xref: /openbmc/linux/net/can/af_can.c (revision fd589a8f)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 	struct sock *sk;
120 	struct can_proto *cp;
121 	int err = 0;
122 
123 	sock->state = SS_UNCONNECTED;
124 
125 	if (protocol < 0 || protocol >= CAN_NPROTO)
126 		return -EINVAL;
127 
128 	if (net != &init_net)
129 		return -EAFNOSUPPORT;
130 
131 #ifdef CONFIG_MODULES
132 	/* try to load protocol module kernel is modular */
133 	if (!proto_tab[protocol]) {
134 		err = request_module("can-proto-%d", protocol);
135 
136 		/*
137 		 * In case of error we only print a message but don't
138 		 * return the error code immediately.  Below we will
139 		 * return -EPROTONOSUPPORT
140 		 */
141 		if (err && printk_ratelimit())
142 			printk(KERN_ERR "can: request_module "
143 			       "(can-proto-%d) failed.\n", protocol);
144 	}
145 #endif
146 
147 	spin_lock(&proto_tab_lock);
148 	cp = proto_tab[protocol];
149 	if (cp && !try_module_get(cp->prot->owner))
150 		cp = NULL;
151 	spin_unlock(&proto_tab_lock);
152 
153 	/* check for available protocol and correct usage */
154 
155 	if (!cp)
156 		return -EPROTONOSUPPORT;
157 
158 	if (cp->type != sock->type) {
159 		err = -EPROTONOSUPPORT;
160 		goto errout;
161 	}
162 
163 	if (cp->capability >= 0 && !capable(cp->capability)) {
164 		err = -EPERM;
165 		goto errout;
166 	}
167 
168 	sock->ops = cp->ops;
169 
170 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 	if (!sk) {
172 		err = -ENOMEM;
173 		goto errout;
174 	}
175 
176 	sock_init_data(sock, sk);
177 	sk->sk_destruct = can_sock_destruct;
178 
179 	if (sk->sk_prot->init)
180 		err = sk->sk_prot->init(sk);
181 
182 	if (err) {
183 		/* release sk on errors */
184 		sock_orphan(sk);
185 		sock_put(sk);
186 	}
187 
188  errout:
189 	module_put(cp->prot->owner);
190 	return err;
191 }
192 
193 /*
194  * af_can tx path
195  */
196 
197 /**
198  * can_send - transmit a CAN frame (optional with local loopback)
199  * @skb: pointer to socket buffer with CAN frame in data section
200  * @loop: loopback for listeners on local CAN sockets (recommended default!)
201  *
202  * Due to the loopback this routine must not be called from hardirq context.
203  *
204  * Return:
205  *  0 on success
206  *  -ENETDOWN when the selected interface is down
207  *  -ENOBUFS on full driver queue (see net_xmit_errno())
208  *  -ENOMEM when local loopback failed at calling skb_clone()
209  *  -EPERM when trying to send on a non-CAN interface
210  *  -EINVAL when the skb->data does not contain a valid CAN frame
211  */
212 int can_send(struct sk_buff *skb, int loop)
213 {
214 	struct sk_buff *newskb = NULL;
215 	struct can_frame *cf = (struct can_frame *)skb->data;
216 	int err;
217 
218 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
219 		kfree_skb(skb);
220 		return -EINVAL;
221 	}
222 
223 	if (skb->dev->type != ARPHRD_CAN) {
224 		kfree_skb(skb);
225 		return -EPERM;
226 	}
227 
228 	if (!(skb->dev->flags & IFF_UP)) {
229 		kfree_skb(skb);
230 		return -ENETDOWN;
231 	}
232 
233 	skb->protocol = htons(ETH_P_CAN);
234 	skb_reset_network_header(skb);
235 	skb_reset_transport_header(skb);
236 
237 	if (loop) {
238 		/* local loopback of sent CAN frames */
239 
240 		/* indication for the CAN driver: do loopback */
241 		skb->pkt_type = PACKET_LOOPBACK;
242 
243 		/*
244 		 * The reference to the originating sock may be required
245 		 * by the receiving socket to check whether the frame is
246 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
247 		 * Therefore we have to ensure that skb->sk remains the
248 		 * reference to the originating sock by restoring skb->sk
249 		 * after each skb_clone() or skb_orphan() usage.
