xref: /openbmc/linux/net/can/af_can.c (revision a09d2831)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
117 static int can_create(struct net *net, struct socket *sock, int protocol,
118 		      int kern)
119 {
120 	struct sock *sk;
121 	struct can_proto *cp;
122 	int err = 0;
123 
124 	sock->state = SS_UNCONNECTED;
125 
126 	if (protocol < 0 || protocol >= CAN_NPROTO)
127 		return -EINVAL;
128 
129 	if (!net_eq(net, &init_net))
130 		return -EAFNOSUPPORT;
131 
132 #ifdef CONFIG_MODULES
133 	/* try to load protocol module kernel is modular */
134 	if (!proto_tab[protocol]) {
135 		err = request_module("can-proto-%d", protocol);
136 
137 		/*
138 		 * In case of error we only print a message but don't
139 		 * return the error code immediately.  Below we will
140 		 * return -EPROTONOSUPPORT
141 		 */
142 		if (err && printk_ratelimit())
143 			printk(KERN_ERR "can: request_module "
144 			       "(can-proto-%d) failed.\n", protocol);
145 	}
146 #endif
147 
148 	spin_lock(&proto_tab_lock);
149 	cp = proto_tab[protocol];
150 	if (cp && !try_module_get(cp->prot->owner))
151 		cp = NULL;
152 	spin_unlock(&proto_tab_lock);
153 
154 	/* check for available protocol and correct usage */
155 
156 	if (!cp)
157 		return -EPROTONOSUPPORT;
158 
159 	if (cp->type != sock->type) {
160 		err = -EPROTONOSUPPORT;
161 		goto errout;
162 	}
163 
164 	sock->ops = cp->ops;
165 
166 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
167 	if (!sk) {
168 		err = -ENOMEM;
169 		goto errout;
170 	}
171 
172 	sock_init_data(sock, sk);
173 	sk->sk_destruct = can_sock_destruct;
174 
175 	if (sk->sk_prot->init)
176 		err = sk->sk_prot->init(sk);
177 
178 	if (err) {
179 		/* release sk on errors */
180 		sock_orphan(sk);
181 		sock_put(sk);
182 	}
183 
184  errout:
185 	module_put(cp->prot->owner);
186 	return err;
187 }
188 
189 /*
190  * af_can tx path
191  */
192 
193 /**
194  * can_send - transmit a CAN frame (optional with local loopback)
195  * @skb: pointer to socket buffer with CAN frame in data section
196  * @loop: loopback for listeners on local CAN sockets (recommended default!)
197  *
198  * Due to the loopback this routine must not be called from hardirq context.
199  *
200  * Return:
201  *  0 on success
202  *  -ENETDOWN when the selected interface is down
203  *  -ENOBUFS on full driver queue (see net_xmit_errno())
204  *  -ENOMEM when local loopback failed at calling skb_clone()
205  *  -EPERM when trying to send on a non-CAN interface
206  *  -EINVAL when the skb->data does not contain a valid CAN frame
207  */
208 int can_send(struct sk_buff *skb, int loop)
209 {
210 	struct sk_buff *newskb = NULL;
211 	struct can_frame *cf = (struct can_frame *)skb->data;
212 	int err;
213 
214 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
215 		kfree_skb(skb);
216 		return -EINVAL;
217 	}
218 
219 	if (skb->dev->type != ARPHRD_CAN) {
220 		kfree_skb(skb);
221 		return -EPERM;
222 	}
223 
224 	if (!(skb->dev->flags & IFF_UP)) {
225 		kfree_skb(skb);
226 		return -ENETDOWN;
227 	}
228 
229 	skb->protocol = htons(ETH_P_CAN);
230 	skb_reset_network_header(skb);
231 	skb_reset_transport_header(skb);
232 
233 	if (loop) {
234 		/* local loopback of sent CAN frames */
235 
236 		/* indication for the CAN driver: do loopback */
237 		skb->pkt_type = PACKET_LOOPBACK;
238 
239 		/*
240 		 * The reference to the originating sock may be required
241 		 * by the receiving socket to check whether the frame is
242 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
243 		 * Therefore we have to ensure that skb->sk remains the
244 		 * reference to the originating sock by restoring skb->sk
245 		 * after each skb_clone() or skb_orphan() usage.
