xref: /openbmc/linux/net/can/af_can.c (revision d0b73b48)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/ratelimit.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initconst const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 /* receive filters subscribed for 'all' CAN devices */
81 struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_MUTEX(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 EXPORT_SYMBOL(can_ioctl);
112 
113 static void can_sock_destruct(struct sock *sk)
114 {
115 	skb_queue_purge(&sk->sk_receive_queue);
116 }
117 
118 static const struct can_proto *can_get_proto(int protocol)
119 {
120 	const struct can_proto *cp;
121 
122 	rcu_read_lock();
123 	cp = rcu_dereference(proto_tab[protocol]);
124 	if (cp && !try_module_get(cp->prot->owner))
125 		cp = NULL;
126 	rcu_read_unlock();
127 
128 	return cp;
129 }
130 
131 static inline void can_put_proto(const struct can_proto *cp)
132 {
133 	module_put(cp->prot->owner);
134 }
135 
136 static int can_create(struct net *net, struct socket *sock, int protocol,
137 		      int kern)
138 {
139 	struct sock *sk;
140 	const struct can_proto *cp;
141 	int err = 0;
142 
143 	sock->state = SS_UNCONNECTED;
144 
145 	if (protocol < 0 || protocol >= CAN_NPROTO)
146 		return -EINVAL;
147 
148 	if (!net_eq(net, &init_net))
149 		return -EAFNOSUPPORT;
150 
151 	cp = can_get_proto(protocol);
152 
153 #ifdef CONFIG_MODULES
154 	if (!cp) {
155 		/* try to load protocol module if kernel is modular */
156 
157 		err = request_module("can-proto-%d", protocol);
158 
159 		/*
160 		 * In case of error we only print a message but don't
161 		 * return the error code immediately.  Below we will
162 		 * return -EPROTONOSUPPORT
163 		 */
164 		if (err)
165 			printk_ratelimited(KERN_ERR "can: request_module "
166 			       "(can-proto-%d) failed.\n", protocol);
167 
168 		cp = can_get_proto(protocol);
169 	}
170 #endif
171 
172 	/* check for available protocol and correct usage */
173 
174 	if (!cp)
175 		return -EPROTONOSUPPORT;
176 
177 	if (cp->type != sock->type) {
178 		err = -EPROTOTYPE;
179 		goto errout;
180 	}
181 
182 	sock->ops = cp->ops;
183 
184 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
185 	if (!sk) {
186 		err = -ENOMEM;
187 		goto errout;
188 	}
189 
190 	sock_init_data(sock, sk);
191 	sk->sk_destruct = can_sock_destruct;
192 
193 	if (sk->sk_prot->init)
194 		err = sk->sk_prot->init(sk);
195 
196 	if (err) {
197 		/* release sk on errors */
198 		sock_orphan(sk);
199 		sock_put(sk);
200 	}
201 
202  errout:
203 	can_put_proto(cp);
204 	return err;
205 }
206 
207 /*
208  * af_can tx path
209  */
210 
211 /**
212  * can_send - transmit a CAN frame (optional with local loopback)
213  * @skb: pointer to socket buffer with CAN frame in data section
214  * @loop: loopback for listeners on local CAN sockets (recommended default!)
215  *
216  * Due to the loopback this routine must not be called from hardirq context.
217  *
218  * Return:
219  *  0 on success
220  *  -ENETDOWN when the selected interface is down
221  *  -ENOBUFS on full driver queue (see net_xmit_errno())
222  *  -ENOMEM when local loopback failed at calling skb_clone()
223  *  -EPERM when trying to send on a non-CAN interface
224  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
225  *  -EINVAL when the skb->data does not contain a valid CAN frame
226  */
227 int can_send(struct sk_buff *skb, int loop)
228 {
229 	struct sk_buff *newskb = NULL;
230 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
231 	int err = -EINVAL;
232 
233 	if (skb->len == CAN_MTU) {
234 		skb->protocol = htons(ETH_P_CAN);
235 		if (unlikely(cfd->len > CAN_MAX_DLEN))
236 			goto inval_skb;
237 	} else if (skb->len == CANFD_MTU) {
238 		skb->protocol = htons(ETH_P_CANFD);
239 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
240 			goto inval_skb;
241 	} else
242 		goto inval_skb;
243 
244 	/*
245 	 * Make sure the CAN frame can pass the selected CAN netdevice.
