xref: /openbmc/linux/net/can/af_can.c (revision 7a2eb736)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, 0444);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 static struct kmem_cache *rcv_cache __read_mostly;
79 
80 /* table of registered CAN protocols */
81 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
82 static DEFINE_MUTEX(proto_tab_lock);
83 
84 static atomic_t skbcounter = ATOMIC_INIT(0);
85 
86 /* af_can socket functions */
87 
88 static void can_sock_destruct(struct sock *sk)
89 {
90 	skb_queue_purge(&sk->sk_receive_queue);
91 	skb_queue_purge(&sk->sk_error_queue);
92 }
93 
94 static const struct can_proto *can_get_proto(int protocol)
95 {
96 	const struct can_proto *cp;
97 
98 	rcu_read_lock();
99 	cp = rcu_dereference(proto_tab[protocol]);
100 	if (cp && !try_module_get(cp->prot->owner))
101 		cp = NULL;
102 	rcu_read_unlock();
103 
104 	return cp;
105 }
106 
107 static inline void can_put_proto(const struct can_proto *cp)
108 {
109 	module_put(cp->prot->owner);
110 }
111 
112 static int can_create(struct net *net, struct socket *sock, int protocol,
113 		      int kern)
114 {
115 	struct sock *sk;
116 	const struct can_proto *cp;
117 	int err = 0;
118 
119 	sock->state = SS_UNCONNECTED;
120 
121 	if (protocol < 0 || protocol >= CAN_NPROTO)
122 		return -EINVAL;
123 
124 	cp = can_get_proto(protocol);
125 
126 #ifdef CONFIG_MODULES
127 	if (!cp) {
128 		/* try to load protocol module if kernel is modular */
129 
130 		err = request_module("can-proto-%d", protocol);
131 
132 		/* In case of error we only print a message but don't
133 		 * return the error code immediately.  Below we will
134 		 * return -EPROTONOSUPPORT
135 		 */
136 		if (err)
137 			pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
138 					   protocol);
139 
140 		cp = can_get_proto(protocol);
141 	}
142 #endif
143 
144 	/* check for available protocol and correct usage */
145 
146 	if (!cp)
147 		return -EPROTONOSUPPORT;
148 
149 	if (cp->type != sock->type) {
150 		err = -EPROTOTYPE;
151 		goto errout;
152 	}
153 
154 	sock->ops = cp->ops;
155 
156 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
157 	if (!sk) {
158 		err = -ENOMEM;
159 		goto errout;
160 	}
161 
162 	sock_init_data(sock, sk);
163 	sk->sk_destruct = can_sock_destruct;
164 
165 	if (sk->sk_prot->init)
166 		err = sk->sk_prot->init(sk);
167 
168 	if (err) {
169 		/* release sk on errors */
170 		sock_orphan(sk);
171 		sock_put(sk);
172 	}
173 
174  errout:
175 	can_put_proto(cp);
176 	return err;
177 }
178 
179 /* af_can tx path */
180 
181 /**
182  * can_send - transmit a CAN frame (optional with local loopback)
183  * @skb: pointer to socket buffer with CAN frame in data section
184  * @loop: loopback for listeners on local CAN sockets (recommended default!)
185  *
186  * Due to the loopback this routine must not be called from hardirq context.
187  *
188  * Return:
189  *  0 on success
190  *  -ENETDOWN when the selected interface is down
191  *  -ENOBUFS on full driver queue (see net_xmit_errno())
192  *  -ENOMEM when local loopback failed at calling skb_clone()
193  *  -EPERM when trying to send on a non-CAN interface
194  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
195  *  -EINVAL when the skb->data does not contain a valid CAN frame
196  */
197 int can_send(struct sk_buff *skb, int loop)
198 {
199 	struct sk_buff *newskb = NULL;
200 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
201 	struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
202 	int err = -EINVAL;
203 
204 	if (skb->len == CAN_MTU) {
205 		skb->protocol = htons(ETH_P_CAN);
206 		if (unlikely(cfd->len > CAN_MAX_DLEN))
207 			goto inval_skb;
208 	} else if (skb->len == CANFD_MTU) {
209 		skb->protocol = htons(ETH_P_CANFD);
210 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
211 			goto inval_skb;
212 	} else {
213 		goto inval_skb;
214 	}
215 
216 	/* Make sure the CAN frame can pass the selected CAN netdevice.
