1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/stddef.h> 45 #include <linux/init.h> 46 #include <linux/kmod.h> 47 #include <linux/slab.h> 48 #include <linux/list.h> 49 #include <linux/spinlock.h> 50 #include <linux/rcupdate.h> 51 #include <linux/uaccess.h> 52 #include <linux/net.h> 53 #include <linux/netdevice.h> 54 #include <linux/socket.h> 55 #include <linux/if_ether.h> 56 #include <linux/if_arp.h> 57 #include <linux/skbuff.h> 58 #include <linux/can.h> 59 #include <linux/can/core.h> 60 #include <linux/can/skb.h> 61 #include <linux/ratelimit.h> 62 #include <net/net_namespace.h> 63 #include <net/sock.h> 64 65 #include "af_can.h" 66 67 static __initconst const char banner[] = KERN_INFO 68 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 69 70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 71 MODULE_LICENSE("Dual BSD/GPL"); 72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 74 75 MODULE_ALIAS_NETPROTO(PF_CAN); 76 77 static int stats_timer __read_mostly = 1; 78 module_param(stats_timer, int, S_IRUGO); 79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 80 81 /* receive filters subscribed for 'all' CAN devices */ 82 struct dev_rcv_lists can_rx_alldev_list; 83 static DEFINE_SPINLOCK(can_rcvlists_lock); 84 85 static struct kmem_cache *rcv_cache __read_mostly; 86 87 /* table of registered CAN protocols */ 88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 89 static DEFINE_MUTEX(proto_tab_lock); 90 91 struct timer_list can_stattimer; /* timer for statistics update */ 92 struct s_stats can_stats; /* packet statistics */ 93 struct s_pstats can_pstats; /* receive list statistics */ 94 95 /* 96 * af_can socket functions 97 */ 98 99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 100 { 101 struct sock *sk = sock->sk; 102 103 switch (cmd) { 104 105 case SIOCGSTAMP: 106 return sock_get_timestamp(sk, (struct timeval __user *)arg); 107 108 default: 109 return -ENOIOCTLCMD; 110 } 111 } 112 EXPORT_SYMBOL(can_ioctl); 113 114 static void can_sock_destruct(struct sock *sk) 115 { 116 skb_queue_purge(&sk->sk_receive_queue); 117 } 118 119 static const struct can_proto *can_get_proto(int protocol) 120 { 121 const struct can_proto *cp; 122 123 rcu_read_lock(); 124 cp = rcu_dereference(proto_tab[protocol]); 125 if (cp && !try_module_get(cp->prot->owner)) 126 cp = NULL; 127 rcu_read_unlock(); 128 129 return cp; 130 } 131 132 static inline void can_put_proto(const struct can_proto *cp) 133 { 134 module_put(cp->prot->owner); 135 } 136 137 static int can_create(struct net *net, struct socket *sock, int protocol, 138 int kern) 139 { 140 struct sock *sk; 141 const struct can_proto *cp; 142 int err = 0; 143 144 sock->state = SS_UNCONNECTED; 145 146 if (protocol < 0 || protocol >= CAN_NPROTO) 147 return -EINVAL; 148 149 if (!net_eq(net, &init_net)) 150 return -EAFNOSUPPORT; 151 152 cp = can_get_proto(protocol); 153 154 #ifdef CONFIG_MODULES 155 if (!cp) { 156 /* try to load protocol module if kernel is modular */ 157 158 err = request_module("can-proto-%d", protocol); 159 160 /* 161 * In case of error we only print a message but don't 162 * return the error code immediately. Below we will 163 * return -EPROTONOSUPPORT 164 */ 165 if (err) 166 printk_ratelimited(KERN_ERR "can: request_module " 167 "(can-proto-%d) failed.\n", protocol); 168 169 cp = can_get_proto(protocol); 170 } 171 #endif 172 173 /* check for available protocol and correct usage */ 174 175 if (!cp) 176 return -EPROTONOSUPPORT; 177 178 if (cp->type != sock->type) { 179 err = -EPROTOTYPE; 180 goto errout; 181 } 182 183 sock->ops = cp->ops; 184 185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 186 if (!sk) { 187 err = -ENOMEM; 188 goto errout; 189 } 190 191 sock_init_data(sock, sk); 192 sk->sk_destruct = can_sock_destruct; 193 194 if (sk->sk_prot->init) 195 err = sk->sk_prot->init(sk); 196 197 if (err) { 198 /* release sk on errors */ 199 sock_orphan(sk); 200 sock_put(sk); 201 } 202 203 errout: 204 can_put_proto(cp); 205 return err; 206 } 207 208 /* 209 * af_can tx path 210 */ 211 212 /** 213 * can_send - transmit a CAN frame (optional with local loopback) 214 * @skb: pointer to socket buffer with CAN frame in data section 215 * @loop: loopback for listeners on local CAN sockets (recommended default!) 