1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 * Send feedback to <socketcan-users@lists.berlios.de> 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/init.h> 47 #include <linux/kmod.h> 48 #include <linux/slab.h> 49 #include <linux/list.h> 50 #include <linux/spinlock.h> 51 #include <linux/rcupdate.h> 52 #include <linux/uaccess.h> 53 #include <linux/net.h> 54 #include <linux/netdevice.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_arp.h> 58 #include <linux/skbuff.h> 59 #include <linux/can.h> 60 #include <linux/can/core.h> 61 #include <linux/ratelimit.h> 62 #include <net/net_namespace.h> 63 #include <net/sock.h> 64 65 #include "af_can.h" 66 67 static __initdata const char banner[] = KERN_INFO 68 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 69 70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 71 MODULE_LICENSE("Dual BSD/GPL"); 72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 74 75 MODULE_ALIAS_NETPROTO(PF_CAN); 76 77 static int stats_timer __read_mostly = 1; 78 module_param(stats_timer, int, S_IRUGO); 79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 80 81 /* receive filters subscribed for 'all' CAN devices */ 82 struct dev_rcv_lists can_rx_alldev_list; 83 static DEFINE_SPINLOCK(can_rcvlists_lock); 84 85 static struct kmem_cache *rcv_cache __read_mostly; 86 87 /* table of registered CAN protocols */ 88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 89 static DEFINE_MUTEX(proto_tab_lock); 90 91 struct timer_list can_stattimer; /* timer for statistics update */ 92 struct s_stats can_stats; /* packet statistics */ 93 struct s_pstats can_pstats; /* receive list statistics */ 94 95 /* 96 * af_can socket functions 97 */ 98 99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 100 { 101 struct sock *sk = sock->sk; 102 103 switch (cmd) { 104 105 case SIOCGSTAMP: 106 return sock_get_timestamp(sk, (struct timeval __user *)arg); 107 108 default: 109 return -ENOIOCTLCMD; 110 } 111 } 112 EXPORT_SYMBOL(can_ioctl); 113 114 static void can_sock_destruct(struct sock *sk) 115 { 116 skb_queue_purge(&sk->sk_receive_queue); 117 } 118 119 static const struct can_proto *can_get_proto(int protocol) 120 { 121 const struct can_proto *cp; 122 123 rcu_read_lock(); 124 cp = rcu_dereference(proto_tab[protocol]); 125 if (cp && !try_module_get(cp->prot->owner)) 126 cp = NULL; 127 rcu_read_unlock(); 128 129 return cp; 130 } 131 132 static inline void can_put_proto(const struct can_proto *cp) 133 { 134 module_put(cp->prot->owner); 135 } 136 137 static int can_create(struct net *net, struct socket *sock, int protocol, 138 int kern) 139 { 140 struct sock *sk; 141 const struct can_proto *cp; 142 int err = 0; 143 144 sock->state = SS_UNCONNECTED; 145 146 if (protocol < 0 || protocol >= CAN_NPROTO) 147 return -EINVAL; 148 149 if (!net_eq(net, &init_net)) 150 return -EAFNOSUPPORT; 151 152 cp = can_get_proto(protocol); 153 154 #ifdef CONFIG_MODULES 155 if (!cp) { 156 /* try to load protocol module if kernel is modular */ 157 158 err = request_module("can-proto-%d", protocol); 159 160 /* 161 * In case of error we only print a message but don't 162 * return the error code immediately. Below we will 163 * return -EPROTONOSUPPORT 164 */ 165 if (err) 166 printk_ratelimited(KERN_ERR "can: request_module " 167 "(can-proto-%d) failed.