217 	 * As structs can_frame and canfd_frame are similar, we can provide
218 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
219 	 */
220 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
221 		err = -EMSGSIZE;
222 		goto inval_skb;
223 	}
224 
225 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
226 		err = -EPERM;
227 		goto inval_skb;
228 	}
229 
230 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
231 		err = -ENETDOWN;
232 		goto inval_skb;
233 	}
234 
235 	skb->ip_summed = CHECKSUM_UNNECESSARY;
236 
237 	skb_reset_mac_header(skb);
238 	skb_reset_network_header(skb);
239 	skb_reset_transport_header(skb);
240 
241 	if (loop) {
242 		/* local loopback of sent CAN frames */
243 
244 		/* indication for the CAN driver: do loopback */
245 		skb->pkt_type = PACKET_LOOPBACK;
246 
247 		/* The reference to the originating sock may be required
248 		 * by the receiving socket to check whether the frame is
249 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
250 		 * Therefore we have to ensure that skb->sk remains the
251 		 * reference to the originating sock by restoring skb->sk
252 		 * after each skb_clone() or skb_orphan() usage.
253 		 */
254 
255 		if (!(skb->dev->flags & IFF_ECHO)) {
256 			/* If the interface is not capable to do loopback
257 			 * itself, we do it here.
258 			 */
259 			newskb = skb_clone(skb, GFP_ATOMIC);
260 			if (!newskb) {
261 				kfree_skb(skb);
262 				return -ENOMEM;
263 			}
264 
265 			can_skb_set_owner(newskb, skb->sk);
266 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
267 			newskb->pkt_type = PACKET_BROADCAST;
268 		}
269 	} else {
270 		/* indication for the CAN driver: no loopback required */
271 		skb->pkt_type = PACKET_HOST;
272 	}
273 
274 	/* send to netdevice */
275 	err = dev_queue_xmit(skb);
276 	if (err > 0)
277 		err = net_xmit_errno(err);
278 
279 	if (err) {
280 		kfree_skb(newskb);
281 		return err;
282 	}
283 
284 	if (newskb)
285 		netif_rx_ni(newskb);
286 
287 	/* update statistics */
288 	can_stats->tx_frames++;
289 	can_stats->tx_frames_delta++;
290 
291 	return 0;
292 
293 inval_skb:
294 	kfree_skb(skb);
295 	return err;
296 }
297 EXPORT_SYMBOL(can_send);
298 
299 /* af_can rx path */
300 
301 static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
302 						    struct net_device *dev)
303 {
304 	if (!dev)
305 		return net->can.can_rx_alldev_list;
306 	else
307 		return (struct can_dev_rcv_lists *)dev->ml_priv;
308 }
309 
310 /**
311  * effhash - hash function for 29 bit CAN identifier reduction
312  * @can_id: 29 bit CAN identifier
313  *
314  * Description:
315  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
316  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
317  *  (see CAN_EFF_RCV_HASH_BITS definition)
318  *
319  * Return:
320  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
321  */
322 static unsigned int effhash(canid_t can_id)
323 {
324 	unsigned int hash;
325 
326 	hash = can_id;
327 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
328 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
329 
330 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
331 }
332 
333 /**
334  * find_rcv_list - determine optimal filterlist inside device filter struct
335  * @can_id: pointer to CAN identifier of a given can_filter
336  * @mask: pointer to CAN mask of a given can_filter
337  * @d: pointer to the device filter struct
338  *
339  * Description:
340  *  Returns the optimal filterlist to reduce the filter handling in the
341  *  receive path. This function is called by service functions that need
342  *  to register or unregister a can_filter in the filter lists.
