xref: /openbmc/linux/net/can/af_can.c (revision a1e58bbd)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 	struct sock *sk;
120 	struct can_proto *cp;
121 	int err = 0;
122 
123 	sock->state = SS_UNCONNECTED;
124 
125 	if (protocol < 0 || protocol >= CAN_NPROTO)
126 		return -EINVAL;
127 
128 	if (net != &init_net)
129 		return -EAFNOSUPPORT;
130 
131 #ifdef CONFIG_KMOD
132 	/* try to load protocol module, when CONFIG_KMOD is defined */
133 	if (!proto_tab[protocol]) {
134 		err = request_module("can-proto-%d", protocol);
135 
136 		/*
137 		 * In case of error we only print a message but don't
138 		 * return the error code immediately.  Below we will
139 		 * return -EPROTONOSUPPORT
140 		 */
141 		if (err && printk_ratelimit())
142 			printk(KERN_ERR "can: request_module "
143 			       "(can-proto-%d) failed.\n", protocol);
144 	}
145 #endif
146 
147 	spin_lock(&proto_tab_lock);
148 	cp = proto_tab[protocol];
149 	if (cp && !try_module_get(cp->prot->owner))
150 		cp = NULL;
151 	spin_unlock(&proto_tab_lock);
152 
153 	/* check for available protocol and correct usage */
154 
155 	if (!cp)
156 		return -EPROTONOSUPPORT;
157 
158 	if (cp->type != sock->type) {
159 		err = -EPROTONOSUPPORT;
160 		goto errout;
161 	}
162 
163 	if (cp->capability >= 0 && !capable(cp->capability)) {
164 		err = -EPERM;
165 		goto errout;
166 	}
167 
168 	sock->ops = cp->ops;
169 
170 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 	if (!sk) {
172 		err = -ENOMEM;
173 		goto errout;
174 	}
175 
176 	sock_init_data(sock, sk);
177 	sk->sk_destruct = can_sock_destruct;
178 
179 	if (sk->sk_prot->init)
180 		err = sk->sk_prot->init(sk);
181 
182 	if (err) {
183 		/* release sk on errors */
184 		sock_orphan(sk);
185 		sock_put(sk);
186 	}
187 
188  errout:
189 	module_put(cp->prot->owner);
190 	return err;
191 }
192 
193 /*
194  * af_can tx path
195  */
196 
197 /**
198  * can_send - transmit a CAN frame (optional with local loopback)
199  * @skb: pointer to socket buffer with CAN frame in data section
200  * @loop: loopback for listeners on local CAN sockets (recommended default!)
201  *
202  * Return:
203  *  0 on success
204  *  -ENETDOWN when the selected interface is down
205  *  -ENOBUFS on full driver queue (see net_xmit_errno())
206  *  -ENOMEM when local loopback failed at calling skb_clone()
207  *  -EPERM when trying to send on a non-CAN interface
208  */
209 int can_send(struct sk_buff *skb, int loop)
210 {
211 	int err;
212 
213 	if (skb->dev->type != ARPHRD_CAN) {
214 		kfree_skb(skb);
215 		return -EPERM;
216 	}
217 
218 	if (!(skb->dev->flags & IFF_UP)) {
219 		kfree_skb(skb);
220 		return -ENETDOWN;
221 	}
222 
223 	skb->protocol = htons(ETH_P_CAN);
224 	skb_reset_network_header(skb);
225 	skb_reset_transport_header(skb);
226 
227 	if (loop) {
228 		/* local loopback of sent CAN frames */
229 
230 		/* indication for the CAN driver: do loopback */
231 		skb->pkt_type = PACKET_LOOPBACK;
232 
233 		/*
234 		 * The reference to the originating sock may be required
235 		 * by the receiving socket to check whether the frame is
236 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
237 		 * Therefore we have to ensure that skb->sk remains the
238 		 * reference to the originating sock by restoring skb->sk
239 		 * after each skb_clone() or skb_orphan() usage.
240 		 */
241 
242 		if (!(skb->dev->flags & IFF_ECHO)) {
243 			/*
244 			 * If the interface is not capable to do loopback
245 			 * itself, we do it here.
