xref: /openbmc/linux/net/can/af_can.c (revision f6723b56)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 static __initconst const char banner[] = KERN_INFO
68 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
69 
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76 
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 
85 static struct kmem_cache *rcv_cache __read_mostly;
86 
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90 
91 struct timer_list can_stattimer;   /* timer for statistics update */
92 struct s_stats    can_stats;       /* packet statistics */
93 struct s_pstats   can_pstats;      /* receive list statistics */
94 
95 /*
96  * af_can socket functions
97  */
98 
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 	struct sock *sk = sock->sk;
102 
103 	switch (cmd) {
104 
105 	case SIOCGSTAMP:
106 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 
108 	default:
109 		return -ENOIOCTLCMD;
110 	}
111 }
112 EXPORT_SYMBOL(can_ioctl);
113 
114 static void can_sock_destruct(struct sock *sk)
115 {
116 	skb_queue_purge(&sk->sk_receive_queue);
117 }
118 
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 	const struct can_proto *cp;
122 
123 	rcu_read_lock();
124 	cp = rcu_dereference(proto_tab[protocol]);
125 	if (cp && !try_module_get(cp->prot->owner))
126 		cp = NULL;
127 	rcu_read_unlock();
128 
129 	return cp;
130 }
131 
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 	module_put(cp->prot->owner);
135 }
136 
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 		      int kern)
139 {
140 	struct sock *sk;
141 	const struct can_proto *cp;
142 	int err = 0;
143 
144 	sock->state = SS_UNCONNECTED;
145 
146 	if (protocol < 0 || protocol >= CAN_NPROTO)
147 		return -EINVAL;
148 
149 	if (!net_eq(net, &init_net))
150 		return -EAFNOSUPPORT;
151 
152 	cp = can_get_proto(protocol);
153 
154 #ifdef CONFIG_MODULES
155 	if (!cp) {
156 		/* try to load protocol module if kernel is modular */
157 
158 		err = request_module("can-proto-%d", protocol);
159 
160 		/*
161 		 * In case of error we only print a message but don't
162 		 * return the error code immediately.  Below we will
163 		 * return -EPROTONOSUPPORT
164 		 */
165 		if (err)
166 			printk_ratelimited(KERN_ERR "can: request_module "
167 			       "(can-proto-%d) failed.\n", protocol);
168 
169 		cp = can_get_proto(protocol);
170 	}
171 #endif
172 
173 	/* check for available protocol and correct usage */
174 
175 	if (!cp)
176 		return -EPROTONOSUPPORT;
177 
178 	if (cp->type != sock->type) {
179 		err = -EPROTOTYPE;
180 		goto errout;
181 	}
182 
183 	sock->ops = cp->ops;
184 
185 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 	if (!sk) {
187 		err = -ENOMEM;
188 		goto errout;
189 	}
190 
191 	sock_init_data(sock, sk);
192 	sk->sk_destruct = can_sock_destruct;
193 
194 	if (sk->sk_prot->init)
195 		err = sk->sk_prot->init(sk);
196 
197 	if (err) {
198 		/* release sk on errors */
199 		sock_orphan(sk);
200 		sock_put(sk);
201 	}
202 
203  errout:
204 	can_put_proto(cp);
205 	return err;
206 }
207 
208 /*
209  * af_can tx path
210  */
211 
212 /**
213  * can_send - transmit a CAN frame (optional with local loopback)
214  * @skb: pointer to socket buffer with CAN frame in data section
215  * @loop: loopback for listeners on local CAN sockets (recommended default!)
216  *
217  * Due to the loopback this routine must not be called from hardirq context.
218  *
219  * Return:
220  *  0 on success
221  *  -ENETDOWN when the selected interface is down
222  *  -ENOBUFS on full driver queue (see net_xmit_errno())
223  *  -ENOMEM when local loopback failed at calling skb_clone()
224  *  -EPERM when trying to send on a non-CAN interface
225  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226  *  -EINVAL when the skb->data does not contain a valid CAN frame
227  */
228 int can_send(struct sk_buff *skb, int loop)
229 {
230 	struct sk_buff *newskb = NULL;
231 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 	int err = -EINVAL;
233 
234 	if (skb->len == CAN_MTU) {
235 		skb->protocol = htons(ETH_P_CAN);
236 		if (unlikely(cfd->len > CAN_MAX_DLEN))
237 			goto inval_skb;
238 	} else if (skb->len == CANFD_MTU) {
239 		skb->protocol = htons(ETH_P_CANFD);
240 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 			goto inval_skb;
242 	} else
243 		goto inval_skb;
244 
245 	/*
246 	 * Make sure the CAN frame can pass the selected CAN netdevice.
