xref: /openbmc/linux/net/can/af_can.c (revision c819e2cf)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, S_IRUGO);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 /* receive filters subscribed for 'all' CAN devices */
79 struct dev_rcv_lists can_rx_alldev_list;
80 static DEFINE_SPINLOCK(can_rcvlists_lock);
81 
82 static struct kmem_cache *rcv_cache __read_mostly;
83 
84 /* table of registered CAN protocols */
85 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
86 static DEFINE_MUTEX(proto_tab_lock);
87 
88 struct timer_list can_stattimer;   /* timer for statistics update */
89 struct s_stats    can_stats;       /* packet statistics */
90 struct s_pstats   can_pstats;      /* receive list statistics */
91 
92 /*
93  * af_can socket functions
94  */
95 
96 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
97 {
98 	struct sock *sk = sock->sk;
99 
100 	switch (cmd) {
101 
102 	case SIOCGSTAMP:
103 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
104 
105 	default:
106 		return -ENOIOCTLCMD;
107 	}
108 }
109 EXPORT_SYMBOL(can_ioctl);
110 
111 static void can_sock_destruct(struct sock *sk)
112 {
113 	skb_queue_purge(&sk->sk_receive_queue);
114 }
115 
116 static const struct can_proto *can_get_proto(int protocol)
117 {
118 	const struct can_proto *cp;
119 
120 	rcu_read_lock();
121 	cp = rcu_dereference(proto_tab[protocol]);
122 	if (cp && !try_module_get(cp->prot->owner))
123 		cp = NULL;
124 	rcu_read_unlock();
125 
126 	return cp;
127 }
128 
129 static inline void can_put_proto(const struct can_proto *cp)
130 {
131 	module_put(cp->prot->owner);
132 }
133 
134 static int can_create(struct net *net, struct socket *sock, int protocol,
135 		      int kern)
136 {
137 	struct sock *sk;
138 	const struct can_proto *cp;
139 	int err = 0;
140 
141 	sock->state = SS_UNCONNECTED;
142 
143 	if (protocol < 0 || protocol >= CAN_NPROTO)
144 		return -EINVAL;
145 
146 	if (!net_eq(net, &init_net))
147 		return -EAFNOSUPPORT;
148 
149 	cp = can_get_proto(protocol);
150 
151 #ifdef CONFIG_MODULES
152 	if (!cp) {
153 		/* try to load protocol module if kernel is modular */
154 
155 		err = request_module("can-proto-%d", protocol);
156 
157 		/*
158 		 * In case of error we only print a message but don't
159 		 * return the error code immediately.  Below we will
160 		 * return -EPROTONOSUPPORT
161 		 */
162 		if (err)
163 			printk_ratelimited(KERN_ERR "can: request_module "
164 			       "(can-proto-%d) failed.\n", protocol);
165 
166 		cp = can_get_proto(protocol);
167 	}
168 #endif
169 
170 	/* check for available protocol and correct usage */
171 
172 	if (!cp)
173 		return -EPROTONOSUPPORT;
174 
175 	if (cp->type != sock->type) {
176 		err = -EPROTOTYPE;
177 		goto errout;
178 	}
179 
180 	sock->ops = cp->ops;
181 
182 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
183 	if (!sk) {
184 		err = -ENOMEM;
185 		goto errout;
186 	}
187 
188 	sock_init_data(sock, sk);
189 	sk->sk_destruct = can_sock_destruct;
190 
191 	if (sk->sk_prot->init)
192 		err = sk->sk_prot->init(sk);
193 
194 	if (err) {
195 		/* release sk on errors */
196 		sock_orphan(sk);
197 		sock_put(sk);
198 	}
199 
200  errout:
201 	can_put_proto(cp);
202 	return err;
203 }
204 
205 /*
206  * af_can tx path
207  */
208 
209 /**
210  * can_send - transmit a CAN frame (optional with local loopback)
211  * @skb: pointer to socket buffer with CAN frame in data section
212  * @loop: loopback for listeners on local CAN sockets (recommended default!)
213  *
214  * Due to the loopback this routine must not be called from hardirq context.
