1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/stddef.h> 45 #include <linux/init.h> 46 #include <linux/kmod.h> 47 #include <linux/slab.h> 48 #include <linux/list.h> 49 #include <linux/spinlock.h> 50 #include <linux/rcupdate.h> 51 #include <linux/uaccess.h> 52 #include <linux/net.h> 53 #include <linux/netdevice.h> 54 #include <linux/socket.h> 55 #include <linux/if_ether.h> 56 #include <linux/if_arp.h> 57 #include <linux/skbuff.h> 58 #include <linux/can.h> 59 #include <linux/can/core.h> 60 #include <linux/can/skb.h> 61 #include <linux/ratelimit.h> 62 #include <net/net_namespace.h> 63 #include <net/sock.h> 64 65 #include "af_can.h" 66 67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 68 MODULE_LICENSE("Dual BSD/GPL"); 69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 70 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 71 72 MODULE_ALIAS_NETPROTO(PF_CAN); 73 74 static int stats_timer __read_mostly = 1; 75 module_param(stats_timer, int, 0444); 76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 77 78 static struct kmem_cache *rcv_cache __read_mostly; 79 80 /* table of registered CAN protocols */ 81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; 82 static DEFINE_MUTEX(proto_tab_lock); 83 84 static atomic_t skbcounter = ATOMIC_INIT(0); 85 86 /* 87 * af_can socket functions 88 */ 89 90 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 91 { 92 switch (cmd) { 93 default: 94 return -ENOIOCTLCMD; 95 } 96 } 97 EXPORT_SYMBOL(can_ioctl); 98 99 static void can_sock_destruct(struct sock *sk) 100 { 101 skb_queue_purge(&sk->sk_receive_queue); 102 } 103 104 static const struct can_proto *can_get_proto(int protocol) 105 { 106 const struct can_proto *cp; 107 108 rcu_read_lock(); 109 cp = rcu_dereference(proto_tab[protocol]); 110 if (cp && !try_module_get(cp->prot->owner)) 111 cp = NULL; 112 rcu_read_unlock(); 113 114 return cp; 115 } 116 117 static inline void can_put_proto(const struct can_proto *cp) 118 { 119 module_put(cp->prot->owner); 120 } 121 122 static int can_create(struct net *net, struct socket *sock, int protocol, 123 int kern) 124 { 125 struct sock *sk; 126 const struct can_proto *cp; 127 int err = 0; 128 129 sock->state = SS_UNCONNECTED; 130 131 if (protocol < 0 || protocol >= CAN_NPROTO) 132 return -EINVAL; 133 134 cp = can_get_proto(protocol); 135 136 #ifdef CONFIG_MODULES 137 if (!cp) { 138 /* try to load protocol module if kernel is modular */ 139 140 err = request_module("can-proto-%d", protocol); 141 142 /* 143 * In case of error we only print a message but don't 144 * return the error code immediately. Below we will 145 * return -EPROTONOSUPPORT 146 */ 147 if (err) 148 printk_ratelimited(KERN_ERR "can: request_module " 149 "(can-proto-%d) failed.\n", protocol); 150 151 cp = can_get_proto(protocol); 152 } 153 #endif 154 155 /* check for available protocol and correct usage */ 156 157 if (!cp) 158 return -EPROTONOSUPPORT; 159 160 if (cp->type != sock->type) { 161 err = -EPROTOTYPE; 162 goto errout; 163 } 164 165 sock->ops = cp->ops; 166 167 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); 168 if (!sk) { 169 err = -ENOMEM; 170 goto errout; 171 } 172 173 sock_init_data(sock, sk); 174 sk->sk_destruct = can_sock_destruct; 175 176 if (sk->sk_prot->init) 177 err = sk->sk_prot->init(sk); 178 179 if (err) { 180 /* release sk on errors */ 181 sock_orphan(sk); 182 sock_put(sk); 183 } 184 185 errout: 186 can_put_proto(cp); 187 return err; 188 } 189 190 /* 191 * af_can tx path 192 */ 193 194 /** 195 * can_send - transmit a CAN frame (optional with local loopback) 196 * @skb: pointer to socket buffer with CAN frame in data section 197 * @loop: loopback for listeners on local CAN sockets (recommended default!) 