247 	 * As structs can_frame and canfd_frame are similar, we can provide
248 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 	 */
250 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 		err = -EMSGSIZE;
252 		goto inval_skb;
253 	}
254 
255 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 		err = -EPERM;
257 		goto inval_skb;
258 	}
259 
260 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 		err = -ENETDOWN;
262 		goto inval_skb;
263 	}
264 
265 	skb_reset_network_header(skb);
266 	skb_reset_transport_header(skb);
267 
268 	if (loop) {
269 		/* local loopback of sent CAN frames */
270 
271 		/* indication for the CAN driver: do loopback */
272 		skb->pkt_type = PACKET_LOOPBACK;
273 
274 		/*
275 		 * The reference to the originating sock may be required
276 		 * by the receiving socket to check whether the frame is
277 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 		 * Therefore we have to ensure that skb->sk remains the
279 		 * reference to the originating sock by restoring skb->sk
280 		 * after each skb_clone() or skb_orphan() usage.
281 		 */
282 
283 		if (!(skb->dev->flags & IFF_ECHO)) {
284 			/*
285 			 * If the interface is not capable to do loopback
286 			 * itself, we do it here.
287 			 */
288 			newskb = skb_clone(skb, GFP_ATOMIC);
289 			if (!newskb) {
290 				kfree_skb(skb);
291 				return -ENOMEM;
292 			}
293 
294 			can_skb_set_owner(newskb, skb->sk);
295 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 			newskb->pkt_type = PACKET_BROADCAST;
297 		}
298 	} else {
299 		/* indication for the CAN driver: no loopback required */
300 		skb->pkt_type = PACKET_HOST;
301 	}
302 
303 	/* send to netdevice */
304 	err = dev_queue_xmit(skb);
305 	if (err > 0)
306 		err = net_xmit_errno(err);
307 
308 	if (err) {
309 		kfree_skb(newskb);
310 		return err;
311 	}
312 
313 	if (newskb)
314 		netif_rx_ni(newskb);
315 
316 	/* update statistics */
317 	can_stats.tx_frames++;
318 	can_stats.tx_frames_delta++;
319 
320 	return 0;
321 
322 inval_skb:
323 	kfree_skb(skb);
324 	return err;
325 }
326 EXPORT_SYMBOL(can_send);
327 
328 /*
329  * af_can rx path
330  */
331 
332 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
333 {
334 	if (!dev)
335 		return &can_rx_alldev_list;
336 	else
337 		return (struct dev_rcv_lists *)dev->ml_priv;
338 }
339 
340 /**
341  * find_rcv_list - determine optimal filterlist inside device filter struct
342  * @can_id: pointer to CAN identifier of a given can_filter
343  * @mask: pointer to CAN mask of a given can_filter
344  * @d: pointer to the device filter struct
345  *
346  * Description:
347  *  Returns the optimal filterlist to reduce the filter handling in the
348  *  receive path. This function is called by service functions that need
349  *  to register or unregister a can_filter in the filter lists.
350  *
351  *  A filter matches in general, when
352  *
353  *          <received_can_id> & mask == can_id & mask
354  *
355  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
356  *  relevant bits for the filter.
357  *
358  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
359  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
360  *  frames there is a special filterlist and a special rx path filter handling.
361  *
362  * Return:
363  *  Pointer to optimal filterlist for the given can_id/mask pair.
364  *  Constistency checked mask.
365  *  Reduced can_id to have a preprocessed filter compare value.
