xref: /openbmc/linux/net/can/af_can.c (revision ec2da07c)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, 0444);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 static struct kmem_cache *rcv_cache __read_mostly;
79 
80 /* table of registered CAN protocols */
81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82 static DEFINE_MUTEX(proto_tab_lock);
83 
84 static atomic_t skbcounter = ATOMIC_INIT(0);
85 
86 /*
87  * af_can socket functions
88  */
89 
90 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
91 {
92 	switch (cmd) {
93 	default:
94 		return -ENOIOCTLCMD;
95 	}
96 }
97 EXPORT_SYMBOL(can_ioctl);
98 
99 static void can_sock_destruct(struct sock *sk)
100 {
101 	skb_queue_purge(&sk->sk_receive_queue);
102 	skb_queue_purge(&sk->sk_error_queue);
103 }
104 
105 static const struct can_proto *can_get_proto(int protocol)
106 {
107 	const struct can_proto *cp;
108 
109 	rcu_read_lock();
110 	cp = rcu_dereference(proto_tab[protocol]);
111 	if (cp && !try_module_get(cp->prot->owner))
112 		cp = NULL;
113 	rcu_read_unlock();
114 
115 	return cp;
116 }
117 
118 static inline void can_put_proto(const struct can_proto *cp)
119 {
120 	module_put(cp->prot->owner);
121 }
122 
123 static int can_create(struct net *net, struct socket *sock, int protocol,
124 		      int kern)
125 {
126 	struct sock *sk;
127 	const struct can_proto *cp;
128 	int err = 0;
129 
130 	sock->state = SS_UNCONNECTED;
131 
132 	if (protocol < 0 || protocol >= CAN_NPROTO)
133 		return -EINVAL;
134 
135 	cp = can_get_proto(protocol);
136 
137 #ifdef CONFIG_MODULES
138 	if (!cp) {
139 		/* try to load protocol module if kernel is modular */
140 
141 		err = request_module("can-proto-%d", protocol);
142 
143 		/*
144 		 * In case of error we only print a message but don't
145 		 * return the error code immediately.  Below we will
146 		 * return -EPROTONOSUPPORT
147 		 */
148 		if (err)
149 			printk_ratelimited(KERN_ERR "can: request_module "
150 			       "(can-proto-%d) failed.\n", protocol);
151 
152 		cp = can_get_proto(protocol);
153 	}
154 #endif
155 
156 	/* check for available protocol and correct usage */
157 
158 	if (!cp)
159 		return -EPROTONOSUPPORT;
160 
161 	if (cp->type != sock->type) {
162 		err = -EPROTOTYPE;
163 		goto errout;
164 	}
165 
166 	sock->ops = cp->ops;
167 
168 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
169 	if (!sk) {
170 		err = -ENOMEM;
171 		goto errout;
172 	}
173 
174 	sock_init_data(sock, sk);
175 	sk->sk_destruct = can_sock_destruct;
176 
177 	if (sk->sk_prot->init)
178 		err = sk->sk_prot->init(sk);
179 
180 	if (err) {
181 		/* release sk on errors */
182 		sock_orphan(sk);
183 		sock_put(sk);
184 	}
185 
186  errout:
187 	can_put_proto(cp);
188 	return err;
189 }
190 
191 /*
192  * af_can tx path
193  */
194 
195 /**
196  * can_send - transmit a CAN frame (optional with local loopback)
197  * @skb: pointer to socket buffer with CAN frame in data section
198  * @loop: loopback for listeners on local CAN sockets (recommended default!)
199  *
200  * Due to the loopback this routine must not be called from hardirq context.
