1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 * Send feedback to <socketcan-users@lists.berlios.de> 42 * 43 */ 44 45 #include <linux/module.h> 46 #include <linux/init.h> 47 #include <linux/kmod.h> 48 #include <linux/slab.h> 49 #include <linux/list.h> 50 #include <linux/spinlock.h> 51 #include <linux/rcupdate.h> 52 #include <linux/uaccess.h> 53 #include <linux/net.h> 54 #include <linux/netdevice.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_arp.h> 58 #include <linux/skbuff.h> 59 #include <linux/can.h> 60 #include <linux/can/core.h> 61 #include <net/net_namespace.h> 62 #include <net/sock.h> 63 64 #include "af_can.h" 65 66 static __initdata const char banner[] = KERN_INFO 67 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 68 69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 70 MODULE_LICENSE("Dual BSD/GPL"); 71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 72 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 73 74 MODULE_ALIAS_NETPROTO(PF_CAN); 75 76 static int stats_timer __read_mostly = 1; 77 module_param(stats_timer, int, S_IRUGO); 78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 79 80 HLIST_HEAD(can_rx_dev_list); 81 static struct dev_rcv_lists can_rx_alldev_list; 82 static DEFINE_SPINLOCK(can_rcvlists_lock); 83 84 static struct kmem_cache *rcv_cache __read_mostly; 85 86 /* table of registered CAN protocols */ 87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 88 static DEFINE_SPINLOCK(proto_tab_lock); 89 90 struct timer_list can_stattimer; /* timer for statistics update */ 91 struct s_stats can_stats; /* packet statistics */ 92 struct s_pstats can_pstats; /* receive list statistics */ 93 94 /* 95 * af_can socket functions 96 */ 97 98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 99 { 100 struct sock *sk = sock->sk; 101 102 switch (cmd) { 103 104 case SIOCGSTAMP: 105 return sock_get_timestamp(sk, (struct timeval __user *)arg); 106 107 default: 108 return -ENOIOCTLCMD; 109 } 110 } 111 112 static void can_sock_destruct(struct sock *sk) 113 { 114 skb_queue_purge(&sk->sk_receive_queue); 115 } 116 117 static int can_create(struct net *net, struct socket *sock, int protocol) 118 { 119 struct sock *sk; 120 struct can_proto *cp; 121 int err = 0; 122 123 sock->state = SS_UNCONNECTED; 124 125 if (protocol < 0 || protocol >= CAN_NPROTO) 126 return -EINVAL; 127 128 if (net != &init_net) 129 return -EAFNOSUPPORT; 130 131 #ifdef CONFIG_KMOD 132 /* try to load protocol module, when CONFIG_KMOD is defined */ 133 if (!proto_tab[protocol]) { 134 err = request_module("can-proto-%d", protocol); 135 136 /* 137 * In case of error we only print a message but don't 138 * return the error code immediately. Below we will 139 * return -EPROTONOSUPPORT 140 */ 141 if (err && printk_ratelimit()) 142 printk(KERN_ERR "can: request_module " 143 "(can-proto-%d) failed.\n", protocol); 144 } 145 #endif 146 147 spin_lock(&proto_tab_lock); 148 cp = proto_tab[protocol]; 149 if (cp && !try_module_get(cp->prot->owner)) 150 cp = NULL; 151 spin_unlock(&proto_tab_lock); 152 153 /* check for available protocol and correct usage */ 154 155 if (!cp) 156 return -EPROTONOSUPPORT; 157 158 if (cp->type != sock->type) { 159 err = -EPROTONOSUPPORT; 160 goto errout; 161 } 162 163 if (cp->capability >= 0 && !capable(cp->capability)) { 164 err = -EPERM; 165 goto errout; 166 } 167 168 sock->ops = cp->ops; 169 170 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 171 if (!sk) { 172 err = -ENOMEM; 