366  */
367 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
368 					struct dev_rcv_lists *d)
369 {
370 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
371 
372 	/* filter for error message frames in extra filterlist */
373 	if (*mask & CAN_ERR_FLAG) {
374 		/* clear CAN_ERR_FLAG in filter entry */
375 		*mask &= CAN_ERR_MASK;
376 		return &d->rx[RX_ERR];
377 	}
378 
379 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
380 
381 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
382 
383 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
384 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
385 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
386 
387 	/* reduce condition testing at receive time */
388 	*can_id &= *mask;
389 
390 	/* inverse can_id/can_mask filter */
391 	if (inv)
392 		return &d->rx[RX_INV];
393 
394 	/* mask == 0 => no condition testing at receive time */
395 	if (!(*mask))
396 		return &d->rx[RX_ALL];
397 
398 	/* extra filterlists for the subscription of a single non-RTR can_id */
399 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
400 	    !(*can_id & CAN_RTR_FLAG)) {
401 
402 		if (*can_id & CAN_EFF_FLAG) {
403 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
404 				/* RFC: a future use-case for hash-tables? */
405 				return &d->rx[RX_EFF];
406 			}
407 		} else {
408 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
409 				return &d->rx_sff[*can_id];
410 		}
411 	}
412 
413 	/* default: filter via can_id/can_mask */
414 	return &d->rx[RX_FIL];
415 }
416 
417 /**
418  * can_rx_register - subscribe CAN frames from a specific interface
419  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
420  * @can_id: CAN identifier (see description)
421  * @mask: CAN mask (see description)
422  * @func: callback function on filter match
423  * @data: returned parameter for callback function
424  * @ident: string for calling module identification
425  *
426  * Description:
427  *  Invokes the callback function with the received sk_buff and the given
428  *  parameter 'data' on a matching receive filter. A filter matches, when
429  *
430  *          <received_can_id> & mask == can_id & mask
431  *
432  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
433  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
434  *
435  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
436  *  the callback function is running. The callback function must *not* free
437  *  the given sk_buff while processing it's task. When the given sk_buff is
438  *  needed after the end of the callback function it must be cloned inside
439  *  the callback function with skb_clone().
440  *
441  * Return:
442  *  0 on success
443  *  -ENOMEM on missing cache mem to create subscription entry
444  *  -ENODEV unknown device
445  */
446 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
447 		    void (*func)(struct sk_buff *, void *), void *data,
448 		    char *ident)
449 {
450 	struct receiver *r;
451 	struct hlist_head *rl;
452 	struct dev_rcv_lists *d;
453 	int err = 0;
454 
455 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
456 
457 	if (dev && dev->type != ARPHRD_CAN)
458 		return -ENODEV;
459 
460 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461 	if (!r)
462 		return -ENOMEM;
463 
464 	spin_lock(&can_rcvlists_lock);
465 
466 	d = find_dev_rcv_lists(dev);
467 	if (d) {
468 		rl = find_rcv_list(&can_id, &mask, d);
469 
470 		r->can_id  = can_id;
471 		r->mask    = mask;
472 		r->matches = 0;
473 		r->func    = func;
474 		r->data    = data;
475 		r->ident   = ident;
476 
477 		hlist_add_head_rcu(&r->list, rl);
478 		d->entries++;
479 
480 		can_pstats.rcv_entries++;
481 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
482 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
483 	} else {
484 		kmem_cache_free(rcv_cache, r);
485 		err = -ENODEV;
486 	}
487 
488 	spin_unlock(&can_rcvlists_lock);
489 
490 	return err;
491 }
492 EXPORT_SYMBOL(can_rx_register);
493 
494 /*
495  * can_rx_delete_receiver - rcu callback for single receiver entry removal
496  */
497 static void can_rx_delete_receiver(struct rcu_head *rp)
498 {
499 	struct receiver *r = container_of(rp, struct receiver, rcu);
500 
501 	kmem_cache_free(rcv_cache, r);
502 }
503 
504 /**
505  * can_rx_unregister - unsubscribe CAN frames from a specific interface
506  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
507  * @can_id: CAN identifier
508  * @mask: CAN mask
509  * @func: callback function on filter match
510  * @data: returned parameter for callback function
511  *
512  * Description:
513  *  Removes subscription entry depending on given (subscription) values.