246 			 */
247 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
248 
249 			if (!newskb) {
250 				kfree_skb(skb);
251 				return -ENOMEM;
252 			}
253 
254 			newskb->sk = skb->sk;
255 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
256 			newskb->pkt_type = PACKET_BROADCAST;
257 			netif_rx(newskb);
258 		}
259 	} else {
260 		/* indication for the CAN driver: no loopback required */
261 		skb->pkt_type = PACKET_HOST;
262 	}
263 
264 	/* send to netdevice */
265 	err = dev_queue_xmit(skb);
266 	if (err > 0)
267 		err = net_xmit_errno(err);
268 
269 	/* update statistics */
270 	can_stats.tx_frames++;
271 	can_stats.tx_frames_delta++;
272 
273 	return err;
274 }
275 EXPORT_SYMBOL(can_send);
276 
277 /*
278  * af_can rx path
279  */
280 
281 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
282 {
283 	struct dev_rcv_lists *d = NULL;
284 	struct hlist_node *n;
285 
286 	/*
287 	 * find receive list for this device
288 	 *
289 	 * The hlist_for_each_entry*() macros curse through the list
290 	 * using the pointer variable n and set d to the containing
291 	 * struct in each list iteration.  Therefore, after list
292 	 * iteration, d is unmodified when the list is empty, and it
293 	 * points to last list element, when the list is non-empty
294 	 * but no match in the loop body is found.  I.e. d is *not*
295 	 * NULL when no match is found.  We can, however, use the
296 	 * cursor variable n to decide if a match was found.
297 	 */
298 
299 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
300 		if (d->dev == dev)
301 			break;
302 	}
303 
304 	return n ? d : NULL;
305 }
306 
307 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
308 					struct dev_rcv_lists *d)
309 {
310 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
311 
312 	/* filter error frames */
313 	if (*mask & CAN_ERR_FLAG) {
314 		/* clear CAN_ERR_FLAG in list entry */
315 		*mask &= CAN_ERR_MASK;
316 		return &d->rx[RX_ERR];
317 	}
318 
319 	/* ensure valid values in can_mask */
320 	if (*mask & CAN_EFF_FLAG)
321 		*mask &= (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG);
322 	else
323 		*mask &= (CAN_SFF_MASK | CAN_RTR_FLAG);
324 
325 	/* reduce condition testing at receive time */
326 	*can_id &= *mask;
327 
328 	/* inverse can_id/can_mask filter */
329 	if (inv)
330 		return &d->rx[RX_INV];
331 
332 	/* mask == 0 => no condition testing at receive time */
333 	if (!(*mask))
334 		return &d->rx[RX_ALL];
335 
336 	/* use extra filterset for the subscription of exactly *ONE* can_id */
337 	if (*can_id & CAN_EFF_FLAG) {
338 		if (*mask == (CAN_EFF_MASK | CAN_EFF_FLAG)) {
339 			/* RFC: a use-case for hash-tables in the future? */
340 			return &d->rx[RX_EFF];
341 		}
342 	} else {
343 		if (*mask == CAN_SFF_MASK)
344 			return &d->rx_sff[*can_id];
345 	}
346 
347 	/* default: filter via can_id/can_mask */
348 	return &d->rx[RX_FIL];
349 }
350 
351 /**
352  * can_rx_register - subscribe CAN frames from a specific interface
353  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
354  * @can_id: CAN identifier (see description)
355  * @mask: CAN mask (see description)
356  * @func: callback function on filter match
357  * @data: returned parameter for callback function
358  * @ident: string for calling module indentification
359  *
360  * Description:
361  *  Invokes the callback function with the received sk_buff and the given
362  *  parameter 'data' on a matching receive filter. A filter matches, when
363  *
364  *          <received_can_id> & mask == can_id & mask
365  *
366  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
367  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
368  *
369  * Return:
370  *  0 on success
371  *  -ENOMEM on missing cache mem to create subscription entry
372  *  -ENODEV unknown device
373  */
374 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
375 		    void (*func)(struct sk_buff *, void *), void *data,
376 		    char *ident)
377 {
378 	struct receiver *r;
379 	struct hlist_head *rl;
380 	struct dev_rcv_lists *d;
381 	int err = 0;
382 
383 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
384 
385 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
386 	if (!r)
387 		return -ENOMEM;
388 
389 	spin_lock(&can_rcvlists_lock);
390 
391 	d = find_dev_rcv_lists(dev);
392 	if (d) {
393 		rl = find_rcv_list(&can_id, &mask, d);
394 
395 		r->can_id  = can_id;
396 		r->mask    = mask;
397 		r->matches = 0;
398 		r->func    = func;
399 		r->data    = data;
400 		r->ident   = ident;
401 
402 		hlist_add_head_rcu(&r->list, rl);
403 		d->entries++;
404 
405 		can_pstats.rcv_entries++;
406 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
407 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
408 	} else {
409 		kmem_cache_free(rcv_cache, r);
410 		err = -ENODEV;
411 	}
412 
413 	spin_unlock(&can_rcvlists_lock);
414 
415 	return err;
416 }
417 EXPORT_SYMBOL(can_rx_register);
418 
419 /*
420  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
421  */
422 static void can_rx_delete_device(struct rcu_head *rp)
423 {
424 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
425 
426 	kfree(d);
427 }
428 
429 /*
430  * can_rx_delete_receiver - rcu callback for single receiver entry removal
431  */
432 static void can_rx_delete_receiver(struct rcu_head *rp)
433 {
434 	struct receiver *r = container_of(rp, struct receiver, rcu);
435 
436 	kmem_cache_free(rcv_cache, r);
437 }
438 
439 /**
440  * can_rx_unregister - unsubscribe CAN frames from a specific interface
441  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
442  * @can_id: CAN identifier
443  * @mask: CAN mask
444  * @func: callback function on filter match
445  * @data: returned parameter for callback function
446  *
447  * Description:
448  *  Removes subscription entry depending on given (subscription) values.