201  *
202  * Return:
203  *  0 on success
204  *  -ENETDOWN when the selected interface is down
205  *  -ENOBUFS on full driver queue (see net_xmit_errno())
206  *  -ENOMEM when local loopback failed at calling skb_clone()
207  *  -EPERM when trying to send on a non-CAN interface
208  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
209  *  -EINVAL when the skb->data does not contain a valid CAN frame
210  */
211 int can_send(struct sk_buff *skb, int loop)
212 {
213 	struct sk_buff *newskb = NULL;
214 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
215 	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
216 	int err = -EINVAL;
217 
218 	if (skb->len == CAN_MTU) {
219 		skb->protocol = htons(ETH_P_CAN);
220 		if (unlikely(cfd->len > CAN_MAX_DLEN))
221 			goto inval_skb;
222 	} else if (skb->len == CANFD_MTU) {
223 		skb->protocol = htons(ETH_P_CANFD);
224 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
225 			goto inval_skb;
226 	} else
227 		goto inval_skb;
228 
229 	/*
230 	 * Make sure the CAN frame can pass the selected CAN netdevice.
231 	 * As structs can_frame and canfd_frame are similar, we can provide
232 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
233 	 */
234 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
235 		err = -EMSGSIZE;
236 		goto inval_skb;
237 	}
238 
239 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
240 		err = -EPERM;
241 		goto inval_skb;
242 	}
243 
244 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
245 		err = -ENETDOWN;
246 		goto inval_skb;
247 	}
248 
249 	skb->ip_summed = CHECKSUM_UNNECESSARY;
250 
251 	skb_reset_mac_header(skb);
252 	skb_reset_network_header(skb);
253 	skb_reset_transport_header(skb);
254 
255 	if (loop) {
256 		/* local loopback of sent CAN frames */
257 
258 		/* indication for the CAN driver: do loopback */
259 		skb->pkt_type = PACKET_LOOPBACK;
260 
261 		/*
262 		 * The reference to the originating sock may be required
263 		 * by the receiving socket to check whether the frame is
264 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
265 		 * Therefore we have to ensure that skb->sk remains the
266 		 * reference to the originating sock by restoring skb->sk
267 		 * after each skb_clone() or skb_orphan() usage.
268 		 */
269 
270 		if (!(skb->dev->flags & IFF_ECHO)) {
271 			/*
272 			 * If the interface is not capable to do loopback
273 			 * itself, we do it here.
274 			 */
275 			newskb = skb_clone(skb, GFP_ATOMIC);
276 			if (!newskb) {
277 				kfree_skb(skb);
278 				return -ENOMEM;
279 			}
280 
281 			can_skb_set_owner(newskb, skb->sk);
282 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
283 			newskb->pkt_type = PACKET_BROADCAST;
284 		}
285 	} else {
286 		/* indication for the CAN driver: no loopback required */
287 		skb->pkt_type = PACKET_HOST;
288 	}
289 
290 	/* send to netdevice */
291 	err = dev_queue_xmit(skb);
292 	if (err > 0)
293 		err = net_xmit_errno(err);
294 
295 	if (err) {
296 		kfree_skb(newskb);
297 		return err;
298 	}
299 
300 	if (newskb)
301 		netif_rx_ni(newskb);
302 
303 	/* update statistics */
304 	can_stats->tx_frames++;
305 	can_stats->tx_frames_delta++;
306 
307 	return 0;
308 
309 inval_skb:
310 	kfree_skb(skb);
311 	return err;
312 }
313 EXPORT_SYMBOL(can_send);
314 
315 /*
316  * af_can rx path
317  */
318 
319 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
320 						struct net_device *dev)
321 {
322 	if (!dev)
323 		return net->can.can_rx_alldev_list;
324 	else
325 		return (struct can_dev_rcv_lists *)dev->ml_priv;
326 }
327 
328 /**
329  * effhash - hash function for 29 bit CAN identifier reduction
330  * @can_id: 29 bit CAN identifier
331  *
332  * Description:
333  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
334  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
335  *  (see CAN_EFF_RCV_HASH_BITS definition)
336  *
337  * Return:
338  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
339  */
340 static unsigned int effhash(canid_t can_id)
341 {
342 	unsigned int hash;
343 
344 	hash = can_id;
345 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
346 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
347 
348 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
349 }
350 
351 /**
352  * find_rcv_list - determine optimal filterlist inside device filter struct
353  * @can_id: pointer to CAN identifier of a given can_filter
354  * @mask: pointer to CAN mask of a given can_filter
355  * @d: pointer to the device filter struct
356  *
357  * Description:
358  *  Returns the optimal filterlist to reduce the filter handling in the
359  *  receive path. This function is called by service functions that need
360  *  to register or unregister a can_filter in the filter lists.