198 * 199 * Due to the loopback this routine must not be called from hardirq context. 200 * 201 * Return: 202 * 0 on success 203 * -ENETDOWN when the selected interface is down 204 * -ENOBUFS on full driver queue (see net_xmit_errno()) 205 * -ENOMEM when local loopback failed at calling skb_clone() 206 * -EPERM when trying to send on a non-CAN interface 207 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU 208 * -EINVAL when the skb->data does not contain a valid CAN frame 209 */ 210 int can_send(struct sk_buff *skb, int loop) 211 { 212 struct sk_buff *newskb = NULL; 213 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 214 struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats; 215 int err = -EINVAL; 216 217 if (skb->len == CAN_MTU) { 218 skb->protocol = htons(ETH_P_CAN); 219 if (unlikely(cfd->len > CAN_MAX_DLEN)) 220 goto inval_skb; 221 } else if (skb->len == CANFD_MTU) { 222 skb->protocol = htons(ETH_P_CANFD); 223 if (unlikely(cfd->len > CANFD_MAX_DLEN)) 224 goto inval_skb; 225 } else 226 goto inval_skb; 227 228 /* 229 * Make sure the CAN frame can pass the selected CAN netdevice. 230 * As structs can_frame and canfd_frame are similar, we can provide 231 * CAN FD frames to legacy CAN drivers as long as the length is <= 8 232 */ 233 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { 234 err = -EMSGSIZE; 235 goto inval_skb; 236 } 237 238 if (unlikely(skb->dev->type != ARPHRD_CAN)) { 239 err = -EPERM; 240 goto inval_skb; 241 } 242 243 if (unlikely(!(skb->dev->flags & IFF_UP))) { 244 err = -ENETDOWN; 245 goto inval_skb; 246 } 247 248 skb->ip_summed = CHECKSUM_UNNECESSARY; 249 250 skb_reset_mac_header(skb); 251 skb_reset_network_header(skb); 252 skb_reset_transport_header(skb); 253 254 if (loop) { 255 /* local loopback of sent CAN frames */ 256 257 /* indication for the CAN driver: do loopback */ 258 skb->pkt_type = PACKET_LOOPBACK; 259 260 /* 261 * The reference to the originating sock may be required 262 * by the receiving socket to check whether the frame is 263 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 264 * Therefore we have to ensure that skb->sk remains the 265 * reference to the originating sock by restoring skb->sk 266 * after each skb_clone() or skb_orphan() usage. 267 */ 268 269 if (!(skb->dev->flags & IFF_ECHO)) { 270 /* 271 * If the interface is not capable to do loopback 272 * itself, we do it here. 273 */ 274 newskb = skb_clone(skb, GFP_ATOMIC); 275 if (!newskb) { 276 kfree_skb(skb); 277 return -ENOMEM; 278 } 279 280 can_skb_set_owner(newskb, skb->sk); 281 newskb->ip_summed = CHECKSUM_UNNECESSARY; 282 newskb->pkt_type = PACKET_BROADCAST; 283 } 284 } else { 285 /* indication for the CAN driver: no loopback required */ 286 skb->pkt_type = PACKET_HOST; 287 } 288 289 /* send to netdevice */ 290 err = dev_queue_xmit(skb); 291 if (err > 0) 292 err = net_xmit_errno(err); 293 294 if (err) { 295 kfree_skb(newskb); 296 return err; 297 } 298 299 if (newskb) 300 netif_rx_ni(newskb); 301 302 /* update statistics */ 303 can_stats->tx_frames++; 304 can_stats->tx_frames_delta++; 305 306 return 0; 307 308 inval_skb: 309 kfree_skb(skb); 310 return err; 311 } 312 EXPORT_SYMBOL(can_send); 313 314 /* 315 * af_can rx path 316 */ 317 318 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net, 319 struct net_device *dev) 320 { 321 if (!dev) 322 return net->can.can_rx_alldev_list; 323 else 324 return (struct can_dev_rcv_lists *)dev->ml_priv; 325 } 326 327 /** 328 * effhash - hash function for 29 bit CAN identifier reduction 329 * @can_id: 29 bit CAN identifier 330 * 331 * Description: 