215  *
216  * Return:
217  *  0 on success
218  *  -ENETDOWN when the selected interface is down
219  *  -ENOBUFS on full driver queue (see net_xmit_errno())
220  *  -ENOMEM when local loopback failed at calling skb_clone()
221  *  -EPERM when trying to send on a non-CAN interface
222  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
223  *  -EINVAL when the skb->data does not contain a valid CAN frame
224  */
225 int can_send(struct sk_buff *skb, int loop)
226 {
227 	struct sk_buff *newskb = NULL;
228 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
229 	int err = -EINVAL;
230 
231 	if (skb->len == CAN_MTU) {
232 		skb->protocol = htons(ETH_P_CAN);
233 		if (unlikely(cfd->len > CAN_MAX_DLEN))
234 			goto inval_skb;
235 	} else if (skb->len == CANFD_MTU) {
236 		skb->protocol = htons(ETH_P_CANFD);
237 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
238 			goto inval_skb;
239 	} else
240 		goto inval_skb;
241 
242 	/*
243 	 * Make sure the CAN frame can pass the selected CAN netdevice.
244 	 * As structs can_frame and canfd_frame are similar, we can provide
245 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
246 	 */
247 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
248 		err = -EMSGSIZE;
249 		goto inval_skb;
250 	}
251 
252 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
253 		err = -EPERM;
254 		goto inval_skb;
255 	}
256 
257 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
258 		err = -ENETDOWN;
259 		goto inval_skb;
260 	}
261 
262 	skb_reset_network_header(skb);
263 	skb_reset_transport_header(skb);
264 
265 	if (loop) {
266 		/* local loopback of sent CAN frames */
267 
268 		/* indication for the CAN driver: do loopback */
269 		skb->pkt_type = PACKET_LOOPBACK;
270 
271 		/*
272 		 * The reference to the originating sock may be required
273 		 * by the receiving socket to check whether the frame is
274 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
275 		 * Therefore we have to ensure that skb->sk remains the
276 		 * reference to the originating sock by restoring skb->sk
277 		 * after each skb_clone() or skb_orphan() usage.
278 		 */
279 
280 		if (!(skb->dev->flags & IFF_ECHO)) {
281 			/*
282 			 * If the interface is not capable to do loopback
283 			 * itself, we do it here.
284 			 */
285 			newskb = skb_clone(skb, GFP_ATOMIC);
286 			if (!newskb) {
287 				kfree_skb(skb);
288 				return -ENOMEM;
289 			}
290 
291 			can_skb_set_owner(newskb, skb->sk);
292 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
293 			newskb->pkt_type = PACKET_BROADCAST;
294 		}
295 	} else {
296 		/* indication for the CAN driver: no loopback required */
297 		skb->pkt_type = PACKET_HOST;
298 	}
299 
300 	/* send to netdevice */
301 	err = dev_queue_xmit(skb);
302 	if (err > 0)
303 		err = net_xmit_errno(err);
304 
305 	if (err) {
306 		kfree_skb(newskb);
307 		return err;
308 	}
309 
310 	if (newskb)
311 		netif_rx_ni(newskb);
312 
313 	/* update statistics */
314 	can_stats.tx_frames++;
315 	can_stats.tx_frames_delta++;
316 
317 	return 0;
318 
319 inval_skb:
320 	kfree_skb(skb);
321 	return err;
322 }
323 EXPORT_SYMBOL(can_send);
324 
325 /*
326  * af_can rx path
327  */
328 
329 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
330 {
331 	if (!dev)
332 		return &can_rx_alldev_list;
333 	else
334 		return (struct dev_rcv_lists *)dev->ml_priv;
335 }
336 
337 /**
338  * effhash - hash function for 29 bit CAN identifier reduction
339  * @can_id: 29 bit CAN identifier
340  *
341  * Description:
342  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
343  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
344  *  (see CAN_EFF_RCV_HASH_BITS definition)
345  *
346  * Return:
347  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
348  */
349 static unsigned int effhash(canid_t can_id)
350 {
351 	unsigned int hash;
352 
353 	hash = can_id;
354 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
355 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
356 
357 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
358 }
359 
360 /**
361  * find_rcv_list - determine optimal filterlist inside device filter struct
362  * @can_id: pointer to CAN identifier of a given can_filter
363  * @mask: pointer to CAN mask of a given can_filter
364  * @d: pointer to the device filter struct
365  *
366  * Description:
367  *  Returns the optimal filterlist to reduce the filter handling in the
368  *  receive path. This function is called by service functions that need
369  *  to register or unregister a can_filter in the filter lists.