250 		 */
251 
252 		if (!(skb->dev->flags & IFF_ECHO)) {
253 			/*
254 			 * If the interface is not capable to do loopback
255 			 * itself, we do it here.
256 			 */
257 			newskb = skb_clone(skb, GFP_ATOMIC);
258 			if (!newskb) {
259 				kfree_skb(skb);
260 				return -ENOMEM;
261 			}
262 
263 			newskb->sk = skb->sk;
264 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
265 			newskb->pkt_type = PACKET_BROADCAST;
266 		}
267 	} else {
268 		/* indication for the CAN driver: no loopback required */
269 		skb->pkt_type = PACKET_HOST;
270 	}
271 
272 	/* send to netdevice */
273 	err = dev_queue_xmit(skb);
274 	if (err > 0)
275 		err = net_xmit_errno(err);
276 
277 	if (err) {
278 		kfree_skb(newskb);
279 		return err;
280 	}
281 
282 	if (newskb)
283 		netif_rx_ni(newskb);
284 
285 	/* update statistics */
286 	can_stats.tx_frames++;
287 	can_stats.tx_frames_delta++;
288 
289 	return 0;
290 }
291 EXPORT_SYMBOL(can_send);
292 
293 /*
294  * af_can rx path
295  */
296 
297 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
298 {
299 	struct dev_rcv_lists *d = NULL;
300 	struct hlist_node *n;
301 
302 	/*
303 	 * find receive list for this device
304 	 *
305 	 * The hlist_for_each_entry*() macros curse through the list
306 	 * using the pointer variable n and set d to the containing
307 	 * struct in each list iteration.  Therefore, after list
308 	 * iteration, d is unmodified when the list is empty, and it
309 	 * points to last list element, when the list is non-empty
310 	 * but no match in the loop body is found.  I.e. d is *not*
311 	 * NULL when no match is found.  We can, however, use the
312 	 * cursor variable n to decide if a match was found.
313 	 */
314 
315 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
316 		if (d->dev == dev)
317 			break;
318 	}
319 
320 	return n ? d : NULL;
321 }
322 
323 /**
324  * find_rcv_list - determine optimal filterlist inside device filter struct
325  * @can_id: pointer to CAN identifier of a given can_filter
326  * @mask: pointer to CAN mask of a given can_filter
327  * @d: pointer to the device filter struct
328  *
329  * Description:
330  *  Returns the optimal filterlist to reduce the filter handling in the
331  *  receive path. This function is called by service functions that need
332  *  to register or unregister a can_filter in the filter lists.
333  *
334  *  A filter matches in general, when
335  *
336  *          <received_can_id> & mask == can_id & mask
337  *
338  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
339  *  relevant bits for the filter.
340  *
341  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
342  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
343  *  there is a special filterlist and a special rx path filter handling.
344  *
345  * Return:
346  *  Pointer to optimal filterlist for the given can_id/mask pair.
347  *  Constistency checked mask.
348  *  Reduced can_id to have a preprocessed filter compare value.