246 		 */
247 
248 		if (!(skb->dev->flags & IFF_ECHO)) {
249 			/*
250 			 * If the interface is not capable to do loopback
251 			 * itself, we do it here.
252 			 */
253 			newskb = skb_clone(skb, GFP_ATOMIC);
254 			if (!newskb) {
255 				kfree_skb(skb);
256 				return -ENOMEM;
257 			}
258 
259 			newskb->sk = skb->sk;
260 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
261 			newskb->pkt_type = PACKET_BROADCAST;
262 		}
263 	} else {
264 		/* indication for the CAN driver: no loopback required */
265 		skb->pkt_type = PACKET_HOST;
266 	}
267 
268 	/* send to netdevice */
269 	err = dev_queue_xmit(skb);
270 	if (err > 0)
271 		err = net_xmit_errno(err);
272 
273 	if (err) {
274 		kfree_skb(newskb);
275 		return err;
276 	}
277 
278 	if (newskb)
279 		netif_rx_ni(newskb);
280 
281 	/* update statistics */
282 	can_stats.tx_frames++;
283 	can_stats.tx_frames_delta++;
284 
285 	return 0;
286 }
287 EXPORT_SYMBOL(can_send);
288 
289 /*
290  * af_can rx path
291  */
292 
293 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
294 {
295 	struct dev_rcv_lists *d = NULL;
296 	struct hlist_node *n;
297 
298 	/*
299 	 * find receive list for this device
300 	 *
301 	 * The hlist_for_each_entry*() macros curse through the list
302 	 * using the pointer variable n and set d to the containing
303 	 * struct in each list iteration.  Therefore, after list
304 	 * iteration, d is unmodified when the list is empty, and it
305 	 * points to last list element, when the list is non-empty
306 	 * but no match in the loop body is found.  I.e. d is *not*
307 	 * NULL when no match is found.  We can, however, use the
308 	 * cursor variable n to decide if a match was found.
309 	 */
310 
311 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
312 		if (d->dev == dev)
313 			break;
314 	}
315 
316 	return n ? d : NULL;
317 }
318 
319 /**
320  * find_rcv_list - determine optimal filterlist inside device filter struct
321  * @can_id: pointer to CAN identifier of a given can_filter
322  * @mask: pointer to CAN mask of a given can_filter
323  * @d: pointer to the device filter struct
324  *
325  * Description:
326  *  Returns the optimal filterlist to reduce the filter handling in the
327  *  receive path. This function is called by service functions that need
328  *  to register or unregister a can_filter in the filter lists.
329  *
330  *  A filter matches in general, when
331  *
332  *          <received_can_id> & mask == can_id & mask
333  *
334  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
335  *  relevant bits for the filter.
336  *
337  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
338  *  filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
339  *  there is a special filterlist and a special rx path filter handling.
340  *
341  * Return:
342  *  Pointer to optimal filterlist for the given can_id/mask pair.
343  *  Constistency checked mask.
344  *  Reduced can_id to have a preprocessed filter compare value.