173 goto errout; 174 } 175 176 sock_init_data(sock, sk); 177 sk->sk_destruct = can_sock_destruct; 178 179 if (sk->sk_prot->init) 180 err = sk->sk_prot->init(sk); 181 182 if (err) { 183 /* release sk on errors */ 184 sock_orphan(sk); 185 sock_put(sk); 186 } 187 188 errout: 189 module_put(cp->prot->owner); 190 return err; 191 } 192 193 /* 194 * af_can tx path 195 */ 196 197 /** 198 * can_send - transmit a CAN frame (optional with local loopback) 199 * @skb: pointer to socket buffer with CAN frame in data section 200 * @loop: loopback for listeners on local CAN sockets (recommended default!) 201 * 202 * Return: 203 * 0 on success 204 * -ENETDOWN when the selected interface is down 205 * -ENOBUFS on full driver queue (see net_xmit_errno()) 206 * -ENOMEM when local loopback failed at calling skb_clone() 207 * -EPERM when trying to send on a non-CAN interface 208 */ 209 int can_send(struct sk_buff *skb, int loop) 210 { 211 int err; 212 213 if (skb->dev->type != ARPHRD_CAN) { 214 kfree_skb(skb); 215 return -EPERM; 216 } 217 218 if (!(skb->dev->flags & IFF_UP)) { 219 kfree_skb(skb); 220 return -ENETDOWN; 221 } 222 223 skb->protocol = htons(ETH_P_CAN); 224 skb_reset_network_header(skb); 225 skb_reset_transport_header(skb); 226 227 if (loop) { 228 /* local loopback of sent CAN frames */ 229 230 /* indication for the CAN driver: do loopback */ 231 skb->pkt_type = PACKET_LOOPBACK; 232 233 /* 234 * The reference to the originating sock may be required 235 * by the receiving socket to check whether the frame is 236 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 237 * Therefore we have to ensure that skb->sk remains the 238 * reference to the originating sock by restoring skb->sk 239 * after each skb_clone() or skb_orphan() usage. 240 */ 241 242 if (!(skb->dev->flags & IFF_ECHO)) { 243 /* 244 * If the interface is not capable to do loopback 245 * itself, we do it here. 246 */ 247 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 248 249 if (!newskb) { 250 kfree_skb(skb); 251 return -ENOMEM; 252 } 253 254 newskb->sk = skb->sk; 255 newskb->ip_summed = CHECKSUM_UNNECESSARY; 256 newskb->pkt_type = PACKET_BROADCAST; 257 netif_rx(newskb); 258 } 259 } else { 260 /* indication for the CAN driver: no loopback required */ 261 skb->pkt_type = PACKET_HOST; 262 } 263 264 /* send to netdevice */ 265 err = dev_queue_xmit(skb); 266 if (err > 0) 267 err = net_xmit_errno(err); 268 269 /* update statistics */ 270 can_stats.tx_frames++; 271 can_stats.tx_frames_delta++; 272 273 return err; 274 } 275 EXPORT_SYMBOL(can_send); 276 277 /* 278 * af_can rx path 279 */ 280 281 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 282 { 283 struct dev_rcv_lists *d = NULL; 284 struct hlist_node *n; 285 286 /* 287 * find receive list for this device 288 * 289 * The hlist_for_each_entry*() macros curse through the list 290 * using the pointer variable n and set d to the containing 291 * struct in each list iteration. Therefore, after list 292 * iteration, d is unmodified when the list is empty, and it 293 * points to last list element, when the list is non-empty 294 * but no match in the loop body is found. I.e. d is *not* 295 * NULL when no match is found. We can, however, use the 296 * cursor variable n to decide if a match was found. 