1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/stddef.h> 45 #include <linux/init.h> 46 #include <linux/kmod.h> 47 #include <linux/slab.h> 48 #include <linux/list.h> 49 #include <linux/spinlock.h> 50 #include <linux/rcupdate.h> 51 #include <linux/uaccess.h> 52 #include <linux/net.h> 53 #include <linux/netdevice.h> 54 #include <linux/socket.h> 55 #include <linux/if_ether.h> 56 #include <linux/if_arp.h> 57 #include <linux/skbuff.h> 58 #include <linux/can.h> 59 #include <linux/can/core.h> 60 #include <linux/can/skb.h> 61 #include <linux/can/can-ml.h> 62 #include <linux/ratelimit.h> 63 #include <net/net_namespace.h> 64 #include <net/sock.h> 65 66 #include "af_can.h" 67 68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 69 MODULE_LICENSE("Dual BSD/GPL"); 70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 72 73 MODULE_ALIAS_NETPROTO(PF_CAN); 74 75 static int stats_timer __read_mostly = 1; 76 module_param(stats_timer, int, 0444); 77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 78 79 static struct kmem_cache *rcv_cache __read_mostly; 80 81 /* table of registered CAN protocols */ 82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; 83 static DEFINE_MUTEX(proto_tab_lock); 84 85 static atomic_t skbcounter = ATOMIC_INIT(0); 86 87 /* af_can socket functions */ 88 89 void can_sock_destruct(struct sock *sk) 90 { 91 skb_queue_purge(&sk->sk_receive_queue); 92 skb_queue_purge(&sk->sk_error_queue); 93 } 94 EXPORT_SYMBOL(can_sock_destruct); 95 96 static const struct can_proto *can_get_proto(int protocol) 97 { 98 const struct can_proto *cp; 99 100 rcu_read_lock(); 101 cp = rcu_dereference(proto_tab[protocol]); 102 if (cp && !try_module_get(cp->prot->owner)) 103 cp = NULL; 104 rcu_read_unlock(); 105 106 return cp; 107 } 108 109 static inline void can_put_proto(const struct can_proto *cp) 110 { 111 module_put(cp->prot->owner); 112 } 113 114 static int can_create(struct net *net, struct socket *sock, int protocol, 115 int kern) 116 { 117 struct sock *sk; 118 const struct can_proto *cp; 119 int err = 0; 120 121 sock->state = SS_UNCONNECTED; 122 123 if (protocol < 0 || protocol >= CAN_NPROTO) 124 return -EINVAL; 125 126 cp = can_get_proto(protocol); 127 128 #ifdef CONFIG_MODULES 129 if (!cp) { 130 /* try to load protocol module if kernel is modular */ 131 132 err = request_module("can-proto-%d", protocol); 133 134 /* In case of error we only print a message but don't 135 * return the error code immediately. Below we will 136 * return -EPROTONOSUPPORT 137 */ 138 if (err) 139 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n", 140 protocol); 141 142 cp = can_get_proto(protocol); 143 } 144 #endif 145 146 /* check for available protocol and correct usage */ 147 148 if (!cp) 149 return -EPROTONOSUPPORT; 150 151 if (cp->type != sock->type) { 152 err = -EPROTOTYPE; 153 goto errout; 154 } 155 156 sock->ops = cp->ops; 157 158 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); 159 if (!sk) { 160 err = -ENOMEM; 161 goto errout; 162 } 163 164 sock_init_data(sock, sk); 165 sk->sk_destruct = can_sock_destruct; 166 167 if (sk->sk_prot->init) 168 err = sk->sk_prot->init(sk); 169 170 if (err) { 171 /* release sk on errors */ 172 sock_orphan(sk); 173 sock_put(sk); 174 } 175 176 errout: 177 can_put_proto(cp); 178 return err; 179 } 180 181 /* af_can tx path */ 182 183 /** 184 * can_send - transmit a CAN frame (optional with local loopback) 185 * @skb: pointer to socket buffer with CAN frame in data section 186 * @loop: loopback for listeners on local CAN sockets (recommended default!) 187 * 188 * Due to the loopback this routine must not be called from hardirq context. 