361  *
362  *  A filter matches in general, when
363  *
364  *          <received_can_id> & mask == can_id & mask
365  *
366  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
367  *  relevant bits for the filter.
368  *
369  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
370  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
371  *  frames there is a special filterlist and a special rx path filter handling.
372  *
373  * Return:
374  *  Pointer to optimal filterlist for the given can_id/mask pair.
375  *  Constistency checked mask.
376  *  Reduced can_id to have a preprocessed filter compare value.
377  */
378 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
379 					struct can_dev_rcv_lists *d)
380 {
381 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
382 
383 	/* filter for error message frames in extra filterlist */
384 	if (*mask & CAN_ERR_FLAG) {
385 		/* clear CAN_ERR_FLAG in filter entry */
386 		*mask &= CAN_ERR_MASK;
387 		return &d->rx[RX_ERR];
388 	}
389 
390 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
391 
392 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
393 
394 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
395 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
396 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
397 
398 	/* reduce condition testing at receive time */
399 	*can_id &= *mask;
400 
401 	/* inverse can_id/can_mask filter */
402 	if (inv)
403 		return &d->rx[RX_INV];
404 
405 	/* mask == 0 => no condition testing at receive time */
406 	if (!(*mask))
407 		return &d->rx[RX_ALL];
408 
409 	/* extra filterlists for the subscription of a single non-RTR can_id */
410 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
411 	    !(*can_id & CAN_RTR_FLAG)) {
412 
413 		if (*can_id & CAN_EFF_FLAG) {
414 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
415 				return &d->rx_eff[effhash(*can_id)];
416 		} else {
417 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
418 				return &d->rx_sff[*can_id];
419 		}
420 	}
421 
422 	/* default: filter via can_id/can_mask */
423 	return &d->rx[RX_FIL];
424 }
425 
426 /**
427  * can_rx_register - subscribe CAN frames from a specific interface
428  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
429  * @can_id: CAN identifier (see description)
430  * @mask: CAN mask (see description)
431  * @func: callback function on filter match
432  * @data: returned parameter for callback function
433  * @ident: string for calling module identification
434  * @sk: socket pointer (might be NULL)
435  *
436  * Description:
437  *  Invokes the callback function with the received sk_buff and the given
438  *  parameter 'data' on a matching receive filter. A filter matches, when
439  *
440  *          <received_can_id> & mask == can_id & mask
441  *
442  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
443  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
444  *
445  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
446  *  the callback function is running. The callback function must *not* free
447  *  the given sk_buff while processing it's task. When the given sk_buff is
448  *  needed after the end of the callback function it must be cloned inside
449  *  the callback function with skb_clone().