332 * To reduce the linear traversal in one linked list of _single_ EFF CAN 333 * frame subscriptions the 29 bit identifier is mapped to 10 bits. 334 * (see CAN_EFF_RCV_HASH_BITS definition) 335 * 336 * Return: 337 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) 338 */ 339 static unsigned int effhash(canid_t can_id) 340 { 341 unsigned int hash; 342 343 hash = can_id; 344 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; 345 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); 346 347 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); 348 } 349 350 /** 351 * find_rcv_list - determine optimal filterlist inside device filter struct 352 * @can_id: pointer to CAN identifier of a given can_filter 353 * @mask: pointer to CAN mask of a given can_filter 354 * @d: pointer to the device filter struct 355 * 356 * Description: 357 * Returns the optimal filterlist to reduce the filter handling in the 358 * receive path. This function is called by service functions that need 359 * to register or unregister a can_filter in the filter lists. 360 * 361 * A filter matches in general, when 362 * 363 * <received_can_id> & mask == can_id & mask 364 * 365 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 366 * relevant bits for the filter. 367 * 368 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 369 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg 370 * frames there is a special filterlist and a special rx path filter handling. 371 * 372 * Return: 373 * Pointer to optimal filterlist for the given can_id/mask pair. 374 * Constistency checked mask. 375 * Reduced can_id to have a preprocessed filter compare value. 376 */ 377 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 378 struct can_dev_rcv_lists *d) 379 { 380 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 381 382 /* filter for error message frames in extra filterlist */ 383 if (*mask & CAN_ERR_FLAG) { 384 /* clear CAN_ERR_FLAG in filter entry */ 385 *mask &= CAN_ERR_MASK; 386 return &d->rx[RX_ERR]; 387 } 388 389 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 390 391 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 392 393 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 394 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 395 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 396 397 /* reduce condition testing at receive time */ 398 *can_id &= *mask; 399 400 /* inverse can_id/can_mask filter */ 401 if (inv) 402 return &d->rx[RX_INV]; 403 404 /* mask == 0 => no condition testing at receive time */ 405 if (!(*mask)) 406 return &d->rx[RX_ALL]; 407 408 /* extra filterlists for the subscription of a single non-RTR can_id */ 409 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 410 !(*can_id & CAN_RTR_FLAG)) { 411 412 if (*can_id & CAN_EFF_FLAG) { 413 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) 414 return &d->rx_eff[effhash(*can_id)]; 415 } else { 416 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 417 return &d->rx_sff[*can_id]; 418 } 419 } 420 421 /* default: filter via can_id/can_mask */ 422 return &d->rx[RX_FIL]; 423 } 424 425 /** 426 * can_rx_register - subscribe CAN frames from a specific interface 427 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 428 * @can_id: CAN identifier (see description) 429 * @mask: CAN mask (see description) 430 * @func: callback function on filter match 431 * @data: returned parameter for callback function 432 * @ident: string for calling module identification 433 * @sk: socket pointer (might be NULL) 434 * 435 * Description: 436 * Invokes the callback function with the received sk_buff and the given 437 * parameter 'data' on a matching receive filter. A filter matches, when 438 * 439 * <received_can_id> & mask == can_id & mask 440 * 441 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 442 * filter for error message frames (CAN_ERR_FLAG bit set in mask). 