xref: /openbmc/linux/net/can/af_can.c (revision e290ed81)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 static __initdata const char banner[] = KERN_INFO
68 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
69 
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76 
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 
85 static struct kmem_cache *rcv_cache __read_mostly;
86 
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90 
91 struct timer_list can_stattimer;   /* timer for statistics update */
92 struct s_stats    can_stats;       /* packet statistics */
93 struct s_pstats   can_pstats;      /* receive list statistics */
94 
95 /*
96  * af_can socket functions
97  */
98 
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 	struct sock *sk = sock->sk;
102 
103 	switch (cmd) {
104 
105 	case SIOCGSTAMP:
106 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 
108 	default:
109 		return -ENOIOCTLCMD;
110 	}
111 }
112 EXPORT_SYMBOL(can_ioctl);
113 
114 static void can_sock_destruct(struct sock *sk)
115 {
116 	skb_queue_purge(&sk->sk_receive_queue);
117 }
118 
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 	const struct can_proto *cp;
122 
123 	rcu_read_lock();
124 	cp = rcu_dereference(proto_tab[protocol]);
125 	if (cp && !try_module_get(cp->prot->owner))
126 		cp = NULL;
127 	rcu_read_unlock();
128 
129 	return cp;
130 }
131 
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 	module_put(cp->prot->owner);
135 }
136 
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 		      int kern)
139 {
140 	struct sock *sk;
141 	const struct can_proto *cp;
142 	int err = 0;
143 
144 	sock->state = SS_UNCONNECTED;
145 
146 	if (protocol < 0 || protocol >= CAN_NPROTO)
147 		return -EINVAL;
148 
149 	if (!net_eq(net, &init_net))
150 		return -EAFNOSUPPORT;
151 
152 	cp = can_get_proto(protocol);
153 
154 #ifdef CONFIG_MODULES
155 	if (!cp) {
156 		/* try to load protocol module if kernel is modular */
157 
158 		err = request_module("can-proto-%d", protocol);
159 
160 		/*
161 		 * In case of error we only print a message but don't
162 		 * return the error code immediately.  Below we will
163 		 * return -EPROTONOSUPPORT
164 		 */
165 		if (err)
166 			printk_ratelimited(KERN_ERR "can: request_module "
167 			       "(can-proto-%d) failed.\n", protocol);
168 
169 		cp = can_get_proto(protocol);
170 	}
171 #endif
172 
173 	/* check for available protocol and correct usage */
174 
175 	if (!cp)
176 		return -EPROTONOSUPPORT;
177 
178 	if (cp->type != sock->type) {
179 		err = -EPROTOTYPE;
180 		goto errout;
181 	}
182 
183 	sock->ops = cp->ops;
184 
185 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 	if (!sk) {
187 		err = -ENOMEM;
188 		goto errout;
189 	}
190 
191 	sock_init_data(sock, sk);
192 	sk->sk_destruct = can_sock_destruct;
193 
194 	if (sk->sk_prot->init)
195 		err = sk->sk_prot->init(sk);
196 
197 	if (err) {
198 		/* release sk on errors */
199 		sock_orphan(sk);
200 		sock_put(sk);
201 	}
202 
203  errout:
204 	can_put_proto(cp);
205 	return err;
206 }
207 
208 /*
209  * af_can tx path
210  */
211 
212 /**
213  * can_send - transmit a CAN frame (optional with local loopback)
214  * @skb: pointer to socket buffer with CAN frame in data section
215  * @loop: loopback for listeners on local CAN sockets (recommended default!)
216  *
217  * Due to the loopback this routine must not be called from hardirq context.
