1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/init.h> 45 #include <linux/kmod.h> 46 #include <linux/slab.h> 47 #include <linux/list.h> 48 #include <linux/spinlock.h> 49 #include <linux/rcupdate.h> 50 #include <linux/uaccess.h> 51 #include <linux/net.h> 52 #include <linux/netdevice.h> 53 #include <linux/socket.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_arp.h> 56 #include <linux/skbuff.h> 57 #include <linux/can.h> 58 #include <linux/can/core.h> 59 #include <linux/ratelimit.h> 60 #include <net/net_namespace.h> 61 #include <net/sock.h> 62 63 #include "af_can.h" 64 65 static __initdata const char banner[] = KERN_INFO 66 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 67 68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 69 MODULE_LICENSE("Dual BSD/GPL"); 70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 72 73 MODULE_ALIAS_NETPROTO(PF_CAN); 74 75 static int stats_timer __read_mostly = 1; 76 module_param(stats_timer, int, S_IRUGO); 77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 78 79 /* receive filters subscribed for 'all' CAN devices */ 80 struct dev_rcv_lists can_rx_alldev_list; 81 static DEFINE_SPINLOCK(can_rcvlists_lock); 82 83 static struct kmem_cache *rcv_cache __read_mostly; 84 85 /* table of registered CAN protocols */ 86 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 87 static DEFINE_MUTEX(proto_tab_lock); 88 89 struct timer_list can_stattimer; /* timer for statistics update */ 90 struct s_stats can_stats; /* packet statistics */ 91 struct s_pstats can_pstats; /* receive list statistics */ 92 93 /* 94 * af_can socket functions 95 */ 96 97 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 98 { 99 struct sock *sk = sock->sk; 100 101 switch (cmd) { 102 103 case SIOCGSTAMP: 104 return sock_get_timestamp(sk, (struct timeval __user *)arg); 105 106 default: 107 return -ENOIOCTLCMD; 108 } 109 } 110 EXPORT_SYMBOL(can_ioctl); 111 112 static void can_sock_destruct(struct sock *sk) 113 { 114 skb_queue_purge(&sk->sk_receive_queue); 115 } 116 117 static const struct can_proto *can_get_proto(int protocol) 118 { 119 const struct can_proto *cp; 120 121 rcu_read_lock(); 122 cp = rcu_dereference(proto_tab[protocol]); 123 if (cp && !try_module_get(cp->prot->owner)) 124 cp = NULL; 125 rcu_read_unlock(); 126 127 return cp; 128 } 129 130 static inline void can_put_proto(const struct can_proto *cp) 131 { 132 module_put(cp->prot->owner); 133 } 134 135 static int can_create(struct net *net, struct socket *sock, int protocol, 136 int kern) 137 { 138 struct sock *sk; 139 const struct can_proto *cp; 140 int err = 0; 141 142 sock->state = SS_UNCONNECTED; 143 144 if (protocol < 0 || protocol >= CAN_NPROTO) 145 return -EINVAL; 146 147 if (!net_eq(net, &init_net)) 148 return -EAFNOSUPPORT; 149 150 cp = can_get_proto(protocol); 151 152 #ifdef CONFIG_MODULES 153 if (!cp) { 154 /* try to load protocol module if kernel is modular */ 155 156 err = request_module("can-proto-%d", protocol); 157 158 /* 159 * In case of error we only print a message but don't 160 * return the error code immediately. Below we will 161 * return -EPROTONOSUPPORT 162 */ 163 if (err) 164 printk_ratelimited(KERN_ERR "can: request_module " 165 "(can-proto-%d) failed.