189 * 190 * Return: 191 * 0 on success 192 * -ENETDOWN when the selected interface is down 193 * -ENOBUFS on full driver queue (see net_xmit_errno()) 194 * -ENOMEM when local loopback failed at calling skb_clone() 195 * -EPERM when trying to send on a non-CAN interface 196 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU 197 * -EINVAL when the skb->data does not contain a valid CAN frame 198 */ 199 int can_send(struct sk_buff *skb, int loop) 200 { 201 struct sk_buff *newskb = NULL; 202 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 203 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats; 204 int err = -EINVAL; 205 206 if (skb->len == CAN_MTU) { 207 skb->protocol = htons(ETH_P_CAN); 208 if (unlikely(cfd->len > CAN_MAX_DLEN)) 209 goto inval_skb; 210 } else if (skb->len == CANFD_MTU) { 211 skb->protocol = htons(ETH_P_CANFD); 212 if (unlikely(cfd->len > CANFD_MAX_DLEN)) 213 goto inval_skb; 214 } else { 215 goto inval_skb; 216 } 217 218 /* Make sure the CAN frame can pass the selected CAN netdevice. 219 * As structs can_frame and canfd_frame are similar, we can provide 220 * CAN FD frames to legacy CAN drivers as long as the length is <= 8 221 */ 222 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { 223 err = -EMSGSIZE; 224 goto inval_skb; 225 } 226 227 if (unlikely(skb->dev->type != ARPHRD_CAN)) { 228 err = -EPERM; 229 goto inval_skb; 230 } 231 232 if (unlikely(!(skb->dev->flags & IFF_UP))) { 233 err = -ENETDOWN; 234 goto inval_skb; 235 } 236 237 skb->ip_summed = CHECKSUM_UNNECESSARY; 238 239 skb_reset_mac_header(skb); 240 skb_reset_network_header(skb); 241 skb_reset_transport_header(skb); 242 243 if (loop) { 244 /* local loopback of sent CAN frames */ 245 246 /* indication for the CAN driver: do loopback */ 247 skb->pkt_type = PACKET_LOOPBACK; 248 249 /* The reference to the originating sock may be required 250 * by the receiving socket to check whether the frame is 251 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 252 * Therefore we have to ensure that skb->sk remains the 253 * reference to the originating sock by restoring skb->sk 254 * after each skb_clone() or skb_orphan() usage. 255 */ 256 257 if (!(skb->dev->flags & IFF_ECHO)) { 258 /* If the interface is not capable to do loopback 259 * itself, we do it here. 260 */ 261 newskb = skb_clone(skb, GFP_ATOMIC); 262 if (!newskb) { 263 kfree_skb(skb); 264 return -ENOMEM; 265 } 266 267 can_skb_set_owner(newskb, skb->sk); 268 newskb->ip_summed = CHECKSUM_UNNECESSARY; 269 newskb->pkt_type = PACKET_BROADCAST; 270 } 271 } else { 272 /* indication for the CAN driver: no loopback required */ 273 skb->pkt_type = PACKET_HOST; 274 } 275 276 /* send to netdevice */ 277 err = dev_queue_xmit(skb); 278 if (err > 0) 279 err = net_xmit_errno(err); 280 281 if (err) { 282 kfree_skb(newskb); 283 return err; 284 } 285 286 if (newskb) 287 netif_rx_ni(newskb); 288 289 /* update statistics */ 290 pkg_stats->tx_frames++; 291 pkg_stats->tx_frames_delta++; 292 293 return 0; 294 295 inval_skb: 296 kfree_skb(skb); 297 return err; 298 } 299 EXPORT_SYMBOL(can_send); 300 301 /* af_can rx path */ 302 303 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net, 304 struct net_device *dev) 305 { 306 if (dev) { 307 struct can_ml_priv *ml_priv = dev->ml_priv; 308 return &ml_priv->dev_rcv_lists; 309 } else { 310 return net->can.rx_alldev_list; 311 } 312 } 313 314 /** 315 * effhash - hash function for 29 bit CAN identifier reduction 316 * @can_id: 29 bit CAN identifier 317 * 318 * Description: 319 * To reduce the linear traversal in one linked list of _single_ EFF CAN 320 * frame subscriptions the 29 bit identifier is mapped to 10 bits. 321 * (see CAN_EFF_RCV_HASH_BITS definition) 322 * 323 * Return: 324 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) 325 */ 326 static unsigned int effhash(canid_t can_id) 327 { 328 unsigned int hash; 329 330 hash = can_id; 331 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; 332 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); 333 334 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); 335 } 336 337 /** 338 * can_rcv_list_find - determine optimal filterlist inside device filter struct 339 * @can_id: pointer to CAN identifier of a given can_filter 340 * @mask: pointer to CAN mask of a given can_filter 341 * @d: pointer to the device filter struct 342 * 343 * Description: 344 * Returns the optimal filterlist to reduce the filter handling in the 345 * receive path. This function is called by service functions that need 346 * to register or unregister a can_filter in the filter lists. 