349  */
350 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
351 					struct dev_rcv_lists *d)
352 {
353 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
354 
355 	/* filter for error frames in extra filterlist */
356 	if (*mask & CAN_ERR_FLAG) {
357 		/* clear CAN_ERR_FLAG in filter entry */
358 		*mask &= CAN_ERR_MASK;
359 		return &d->rx[RX_ERR];
360 	}
361 
362 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
363 
364 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
365 
366 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
367 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
368 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
369 
370 	/* reduce condition testing at receive time */
371 	*can_id &= *mask;
372 
373 	/* inverse can_id/can_mask filter */
374 	if (inv)
375 		return &d->rx[RX_INV];
376 
377 	/* mask == 0 => no condition testing at receive time */
378 	if (!(*mask))
379 		return &d->rx[RX_ALL];
380 
381 	/* extra filterlists for the subscription of a single non-RTR can_id */
382 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS)
383 	    && !(*can_id & CAN_RTR_FLAG)) {
384 
385 		if (*can_id & CAN_EFF_FLAG) {
386 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
387 				/* RFC: a future use-case for hash-tables? */
388 				return &d->rx[RX_EFF];
389 			}
390 		} else {
391 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
392 				return &d->rx_sff[*can_id];
393 		}
394 	}
395 
396 	/* default: filter via can_id/can_mask */
397 	return &d->rx[RX_FIL];
398 }
399 
400 /**
401  * can_rx_register - subscribe CAN frames from a specific interface
402  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
403  * @can_id: CAN identifier (see description)
404  * @mask: CAN mask (see description)
405  * @func: callback function on filter match
406  * @data: returned parameter for callback function
407  * @ident: string for calling module indentification
408  *
409  * Description:
410  *  Invokes the callback function with the received sk_buff and the given
411  *  parameter 'data' on a matching receive filter. A filter matches, when
412  *
413  *          <received_can_id> & mask == can_id & mask
414  *
415  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
416  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
417  *
418  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
419  *  the callback function is running. The callback function must *not* free
420  *  the given sk_buff while processing it's task. When the given sk_buff is
421  *  needed after the end of the callback function it must be cloned inside
422  *  the callback function with skb_clone().
423  *
424  * Return:
425  *  0 on success
426  *  -ENOMEM on missing cache mem to create subscription entry
427  *  -ENODEV unknown device
428  */
429 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
430 		    void (*func)(struct sk_buff *, void *), void *data,
431 		    char *ident)
432 {
433 	struct receiver *r;
434 	struct hlist_head *rl;
435 	struct dev_rcv_lists *d;
436 	int err = 0;
437 
438 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
439 
440 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
441 	if (!r)
442 		return -ENOMEM;
443 
444 	spin_lock(&can_rcvlists_lock);
445 
446 	d = find_dev_rcv_lists(dev);
447 	if (d) {
448 		rl = find_rcv_list(&can_id, &mask, d);
449 
450 		r->can_id  = can_id;
451 		r->mask    = mask;
452 		r->matches = 0;
453 		r->func    = func;
454 		r->data    = data;
455 		r->ident   = ident;
456 
457 		hlist_add_head_rcu(&r->list, rl);
458 		d->entries++;
459 
460 		can_pstats.rcv_entries++;
461 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
462 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
463 	} else {
464 		kmem_cache_free(rcv_cache, r);
465 		err = -ENODEV;
466 	}
467 
468 	spin_unlock(&can_rcvlists_lock);
469 
470 	return err;
471 }
472 EXPORT_SYMBOL(can_rx_register);
473 
474 /*
475  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
476  */
477 static void can_rx_delete_device(struct rcu_head *rp)
478 {
479 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
480 
481 	kfree(d);
482 }
483 
484 /*
485  * can_rx_delete_receiver - rcu callback for single receiver entry removal
486  */
487 static void can_rx_delete_receiver(struct rcu_head *rp)
488 {
489 	struct receiver *r = container_of(rp, struct receiver, rcu);
490 
491 	kmem_cache_free(rcv_cache, r);
492 }
493 
494 /**
495  * can_rx_unregister - unsubscribe CAN frames from a specific interface
496  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
497  * @can_id: CAN identifier
498  * @mask: CAN mask
499  * @func: callback function on filter match
500  * @data: returned parameter for callback function
501  *
502  * Description:
503  *  Removes subscription entry depending on given (subscription) values.
504  */
505 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
506 		       void (*func)(struct sk_buff *, void *), void *data)
507 {
508 	struct receiver *r = NULL;
509 	struct hlist_head *rl;
510 	struct hlist_node *next;
511 	struct dev_rcv_lists *d;
512 
513 	spin_lock(&can_rcvlists_lock);
514 
515 	d = find_dev_rcv_lists(dev);
516 	if (!d) {
517 		printk(KERN_ERR "BUG: receive list not found for "
518 		       "dev %s, id %03X, mask %03X\n",
519 		       DNAME(dev), can_id, mask);
520 		goto out;
521 	}
522 
523 	rl = find_rcv_list(&can_id, &mask, d);
524 
525 	/*
526 	 * Search the receiver list for the item to delete.  This should
527 	 * exist, since no receiver may be unregistered that hasn't
528 	 * been registered before.