450  *
451  * Return:
452  *  0 on success
453  *  -ENOMEM on missing cache mem to create subscription entry
454  *  -ENODEV unknown device
455  */
456 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
457 		    canid_t mask, void (*func)(struct sk_buff *, void *),
458 		    void *data, char *ident, struct sock *sk)
459 {
460 	struct receiver *r;
461 	struct hlist_head *rl;
462 	struct can_dev_rcv_lists *d;
463 	struct s_pstats *can_pstats = net->can.can_pstats;
464 	int err = 0;
465 
466 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
467 
468 	if (dev && dev->type != ARPHRD_CAN)
469 		return -ENODEV;
470 
471 	if (dev && !net_eq(net, dev_net(dev)))
472 		return -ENODEV;
473 
474 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
475 	if (!r)
476 		return -ENOMEM;
477 
478 	spin_lock(&net->can.can_rcvlists_lock);
479 
480 	d = find_dev_rcv_lists(net, dev);
481 	if (d) {
482 		rl = find_rcv_list(&can_id, &mask, d);
483 
484 		r->can_id  = can_id;
485 		r->mask    = mask;
486 		r->matches = 0;
487 		r->func    = func;
488 		r->data    = data;
489 		r->ident   = ident;
490 		r->sk      = sk;
491 
492 		hlist_add_head_rcu(&r->list, rl);
493 		d->entries++;
494 
495 		can_pstats->rcv_entries++;
496 		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
497 			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
498 	} else {
499 		kmem_cache_free(rcv_cache, r);
500 		err = -ENODEV;
501 	}
502 
503 	spin_unlock(&net->can.can_rcvlists_lock);
504 
505 	return err;
506 }
507 EXPORT_SYMBOL(can_rx_register);
508 
509 /*
510  * can_rx_delete_receiver - rcu callback for single receiver entry removal
511  */
512 static void can_rx_delete_receiver(struct rcu_head *rp)
513 {
514 	struct receiver *r = container_of(rp, struct receiver, rcu);
515 	struct sock *sk = r->sk;
516 
517 	kmem_cache_free(rcv_cache, r);
518 	if (sk)
519 		sock_put(sk);
520 }
521 
522 /**
523  * can_rx_unregister - unsubscribe CAN frames from a specific interface
524  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
525  * @can_id: CAN identifier
526  * @mask: CAN mask
527  * @func: callback function on filter match
528  * @data: returned parameter for callback function
529  *
530  * Description:
531  *  Removes subscription entry depending on given (subscription) values.
532  */
533 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
534 		       canid_t mask, void (*func)(struct sk_buff *, void *),
535 		       void *data)
536 {
537 	struct receiver *r = NULL;
538 	struct hlist_head *rl;
539 	struct s_pstats *can_pstats = net->can.can_pstats;
540 	struct can_dev_rcv_lists *d;
541 
542 	if (dev && dev->type != ARPHRD_CAN)
543 		return;
544 
545 	if (dev && !net_eq(net, dev_net(dev)))
546 		return;
547 
548 	spin_lock(&net->can.can_rcvlists_lock);
549 
550 	d = find_dev_rcv_lists(net, dev);
551 	if (!d) {
552 		pr_err("BUG: receive list not found for "
553 		       "dev %s, id %03X, mask %03X\n",
554 		       DNAME(dev), can_id, mask);
555 		goto out;
556 	}
557 
558 	rl = find_rcv_list(&can_id, &mask, d);
559 
560 	/*
561 	 * Search the receiver list for the item to delete.  This should
562 	 * exist, since no receiver may be unregistered that hasn't
563 	 * been registered before.
564 	 */
565 
566 	hlist_for_each_entry_rcu(r, rl, list) {
567 		if (r->can_id == can_id && r->mask == mask &&
568 		    r->func == func && r->data == data)
569 			break;
570 	}
571 
572 	/*
573 	 * Check for bugs in CAN protocol implementations using af_can.c:
574 	 * 'r' will be NULL if no matching list item was found for removal.
