1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/stddef.h> 45 #include <linux/init.h> 46 #include <linux/kmod.h> 47 #include <linux/slab.h> 48 #include <linux/list.h> 49 #include <linux/spinlock.h> 50 #include <linux/rcupdate.h> 51 #include <linux/uaccess.h> 52 #include <linux/net.h> 53 #include <linux/netdevice.h> 54 #include <linux/socket.h> 55 #include <linux/if_ether.h> 56 #include <linux/if_arp.h> 57 #include <linux/skbuff.h> 58 #include <linux/can.h> 59 #include <linux/can/core.h> 60 #include <linux/can/skb.h> 61 #include <linux/can/can-ml.h> 62 #include <linux/ratelimit.h> 63 #include <net/net_namespace.h> 64 #include <net/sock.h> 65 66 #include "af_can.h" 67 68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 69 MODULE_LICENSE("Dual BSD/GPL"); 70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 72 73 MODULE_ALIAS_NETPROTO(PF_CAN); 74 75 static int stats_timer __read_mostly = 1; 76 module_param(stats_timer, int, 0444); 77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 78 79 static struct kmem_cache *rcv_cache __read_mostly; 80 81 /* table of registered CAN protocols */ 82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; 83 static DEFINE_MUTEX(proto_tab_lock); 84 85 static atomic_t skbcounter = ATOMIC_INIT(0); 86 87 /* af_can socket functions */ 88 89 static void can_sock_destruct(struct sock *sk) 90 { 91 skb_queue_purge(&sk->sk_receive_queue); 92 skb_queue_purge(&sk->sk_error_queue); 93 } 94 95 static const struct can_proto *can_get_proto(int protocol) 96 { 97 const struct can_proto *cp; 98 99 rcu_read_lock(); 100 cp = rcu_dereference(proto_tab[protocol]); 101 if (cp && !try_module_get(cp->prot->owner)) 102 cp = NULL; 103 rcu_read_unlock(); 104 105 return cp; 106 } 107 108 static inline void can_put_proto(const struct can_proto *cp) 109 { 110 module_put(cp->prot->owner); 111 } 112 113 static int can_create(struct net *net, struct socket *sock, int protocol, 114 int kern) 115 { 116 struct sock *sk; 117 const struct can_proto *cp; 118 int err = 0; 119 120 sock->state = SS_UNCONNECTED; 121 122 if (protocol < 0 || protocol >= CAN_NPROTO) 123 return -EINVAL; 124 125 cp = can_get_proto(protocol); 126 127 #ifdef CONFIG_MODULES 128 if (!cp) { 129 /* try to load protocol module if kernel is modular */ 130 131 err = request_module("can-proto-%d", protocol); 132 133 /* In case of error we only print a message but don't 134 * return the error code immediately. Below we will 135 * return -EPROTONOSUPPORT 136 */ 137 if (err) 138 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n", 139 protocol); 140 141 cp = can_get_proto(protocol); 142 } 143 #endif 144 145 /* check for available protocol and correct usage */ 146 147 if (!cp) 148 return -EPROTONOSUPPORT; 149 150 if (cp->type != sock->type) { 151 err = -EPROTOTYPE; 152 goto errout; 153 } 154 155 sock->ops = cp->ops; 156 157 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); 158 if (!sk) { 159 err = -ENOMEM; 160 goto errout; 161 } 162 163 sock_init_data(sock, sk); 164 sk->sk_destruct = can_sock_destruct; 165 166 if (sk->sk_prot->init) 167 err = sk->sk_prot->init(sk); 168 169 if (err) { 170 /* release sk on errors */ 171 sock_orphan(sk); 172 sock_put(sk); 173 } 174 175 errout: 176 can_put_proto(cp); 177 return err; 178 } 179 180 /* af_can tx path */ 181 182 /** 183 * can_send - transmit a CAN frame (optional with local loopback) 184 * @skb: pointer to socket buffer with CAN frame in data section 185 * @loop: loopback for listeners on local CAN sockets (recommended default!) 186 * 187 * Due to the loopback this routine must not be called from hardirq context. 