347 * 348 * A filter matches in general, when 349 * 350 * <received_can_id> & mask == can_id & mask 351 * 352 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 353 * relevant bits for the filter. 354 * 355 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 356 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg 357 * frames there is a special filterlist and a special rx path filter handling. 358 * 359 * Return: 360 * Pointer to optimal filterlist for the given can_id/mask pair. 361 * Constistency checked mask. 362 * Reduced can_id to have a preprocessed filter compare value. 363 */ 364 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask, 365 struct can_dev_rcv_lists *dev_rcv_lists) 366 { 367 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 368 369 /* filter for error message frames in extra filterlist */ 370 if (*mask & CAN_ERR_FLAG) { 371 /* clear CAN_ERR_FLAG in filter entry */ 372 *mask &= CAN_ERR_MASK; 373 return &dev_rcv_lists->rx[RX_ERR]; 374 } 375 376 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 377 378 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 379 380 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 381 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 382 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 383 384 /* reduce condition testing at receive time */ 385 *can_id &= *mask; 386 387 /* inverse can_id/can_mask filter */ 388 if (inv) 389 return &dev_rcv_lists->rx[RX_INV]; 390 391 /* mask == 0 => no condition testing at receive time */ 392 if (!(*mask)) 393 return &dev_rcv_lists->rx[RX_ALL]; 394 395 /* extra filterlists for the subscription of a single non-RTR can_id */ 396 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 397 !(*can_id & CAN_RTR_FLAG)) { 398 if (*can_id & CAN_EFF_FLAG) { 399 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) 400 return &dev_rcv_lists->rx_eff[effhash(*can_id)]; 401 } else { 402 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 403 return &dev_rcv_lists->rx_sff[*can_id]; 404 } 405 } 406 407 /* default: filter via can_id/can_mask */ 408 return &dev_rcv_lists->rx[RX_FIL]; 409 } 410 411 /** 412 * can_rx_register - subscribe CAN frames from a specific interface 413 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 414 * @can_id: CAN identifier (see description) 415 * @mask: CAN mask (see description) 416 * @func: callback function on filter match 417 * @data: returned parameter for callback function 418 * @ident: string for calling module identification 419 * @sk: socket pointer (might be NULL) 420 * 421 * Description: 422 * Invokes the callback function with the received sk_buff and the given 423 * parameter 'data' on a matching receive filter. A filter matches, when 424 * 425 * <received_can_id> & mask == can_id & mask 426 * 427 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 428 * filter for error message frames (CAN_ERR_FLAG bit set in mask). 429 * 430 * The provided pointer to the sk_buff is guaranteed to be valid as long as 431 * the callback function is running. The callback function must *not* free 432 * the given sk_buff while processing it's task. When the given sk_buff is 433 * needed after the end of the callback function it must be cloned inside 434 * the callback function with skb_clone(). 435 * 436 * Return: 437 * 0 on success 438 * -ENOMEM on missing cache mem to create subscription entry 439 * -ENODEV unknown device 440 */ 441 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, 442 canid_t mask, void (*func)(struct sk_buff *, void *), 443 void *data, char *ident, struct sock *sk) 444 { 445 struct receiver *rcv; 446 struct hlist_head *rcv_list; 447 struct can_dev_rcv_lists *dev_rcv_lists; 448 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; 449 int err = 0; 450 451 /* insert new receiver (dev,canid,mask) -> (func,data) */ 452 453 if (dev && dev->type != ARPHRD_CAN) 454 return -ENODEV; 455 456 if (dev && !net_eq(net, dev_net(dev))) 457 return -ENODEV; 458 459 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 460 if (!rcv) 461 return -ENOMEM; 462 463 spin_lock_bh(&net->can.rcvlists_lock); 464 465 