449  */
450 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
451 		       void (*func)(struct sk_buff *, void *), void *data)
452 {
453 	struct receiver *r = NULL;
454 	struct hlist_head *rl;
455 	struct hlist_node *next;
456 	struct dev_rcv_lists *d;
457 
458 	spin_lock(&can_rcvlists_lock);
459 
460 	d = find_dev_rcv_lists(dev);
461 	if (!d) {
462 		printk(KERN_ERR "BUG: receive list not found for "
463 		       "dev %s, id %03X, mask %03X\n",
464 		       DNAME(dev), can_id, mask);
465 		goto out;
466 	}
467 
468 	rl = find_rcv_list(&can_id, &mask, d);
469 
470 	/*
471 	 * Search the receiver list for the item to delete.  This should
472 	 * exist, since no receiver may be unregistered that hasn't
473 	 * been registered before.
474 	 */
475 
476 	hlist_for_each_entry_rcu(r, next, rl, list) {
477 		if (r->can_id == can_id && r->mask == mask
478 		    && r->func == func && r->data == data)
479 			break;
480 	}
481 
482 	/*
483 	 * Check for bugs in CAN protocol implementations:
484 	 * If no matching list item was found, the list cursor variable next
485 	 * will be NULL, while r will point to the last item of the list.
486 	 */
487 
488 	if (!next) {
489 		printk(KERN_ERR "BUG: receive list entry not found for "
490 		       "dev %s, id %03X, mask %03X\n",
491 		       DNAME(dev), can_id, mask);
492 		r = NULL;
493 		d = NULL;
494 		goto out;
495 	}
496 
497 	hlist_del_rcu(&r->list);
498 	d->entries--;
499 
500 	if (can_pstats.rcv_entries > 0)
501 		can_pstats.rcv_entries--;
502 
503 	/* remove device structure requested by NETDEV_UNREGISTER */
504 	if (d->remove_on_zero_entries && !d->entries)
505 		hlist_del_rcu(&d->list);
506 	else
507 		d = NULL;
508 
509  out:
510 	spin_unlock(&can_rcvlists_lock);
511 
512 	/* schedule the receiver item for deletion */
513 	if (r)
514 		call_rcu(&r->rcu, can_rx_delete_receiver);
515 
516 	/* schedule the device structure for deletion */
517 	if (d)
518 		call_rcu(&d->rcu, can_rx_delete_device);
519 }
520 EXPORT_SYMBOL(can_rx_unregister);
521 
522 static inline void deliver(struct sk_buff *skb, struct receiver *r)
523 {
524 	struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC);
525 
526 	if (clone) {
527 		clone->sk = skb->sk;
528 		r->func(clone, r->data);
529 		r->matches++;
530 	}
531 }
532 
533 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
534 {
535 	struct receiver *r;
536 	struct hlist_node *n;
537 	int matches = 0;
538 	struct can_frame *cf = (struct can_frame *)skb->data;
539 	canid_t can_id = cf->can_id;
540 
541 	if (d->entries == 0)
542 		return 0;
543 
544 	if (can_id & CAN_ERR_FLAG) {
545 		/* check for error frame entries only */
546 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
547 			if (can_id & r->mask) {
548 				deliver(skb, r);
549 				matches++;
550 			}
551 		}
552 		return matches;
553 	}
554 
555 	/* check for unfiltered entries */
556 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
557 		deliver(skb, r);
558 		matches++;
559 	}
560 
561 	/* check for can_id/mask entries */
562 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
563 		if ((can_id & r->mask) == r->can_id) {
564 			deliver(skb, r);
565 			matches++;
566 		}
567 	}
568 
569 	/* check for inverted can_id/mask entries */
570 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
571 		if ((can_id & r->mask) != r->can_id) {
572 			deliver(skb, r);
573 			matches++;
574 		}
575 	}
576 
577 	/* check CAN_ID specific entries */
578 	if (can_id & CAN_EFF_FLAG) {
579 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
580 			if (r->can_id == can_id) {