188 * 189 * Return: 190 * 0 on success 191 * -ENETDOWN when the selected interface is down 192 * -ENOBUFS on full driver queue (see net_xmit_errno()) 193 * -ENOMEM when local loopback failed at calling skb_clone() 194 * -EPERM when trying to send on a non-CAN interface 195 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU 196 * -EINVAL when the skb->data does not contain a valid CAN frame 197 */ 198 int can_send(struct sk_buff *skb, int loop) 199 { 200 struct sk_buff *newskb = NULL; 201 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 202 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats; 203 int err = -EINVAL; 204 205 if (skb->len == CAN_MTU) { 206 skb->protocol = htons(ETH_P_CAN); 207 if (unlikely(cfd->len > CAN_MAX_DLEN)) 208 goto inval_skb; 209 } else if (skb->len == CANFD_MTU) { 210 skb->protocol = htons(ETH_P_CANFD); 211 if (unlikely(cfd->len > CANFD_MAX_DLEN)) 212 goto inval_skb; 213 } else { 214 goto inval_skb; 215 } 216 217 /* Make sure the CAN frame can pass the selected CAN netdevice. 218 * As structs can_frame and canfd_frame are similar, we can provide 219 * CAN FD frames to legacy CAN drivers as long as the length is <= 8 220 */ 221 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { 222 err = -EMSGSIZE; 223 goto inval_skb; 224 } 225 226 if (unlikely(skb->dev->type != ARPHRD_CAN)) { 227 err = -EPERM; 228 goto inval_skb; 229 } 230 231 if (unlikely(!(skb->dev->flags & IFF_UP))) { 232 err = -ENETDOWN; 233 goto inval_skb; 234 } 235 236 skb->ip_summed = CHECKSUM_UNNECESSARY; 237 238 skb_reset_mac_header(skb); 239 skb_reset_network_header(skb); 240 skb_reset_transport_header(skb); 241 242 if (loop) { 243 /* local loopback of sent CAN frames */ 244 245 /* indication for the CAN driver: do loopback */ 246 skb->pkt_type = PACKET_LOOPBACK; 247 248 /* The reference to the originating sock may be required 249 * by the receiving socket to check whether the frame is 250 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 251 * Therefore we have to ensure that skb->sk remains the 252 * reference to the originating sock by restoring skb->sk 253 * after each skb_clone() or skb_orphan() usage. 254 */ 255 256 if (!(skb->dev->flags & IFF_ECHO)) { 257 /* If the interface is not capable to do loopback 258 * itself, we do it here. 259 */ 260 newskb = skb_clone(skb, GFP_ATOMIC); 261 if (!newskb) { 262 kfree_skb(skb); 263 return -ENOMEM; 264 } 265 266 can_skb_set_owner(newskb, skb->sk); 267 newskb->ip_summed = CHECKSUM_UNNECESSARY; 268 newskb->pkt_type = PACKET_BROADCAST; 269 } 270 } else { 271 /* indication for the CAN driver: no loopback required */ 272 skb->pkt_type = PACKET_HOST; 273 } 274 275 /* send to netdevice */ 276 err = dev_queue_xmit(skb); 277 if (err > 0) 278 err = net_xmit_errno(err); 279 280 if (err) { 281 kfree_skb(newskb); 282 return err; 283 } 284 285 if (newskb) 286 netif_rx_ni(newskb); 287 288 /* update statistics */ 289 pkg_stats->tx_frames++; 290 pkg_stats->tx_frames_delta++; 291 292 return 0; 293 294 inval_skb: 295 kfree_skb(skb); 296 return err; 297 } 298 EXPORT_SYMBOL(can_send); 299 300 /* af_can rx path */ 301 302 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net, 303 struct net_device *dev) 304 { 305 if (dev) { 306 struct can_ml_priv *ml_priv = dev->ml_priv; 307 return &ml_priv->dev_rcv_lists; 308 } else { 309 return net->can.rx_alldev_list; 310 } 311 } 312 313 /** 314 * effhash - hash function for 29 bit CAN identifier reduction 315 * @can_id: 29 bit CAN identifier 316 * 317 * Description: 318 * To reduce the linear traversal in one linked list of _single_ EFF CAN 319 * frame subscriptions the 29 bit identifier is mapped to 10 bits. 320 * (see CAN_EFF_RCV_HASH_BITS definition) 321 * 322 * Return: 323 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) 324 */ 325 static unsigned int effhash(canid_t can_id) 326 { 327 unsigned int hash; 328 329 hash = can_id; 330 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; 331 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); 332 333 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); 334 } 335 336 /** 337 * can_rcv_list_find - determine optimal filterlist inside device filter struct 338 * @can_id: pointer to CAN identifier of a given can_filter 339 * @mask: pointer to CAN mask of a given can_filter 340 * @d: pointer to the device filter struct 341 * 342 * Description: 343 * Returns the optimal filterlist to reduce the filter handling in the 344 * receive path. This function is called by service functions that need 345 * to register or unregister a can_filter in the filter lists. 