370  *
371  *  A filter matches in general, when
372  *
373  *          <received_can_id> & mask == can_id & mask
374  *
375  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
376  *  relevant bits for the filter.
377  *
378  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
379  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
380  *  frames there is a special filterlist and a special rx path filter handling.
381  *
382  * Return:
383  *  Pointer to optimal filterlist for the given can_id/mask pair.
384  *  Constistency checked mask.
385  *  Reduced can_id to have a preprocessed filter compare value.
386  */
387 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
388 					struct dev_rcv_lists *d)
389 {
390 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
391 
392 	/* filter for error message frames in extra filterlist */
393 	if (*mask & CAN_ERR_FLAG) {
394 		/* clear CAN_ERR_FLAG in filter entry */
395 		*mask &= CAN_ERR_MASK;
396 		return &d->rx[RX_ERR];
397 	}
398 
399 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
400 
401 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
402 
403 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
404 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
405 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
406 
407 	/* reduce condition testing at receive time */
408 	*can_id &= *mask;
409 
410 	/* inverse can_id/can_mask filter */
411 	if (inv)
412 		return &d->rx[RX_INV];
413 
414 	/* mask == 0 => no condition testing at receive time */
415 	if (!(*mask))
416 		return &d->rx[RX_ALL];
417 
418 	/* extra filterlists for the subscription of a single non-RTR can_id */
419 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
420 	    !(*can_id & CAN_RTR_FLAG)) {
421 
422 		if (*can_id & CAN_EFF_FLAG) {
423 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
424 				return &d->rx_eff[effhash(*can_id)];
425 		} else {
426 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
427 				return &d->rx_sff[*can_id];
428 		}
429 	}
430 
431 	/* default: filter via can_id/can_mask */
432 	return &d->rx[RX_FIL];
433 }
434 
435 /**
436  * can_rx_register - subscribe CAN frames from a specific interface
437  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
438  * @can_id: CAN identifier (see description)
439  * @mask: CAN mask (see description)
440  * @func: callback function on filter match
441  * @data: returned parameter for callback function
442  * @ident: string for calling module identification
443  *
444  * Description:
445  *  Invokes the callback function with the received sk_buff and the given
446  *  parameter 'data' on a matching receive filter. A filter matches, when
447  *
448  *          <received_can_id> & mask == can_id & mask
449  *
450  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
451  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
452  *
453  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
454  *  the callback function is running. The callback function must *not* free
455  *  the given sk_buff while processing it's task. When the given sk_buff is
456  *  needed after the end of the callback function it must be cloned inside
457  *  the callback function with skb_clone().
458  *
459  * Return:
460  *  0 on success
461  *  -ENOMEM on missing cache mem to create subscription entry
462  *  -ENODEV unknown device
463  */
464 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
465 		    void (*func)(struct sk_buff *, void *), void *data,
466 		    char *ident)
467 {
468 	struct receiver *r;
469 	struct hlist_head *rl;
470 	struct dev_rcv_lists *d;
471 	int err = 0;
472 
473 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
474 
475 	if (dev && dev->type != ARPHRD_CAN)
476 		return -ENODEV;
477 
478 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
479 	if (!r)
480 		return -ENOMEM;
481 
482 	spin_lock(&can_rcvlists_lock);
483 
484 	d = find_dev_rcv_lists(dev);
485 	if (d) {
486 		rl = find_rcv_list(&can_id, &mask, d);
487 
488 		r->can_id  = can_id;
489 		r->mask    = mask;
490 		r->matches = 0;
491 		r->func    = func;
492 		r->data    = data;
493 		r->ident   = ident;
494 
495 		hlist_add_head_rcu(&r->list, rl);
496 		d->entries++;
497 
498 		can_pstats.rcv_entries++;
499 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
500 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
501 	} else {
502 		kmem_cache_free(rcv_cache, r);
503 		err = -ENODEV;
504 	}
505 
506 	spin_unlock(&can_rcvlists_lock);
507 
508 	return err;
509 }
510 EXPORT_SYMBOL(can_rx_register);
511 
512 /*
513  * can_rx_delete_receiver - rcu callback for single receiver entry removal
514  */
515 static void can_rx_delete_receiver(struct rcu_head *rp)
516 {
517 	struct receiver *r = container_of(rp, struct receiver, rcu);
518 
519 	kmem_cache_free(rcv_cache, r);
520 }
521 
522 /**
523  * can_rx_unregister - unsubscribe CAN frames from a specific interface
524  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
525  * @can_id: CAN identifier
526  * @mask: CAN mask
527  * @func: callback function on filter match
528  * @data: returned parameter for callback function
529  *
530  * Description:
531  *  Removes subscription entry depending on given (subscription) values.