345  */
346 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
347 					struct dev_rcv_lists *d)
348 {
349 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
350 
351 	/* filter for error frames in extra filterlist */
352 	if (*mask & CAN_ERR_FLAG) {
353 		/* clear CAN_ERR_FLAG in filter entry */
354 		*mask &= CAN_ERR_MASK;
355 		return &d->rx[RX_ERR];
356 	}
357 
358 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
359 
360 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
361 
362 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
363 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
364 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
365 
366 	/* reduce condition testing at receive time */
367 	*can_id &= *mask;
368 
369 	/* inverse can_id/can_mask filter */
370 	if (inv)
371 		return &d->rx[RX_INV];
372 
373 	/* mask == 0 => no condition testing at receive time */
374 	if (!(*mask))
375 		return &d->rx[RX_ALL];
376 
377 	/* extra filterlists for the subscription of a single non-RTR can_id */
378 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
379 	    !(*can_id & CAN_RTR_FLAG)) {
380 
381 		if (*can_id & CAN_EFF_FLAG) {
382 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
383 				/* RFC: a future use-case for hash-tables? */
384 				return &d->rx[RX_EFF];
385 			}
386 		} else {
387 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
388 				return &d->rx_sff[*can_id];
389 		}
390 	}
391 
392 	/* default: filter via can_id/can_mask */
393 	return &d->rx[RX_FIL];
394 }
395 
396 /**
397  * can_rx_register - subscribe CAN frames from a specific interface
398  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
399  * @can_id: CAN identifier (see description)
400  * @mask: CAN mask (see description)
401  * @func: callback function on filter match
402  * @data: returned parameter for callback function
403  * @ident: string for calling module indentification
404  *
405  * Description:
406  *  Invokes the callback function with the received sk_buff and the given
407  *  parameter 'data' on a matching receive filter. A filter matches, when
408  *
409  *          <received_can_id> & mask == can_id & mask
410  *
411  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
412  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
413  *
414  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
415  *  the callback function is running. The callback function must *not* free
416  *  the given sk_buff while processing it's task. When the given sk_buff is
417  *  needed after the end of the callback function it must be cloned inside
418  *  the callback function with skb_clone().
419  *
420  * Return:
421  *  0 on success
422  *  -ENOMEM on missing cache mem to create subscription entry
423  *  -ENODEV unknown device
424  */
425 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
426 		    void (*func)(struct sk_buff *, void *), void *data,
427 		    char *ident)
428 {
429 	struct receiver *r;
430 	struct hlist_head *rl;
431 	struct dev_rcv_lists *d;
432 	int err = 0;
433 
434 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
435 
436 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
437 	if (!r)
438 		return -ENOMEM;
439 
440 	spin_lock(&can_rcvlists_lock);
441 
442 	d = find_dev_rcv_lists(dev);
443 	if (d) {
444 		rl = find_rcv_list(&can_id, &mask, d);
445 
446 		r->can_id  = can_id;
447 		r->mask    = mask;
448 		r->matches = 0;
449 		r->func    = func;
450 		r->data    = data;
451 		r->ident   = ident;
452 
453 		hlist_add_head_rcu(&r->list, rl);
454 		d->entries++;
455 
456 		can_pstats.rcv_entries++;
457 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
458 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
459 	} else {
460 		kmem_cache_free(rcv_cache, r);
461 		err = -ENODEV;
462 	}
463 
464 	spin_unlock(&can_rcvlists_lock);
465 
466 	return err;
467 }
468 EXPORT_SYMBOL(can_rx_register);
469 
470 /*
471  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
472  */
473 static void can_rx_delete_device(struct rcu_head *rp)
474 {
475 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
476 
477 	kfree(d);
478 }
479 
480 /*
481  * can_rx_delete_receiver - rcu callback for single receiver entry removal
482  */
483 static void can_rx_delete_receiver(struct rcu_head *rp)
484 {
485 	struct receiver *r = container_of(rp, struct receiver, rcu);
486 
487 	kmem_cache_free(rcv_cache, r);
488 }
489 
490 /**
491  * can_rx_unregister - unsubscribe CAN frames from a specific interface
492  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
493  * @can_id: CAN identifier
494  * @mask: CAN mask
495  * @func: callback function on filter match
496  * @data: returned parameter for callback function
497  *
498  * Description:
499  *  Removes subscription entry depending on given (subscription) values.
500  */
501 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
502 		       void (*func)(struct sk_buff *, void *), void *data)
503 {
504 	struct receiver *r = NULL;
505 	struct hlist_head *rl;
506 	struct hlist_node *next;
507 	struct dev_rcv_lists *d;
508 
509 	spin_lock(&can_rcvlists_lock);
510 
511 	d = find_dev_rcv_lists(dev);
512 	if (!d) {
513 		printk(KERN_ERR "BUG: receive list not found for "
514 		       "dev %s, id %03X, mask %03X\n",
515 		       DNAME(dev), can_id, mask);
516 		goto out;
517 	}
518 
519 	rl = find_rcv_list(&can_id, &mask, d);
520 
521 	/*
522 	 * Search the receiver list for the item to delete.  This should
523 	 * exist, since no receiver may be unregistered that hasn't
524 	 * been registered before.