346 * 347 * A filter matches in general, when 348 * 349 * <received_can_id> & mask == can_id & mask 350 * 351 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 352 * relevant bits for the filter. 353 * 354 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 355 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg 356 * frames there is a special filterlist and a special rx path filter handling. 357 * 358 * Return: 359 * Pointer to optimal filterlist for the given can_id/mask pair. 360 * Constistency checked mask. 361 * Reduced can_id to have a preprocessed filter compare value. 362 */ 363 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask, 364 struct can_dev_rcv_lists *dev_rcv_lists) 365 { 366 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 367 368 /* filter for error message frames in extra filterlist */ 369 if (*mask & CAN_ERR_FLAG) { 370 /* clear CAN_ERR_FLAG in filter entry */ 371 *mask &= CAN_ERR_MASK; 372 return &dev_rcv_lists->rx[RX_ERR]; 373 } 374 375 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 376 377 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 378 379 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 380 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 381 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 382 383 /* reduce condition testing at receive time */ 384 *can_id &= *mask; 385 386 /* inverse can_id/can_mask filter */ 387 if (inv) 388 return &dev_rcv_lists->rx[RX_INV]; 389 390 /* mask == 0 => no condition testing at receive time */ 391 if (!(*mask)) 392 return &dev_rcv_lists->rx[RX_ALL]; 393 394 /* extra filterlists for the subscription of a single non-RTR can_id */ 395 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 396 !(*can_id & CAN_RTR_FLAG)) { 397 if (*can_id & CAN_EFF_FLAG) { 398 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) 399 return &dev_rcv_lists->rx_eff[effhash(*can_id)]; 400 } else { 401 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 402 return &dev_rcv_lists->rx_sff[*can_id]; 403 } 404 } 405 406 /* default: filter via can_id/can_mask */ 407 return &dev_rcv_lists->rx[RX_FIL]; 408 } 409 410 /** 411 * can_rx_register - subscribe CAN frames from a specific interface 412 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 413 * @can_id: CAN identifier (see description) 414 * @mask: CAN mask (see description) 415 * @func: callback function on filter match 416 * @data: returned parameter for callback function 417 * @ident: string for calling module identification 418 * @sk: socket pointer (might be NULL) 419 * 420 * Description: 421 * Invokes the callback function with the received sk_buff and the given 422 * parameter 'data' on a matching receive filter. A filter matches, when 423 * 424 * <received_can_id> & mask == can_id & mask 425 * 426 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 427 * filter for error message frames (CAN_ERR_FLAG bit set in mask). 428 * 429 * The provided pointer to the sk_buff is guaranteed to be valid as long as 430 * the callback function is running. The callback function must *not* free 431 * the given sk_buff while processing it's task. When the given sk_buff is 432 * needed after the end of the callback function it must be cloned inside 433 * the callback function with skb_clone(). 434 * 435 * Return: 436 * 0 on success 437 * -ENOMEM on missing cache mem to create subscription entry 438 * -ENODEV unknown device 439 */ 440 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, 441 canid_t mask, void (*func)(struct sk_buff *, void *), 442 void *data, char *ident, struct sock *sk) 443 { 444 struct receiver *rcv; 445 struct hlist_head *rcv_list; 446 struct can_dev_rcv_lists *dev_rcv_lists; 447 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; 448 int err = 0; 449 450 /* insert new receiver (dev,canid,mask) -> (func,data) */ 451 452 if (dev && dev->type != ARPHRD_CAN) 453 return -ENODEV; 454 455 if (dev && !net_eq(net, dev_net(dev))) 456 return -ENODEV; 457 458 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 459 if (!rcv) 460 return -ENOMEM; 461 462 spin_lock_bh(&net->can.rcvlists_lock); 463 464 