\n", protocol); 168 169 cp = can_get_proto(protocol); 170 } 171 #endif 172 173 /* check for available protocol and correct usage */ 174 175 if (!cp) 176 return -EPROTONOSUPPORT; 177 178 if (cp->type != sock->type) { 179 err = -EPROTOTYPE; 180 goto errout; 181 } 182 183 sock->ops = cp->ops; 184 185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 186 if (!sk) { 187 err = -ENOMEM; 188 goto errout; 189 } 190 191 sock_init_data(sock, sk); 192 sk->sk_destruct = can_sock_destruct; 193 194 if (sk->sk_prot->init) 195 err = sk->sk_prot->init(sk); 196 197 if (err) { 198 /* release sk on errors */ 199 sock_orphan(sk); 200 sock_put(sk); 201 } 202 203 errout: 204 can_put_proto(cp); 205 return err; 206 } 207 208 /* 209 * af_can tx path 210 */ 211 212 /** 213 * can_send - transmit a CAN frame (optional with local loopback) 214 * @skb: pointer to socket buffer with CAN frame in data section 215 * @loop: loopback for listeners on local CAN sockets (recommended default!) 216 * 217 * Due to the loopback this routine must not be called from hardirq context. 218 * 219 * Return: 220 * 0 on success 221 * -ENETDOWN when the selected interface is down 222 * -ENOBUFS on full driver queue (see net_xmit_errno()) 223 * -ENOMEM when local loopback failed at calling skb_clone() 224 * -EPERM when trying to send on a non-CAN interface 225 * -EINVAL when the skb->data does not contain a valid CAN frame 226 */ 227 int can_send(struct sk_buff *skb, int loop) 228 { 229 struct sk_buff *newskb = NULL; 230 struct can_frame *cf = (struct can_frame *)skb->data; 231 int err; 232 233 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) { 234 kfree_skb(skb); 235 return -EINVAL; 236 } 237 238 if (skb->dev->type != ARPHRD_CAN) { 239 kfree_skb(skb); 240 return -EPERM; 241 } 242 243 if (!(skb->dev->flags & IFF_UP)) { 244 kfree_skb(skb); 245 return -ENETDOWN; 246 } 247 248 skb->protocol = htons(ETH_P_CAN); 249 skb_reset_network_header(skb); 250 skb_reset_transport_header(skb); 251 252 if (loop) { 253 /* local loopback of sent CAN frames */ 254 255 /* indication for the CAN driver: do loopback */ 256 skb->pkt_type = PACKET_LOOPBACK; 257 258 /* 259 * The reference to the originating sock may be required 260 * by the receiving socket to check whether the frame is 261 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 262 * Therefore we have to ensure that skb->sk remains the 263 * reference to the originating sock by restoring skb->sk 264 * after each skb_clone() or skb_orphan() usage. 265 */ 266 267 if (!(skb->dev->flags & IFF_ECHO)) { 268 /* 269 * If the interface is not capable to do loopback 270 * itself, we do it here. 271 */ 272 newskb = skb_clone(skb, GFP_ATOMIC); 273 if (!newskb) { 274 kfree_skb(skb); 275 return -ENOMEM; 276 } 277 278 newskb->sk = skb->sk; 279 newskb->ip_summed = CHECKSUM_UNNECESSARY; 280 newskb->pkt_type = PACKET_BROADCAST; 281 } 282 } else { 283 /* indication for the CAN driver: no loopback required */ 284 skb->pkt_type = PACKET_HOST; 285 } 286 287 /* send to netdevice */ 288 err = dev_queue_xmit(skb); 289 if (err > 0) 290 err = net_xmit_errno(err); 291 292 if (err) { 293 kfree_skb(newskb); 294 return err; 295 } 296 297 if (newskb) 298 netif_rx_ni(newskb); 299 300 /* update statistics */ 301 can_stats.tx_frames++; 302 can_stats.tx_frames_delta++; 303 304 return 0; 305 } 306 EXPORT_SYMBOL(can_send); 307 308 /* 309 * af_can rx path 310 */ 311 312 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 313 { 314 if (!dev) 315 return &can_rx_alldev_list; 316 else 317 return (struct dev_rcv_lists *)dev->ml_priv; 318 } 319 320 /** 321 * find_rcv_list - determine optimal filterlist inside device filter struct 322 * @can_id: pointer to CAN identifier of a given can_filter 323 * @mask: pointer to CAN mask of a given can_filter 324 * @d: pointer to the device filter struct 325 * 326 * Description: 327 * Returns the optimal filterlist to reduce the filter handling in the 328 * receive path. This function is called by service functions that need 329 * to register or unregister a can_filter in the filter lists. 