xref: /openbmc/linux/net/can/af_can.c (revision 609e478b)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 static __initconst const char banner[] = KERN_INFO
68 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
69 
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76 
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 
85 static struct kmem_cache *rcv_cache __read_mostly;
86 
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90 
91 struct timer_list can_stattimer;   /* timer for statistics update */
92 struct s_stats    can_stats;       /* packet statistics */
93 struct s_pstats   can_pstats;      /* receive list statistics */
94 
95 /*
96  * af_can socket functions
97  */
98 
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 	struct sock *sk = sock->sk;
102 
103 	switch (cmd) {
104 
105 	case SIOCGSTAMP:
106 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 
108 	default:
109 		return -ENOIOCTLCMD;
110 	}
111 }
112 EXPORT_SYMBOL(can_ioctl);
113 
114 static void can_sock_destruct(struct sock *sk)
115 {
116 	skb_queue_purge(&sk->sk_receive_queue);
117 }
118 
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 	const struct can_proto *cp;
122 
123 	rcu_read_lock();
124 	cp = rcu_dereference(proto_tab[protocol]);
125 	if (cp && !try_module_get(cp->prot->owner))
126 		cp = NULL;
127 	rcu_read_unlock();
128 
129 	return cp;
130 }
131 
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 	module_put(cp->prot->owner);
135 }
136 
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 		      int kern)
139 {
140 	struct sock *sk;
141 	const struct can_proto *cp;
142 	int err = 0;
143 
144 	sock->state = SS_UNCONNECTED;
145 
146 	if (protocol < 0 || protocol >= CAN_NPROTO)
147 		return -EINVAL;
148 
149 	if (!net_eq(net, &init_net))
150 		return -EAFNOSUPPORT;
151 
152 	cp = can_get_proto(protocol);
153 
154 #ifdef CONFIG_MODULES
155 	if (!cp) {
156 		/* try to load protocol module if kernel is modular */
157 
158 		err = request_module("can-proto-%d", protocol);
159 
160 		/*
161 		 * In case of error we only print a message but don't
162 		 * return the error code immediately.  Below we will
163 		 * return -EPROTONOSUPPORT
164 		 */
165 		if (err)
166 			printk_ratelimited(KERN_ERR "can: request_module "
167 			       "(can-proto-%d) failed.\n", protocol);
168 
169 		cp = can_get_proto(protocol);
170 	}
171 #endif
172 
173 	/* check for available protocol and correct usage */
174 
175 	if (!cp)
176 		return -EPROTONOSUPPORT;
177 
178 	if (cp->type != sock->type) {
179 		err = -EPROTOTYPE;
180 		goto errout;
181 	}
182 
183 	sock->ops = cp->ops;
184 
185 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 	if (!sk) {
187 		err = -ENOMEM;
188 		goto errout;
189 	}
190 
191 	sock_init_data(sock, sk);
192 	sk->sk_destruct = can_sock_destruct;
193 
194 	if (sk->sk_prot->init)
195 		err = sk->sk_prot->init(sk);
196 
197 	if (err) {
198 		/* release sk on errors */
199 		sock_orphan(sk);
200 		sock_put(sk);
201 	}
202 
203  errout:
204 	can_put_proto(cp);
205 	return err;
206 }
207 
208 /*
209  * af_can tx path
210  */
211 
212 /**
213  * can_send - transmit a CAN frame (optional with local loopback)
214  * @skb: pointer to socket buffer with CAN frame in data section
215  * @loop: loopback for listeners on local CAN sockets (recommended default!)
216  *
217  * Due to the loopback this routine must not be called from hardirq context.
218  *
219  * Return:
220  *  0 on success
221  *  -ENETDOWN when the selected interface is down
222  *  -ENOBUFS on full driver queue (see net_xmit_errno())
223  *  -ENOMEM when local loopback failed at calling skb_clone()
224  *  -EPERM when trying to send on a non-CAN interface
225  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226  *  -EINVAL when the skb->data does not contain a valid CAN frame
227  */
228 int can_send(struct sk_buff *skb, int loop)
229 {
230 	struct sk_buff *newskb = NULL;
231 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 	int err = -EINVAL;
233 
234 	if (skb->len == CAN_MTU) {
235 		skb->protocol = htons(ETH_P_CAN);
236 		if (unlikely(cfd->len > CAN_MAX_DLEN))
237 			goto inval_skb;
238 	} else if (skb->len == CANFD_MTU) {
239 		skb->protocol = htons(ETH_P_CANFD);
240 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 			goto inval_skb;
242 	} else
243 		goto inval_skb;
244 
245 	/*
246 	 * Make sure the CAN frame can pass the selected CAN netdevice.