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 465 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); 466 467 rcv->can_id = can_id; 468 rcv->mask = mask; 469 rcv->matches = 0; 470 rcv->func = func; 471 rcv->data = data; 472 rcv->ident = ident; 473 rcv->sk = sk; 474 475 hlist_add_head_rcu(&rcv->list, rcv_list); 476 dev_rcv_lists->entries++; 477 478 rcv_lists_stats->rcv_entries++; 479 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max, 480 rcv_lists_stats->rcv_entries); 481 spin_unlock_bh(&net->can.rcvlists_lock); 482 483 return err; 484 } 485 EXPORT_SYMBOL(can_rx_register); 486 487 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */ 488 static void can_rx_delete_receiver(struct rcu_head *rp) 489 { 490 struct receiver *rcv = container_of(rp, struct receiver, rcu); 491 struct sock *sk = rcv->sk; 492 493 kmem_cache_free(rcv_cache, rcv); 494 if (sk) 495 sock_put(sk); 496 } 497 498 /** 499 * can_rx_unregister - unsubscribe CAN frames from a specific interface 500 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) 501 * @can_id: CAN identifier 502 * @mask: CAN mask 503 * @func: callback function on filter match 504 * @data: returned parameter for callback function 505 * 506 * Description: 507 * Removes subscription entry depending on given (subscription) values. 508 */ 509 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, 510 canid_t mask, void (*func)(struct sk_buff *, void *), 511 void *data) 512 { 513 struct receiver *rcv = NULL; 514 struct hlist_head *rcv_list; 515 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; 516 struct can_dev_rcv_lists *dev_rcv_lists; 517 518 if (dev && dev->type != ARPHRD_CAN) 519 return; 520 521 if (dev && !net_eq(net, dev_net(dev))) 522 return; 523 524 spin_lock_bh(&net->can.rcvlists_lock); 525 526 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 527 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); 528 529 /* Search the receiver list for the item to delete. This should 530 * exist, since no receiver may be unregistered that hasn't 531 * been registered before. 532 */ 533 hlist_for_each_entry_rcu(rcv, rcv_list, list) { 534 if (rcv->can_id == can_id && rcv->mask == mask && 535 rcv->func == func && rcv->data == data) 536 break; 537 } 538 539 /* Check for bugs in CAN protocol implementations using af_can.c: 540 * 'rcv' will be NULL if no matching list item was found for removal. 541 */ 542 if (!rcv) { 543 WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n", 544 DNAME(dev), can_id, mask); 545 goto out; 546 } 547 548 hlist_del_rcu(&rcv->list); 549 dev_rcv_lists->entries--; 550 551 if (rcv_lists_stats->rcv_entries > 0) 552 rcv_lists_stats->rcv_entries--; 553 554 out: 555 spin_unlock_bh(&net->can.rcvlists_lock); 556 557 /* schedule the receiver item for deletion */ 558 if (rcv) { 559 if (rcv->sk) 560 sock_hold(rcv->sk); 561 call_rcu(&rcv->rcu, can_rx_delete_receiver); 562 } 563 } 564 EXPORT_SYMBOL(can_rx_unregister); 565 566 static inline void deliver(struct sk_buff *skb, struct receiver *rcv) 567 { 568 rcv->func(skb, rcv->data); 569 rcv->matches++; 570 } 571 572 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb) 573 { 574 struct receiver *rcv; 575 int matches = 0; 576 struct can_frame *cf = (struct can_frame *)skb->data; 577 canid_t can_id = cf->can_id; 578 579 if (dev_rcv_lists->entries == 0) 580 return 0; 581 582 if (can_id & CAN_ERR_FLAG) { 583 /* check for error message frame entries only */ 584 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) { 585 if (can_id & rcv->mask) { 586 deliver(skb, rcv); 587 matches++; 588 } 589 } 590 return matches; 591 } 592 593 /* check for unfiltered entries */ 594 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) { 595 deliver(skb, rcv); 596 matches++; 597 } 598 599 /* check for can_id/mask entries */ 600 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) { 601 if ((can_id & rcv->mask) == rcv->can_id) { 602 deliver(skb, rcv); 603 matches++; 604 } 605 } 606 607 /* check for inverted can_id/mask entries */ 608 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) { 609 if ((can_id & rcv->mask) != rcv->can_id) { 