218  *
219  * Return:
220  *  0 on success
221  *  -ENETDOWN when the selected interface is down
222  *  -ENOBUFS on full driver queue (see net_xmit_errno())
223  *  -ENOMEM when local loopback failed at calling skb_clone()
224  *  -EPERM when trying to send on a non-CAN interface
225  *  -EINVAL when the skb->data does not contain a valid CAN frame
226  */
227 int can_send(struct sk_buff *skb, int loop)
228 {
229 	struct sk_buff *newskb = NULL;
230 	struct can_frame *cf = (struct can_frame *)skb->data;
231 	int err;
232 
233 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
234 		kfree_skb(skb);
235 		return -EINVAL;
236 	}
237 
238 	if (skb->dev->type != ARPHRD_CAN) {
239 		kfree_skb(skb);
240 		return -EPERM;
241 	}
242 
243 	if (!(skb->dev->flags & IFF_UP)) {
244 		kfree_skb(skb);
245 		return -ENETDOWN;
246 	}
247 
248 	skb->protocol = htons(ETH_P_CAN);
249 	skb_reset_network_header(skb);
250 	skb_reset_transport_header(skb);
251 
252 	if (loop) {
253 		/* local loopback of sent CAN frames */
254 
255 		/* indication for the CAN driver: do loopback */
256 		skb->pkt_type = PACKET_LOOPBACK;
257 
258 		/*
259 		 * The reference to the originating sock may be required
260 		 * by the receiving socket to check whether the frame is
261 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
262 		 * Therefore we have to ensure that skb->sk remains the
263 		 * reference to the originating sock by restoring skb->sk
264 		 * after each skb_clone() or skb_orphan() usage.
265 		 */
266 
267 		if (!(skb->dev->flags & IFF_ECHO)) {
268 			/*
269 			 * If the interface is not capable to do loopback
270 			 * itself, we do it here.
271 			 */
272 			newskb = skb_clone(skb, GFP_ATOMIC);
273 			if (!newskb) {
274 				kfree_skb(skb);
275 				return -ENOMEM;
276 			}
277 
278 			newskb->sk = skb->sk;
279 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
280 			newskb->pkt_type = PACKET_BROADCAST;
281 		}
282 	} else {
283 		/* indication for the CAN driver: no loopback required */
284 		skb->pkt_type = PACKET_HOST;
285 	}
286 
287 	/* send to netdevice */
288 	err = dev_queue_xmit(skb);
289 	if (err > 0)
290 		err = net_xmit_errno(err);
291 
292 	if (err) {
293 		kfree_skb(newskb);
294 		return err;
295 	}
296 
297 	if (newskb)
298 		netif_rx_ni(newskb);
299 
300 	/* update statistics */
301 	can_stats.tx_frames++;
302 	can_stats.tx_frames_delta++;
303 
304 	return 0;
305 }
306 EXPORT_SYMBOL(can_send);
307 
308 /*
309  * af_can rx path
310  */
311 
312 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
313 {
314 	if (!dev)
315 		return &can_rx_alldev_list;
316 	else
317 		return (struct dev_rcv_lists *)dev->ml_priv;
318 }
319 
320 /**
321  * find_rcv_list - determine optimal filterlist inside device filter struct
322  * @can_id: pointer to CAN identifier of a given can_filter
323  * @mask: pointer to CAN mask of a given can_filter
324  * @d: pointer to the device filter struct
325  *
326  * Description:
327  *  Returns the optimal filterlist to reduce the filter handling in the
328  *  receive path. This function is called by service functions that need
329  *  to register or unregister a can_filter in the filter lists.
330  *
331  *  A filter matches in general, when
332  *
333  *          <received_can_id> & mask == can_id & mask
334  *
335  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
336  *  relevant bits for the filter.
337  *
338  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
339  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
340  *  there is a special filterlist and a special rx path filter handling.
341  *
342  * Return:
343  *  Pointer to optimal filterlist for the given can_id/mask pair.
344  *  Constistency checked mask.
345  *  Reduced can_id to have a preprocessed filter compare value.
