 756 spin_lock(&proto_tab_lock); 757 if (!proto_tab[proto]) { 758 printk(KERN_ERR "BUG: can: protocol %d is not registered\n", 759 proto); 760 } 761 proto_tab[proto] = NULL; 762 spin_unlock(&proto_tab_lock); 763 764 proto_unregister(cp->prot); 765 } 766 EXPORT_SYMBOL(can_proto_unregister); 767 768 /* 769 * af_can notifier to create/remove CAN netdevice specific structs 770 */ 771 static int can_notifier(struct notifier_block *nb, unsigned long msg, 772 void *data) 773 { 774 struct net_device *dev = (struct net_device *)data; 775 struct dev_rcv_lists *d; 776 777 if (!net_eq(dev_net(dev), &init_net)) 778 return NOTIFY_DONE; 779 780 if (dev->type != ARPHRD_CAN) 781 return NOTIFY_DONE; 782 783 switch (msg) { 784 785 case NETDEV_REGISTER: 786 787 /* 788 * create new dev_rcv_lists for this device 789 * 790 * N.B. zeroing the struct is the correct initialization 791 * for the embedded hlist_head structs. 792 * Another list type, e.g. list_head, would require 793 * explicit initialization. 794 */ 795 796 d = kzalloc(sizeof(*d), GFP_KERNEL); 797 if (!d) { 798 printk(KERN_ERR 799 "can: allocation of receive list failed\n"); 800 return NOTIFY_DONE; 801 } 802 d->dev = dev; 803 804 spin_lock(&can_rcvlists_lock); 805 hlist_add_head_rcu(&d->list, &can_rx_dev_list); 806 spin_unlock(&can_rcvlists_lock); 807 808 break; 809 810 case NETDEV_UNREGISTER: 811 spin_lock(&can_rcvlists_lock); 812 813 d = find_dev_rcv_lists(dev); 814 if (d) { 815 if (d->entries) { 816 d->remove_on_zero_entries = 1; 817 d = NULL; 818 } else 819 hlist_del_rcu(&d->list); 820 } else 821 printk(KERN_ERR "can: notifier: receive list not " 822 "found for dev %s\n", dev->name); 823 824 spin_unlock(&can_rcvlists_lock); 825 826 if (d) 827 call_rcu(&d->rcu, can_rx_delete_device); 828 829 break; 830 } 831 832 return NOTIFY_DONE; 833 } 834 835 /* 836 * af_can module init/exit functions 837 */ 838 839 static struct packet_type can_packet __read_mostly = { 840 .type = cpu_to_be16(ETH_P_CAN), 841 .dev = NULL, 842 .func = can_rcv, 843 }; 844 845 static struct net_proto_family can_family_ops __read_mostly = { 846 .family = PF_CAN, 847 .create = can_create, 848 .owner = THIS_MODULE, 849 }; 850 851 /* notifier block for netdevice event */ 852 static struct notifier_block can_netdev_notifier __read_mostly = { 853 .notifier_call = can_notifier, 854 }; 855 856 static __init int can_init(void) 857 { 858 printk(banner); 859 860 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 861 0, 0, NULL); 862 if (!rcv_cache) 863 return -ENOMEM; 864 865 /* 866 * Insert can_rx_alldev_list for reception on all devices. 867 * This struct is zero initialized which is correct for the 868 * embedded hlist heads, the dev pointer, and the entries counter. 869 */ 870 871 spin_lock(&can_rcvlists_lock); 872 hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list); 873 spin_unlock(&can_rcvlists_lock); 874 875 if (stats_timer) { 876 /* the statistics are updated every second (timer triggered) */ 877 setup_timer(&can_stattimer, can_stat_update, 0); 878 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 879 } else 880 can_stattimer.function = NULL; 881 882 can_init_proc(); 883 884 /* protocol register */ 885 sock_register(&can_family_ops); 886 register_netdevice_notifier(&can_netdev_notifier); 887 dev_add_pack(&can_packet); 888 889 return 0; 890 } 891 892 static __exit void can_exit(void) 893 { 894 struct dev_rcv_lists *d; 895 struct hlist_node *n, *next; 896 897 if (stats_timer) 898 del_timer(&can_stattimer); 899 900 can_remove_proc(); 901 902 /* protocol unregister */ 903 dev_remove_pack(&can_packet); 904 unregister_netdevice_notifier(&can_netdev_notifier); 905 sock_unregister(PF_CAN); 906 907 /* remove can_rx_dev_list */ 908 spin_lock(&can_rcvlists_lock); 909 hlist_del(&can_rx_alldev_list.list); 910 hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) { 911 hlist_del(&d->list); 912 kfree(d); 913 } 914 spin_unlock(&can_rcvlists_lock); 915 916 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 917 918 kmem_cache_destroy(rcv_cache); 919 } 920 921 module_init(can_init); 922 module_exit(can_exit); 923