443 * 444 * The provided pointer to the sk_buff is guaranteed to be valid as long as 445 * the callback function is running. The callback function must *not* free 446 * the given sk_buff while processing it's task. When the given sk_buff is 447 * needed after the end of the callback function it must be cloned inside 448 * the callback function with skb_clone(). 449 * 450 * Return: 451 * 0 on success 452 * -ENOMEM on missing cache mem to create subscription entry 453 * -ENODEV unknown device 454 */ 455 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, 456 canid_t mask, void (*func)(struct sk_buff *, void *), 457 void *data, char *ident, struct sock *sk) 458 { 459 struct receiver *r; 460 struct hlist_head *rl; 461 struct can_dev_rcv_lists *d; 462 struct s_pstats *can_pstats = net->can.can_pstats; 463 int err = 0; 464 465 /* insert new receiver (dev,canid,mask) -> (func,data) */ 466 467 if (dev && dev->type != ARPHRD_CAN) 468 return -ENODEV; 469 470 if (dev && !net_eq(net, dev_net(dev))) 471 return -ENODEV; 472 473 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 474 if (!r) 475 return -ENOMEM; 476 477 spin_lock(&net->can.can_rcvlists_lock); 478 479 d = find_dev_rcv_lists(net, dev); 480 if (d) { 481 rl = find_rcv_list(&can_id, &mask, d); 482 483 r->can_id = can_id; 484 r->mask = mask; 485 r->matches = 0; 486 r->func = func; 487 r->data = data; 488 r->ident = ident; 489 r->sk = sk; 490 491 hlist_add_head_rcu(&r->list, rl); 492 d->entries++; 493 494 can_pstats->rcv_entries++; 495 if (can_pstats->rcv_entries_max < can_pstats->rcv_entries) 496 can_pstats->rcv_entries_max = can_pstats->rcv_entries; 497 } else { 498 kmem_cache_free(rcv_cache, r); 499 err = -ENODEV; 500 } 501 502 spin_unlock(&net->can.can_rcvlists_lock); 503 504 return err; 505 } 506 EXPORT_SYMBOL(can_rx_register); 507 508 /* 509 * can_rx_delete_receiver - rcu callback for single receiver entry removal 510 */ 511 static void can_rx_delete_receiver(struct rcu_head *rp) 512 { 513 struct receiver *r = container_of(rp, struct receiver, rcu); 514 struct sock *sk = r->sk; 515 516 kmem_cache_free(rcv_cache, r); 517 if (sk) 518 sock_put(sk); 519 } 520 521 /** 522 * can_rx_unregister - unsubscribe CAN frames from a specific interface 523 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) 524 * @can_id: CAN identifier 525 * @mask: CAN mask 526 * @func: callback function on filter match 527 * @data: returned parameter for callback function 528 * 529 * Description: 530 * Removes subscription entry depending on given (subscription) values. 531 */ 532 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, 533 canid_t mask, void (*func)(struct sk_buff *, void *), 534 void *data) 535 { 536 struct receiver *r = NULL; 537 struct hlist_head *rl; 538 struct s_pstats *can_pstats = net->can.can_pstats; 539 struct can_dev_rcv_lists *d; 540 541 if (dev && dev->type != ARPHRD_CAN) 542 return; 543 544 if (dev && !net_eq(net, dev_net(dev))) 545 return; 546 547 spin_lock(&net->can.can_rcvlists_lock); 548 549 d = find_dev_rcv_lists(net, dev); 550 if (!d) { 551 pr_err("BUG: receive list not found for " 552 "dev %s, id %03X, mask %03X\n", 553 DNAME(dev), can_id, mask); 554 goto out; 555 } 556 557 rl = find_rcv_list(&can_id, &mask, d); 558 559 /* 560 * Search the receiver list for the item to delete. This should 561 * exist, since no receiver may be unregistered that hasn't 562 * been registered before. 