297 */ 298 299 hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) { 300 if (d->dev == dev) 301 break; 302 } 303 304 return n ? d : NULL; 305 } 306 307 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 308 struct dev_rcv_lists *d) 309 { 310 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 311 312 /* filter error frames */ 313 if (*mask & CAN_ERR_FLAG) { 314 /* clear CAN_ERR_FLAG in list entry */ 315 *mask &= CAN_ERR_MASK; 316 return &d->rx[RX_ERR]; 317 } 318 319 /* ensure valid values in can_mask */ 320 if (*mask & CAN_EFF_FLAG) 321 *mask &= (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG); 322 else 323 *mask &= (CAN_SFF_MASK | CAN_RTR_FLAG); 324 325 /* reduce condition testing at receive time */ 326 *can_id &= *mask; 327 328 /* inverse can_id/can_mask filter */ 329 if (inv) 330 return &d->rx[RX_INV]; 331 332 /* mask == 0 => no condition testing at receive time */ 333 if (!(*mask)) 334 return &d->rx[RX_ALL]; 335 336 /* use extra filterset for the subscription of exactly *ONE* can_id */ 337 if (*can_id & CAN_EFF_FLAG) { 338 if (*mask == (CAN_EFF_MASK | CAN_EFF_FLAG)) { 339 /* RFC: a use-case for hash-tables in the future? */ 340 return &d->rx[RX_EFF]; 341 } 342 } else { 343 if (*mask == CAN_SFF_MASK) 344 return &d->rx_sff[*can_id]; 345 } 346 347 /* default: filter via can_id/can_mask */ 348 return &d->rx[RX_FIL]; 349 } 350 351 /** 352 * can_rx_register - subscribe CAN frames from a specific interface 353 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 354 * @can_id: CAN identifier (see description) 355 * @mask: CAN mask (see description) 356 * @func: callback function on filter match 357 * @data: returned parameter for callback function 358 * @ident: string for calling module indentification 359 * 360 * Description: 361 * Invokes the callback function with the received sk_buff and the given 362 * parameter 'data' on a matching receive filter. A filter matches, when 363 * 364 * <received_can_id> & mask == can_id & mask 365 * 366 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 367 * filter for error frames (CAN_ERR_FLAG bit set in mask). 368 * 369 * Return: 370 * 0 on success 371 * -ENOMEM on missing cache mem to create subscription entry 372 * -ENODEV unknown device 373 */ 374 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 375 void (*func)(struct sk_buff *, void *), void *data, 376 char *ident) 377 { 378 struct receiver *r; 379 struct hlist_head *rl; 380 struct dev_rcv_lists *d; 381 int err = 0; 382 383 /* insert new receiver (dev,canid,mask) -> (func,data) */ 384 385 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 386 if (!r) 387 return -ENOMEM; 388 389 spin_lock(&can_rcvlists_lock); 390 391 d = find_dev_rcv_lists(dev); 392 if (d) { 393 rl = find_rcv_list(&can_id, &mask, d); 394 395 r->can_id = can_id; 396 r->mask = mask; 397 r->matches = 0; 398 r->func = func; 399 r->data = data; 400 r->ident = ident; 401 402 hlist_add_head_rcu(&r->list, rl); 403 d->entries++; 404 405 can_pstats.rcv_entries++; 406 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 407 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 408 } else { 409 kmem_cache_free(rcv_cache, r); 410 err = -ENODEV; 411 } 412 413 spin_unlock(&can_rcvlists_lock); 414 415 return err; 416 } 417 EXPORT_SYMBOL(can_rx_register); 418 419 /* 420 * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal 421 */ 422 static void can_rx_delete_device(struct rcu_head *rp) 423 { 424 struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu); 425 426 kfree(d); 427 } 428 429 /* 430 * can_rx_delete_receiver - rcu callback for single receiver entry removal 431 */ 432 static void can_rx_delete_receiver(struct