575 	 */
576 
577 	if (!r) {
578 		WARN(1, "BUG: receive list entry not found for dev %s, "
579 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
580 		goto out;
581 	}
582 
583 	hlist_del_rcu(&r->list);
584 	d->entries--;
585 
586 	if (can_pstats->rcv_entries > 0)
587 		can_pstats->rcv_entries--;
588 
589 	/* remove device structure requested by NETDEV_UNREGISTER */
590 	if (d->remove_on_zero_entries && !d->entries) {
591 		kfree(d);
592 		dev->ml_priv = NULL;
593 	}
594 
595  out:
596 	spin_unlock(&net->can.can_rcvlists_lock);
597 
598 	/* schedule the receiver item for deletion */
599 	if (r) {
600 		if (r->sk)
601 			sock_hold(r->sk);
602 		call_rcu(&r->rcu, can_rx_delete_receiver);
603 	}
604 }
605 EXPORT_SYMBOL(can_rx_unregister);
606 
607 static inline void deliver(struct sk_buff *skb, struct receiver *r)
608 {
609 	r->func(skb, r->data);
610 	r->matches++;
611 }
612 
613 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
614 {
615 	struct receiver *r;
616 	int matches = 0;
617 	struct can_frame *cf = (struct can_frame *)skb->data;
618 	canid_t can_id = cf->can_id;
619 
620 	if (d->entries == 0)
621 		return 0;
622 
623 	if (can_id & CAN_ERR_FLAG) {
624 		/* check for error message frame entries only */
625 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
626 			if (can_id & r->mask) {
627 				deliver(skb, r);
628 				matches++;
629 			}
630 		}
631 		return matches;
632 	}
633 
634 	/* check for unfiltered entries */
635 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
636 		deliver(skb, r);
637 		matches++;
638 	}
639 
640 	/* check for can_id/mask entries */
641 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
642 		if ((can_id & r->mask) == r->can_id) {
643 			deliver(skb, r);
644 			matches++;
645 		}
646 	}
647 
648 	/* check for inverted can_id/mask entries */
649 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
650 		if ((can_id & r->mask) != r->can_id) {
651 			deliver(skb, r);
652 			matches++;
653 		}
654 	}
655 
656 	/* check filterlists for single non-RTR can_ids */
657 	if (can_id & CAN_RTR_FLAG)
658 		return matches;
659 
660 	if (can_id & CAN_EFF_FLAG) {
661 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
662 			if (r->can_id == can_id) {
663 				deliver(skb, r);
664 				matches++;
665 			}
666 		}
667 	} else {
668 		can_id &= CAN_SFF_MASK;
669 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
670 			deliver(skb, r);
671 			matches++;
672 		}
673 	}
674 
675 	return matches;
676 }
677 
678 static void can_receive(struct sk_buff *skb, struct net_device *dev)
679 {
680 	struct can_dev_rcv_lists *d;
681 	struct net *net = dev_net(dev);
682 	struct s_stats *can_stats = net->can.can_stats;
683 	int matches;
684 
685 	/* update statistics */
686 	can_stats->rx_frames++;
687 	can_stats->rx_frames_delta++;
688 
689 	/* create non-zero unique skb identifier together with *skb */
690 	while (!(can_skb_prv(skb)->skbcnt))
691 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
692 
693 	rcu_read_lock();
694 
695 	/* deliver the packet to sockets listening on all devices */
696 	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
697 
698 	/* find receive list for this device */
699 	d = find_dev_rcv_lists(net, dev);
700 	if (d)
701 		matches += can_rcv_filter(d, skb);
702 
703 	rcu_read_unlock();
704 
705 	/* consume the skbuff allocated by the netdevice driver */
706 	consume_skb(skb);
707 
708 	if (matches > 0) {
709 		can_stats->matches++;
710 		can_stats->matches_delta++;
711 	}
712 }
713 
714 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
715 		   struct packet_type *pt, struct net_device *orig_dev)
716 {
717 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
718 
719 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
720 		     cfd->len > CAN_MAX_DLEN)) {