529 	 */
530 
531 	hlist_for_each_entry_rcu(r, next, rl, list) {
532 		if (r->can_id == can_id && r->mask == mask
533 		    && r->func == func && r->data == data)
534 			break;
535 	}
536 
537 	/*
538 	 * Check for bugs in CAN protocol implementations:
539 	 * If no matching list item was found, the list cursor variable next
540 	 * will be NULL, while r will point to the last item of the list.
541 	 */
542 
543 	if (!next) {
544 		printk(KERN_ERR "BUG: receive list entry not found for "
545 		       "dev %s, id %03X, mask %03X\n",
546 		       DNAME(dev), can_id, mask);
547 		r = NULL;
548 		d = NULL;
549 		goto out;
550 	}
551 
552 	hlist_del_rcu(&r->list);
553 	d->entries--;
554 
555 	if (can_pstats.rcv_entries > 0)
556 		can_pstats.rcv_entries--;
557 
558 	/* remove device structure requested by NETDEV_UNREGISTER */
559 	if (d->remove_on_zero_entries && !d->entries)
560 		hlist_del_rcu(&d->list);
561 	else
562 		d = NULL;
563 
564  out:
565 	spin_unlock(&can_rcvlists_lock);
566 
567 	/* schedule the receiver item for deletion */
568 	if (r)
569 		call_rcu(&r->rcu, can_rx_delete_receiver);
570 
571 	/* schedule the device structure for deletion */
572 	if (d)
573 		call_rcu(&d->rcu, can_rx_delete_device);
574 }
575 EXPORT_SYMBOL(can_rx_unregister);
576 
577 static inline void deliver(struct sk_buff *skb, struct receiver *r)
578 {
579 	r->func(skb, r->data);
580 	r->matches++;
581 }
582 
583 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
584 {
585 	struct receiver *r;
586 	struct hlist_node *n;
587 	int matches = 0;
588 	struct can_frame *cf = (struct can_frame *)skb->data;
589 	canid_t can_id = cf->can_id;
590 
591 	if (d->entries == 0)
592 		return 0;
593 
594 	if (can_id & CAN_ERR_FLAG) {
595 		/* check for error frame entries only */
596 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
597 			if (can_id & r->mask) {
598 				deliver(skb, r);
599 				matches++;
600 			}
601 		}
602 		return matches;
603 	}
604 
605 	/* check for unfiltered entries */
606 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
607 		deliver(skb, r);
608 		matches++;
609 	}
610 
611 	/* check for can_id/mask entries */
612 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
613 		if ((can_id & r->mask) == r->can_id) {
614 			deliver(skb, r);
615 			matches++;
616 		}
617 	}
618 
619 	/* check for inverted can_id/mask entries */
620 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
621 		if ((can_id & r->mask) != r->can_id) {
622 			deliver(skb, r);
623 			matches++;
624 		}
625 	}
626 
627 	/* check filterlists for single non-RTR can_ids */
628 	if (can_id & CAN_RTR_FLAG)
629 		return matches;
630 
631 	if (can_id & CAN_EFF_FLAG) {
632 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
633 			if (r->can_id == can_id) {
634 				deliver(skb, r);
635 				matches++;
636 			}
637 		}
638 	} else {
639 		can_id &= CAN_SFF_MASK;
640 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
641 			deliver(skb, r);
642 			matches++;
643 		}
644 	}
645 
646 	return matches;
647 }
648 
649 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
650 		   struct packet_type *pt, struct net_device *orig_dev)
651 {
652 	struct dev_rcv_lists *d;
653 	struct can_frame *cf = (struct can_frame *)skb->data;
654 	int matches;
655 
656 	if (!net_eq(dev_net(dev), &init_net))
657 		goto drop;
658 
659 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