514  */
515 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
516 		       void (*func)(struct sk_buff *, void *), void *data)
517 {
518 	struct receiver *r = NULL;
519 	struct hlist_head *rl;
520 	struct dev_rcv_lists *d;
521 
522 	if (dev && dev->type != ARPHRD_CAN)
523 		return;
524 
525 	spin_lock(&can_rcvlists_lock);
526 
527 	d = find_dev_rcv_lists(dev);
528 	if (!d) {
529 		pr_err("BUG: receive list not found for "
530 		       "dev %s, id %03X, mask %03X\n",
531 		       DNAME(dev), can_id, mask);
532 		goto out;
533 	}
534 
535 	rl = find_rcv_list(&can_id, &mask, d);
536 
537 	/*
538 	 * Search the receiver list for the item to delete.  This should
539 	 * exist, since no receiver may be unregistered that hasn't
540 	 * been registered before.
541 	 */
542 
543 	hlist_for_each_entry_rcu(r, rl, list) {
544 		if (r->can_id == can_id && r->mask == mask &&
545 		    r->func == func && r->data == data)
546 			break;
547 	}
548 
549 	/*
550 	 * Check for bugs in CAN protocol implementations using af_can.c:
551 	 * 'r' will be NULL if no matching list item was found for removal.
552 	 */
553 
554 	if (!r) {
555 		WARN(1, "BUG: receive list entry not found for dev %s, "
556 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
557 		goto out;
558 	}
559 
560 	hlist_del_rcu(&r->list);
561 	d->entries--;
562 
563 	if (can_pstats.rcv_entries > 0)
564 		can_pstats.rcv_entries--;
565 
566 	/* remove device structure requested by NETDEV_UNREGISTER */
567 	if (d->remove_on_zero_entries && !d->entries) {
568 		kfree(d);
569 		dev->ml_priv = NULL;
570 	}
571 
572  out:
573 	spin_unlock(&can_rcvlists_lock);
574 
575 	/* schedule the receiver item for deletion */
576 	if (r)
577 		call_rcu(&r->rcu, can_rx_delete_receiver);
578 }
579 EXPORT_SYMBOL(can_rx_unregister);
580 
581 static inline void deliver(struct sk_buff *skb, struct receiver *r)
582 {
583 	r->func(skb, r->data);
584 	r->matches++;
585 }
586 
587 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
588 {
589 	struct receiver *r;
590 	int matches = 0;
591 	struct can_frame *cf = (struct can_frame *)skb->data;
592 	canid_t can_id = cf->can_id;
593 
594 	if (d->entries == 0)
595 		return 0;
596 
597 	if (can_id & CAN_ERR_FLAG) {
598 		/* check for error message frame entries only */
599 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
600 			if (can_id & r->mask) {
601 				deliver(skb, r);
602 				matches++;
603 			}
604 		}
605 		return matches;
606 	}
607 
608 	/* check for unfiltered entries */
609 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
610 		deliver(skb, r);
611 		matches++;
612 	}
613 
614 	/* check for can_id/mask entries */
615 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
616 		if ((can_id & r->mask) == r->can_id) {
617 			deliver(skb, r);
618 			matches++;
619 		}
620 	}
621 
622 	/* check for inverted can_id/mask entries */
623 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
624 		if ((can_id & r->mask) != r->can_id) {
625 			deliver(skb, r);
626 			matches++;
627 		}
628 	}
629 
630 	/* check filterlists for single non-RTR can_ids */
631 	if (can_id & CAN_RTR_FLAG)
632 		return matches;
633 
634 	if (can_id & CAN_EFF_FLAG) {
635 		hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) {
636 			if (r->can_id == can_id) {
637 				deliver(skb, r);
638 				matches++;
639 			}
640 		}
641 	} else {
642 		can_id &= CAN_SFF_MASK;
643 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
644 			deliver(skb, r);
645 			matches++;
646 		}
647 	}
648 
649 	return matches;
650 }
651 
652 static void can_receive(struct sk_buff *skb, struct net_device *dev)
653 {
654 	struct dev_rcv_lists *d;
655 	int matches;
656 