343  *
344  *  A filter matches in general, when
345  *
346  *          <received_can_id> & mask == can_id & mask
347  *
348  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
349  *  relevant bits for the filter.
350  *
351  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
352  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
353  *  frames there is a special filterlist and a special rx path filter handling.
354  *
355  * Return:
356  *  Pointer to optimal filterlist for the given can_id/mask pair.
357  *  Constistency checked mask.
358  *  Reduced can_id to have a preprocessed filter compare value.
359  */
360 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
361 					struct can_dev_rcv_lists *d)
362 {
363 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
364 
365 	/* filter for error message frames in extra filterlist */
366 	if (*mask & CAN_ERR_FLAG) {
367 		/* clear CAN_ERR_FLAG in filter entry */
368 		*mask &= CAN_ERR_MASK;
369 		return &d->rx[RX_ERR];
370 	}
371 
372 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
373 
374 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
375 
376 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
377 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
378 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
379 
380 	/* reduce condition testing at receive time */
381 	*can_id &= *mask;
382 
383 	/* inverse can_id/can_mask filter */
384 	if (inv)
385 		return &d->rx[RX_INV];
386 
387 	/* mask == 0 => no condition testing at receive time */
388 	if (!(*mask))
389 		return &d->rx[RX_ALL];
390 
391 	/* extra filterlists for the subscription of a single non-RTR can_id */
392 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
393 	    !(*can_id & CAN_RTR_FLAG)) {
394 		if (*can_id & CAN_EFF_FLAG) {
395 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
396 				return &d->rx_eff[effhash(*can_id)];
397 		} else {
398 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
399 				return &d->rx_sff[*can_id];
400 		}
401 	}
402 
403 	/* default: filter via can_id/can_mask */
404 	return &d->rx[RX_FIL];
405 }
406 
407 /**
408  * can_rx_register - subscribe CAN frames from a specific interface
409  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
410  * @can_id: CAN identifier (see description)
411  * @mask: CAN mask (see description)
412  * @func: callback function on filter match
413  * @data: returned parameter for callback function
414  * @ident: string for calling module identification
415  * @sk: socket pointer (might be NULL)
416  *
417  * Description:
418  *  Invokes the callback function with the received sk_buff and the given
419  *  parameter 'data' on a matching receive filter. A filter matches, when
420  *
421  *          <received_can_id> & mask == can_id & mask
422  *
423  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
424  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
425  *
426  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
427  *  the callback function is running. The callback function must *not* free
428  *  the given sk_buff while processing it's task. When the given sk_buff is
429  *  needed after the end of the callback function it must be cloned inside
430  *  the callback function with skb_clone().
431  *
432  * Return:
433  *  0 on success
434  *  -ENOMEM on missing cache mem to create subscription entry
435  *  -ENODEV unknown device
436  */
437 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
438 		    canid_t mask, void (*func)(struct sk_buff *, void *),
439 		    void *data, char *ident, struct sock *sk)
440 {
441 	struct receiver *r;
442 	struct hlist_head *rl;