216 * 217 * Due to the loopback this routine must not be called from hardirq context. 218 * 219 * Return: 220 * 0 on success 221 * -ENETDOWN when the selected interface is down 222 * -ENOBUFS on full driver queue (see net_xmit_errno()) 223 * -ENOMEM when local loopback failed at calling skb_clone() 224 * -EPERM when trying to send on a non-CAN interface 225 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU 226 * -EINVAL when the skb->data does not contain a valid CAN frame 227 */ 228 int can_send(struct sk_buff *skb, int loop) 229 { 230 struct sk_buff *newskb = NULL; 231 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 232 int err = -EINVAL; 233 234 if (skb->len == CAN_MTU) { 235 skb->protocol = htons(ETH_P_CAN); 236 if (unlikely(cfd->len > CAN_MAX_DLEN)) 237 goto inval_skb; 238 } else if (skb->len == CANFD_MTU) { 239 skb->protocol = htons(ETH_P_CANFD); 240 if (unlikely(cfd->len > CANFD_MAX_DLEN)) 241 goto inval_skb; 242 } else 243 goto inval_skb; 244 245 /* 246 * Make sure the CAN frame can pass the selected CAN netdevice. 247 * As structs can_frame and canfd_frame are similar, we can provide 248 * CAN FD frames to legacy CAN drivers as long as the length is <= 8 249 */ 250 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { 251 err = -EMSGSIZE; 252 goto inval_skb; 253 } 254 255 if (unlikely(skb->dev->type != ARPHRD_CAN)) { 256 err = -EPERM; 257 goto inval_skb; 258 } 259 260 if (unlikely(!(skb->dev->flags & IFF_UP))) { 261 err = -ENETDOWN; 262 goto inval_skb; 263 } 264 265 skb_reset_network_header(skb); 266 skb_reset_transport_header(skb); 267 268 if (loop) { 269 /* local loopback of sent CAN frames */ 270 271 /* indication for the CAN driver: do loopback */ 272 skb->pkt_type = PACKET_LOOPBACK; 273 274 /* 275 * The reference to the originating sock may be required 276 * by the receiving socket to check whether the frame is 277 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 278 * Therefore we have to ensure that skb->sk remains the 279 * reference to the originating sock by restoring skb->sk 280 * after each skb_clone() or skb_orphan() usage. 281 */ 282 283 if (!(skb->dev->flags & IFF_ECHO)) { 284 /* 285 * If the interface is not capable to do loopback 286 * itself, we do it here. 287 */ 288 newskb = skb_clone(skb, GFP_ATOMIC); 289 if (!newskb) { 290 kfree_skb(skb); 291 return -ENOMEM; 292 } 293 294 can_skb_set_owner(newskb, skb->sk); 295 newskb->ip_summed = CHECKSUM_UNNECESSARY; 296 newskb->pkt_type = PACKET_BROADCAST; 297 } 298 } else { 299 /* indication for the CAN driver: no loopback required */ 300 skb->pkt_type = PACKET_HOST; 301 } 302 303 /* send to netdevice */ 304 err = dev_queue_xmit(skb); 305 if (err > 0) 306 err = net_xmit_errno(err); 307 308 if (err) { 309 kfree_skb(newskb); 310 return err; 311 } 312 313 if (newskb) 314 netif_rx_ni(newskb); 315 316 /* update statistics */ 317 can_stats.tx_frames++; 318 can_stats.tx_frames_delta++; 319 320 return 0; 321 322 inval_skb: 323 kfree_skb(skb); 324 return err; 325 } 326 EXPORT_SYMBOL(can_send); 327 328 /* 329 * af_can rx path 330 */ 331 332 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 333 { 334 if (!dev) 335 return &can_rx_alldev_list; 336 else 337 return (struct dev_rcv_lists *)dev->ml_priv; 338 } 339 340 /** 341 * find_rcv_list - determine optimal filterlist inside device filter struct 342 * @can_id: pointer to CAN identifier of a given can_filter 343 * @mask: pointer to CAN mask of a given can_filter 344 * @d: pointer to the device filter struct 345 * 346 * Description: 347 * Returns the optimal filterlist to reduce the filter handling in the 348 * receive path. This function is called by service functions that need 349 * to register or unregister a can_filter in the filter lists. 