581 				deliver(skb, r);
582 				matches++;
583 			}
584 		}
585 	} else {
586 		can_id &= CAN_SFF_MASK;
587 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
588 			deliver(skb, r);
589 			matches++;
590 		}
591 	}
592 
593 	return matches;
594 }
595 
596 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
597 		   struct packet_type *pt, struct net_device *orig_dev)
598 {
599 	struct dev_rcv_lists *d;
600 	int matches;
601 
602 	if (dev->type != ARPHRD_CAN || dev->nd_net != &init_net) {
603 		kfree_skb(skb);
604 		return 0;
605 	}
606 
607 	/* update statistics */
608 	can_stats.rx_frames++;
609 	can_stats.rx_frames_delta++;
610 
611 	rcu_read_lock();
612 
613 	/* deliver the packet to sockets listening on all devices */
614 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
615 
616 	/* find receive list for this device */
617 	d = find_dev_rcv_lists(dev);
618 	if (d)
619 		matches += can_rcv_filter(d, skb);
620 
621 	rcu_read_unlock();
622 
623 	/* free the skbuff allocated by the netdevice driver */
624 	kfree_skb(skb);
625 
626 	if (matches > 0) {
627 		can_stats.matches++;
628 		can_stats.matches_delta++;
629 	}
630 
631 	return 0;
632 }
633 
634 /*
635  * af_can protocol functions
636  */
637 
638 /**
639  * can_proto_register - register CAN transport protocol
640  * @cp: pointer to CAN protocol structure
641  *
642  * Return:
643  *  0 on success
644  *  -EINVAL invalid (out of range) protocol number
645  *  -EBUSY  protocol already in use
646  *  -ENOBUF if proto_register() fails
647  */
648 int can_proto_register(struct can_proto *cp)
649 {
650 	int proto = cp->protocol;
651 	int err = 0;
652 
653 	if (proto < 0 || proto >= CAN_NPROTO) {
654 		printk(KERN_ERR "can: protocol number %d out of range\n",
655 		       proto);
656 		return -EINVAL;
657 	}
658 
659 	err = proto_register(cp->prot, 0);
660 	if (err < 0)
661 		return err;
662 
663 	spin_lock(&proto_tab_lock);
664 	if (proto_tab[proto]) {
665 		printk(KERN_ERR "can: protocol %d already registered\n",
666 		       proto);
667 		err = -EBUSY;
668 	} else {
669 		proto_tab[proto] = cp;
670 
671 		/* use generic ioctl function if not defined by module */
672 		if (!cp->ops->ioctl)
673 			cp->ops->ioctl = can_ioctl;
674 	}
675 	spin_unlock(&proto_tab_lock);
676 
677 	if (err < 0)
678 		proto_unregister(cp->prot);
679 
680 	return err;
681 }
682 EXPORT_SYMBOL(can_proto_register);
683 
684 /**
685  * can_proto_unregister - unregister CAN transport protocol
686  * @cp: pointer to CAN protocol structure
687  */
688 void can_proto_unregister(struct can_proto *cp)
689 {
690 	int proto = cp->protocol;
691 
692 	spin_lock(&proto_tab_lock);
693 	if (!proto_tab[proto]) {
694 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
695 		       proto);
696 	}
697 	proto_tab[proto] = NULL;
698 	spin_unlock(&proto_tab_lock);
699 
700 	proto_unregister(cp->prot);
701 }
702 EXPORT_SYMBOL(can_proto_unregister);
703 
704 /*
705  * af_can notifier to create/remove CAN netdevice specific structs
706  */
707 static int can_notifier(struct notifier_block *nb, unsigned long msg,
708 			void *data)
709 {
710 	struct net_device *dev = (struct net_device *)data;
711 	struct dev_rcv_lists *d;
712 
713 	if (dev->nd_net != &init_net)
714 		return NOTIFY_DONE;
715 
716 	if (dev->type != ARPHRD_CAN)
717 		return NOTIFY_DONE;
718 
719 	switch (msg) {
720 
721 	case NETDEV_REGISTER:
722 
723 		/*
724 		 * create new dev_rcv_lists for this device
725 		 *
726 		 * N.B. zeroing the struct is the correct initialization
727 		 * for the embedded hlist_head structs.