721 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
722 			     dev->type, skb->len, cfd->len);
723 		kfree_skb(skb);
724 		return NET_RX_DROP;
725 	}
726 
727 	can_receive(skb, dev);
728 	return NET_RX_SUCCESS;
729 }
730 
731 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
732 		   struct packet_type *pt, struct net_device *orig_dev)
733 {
734 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
735 
736 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
737 		     cfd->len > CANFD_MAX_DLEN)) {
738 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
739 			     dev->type, skb->len, cfd->len);
740 		kfree_skb(skb);
741 		return NET_RX_DROP;
742 	}
743 
744 	can_receive(skb, dev);
745 	return NET_RX_SUCCESS;
746 }
747 
748 /*
749  * af_can protocol functions
750  */
751 
752 /**
753  * can_proto_register - register CAN transport protocol
754  * @cp: pointer to CAN protocol structure
755  *
756  * Return:
757  *  0 on success
758  *  -EINVAL invalid (out of range) protocol number
759  *  -EBUSY  protocol already in use
760  *  -ENOBUF if proto_register() fails
761  */
762 int can_proto_register(const struct can_proto *cp)
763 {
764 	int proto = cp->protocol;
765 	int err = 0;
766 
767 	if (proto < 0 || proto >= CAN_NPROTO) {
768 		pr_err("can: protocol number %d out of range\n", proto);
769 		return -EINVAL;
770 	}
771 
772 	err = proto_register(cp->prot, 0);
773 	if (err < 0)
774 		return err;
775 
776 	mutex_lock(&proto_tab_lock);
777 
778 	if (rcu_access_pointer(proto_tab[proto])) {
779 		pr_err("can: protocol %d already registered\n", proto);
780 		err = -EBUSY;
781 	} else
782 		RCU_INIT_POINTER(proto_tab[proto], cp);
783 
784 	mutex_unlock(&proto_tab_lock);
785 
786 	if (err < 0)
787 		proto_unregister(cp->prot);
788 
789 	return err;
790 }
791 EXPORT_SYMBOL(can_proto_register);
792 
793 /**
794  * can_proto_unregister - unregister CAN transport protocol
795  * @cp: pointer to CAN protocol structure
796  */
797 void can_proto_unregister(const struct can_proto *cp)
798 {
799 	int proto = cp->protocol;
800 
801 	mutex_lock(&proto_tab_lock);
802 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
803 	RCU_INIT_POINTER(proto_tab[proto], NULL);
804 	mutex_unlock(&proto_tab_lock);
805 
806 	synchronize_rcu();
807 
808 	proto_unregister(cp->prot);
809 }
810 EXPORT_SYMBOL(can_proto_unregister);
811 
812 /*
813  * af_can notifier to create/remove CAN netdevice specific structs
814  */
815 static int can_notifier(struct notifier_block *nb, unsigned long msg,
816 			void *ptr)
817 {
818 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
819 	struct can_dev_rcv_lists *d;
820 
821 	if (dev->type != ARPHRD_CAN)
822 		return NOTIFY_DONE;
823 
824 	switch (msg) {
825 
826 	case NETDEV_REGISTER:
827 
828 		/* create new dev_rcv_lists for this device */
829 		d = kzalloc(sizeof(*d), GFP_KERNEL);
830 		if (!d)
831 			return NOTIFY_DONE;
832 		BUG_ON(dev->ml_priv);
833 		dev->ml_priv = d;
834 
835 		break;
836 
837 	case NETDEV_UNREGISTER:
838 		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
839 
840 		d = dev->ml_priv;
841 		if (d) {
842 			if (d->entries)
843 				d->remove_on_zero_entries = 1;
844 			else {
845 				kfree(d);
846 				dev->ml_priv = NULL;
847 			}
848 		} else
849 			pr_err("can: notifier: receive list not found for dev "
850 			       "%s\n", dev->name);
851 
852 		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
853 
854 		break;
855 	}
856 
857 	return NOTIFY_DONE;
858 }
859 
860 static int can_pernet_init(struct net *net)
861 {
862 	spin_lock_init(&net->can.can_rcvlists_lock);
863 	net->can.can_rx_alldev_list =
864 		kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
865 	if (!net->can.can_rx_alldev_list)
866 		goto out;
867 	net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
868 	if (!net->can.can_stats)
869 		goto out_free_alldev_list;