532  */
533 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
534 		       void (*func)(struct sk_buff *, void *), void *data)
535 {
536 	struct receiver *r = NULL;
537 	struct hlist_head *rl;
538 	struct dev_rcv_lists *d;
539 
540 	if (dev && dev->type != ARPHRD_CAN)
541 		return;
542 
543 	spin_lock(&can_rcvlists_lock);
544 
545 	d = find_dev_rcv_lists(dev);
546 	if (!d) {
547 		pr_err("BUG: receive list not found for "
548 		       "dev %s, id %03X, mask %03X\n",
549 		       DNAME(dev), can_id, mask);
550 		goto out;
551 	}
552 
553 	rl = find_rcv_list(&can_id, &mask, d);
554 
555 	/*
556 	 * Search the receiver list for the item to delete.  This should
557 	 * exist, since no receiver may be unregistered that hasn't
558 	 * been registered before.
559 	 */
560 
561 	hlist_for_each_entry_rcu(r, rl, list) {
562 		if (r->can_id == can_id && r->mask == mask &&
563 		    r->func == func && r->data == data)
564 			break;
565 	}
566 
567 	/*
568 	 * Check for bugs in CAN protocol implementations using af_can.c:
569 	 * 'r' will be NULL if no matching list item was found for removal.
570 	 */
571 
572 	if (!r) {
573 		WARN(1, "BUG: receive list entry not found for dev %s, "
574 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
575 		goto out;
576 	}
577 
578 	hlist_del_rcu(&r->list);
579 	d->entries--;
580 
581 	if (can_pstats.rcv_entries > 0)
582 		can_pstats.rcv_entries--;
583 
584 	/* remove device structure requested by NETDEV_UNREGISTER */
585 	if (d->remove_on_zero_entries && !d->entries) {
586 		kfree(d);
587 		dev->ml_priv = NULL;
588 	}
589 
590  out:
591 	spin_unlock(&can_rcvlists_lock);
592 
593 	/* schedule the receiver item for deletion */
594 	if (r)
595 		call_rcu(&r->rcu, can_rx_delete_receiver);
596 }
597 EXPORT_SYMBOL(can_rx_unregister);
598 
599 static inline void deliver(struct sk_buff *skb, struct receiver *r)
600 {
601 	r->func(skb, r->data);
602 	r->matches++;
603 }
604 
605 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
606 {
607 	struct receiver *r;
608 	int matches = 0;
609 	struct can_frame *cf = (struct can_frame *)skb->data;
610 	canid_t can_id = cf->can_id;
611 
612 	if (d->entries == 0)
613 		return 0;
614 
615 	if (can_id & CAN_ERR_FLAG) {
616 		/* check for error message frame entries only */
617 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
618 			if (can_id & r->mask) {
619 				deliver(skb, r);
620 				matches++;
621 			}
622 		}
623 		return matches;
624 	}
625 
626 	/* check for unfiltered entries */
627 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
628 		deliver(skb, r);
629 		matches++;
630 	}
631 
632 	/* check for can_id/mask entries */
633 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
634 		if ((can_id & r->mask) == r->can_id) {
635 			deliver(skb, r);
636 			matches++;
637 		}
638 	}
639 
640 	/* check for inverted can_id/mask entries */
641 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
642 		if ((can_id & r->mask) != r->can_id) {
643 			deliver(skb, r);
644 			matches++;
645 		}
646 	}
647 
648 	/* check filterlists for single non-RTR can_ids */
649 	if (can_id & CAN_RTR_FLAG)
650 		return matches;
651 
652 	if (can_id & CAN_EFF_FLAG) {
653 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
654 			if (r->can_id == can_id) {
655 				deliver(skb, r);
656 				matches++;
657 			}
658 		}
659 	} else {
660 		can_id &= CAN_SFF_MASK;
661 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
662 			deliver(skb, r);
663 			matches++;
664 		}
665 	}
666 
667 	return matches;
668 }
669 
670 static void can_receive(struct sk_buff *skb, struct net_device *dev)
671 {
672 	struct dev_rcv_lists *d;
673 	int matches;
674 