443 	struct can_dev_rcv_lists *d;
444 	struct s_pstats *can_pstats = net->can.can_pstats;
445 	int err = 0;
446 
447 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
448 
449 	if (dev && dev->type != ARPHRD_CAN)
450 		return -ENODEV;
451 
452 	if (dev && !net_eq(net, dev_net(dev)))
453 		return -ENODEV;
454 
455 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
456 	if (!r)
457 		return -ENOMEM;
458 
459 	spin_lock(&net->can.can_rcvlists_lock);
460 
461 	d = find_dev_rcv_lists(net, dev);
462 	if (d) {
463 		rl = find_rcv_list(&can_id, &mask, d);
464 
465 		r->can_id  = can_id;
466 		r->mask    = mask;
467 		r->matches = 0;
468 		r->func    = func;
469 		r->data    = data;
470 		r->ident   = ident;
471 		r->sk      = sk;
472 
473 		hlist_add_head_rcu(&r->list, rl);
474 		d->entries++;
475 
476 		can_pstats->rcv_entries++;
477 		if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
478 			can_pstats->rcv_entries_max = can_pstats->rcv_entries;
479 	} else {
480 		kmem_cache_free(rcv_cache, r);
481 		err = -ENODEV;
482 	}
483 
484 	spin_unlock(&net->can.can_rcvlists_lock);
485 
486 	return err;
487 }
488 EXPORT_SYMBOL(can_rx_register);
489 
490 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
491 static void can_rx_delete_receiver(struct rcu_head *rp)
492 {
493 	struct receiver *r = container_of(rp, struct receiver, rcu);
494 	struct sock *sk = r->sk;
495 
496 	kmem_cache_free(rcv_cache, r);
497 	if (sk)
498 		sock_put(sk);
499 }
500 
501 /**
502  * can_rx_unregister - unsubscribe CAN frames from a specific interface
503  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
504  * @can_id: CAN identifier
505  * @mask: CAN mask
506  * @func: callback function on filter match
507  * @data: returned parameter for callback function
508  *
509  * Description:
510  *  Removes subscription entry depending on given (subscription) values.
511  */
512 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
513 		       canid_t mask, void (*func)(struct sk_buff *, void *),
514 		       void *data)
515 {
516 	struct receiver *r = NULL;
517 	struct hlist_head *rl;
518 	struct s_pstats *can_pstats = net->can.can_pstats;
519 	struct can_dev_rcv_lists *d;
520 
521 	if (dev && dev->type != ARPHRD_CAN)
522 		return;
523 
524 	if (dev && !net_eq(net, dev_net(dev)))
525 		return;
526 
527 	spin_lock(&net->can.can_rcvlists_lock);
528 
529 	d = find_dev_rcv_lists(net, dev);
530 	if (!d) {
531 		pr_err("BUG: receive list not found for dev %s, id %03X, mask %03X\n",
532 		       DNAME(dev), can_id, mask);
533 		goto out;
534 	}
535 
536 	rl = find_rcv_list(&can_id, &mask, d);
537 
538 	/* Search the receiver list for the item to delete.  This should
539 	 * exist, since no receiver may be unregistered that hasn't
540 	 * been registered before.
541 	 */
542 
543 	hlist_for_each_entry_rcu(r, rl, list) {
544 		if (r->can_id == can_id && r->mask == mask &&
545 		    r->func == func && r->data == data)
546 			break;
547 	}
548 
549 	/* Check for bugs in CAN protocol implementations using af_can.c:
550 	 * 'r' will be NULL if no matching list item was found for removal.
551 	 */
552 
553 	if (!r) {
554 		WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n",
555 		     DNAME(dev), can_id, mask);
556 		goto out;
557 	}
558 
559 	hlist_del_rcu(&r->list);
560 	d->entries--;
561 
562 	if (can_pstats->rcv_entries > 0)
563 		can_pstats->rcv_entries--;
564 
565 	/* remove device structure requested by NETDEV_UNREGISTER */
566 	if (d->remove_on_zero_entries && !d->entries) {
567 		kfree(d);
568 		dev->ml_priv = NULL;
569 	}
570 
571  out:
572 	spin_unlock(&net->can.can_rcvlists_lock);
573 