525 	 */
526 
527 	hlist_for_each_entry_rcu(r, next, rl, list) {
528 		if (r->can_id == can_id && r->mask == mask &&
529 		    r->func == func && r->data == data)
530 			break;
531 	}
532 
533 	/*
534 	 * Check for bugs in CAN protocol implementations:
535 	 * If no matching list item was found, the list cursor variable next
536 	 * will be NULL, while r will point to the last item of the list.
537 	 */
538 
539 	if (!next) {
540 		printk(KERN_ERR "BUG: receive list entry not found for "
541 		       "dev %s, id %03X, mask %03X\n",
542 		       DNAME(dev), can_id, mask);
543 		r = NULL;
544 		d = NULL;
545 		goto out;
546 	}
547 
548 	hlist_del_rcu(&r->list);
549 	d->entries--;
550 
551 	if (can_pstats.rcv_entries > 0)
552 		can_pstats.rcv_entries--;
553 
554 	/* remove device structure requested by NETDEV_UNREGISTER */
555 	if (d->remove_on_zero_entries && !d->entries)
556 		hlist_del_rcu(&d->list);
557 	else
558 		d = NULL;
559 
560  out:
561 	spin_unlock(&can_rcvlists_lock);
562 
563 	/* schedule the receiver item for deletion */
564 	if (r)
565 		call_rcu(&r->rcu, can_rx_delete_receiver);
566 
567 	/* schedule the device structure for deletion */
568 	if (d)
569 		call_rcu(&d->rcu, can_rx_delete_device);
570 }
571 EXPORT_SYMBOL(can_rx_unregister);
572 
573 static inline void deliver(struct sk_buff *skb, struct receiver *r)
574 {
575 	r->func(skb, r->data);
576 	r->matches++;
577 }
578 
579 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
580 {
581 	struct receiver *r;
582 	struct hlist_node *n;
583 	int matches = 0;
584 	struct can_frame *cf = (struct can_frame *)skb->data;
585 	canid_t can_id = cf->can_id;
586 
587 	if (d->entries == 0)
588 		return 0;
589 
590 	if (can_id & CAN_ERR_FLAG) {
591 		/* check for error frame entries only */
592 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
593 			if (can_id & r->mask) {
594 				deliver(skb, r);
595 				matches++;
596 			}
597 		}
598 		return matches;
599 	}
600 
601 	/* check for unfiltered entries */
602 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
603 		deliver(skb, r);
604 		matches++;
605 	}
606 
607 	/* check for can_id/mask entries */
608 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
609 		if ((can_id & r->mask) == r->can_id) {
610 			deliver(skb, r);
611 			matches++;
612 		}
613 	}
614 
615 	/* check for inverted can_id/mask entries */
616 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
617 		if ((can_id & r->mask) != r->can_id) {
618 			deliver(skb, r);
619 			matches++;
620 		}
621 	}
622 
623 	/* check filterlists for single non-RTR can_ids */
624 	if (can_id & CAN_RTR_FLAG)
625 		return matches;
626 
627 	if (can_id & CAN_EFF_FLAG) {
628 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
629 			if (r->can_id == can_id) {
630 				deliver(skb, r);
631 				matches++;
632 			}
633 		}
634 	} else {
635 		can_id &= CAN_SFF_MASK;
636 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
637 			deliver(skb, r);
638 			matches++;
639 		}
640 	}
641 
642 	return matches;
643 }
644 
645 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
646 		   struct packet_type *pt, struct net_device *orig_dev)
647 {
648 	struct dev_rcv_lists *d;
649 	struct can_frame *cf = (struct can_frame *)skb->data;
650 	int matches;
651 
652 	if (!net_eq(dev_net(dev), &init_net))
653 		goto drop;
654 
655 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