610 deliver(skb, rcv); 611 matches++; 612 } 613 } 614 615 /* check filterlists for single non-RTR can_ids */ 616 if (can_id & CAN_RTR_FLAG) 617 return matches; 618 619 if (can_id & CAN_EFF_FLAG) { 620 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) { 621 if (rcv->can_id == can_id) { 622 deliver(skb, rcv); 623 matches++; 624 } 625 } 626 } else { 627 can_id &= CAN_SFF_MASK; 628 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) { 629 deliver(skb, rcv); 630 matches++; 631 } 632 } 633 634 return matches; 635 } 636 637 static void can_receive(struct sk_buff *skb, struct net_device *dev) 638 { 639 struct can_dev_rcv_lists *dev_rcv_lists; 640 struct net *net = dev_net(dev); 641 struct can_pkg_stats *pkg_stats = net->can.pkg_stats; 642 int matches; 643 644 /* update statistics */ 645 pkg_stats->rx_frames++; 646 pkg_stats->rx_frames_delta++; 647 648 /* create non-zero unique skb identifier together with *skb */ 649 while (!(can_skb_prv(skb)->skbcnt)) 650 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); 651 652 rcu_read_lock(); 653 654 /* deliver the packet to sockets listening on all devices */ 655 matches = can_rcv_filter(net->can.rx_alldev_list, skb); 656 657 /* find receive list for this device */ 658 dev_rcv_lists = can_dev_rcv_lists_find(net, dev); 659 matches += can_rcv_filter(dev_rcv_lists, skb); 660 661 rcu_read_unlock(); 662 663 /* consume the skbuff allocated by the netdevice driver */ 664 consume_skb(skb); 665 666 if (matches > 0) { 667 pkg_stats->matches++; 668 pkg_stats->matches_delta++; 669 } 670 } 671 672 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 673 struct packet_type *pt, struct net_device *orig_dev) 674 { 675 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 676 677 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU || 678 cfd->len > CAN_MAX_DLEN)) { 679 pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n", 680 dev->type, skb->len, cfd->len); 681 kfree_skb(skb); 682 return NET_RX_DROP; 683 } 684 685 can_receive(skb, dev); 686 return NET_RX_SUCCESS; 687 } 688 689 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, 690 struct packet_type *pt, struct net_device *orig_dev) 691 { 692 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 693 694 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU || 695 cfd->len > CANFD_MAX_DLEN)) { 696 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n", 697 dev->type, skb->len, cfd->len); 698 kfree_skb(skb); 699 return NET_RX_DROP; 700 } 701 702 can_receive(skb, dev); 703 return NET_RX_SUCCESS; 704 } 705 706 /* af_can protocol functions */ 707 708 /** 709 * can_proto_register - register CAN transport protocol 710 * @cp: pointer to CAN protocol structure 711 * 712 * Return: 713 * 0 on success 714 * -EINVAL invalid (out of range) protocol number 715 * -EBUSY protocol already in use 716 * -ENOBUF if proto_register() fails 717 */ 718 int can_proto_register(const struct can_proto *cp) 719 { 720 int proto = cp->protocol; 721 int err = 0; 722 723 if (proto < 0 || proto >= CAN_NPROTO) { 724 pr_err("can: protocol number %d out of range\n", proto); 725 return -EINVAL; 726 } 727 728 err = proto_register(cp->prot, 0); 729 if (err < 0) 730 return err; 731 732 mutex_lock(&proto_tab_lock); 733 734 if (rcu_access_pointer(proto_tab[proto])) { 735 pr_err("can: protocol %d already registered\n", proto); 736 err = -EBUSY; 737 } else { 738 RCU_INIT_POINTER(proto_tab[proto], cp); 739 } 740 741 mutex_unlock(&proto_tab_lock); 742 743 if (err < 0) 744 proto_unregister(cp->prot); 745 746 return err; 747 } 748 EXPORT_SYMBOL(can_proto_register); 749 750 /** 751 * can_proto_unregister - unregister CAN transport protocol 752 * @cp: pointer to CAN protocol structure 753 */ 754 void can_proto_unregister(const struct can_proto *cp) 755 { 756 int proto = cp->protocol; 757 758 mutex_lock(&proto_tab_lock); 759 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); 760 RCU_INIT_POINTER(proto_tab[proto], NULL); 761 mutex_unlock(&proto_tab_lock); 762 763 synchronize_rcu(); 764 765 proto_unregister(cp->prot); 766 } 767 EXPORT_SYMBOL(can_proto_unregister); 768 769 /* af_can notifier to create/remove CAN netdevice specific structs */ 770 static int can_notifier(struct notifier_block *nb, unsigned long msg, 771 void *ptr) 772 { 773 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 774 775 if (dev->type != ARPHRD_CAN) 776 return NOTIFY_DONE; 777 778 switch (msg) { 779 case NETDEV_REGISTER: 780 WARN(!dev->ml_priv, 781 "No CAN mid layer private allocated, please fix your driver and use alloc_candev()!