346  */
347 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
348 					struct dev_rcv_lists *d)
349 {
350 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
351 
352 	/* filter for error frames in extra filterlist */
353 	if (*mask & CAN_ERR_FLAG) {
354 		/* clear CAN_ERR_FLAG in filter entry */
355 		*mask &= CAN_ERR_MASK;
356 		return &d->rx[RX_ERR];
357 	}
358 
359 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
360 
361 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
362 
363 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
364 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
365 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
366 
367 	/* reduce condition testing at receive time */
368 	*can_id &= *mask;
369 
370 	/* inverse can_id/can_mask filter */
371 	if (inv)
372 		return &d->rx[RX_INV];
373 
374 	/* mask == 0 => no condition testing at receive time */
375 	if (!(*mask))
376 		return &d->rx[RX_ALL];
377 
378 	/* extra filterlists for the subscription of a single non-RTR can_id */
379 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
380 	    !(*can_id & CAN_RTR_FLAG)) {
381 
382 		if (*can_id & CAN_EFF_FLAG) {
383 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
384 				/* RFC: a future use-case for hash-tables? */
385 				return &d->rx[RX_EFF];
386 			}
387 		} else {
388 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
389 				return &d->rx_sff[*can_id];
390 		}
391 	}
392 
393 	/* default: filter via can_id/can_mask */
394 	return &d->rx[RX_FIL];
395 }
396 
397 /**
398  * can_rx_register - subscribe CAN frames from a specific interface
399  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
400  * @can_id: CAN identifier (see description)
401  * @mask: CAN mask (see description)
402  * @func: callback function on filter match
403  * @data: returned parameter for callback function
404  * @ident: string for calling module indentification
405  *
406  * Description:
407  *  Invokes the callback function with the received sk_buff and the given
408  *  parameter 'data' on a matching receive filter. A filter matches, when
409  *
410  *          <received_can_id> & mask == can_id & mask
411  *
412  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
413  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
414  *
415  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
416  *  the callback function is running. The callback function must *not* free
417  *  the given sk_buff while processing it's task. When the given sk_buff is
418  *  needed after the end of the callback function it must be cloned inside
419  *  the callback function with skb_clone().
420  *
421  * Return:
422  *  0 on success
423  *  -ENOMEM on missing cache mem to create subscription entry
424  *  -ENODEV unknown device
425  */
426 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
427 		    void (*func)(struct sk_buff *, void *), void *data,
428 		    char *ident)
429 {
430 	struct receiver *r;
431 	struct hlist_head *rl;
432 	struct dev_rcv_lists *d;
433 	int err = 0;
434 
435 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
436 
437 	if (dev && dev->type != ARPHRD_CAN)
438 		return -ENODEV;
439 
440 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
441 	if (!r)
442 		return -ENOMEM;
443 
444 	spin_lock(&can_rcvlists_lock);
445 
446 	d = find_dev_rcv_lists(dev);
447 	if (d) {
448 		rl = find_rcv_list(&can_id, &mask, d);
449 
450 		r->can_id  = can_id;
451 		r->mask    = mask;
452 		r->matches = 0;
453 		r->func    = func;
454 		r->data    = data;
455 		r->ident   = ident;
456 
457 		hlist_add_head_rcu(&r->list, rl);
458 		d->entries++;
459 
460 		can_pstats.rcv_entries++;
461 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
462 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
463 	} else {
464 		kmem_cache_free(rcv_cache, r);
465 		err = -ENODEV;
466 	}
467 
468 	spin_unlock(&can_rcvlists_lock);
469 
470 	return err;
471 }
472 EXPORT_SYMBOL(can_rx_register);
473 
474 /*
475  * can_rx_delete_receiver - rcu callback for single receiver entry removal
476  */
477 static void can_rx_delete_receiver(struct rcu_head *rp)
478 {
479 	struct receiver *r = container_of(rp, struct receiver, rcu);
480 
481 	kmem_cache_free(rcv_cache, r);
482 }
483 
484 /**
485  * can_rx_unregister - unsubscribe CAN frames from a specific interface
486  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
487  * @can_id: CAN identifier
488  * @mask: CAN mask
489  * @func: callback function on filter match
490  * @data: returned parameter for callback function
491  *
492  * Description:
493  *  Removes subscription entry depending on given (subscription) values.