574 	/* schedule the receiver item for deletion */
575 	if (r) {
576 		if (r->sk)
577 			sock_hold(r->sk);
578 		call_rcu(&r->rcu, can_rx_delete_receiver);
579 	}
580 }
581 EXPORT_SYMBOL(can_rx_unregister);
582 
583 static inline void deliver(struct sk_buff *skb, struct receiver *r)
584 {
585 	r->func(skb, r->data);
586 	r->matches++;
587 }
588 
589 static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
590 {
591 	struct receiver *r;
592 	int matches = 0;
593 	struct can_frame *cf = (struct can_frame *)skb->data;
594 	canid_t can_id = cf->can_id;
595 
596 	if (d->entries == 0)
597 		return 0;
598 
599 	if (can_id & CAN_ERR_FLAG) {
600 		/* check for error message frame entries only */
601 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
602 			if (can_id & r->mask) {
603 				deliver(skb, r);
604 				matches++;
605 			}
606 		}
607 		return matches;
608 	}
609 
610 	/* check for unfiltered entries */
611 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
612 		deliver(skb, r);
613 		matches++;
614 	}
615 
616 	/* check for can_id/mask entries */
617 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
618 		if ((can_id & r->mask) == r->can_id) {
619 			deliver(skb, r);
620 			matches++;
621 		}
622 	}
623 
624 	/* check for inverted can_id/mask entries */
625 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
626 		if ((can_id & r->mask) != r->can_id) {
627 			deliver(skb, r);
628 			matches++;
629 		}
630 	}
631 
632 	/* check filterlists for single non-RTR can_ids */
633 	if (can_id & CAN_RTR_FLAG)
634 		return matches;
635 
636 	if (can_id & CAN_EFF_FLAG) {
637 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
638 			if (r->can_id == can_id) {
639 				deliver(skb, r);
640 				matches++;
641 			}
642 		}
643 	} else {
644 		can_id &= CAN_SFF_MASK;
645 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
646 			deliver(skb, r);
647 			matches++;
648 		}
649 	}
650 
651 	return matches;
652 }
653 
654 static void can_receive(struct sk_buff *skb, struct net_device *dev)
655 {
656 	struct can_dev_rcv_lists *d;
657 	struct net *net = dev_net(dev);
658 	struct s_stats *can_stats = net->can.can_stats;
659 	int matches;
660 
661 	/* update statistics */
662 	can_stats->rx_frames++;
663 	can_stats->rx_frames_delta++;
664 
665 	/* create non-zero unique skb identifier together with *skb */
666 	while (!(can_skb_prv(skb)->skbcnt))
667 		can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
668 
669 	rcu_read_lock();
670 
671 	/* deliver the packet to sockets listening on all devices */
672 	matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
673 
674 	/* find receive list for this device */
675 	d = find_dev_rcv_lists(net, dev);
676 	if (d)
677 		matches += can_rcv_filter(d, skb);
678 
679 	rcu_read_unlock();
680 
681 	/* consume the skbuff allocated by the netdevice driver */
682 	consume_skb(skb);
683 
684 	if (matches > 0) {
685 		can_stats->matches++;
686 		can_stats->matches_delta++;
687 	}
688 }
689 
690 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
691 		   struct packet_type *pt, struct net_device *orig_dev)
692 {
693 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
694 
695 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
696 		     cfd->len > CAN_MAX_DLEN)) {
697 		pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
698 			     dev->type, skb->len, cfd->len);
699 		kfree_skb(skb);
700 		return NET_RX_DROP;
701 	}
702 
703 	can_receive(skb, dev);
704 	return NET_RX_SUCCESS;
705 }
706 
707 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
708 		     struct packet_type *pt, struct net_device *orig_dev)
709 {