330 * 331 * A filter matches in general, when 332 * 333 * <received_can_id> & mask == can_id & mask 334 * 335 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 336 * relevant bits for the filter. 337 * 338 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 339 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames 340 * there is a special filterlist and a special rx path filter handling. 341 * 342 * Return: 343 * Pointer to optimal filterlist for the given can_id/mask pair. 344 * Constistency checked mask. 345 * Reduced can_id to have a preprocessed filter compare value. 346 */ 347 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 348 struct dev_rcv_lists *d) 349 { 350 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 351 352 /* filter for error frames in extra filterlist */ 353 if (*mask & CAN_ERR_FLAG) { 354 /* clear CAN_ERR_FLAG in filter entry */ 355 *mask &= CAN_ERR_MASK; 356 return &d->rx[RX_ERR]; 357 } 358 359 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 360 361 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 362 363 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 364 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 365 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 366 367 /* reduce condition testing at receive time */ 368 *can_id &= *mask; 369 370 /* inverse can_id/can_mask filter */ 371 if (inv) 372 return &d->rx[RX_INV]; 373 374 /* mask == 0 => no condition testing at receive time */ 375 if (!(*mask)) 376 return &d->rx[RX_ALL]; 377 378 /* extra filterlists for the subscription of a single non-RTR can_id */ 379 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 380 !(*can_id & CAN_RTR_FLAG)) { 381 382 if (*can_id & CAN_EFF_FLAG) { 383 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) { 384 /* RFC: a future use-case for hash-tables? */ 385 return &d->rx[RX_EFF]; 386 } 387 } else { 388 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 389 return &d->rx_sff[*can_id]; 390 } 391 } 392 393 /* default: filter via can_id/can_mask */ 394 return &d->rx[RX_FIL]; 395 } 396 397 /** 398 * can_rx_register - subscribe CAN frames from a specific interface 399 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 400 * @can_id: CAN identifier (see description) 401 * @mask: CAN mask (see description) 402 * @func: callback function on filter match 403 * @data: returned parameter for callback function 404 * @ident: string for calling module indentification 405 * 406 * Description: 407 * Invokes the callback function with the received sk_buff and the given 408 * parameter 'data' on a matching receive filter. A filter matches, when 409 * 410 * <received_can_id> & mask == can_id & mask 411 * 412 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 413 * filter for error frames (CAN_ERR_FLAG bit set in mask). 414 * 415 * The provided pointer to the sk_buff is guaranteed to be valid as long as 416 * the callback function is running. The callback function must *not* free 417 * the given sk_buff while processing it's task. When the given sk_buff is 418 * needed after the end of the callback function it must be cloned inside 419 * the callback function with skb_clone(). 