350 * 351 * A filter matches in general, when 352 * 353 * <received_can_id> & mask == can_id & mask 354 * 355 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 356 * relevant bits for the filter. 357 * 358 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 359 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg 360 * frames there is a special filterlist and a special rx path filter handling. 361 * 362 * Return: 363 * Pointer to optimal filterlist for the given can_id/mask pair. 364 * Constistency checked mask. 365 * Reduced can_id to have a preprocessed filter compare value. 366 */ 367 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 368 struct dev_rcv_lists *d) 369 { 370 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 371 372 /* filter for error message frames in extra filterlist */ 373 if (*mask & CAN_ERR_FLAG) { 374 /* clear CAN_ERR_FLAG in filter entry */ 375 *mask &= CAN_ERR_MASK; 376 return &d->rx[RX_ERR]; 377 } 378 379 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 380 381 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 382 383 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 384 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 385 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 386 387 /* reduce condition testing at receive time */ 388 *can_id &= *mask; 389 390 /* inverse can_id/can_mask filter */ 391 if (inv) 392 return &d->rx[RX_INV]; 393 394 /* mask == 0 => no condition testing at receive time */ 395 if (!(*mask)) 396 return &d->rx[RX_ALL]; 397 398 /* extra filterlists for the subscription of a single non-RTR can_id */ 399 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 400 !(*can_id & CAN_RTR_FLAG)) { 401 402 if (*can_id & CAN_EFF_FLAG) { 403 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) { 404 /* RFC: a future use-case for hash-tables? */ 405 return &d->rx[RX_EFF]; 406 } 407 } else { 408 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 409 return &d->rx_sff[*can_id]; 410 } 411 } 412 413 /* default: filter via can_id/can_mask */ 414 return &d->rx[RX_FIL]; 415 } 416 417 /** 418 * can_rx_register - subscribe CAN frames from a specific interface 419 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 420 * @can_id: CAN identifier (see description) 421 * @mask: CAN mask (see description) 422 * @func: callback function on filter match 423 * @data: returned parameter for callback function 424 * @ident: string for calling module identification 425 * 426 * Description: 427 * Invokes the callback function with the received sk_buff and the given 428 * parameter 'data' on a matching receive filter. A filter matches, when 429 * 430 * <received_can_id> & mask == can_id & mask 431 * 432 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 433 * filter for error message frames (CAN_ERR_FLAG bit set in mask). 434 * 435 * The provided pointer to the sk_buff is guaranteed to be valid as long as 436 * the callback function is running. The callback function must *not* free 437 * the given sk_buff while processing it's task. When the given sk_buff is 438 * needed after the end of the callback function it must be cloned inside 439 * the callback function with skb_clone(). 