247 	 * As structs can_frame and canfd_frame are similar, we can provide
248 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 	 */
250 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 		err = -EMSGSIZE;
252 		goto inval_skb;
253 	}
254 
255 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 		err = -EPERM;
257 		goto inval_skb;
258 	}
259 
260 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 		err = -ENETDOWN;
262 		goto inval_skb;
263 	}
264 
265 	skb_reset_network_header(skb);
266 	skb_reset_transport_header(skb);
267 
268 	if (loop) {
269 		/* local loopback of sent CAN frames */
270 
271 		/* indication for the CAN driver: do loopback */
272 		skb->pkt_type = PACKET_LOOPBACK;
273 
274 		/*
275 		 * The reference to the originating sock may be required
276 		 * by the receiving socket to check whether the frame is
277 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 		 * Therefore we have to ensure that skb->sk remains the
279 		 * reference to the originating sock by restoring skb->sk
280 		 * after each skb_clone() or skb_orphan() usage.
281 		 */
282 
283 		if (!(skb->dev->flags & IFF_ECHO)) {
284 			/*
285 			 * If the interface is not capable to do loopback
286 			 * itself, we do it here.
287 			 */
288 			newskb = skb_clone(skb, GFP_ATOMIC);
289 			if (!newskb) {
290 				kfree_skb(skb);
291 				return -ENOMEM;
292 			}
293 
294 			can_skb_set_owner(newskb, skb->sk);
295 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 			newskb->pkt_type = PACKET_BROADCAST;
297 		}
298 	} else {
299 		/* indication for the CAN driver: no loopback required */
300 		skb->pkt_type = PACKET_HOST;
301 	}
302 
303 	/* send to netdevice */
304 	err = dev_queue_xmit(skb);
305 	if (err > 0)
306 		err = net_xmit_errno(err);
307 
308 	if (err) {
309 		kfree_skb(newskb);
310 		return err;
311 	}
312 
313 	if (newskb)
314 		netif_rx_ni(newskb);
315 
316 	/* update statistics */
317 	can_stats.tx_frames++;
318 	can_stats.tx_frames_delta++;
319 
320 	return 0;
321 
322 inval_skb:
323 	kfree_skb(skb);
324 	return err;
325 }
326 EXPORT_SYMBOL(can_send);
327 
328 /*
329  * af_can rx path
330  */
331 
332 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
333 {
334 	if (!dev)
335 		return &can_rx_alldev_list;
336 	else
337 		return (struct dev_rcv_lists *)dev->ml_priv;
338 }
339 
340 /**
341  * effhash - hash function for 29 bit CAN identifier reduction
342  * @can_id: 29 bit CAN identifier
343  *
344  * Description:
345  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
346  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
347  *  (see CAN_EFF_RCV_HASH_BITS definition)
348  *
349  * Return:
350  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
351  */
352 static unsigned int effhash(canid_t can_id)
353 {
354 	unsigned int hash;
355 
356 	hash = can_id;
357 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
358 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
359 
360 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
361 }
362 
363 /**
364  * find_rcv_list - determine optimal filterlist inside device filter struct
365  * @can_id: pointer to CAN identifier of a given can_filter
366  * @mask: pointer to CAN mask of a given can_filter
367  * @d: pointer to the device filter struct
368  *
369  * Description:
370  *  Returns the optimal filterlist to reduce the filter handling in the
371  *  receive path. This function is called by service functions that need
372  *  to register or unregister a can_filter in the filter lists.
373  *
374  *  A filter matches in general, when
375  *
376  *          <received_can_id> & mask == can_id & mask
377  *
378  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
379  *  relevant bits for the filter.
380  *
381  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
382  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
383  *  frames there is a special filterlist and a special rx path filter handling.
384  *
385  * Return:
386  *  Pointer to optimal filterlist for the given can_id/mask pair.
387  *  Constistency checked mask.
388  *  Reduced can_id to have a preprocessed filter compare value.
389  */
390 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
391 					struct dev_rcv_lists *d)
392 {
393 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
394 
395 	/* filter for error message frames in extra filterlist */
396 	if (*mask & CAN_ERR_FLAG) {
397 		/* clear CAN_ERR_FLAG in filter entry */
398 		*mask &= CAN_ERR_MASK;
399 		return &d->rx[RX_ERR];
400 	}
401 
402 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
403 
404 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
405 
406 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
407 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
408 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
409 
410 	/* reduce condition testing at receive time */
411 	*can_id &= *mask;
412 
413 	/* inverse can_id/can_mask filter */
414 	if (inv)
415 		return &d->rx[RX_INV];
416 
417 	/* mask == 0 => no condition testing at receive time */
418 	if (!(*mask))
419 		return &d->rx[RX_ALL];
420 
421 	/* extra filterlists for the subscription of a single non-RTR can_id */
422 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
423 	    !(*can_id & CAN_RTR_FLAG)) {
424 
425 		if (*can_id & CAN_EFF_FLAG) {
426 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
427 				return &d->rx_eff[effhash(*can_id)];
428 		} else {
429 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
430 				return &d->rx_sff[*can_id];
431 		}
432 	}
433 
434 	/* default: filter via can_id/can_mask */
435 	return &d->rx[RX_FIL];
436 }
437 
438 /**
439  * can_rx_register - subscribe CAN frames from a specific interface
440  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
441  * @can_id: CAN identifier (see description)
442  * @mask: CAN mask (see description)
443  * @func: callback function on filter match
444  * @data: returned parameter for callback function
445  * @ident: string for calling module identification
446  *
447  * Description:
448  *  Invokes the callback function with the received sk_buff and the given
449  *  parameter 'data' on a matching receive filter. A filter matches, when
450  *
451  *          <received_can_id> & mask == can_id & mask
452  *
453  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
454  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
455  *
456  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
457  *  the callback function is running. The callback function must *not* free
458  *  the given sk_buff while processing it's task. When the given sk_buff is
459  *  needed after the end of the callback function it must be cloned inside
460  *  the callback function with skb_clone().