494  */
495 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
496 		       void (*func)(struct sk_buff *, void *), void *data)
497 {
498 	struct receiver *r = NULL;
499 	struct hlist_head *rl;
500 	struct hlist_node *next;
501 	struct dev_rcv_lists *d;
502 
503 	if (dev && dev->type != ARPHRD_CAN)
504 		return;
505 
506 	spin_lock(&can_rcvlists_lock);
507 
508 	d = find_dev_rcv_lists(dev);
509 	if (!d) {
510 		printk(KERN_ERR "BUG: receive list not found for "
511 		       "dev %s, id %03X, mask %03X\n",
512 		       DNAME(dev), can_id, mask);
513 		goto out;
514 	}
515 
516 	rl = find_rcv_list(&can_id, &mask, d);
517 
518 	/*
519 	 * Search the receiver list for the item to delete.  This should
520 	 * exist, since no receiver may be unregistered that hasn't
521 	 * been registered before.
522 	 */
523 
524 	hlist_for_each_entry_rcu(r, next, rl, list) {
525 		if (r->can_id == can_id && r->mask == mask &&
526 		    r->func == func && r->data == data)
527 			break;
528 	}
529 
530 	/*
531 	 * Check for bugs in CAN protocol implementations:
532 	 * If no matching list item was found, the list cursor variable next
533 	 * will be NULL, while r will point to the last item of the list.
534 	 */
535 
536 	if (!next) {
537 		printk(KERN_ERR "BUG: receive list entry not found for "
538 		       "dev %s, id %03X, mask %03X\n",
539 		       DNAME(dev), can_id, mask);
540 		r = NULL;
541 		goto out;
542 	}
543 
544 	hlist_del_rcu(&r->list);
545 	d->entries--;
546 
547 	if (can_pstats.rcv_entries > 0)
548 		can_pstats.rcv_entries--;
549 
550 	/* remove device structure requested by NETDEV_UNREGISTER */
551 	if (d->remove_on_zero_entries && !d->entries) {
552 		kfree(d);
553 		dev->ml_priv = NULL;
554 	}
555 
556  out:
557 	spin_unlock(&can_rcvlists_lock);
558 
559 	/* schedule the receiver item for deletion */
560 	if (r)
561 		call_rcu(&r->rcu, can_rx_delete_receiver);
562 }
563 EXPORT_SYMBOL(can_rx_unregister);
564 
565 static inline void deliver(struct sk_buff *skb, struct receiver *r)
566 {
567 	r->func(skb, r->data);
568 	r->matches++;
569 }
570 
571 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
572 {
573 	struct receiver *r;
574 	struct hlist_node *n;
575 	int matches = 0;
576 	struct can_frame *cf = (struct can_frame *)skb->data;
577 	canid_t can_id = cf->can_id;
578 
579 	if (d->entries == 0)
580 		return 0;
581 
582 	if (can_id & CAN_ERR_FLAG) {
583 		/* check for error frame entries only */
584 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
585 			if (can_id & r->mask) {
586 				deliver(skb, r);
587 				matches++;
588 			}
589 		}
590 		return matches;
591 	}
592 
593 	/* check for unfiltered entries */
594 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
595 		deliver(skb, r);
596 		matches++;
597 	}
598 
599 	/* check for can_id/mask entries */
600 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
601 		if ((can_id & r->mask) == r->can_id) {
602 			deliver(skb, r);
603 			matches++;
604 		}
605 	}
606 
607 	/* check for inverted can_id/mask entries */
608 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
609 		if ((can_id & r->mask) != r->can_id) {
610 			deliver(skb, r);
611 			matches++;
612 		}
613 	}
614 
615 	/* check filterlists for single non-RTR can_ids */
616 	if (can_id & CAN_RTR_FLAG)
617 		return matches;
618 
619 	if (can_id & CAN_EFF_FLAG) {