440 * 441 * Return: 442 * 0 on success 443 * -ENOMEM on missing cache mem to create subscription entry 444 * -ENODEV unknown device 445 */ 446 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 447 void (*func)(struct sk_buff *, void *), void *data, 448 char *ident) 449 { 450 struct receiver *r; 451 struct hlist_head *rl; 452 struct dev_rcv_lists *d; 453 int err = 0; 454 455 /* insert new receiver (dev,canid,mask) -> (func,data) */ 456 457 if (dev && dev->type != ARPHRD_CAN) 458 return -ENODEV; 459 460 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 461 if (!r) 462 return -ENOMEM; 463 464 spin_lock(&can_rcvlists_lock); 465 466 d = find_dev_rcv_lists(dev); 467 if (d) { 468 rl = find_rcv_list(&can_id, &mask, d); 469 470 r->can_id = can_id; 471 r->mask = mask; 472 r->matches = 0; 473 r->func = func; 474 r->data = data; 475 r->ident = ident; 476 477 hlist_add_head_rcu(&r->list, rl); 478 d->entries++; 479 480 can_pstats.rcv_entries++; 481 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 482 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 483 } else { 484 kmem_cache_free(rcv_cache, r); 485 err = -ENODEV; 486 } 487 488 spin_unlock(&can_rcvlists_lock); 489 490 return err; 491 } 492 EXPORT_SYMBOL(can_rx_register); 493 494 /* 495 * can_rx_delete_receiver - rcu callback for single receiver entry removal 496 */ 497 static void can_rx_delete_receiver(struct rcu_head *rp) 498 { 499 struct receiver *r = container_of(rp, struct receiver, rcu); 500 501 kmem_cache_free(rcv_cache, r); 502 } 503 504 /** 505 * can_rx_unregister - unsubscribe CAN frames from a specific interface 506 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 507 * @can_id: CAN identifier 508 * @mask: CAN mask 509 * @func: callback function on filter match 510 * @data: returned parameter for callback function 511 * 512 * Description: 513 * Removes subscription entry depending on given (subscription) values. 514 */ 515 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 516 void (*func)(struct sk_buff *, void *), void *data) 517 { 518 struct receiver *r = NULL; 519 struct hlist_head *rl; 520 struct dev_rcv_lists *d; 521 522 if (dev && dev->type != ARPHRD_CAN) 523 return; 524 525 spin_lock(&can_rcvlists_lock); 526 527 d = find_dev_rcv_lists(dev); 528 if (!d) { 529 pr_err("BUG: receive list not found for " 530 "dev %s, id %03X, mask %03X\n", 531 DNAME(dev), can_id, mask); 532 goto out; 533 } 534 535 rl = find_rcv_list(&can_id, &mask, d); 536 537 /* 538 * Search the receiver list for the item to delete. This should 539 * exist, since no receiver may be unregistered that hasn't 540 * been registered before. 541 */ 542 543 hlist_for_each_entry_rcu(r, rl, list) { 544 if (r->can_id == can_id && r->mask == mask && 545 r->func == func && r->data == data) 546 break; 547 } 548 549 /* 550 * Check for bugs in CAN protocol implementations using af_can.c: 551 * 'r' will be NULL if no matching list item was found for removal. 552 */ 553 554 if (!r) { 555 WARN(1, "BUG: receive list entry not found for dev %s, " 556 "id %03X, mask %03X\n", DNAME(dev), can_id, mask); 557 goto out; 558 } 559 560 hlist_del_rcu(&r->list); 561 d->entries--; 562 563 if (can_pstats.rcv_entries > 0) 564 can_pstats.rcv_entries--; 565 566 /* remove device structure requested by NETDEV_UNREGISTER */ 567 if (d->remove_on_zero_entries && !d->entries) { 568 kfree(d); 569 dev->ml_priv = NULL; 570 } 571 572 out: 573 spin_unlock(&can_rcvlists_lock); 574 575 /* schedule the receiver item for deletion */ 576 if (r) 577 call_rcu(&r->rcu, can_rx_delete_receiver); 578 } 579 EXPORT_SYMBOL(can_rx_unregister); 580 581 static inline void deliver(struct sk_buff *skb, struct receiver *r) 582 { 583 r->func(skb, r->data); 584 r->matches++; 585 } 586 587 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 588 { 589 struct receiver *r; 590 int matches = 0; 591 struct can_frame *cf = (struct can_frame *)skb->data; 592 canid_t can_id = cf->can_id; 593 594 if (d->entries == 0) 595 return 0; 596 597 if (can_id & CAN_ERR_FLAG) { 598 /* check for error message frame entries only */ 599 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) { 600 if (can_id & r->mask) { 601 deliver(skb, r); 602 matches++; 603 } 604 } 605 return matches; 606 } 607 608 /* check for unfiltered entries */ 609 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) { 610 deliver(skb, r); 611 matches++; 612 } 613 614 /* check for can_id/mask entries */ 615 