728 		 * Another list type, e.g. list_head, would require
729 		 * explicit initialization.
730 		 */
731 
732 		d = kzalloc(sizeof(*d), GFP_KERNEL);
733 		if (!d) {
734 			printk(KERN_ERR
735 			       "can: allocation of receive list failed\n");
736 			return NOTIFY_DONE;
737 		}
738 		d->dev = dev;
739 
740 		spin_lock(&can_rcvlists_lock);
741 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
742 		spin_unlock(&can_rcvlists_lock);
743 
744 		break;
745 
746 	case NETDEV_UNREGISTER:
747 		spin_lock(&can_rcvlists_lock);
748 
749 		d = find_dev_rcv_lists(dev);
750 		if (d) {
751 			if (d->entries) {
752 				d->remove_on_zero_entries = 1;
753 				d = NULL;
754 			} else
755 				hlist_del_rcu(&d->list);
756 		} else
757 			printk(KERN_ERR "can: notifier: receive list not "
758 			       "found for dev %s\n", dev->name);
759 
760 		spin_unlock(&can_rcvlists_lock);
761 
762 		if (d)
763 			call_rcu(&d->rcu, can_rx_delete_device);
764 
765 		break;
766 	}
767 
768 	return NOTIFY_DONE;
769 }
770 
771 /*
772  * af_can module init/exit functions
773  */
774 
775 static struct packet_type can_packet __read_mostly = {
776 	.type = __constant_htons(ETH_P_CAN),
777 	.dev  = NULL,
778 	.func = can_rcv,
779 };
780 
781 static struct net_proto_family can_family_ops __read_mostly = {
782 	.family = PF_CAN,
783 	.create = can_create,
784 	.owner  = THIS_MODULE,
785 };
786 
787 /* notifier block for netdevice event */
788 static struct notifier_block can_netdev_notifier __read_mostly = {
789 	.notifier_call = can_notifier,
790 };
791 
792 static __init int can_init(void)
793 {
794 	printk(banner);
795 
796 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
797 				      0, 0, NULL);
798 	if (!rcv_cache)
799 		return -ENOMEM;
800 
801 	/*
802 	 * Insert can_rx_alldev_list for reception on all devices.
803 	 * This struct is zero initialized which is correct for the
804 	 * embedded hlist heads, the dev pointer, and the entries counter.
805 	 */
806 
807 	spin_lock(&can_rcvlists_lock);
808 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
809 	spin_unlock(&can_rcvlists_lock);
810 
811 	if (stats_timer) {
812 		/* the statistics are updated every second (timer triggered) */
813 		setup_timer(&can_stattimer, can_stat_update, 0);
814 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
815 	} else
816 		can_stattimer.function = NULL;
817 
818 	can_init_proc();
819 
820 	/* protocol register */
821 	sock_register(&can_family_ops);
822 	register_netdevice_notifier(&can_netdev_notifier);
823 	dev_add_pack(&can_packet);
824 
825 	return 0;
826 }
827 
828 static __exit void can_exit(void)
829 {
830 	struct dev_rcv_lists *d;
831 	struct hlist_node *n, *next;
832 
833 	if (stats_timer)
834 		del_timer(&can_stattimer);
835 
836 	can_remove_proc();
837 
838 	/* protocol unregister */
839 	dev_remove_pack(&can_packet);
840 	unregister_netdevice_notifier(&can_netdev_notifier);
841 	sock_unregister(PF_CAN);
842 
843 	/* remove can_rx_dev_list */
844 	spin_lock(&can_rcvlists_lock);
845 	hlist_del(&can_rx_alldev_list.list);
846 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
847 		hlist_del(&d->list);
848 		kfree(d);
849 	}
850 	spin_unlock(&can_rcvlists_lock);
851 
852 	kmem_cache_destroy(rcv_cache);
853 }
854 
855 module_init(can_init);
856 module_exit(can_exit);
857