563 */ 564 565 hlist_for_each_entry_rcu(r, rl, list) { 566 if (r->can_id == can_id && r->mask == mask && 567 r->func == func && r->data == data) 568 break; 569 } 570 571 /* 572 * Check for bugs in CAN protocol implementations using af_can.c: 573 * 'r' will be NULL if no matching list item was found for removal. 574 */ 575 576 if (!r) { 577 WARN(1, "BUG: receive list entry not found for dev %s, " 578 "id %03X, mask %03X\n", DNAME(dev), can_id, mask); 579 goto out; 580 } 581 582 hlist_del_rcu(&r->list); 583 d->entries--; 584 585 if (can_pstats->rcv_entries > 0) 586 can_pstats->rcv_entries--; 587 588 /* remove device structure requested by NETDEV_UNREGISTER */ 589 if (d->remove_on_zero_entries && !d->entries) { 590 kfree(d); 591 dev->ml_priv = NULL; 592 } 593 594 out: 595 spin_unlock(&net->can.can_rcvlists_lock); 596 597 /* schedule the receiver item for deletion */ 598 if (r) { 599 if (r->sk) 600 sock_hold(r->sk); 601 call_rcu(&r->rcu, can_rx_delete_receiver); 602 } 603 } 604 EXPORT_SYMBOL(can_rx_unregister); 605 606 static inline void deliver(struct sk_buff *skb, struct receiver *r) 607 { 608 r->func(skb, r->data); 609 r->matches++; 610 } 611 612 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb) 613 { 614 struct receiver *r; 615 int matches = 0; 616 struct can_frame *cf = (struct can_frame *)skb->data; 617 canid_t can_id = cf->can_id; 618 619 if (d->entries == 0) 620 return 0; 621 622 if (can_id & CAN_ERR_FLAG) { 623 /* check for error message frame entries only */ 624 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) { 625 if (can_id & r->mask) { 626 deliver(skb, r); 627 matches++; 628 } 629 } 630 return matches; 631 } 632 633 /* check for unfiltered entries */ 634 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) { 635 deliver(skb, r); 636 matches++; 637 } 638 639 /* check for can_id/mask entries */ 640 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) { 641 if ((can_id & r->mask) == r->can_id) { 642 deliver(skb, r); 643 matches++; 644 } 645 } 646 647 /* check for inverted can_id/mask entries */ 648 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) { 649 if ((can_id & r->mask) != r->can_id) { 650 deliver(skb, r); 651 matches++; 652 } 653 } 654 655 /* check filterlists for single non-RTR can_ids */ 656 if (can_id & CAN_RTR_FLAG) 657 return matches; 658 659 if (can_id & CAN_EFF_FLAG) { 660 hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) { 661 if (r->can_id == can_id) { 662 deliver(skb, r); 663 matches++; 664 } 665 } 666 } else { 667 can_id &= CAN_SFF_MASK; 668 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) { 669 deliver(skb, r); 670 matches++; 671 } 672 } 673 674 return matches; 675 } 676 677 static void can_receive(struct sk_buff *skb, struct net_device *dev) 678 { 679 struct can_dev_rcv_lists *d; 680 struct net *net = dev_net(dev); 681 struct s_stats *can_stats = net->can.can_stats; 682 int matches; 683 684 /* update statistics */ 685 can_stats->rx_frames++; 686 can_stats->rx_frames_delta++; 687 688 /* create non-zero unique skb identifier together with *skb */ 689 while (!(can_skb_prv(skb)->skbcnt)) 690 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); 691 692 rcu_read_lock(); 693 694 /* deliver the packet to sockets listening on all devices */ 695 matches = can_rcv_filter(net->can.can_rx_alldev_list, skb); 696 697 /* find receive list for this device */ 698 d = find_dev_rcv_lists(net, dev); 699 if (d) 700 matches += can_rcv_filter(d, skb); 701 702 rcu_read_unlock(); 703 704 /* consume the skbuff allocated by the netdevice driver */ 705 consume_skb(skb); 706 707 if (matches > 0) { 708 can_stats->matches++; 709 