246 	 * As structs can_frame and canfd_frame are similar, we can provide
247 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
248 	 */
249 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
250 		err = -EMSGSIZE;
251 		goto inval_skb;
252 	}
253 
254 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
255 		err = -EPERM;
256 		goto inval_skb;
257 	}
258 
259 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
260 		err = -ENETDOWN;
261 		goto inval_skb;
262 	}
263 
264 	skb_reset_network_header(skb);
265 	skb_reset_transport_header(skb);
266 
267 	if (loop) {
268 		/* local loopback of sent CAN frames */
269 
270 		/* indication for the CAN driver: do loopback */
271 		skb->pkt_type = PACKET_LOOPBACK;
272 
273 		/*
274 		 * The reference to the originating sock may be required
275 		 * by the receiving socket to check whether the frame is
276 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
277 		 * Therefore we have to ensure that skb->sk remains the
278 		 * reference to the originating sock by restoring skb->sk
279 		 * after each skb_clone() or skb_orphan() usage.
280 		 */
281 
282 		if (!(skb->dev->flags & IFF_ECHO)) {
283 			/*
284 			 * If the interface is not capable to do loopback
285 			 * itself, we do it here.
286 			 */
287 			newskb = skb_clone(skb, GFP_ATOMIC);
288 			if (!newskb) {
289 				kfree_skb(skb);
290 				return -ENOMEM;
291 			}
292 
293 			newskb->sk = skb->sk;
294 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
295 			newskb->pkt_type = PACKET_BROADCAST;
296 		}
297 	} else {
298 		/* indication for the CAN driver: no loopback required */
299 		skb->pkt_type = PACKET_HOST;
300 	}
301 
302 	/* send to netdevice */
303 	err = dev_queue_xmit(skb);
304 	if (err > 0)
305 		err = net_xmit_errno(err);
306 
307 	if (err) {
308 		kfree_skb(newskb);
309 		return err;
310 	}
311 
312 	if (newskb)
313 		netif_rx_ni(newskb);
314 
315 	/* update statistics */
316 	can_stats.tx_frames++;
317 	can_stats.tx_frames_delta++;
318 
319 	return 0;
320 
321 inval_skb:
322 	kfree_skb(skb);
323 	return err;
324 }
325 EXPORT_SYMBOL(can_send);
326 
327 /*
328  * af_can rx path
329  */
330 
331 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
332 {
333 	if (!dev)
334 		return &can_rx_alldev_list;
335 	else
336 		return (struct dev_rcv_lists *)dev->ml_priv;
337 }
338 
339 /**
340  * find_rcv_list - determine optimal filterlist inside device filter struct
341  * @can_id: pointer to CAN identifier of a given can_filter
342  * @mask: pointer to CAN mask of a given can_filter
343  * @d: pointer to the device filter struct
344  *
345  * Description:
346  *  Returns the optimal filterlist to reduce the filter handling in the
347  *  receive path. This function is called by service functions that need
348  *  to register or unregister a can_filter in the filter lists.
349  *
350  *  A filter matches in general, when
351  *
352  *          <received_can_id> & mask == can_id & mask
353  *
354  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
355  *  relevant bits for the filter.
356  *
357  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
358  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
359  *  frames there is a special filterlist and a special rx path filter handling.
360  *
361  * Return:
362  *  Pointer to optimal filterlist for the given can_id/mask pair.
363  *  Constistency checked mask.
364  *  Reduced can_id to have a preprocessed filter compare value.