660 		      skb->len != sizeof(struct can_frame) ||
661 		      cf->can_dlc > 8,
662 		      "PF_CAN: dropped non conform skbuf: "
663 		      "dev type %d, len %d, can_dlc %d\n",
664 		      dev->type, skb->len, cf->can_dlc))
665 		goto drop;
666 
667 	/* update statistics */
668 	can_stats.rx_frames++;
669 	can_stats.rx_frames_delta++;
670 
671 	rcu_read_lock();
672 
673 	/* deliver the packet to sockets listening on all devices */
674 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
675 
676 	/* find receive list for this device */
677 	d = find_dev_rcv_lists(dev);
678 	if (d)
679 		matches += can_rcv_filter(d, skb);
680 
681 	rcu_read_unlock();
682 
683 	/* consume the skbuff allocated by the netdevice driver */
684 	consume_skb(skb);
685 
686 	if (matches > 0) {
687 		can_stats.matches++;
688 		can_stats.matches_delta++;
689 	}
690 
691 	return NET_RX_SUCCESS;
692 
693 drop:
694 	kfree_skb(skb);
695 	return NET_RX_DROP;
696 }
697 
698 /*
699  * af_can protocol functions
700  */
701 
702 /**
703  * can_proto_register - register CAN transport protocol
704  * @cp: pointer to CAN protocol structure
705  *
706  * Return:
707  *  0 on success
708  *  -EINVAL invalid (out of range) protocol number
709  *  -EBUSY  protocol already in use
710  *  -ENOBUF if proto_register() fails
711  */
712 int can_proto_register(struct can_proto *cp)
713 {
714 	int proto = cp->protocol;
715 	int err = 0;
716 
717 	if (proto < 0 || proto >= CAN_NPROTO) {
718 		printk(KERN_ERR "can: protocol number %d out of range\n",
719 		       proto);
720 		return -EINVAL;
721 	}
722 
723 	err = proto_register(cp->prot, 0);
724 	if (err < 0)
725 		return err;
726 
727 	spin_lock(&proto_tab_lock);
728 	if (proto_tab[proto]) {
729 		printk(KERN_ERR "can: protocol %d already registered\n",
730 		       proto);
731 		err = -EBUSY;
732 	} else {
733 		proto_tab[proto] = cp;
734 
735 		/* use generic ioctl function if not defined by module */
736 		if (!cp->ops->ioctl)
737 			cp->ops->ioctl = can_ioctl;
738 	}
739 	spin_unlock(&proto_tab_lock);
740 
741 	if (err < 0)
742 		proto_unregister(cp->prot);
743 
744 	return err;
745 }
746 EXPORT_SYMBOL(can_proto_register);
747 
748 /**
749  * can_proto_unregister - unregister CAN transport protocol
750  * @cp: pointer to CAN protocol structure
751  */
752 void can_proto_unregister(struct can_proto *cp)
753 {
754 	int proto = cp->protocol;
755 
756 	spin_lock(&proto_tab_lock);
757 	if (!proto_tab[proto]) {
758 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
759 		       proto);
760 	}
761 	proto_tab[proto] = NULL;
762 	spin_unlock(&proto_tab_lock);
763 
764 	proto_unregister(cp->prot);
765 }
766 EXPORT_SYMBOL(can_proto_unregister);
767 
768 /*
769  * af_can notifier to create/remove CAN netdevice specific structs
770  */
771 static int can_notifier(struct notifier_block *nb, unsigned long msg,
772 			void *data)
773 {
774 	struct net_device *dev = (struct net_device *)data;
775 	struct dev_rcv_lists *d;
776 
777 	if (!net_eq(dev_net(dev), &init_net))
778 		return NOTIFY_DONE;
779 
780 	if (dev->type != ARPHRD_CAN)
781 		return NOTIFY_DONE;
782 
783 	switch (msg) {
784 
785 	case NETDEV_REGISTER:
786 
787 		/*
788 		 * create new dev_rcv_lists for this device
789 		 *
790 		 * N.B. zeroing the struct is the correct initialization
791 		 * for the embedded hlist_head structs.