can_stats->matches_delta++; 710 } 711 } 712 713 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 714 struct packet_type *pt, struct net_device *orig_dev) 715 { 716 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 717 718 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU || 719 cfd->len > CAN_MAX_DLEN)) { 720 pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n", 721 dev->type, skb->len, cfd->len); 722 kfree_skb(skb); 723 return NET_RX_DROP; 724 } 725 726 can_receive(skb, dev); 727 return NET_RX_SUCCESS; 728 } 729 730 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, 731 struct packet_type *pt, struct net_device *orig_dev) 732 { 733 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 734 735 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU || 736 cfd->len > CANFD_MAX_DLEN)) { 737 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n", 738 dev->type, skb->len, cfd->len); 739 kfree_skb(skb); 740 return NET_RX_DROP; 741 } 742 743 can_receive(skb, dev); 744 return NET_RX_SUCCESS; 745 } 746 747 /* 748 * af_can protocol functions 749 */ 750 751 /** 752 * can_proto_register - register CAN transport protocol 753 * @cp: pointer to CAN protocol structure 754 * 755 * Return: 756 * 0 on success 757 * -EINVAL invalid (out of range) protocol number 758 * -EBUSY protocol already in use 759 * -ENOBUF if proto_register() fails 760 */ 761 int can_proto_register(const struct can_proto *cp) 762 { 763 int proto = cp->protocol; 764 int err = 0; 765 766 if (proto < 0 || proto >= CAN_NPROTO) { 767 pr_err("can: protocol number %d out of range\n", proto); 768 return -EINVAL; 769 } 770 771 err = proto_register(cp->prot, 0); 772 if (err < 0) 773 return err; 774 775 mutex_lock(&proto_tab_lock); 776 777 if (rcu_access_pointer(proto_tab[proto])) { 778 pr_err("can: protocol %d already registered\n", proto); 779 err = -EBUSY; 780 } else 781 RCU_INIT_POINTER(proto_tab[proto], cp); 782 783 mutex_unlock(&proto_tab_lock); 784 785 if (err < 0) 786 proto_unregister(cp->prot); 787 788 return err; 789 } 790 EXPORT_SYMBOL(can_proto_register); 791 792 /** 793 * can_proto_unregister - unregister CAN transport protocol 794 * @cp: pointer to CAN protocol structure 795 */ 796 void can_proto_unregister(const struct can_proto *cp) 797 { 798 int proto = cp->protocol; 799 800 mutex_lock(&proto_tab_lock); 801 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); 802 RCU_INIT_POINTER(proto_tab[proto], NULL); 803 mutex_unlock(&proto_tab_lock); 804 805 synchronize_rcu(); 806 807 proto_unregister(cp->prot); 808 } 809 EXPORT_SYMBOL(can_proto_unregister); 810 811 /* 812 * af_can notifier to create/remove CAN netdevice specific structs 813 */ 814 static int can_notifier(struct notifier_block *nb, unsigned long msg, 815 void *ptr) 816 { 817 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 818 struct can_dev_rcv_lists *d; 819 820 if (dev->type != ARPHRD_CAN) 821 return NOTIFY_DONE; 822 823 switch (msg) { 824 825 case NETDEV_REGISTER: 826 827 /* create new dev_rcv_lists for this device */ 828 d = kzalloc(sizeof(*d), GFP_KERNEL); 829 if (!d) 830 return NOTIFY_DONE; 831 BUG_ON(dev->ml_priv); 832 dev->ml_priv = d; 833 834 break; 835 836 case NETDEV_UNREGISTER: 837 spin_lock(&dev_net(dev)->can.can_rcvlists_lock); 838 839 d = dev->ml_priv; 840 if (d) { 841 if (d->entries) 842 d->remove_on_zero_entries = 1; 843 else { 844 kfree(d); 845 dev->ml_priv = NULL; 846 } 847 } else 848 pr_err("can: notifier: receive list not found for dev " 849 "%s\n", dev->name); 850 851 spin_unlock(&dev_net(dev)->can.can_rcvlists_lock); 852 853 break; 854 } 855 856 return NOTIFY_DONE; 857 } 858 859 static int can_pernet_init(struct