rcu_head *rp) 433 { 434 struct receiver *r = container_of(rp, struct receiver, rcu); 435 436 kmem_cache_free(rcv_cache, r); 437 } 438 439 /** 440 * can_rx_unregister - unsubscribe CAN frames from a specific interface 441 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 442 * @can_id: CAN identifier 443 * @mask: CAN mask 444 * @func: callback function on filter match 445 * @data: returned parameter for callback function 446 * 447 * Description: 448 * Removes subscription entry depending on given (subscription) values. 449 */ 450 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 451 void (*func)(struct sk_buff *, void *), void *data) 452 { 453 struct receiver *r = NULL; 454 struct hlist_head *rl; 455 struct hlist_node *next; 456 struct dev_rcv_lists *d; 457 458 spin_lock(&can_rcvlists_lock); 459 460 d = find_dev_rcv_lists(dev); 461 if (!d) { 462 printk(KERN_ERR "BUG: receive list not found for " 463 "dev %s, id %03X, mask %03X\n", 464 DNAME(dev), can_id, mask); 465 goto out; 466 } 467 468 rl = find_rcv_list(&can_id, &mask, d); 469 470 /* 471 * Search the receiver list for the item to delete. This should 472 * exist, since no receiver may be unregistered that hasn't 473 * been registered before. 474 */ 475 476 hlist_for_each_entry_rcu(r, next, rl, list) { 477 if (r->can_id == can_id && r->mask == mask 478 && r->func == func && r->data == data) 479 break; 480 } 481 482 /* 483 * Check for bugs in CAN protocol implementations: 484 * If no matching list item was found, the list cursor variable next 485 * will be NULL, while r will point to the last item of the list. 486 */ 487 488 if (!next) { 489 printk(KERN_ERR "BUG: receive list entry not found for " 490 "dev %s, id %03X, mask %03X\n", 491 DNAME(dev), can_id, mask); 492 r = NULL; 493 d = NULL; 494 goto out; 495 } 496 497 hlist_del_rcu(&r->list); 498 d->entries--; 499 500 if (can_pstats.rcv_entries > 0) 501 can_pstats.rcv_entries--; 502 503 /* remove device structure requested by NETDEV_UNREGISTER */ 504 if (d->remove_on_zero_entries && !d->entries) 505 hlist_del_rcu(&d->list); 506 else 507 d = NULL; 508 509 out: 510 spin_unlock(&can_rcvlists_lock); 511 512 /* schedule the receiver item for deletion */ 513 if (r) 514 call_rcu(&r->rcu, can_rx_delete_receiver); 515 516 /* schedule the device structure for deletion */ 517 if (d) 518 call_rcu(&d->rcu, can_rx_delete_device); 519 } 520 EXPORT_SYMBOL(can_rx_unregister); 521 522 static inline void deliver(struct sk_buff *skb, struct receiver *r) 523 { 524 struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC); 525 526 if (clone) { 527 clone->sk = skb->sk; 528 r->func(clone, r->data); 529 r->matches++; 530 } 531 } 532 533 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 534 { 535 struct receiver *r; 536 struct hlist_node *n; 537 int matches = 0; 538 struct can_frame *cf = (struct can_frame *)skb->data; 539 canid_t can_id = cf->can_id; 540 541 if (d->entries == 0) 542 return 0; 543 544 if (can_id & CAN_ERR_FLAG) { 545 /* check for error frame entries only */ 546 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) { 547 if (can_id & r->mask) { 548 deliver(skb, r); 549 matches++; 550 } 551 } 552 return matches; 553 } 554 555 /* check for unfiltered entries */ 556 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) { 557 deliver(skb, r); 558 matches++; 559 } 560 561 /* check for can_id/mask entries */ 562 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) { 563 if ((can_id & r->mask) == r->can_id) { 