420 * 421 * Return: 422 * 0 on success 423 * -ENOMEM on missing cache mem to create subscription entry 424 * -ENODEV unknown device 425 */ 426 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 427 void (*func)(struct sk_buff *, void *), void *data, 428 char *ident) 429 { 430 struct receiver *r; 431 struct hlist_head *rl; 432 struct dev_rcv_lists *d; 433 int err = 0; 434 435 /* insert new receiver (dev,canid,mask) -> (func,data) */ 436 437 if (dev && dev->type != ARPHRD_CAN) 438 return -ENODEV; 439 440 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 441 if (!r) 442 return -ENOMEM; 443 444 spin_lock(&can_rcvlists_lock); 445 446 d = find_dev_rcv_lists(dev); 447 if (d) { 448 rl = find_rcv_list(&can_id, &mask, d); 449 450 r->can_id = can_id; 451 r->mask = mask; 452 r->matches = 0; 453 r->func = func; 454 r->data = data; 455 r->ident = ident; 456 457 hlist_add_head_rcu(&r->list, rl); 458 d->entries++; 459 460 can_pstats.rcv_entries++; 461 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 462 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 463 } else { 464 kmem_cache_free(rcv_cache, r); 465 err = -ENODEV; 466 } 467 468 spin_unlock(&can_rcvlists_lock); 469 470 return err; 471 } 472 EXPORT_SYMBOL(can_rx_register); 473 474 /* 475 * can_rx_delete_receiver - rcu callback for single receiver entry removal 476 */ 477 static void can_rx_delete_receiver(struct rcu_head *rp) 478 { 479 struct receiver *r = container_of(rp, struct receiver, rcu); 480 481 kmem_cache_free(rcv_cache, r); 482 } 483 484 /** 485 * can_rx_unregister - unsubscribe CAN frames from a specific interface 486 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 487 * @can_id: CAN identifier 488 * @mask: CAN mask 489 * @func: callback function on filter match 490 * @data: returned parameter for callback function 491 * 492 * Description: 493 * Removes subscription entry depending on given (subscription) values. 494 */ 495 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 496 void (*func)(struct sk_buff *, void *), void *data) 497 { 498 struct receiver *r = NULL; 499 struct hlist_head *rl; 500 struct hlist_node *next; 501 struct dev_rcv_lists *d; 502 503 if (dev && dev->type != ARPHRD_CAN) 504 return; 505 506 spin_lock(&can_rcvlists_lock); 507 508 d = find_dev_rcv_lists(dev); 509 if (!d) { 510 printk(KERN_ERR "BUG: receive list not found for " 511 "dev %s, id %03X, mask %03X\n", 512 DNAME(dev), can_id, mask); 513 goto out; 514 } 515 516 rl = find_rcv_list(&can_id, &mask, d); 517 518 /* 519 * Search the receiver list for the item to delete. This should 520 * exist, since no receiver may be unregistered that hasn't 521 * been registered before. 522 */ 523 524 hlist_for_each_entry_rcu(r, next, rl, list) { 525 if (r->can_id == can_id && r->mask == mask && 526 r->func == func && r->data == data) 527 break; 528 } 529 530 /* 531 * Check for bugs in CAN protocol implementations: 532 * If no matching list item was found, the list cursor variable next 533 * will be NULL, while r will point to the last item of the list. 534 */ 535 536 if (!next) { 537 printk(KERN_ERR "BUG: receive list entry not found for " 538 "dev %s, id %03X, mask %03X\n", 539 DNAME(dev), can_id, mask); 540 r = NULL; 541 goto out; 542 } 543 544 hlist_del_rcu(&r->list); 545 d->entries--; 546 547 if (can_pstats.rcv_entries > 0) 548 can_pstats.rcv_entries--; 549 550 /* remove device structure requested by NETDEV_UNREGISTER */ 551 if (d->remove_on_zero_entries && !d->entries) { 552 kfree(d); 553 dev->ml_priv = NULL; 554 } 555 556 out: 557 spin_unlock(&can_rcvlists_lock); 558 559 /* schedule the receiver item for deletion */ 560 if (r) 561 call_rcu(&r->rcu, can_rx_delete_receiver); 562 } 563 EXPORT_SYMBOL(can_rx_unregister); 564 565 static inline void deliver(struct sk_buff *skb, struct receiver *r) 566 { 567 r->func(skb, r->data); 568 r->matches++; 569 } 570 571 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 572 { 573 struct receiver *r; 574 struct hlist_node *n; 575 int matches = 0; 576 struct can_frame *cf = (struct can_frame *)skb->data; 577 canid_t can_id = cf->can_id; 578 579 if (d->entries == 0) 580 return 0; 581 582 if (can_id & CAN_ERR_FLAG) { 583 /* check for error frame entries only */ 584 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) { 585 if (can_id & r->mask) { 586 deliver(skb, r); 587 matches++; 588 } 589 } 590 return matches; 591 } 592 593 /* check for unfiltered entries */ 594 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) { 595 deliver(skb, r); 596 matches++; 597 } 598 599 /* check for can_id/mask entries */ 600 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) { 601 if ((can_id & r->mask) == r->can_id) { 602 deliver(skb, r); 603 matches++; 604 } 605 } 606 607 /* check for inverted can_id/mask entries */ 608 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) { 609 if ((can_id & r->mask) != r->can_id) { 610 deliver(skb, r); 611 matches++; 612 } 613 } 614 615 /* check filterlists for single non-RTR can_ids */ 616 if (can_id & CAN_RTR_FLAG) 617 return matches; 618 619 if (can_id & CAN_EFF_FLAG) { 620 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) { 621 if (r->can_id == can_id) { 622 deliver(skb, r); 623 matches++; 624 } 625 } 626 } else { 627 can_id &= CAN_SFF_MASK; 628 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) { 629 deliver(skb, r); 630 matches++; 631 } 632 } 633 634 return matches; 635 } 636 637 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 638 struct packet_type *pt, struct net_device *orig_dev) 639 { 640 struct dev_rcv_lists *d; 641 struct can_frame *cf = (struct can_frame *)skb->data; 642 int matches; 643 644 if (!net_eq(dev_net(dev), &init_net)) 645 goto drop; 646 647 if (WARN_ONCE(dev->type != ARPHRD_CAN || 648 skb->len != sizeof(struct can_frame) || 649 cf->can_dlc > 8, 650 "PF_CAN: dropped non conform skbuf: " 651 "dev type %d, len %d, can_dlc %d\n", 652 dev->type, skb->len, cf->can_dlc)) 653 goto drop; 654 655 /* update statistics */ 656 can_stats.rx_frames++; 657 can_stats.rx_frames_delta++; 658 659 rcu_read_lock(); 660 661 /* deliver the packet to sockets listening on all devices */ 662 matches = can_rcv_filter(&can_rx_alldev_list, skb); 663 664 /* find receive list for this device */ 665 d = find_dev_rcv_lists(dev); 666 if (d) 667 matches += can_rcv_filter(d, skb); 668 669 rcu_read_unlock(); 670 671 /* consume the skbuff allocated by the netdevice driver */ 672 consume_skb(skb); 673 674 if (matches > 0) { 675 can_stats.matches++; 676 can_stats.matches_delta++; 677 } 678 679 return NET_RX_SUCCESS; 680 681 drop: 682 kfree_skb(skb); 683 return NET_RX_DROP; 684 } 685 686 /* 687 * af_can protocol functions 688 */ 689 690 /** 691 * can_proto_register - register CAN transport protocol 692 * @cp: pointer to CAN protocol structure 693 * 694 * Return: 695 * 0 on success 696 * -EINVAL invalid (out of range) protocol number 697 * -EBUSY protocol already in use 698 * -ENOBUF if proto_register() fails 699 */ 700 int can_proto_register(const struct can_proto *cp) 701 { 702 int proto = cp->protocol; 703 int err = 0; 704 705 if (proto < 0 || proto >= CAN_NPROTO) { 706 printk(KERN_ERR "can: protocol number %d out of range\n", 707 proto); 708 return -EINVAL; 709 } 710 711 err = proto_register(cp->prot, 0); 712 if (err < 0) 713 return err; 714 715 mutex_lock(&proto_tab_lock); 716 717 if (proto_tab[proto]) { 718 printk(KERN_ERR "can: protocol %d already registered\n", 719 proto); 720 err = -EBUSY; 721 } else 722 RCU_INIT_POINTER(proto_tab[proto], cp); 723 724 mutex_unlock(&proto_tab_lock); 725 726 if (err < 0) 727 proto_unregister(cp->prot); 728 729 return err; 730 } 731 EXPORT_SYMBOL(can_proto_register); 732 733 /** 734 * can_proto_unregister - unregister CAN transport protocol 735 * @cp: pointer to CAN protocol structure 736 */ 737 void can_proto_unregister(const struct can_proto *cp) 738 { 739 int proto = cp->protocol; 740 741 mutex_lock(&proto_tab_lock); 742 BUG_ON(proto_tab[proto] != cp); 743 RCU_INIT_POINTER(proto_tab[proto], NULL); 744 mutex_unlock(&proto_tab_lock); 745 746 synchronize_rcu(); 747 748 proto_unregister(cp->prot); 749 } 750 EXPORT_SYMBOL(can_proto_unregister); 751 752 /* 753 * af_can notifier to create/remove CAN netdevice specific structs 754 */ 755 static int can_notifier(struct notifier_block *nb, unsigned long msg, 756 void *data) 757 { 758 struct net_device *dev = (struct net_device *)data; 759 struct dev_rcv_lists *d; 760 761 if (!net_eq(dev_net(dev), &init_net)) 762 return NOTIFY_DONE; 763 764 if (dev->type != ARPHRD_CAN) 765 return NOTIFY_DONE; 766 767 switch (msg) { 768 769 case NETDEV_REGISTER: 770 771 /* create new dev_rcv_lists for this device */ 772 d = kzalloc(sizeof(*d), GFP_KERNEL); 773 if (!d) { 774 printk(KERN_ERR 775 "can: allocation of receive list failed\n"); 776 return NOTIFY_DONE; 777 } 778 BUG_ON(dev->ml_priv); 779 dev->ml_priv = d; 780 781 break; 782 783 case NETDEV_UNREGISTER: 784 spin_lock(&can_rcvlists_lock); 785 786 d = dev->ml_priv; 787 if (d) { 788 if (d->entries) 789 d->remove_on_zero_entries = 1; 790 else { 791 kfree(d); 792 dev->ml_priv = NULL; 793 } 794 } else 795 printk(KERN_ERR "can: notifier: receive list not " 796 "found for dev %s\n", dev->name); 797 798 spin_unlock(&can_rcvlists_lock); 799 800 break; 801 } 802 803 return NOTIFY_DONE; 804 } 805 806 /* 807 * af_can module init/exit functions 808 */ 809 810 static struct packet_type can_packet __read_mostly = { 811 .type = cpu_to_be16(ETH_P_CAN), 812 .dev = NULL, 813 .func = can_rcv, 814 }; 815 816 static const struct net_proto_family can_family_ops = { 817 .family = PF_CAN, 818 .create = can_create, 819 .owner = THIS_MODULE, 820 }; 821 822 /* notifier block for netdevice event */ 823 static struct notifier_block can_netdev_notifier __read_mostly = { 824 .notifier_call = can_notifier, 825 }; 826 827 static __init int can_init(void) 828 { 829 printk(banner); 830 831 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list)); 832 833 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 834 0, 0, NULL); 835 if (!rcv_cache) 836 return -ENOMEM; 837 838 if (stats_timer) { 839 /* the statistics are updated every second (timer triggered) */ 840 setup_timer(&can_stattimer, can_stat_update, 0); 841 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 842 } else 843 can_stattimer.function = NULL; 844 845 can_init_proc(); 846 847 /* protocol register */ 848 sock_register(&can_family_ops); 849 register_netdevice_notifier(&can_netdev_notifier); 850 dev_add_pack(&can_packet); 851 852 return 0; 853 } 854 855 static __exit void can_exit(void) 856 { 857 struct net_device *dev; 858 859 if (stats_timer) 860 del_timer_sync(&can_stattimer); 861 862 can_remove_proc(); 863 864 /* protocol unregister */ 865 dev_remove_pack(&can_packet); 866 unregister_netdevice_notifier(&can_netdev_notifier); 867 sock_unregister(PF_CAN); 868 869 /* remove created dev_rcv_lists from still registered CAN devices */ 870 rcu_read_lock(); 871 for_each_netdev_rcu(&init_net, dev) { 872 if (dev->type == ARPHRD_CAN && dev->ml_priv){ 873 874 struct dev_rcv_lists *d = dev->ml_priv; 875 876 BUG_ON(d->entries); 877 kfree(d); 878 dev->ml_priv = NULL; 879 } 880 } 881 rcu_read_unlock(); 882 883 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 884 885 kmem_cache_destroy(rcv_cache); 886 } 887 888 module_init(can_init); 889 module_exit(can_exit); 890