net *net) 860 { 861 spin_lock_init(&net->can.can_rcvlists_lock); 862 net->can.can_rx_alldev_list = 863 kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL); 864 if (!net->can.can_rx_alldev_list) 865 goto out; 866 net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL); 867 if (!net->can.can_stats) 868 goto out_free_alldev_list; 869 net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL); 870 if (!net->can.can_pstats) 871 goto out_free_can_stats; 872 873 if (IS_ENABLED(CONFIG_PROC_FS)) { 874 /* the statistics are updated every second (timer triggered) */ 875 if (stats_timer) { 876 timer_setup(&net->can.can_stattimer, can_stat_update, 877 0); 878 mod_timer(&net->can.can_stattimer, 879 round_jiffies(jiffies + HZ)); 880 } 881 net->can.can_stats->jiffies_init = jiffies; 882 can_init_proc(net); 883 } 884 885 return 0; 886 887 out_free_can_stats: 888 kfree(net->can.can_stats); 889 out_free_alldev_list: 890 kfree(net->can.can_rx_alldev_list); 891 out: 892 return -ENOMEM; 893 } 894 895 static void can_pernet_exit(struct net *net) 896 { 897 struct net_device *dev; 898 899 if (IS_ENABLED(CONFIG_PROC_FS)) { 900 can_remove_proc(net); 901 if (stats_timer) 902 del_timer_sync(&net->can.can_stattimer); 903 } 904 905 /* remove created dev_rcv_lists from still registered CAN devices */ 906 rcu_read_lock(); 907 for_each_netdev_rcu(net, dev) { 908 if (dev->type == ARPHRD_CAN && dev->ml_priv) { 909 struct can_dev_rcv_lists *d = dev->ml_priv; 910 911 BUG_ON(d->entries); 912 kfree(d); 913 dev->ml_priv = NULL; 914 } 915 } 916 rcu_read_unlock(); 917 918 kfree(net->can.can_rx_alldev_list); 919 kfree(net->can.can_stats); 920 kfree(net->can.can_pstats); 921 } 922 923 /* 924 * af_can module init/exit functions 925 */ 926 927 static struct packet_type can_packet __read_mostly = { 928 .type = cpu_to_be16(ETH_P_CAN), 929 .func = can_rcv, 930 }; 931 932 static struct packet_type canfd_packet __read_mostly = { 933 .type = cpu_to_be16(ETH_P_CANFD), 934 .func = canfd_rcv, 935 }; 936 937 static const struct net_proto_family can_family_ops = { 938 .family = PF_CAN, 939 .create = can_create, 940 .owner = THIS_MODULE, 941 }; 942 943 /* notifier block for netdevice event */ 944 static struct notifier_block can_netdev_notifier __read_mostly = { 945 .notifier_call = can_notifier, 946 }; 947 948 static struct pernet_operations can_pernet_ops __read_mostly = { 949 .init = can_pernet_init, 950 .exit = can_pernet_exit, 951 }; 952 953 static __init int can_init(void) 954 { 955 /* check for correct padding to be able to use the structs similarly */ 956 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != 957 offsetof(struct canfd_frame, len) || 958 offsetof(struct can_frame, data) != 959 offsetof(struct canfd_frame, data)); 960 961 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n"); 962 963 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 964 0, 0, NULL); 965 if (!rcv_cache) 966 return -ENOMEM; 967 968 register_pernet_subsys(&can_pernet_ops); 969 970 /* protocol register */ 971 sock_register(&can_family_ops); 972 register_netdevice_notifier(&can_netdev_notifier); 973 dev_add_pack(&can_packet); 974 dev_add_pack(&canfd_packet); 975 976 return 0; 977 } 978 979 static __exit void can_exit(void) 980 { 981 /* protocol unregister */ 982 dev_remove_pack(&canfd_packet); 983 dev_remove_pack(&can_packet); 984 unregister_netdevice_notifier(&can_netdev_notifier); 985 sock_unregister(PF_CAN); 986 987 unregister_pernet_subsys(&can_pernet_ops); 988 989 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 990 991 kmem_cache_destroy(rcv_cache); 992 } 993 994 module_init(can_init); 995 module_exit(can_exit); 996