\n"); 782 break; 783 } 784 785 return NOTIFY_DONE; 786 } 787 788 static int can_pernet_init(struct net *net) 789 { 790 spin_lock_init(&net->can.rcvlists_lock); 791 net->can.rx_alldev_list = 792 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL); 793 if (!net->can.rx_alldev_list) 794 goto out; 795 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL); 796 if (!net->can.pkg_stats) 797 goto out_free_rx_alldev_list; 798 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL); 799 if (!net->can.rcv_lists_stats) 800 goto out_free_pkg_stats; 801 802 if (IS_ENABLED(CONFIG_PROC_FS)) { 803 /* the statistics are updated every second (timer triggered) */ 804 if (stats_timer) { 805 timer_setup(&net->can.stattimer, can_stat_update, 806 0); 807 mod_timer(&net->can.stattimer, 808 round_jiffies(jiffies + HZ)); 809 } 810 net->can.pkg_stats->jiffies_init = jiffies; 811 can_init_proc(net); 812 } 813 814 return 0; 815 816 out_free_pkg_stats: 817 kfree(net->can.pkg_stats); 818 out_free_rx_alldev_list: 819 kfree(net->can.rx_alldev_list); 820 out: 821 return -ENOMEM; 822 } 823 824 static void can_pernet_exit(struct net *net) 825 { 826 if (IS_ENABLED(CONFIG_PROC_FS)) { 827 can_remove_proc(net); 828 if (stats_timer) 829 del_timer_sync(&net->can.stattimer); 830 } 831 832 kfree(net->can.rx_alldev_list); 833 kfree(net->can.pkg_stats); 834 kfree(net->can.rcv_lists_stats); 835 } 836 837 /* af_can module init/exit functions */ 838 839 static struct packet_type can_packet __read_mostly = { 840 .type = cpu_to_be16(ETH_P_CAN), 841 .func = can_rcv, 842 }; 843 844 static struct packet_type canfd_packet __read_mostly = { 845 .type = cpu_to_be16(ETH_P_CANFD), 846 .func = canfd_rcv, 847 }; 848 849 static const struct net_proto_family can_family_ops = { 850 .family = PF_CAN, 851 .create = can_create, 852 .owner = THIS_MODULE, 853 }; 854 855 /* notifier block for netdevice event */ 856 static struct notifier_block can_netdev_notifier __read_mostly = { 857 .notifier_call = can_notifier, 858 }; 859 860 static struct pernet_operations can_pernet_ops __read_mostly = { 861 .init = can_pernet_init, 862 .exit = can_pernet_exit, 863 }; 864 865 static __init int can_init(void) 866 { 867 int err; 868 869 /* check for correct padding to be able to use the structs similarly */ 870 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != 871 offsetof(struct canfd_frame, len) || 872 offsetof(struct can_frame, data) != 873 offsetof(struct canfd_frame, data)); 874 875 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n"); 876 877 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 878 0, 0, NULL); 879 if (!rcv_cache) 880 return -ENOMEM; 881 882 err = register_pernet_subsys(&can_pernet_ops); 883 if (err) 884 goto out_pernet; 885 886 /* protocol register */ 887 err = sock_register(&can_family_ops); 888 if (err) 889 goto out_sock; 890 err = register_netdevice_notifier(&can_netdev_notifier); 891 if (err) 892 goto out_notifier; 893 894 dev_add_pack(&can_packet); 895 dev_add_pack(&canfd_packet); 896 897 return 0; 898 899 out_notifier: 900 sock_unregister(PF_CAN); 901 out_sock: 902 unregister_pernet_subsys(&can_pernet_ops); 903 out_pernet: 904 kmem_cache_destroy(rcv_cache); 905 906 return err; 907 } 908 909 static __exit void can_exit(void) 910 { 911 /* protocol unregister */ 912 dev_remove_pack(&canfd_packet); 913 dev_remove_pack(&can_packet); 914 unregister_netdevice_notifier(&can_netdev_notifier); 915 sock_unregister(PF_CAN); 916 917 unregister_pernet_subsys(&can_pernet_ops); 918 919 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 920 921 kmem_cache_destroy(rcv_cache); 922 } 923 924 module_init(can_init); 925 module_exit(can_exit); 926