365  */
366 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
367 					struct dev_rcv_lists *d)
368 {
369 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
370 
371 	/* filter for error message frames in extra filterlist */
372 	if (*mask & CAN_ERR_FLAG) {
373 		/* clear CAN_ERR_FLAG in filter entry */
374 		*mask &= CAN_ERR_MASK;
375 		return &d->rx[RX_ERR];
376 	}
377 
378 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
379 
380 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
381 
382 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
383 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
384 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
385 
386 	/* reduce condition testing at receive time */
387 	*can_id &= *mask;
388 
389 	/* inverse can_id/can_mask filter */
390 	if (inv)
391 		return &d->rx[RX_INV];
392 
393 	/* mask == 0 => no condition testing at receive time */
394 	if (!(*mask))
395 		return &d->rx[RX_ALL];
396 
397 	/* extra filterlists for the subscription of a single non-RTR can_id */
398 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
399 	    !(*can_id & CAN_RTR_FLAG)) {
400 
401 		if (*can_id & CAN_EFF_FLAG) {
402 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
403 				/* RFC: a future use-case for hash-tables? */
404 				return &d->rx[RX_EFF];
405 			}
406 		} else {
407 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
408 				return &d->rx_sff[*can_id];
409 		}
410 	}
411 
412 	/* default: filter via can_id/can_mask */
413 	return &d->rx[RX_FIL];
414 }
415 
416 /**
417  * can_rx_register - subscribe CAN frames from a specific interface
418  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
419  * @can_id: CAN identifier (see description)
420  * @mask: CAN mask (see description)
421  * @func: callback function on filter match
422  * @data: returned parameter for callback function
423  * @ident: string for calling module indentification
424  *
425  * Description:
426  *  Invokes the callback function with the received sk_buff and the given
427  *  parameter 'data' on a matching receive filter. A filter matches, when
428  *
429  *          <received_can_id> & mask == can_id & mask
430  *
431  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
432  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
433  *
434  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
435  *  the callback function is running. The callback function must *not* free
436  *  the given sk_buff while processing it's task. When the given sk_buff is
437  *  needed after the end of the callback function it must be cloned inside
438  *  the callback function with skb_clone().
439  *
440  * Return:
441  *  0 on success
442  *  -ENOMEM on missing cache mem to create subscription entry
443  *  -ENODEV unknown device
444  */
445 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
446 		    void (*func)(struct sk_buff *, void *), void *data,
447 		    char *ident)
448 {
449 	struct receiver *r;
450 	struct hlist_head *rl;
451 	struct dev_rcv_lists *d;
452 	int err = 0;
453 
454 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
455 
456 	if (dev && dev->type != ARPHRD_CAN)
457 		return -ENODEV;
458 
459 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
460 	if (!r)
461 		return -ENOMEM;
462 
463 	spin_lock(&can_rcvlists_lock);
464 
465 	d = find_dev_rcv_lists(dev);
466 	if (d) {
467 		rl = find_rcv_list(&can_id, &mask, d);
468 
469 		r->can_id  = can_id;
470 		r->mask    = mask;
471 		r->matches = 0;
472 		r->func    = func;
473 		r->data    = data;
474 		r->ident   = ident;
475 
476 		hlist_add_head_rcu(&r->list, rl);
477 		d->entries++;
478 
479 		can_pstats.rcv_entries++;
480 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
481 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
482 	} else {
483 		kmem_cache_free(rcv_cache, r);
484 		err = -ENODEV;
485 	}
486 
487 	spin_unlock(&can_rcvlists_lock);
488 
489 	return err;
490 }
491 EXPORT_SYMBOL(can_rx_register);
492 
493 /*
494  * can_rx_delete_receiver - rcu callback for single receiver entry removal
495  */
496 static void can_rx_delete_receiver(struct rcu_head *rp)
497 {
498 	struct receiver *r = container_of(rp, struct receiver, rcu);
499 
500 	kmem_cache_free(rcv_cache, r);
501 }
502 
503 /**
504  * can_rx_unregister - unsubscribe CAN frames from a specific interface
505  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
506  * @can_id: CAN identifier
507  * @mask: CAN mask
508  * @func: callback function on filter match
509  * @data: returned parameter for callback function
510  *
511  * Description:
512  *  Removes subscription entry depending on given (subscription) values.