564 deliver(skb, r); 565 matches++; 566 } 567 } 568 569 /* check for inverted can_id/mask entries */ 570 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) { 571 if ((can_id & r->mask) != r->can_id) { 572 deliver(skb, r); 573 matches++; 574 } 575 } 576 577 /* check CAN_ID specific entries */ 578 if (can_id & CAN_EFF_FLAG) { 579 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) { 580 if (r->can_id == can_id) { 581 deliver(skb, r); 582 matches++; 583 } 584 } 585 } else { 586 can_id &= CAN_SFF_MASK; 587 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) { 588 deliver(skb, r); 589 matches++; 590 } 591 } 592 593 return matches; 594 } 595 596 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 597 struct packet_type *pt, struct net_device *orig_dev) 598 { 599 struct dev_rcv_lists *d; 600 int matches; 601 602 if (dev->type != ARPHRD_CAN || dev->nd_net != &init_net) { 603 kfree_skb(skb); 604 return 0; 605 } 606 607 /* update statistics */ 608 can_stats.rx_frames++; 609 can_stats.rx_frames_delta++; 610 611 rcu_read_lock(); 612 613 /* deliver the packet to sockets listening on all devices */ 614 matches = can_rcv_filter(&can_rx_alldev_list, skb); 615 616 /* find receive list for this device */ 617 d = find_dev_rcv_lists(dev); 618 if (d) 619 matches += can_rcv_filter(d, skb); 620 621 rcu_read_unlock(); 622 623 /* free the skbuff allocated by the netdevice driver */ 624 kfree_skb(skb); 625 626 if (matches > 0) { 627 can_stats.matches++; 628 can_stats.matches_delta++; 629 } 630 631 return 0; 632 } 633 634 /* 635 * af_can protocol functions 636 */ 637 638 /** 639 * can_proto_register - register CAN transport protocol 640 * @cp: pointer to CAN protocol structure 641 * 642 * Return: 643 * 0 on success 644 * -EINVAL invalid (out of range) protocol number 645 * -EBUSY protocol already in use 646 * -ENOBUF if proto_register() fails 647 */ 648 int can_proto_register(struct can_proto *cp) 649 { 650 int proto = cp->protocol; 651 int err = 0; 652 653 if (proto < 0 || proto >= CAN_NPROTO) { 654 printk(KERN_ERR "can: protocol number %d out of range\n", 655 proto); 656 return -EINVAL; 657 } 658 659 err = proto_register(cp->prot, 0); 660 if (err < 0) 661 return err; 662 663 spin_lock(&proto_tab_lock); 664 if (proto_tab[proto]) { 665 printk(KERN_ERR "can: protocol %d already registered\n", 666 proto); 667 err = -EBUSY; 668 } else { 669 proto_tab[proto] = cp; 670 671 /* use generic ioctl function if not defined by module */ 672 if (!cp->ops->ioctl) 673 cp->ops->ioctl = can_ioctl; 674 } 675 spin_unlock(&proto_tab_lock); 676 677 if (err < 0) 678 proto_unregister(cp->prot); 679 680 return err; 681 } 682 EXPORT_SYMBOL(can_proto_register); 683 684 /** 685 * can_proto_unregister - unregister CAN transport protocol 686 * @cp: pointer to CAN protocol structure 687 */ 688 void can_proto_unregister(struct can_proto *cp) 689 { 690 int proto = cp->protocol; 691 692 spin_lock(&proto_tab_lock); 693 if (!proto_tab[proto]) { 694 printk(KERN_ERR "BUG: can: protocol %d is not registered\n", 695 proto); 696 } 697 proto_tab[proto] = NULL; 698 spin_unlock(&proto_tab_lock); 699 700 proto_unregister(cp->prot); 701 } 702 EXPORT_SYMBOL(can_proto_unregister); 703 704 /* 705 * af_can notifier to create/remove CAN netdevice specific structs 706 */ 707 static int can_notifier(struct notifier_block *nb, unsigned long msg, 708 void *data) 709 { 710 struct net_device *dev = (struct net_device *)data; 711 struct dev_rcv_lists *d; 712 713 if (dev->nd_net != &init_net) 714 return NOTIFY_DONE; 715 716 if (dev->type != ARPHRD_CAN) 717 return NOTIFY_DONE; 718 719 switch (msg) { 720 721 case NETDEV_REGISTER: 722 723 /* 724 * create new dev_rcv_lists for this device 725 * 726 * N.B. zeroing the struct is the correct initialization 727 * for the embedded hlist_head structs. 