656 		      skb->len != sizeof(struct can_frame) ||
657 		      cf->can_dlc > 8,
658 		      "PF_CAN: dropped non conform skbuf: "
659 		      "dev type %d, len %d, can_dlc %d\n",
660 		      dev->type, skb->len, cf->can_dlc))
661 		goto drop;
662 
663 	/* update statistics */
664 	can_stats.rx_frames++;
665 	can_stats.rx_frames_delta++;
666 
667 	rcu_read_lock();
668 
669 	/* deliver the packet to sockets listening on all devices */
670 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
671 
672 	/* find receive list for this device */
673 	d = find_dev_rcv_lists(dev);
674 	if (d)
675 		matches += can_rcv_filter(d, skb);
676 
677 	rcu_read_unlock();
678 
679 	/* consume the skbuff allocated by the netdevice driver */
680 	consume_skb(skb);
681 
682 	if (matches > 0) {
683 		can_stats.matches++;
684 		can_stats.matches_delta++;
685 	}
686 
687 	return NET_RX_SUCCESS;
688 
689 drop:
690 	kfree_skb(skb);
691 	return NET_RX_DROP;
692 }
693 
694 /*
695  * af_can protocol functions
696  */
697 
698 /**
699  * can_proto_register - register CAN transport protocol
700  * @cp: pointer to CAN protocol structure
701  *
702  * Return:
703  *  0 on success
704  *  -EINVAL invalid (out of range) protocol number
705  *  -EBUSY  protocol already in use
706  *  -ENOBUF if proto_register() fails
707  */
708 int can_proto_register(struct can_proto *cp)
709 {
710 	int proto = cp->protocol;
711 	int err = 0;
712 
713 	if (proto < 0 || proto >= CAN_NPROTO) {
714 		printk(KERN_ERR "can: protocol number %d out of range\n",
715 		       proto);
716 		return -EINVAL;
717 	}
718 
719 	err = proto_register(cp->prot, 0);
720 	if (err < 0)
721 		return err;
722 
723 	spin_lock(&proto_tab_lock);
724 	if (proto_tab[proto]) {
725 		printk(KERN_ERR "can: protocol %d already registered\n",
726 		       proto);
727 		err = -EBUSY;
728 	} else {
729 		proto_tab[proto] = cp;
730 
731 		/* use generic ioctl function if not defined by module */
732 		if (!cp->ops->ioctl)
733 			cp->ops->ioctl = can_ioctl;
734 	}
735 	spin_unlock(&proto_tab_lock);
736 
737 	if (err < 0)
738 		proto_unregister(cp->prot);
739 
740 	return err;
741 }
742 EXPORT_SYMBOL(can_proto_register);
743 
744 /**
745  * can_proto_unregister - unregister CAN transport protocol
746  * @cp: pointer to CAN protocol structure
747  */
748 void can_proto_unregister(struct can_proto *cp)
749 {
750 	int proto = cp->protocol;
751 
752 	spin_lock(&proto_tab_lock);
753 	if (!proto_tab[proto]) {
754 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
755 		       proto);
756 	}
757 	proto_tab[proto] = NULL;
758 	spin_unlock(&proto_tab_lock);
759 
760 	proto_unregister(cp->prot);
761 }
762 EXPORT_SYMBOL(can_proto_unregister);
763 
764 /*
765  * af_can notifier to create/remove CAN netdevice specific structs
766  */
767 static int can_notifier(struct notifier_block *nb, unsigned long msg,
768 			void *data)
769 {
770 	struct net_device *dev = (struct net_device *)data;
771 	struct dev_rcv_lists *d;
772 
773 	if (!net_eq(dev_net(dev), &init_net))
774 		return NOTIFY_DONE;
775 
776 	if (dev->type != ARPHRD_CAN)
777 		return NOTIFY_DONE;
778 
779 	switch (msg) {
780 
781 	case NETDEV_REGISTER:
782 
783 		/*
784 		 * create new dev_rcv_lists for this device
785 		 *
786 		 * N.B. zeroing the struct is the correct initialization
787 		 * for the embedded hlist_head structs.