513  */
514 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
515 		       void (*func)(struct sk_buff *, void *), void *data)
516 {
517 	struct receiver *r = NULL;
518 	struct hlist_head *rl;
519 	struct hlist_node *next;
520 	struct dev_rcv_lists *d;
521 
522 	if (dev && dev->type != ARPHRD_CAN)
523 		return;
524 
525 	spin_lock(&can_rcvlists_lock);
526 
527 	d = find_dev_rcv_lists(dev);
528 	if (!d) {
529 		printk(KERN_ERR "BUG: receive list not found for "
530 		       "dev %s, id %03X, mask %03X\n",
531 		       DNAME(dev), can_id, mask);
532 		goto out;
533 	}
534 
535 	rl = find_rcv_list(&can_id, &mask, d);
536 
537 	/*
538 	 * Search the receiver list for the item to delete.  This should
539 	 * exist, since no receiver may be unregistered that hasn't
540 	 * been registered before.
541 	 */
542 
543 	hlist_for_each_entry_rcu(r, next, rl, list) {
544 		if (r->can_id == can_id && r->mask == mask &&
545 		    r->func == func && r->data == data)
546 			break;
547 	}
548 
549 	/*
550 	 * Check for bugs in CAN protocol implementations:
551 	 * If no matching list item was found, the list cursor variable next
552 	 * will be NULL, while r will point to the last item of the list.
553 	 */
554 
555 	if (!next) {
556 		printk(KERN_ERR "BUG: receive list entry not found for "
557 		       "dev %s, id %03X, mask %03X\n",
558 		       DNAME(dev), can_id, mask);
559 		r = NULL;
560 		goto out;
561 	}
562 
563 	hlist_del_rcu(&r->list);
564 	d->entries--;
565 
566 	if (can_pstats.rcv_entries > 0)
567 		can_pstats.rcv_entries--;
568 
569 	/* remove device structure requested by NETDEV_UNREGISTER */
570 	if (d->remove_on_zero_entries && !d->entries) {
571 		kfree(d);
572 		dev->ml_priv = NULL;
573 	}
574 
575  out:
576 	spin_unlock(&can_rcvlists_lock);
577 
578 	/* schedule the receiver item for deletion */
579 	if (r)
580 		call_rcu(&r->rcu, can_rx_delete_receiver);
581 }
582 EXPORT_SYMBOL(can_rx_unregister);
583 
584 static inline void deliver(struct sk_buff *skb, struct receiver *r)
585 {
586 	r->func(skb, r->data);
587 	r->matches++;
588 }
589 
590 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
591 {
592 	struct receiver *r;
593 	struct hlist_node *n;
594 	int matches = 0;
595 	struct can_frame *cf = (struct can_frame *)skb->data;
596 	canid_t can_id = cf->can_id;
597 
598 	if (d->entries == 0)
599 		return 0;
600 
601 	if (can_id & CAN_ERR_FLAG) {
602 		/* check for error message frame entries only */
603 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
604 			if (can_id & r->mask) {
605 				deliver(skb, r);
606 				matches++;
607 			}
608 		}
609 		return matches;
610 	}
611 
612 	/* check for unfiltered entries */
613 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
614 		deliver(skb, r);
615 		matches++;
616 	}
617 
618 	/* check for can_id/mask entries */
619 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
620 		if ((can_id & r->mask) == r->can_id) {
621 			deliver(skb, r);
622 			matches++;
623 		}
624 	}
625 
626 	/* check for inverted can_id/mask entries */
627 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
628 		if ((can_id & r->mask) != r->can_id) {
629 			deliver(skb, r);
630 			matches++;
631 		}
632 	}
633 
634 	/* check filterlists for single non-RTR can_ids */
635 	if (can_id & CAN_RTR_FLAG)
636 		return matches;
637 
638 	if (can_id & CAN_EFF_FLAG) {
639 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
640 			if (r->can_id == can_id) {
641 				deliver(skb, r);
642 				matches++;
643 			}
644 		}
645 	} else {
646 		can_id &= CAN_SFF_MASK;
647 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
648 			deliver(skb, r);
649 			matches++;
650 		}
651 	}
652 
653 	return matches;
654 }
655 
656 static void can_receive(struct sk_buff *skb, struct net_device *dev)