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 466 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); 467 468 rcv->can_id = can_id; 469 rcv->mask = mask; 470 rcv->matches = 0; 471 rcv->func = func; 472 rcv->data = data; 473 rcv->ident = ident; 474 rcv->sk = sk; 475 476 hlist_add_head_rcu(&rcv->list, rcv_list); 477 dev_rcv_lists->entries++; 478 479 rcv_lists_stats->rcv_entries++; 480 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max, 481 rcv_lists_stats->rcv_entries); 482 spin_unlock_bh(&net->can.rcvlists_lock); 483 484 return err; 485 } 486 EXPORT_SYMBOL(can_rx_register); 487 488 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */ 489 static void can_rx_delete_receiver(struct rcu_head *rp) 490 { 491 struct receiver *rcv = container_of(rp, struct receiver, rcu); 492 struct sock *sk = rcv->sk; 493 494 kmem_cache_free(rcv_cache, rcv); 495 if (sk) 496 sock_put(sk); 497 } 498 499 /** 500 * can_rx_unregister - unsubscribe CAN frames from a specific interface 501 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) 502 * @can_id: CAN identifier 503 * @mask: CAN mask 504 * @func: callback function on filter match 505 * @data: returned parameter for callback function 506 * 507 * Description: 508 * Removes subscription entry depending on given (subscription) values. 509 */ 510 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, 511 canid_t mask, void (*func)(struct sk_buff *, void *), 512 void *data) 513 { 514 struct receiver *rcv = NULL; 515 struct hlist_head *rcv_list; 516 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; 517 struct can_dev_rcv_lists *dev_rcv_lists; 518 519 if (dev && dev->type != ARPHRD_CAN) 520 return; 521 522 if (dev && !net_eq(net, dev_net(dev))) 523 return; 524 525 spin_lock_bh(&net->can.rcvlists_lock); 526 527 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 528 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); 529 530 /* Search the receiver list for the item to delete. This should 531 * exist, since no receiver may be unregistered that hasn't 532 * been registered before. 533 */ 534 hlist_for_each_entry_rcu(rcv, rcv_list, list) { 535 if (rcv->can_id == can_id && rcv->mask == mask && 536 rcv->func == func && rcv->data == data) 537 break; 538 } 539 540 /* Check for bugs in CAN protocol implementations using af_can.c: 541 * 'rcv' will be NULL if no matching list item was found for removal. 542 */ 543 if (!rcv) { 544 WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n", 545 DNAME(dev), can_id, mask); 546 goto out; 547 } 548 549 hlist_del_rcu(&rcv->list); 550 dev_rcv_lists->entries--; 551 552 if (rcv_lists_stats->rcv_entries > 0) 553 rcv_lists_stats->rcv_entries--; 554 555 out: 556 spin_unlock_bh(&net->can.rcvlists_lock); 557 558 /* schedule the receiver item for deletion */ 559 if (rcv) { 560 if (rcv->sk) 561 sock_hold(rcv->sk); 562 call_rcu(&rcv->rcu, can_rx_delete_receiver); 563 } 564 } 565 EXPORT_SYMBOL(can_rx_unregister); 566 567 static inline void deliver(struct sk_buff *skb, struct receiver *rcv) 568 { 569 rcv->func(skb, rcv->data); 570 rcv->matches++; 571 } 572 573 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb) 574 { 575 struct receiver *rcv; 576 int matches = 0; 577 struct can_frame *cf = (struct can_frame *)skb->data; 578 canid_t can_id = cf->can_id; 579 580 if (dev_rcv_lists->entries == 0) 581 return 0; 582 583 if (can_id & CAN_ERR_FLAG) { 584 /* check for error message frame entries only */ 585 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) { 586 if (can_id & rcv->mask) { 587 deliver(skb, rcv); 588 matches++; 589 } 590 } 591 return matches; 592 } 593 594 /* check for unfiltered entries */ 595 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) { 596 deliver(skb, rcv); 597 matches++; 598 } 599 600 /* check for can_id/mask entries */ 601 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) { 602 if ((can_id & rcv->mask) == rcv->can_id) { 603 deliver(skb, rcv); 604 matches++; 605 } 606 } 607 608 /* check for inverted can_id/mask entries */ 609 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) { 610 if ((can_id & rcv->mask) != rcv->can_id) { 