675 	/* update statistics */
676 	can_stats.rx_frames++;
677 	can_stats.rx_frames_delta++;
678 
679 	rcu_read_lock();
680 
681 	/* deliver the packet to sockets listening on all devices */
682 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
683 
684 	/* find receive list for this device */
685 	d = find_dev_rcv_lists(dev);
686 	if (d)
687 		matches += can_rcv_filter(d, skb);
688 
689 	rcu_read_unlock();
690 
691 	/* consume the skbuff allocated by the netdevice driver */
692 	consume_skb(skb);
693 
694 	if (matches > 0) {
695 		can_stats.matches++;
696 		can_stats.matches_delta++;
697 	}
698 }
699 
700 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
701 		   struct packet_type *pt, struct net_device *orig_dev)
702 {
703 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
704 
705 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
706 		goto drop;
707 
708 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
709 		      skb->len != CAN_MTU ||
710 		      cfd->len > CAN_MAX_DLEN,
711 		      "PF_CAN: dropped non conform CAN skbuf: "
712 		      "dev type %d, len %d, datalen %d\n",
713 		      dev->type, skb->len, cfd->len))
714 		goto drop;
715 
716 	can_receive(skb, dev);
717 	return NET_RX_SUCCESS;
718 
719 drop:
720 	kfree_skb(skb);
721 	return NET_RX_DROP;
722 }
723 
724 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
725 		   struct packet_type *pt, struct net_device *orig_dev)
726 {
727 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
728 
729 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
730 		goto drop;
731 
732 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
733 		      skb->len != CANFD_MTU ||
734 		      cfd->len > CANFD_MAX_DLEN,
735 		      "PF_CAN: dropped non conform CAN FD skbuf: "
736 		      "dev type %d, len %d, datalen %d\n",
737 		      dev->type, skb->len, cfd->len))
738 		goto drop;
739 
740 	can_receive(skb, dev);
741 	return NET_RX_SUCCESS;
742 
743 drop:
744 	kfree_skb(skb);
745 	return NET_RX_DROP;
746 }
747 
748 /*
749  * af_can protocol functions
750  */
751 
752 /**
753  * can_proto_register - register CAN transport protocol
754  * @cp: pointer to CAN protocol structure
755  *
756  * Return:
757  *  0 on success
758  *  -EINVAL invalid (out of range) protocol number
759  *  -EBUSY  protocol already in use
760  *  -ENOBUF if proto_register() fails
761  */
762 int can_proto_register(const struct can_proto *cp)
763 {
764 	int proto = cp->protocol;
765 	int err = 0;
766 
767 	if (proto < 0 || proto >= CAN_NPROTO) {
768 		pr_err("can: protocol number %d out of range\n", proto);
769 		return -EINVAL;
770 	}
771 
772 	err = proto_register(cp->prot, 0);
773 	if (err < 0)
774 		return err;
775 
776 	mutex_lock(&proto_tab_lock);
777 
778 	if (proto_tab[proto]) {
779 		pr_err("can: protocol %d already registered\n", proto);
780 		err = -EBUSY;
781 	} else
782 		RCU_INIT_POINTER(proto_tab[proto], cp);
783 
784 	mutex_unlock(&proto_tab_lock);
785 
786 	if (err < 0)
787 		proto_unregister(cp->prot);
788 
789 	return err;
790 }
791 EXPORT_SYMBOL(can_proto_register);
792 
793 /**
794  * can_proto_unregister - unregister CAN transport protocol
795  * @cp: pointer to CAN protocol structure
796  */
797 void can_proto_unregister(const struct can_proto *cp)
798 {
799 	int proto = cp->protocol;
800 
801 	mutex_lock(&proto_tab_lock);
802 	BUG_ON(proto_tab[proto] != cp);
803 	RCU_INIT_POINTER(proto_tab[proto], NULL);
804 	mutex_unlock(&proto_tab_lock);
805 
806 	synchronize_rcu();
807 
808 	proto_unregister(cp->prot);
809 }
810 EXPORT_SYMBOL(can_proto_unregister);
811 
812 /*
813  * af_can notifier to create/remove CAN netdevice specific structs
814  */