657 {
658 	struct dev_rcv_lists *d;
659 	int matches;
660 
661 	/* update statistics */
662 	can_stats.rx_frames++;
663 	can_stats.rx_frames_delta++;
664 
665 	rcu_read_lock();
666 
667 	/* deliver the packet to sockets listening on all devices */
668 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
669 
670 	/* find receive list for this device */
671 	d = find_dev_rcv_lists(dev);
672 	if (d)
673 		matches += can_rcv_filter(d, skb);
674 
675 	rcu_read_unlock();
676 
677 	/* consume the skbuff allocated by the netdevice driver */
678 	consume_skb(skb);
679 
680 	if (matches > 0) {
681 		can_stats.matches++;
682 		can_stats.matches_delta++;
683 	}
684 }
685 
686 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
687 		   struct packet_type *pt, struct net_device *orig_dev)
688 {
689 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
690 
691 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
692 		goto drop;
693 
694 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
695 		      skb->len != CAN_MTU ||
696 		      cfd->len > CAN_MAX_DLEN,
697 		      "PF_CAN: dropped non conform CAN skbuf: "
698 		      "dev type %d, len %d, datalen %d\n",
699 		      dev->type, skb->len, cfd->len))
700 		goto drop;
701 
702 	can_receive(skb, dev);
703 	return NET_RX_SUCCESS;
704 
705 drop:
706 	kfree_skb(skb);
707 	return NET_RX_DROP;
708 }
709 
710 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
711 		   struct packet_type *pt, struct net_device *orig_dev)
712 {
713 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
714 
715 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
716 		goto drop;
717 
718 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
719 		      skb->len != CANFD_MTU ||
720 		      cfd->len > CANFD_MAX_DLEN,
721 		      "PF_CAN: dropped non conform CAN FD skbuf: "
722 		      "dev type %d, len %d, datalen %d\n",
723 		      dev->type, skb->len, cfd->len))
724 		goto drop;
725 
726 	can_receive(skb, dev);
727 	return NET_RX_SUCCESS;
728 
729 drop:
730 	kfree_skb(skb);
731 	return NET_RX_DROP;
732 }
733 
734 /*
735  * af_can protocol functions
736  */
737 
738 /**
739  * can_proto_register - register CAN transport protocol
740  * @cp: pointer to CAN protocol structure
741  *
742  * Return:
743  *  0 on success
744  *  -EINVAL invalid (out of range) protocol number
745  *  -EBUSY  protocol already in use
746  *  -ENOBUF if proto_register() fails
747  */
748 int can_proto_register(const struct can_proto *cp)
749 {
750 	int proto = cp->protocol;
751 	int err = 0;
752 
753 	if (proto < 0 || proto >= CAN_NPROTO) {
754 		printk(KERN_ERR "can: protocol number %d out of range\n",
755 		       proto);
756 		return -EINVAL;
757 	}
758 
759 	err = proto_register(cp->prot, 0);
760 	if (err < 0)
761 		return err;
762 
763 	mutex_lock(&proto_tab_lock);
764 
765 	if (proto_tab[proto]) {
766 		printk(KERN_ERR "can: protocol %d already registered\n",
767 		       proto);
768 		err = -EBUSY;
769 	} else
770 		RCU_INIT_POINTER(proto_tab[proto], cp);
771 
772 	mutex_unlock(&proto_tab_lock);
773 
774 	if (err < 0)
775 		proto_unregister(cp->prot);
776 
777 	return err;
778 }
779 EXPORT_SYMBOL(can_proto_register);
780 
781 /**
782  * can_proto_unregister - unregister CAN transport protocol
783  * @cp: pointer to CAN protocol structure
784  */
785 void can_proto_unregister(const struct can_proto *cp)
786 {
787 	int proto = cp->protocol;
788 
789 	mutex_lock(&proto_tab_lock);
790 	BUG_ON(proto_tab[proto] != cp);
791 	RCU_INIT_POINTER(proto_tab[proto], NULL);
792 	mutex_unlock(&proto_tab_lock);
793 
794 	synchronize_rcu();
795 
796 	proto_unregister(cp->prot);
797 }
798 EXPORT_SYMBOL(can_proto_unregister);
799 
800 /*
801  * af_can notifier to create/remove CAN netdevice specific structs