620 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
621 			if (r->can_id == can_id) {
622 				deliver(skb, r);
623 				matches++;
624 			}
625 		}
626 	} else {
627 		can_id &= CAN_SFF_MASK;
628 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
629 			deliver(skb, r);
630 			matches++;
631 		}
632 	}
633 
634 	return matches;
635 }
636 
637 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
638 		   struct packet_type *pt, struct net_device *orig_dev)
639 {
640 	struct dev_rcv_lists *d;
641 	struct can_frame *cf = (struct can_frame *)skb->data;
642 	int matches;
643 
644 	if (!net_eq(dev_net(dev), &init_net))
645 		goto drop;
646 
647 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
648 		      skb->len != sizeof(struct can_frame) ||
649 		      cf->can_dlc > 8,
650 		      "PF_CAN: dropped non conform skbuf: "
651 		      "dev type %d, len %d, can_dlc %d\n",
652 		      dev->type, skb->len, cf->can_dlc))
653 		goto drop;
654 
655 	/* update statistics */
656 	can_stats.rx_frames++;
657 	can_stats.rx_frames_delta++;
658 
659 	rcu_read_lock();
660 
661 	/* deliver the packet to sockets listening on all devices */
662 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
663 
664 	/* find receive list for this device */
665 	d = find_dev_rcv_lists(dev);
666 	if (d)
667 		matches += can_rcv_filter(d, skb);
668 
669 	rcu_read_unlock();
670 
671 	/* consume the skbuff allocated by the netdevice driver */
672 	consume_skb(skb);
673 
674 	if (matches > 0) {
675 		can_stats.matches++;
676 		can_stats.matches_delta++;
677 	}
678 
679 	return NET_RX_SUCCESS;
680 
681 drop:
682 	kfree_skb(skb);
683 	return NET_RX_DROP;
684 }
685 
686 /*
687  * af_can protocol functions
688  */
689 
690 /**
691  * can_proto_register - register CAN transport protocol
692  * @cp: pointer to CAN protocol structure
693  *
694  * Return:
695  *  0 on success
696  *  -EINVAL invalid (out of range) protocol number
697  *  -EBUSY  protocol already in use
698  *  -ENOBUF if proto_register() fails
699  */
700 int can_proto_register(const struct can_proto *cp)
701 {
702 	int proto = cp->protocol;
703 	int err = 0;
704 
705 	if (proto < 0 || proto >= CAN_NPROTO) {
706 		printk(KERN_ERR "can: protocol number %d out of range\n",
707 		       proto);
708 		return -EINVAL;
709 	}
710 
711 	err = proto_register(cp->prot, 0);
712 	if (err < 0)
713 		return err;
714 
715 	mutex_lock(&proto_tab_lock);
716 
717 	if (proto_tab[proto]) {
718 		printk(KERN_ERR "can: protocol %d already registered\n",
719 		       proto);
720 		err = -EBUSY;
721 	} else
722 		RCU_INIT_POINTER(proto_tab[proto], cp);
723 
724 	mutex_unlock(&proto_tab_lock);
725 
726 	if (err < 0)
727 		proto_unregister(cp->prot);
728 
729 	return err;
730 }
731 EXPORT_SYMBOL(can_proto_register);
732 
733 /**
734  * can_proto_unregister - unregister CAN transport protocol
735  * @cp: pointer to CAN protocol structure
736  */
737 void can_proto_unregister(const struct can_proto *cp)
738 {
739 	int proto = cp->protocol;
740 
741 	mutex_lock(&proto_tab_lock);
742 	BUG_ON(proto_tab[proto] != cp);
743 	RCU_INIT_POINTER(proto_tab[proto], NULL);
744 	mutex_unlock(&proto_tab_lock);
745 
746 	synchronize_rcu();
747 
748 	proto_unregister(cp->prot);
749 }
750 EXPORT_SYMBOL(can_proto_unregister);
751 
752 /*