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) { 616 if ((can_id & r->mask) == r->can_id) { 617 deliver(skb, r); 618 matches++; 619 } 620 } 621 622 /* check for inverted can_id/mask entries */ 623 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) { 624 if ((can_id & r->mask) != r->can_id) { 625 deliver(skb, r); 626 matches++; 627 } 628 } 629 630 /* check filterlists for single non-RTR can_ids */ 631 if (can_id & CAN_RTR_FLAG) 632 return matches; 633 634 if (can_id & CAN_EFF_FLAG) { 635 hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) { 636 if (r->can_id == can_id) { 637 deliver(skb, r); 638 matches++; 639 } 640 } 641 } else { 642 can_id &= CAN_SFF_MASK; 643 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) { 644 deliver(skb, r); 645 matches++; 646 } 647 } 648 649 return matches; 650 } 651 652 static void can_receive(struct sk_buff *skb, struct net_device *dev) 653 { 654 struct dev_rcv_lists *d; 655 int matches; 656 657 /* update statistics */ 658 can_stats.rx_frames++; 659 can_stats.rx_frames_delta++; 660 661 rcu_read_lock(); 662 663 /* deliver the packet to sockets listening on all devices */ 664 matches = can_rcv_filter(&can_rx_alldev_list, skb); 665 666 /* find receive list for this device */ 667 d = find_dev_rcv_lists(dev); 668 if (d) 669 matches += can_rcv_filter(d, skb); 670 671 rcu_read_unlock(); 672 673 /* consume the skbuff allocated by the netdevice driver */ 674 consume_skb(skb); 675 676 if (matches > 0) { 677 can_stats.matches++; 678 can_stats.matches_delta++; 679 } 680 } 681 682 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 683 struct packet_type *pt, struct net_device *orig_dev) 684 { 685 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 686 687 if (unlikely(!net_eq(dev_net(dev), &init_net))) 688 goto drop; 689 690 if (WARN_ONCE(dev->type != ARPHRD_CAN || 691 skb->len != CAN_MTU || 692 cfd->len > CAN_MAX_DLEN, 693 "PF_CAN: dropped non conform CAN skbuf: " 694 "dev type %d, len %d, datalen %d\n", 695 dev->type, skb->len, cfd->len)) 696 goto drop; 697 698 can_receive(skb, dev); 699 return NET_RX_SUCCESS; 700 701 drop: 702 kfree_skb(skb); 703 return NET_RX_DROP; 704 } 705 706 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, 707 struct packet_type *pt, struct net_device *orig_dev) 708 { 709 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 710 711 if (unlikely(!net_eq(dev_net(dev), &init_net))) 712 goto drop; 713 714 if (WARN_ONCE(dev->type != ARPHRD_CAN || 715 skb->len != CANFD_MTU || 716 cfd->len > CANFD_MAX_DLEN, 717 "PF_CAN: dropped non conform CAN FD skbuf: " 718 "dev type %d, len %d, datalen %d\n", 719 dev->type, skb->len, cfd->len)) 720 goto drop; 721 722 can_receive(skb, dev); 723 return NET_RX_SUCCESS; 724 725 drop: 726 kfree_skb(skb); 727 return NET_RX_DROP; 728 } 729 730 /* 731 * af_can protocol functions 732 */ 733 734 /** 735 * can_proto_register - register CAN transport protocol 736 * @cp: pointer to CAN protocol structure 737 * 738 * Return: 739 * 0 on success 740 * -EINVAL invalid (out of range) protocol number 741 * -EBUSY protocol already in use 742 * -ENOBUF if proto_register() fails 743 */ 744 int can_proto_register(const struct can_proto *cp) 745 { 746 int proto = cp->protocol; 747 int err = 0; 748 749 if (proto < 0 || proto >= CAN_NPROTO) { 750 pr_err("can: protocol number %d out of range\n", proto); 751 return -EINVAL; 752 } 753 754 err = proto_register(cp->prot, 0); 755 if (err < 0) 756 return err; 757 758 mutex_lock(&proto_tab_lock); 759 760 if (proto_tab[proto]) { 761 pr_err("can: protocol %d already registered\n", proto); 762 err = -EBUSY; 763 } else 764 RCU_INIT_POINTER(proto_tab[proto], cp); 765 766 mutex_unlock(&proto_tab_lock); 767 768 if (err < 0) 769 proto_unregister(cp->prot); 770 771 return err; 772 } 773 EXPORT_SYMBOL(can_proto_register); 774 775 /** 776 * can_proto_unregister - unregister CAN transport protocol 777 * @cp: pointer to CAN protocol structure 778 */ 779 