815 static int can_notifier(struct notifier_block *nb, unsigned long msg,
816 			void *ptr)
817 {
818 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
819 	struct dev_rcv_lists *d;
820 
821 	if (!net_eq(dev_net(dev), &init_net))
822 		return NOTIFY_DONE;
823 
824 	if (dev->type != ARPHRD_CAN)
825 		return NOTIFY_DONE;
826 
827 	switch (msg) {
828 
829 	case NETDEV_REGISTER:
830 
831 		/* create new dev_rcv_lists for this device */
832 		d = kzalloc(sizeof(*d), GFP_KERNEL);
833 		if (!d)
834 			return NOTIFY_DONE;
835 		BUG_ON(dev->ml_priv);
836 		dev->ml_priv = d;
837 
838 		break;
839 
840 	case NETDEV_UNREGISTER:
841 		spin_lock(&can_rcvlists_lock);
842 
843 		d = dev->ml_priv;
844 		if (d) {
845 			if (d->entries)
846 				d->remove_on_zero_entries = 1;
847 			else {
848 				kfree(d);
849 				dev->ml_priv = NULL;
850 			}
851 		} else
852 			pr_err("can: notifier: receive list not found for dev "
853 			       "%s\n", dev->name);
854 
855 		spin_unlock(&can_rcvlists_lock);
856 
857 		break;
858 	}
859 
860 	return NOTIFY_DONE;
861 }
862 
863 /*
864  * af_can module init/exit functions
865  */
866 
867 static struct packet_type can_packet __read_mostly = {
868 	.type = cpu_to_be16(ETH_P_CAN),
869 	.func = can_rcv,
870 };
871 
872 static struct packet_type canfd_packet __read_mostly = {
873 	.type = cpu_to_be16(ETH_P_CANFD),
874 	.func = canfd_rcv,
875 };
876 
877 static const struct net_proto_family can_family_ops = {
878 	.family = PF_CAN,
879 	.create = can_create,
880 	.owner  = THIS_MODULE,
881 };
882 
883 /* notifier block for netdevice event */
884 static struct notifier_block can_netdev_notifier __read_mostly = {
885 	.notifier_call = can_notifier,
886 };
887 
888 static __init int can_init(void)
889 {
890 	/* check for correct padding to be able to use the structs similarly */
891 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
892 		     offsetof(struct canfd_frame, len) ||
893 		     offsetof(struct can_frame, data) !=
894 		     offsetof(struct canfd_frame, data));
895 
896 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
897 
898 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
899 
900 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
901 				      0, 0, NULL);
902 	if (!rcv_cache)
903 		return -ENOMEM;
904 
905 	if (stats_timer) {
906 		/* the statistics are updated every second (timer triggered) */
907 		setup_timer(&can_stattimer, can_stat_update, 0);
908 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
909 	} else
910 		can_stattimer.function = NULL;
911 
912 	can_init_proc();
913 
914 	/* protocol register */
915 	sock_register(&can_family_ops);
916 	register_netdevice_notifier(&can_netdev_notifier);
917 	dev_add_pack(&can_packet);
918 	dev_add_pack(&canfd_packet);
919 
920 	return 0;
921 }
922 
923 static __exit void can_exit(void)
924 {
925 	struct net_device *dev;
926 
927 	if (stats_timer)
928 		del_timer_sync(&can_stattimer);
929 
930 	can_remove_proc();
931 
932 	/* protocol unregister */
933 	dev_remove_pack(&canfd_packet);
934 	dev_remove_pack(&can_packet);
935 	unregister_netdevice_notifier(&can_netdev_notifier);
936 	sock_unregister(PF_CAN);
937 
938 	/* remove created dev_rcv_lists from still registered CAN devices */
939 	rcu_read_lock();
940 	for_each_netdev_rcu(&init_net, dev) {
941 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
942 
943 			struct dev_rcv_lists *d = dev->ml_priv;
944 
945 			BUG_ON(d->entries);
946 			kfree(d);
947 			dev->ml_priv = NULL;
948 		}
949 	}
950 	rcu_read_unlock();
951 
952 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
953 
954 	kmem_cache_destroy(rcv_cache);
955 }
956 
957 module_init(can_init);
958 module_exit(can_exit);
959