870 	net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
871 	if (!net->can.can_pstats)
872 		goto out_free_can_stats;
873 
874 	if (IS_ENABLED(CONFIG_PROC_FS)) {
875 		/* the statistics are updated every second (timer triggered) */
876 		if (stats_timer) {
877 			timer_setup(&net->can.can_stattimer, can_stat_update,
878 				    0);
879 			mod_timer(&net->can.can_stattimer,
880 				  round_jiffies(jiffies + HZ));
881 		}
882 		net->can.can_stats->jiffies_init = jiffies;
883 		can_init_proc(net);
884 	}
885 
886 	return 0;
887 
888  out_free_can_stats:
889 	kfree(net->can.can_stats);
890  out_free_alldev_list:
891 	kfree(net->can.can_rx_alldev_list);
892  out:
893 	return -ENOMEM;
894 }
895 
896 static void can_pernet_exit(struct net *net)
897 {
898 	struct net_device *dev;
899 
900 	if (IS_ENABLED(CONFIG_PROC_FS)) {
901 		can_remove_proc(net);
902 		if (stats_timer)
903 			del_timer_sync(&net->can.can_stattimer);
904 	}
905 
906 	/* remove created dev_rcv_lists from still registered CAN devices */
907 	rcu_read_lock();
908 	for_each_netdev_rcu(net, dev) {
909 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
910 			struct can_dev_rcv_lists *d = dev->ml_priv;
911 
912 			BUG_ON(d->entries);
913 			kfree(d);
914 			dev->ml_priv = NULL;
915 		}
916 	}
917 	rcu_read_unlock();
918 
919 	kfree(net->can.can_rx_alldev_list);
920 	kfree(net->can.can_stats);
921 	kfree(net->can.can_pstats);
922 }
923 
924 /*
925  * af_can module init/exit functions
926  */
927 
928 static struct packet_type can_packet __read_mostly = {
929 	.type = cpu_to_be16(ETH_P_CAN),
930 	.func = can_rcv,
931 };
932 
933 static struct packet_type canfd_packet __read_mostly = {
934 	.type = cpu_to_be16(ETH_P_CANFD),
935 	.func = canfd_rcv,
936 };
937 
938 static const struct net_proto_family can_family_ops = {
939 	.family = PF_CAN,
940 	.create = can_create,
941 	.owner  = THIS_MODULE,
942 };
943 
944 /* notifier block for netdevice event */
945 static struct notifier_block can_netdev_notifier __read_mostly = {
946 	.notifier_call = can_notifier,
947 };
948 
949 static struct pernet_operations can_pernet_ops __read_mostly = {
950 	.init = can_pernet_init,
951 	.exit = can_pernet_exit,
952 };
953 
954 static __init int can_init(void)
955 {
956 	int err;
957 
958 	/* check for correct padding to be able to use the structs similarly */
959 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
960 		     offsetof(struct canfd_frame, len) ||
961 		     offsetof(struct can_frame, data) !=
962 		     offsetof(struct canfd_frame, data));
963 
964 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
965 
966 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
967 				      0, 0, NULL);
968 	if (!rcv_cache)
969 		return -ENOMEM;
970 
971 	err = register_pernet_subsys(&can_pernet_ops);
972 	if (err)
973 		goto out_pernet;
974 
975 	/* protocol register */
976 	err = sock_register(&can_family_ops);
977 	if (err)
978 		goto out_sock;
979 	err = register_netdevice_notifier(&can_netdev_notifier);
980 	if (err)
981 		goto out_notifier;
982 
983 	dev_add_pack(&can_packet);
984 	dev_add_pack(&canfd_packet);
985 
986 	return 0;
987 
988 out_notifier:
989 	sock_unregister(PF_CAN);
990 out_sock:
991 	unregister_pernet_subsys(&can_pernet_ops);
992 out_pernet:
993 	kmem_cache_destroy(rcv_cache);
994 
995 	return err;
996 }
997 
998 static __exit void can_exit(void)
999 {
1000 	/* protocol unregister */
1001 	dev_remove_pack(&canfd_packet);
1002 	dev_remove_pack(&can_packet);
1003 	unregister_netdevice_notifier(&can_netdev_notifier);
1004 	sock_unregister(PF_CAN);
1005 
1006 	unregister_pernet_subsys(&can_pernet_ops);
1007 
1008 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
1009 
1010 	kmem_cache_destroy(rcv_cache);
1011 }
1012 
1013 module_init(can_init);
1014 module_exit(can_exit);
1015