void can_proto_unregister(const struct can_proto *cp) 780 { 781 int proto = cp->protocol; 782 783 mutex_lock(&proto_tab_lock); 784 BUG_ON(proto_tab[proto] != cp); 785 RCU_INIT_POINTER(proto_tab[proto], NULL); 786 mutex_unlock(&proto_tab_lock); 787 788 synchronize_rcu(); 789 790 proto_unregister(cp->prot); 791 } 792 EXPORT_SYMBOL(can_proto_unregister); 793 794 /* 795 * af_can notifier to create/remove CAN netdevice specific structs 796 */ 797 static int can_notifier(struct notifier_block *nb, unsigned long msg, 798 void *ptr) 799 { 800 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 801 struct dev_rcv_lists *d; 802 803 if (!net_eq(dev_net(dev), &init_net)) 804 return NOTIFY_DONE; 805 806 if (dev->type != ARPHRD_CAN) 807 return NOTIFY_DONE; 808 809 switch (msg) { 810 811 case NETDEV_REGISTER: 812 813 /* create new dev_rcv_lists for this device */ 814 d = kzalloc(sizeof(*d), GFP_KERNEL); 815 if (!d) 816 return NOTIFY_DONE; 817 BUG_ON(dev->ml_priv); 818 dev->ml_priv = d; 819 820 break; 821 822 case NETDEV_UNREGISTER: 823 spin_lock(&can_rcvlists_lock); 824 825 d = dev->ml_priv; 826 if (d) { 827 if (d->entries) 828 d->remove_on_zero_entries = 1; 829 else { 830 kfree(d); 831 dev->ml_priv = NULL; 832 } 833 } else 834 pr_err("can: notifier: receive list not found for dev " 835 "%s\n", dev->name); 836 837 spin_unlock(&can_rcvlists_lock); 838 839 break; 840 } 841 842 return NOTIFY_DONE; 843 } 844 845 /* 846 * af_can module init/exit functions 847 */ 848 849 static struct packet_type can_packet __read_mostly = { 850 .type = cpu_to_be16(ETH_P_CAN), 851 .func = can_rcv, 852 }; 853 854 static struct packet_type canfd_packet __read_mostly = { 855 .type = cpu_to_be16(ETH_P_CANFD), 856 .func = canfd_rcv, 857 }; 858 859 static const struct net_proto_family can_family_ops = { 860 .family = PF_CAN, 861 .create = can_create, 862 .owner = THIS_MODULE, 863 }; 864 865 /* notifier block for netdevice event */ 866 static struct notifier_block can_netdev_notifier __read_mostly = { 867 .notifier_call = can_notifier, 868 }; 869 870 static __init int can_init(void) 871 { 872 /* check for correct padding to be able to use the structs similarly */ 873 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != 874 offsetof(struct canfd_frame, len) || 875 offsetof(struct can_frame, data) != 876 offsetof(struct canfd_frame, data)); 877 878 printk(banner); 879 880 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list)); 881 882 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 883 0, 0, NULL); 884 if (!rcv_cache) 885 return -ENOMEM; 886 887 if (stats_timer) { 888 /* the statistics are updated every second (timer triggered) */ 889 setup_timer(&can_stattimer, can_stat_update, 0); 890 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 891 } else 892 can_stattimer.function = NULL; 893 894 can_init_proc(); 895 896 /* protocol register */ 897 sock_register(&can_family_ops); 898 register_netdevice_notifier(&can_netdev_notifier); 899 dev_add_pack(&can_packet); 900 dev_add_pack(&canfd_packet); 901 902 return 0; 903 } 904 905 static __exit void can_exit(void) 906 { 907 struct net_device *dev; 908 909 if (stats_timer) 910 del_timer_sync(&can_stattimer); 911 912 can_remove_proc(); 913 914 /* protocol unregister */ 915 dev_remove_pack(&canfd_packet); 916 dev_remove_pack(&can_packet); 917 unregister_netdevice_notifier(&can_netdev_notifier); 918 sock_unregister(PF_CAN); 919 920 /* remove created dev_rcv_lists from still registered CAN devices */ 921 rcu_read_lock(); 922 for_each_netdev_rcu(&init_net, dev) { 923 if (dev->type == ARPHRD_CAN && dev->ml_priv) { 924 925 struct dev_rcv_lists *d = dev->ml_priv; 926 927 BUG_ON(d->entries); 928 kfree(d); 929 dev->ml_priv = NULL; 930 } 931 } 932 rcu_read_unlock(); 933 934 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 935 936 kmem_cache_destroy(rcv_cache); 937 } 938 939 module_init(can_init); 940 module_exit(can_exit); 941