657 	/* update statistics */
658 	can_stats.rx_frames++;
659 	can_stats.rx_frames_delta++;
660 
661 	rcu_read_lock();
662 
663 	/* deliver the packet to sockets listening on all devices */
664 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
665 
666 	/* find receive list for this device */
667 	d = find_dev_rcv_lists(dev);
668 	if (d)
669 		matches += can_rcv_filter(d, skb);
670 
671 	rcu_read_unlock();
672 
673 	/* consume the skbuff allocated by the netdevice driver */
674 	consume_skb(skb);
675 
676 	if (matches > 0) {
677 		can_stats.matches++;
678 		can_stats.matches_delta++;
679 	}
680 }
681 
682 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
683 		   struct packet_type *pt, struct net_device *orig_dev)
684 {
685 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
686 
687 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
688 		goto drop;
689 
690 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
691 		      skb->len != CAN_MTU ||
692 		      cfd->len > CAN_MAX_DLEN,
693 		      "PF_CAN: dropped non conform CAN skbuf: "
694 		      "dev type %d, len %d, datalen %d\n",
695 		      dev->type, skb->len, cfd->len))
696 		goto drop;
697 
698 	can_receive(skb, dev);
699 	return NET_RX_SUCCESS;
700 
701 drop:
702 	kfree_skb(skb);
703 	return NET_RX_DROP;
704 }
705 
706 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
707 		   struct packet_type *pt, struct net_device *orig_dev)
708 {
709 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
710 
711 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
712 		goto drop;
713 
714 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
715 		      skb->len != CANFD_MTU ||
716 		      cfd->len > CANFD_MAX_DLEN,
717 		      "PF_CAN: dropped non conform CAN FD skbuf: "
718 		      "dev type %d, len %d, datalen %d\n",
719 		      dev->type, skb->len, cfd->len))
720 		goto drop;
721 
722 	can_receive(skb, dev);
723 	return NET_RX_SUCCESS;
724 
725 drop:
726 	kfree_skb(skb);
727 	return NET_RX_DROP;
728 }
729 
730 /*
731  * af_can protocol functions
732  */
733 
734 /**
735  * can_proto_register - register CAN transport protocol
736  * @cp: pointer to CAN protocol structure
737  *
738  * Return:
739  *  0 on success
740  *  -EINVAL invalid (out of range) protocol number
741  *  -EBUSY  protocol already in use
742  *  -ENOBUF if proto_register() fails
743  */
744 int can_proto_register(const struct can_proto *cp)
745 {
746 	int proto = cp->protocol;
747 	int err = 0;
748 
749 	if (proto < 0 || proto >= CAN_NPROTO) {
750 		pr_err("can: protocol number %d out of range\n", proto);
751 		return -EINVAL;
752 	}
753 
754 	err = proto_register(cp->prot, 0);
755 	if (err < 0)
756 		return err;
757 
758 	mutex_lock(&proto_tab_lock);
759 
760 	if (proto_tab[proto]) {
761 		pr_err("can: protocol %d already registered\n", proto);
762 		err = -EBUSY;
763 	} else
764 		RCU_INIT_POINTER(proto_tab[proto], cp);
765 
766 	mutex_unlock(&proto_tab_lock);
767 
768 	if (err < 0)
769 		proto_unregister(cp->prot);
770 
771 	return err;
772 }
773 EXPORT_SYMBOL(can_proto_register);
774 
775 /**
776  * can_proto_unregister - unregister CAN transport protocol
777  * @cp: pointer to CAN protocol structure
778  */
779 void can_proto_unregister(const struct can_proto *cp)
780 {
781 	int proto = cp->protocol;
782 
783 	mutex_lock(&proto_tab_lock);
784 	BUG_ON(proto_tab[proto] != cp);
785 	RCU_INIT_POINTER(proto_tab[proto], NULL);
786 	mutex_unlock(&proto_tab_lock);
787 
788 	synchronize_rcu();
789 
790 	proto_unregister(cp->prot);
791 }
792 EXPORT_SYMBOL(can_proto_unregister);
793 
794 /*
795  * af_can notifier to create/remove CAN netdevice specific structs
796  */