611 deliver(skb, rcv); 612 matches++; 613 } 614 } 615 616 /* check filterlists for single non-RTR can_ids */ 617 if (can_id & CAN_RTR_FLAG) 618 return matches; 619 620 if (can_id & CAN_EFF_FLAG) { 621 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) { 622 if (rcv->can_id == can_id) { 623 deliver(skb, rcv); 624 matches++; 625 } 626 } 627 } else { 628 can_id &= CAN_SFF_MASK; 629 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) { 630 deliver(skb, rcv); 631 matches++; 632 } 633 } 634 635 return matches; 636 } 637 638 static void can_receive(struct sk_buff *skb, struct net_device *dev) 639 { 640 struct can_dev_rcv_lists *dev_rcv_lists; 641 struct net *net = dev_net(dev); 642 struct can_pkg_stats *pkg_stats = net->can.pkg_stats; 643 int matches; 644 645 /* update statistics */ 646 pkg_stats->rx_frames++; 647 pkg_stats->rx_frames_delta++; 648 649 /* create non-zero unique skb identifier together with *skb */ 650 while (!(can_skb_prv(skb)->skbcnt)) 651 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); 652 653 rcu_read_lock(); 654 655 /* deliver the packet to sockets listening on all devices */ 656 matches = can_rcv_filter(net->can.rx_alldev_list, skb); 657 658 /* find receive list for this device */ 659 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 660 matches += can_rcv_filter(dev_rcv_lists, skb); 661 662 rcu_read_unlock(); 663 664 /* consume the skbuff allocated by the netdevice driver */ 665 consume_skb(skb); 666 667 if (matches > 0) { 668 pkg_stats->matches++; 669 pkg_stats->matches_delta++; 670 } 671 } 672 673 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 674 struct packet_type *pt, struct net_device *orig_dev) 675 { 676 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 677 678 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU || 679 cfd->len > CAN_MAX_DLEN)) { 680 pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n", 681 dev->type, skb->len, cfd->len); 682 kfree_skb(skb); 683 return NET_RX_DROP; 684 } 685 686 can_receive(skb, dev); 687 return NET_RX_SUCCESS; 688 } 689 690 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, 691 struct packet_type *pt, struct net_device *orig_dev) 692 { 693 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 694 695 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU || 696 cfd->len > CANFD_MAX_DLEN)) { 697 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n", 698 dev->type, skb->len, cfd->len); 699 kfree_skb(skb); 700 return NET_RX_DROP; 701 } 702 703 can_receive(skb, dev); 704 return NET_RX_SUCCESS; 705 } 706 707 /* af_can protocol functions */ 708 709 /** 710 * can_proto_register - register CAN transport protocol 711 * @cp: pointer to CAN protocol structure 712 * 713 * Return: 714 * 0 on success 715 * -EINVAL invalid (out of range) protocol number 716 * -EBUSY protocol already in use 717 * -ENOBUF if proto_register() fails 718 */ 719 int can_proto_register(const struct can_proto *cp) 720 { 721 int proto = cp->protocol; 722 int err = 0; 723 724 if (proto < 0 || proto >= CAN_NPROTO) { 725 pr_err("can: protocol number %d out of range\n", proto); 726 return -EINVAL; 727 } 728 729 err = proto_register(cp->prot, 0); 730 if (err < 0) 731 return err; 732 733 mutex_lock(&proto_tab_lock); 734 735 if (rcu_access_pointer(proto_tab[proto])) { 736 pr_err("can: protocol %d already registered\n", proto); 737 err = -EBUSY; 738 } else { 739 RCU_INIT_POINTER(proto_tab[proto], cp); 740 } 741 742 mutex_unlock(&proto_tab_lock); 743 744 if (err < 0) 745 proto_unregister(cp->prot); 746 747 return err; 748 } 749 EXPORT_SYMBOL(can_proto_register); 750 751 /** 752 * can_proto_unregister - unregister CAN transport protocol 753 * @cp: pointer to CAN protocol structure 754 */ 755 void can_proto_unregister(const struct can_proto *cp) 756 { 757 int proto = cp->protocol; 758 759 mutex_lock(&proto_tab_lock); 760 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); 761 RCU_INIT_POINTER(proto_tab[proto], NULL); 762 mutex_unlock(&proto_tab_lock); 763 764 synchronize_rcu(); 765 766 proto_unregister(cp->prot); 767 } 768 EXPORT_SYMBOL(can_proto_unregister); 769 770 /* af_can notifier to create/remove CAN netdevice specific structs */ 771 static int can_notifier(struct notifier_block *nb, unsigned long msg, 772 void *ptr) 773 { 774 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 775 776 if (dev->type != ARPHRD_CAN) 777 return NOTIFY_DONE; 778 779 switch (msg) { 780 case NETDEV_REGISTER: 781 WARN(!dev->ml_priv, 782 "No CAN mid layer private allocated, please fix your driver and use alloc_candev()!