728 * Another list type, e.g. list_head, would require 729 * explicit initialization. 730 */ 731 732 d = kzalloc(sizeof(*d), GFP_KERNEL); 733 if (!d) { 734 printk(KERN_ERR 735 "can: allocation of receive list failed\n"); 736 return NOTIFY_DONE; 737 } 738 d->dev = dev; 739 740 spin_lock(&can_rcvlists_lock); 741 hlist_add_head_rcu(&d->list, &can_rx_dev_list); 742 spin_unlock(&can_rcvlists_lock); 743 744 break; 745 746 case NETDEV_UNREGISTER: 747 spin_lock(&can_rcvlists_lock); 748 749 d = find_dev_rcv_lists(dev); 750 if (d) { 751 if (d->entries) { 752 d->remove_on_zero_entries = 1; 753 d = NULL; 754 } else 755 hlist_del_rcu(&d->list); 756 } else 757 printk(KERN_ERR "can: notifier: receive list not " 758 "found for dev %s\n", dev->name); 759 760 spin_unlock(&can_rcvlists_lock); 761 762 if (d) 763 call_rcu(&d->rcu, can_rx_delete_device); 764 765 break; 766 } 767 768 return NOTIFY_DONE; 769 } 770 771 /* 772 * af_can module init/exit functions 773 */ 774 775 static struct packet_type can_packet __read_mostly = { 776 .type = __constant_htons(ETH_P_CAN), 777 .dev = NULL, 778 .func = can_rcv, 779 }; 780 781 static struct net_proto_family can_family_ops __read_mostly = { 782 .family = PF_CAN, 783 .create = can_create, 784 .owner = THIS_MODULE, 785 }; 786 787 /* notifier block for netdevice event */ 788 static struct notifier_block can_netdev_notifier __read_mostly = { 789 .notifier_call = can_notifier, 790 }; 791 792 static __init int can_init(void) 793 { 794 printk(banner); 795 796 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 797 0, 0, NULL); 798 if (!rcv_cache) 799 return -ENOMEM; 800 801 /* 802 * Insert can_rx_alldev_list for reception on all devices. 803 * This struct is zero initialized which is correct for the 804 * embedded hlist heads, the dev pointer, and the entries counter. 805 */ 806 807 spin_lock(&can_rcvlists_lock); 808 hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list); 809 spin_unlock(&can_rcvlists_lock); 810 811 if (stats_timer) { 812 /* the statistics are updated every second (timer triggered) */ 813 setup_timer(&can_stattimer, can_stat_update, 0); 814 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 815 } else 816 can_stattimer.function = NULL; 817 818 can_init_proc(); 819 820 /* protocol register */ 821 sock_register(&can_family_ops); 822 register_netdevice_notifier(&can_netdev_notifier); 823 dev_add_pack(&can_packet); 824 825 return 0; 826 } 827 828 static __exit void can_exit(void) 829 { 830 struct dev_rcv_lists *d; 831 struct hlist_node *n, *next; 832 833 if (stats_timer) 834 del_timer(&can_stattimer); 835 836 can_remove_proc(); 837 838 /* protocol unregister */ 839 dev_remove_pack(&can_packet); 840 unregister_netdevice_notifier(&can_netdev_notifier); 841 sock_unregister(PF_CAN); 842 843 /* remove can_rx_dev_list */ 844 spin_lock(&can_rcvlists_lock); 845 hlist_del(&can_rx_alldev_list.list); 846 hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) { 847 hlist_del(&d->list); 848 kfree(d); 849 } 850 spin_unlock(&can_rcvlists_lock); 851 852 kmem_cache_destroy(rcv_cache); 853 } 854 855 module_init(can_init); 856 module_exit(can_exit); 857