710 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
711 
712 	if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
713 		     cfd->len > CANFD_MAX_DLEN)) {
714 		pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
715 			     dev->type, skb->len, cfd->len);
716 		kfree_skb(skb);
717 		return NET_RX_DROP;
718 	}
719 
720 	can_receive(skb, dev);
721 	return NET_RX_SUCCESS;
722 }
723 
724 /* af_can protocol functions */
725 
726 /**
727  * can_proto_register - register CAN transport protocol
728  * @cp: pointer to CAN protocol structure
729  *
730  * Return:
731  *  0 on success
732  *  -EINVAL invalid (out of range) protocol number
733  *  -EBUSY  protocol already in use
734  *  -ENOBUF if proto_register() fails
735  */
736 int can_proto_register(const struct can_proto *cp)
737 {
738 	int proto = cp->protocol;
739 	int err = 0;
740 
741 	if (proto < 0 || proto >= CAN_NPROTO) {
742 		pr_err("can: protocol number %d out of range\n", proto);
743 		return -EINVAL;
744 	}
745 
746 	err = proto_register(cp->prot, 0);
747 	if (err < 0)
748 		return err;
749 
750 	mutex_lock(&proto_tab_lock);
751 
752 	if (rcu_access_pointer(proto_tab[proto])) {
753 		pr_err("can: protocol %d already registered\n", proto);
754 		err = -EBUSY;
755 	} else {
756 		RCU_INIT_POINTER(proto_tab[proto], cp);
757 	}
758 
759 	mutex_unlock(&proto_tab_lock);
760 
761 	if (err < 0)
762 		proto_unregister(cp->prot);
763 
764 	return err;
765 }
766 EXPORT_SYMBOL(can_proto_register);
767 
768 /**
769  * can_proto_unregister - unregister CAN transport protocol
770  * @cp: pointer to CAN protocol structure
771  */
772 void can_proto_unregister(const struct can_proto *cp)
773 {
774 	int proto = cp->protocol;
775 
776 	mutex_lock(&proto_tab_lock);
777 	BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
778 	RCU_INIT_POINTER(proto_tab[proto], NULL);
779 	mutex_unlock(&proto_tab_lock);
780 
781 	synchronize_rcu();
782 
783 	proto_unregister(cp->prot);
784 }
785 EXPORT_SYMBOL(can_proto_unregister);
786 
787 /* af_can notifier to create/remove CAN netdevice specific structs */
788 static int can_notifier(struct notifier_block *nb, unsigned long msg,
789 			void *ptr)
790 {
791 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
792 	struct can_dev_rcv_lists *d;
793 
794 	if (dev->type != ARPHRD_CAN)
795 		return NOTIFY_DONE;
796 
797 	switch (msg) {
798 	case NETDEV_REGISTER:
799 
800 		/* create new dev_rcv_lists for this device */
801 		d = kzalloc(sizeof(*d), GFP_KERNEL);
802 		if (!d)
803 			return NOTIFY_DONE;
804 		BUG_ON(dev->ml_priv);
805 		dev->ml_priv = d;
806 
807 		break;
808 
809 	case NETDEV_UNREGISTER:
810 		spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
811 
812 		d = dev->ml_priv;
813 		if (d) {
814 			if (d->entries) {
815 				d->remove_on_zero_entries = 1;
816 			} else {
817 				kfree(d);
818 				dev->ml_priv = NULL;
819 			}
820 		} else {
821 			pr_err("can: notifier: receive list not found for dev %s\n",
822 			       dev->name);
823 		}
824 
825 		spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
826 
827 		break;
828 	}
829 
830 	return NOTIFY_DONE;
831 }
832 
833 static int can_pernet_init(struct net *net)
834 {
835 	spin_lock_init(&net->can.can_rcvlists_lock);
836 	net->can.can_rx_alldev_list =
837 		kzalloc(sizeof(*net->can.can_rx_alldev_list), GFP_KERNEL);
838 	if (!net->can.can_rx_alldev_list)
839 		goto out;
840 	net->can.can_stats = kzalloc(sizeof(*net->can.can_stats), GFP_KERNEL);
841 	if (!net->can.can_stats)
842 		goto out_free_alldev_list;
843 	net->can.can_pstats = kzalloc(sizeof(*net->can.can_pstats), GFP_KERNEL);
844 	if (!net->can.can_pstats)
845 		goto out_free_can_stats;
846 