\n", protocol); 166 167 cp = can_get_proto(protocol); 168 } 169 #endif 170 171 /* check for available protocol and correct usage */ 172 173 if (!cp) 174 return -EPROTONOSUPPORT; 175 176 if (cp->type != sock->type) { 177 err = -EPROTOTYPE; 178 goto errout; 179 } 180 181 sock->ops = cp->ops; 182 183 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 184 if (!sk) { 185 err = -ENOMEM; 186 goto errout; 187 } 188 189 sock_init_data(sock, sk); 190 sk->sk_destruct = can_sock_destruct; 191 192 if (sk->sk_prot->init) 193 err = sk->sk_prot->init(sk); 194 195 if (err) { 196 /* release sk on errors */ 197 sock_orphan(sk); 198 sock_put(sk); 199 } 200 201 errout: 202 can_put_proto(cp); 203 return err; 204 } 205 206 /* 207 * af_can tx path 208 */ 209 210 /** 211 * can_send - transmit a CAN frame (optional with local loopback) 212 * @skb: pointer to socket buffer with CAN frame in data section 213 * @loop: loopback for listeners on local CAN sockets (recommended default!) 214 * 215 * Due to the loopback this routine must not be called from hardirq context. 216 * 217 * Return: 218 * 0 on success 219 * -ENETDOWN when the selected interface is down 220 * -ENOBUFS on full driver queue (see net_xmit_errno()) 221 * -ENOMEM when local loopback failed at calling skb_clone() 222 * -EPERM when trying to send on a non-CAN interface 223 * -EINVAL when the skb->data does not contain a valid CAN frame 224 */ 225 int can_send(struct sk_buff *skb, int loop) 226 { 227 struct sk_buff *newskb = NULL; 228 struct can_frame *cf = (struct can_frame *)skb->data; 229 int err; 230 231 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) { 232 kfree_skb(skb); 233 return -EINVAL; 234 } 235 236 if (skb->dev->type != ARPHRD_CAN) { 237 kfree_skb(skb); 238 return -EPERM; 239 } 240 241 if (!(skb->dev->flags & IFF_UP)) { 242 kfree_skb(skb); 243 return -ENETDOWN; 244 } 245 246 skb->protocol = htons(ETH_P_CAN); 247 skb_reset_network_header(skb); 248 skb_reset_transport_header(skb); 249 250 if (loop) { 251 /* local loopback of sent CAN frames */ 252 253 /* indication for the CAN driver: do loopback */ 254 skb->pkt_type = PACKET_LOOPBACK; 255 256 /* 257 * The reference to the originating sock may be required 258 * by the receiving socket to check whether the frame is 259 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 260 * Therefore we have to ensure that skb->sk remains the 261 * reference to the originating sock by restoring skb->sk 262 * after each skb_clone() or skb_orphan() usage. 263 */ 264 265 if (!(skb->dev->flags & IFF_ECHO)) { 266 /* 267 * If the interface is not capable to do loopback 268 * itself, we do it here. 269 */ 270 newskb = skb_clone(skb, GFP_ATOMIC); 271 if (!newskb) { 272 kfree_skb(skb); 273 return -ENOMEM; 274 } 275 276 newskb->sk = skb->sk; 277 newskb->ip_summed = CHECKSUM_UNNECESSARY; 278 newskb->pkt_type = PACKET_BROADCAST; 279 } 280 } else { 281 /* indication for the CAN driver: no loopback required */ 282 skb->pkt_type = PACKET_HOST; 283 } 284 285 /* send to netdevice */ 286 err = dev_queue_xmit(skb); 287 if (err > 0) 288 err = net_xmit_errno(err); 289 290 if (err) { 291 kfree_skb(newskb); 292 return err; 293 } 294 295 if (newskb) 296 netif_rx_ni(newskb); 297 298 /* update statistics */ 299 can_stats.tx_frames++; 300 can_stats.tx_frames_delta++; 301 302 return 0; 303 } 304 EXPORT_SYMBOL(can_send); 305 306 /* 307 * af_can rx path 308 */ 309 310 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 311 { 312 if (!dev) 313 return &can_rx_alldev_list; 314 else 315 return (struct dev_rcv_lists *)dev->ml_priv; 316 } 317 318 /** 319 * find_rcv_list - determine optimal filterlist inside device filter struct 320 * @can_id: pointer to CAN identifier of a given can_filter 321 * @mask: pointer to CAN mask of a given can_filter 322 * @d: pointer to the device filter struct 323 * 324 * Description: 325 * Returns the optimal filterlist to reduce the filter handling in the 326 * receive path. This function is called by service functions that need 327 * to register or unregister a can_filter in the filter lists. 