797 static int can_notifier(struct notifier_block *nb, unsigned long msg,
798 			void *ptr)
799 {
800 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
801 	struct dev_rcv_lists *d;
802 
803 	if (!net_eq(dev_net(dev), &init_net))
804 		return NOTIFY_DONE;
805 
806 	if (dev->type != ARPHRD_CAN)
807 		return NOTIFY_DONE;
808 
809 	switch (msg) {
810 
811 	case NETDEV_REGISTER:
812 
813 		/* create new dev_rcv_lists for this device */
814 		d = kzalloc(sizeof(*d), GFP_KERNEL);
815 		if (!d)
816 			return NOTIFY_DONE;
817 		BUG_ON(dev->ml_priv);
818 		dev->ml_priv = d;
819 
820 		break;
821 
822 	case NETDEV_UNREGISTER:
823 		spin_lock(&can_rcvlists_lock);
824 
825 		d = dev->ml_priv;
826 		if (d) {
827 			if (d->entries)
828 				d->remove_on_zero_entries = 1;
829 			else {
830 				kfree(d);
831 				dev->ml_priv = NULL;
832 			}
833 		} else
834 			pr_err("can: notifier: receive list not found for dev "
835 			       "%s\n", dev->name);
836 
837 		spin_unlock(&can_rcvlists_lock);
838 
839 		break;
840 	}
841 
842 	return NOTIFY_DONE;
843 }
844 
845 /*
846  * af_can module init/exit functions
847  */
848 
849 static struct packet_type can_packet __read_mostly = {
850 	.type = cpu_to_be16(ETH_P_CAN),
851 	.func = can_rcv,
852 };
853 
854 static struct packet_type canfd_packet __read_mostly = {
855 	.type = cpu_to_be16(ETH_P_CANFD),
856 	.func = canfd_rcv,
857 };
858 
859 static const struct net_proto_family can_family_ops = {
860 	.family = PF_CAN,
861 	.create = can_create,
862 	.owner  = THIS_MODULE,
863 };
864 
865 /* notifier block for netdevice event */
866 static struct notifier_block can_netdev_notifier __read_mostly = {
867 	.notifier_call = can_notifier,
868 };
869 
870 static __init int can_init(void)
871 {
872 	/* check for correct padding to be able to use the structs similarly */
873 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
874 		     offsetof(struct canfd_frame, len) ||
875 		     offsetof(struct can_frame, data) !=
876 		     offsetof(struct canfd_frame, data));
877 
878 	printk(banner);
879 
880 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
881 
882 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
883 				      0, 0, NULL);
884 	if (!rcv_cache)
885 		return -ENOMEM;
886 
887 	if (stats_timer) {
888 		/* the statistics are updated every second (timer triggered) */
889 		setup_timer(&can_stattimer, can_stat_update, 0);
890 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
891 	} else
892 		can_stattimer.function = NULL;
893 
894 	can_init_proc();
895 
896 	/* protocol register */
897 	sock_register(&can_family_ops);
898 	register_netdevice_notifier(&can_netdev_notifier);
899 	dev_add_pack(&can_packet);
900 	dev_add_pack(&canfd_packet);
901 
902 	return 0;
903 }
904 
905 static __exit void can_exit(void)
906 {
907 	struct net_device *dev;
908 
909 	if (stats_timer)
910 		del_timer_sync(&can_stattimer);
911 
912 	can_remove_proc();
913 
914 	/* protocol unregister */
915 	dev_remove_pack(&canfd_packet);
916 	dev_remove_pack(&can_packet);
917 	unregister_netdevice_notifier(&can_netdev_notifier);
918 	sock_unregister(PF_CAN);
919 
920 	/* remove created dev_rcv_lists from still registered CAN devices */
921 	rcu_read_lock();
922 	for_each_netdev_rcu(&init_net, dev) {
923 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
924 
925 			struct dev_rcv_lists *d = dev->ml_priv;
926 
927 			BUG_ON(d->entries);
928 			kfree(d);
929 			dev->ml_priv = NULL;
930 		}
931 	}
932 	rcu_read_unlock();
933 
934 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
935 
936 	kmem_cache_destroy(rcv_cache);
937 }
938 
939 module_init(can_init);
940 module_exit(can_exit);
941