\n"); 783 break; 784 } 785 786 return NOTIFY_DONE; 787 } 788 789 static int can_pernet_init(struct net *net) 790 { 791 spin_lock_init(&net->can.rcvlists_lock); 792 net->can.rx_alldev_list = 793 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL); 794 if (!net->can.rx_alldev_list) 795 goto out; 796 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL); 797 if (!net->can.pkg_stats) 798 goto out_free_rx_alldev_list; 799 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL); 800 if (!net->can.rcv_lists_stats) 801 goto out_free_pkg_stats; 802 803 if (IS_ENABLED(CONFIG_PROC_FS)) { 804 /* the statistics are updated every second (timer triggered) */ 805 if (stats_timer) { 806 timer_setup(&net->can.stattimer, can_stat_update, 807 0); 808 mod_timer(&net->can.stattimer, 809 round_jiffies(jiffies + HZ)); 810 } 811 net->can.pkg_stats->jiffies_init = jiffies; 812 can_init_proc(net); 813 } 814 815 return 0; 816 817 out_free_pkg_stats: 818 kfree(net->can.pkg_stats); 819 out_free_rx_alldev_list: 820 kfree(net->can.rx_alldev_list); 821 out: 822 return -ENOMEM; 823 } 824 825 static void can_pernet_exit(struct net *net) 826 { 827 if (IS_ENABLED(CONFIG_PROC_FS)) { 828 can_remove_proc(net); 829 if (stats_timer) 830 del_timer_sync(&net->can.stattimer); 831 } 832 833 kfree(net->can.rx_alldev_list); 834 kfree(net->can.pkg_stats); 835 kfree(net->can.rcv_lists_stats); 836 } 837 838 /* af_can module init/exit functions */ 839 840 static struct packet_type can_packet __read_mostly = { 841 .type = cpu_to_be16(ETH_P_CAN), 842 .func = can_rcv, 843 }; 844 845 static struct packet_type canfd_packet __read_mostly = { 846 .type = cpu_to_be16(ETH_P_CANFD), 847 .func = canfd_rcv, 848 }; 849 850 static const struct net_proto_family can_family_ops = { 851 .family = PF_CAN, 852 .create = can_create, 853 .owner = THIS_MODULE, 854 }; 855 856 /* notifier block for netdevice event */ 857 static struct notifier_block can_netdev_notifier __read_mostly = { 858 .notifier_call = can_notifier, 859 }; 860 861 static struct pernet_operations can_pernet_ops __read_mostly = { 862 .init = can_pernet_init, 863 .exit = can_pernet_exit, 864 }; 865 866 static __init int can_init(void) 867 { 868 int err; 869 870 /* check for correct padding to be able to use the structs similarly */ 871 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != 872 offsetof(struct canfd_frame, len) || 873 offsetof(struct can_frame, data) != 874 offsetof(struct canfd_frame, data)); 875 876 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n"); 877 878 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 879 0, 0, NULL); 880 if (!rcv_cache) 881 return -ENOMEM; 882 883 err = register_pernet_subsys(&can_pernet_ops); 884 if (err) 885 goto out_pernet; 886 887 /* protocol register */ 888 err = sock_register(&can_family_ops); 889 if (err) 890 goto out_sock; 891 err = register_netdevice_notifier(&can_netdev_notifier); 892 if (err) 893 goto out_notifier; 894 895 dev_add_pack(&can_packet); 896 dev_add_pack(&canfd_packet); 897 898 return 0; 899 900 out_notifier: 901 sock_unregister(PF_CAN); 902 out_sock: 903 unregister_pernet_subsys(&can_pernet_ops); 904 out_pernet: 905 kmem_cache_destroy(rcv_cache); 906 907 return err; 908 } 909 910 static __exit void can_exit(void) 911 { 912 /* protocol unregister */ 913 dev_remove_pack(&canfd_packet); 914 dev_remove_pack(&can_packet); 915 unregister_netdevice_notifier(&can_netdev_notifier); 916 sock_unregister(PF_CAN); 917 918 unregister_pernet_subsys(&can_pernet_ops); 919 920 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 921 922 kmem_cache_destroy(rcv_cache); 923 } 924 925 module_init(can_init); 926 module_exit(can_exit); 927