328 * 329 * A filter matches in general, when 330 * 331 * <received_can_id> & mask == can_id & mask 332 * 333 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 334 * relevant bits for the filter. 335 * 336 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 337 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames 338 * there is a special filterlist and a special rx path filter handling. 339 * 340 * Return: 341 * Pointer to optimal filterlist for the given can_id/mask pair. 342 * Constistency checked mask. 343 * Reduced can_id to have a preprocessed filter compare value. 344 */ 345 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 346 struct dev_rcv_lists *d) 347 { 348 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 349 350 /* filter for error frames in extra filterlist */ 351 if (*mask & CAN_ERR_FLAG) { 352 /* clear CAN_ERR_FLAG in filter entry */ 353 *mask &= CAN_ERR_MASK; 354 return &d->rx[RX_ERR]; 355 } 356 357 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 358 359 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 360 361 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 362 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 363 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 364 365 /* reduce condition testing at receive time */ 366 *can_id &= *mask; 367 368 /* inverse can_id/can_mask filter */ 369 if (inv) 370 return &d->rx[RX_INV]; 371 372 /* mask == 0 => no condition testing at receive time */ 373 if (!(*mask)) 374 return &d->rx[RX_ALL]; 375 376 /* extra filterlists for the subscription of a single non-RTR can_id */ 377 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 378 !(*can_id & CAN_RTR_FLAG)) { 379 380 if (*can_id & CAN_EFF_FLAG) { 381 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) { 382 /* RFC: a future use-case for hash-tables? */ 383 return &d->rx[RX_EFF]; 384 } 385 } else { 386 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 387 return &d->rx_sff[*can_id]; 388 } 389 } 390 391 /* default: filter via can_id/can_mask */ 392 return &d->rx[RX_FIL]; 393 } 394 395 /** 396 * can_rx_register - subscribe CAN frames from a specific interface 397 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 398 * @can_id: CAN identifier (see description) 399 * @mask: CAN mask (see description) 400 * @func: callback function on filter match 401 * @data: returned parameter for callback function 402 * @ident: string for calling module indentification 403 * 404 * Description: 405 * Invokes the callback function with the received sk_buff and the given 406 * parameter 'data' on a matching receive filter. A filter matches, when 407 * 408 * <received_can_id> & mask == can_id & mask 409 * 410 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 411 * filter for error frames (CAN_ERR_FLAG bit set in mask). 412 * 413 * The provided pointer to the sk_buff is guaranteed to be valid as long as 414 * the callback function is running. The callback function must *not* free 415 * the given sk_buff while processing it's task. When the given sk_buff is 416 * needed after the end of the callback function it must be cloned inside 417 * the callback function with skb_clone(). 