753  * af_can notifier to create/remove CAN netdevice specific structs
754  */
755 static int can_notifier(struct notifier_block *nb, unsigned long msg,
756 			void *data)
757 {
758 	struct net_device *dev = (struct net_device *)data;
759 	struct dev_rcv_lists *d;
760 
761 	if (!net_eq(dev_net(dev), &init_net))
762 		return NOTIFY_DONE;
763 
764 	if (dev->type != ARPHRD_CAN)
765 		return NOTIFY_DONE;
766 
767 	switch (msg) {
768 
769 	case NETDEV_REGISTER:
770 
771 		/* create new dev_rcv_lists for this device */
772 		d = kzalloc(sizeof(*d), GFP_KERNEL);
773 		if (!d) {
774 			printk(KERN_ERR
775 			       "can: allocation of receive list failed\n");
776 			return NOTIFY_DONE;
777 		}
778 		BUG_ON(dev->ml_priv);
779 		dev->ml_priv = d;
780 
781 		break;
782 
783 	case NETDEV_UNREGISTER:
784 		spin_lock(&can_rcvlists_lock);
785 
786 		d = dev->ml_priv;
787 		if (d) {
788 			if (d->entries)
789 				d->remove_on_zero_entries = 1;
790 			else {
791 				kfree(d);
792 				dev->ml_priv = NULL;
793 			}
794 		} else
795 			printk(KERN_ERR "can: notifier: receive list not "
796 			       "found for dev %s\n", dev->name);
797 
798 		spin_unlock(&can_rcvlists_lock);
799 
800 		break;
801 	}
802 
803 	return NOTIFY_DONE;
804 }
805 
806 /*
807  * af_can module init/exit functions
808  */
809 
810 static struct packet_type can_packet __read_mostly = {
811 	.type = cpu_to_be16(ETH_P_CAN),
812 	.dev  = NULL,
813 	.func = can_rcv,
814 };
815 
816 static const struct net_proto_family can_family_ops = {
817 	.family = PF_CAN,
818 	.create = can_create,
819 	.owner  = THIS_MODULE,
820 };
821 
822 /* notifier block for netdevice event */
823 static struct notifier_block can_netdev_notifier __read_mostly = {
824 	.notifier_call = can_notifier,
825 };
826 
827 static __init int can_init(void)
828 {
829 	printk(banner);
830 
831 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
832 
833 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
834 				      0, 0, NULL);
835 	if (!rcv_cache)
836 		return -ENOMEM;
837 
838 	if (stats_timer) {
839 		/* the statistics are updated every second (timer triggered) */
840 		setup_timer(&can_stattimer, can_stat_update, 0);
841 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
842 	} else
843 		can_stattimer.function = NULL;
844 
845 	can_init_proc();
846 
847 	/* protocol register */
848 	sock_register(&can_family_ops);
849 	register_netdevice_notifier(&can_netdev_notifier);
850 	dev_add_pack(&can_packet);
851 
852 	return 0;
853 }
854 
855 static __exit void can_exit(void)
856 {
857 	struct net_device *dev;
858 
859 	if (stats_timer)
860 		del_timer_sync(&can_stattimer);
861 
862 	can_remove_proc();
863 
864 	/* protocol unregister */
865 	dev_remove_pack(&can_packet);
866 	unregister_netdevice_notifier(&can_netdev_notifier);
867 	sock_unregister(PF_CAN);
868 
869 	/* remove created dev_rcv_lists from still registered CAN devices */
870 	rcu_read_lock();
871 	for_each_netdev_rcu(&init_net, dev) {
872 		if (dev->type == ARPHRD_CAN && dev->ml_priv){
873 
874 			struct dev_rcv_lists *d = dev->ml_priv;
875 
876 			BUG_ON(d->entries);
877 			kfree(d);
878 			dev->ml_priv = NULL;
879 		}
880 	}
881 	rcu_read_unlock();
882 
883 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
884 
885 	kmem_cache_destroy(rcv_cache);
886 }
887 
888 module_init(can_init);
889 module_exit(can_exit);
890