788 		 * Another list type, e.g. list_head, would require
789 		 * explicit initialization.
790 		 */
791 
792 		d = kzalloc(sizeof(*d), GFP_KERNEL);
793 		if (!d) {
794 			printk(KERN_ERR
795 			       "can: allocation of receive list failed\n");
796 			return NOTIFY_DONE;
797 		}
798 		d->dev = dev;
799 
800 		spin_lock(&can_rcvlists_lock);
801 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
802 		spin_unlock(&can_rcvlists_lock);
803 
804 		break;
805 
806 	case NETDEV_UNREGISTER:
807 		spin_lock(&can_rcvlists_lock);
808 
809 		d = find_dev_rcv_lists(dev);
810 		if (d) {
811 			if (d->entries) {
812 				d->remove_on_zero_entries = 1;
813 				d = NULL;
814 			} else
815 				hlist_del_rcu(&d->list);
816 		} else
817 			printk(KERN_ERR "can: notifier: receive list not "
818 			       "found for dev %s\n", dev->name);
819 
820 		spin_unlock(&can_rcvlists_lock);
821 
822 		if (d)
823 			call_rcu(&d->rcu, can_rx_delete_device);
824 
825 		break;
826 	}
827 
828 	return NOTIFY_DONE;
829 }
830 
831 /*
832  * af_can module init/exit functions
833  */
834 
835 static struct packet_type can_packet __read_mostly = {
836 	.type = cpu_to_be16(ETH_P_CAN),
837 	.dev  = NULL,
838 	.func = can_rcv,
839 };
840 
841 static const struct net_proto_family can_family_ops = {
842 	.family = PF_CAN,
843 	.create = can_create,
844 	.owner  = THIS_MODULE,
845 };
846 
847 /* notifier block for netdevice event */
848 static struct notifier_block can_netdev_notifier __read_mostly = {
849 	.notifier_call = can_notifier,
850 };
851 
852 static __init int can_init(void)
853 {
854 	printk(banner);
855 
856 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
857 				      0, 0, NULL);
858 	if (!rcv_cache)
859 		return -ENOMEM;
860 
861 	/*
862 	 * Insert can_rx_alldev_list for reception on all devices.
863 	 * This struct is zero initialized which is correct for the
864 	 * embedded hlist heads, the dev pointer, and the entries counter.
865 	 */
866 
867 	spin_lock(&can_rcvlists_lock);
868 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
869 	spin_unlock(&can_rcvlists_lock);
870 
871 	if (stats_timer) {
872 		/* the statistics are updated every second (timer triggered) */
873 		setup_timer(&can_stattimer, can_stat_update, 0);
874 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
875 	} else
876 		can_stattimer.function = NULL;
877 
878 	can_init_proc();
879 
880 	/* protocol register */
881 	sock_register(&can_family_ops);
882 	register_netdevice_notifier(&can_netdev_notifier);
883 	dev_add_pack(&can_packet);
884 
885 	return 0;
886 }
887 
888 static __exit void can_exit(void)
889 {
890 	struct dev_rcv_lists *d;
891 	struct hlist_node *n, *next;
892 
893 	if (stats_timer)
894 		del_timer(&can_stattimer);
895 
896 	can_remove_proc();
897 
898 	/* protocol unregister */
899 	dev_remove_pack(&can_packet);
900 	unregister_netdevice_notifier(&can_netdev_notifier);
901 	sock_unregister(PF_CAN);
902 
903 	/* remove can_rx_dev_list */
904 	spin_lock(&can_rcvlists_lock);
905 	hlist_del(&can_rx_alldev_list.list);
906 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
907 		hlist_del(&d->list);
908 		kfree(d);
909 	}
910 	spin_unlock(&can_rcvlists_lock);
911 
912 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
913 
914 	kmem_cache_destroy(rcv_cache);
915 }
916 
917 module_init(can_init);
918 module_exit(can_exit);
919