802  */
803 static int can_notifier(struct notifier_block *nb, unsigned long msg,
804 			void *data)
805 {
806 	struct net_device *dev = (struct net_device *)data;
807 	struct dev_rcv_lists *d;
808 
809 	if (!net_eq(dev_net(dev), &init_net))
810 		return NOTIFY_DONE;
811 
812 	if (dev->type != ARPHRD_CAN)
813 		return NOTIFY_DONE;
814 
815 	switch (msg) {
816 
817 	case NETDEV_REGISTER:
818 
819 		/* create new dev_rcv_lists for this device */
820 		d = kzalloc(sizeof(*d), GFP_KERNEL);
821 		if (!d) {
822 			printk(KERN_ERR
823 			       "can: allocation of receive list failed\n");
824 			return NOTIFY_DONE;
825 		}
826 		BUG_ON(dev->ml_priv);
827 		dev->ml_priv = d;
828 
829 		break;
830 
831 	case NETDEV_UNREGISTER:
832 		spin_lock(&can_rcvlists_lock);
833 
834 		d = dev->ml_priv;
835 		if (d) {
836 			if (d->entries)
837 				d->remove_on_zero_entries = 1;
838 			else {
839 				kfree(d);
840 				dev->ml_priv = NULL;
841 			}
842 		} else
843 			printk(KERN_ERR "can: notifier: receive list not "
844 			       "found for dev %s\n", dev->name);
845 
846 		spin_unlock(&can_rcvlists_lock);
847 
848 		break;
849 	}
850 
851 	return NOTIFY_DONE;
852 }
853 
854 /*
855  * af_can module init/exit functions
856  */
857 
858 static struct packet_type can_packet __read_mostly = {
859 	.type = cpu_to_be16(ETH_P_CAN),
860 	.func = can_rcv,
861 };
862 
863 static struct packet_type canfd_packet __read_mostly = {
864 	.type = cpu_to_be16(ETH_P_CANFD),
865 	.func = canfd_rcv,
866 };
867 
868 static const struct net_proto_family can_family_ops = {
869 	.family = PF_CAN,
870 	.create = can_create,
871 	.owner  = THIS_MODULE,
872 };
873 
874 /* notifier block for netdevice event */
875 static struct notifier_block can_netdev_notifier __read_mostly = {
876 	.notifier_call = can_notifier,
877 };
878 
879 static __init int can_init(void)
880 {
881 	/* check for correct padding to be able to use the structs similarly */
882 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
883 		     offsetof(struct canfd_frame, len) ||
884 		     offsetof(struct can_frame, data) !=
885 		     offsetof(struct canfd_frame, data));
886 
887 	printk(banner);
888 
889 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
890 
891 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
892 				      0, 0, NULL);
893 	if (!rcv_cache)
894 		return -ENOMEM;
895 
896 	if (stats_timer) {
897 		/* the statistics are updated every second (timer triggered) */
898 		setup_timer(&can_stattimer, can_stat_update, 0);
899 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
900 	} else
901 		can_stattimer.function = NULL;
902 
903 	can_init_proc();
904 
905 	/* protocol register */
906 	sock_register(&can_family_ops);
907 	register_netdevice_notifier(&can_netdev_notifier);
908 	dev_add_pack(&can_packet);
909 	dev_add_pack(&canfd_packet);
910 
911 	return 0;
912 }
913 
914 static __exit void can_exit(void)
915 {
916 	struct net_device *dev;
917 
918 	if (stats_timer)
919 		del_timer_sync(&can_stattimer);
920 
921 	can_remove_proc();
922 
923 	/* protocol unregister */
924 	dev_remove_pack(&canfd_packet);
925 	dev_remove_pack(&can_packet);
926 	unregister_netdevice_notifier(&can_netdev_notifier);
927 	sock_unregister(PF_CAN);
928 
929 	/* remove created dev_rcv_lists from still registered CAN devices */
930 	rcu_read_lock();
931 	for_each_netdev_rcu(&init_net, dev) {
932 		if (dev->type == ARPHRD_CAN && dev->ml_priv){
933 
934 			struct dev_rcv_lists *d = dev->ml_priv;
935 
936 			BUG_ON(d->entries);
937 			kfree(d);
938 			dev->ml_priv = NULL;
939 		}
940 	}
941 	rcu_read_unlock();
942 
943 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
944 
945 	kmem_cache_destroy(rcv_cache);
946 }
947 
948 module_init(can_init);
949 module_exit(can_exit);
950