418 * 419 * Return: 420 * 0 on success 421 * -ENOMEM on missing cache mem to create subscription entry 422 * -ENODEV unknown device 423 */ 424 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 425 void (*func)(struct sk_buff *, void *), void *data, 426 char *ident) 427 { 428 struct receiver *r; 429 struct hlist_head *rl; 430 struct dev_rcv_lists *d; 431 int err = 0; 432 433 /* insert new receiver (dev,canid,mask) -> (func,data) */ 434 435 if (dev && dev->type != ARPHRD_CAN) 436 return -ENODEV; 437 438 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 439 if (!r) 440 return -ENOMEM; 441 442 spin_lock(&can_rcvlists_lock); 443 444 d = find_dev_rcv_lists(dev); 445 if (d) { 446 rl = find_rcv_list(&can_id, &mask, d); 447 448 r->can_id = can_id; 449 r->mask = mask; 450 r->matches = 0; 451 r->func = func; 452 r->data = data; 453 r->ident = ident; 454 455 hlist_add_head_rcu(&r->list, rl); 456 d->entries++; 457 458 can_pstats.rcv_entries++; 459 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 460 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 461 } else { 462 kmem_cache_free(rcv_cache, r); 463 err = -ENODEV; 464 } 465 466 spin_unlock(&can_rcvlists_lock); 467 468 return err; 469 } 470 EXPORT_SYMBOL(can_rx_register); 471 472 /* 473 * can_rx_delete_receiver - rcu callback for single receiver entry removal 474 */ 475 static void can_rx_delete_receiver(struct rcu_head *rp) 476 { 477 struct receiver *r = container_of(rp, struct receiver, rcu); 478 479 kmem_cache_free(rcv_cache, r); 480 } 481 482 /** 483 * can_rx_unregister - unsubscribe CAN frames from a specific interface 484 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 485 * @can_id: CAN identifier 486 * @mask: CAN mask 487 * @func: callback function on filter match 488 * @data: returned parameter for callback function 489 * 490 * Description: 491 * Removes subscription entry depending on given (subscription) values. 492 */ 493 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 494 void (*func)(struct sk_buff *, void *), void *data) 495 { 496 struct receiver *r = NULL; 497 struct hlist_head *rl; 498 struct hlist_node *next; 499 struct dev_rcv_lists *d; 500 501 if (dev && dev->type != ARPHRD_CAN) 502 return; 503 504 spin_lock(&can_rcvlists_lock); 505 506 d = find_dev_rcv_lists(dev); 507 if (!d) { 508 printk(KERN_ERR "BUG: receive list not found for " 509 "dev %s, id %03X, mask %03X\n", 510 DNAME(dev), can_id, mask); 511 goto out; 512 } 513 514 rl = find_rcv_list(&can_id, &mask, d); 515 516 /* 517 * Search the receiver list for the item to delete. This should 518 * exist, since no receiver may be unregistered that hasn't 519 * been registered before. 520 */ 521 522 hlist_for_each_entry_rcu(r, next, rl, list) { 523 if (r->can_id == can_id && r->mask == mask && 524 r->func == func && r->data == data) 525 break; 526 } 527 528 /* 529 * Check for bugs in CAN protocol implementations: 530 * If no matching list item was found, the list cursor variable next 531 * will be NULL, while r will point to the last item of the list. 532 */ 533 534 if (!next) { 535 printk(KERN_ERR "BUG: receive list entry not found for " 536 "dev %s, id %03X, mask %03X\n", 537 DNAME(dev), can_id, mask); 538 r = NULL; 539 goto out; 540 } 541 542 hlist_del_rcu(&r->list); 543 d->entries--; 544 545 if (can_pstats.rcv_entries > 0) 546 can_pstats.rcv_entries--; 547 548 /* remove device structure requested by NETDEV_UNREGISTER */ 549 if (d->remove_on_zero_entries && !d->entries) { 550 kfree(d); 551 dev->ml_priv = NULL; 552 } 553 554 out: 555 spin_unlock(&can_rcvlists_lock); 556 557 /* schedule the receiver item for deletion */ 558 if (r) 559 call_rcu(&r->rcu, can_rx_delete_receiver); 560 } 561 EXPORT_SYMBOL(can_rx_unregister); 562 563 static inline void deliver(struct sk_buff *skb, struct receiver *r) 564 { 565 r->func(skb, r->data); 566 r->matches++; 567 } 568 569 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 570 { 571 struct receiver *r; 572 struct hlist_node *n; 573 int matches = 0; 574 struct can_frame *cf = (struct can_frame *)skb->data; 575 canid_t