847 	if (IS_ENABLED(CONFIG_PROC_FS)) {
848 		/* the statistics are updated every second (timer triggered) */
849 		if (stats_timer) {
850 			timer_setup(&net->can.can_stattimer, can_stat_update,
851 				    0);
852 			mod_timer(&net->can.can_stattimer,
853 				  round_jiffies(jiffies + HZ));
854 		}
855 		net->can.can_stats->jiffies_init = jiffies;
856 		can_init_proc(net);
857 	}
858 
859 	return 0;
860 
861  out_free_can_stats:
862 	kfree(net->can.can_stats);
863  out_free_alldev_list:
864 	kfree(net->can.can_rx_alldev_list);
865  out:
866 	return -ENOMEM;
867 }
868 
869 static void can_pernet_exit(struct net *net)
870 {
871 	struct net_device *dev;
872 
873 	if (IS_ENABLED(CONFIG_PROC_FS)) {
874 		can_remove_proc(net);
875 		if (stats_timer)
876 			del_timer_sync(&net->can.can_stattimer);
877 	}
878 
879 	/* remove created dev_rcv_lists from still registered CAN devices */
880 	rcu_read_lock();
881 	for_each_netdev_rcu(net, dev) {
882 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
883 			struct can_dev_rcv_lists *d = dev->ml_priv;
884 
885 			BUG_ON(d->entries);
886 			kfree(d);
887 			dev->ml_priv = NULL;
888 		}
889 	}
890 	rcu_read_unlock();
891 
892 	kfree(net->can.can_rx_alldev_list);
893 	kfree(net->can.can_stats);
894 	kfree(net->can.can_pstats);
895 }
896 
897 /* af_can module init/exit functions */
898 
899 static struct packet_type can_packet __read_mostly = {
900 	.type = cpu_to_be16(ETH_P_CAN),
901 	.func = can_rcv,
902 };
903 
904 static struct packet_type canfd_packet __read_mostly = {
905 	.type = cpu_to_be16(ETH_P_CANFD),
906 	.func = canfd_rcv,
907 };
908 
909 static const struct net_proto_family can_family_ops = {
910 	.family = PF_CAN,
911 	.create = can_create,
912 	.owner  = THIS_MODULE,
913 };
914 
915 /* notifier block for netdevice event */
916 static struct notifier_block can_netdev_notifier __read_mostly = {
917 	.notifier_call = can_notifier,
918 };
919 
920 static struct pernet_operations can_pernet_ops __read_mostly = {
921 	.init = can_pernet_init,
922 	.exit = can_pernet_exit,
923 };
924 
925 static __init int can_init(void)
926 {
927 	int err;
928 
929 	/* check for correct padding to be able to use the structs similarly */
930 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
931 		     offsetof(struct canfd_frame, len) ||
932 		     offsetof(struct can_frame, data) !=
933 		     offsetof(struct canfd_frame, data));
934 
935 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
936 
937 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
938 				      0, 0, NULL);
939 	if (!rcv_cache)
940 		return -ENOMEM;
941 
942 	err = register_pernet_subsys(&can_pernet_ops);
943 	if (err)
944 		goto out_pernet;
945 
946 	/* protocol register */
947 	err = sock_register(&can_family_ops);
948 	if (err)
949 		goto out_sock;
950 	err = register_netdevice_notifier(&can_netdev_notifier);
951 	if (err)
952 		goto out_notifier;
953 
954 	dev_add_pack(&can_packet);
955 	dev_add_pack(&canfd_packet);
956 
957 	return 0;
958 
959 out_notifier:
960 	sock_unregister(PF_CAN);
961 out_sock:
962 	unregister_pernet_subsys(&can_pernet_ops);
963 out_pernet:
964 	kmem_cache_destroy(rcv_cache);
965 
966 	return err;
967 }
968 
969 static __exit void can_exit(void)
970 {
971 	/* protocol unregister */
972 	dev_remove_pack(&canfd_packet);
973 	dev_remove_pack(&can_packet);
974 	unregister_netdevice_notifier(&can_netdev_notifier);
975 	sock_unregister(PF_CAN);
976 
977 	unregister_pernet_subsys(&can_pernet_ops);
978 
979 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
980 
981 	kmem_cache_destroy(rcv_cache);
982 }
983 
984 module_init(can_init);
985 module_exit(can_exit);
986