792 		 * Another list type, e.g. list_head, would require
793 		 * explicit initialization.
794 		 */
795 
796 		d = kzalloc(sizeof(*d), GFP_KERNEL);
797 		if (!d) {
798 			printk(KERN_ERR
799 			       "can: allocation of receive list failed\n");
800 			return NOTIFY_DONE;
801 		}
802 		d->dev = dev;
803 
804 		spin_lock(&can_rcvlists_lock);
805 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
806 		spin_unlock(&can_rcvlists_lock);
807 
808 		break;
809 
810 	case NETDEV_UNREGISTER:
811 		spin_lock(&can_rcvlists_lock);
812 
813 		d = find_dev_rcv_lists(dev);
814 		if (d) {
815 			if (d->entries) {
816 				d->remove_on_zero_entries = 1;
817 				d = NULL;
818 			} else
819 				hlist_del_rcu(&d->list);
820 		} else
821 			printk(KERN_ERR "can: notifier: receive list not "
822 			       "found for dev %s\n", dev->name);
823 
824 		spin_unlock(&can_rcvlists_lock);
825 
826 		if (d)
827 			call_rcu(&d->rcu, can_rx_delete_device);
828 
829 		break;
830 	}
831 
832 	return NOTIFY_DONE;
833 }
834 
835 /*
836  * af_can module init/exit functions
837  */
838 
839 static struct packet_type can_packet __read_mostly = {
840 	.type = cpu_to_be16(ETH_P_CAN),
841 	.dev  = NULL,
842 	.func = can_rcv,
843 };
844 
845 static struct net_proto_family can_family_ops __read_mostly = {
846 	.family = PF_CAN,
847 	.create = can_create,
848 	.owner  = THIS_MODULE,
849 };
850 
851 /* notifier block for netdevice event */
852 static struct notifier_block can_netdev_notifier __read_mostly = {
853 	.notifier_call = can_notifier,
854 };
855 
856 static __init int can_init(void)
857 {
858 	printk(banner);
859 
860 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
861 				      0, 0, NULL);
862 	if (!rcv_cache)
863 		return -ENOMEM;
864 
865 	/*
866 	 * Insert can_rx_alldev_list for reception on all devices.
867 	 * This struct is zero initialized which is correct for the
868 	 * embedded hlist heads, the dev pointer, and the entries counter.
869 	 */
870 
871 	spin_lock(&can_rcvlists_lock);
872 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
873 	spin_unlock(&can_rcvlists_lock);
874 
875 	if (stats_timer) {
876 		/* the statistics are updated every second (timer triggered) */
877 		setup_timer(&can_stattimer, can_stat_update, 0);
878 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
879 	} else
880 		can_stattimer.function = NULL;
881 
882 	can_init_proc();
883 
884 	/* protocol register */
885 	sock_register(&can_family_ops);
886 	register_netdevice_notifier(&can_netdev_notifier);
887 	dev_add_pack(&can_packet);
888 
889 	return 0;
890 }
891 
892 static __exit void can_exit(void)
893 {
894 	struct dev_rcv_lists *d;
895 	struct hlist_node *n, *next;
896 
897 	if (stats_timer)
898 		del_timer(&can_stattimer);
899 
900 	can_remove_proc();
901 
902 	/* protocol unregister */
903 	dev_remove_pack(&can_packet);
904 	unregister_netdevice_notifier(&can_netdev_notifier);
905 	sock_unregister(PF_CAN);
906 
907 	/* remove can_rx_dev_list */
908 	spin_lock(&can_rcvlists_lock);
909 	hlist_del(&can_rx_alldev_list.list);
910 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
911 		hlist_del(&d->list);
912 		kfree(d);
913 	}
914 	spin_unlock(&can_rcvlists_lock);
915 
916 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
917 
918 	kmem_cache_destroy(rcv_cache);
919 }
920 
921 module_init(can_init);
922 module_exit(can_exit);
923