can_id = cf->can_id; 576 577 if (d->entries == 0) 578 return 0; 579 580 if (can_id & CAN_ERR_FLAG) { 581 /* check for error frame entries only */ 582 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) { 583 if (can_id & r->mask) { 584 deliver(skb, r); 585 matches++; 586 } 587 } 588 return matches; 589 } 590 591 /* check for unfiltered entries */ 592 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) { 593 deliver(skb, r); 594 matches++; 595 } 596 597 /* check for can_id/mask entries */ 598 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) { 599 if ((can_id & r->mask) == r->can_id) { 600 deliver(skb, r); 601 matches++; 602 } 603 } 604 605 /* check for inverted can_id/mask entries */ 606 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) { 607 if ((can_id & r->mask) != r->can_id) { 608 deliver(skb, r); 609 matches++; 610 } 611 } 612 613 /* check filterlists for single non-RTR can_ids */ 614 if (can_id & CAN_RTR_FLAG) 615 return matches; 616 617 if (can_id & CAN_EFF_FLAG) { 618 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) { 619 if (r->can_id == can_id) { 620 deliver(skb, r); 621 matches++; 622 } 623 } 624 } else { 625 can_id &= CAN_SFF_MASK; 626 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) { 627 deliver(skb, r); 628 matches++; 629 } 630 } 631 632 return matches; 633 } 634 635 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 636 struct packet_type *pt, struct net_device *orig_dev) 637 { 638 struct dev_rcv_lists *d; 639 struct can_frame *cf = (struct can_frame *)skb->data; 640 int matches; 641 642 if (!net_eq(dev_net(dev), &init_net)) 643 goto drop; 644 645 if (WARN_ONCE(dev->type != ARPHRD_CAN || 646 skb->len != sizeof(struct can_frame) || 647 cf->can_dlc > 8, 648 "PF_CAN: dropped non conform skbuf: " 649 "dev type %d, len %d, can_dlc %d\n", 650 dev->type, skb->len, cf->can_dlc)) 651 goto drop; 652 653 /* update statistics */ 654 can_stats.rx_frames++; 655 can_stats.rx_frames_delta++; 656 657 rcu_read_lock(); 658 659 /* deliver the packet to sockets listening on all devices */ 660 matches = can_rcv_filter(&can_rx_alldev_list, skb); 661 662 /* find receive list for this device */ 663 d = find_dev_rcv_lists(dev); 664 if (d) 665 matches += can_rcv_filter(d, skb); 666 667 rcu_read_unlock(); 668 669 /* consume the skbuff allocated by the netdevice driver */ 670 consume_skb(skb); 671 672 if (matches > 0) { 673 can_stats.matches++; 674 can_stats.matches_delta++; 675 } 676 677 return NET_RX_SUCCESS; 678 679 drop: 680 kfree_skb(skb); 681 return NET_RX_DROP; 682 } 683 684 /* 685 * af_can protocol functions 686 */ 687 688 /** 689 * can_proto_register - register CAN transport protocol 690 * @cp: pointer to CAN protocol structure 691 * 692 * Return: 693 * 0 on success 694 * -EINVAL invalid (out of range) protocol number 695 * -EBUSY protocol already in use 696 * -ENOBUF if proto_register() fails 697 */ 698 int can_proto_register(const struct can_proto *cp) 699 { 700 int proto = cp->protocol; 701 int err = 0; 702 703 if (proto < 0 || proto >= CAN_NPROTO) { 704 printk(KERN_ERR "can: protocol number %d out of range\n", 705 proto); 706 return -EINVAL; 707 } 708 709 err = proto_register(cp->prot, 0); 710 if (err < 0) 711 return err; 712 713 mutex_lock(&proto_tab_lock); 714 715 if (proto_tab[proto]) { 716 printk(KERN_ERR "can: protocol %d already registered\n", 717 proto); 718 err = -EBUSY; 719 } else 720 RCU_INIT_POINTER(proto_tab[proto], cp); 721 722 mutex_unlock(&proto_tab_lock); 723 724 if (err < 0) 725 proto_unregister(cp->prot); 726 727 return err; 728 } 729 EXPORT_SYMBOL(can_proto_register); 730 731 /** 732 * can_proto_unregister - unregister CAN transport protocol 733 * @cp: pointer to CAN protocol structure 734 */ 735 void can_proto_unregister(const struct can_proto *cp) 736 { 737 int proto = cp->protocol; 738 739 mutex_lock(&proto_tab_lock); 740 BUG_ON(proto_tab[proto] != cp); 741 RCU_INIT_POINTER(proto_tab[proto], NULL); 742 mutex_unlock(&proto_tab_lock); 743 744 synchronize_rcu(); 745 746 proto_unregister(cp->prot); 747 } 748 EXPORT_SYMBOL(can_proto_unregister); 749 750 /* 751 * af_can notifier to create/remove CAN netdevice specific structs 752 */ 753 static int can_notifier(struct notifier_block *nb, unsigned long msg, 754 void *data) 755 { 756 struct net_device *dev = (struct net_device *)data; 757 struct dev_rcv_lists *d; 758 759 if (!net_eq(dev_net(dev), &init_net)) 760 return NOTIFY_DONE; 761 762 if (dev->type != ARPHRD_CAN) 763 return NOTIFY_DONE; 764 765 switch (msg) { 766 767 case NETDEV_REGISTER: 768 769 /* create new dev_rcv_lists for this device */ 770 d = kzalloc(sizeof(*d), GFP_KERNEL); 771 if (!d) { 772 printk(KERN_ERR 773 "can: allocation of receive list failed\n"); 774 return NOTIFY_DONE; 775 } 776 BUG_ON(dev->ml_priv); 777 dev->ml_priv = d; 778 779 break; 780 781 case NETDEV_UNREGISTER: 782 spin_lock(&can_rcvlists_lock); 783 784 d = dev->ml_priv; 785 if (d) { 786 if (d->entries) 787 d->remove_on_zero_entries = 1; 788 else { 789 kfree(d); 790 dev->ml_priv = NULL; 791 } 792 } else 793 printk(KERN_ERR "can: notifier: receive list not " 794 "found for dev %s\n", dev->name); 795 796 spin_unlock(&can_rcvlists_lock); 797 798 break; 799 } 800 801 return NOTIFY_DONE; 802 } 803 804 /* 805 * af_can module init/exit functions 806 */ 807 808 static struct packet_type can_packet __read_mostly = { 809 .type = cpu_to_be16(ETH_P_CAN), 810 .dev = NULL, 811 .func = can_rcv, 812 }; 813 814 static const struct net_proto_family can_family_ops = { 815 .family = PF_CAN, 816 .create = can_create, 817 .owner = THIS_MODULE, 818 }; 819 820 /* notifier block for netdevice event */ 821 static struct notifier_block can_netdev_notifier __read_mostly = { 822 .notifier_call = can_notifier, 823 }; 824 825 static __init int can_init(void) 826 { 827 printk(banner); 828 829 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list)); 830 831 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 832 0, 0, NULL); 833 if (!rcv_cache) 834 return -ENOMEM; 835 836 if (stats_timer) { 837 /* the statistics are updated every second (timer triggered) */ 838 setup_timer(&can_stattimer, can_stat_update, 0); 839 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 840 } else 841 can_stattimer.function = NULL; 842 843 can_init_proc(); 844 845 /* protocol register */ 846 sock_register(&can_family_ops); 847 register_netdevice_notifier(&can_netdev_notifier); 848 dev_add_pack(&can_packet); 849 850 return 0; 851 } 852 853 static __exit void can_exit(void) 854 { 855 struct net_device *dev; 856 857 if (stats_timer) 858 del_timer_sync(&can_stattimer); 859 860 can_remove_proc(); 861 862 /* protocol unregister */ 863 dev_remove_pack(&can_packet); 864 unregister_netdevice_notifier(&can_netdev_notifier); 865 sock_unregister(PF_CAN); 866 867 /* remove created dev_rcv_lists from still registered CAN devices */ 868 rcu_read_lock(); 869 for_each_netdev_rcu(&init_net, dev) { 870 if (dev->type == ARPHRD_CAN && dev->ml_priv){ 871 872 struct dev_rcv_lists *d = dev->ml_priv; 873 874 BUG_ON(d->entries); 875 kfree(d); 876 dev->ml_priv = NULL; 877 } 878 } 879 rcu_read_unlock(); 880 881 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 882 883 kmem_cache_destroy(rcv_cache); 884 } 885 886 module_init(can_init); 887 module_exit(can_exit); 888