461  *
462  * Return:
463  *  0 on success
464  *  -ENOMEM on missing cache mem to create subscription entry
465  *  -ENODEV unknown device
466  */
467 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
468 		    void (*func)(struct sk_buff *, void *), void *data,
469 		    char *ident)
470 {
471 	struct receiver *r;
472 	struct hlist_head *rl;
473 	struct dev_rcv_lists *d;
474 	int err = 0;
475 
476 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
477 
478 	if (dev && dev->type != ARPHRD_CAN)
479 		return -ENODEV;
480 
481 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
482 	if (!r)
483 		return -ENOMEM;
484 
485 	spin_lock(&can_rcvlists_lock);
486 
487 	d = find_dev_rcv_lists(dev);
488 	if (d) {
489 		rl = find_rcv_list(&can_id, &mask, d);
490 
491 		r->can_id  = can_id;
492 		r->mask    = mask;
493 		r->matches = 0;
494 		r->func    = func;
495 		r->data    = data;
496 		r->ident   = ident;
497 
498 		hlist_add_head_rcu(&r->list, rl);
499 		d->entries++;
500 
501 		can_pstats.rcv_entries++;
502 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
503 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
504 	} else {
505 		kmem_cache_free(rcv_cache, r);
506 		err = -ENODEV;
507 	}
508 
509 	spin_unlock(&can_rcvlists_lock);
510 
511 	return err;
512 }
513 EXPORT_SYMBOL(can_rx_register);
514 
515 /*
516  * can_rx_delete_receiver - rcu callback for single receiver entry removal
517  */
518 static void can_rx_delete_receiver(struct rcu_head *rp)
519 {
520 	struct receiver *r = container_of(rp, struct receiver, rcu);
521 
522 	kmem_cache_free(rcv_cache, r);
523 }
524 
525 /**
526  * can_rx_unregister - unsubscribe CAN frames from a specific interface
527  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
528  * @can_id: CAN identifier
529  * @mask: CAN mask
530  * @func: callback function on filter match
531  * @data: returned parameter for callback function
532  *
533  * Description:
534  *  Removes subscription entry depending on given (subscription) values.
535  */
536 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
537 		       void (*func)(struct sk_buff *, void *), void *data)
538 {
539 	struct receiver *r = NULL;
540 	struct hlist_head *rl;
541 	struct dev_rcv_lists *d;
542 
543 	if (dev && dev->type != ARPHRD_CAN)
544 		return;
545 
546 	spin_lock(&can_rcvlists_lock);
547 
548 	d = find_dev_rcv_lists(dev);
549 	if (!d) {
550 		pr_err("BUG: receive list not found for "
551 		       "dev %s, id %03X, mask %03X\n",
552 		       DNAME(dev), can_id, mask);
553 		goto out;
554 	}
555 
556 	rl = find_rcv_list(&can_id, &mask, d);
557 
558 	/*
559 	 * Search the receiver list for the item to delete.  This should
560 	 * exist, since no receiver may be unregistered that hasn't
561 	 * been registered before.
562 	 */
563 
564 	hlist_for_each_entry_rcu(r, rl, list) {
565 		if (r->can_id == can_id && r->mask == mask &&
566 		    r->func == func && r->data == data)
567 			break;
568 	}
569 
570 	/*
571 	 * Check for bugs in CAN protocol implementations using af_can.c:
572 	 * 'r' will be NULL if no matching list item was found for removal.
573 	 */
574 
575 	if (!r) {
576 		WARN(1, "BUG: receive list entry not found for dev %s, "
577 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
578 		goto out;
579 	}
580 
581 	hlist_del_rcu(&r->list);
582 	d->entries--;
583 
584 	if (can_pstats.rcv_entries > 0)
585 		can_pstats.rcv_entries--;
586 
587 	/* remove device structure requested by NETDEV_UNREGISTER */
588 	if (d->remove_on_zero_entries && !d->entries) {
589 		kfree(d);
590 		dev->ml_priv = NULL;
591 	}
592 
593  out:
594 	spin_unlock(&can_rcvlists_lock);
595 
596 	/* schedule the receiver item for deletion */
597 	if (r)
598 		call_rcu(&r->rcu, can_rx_delete_receiver);
599 }
600 EXPORT_SYMBOL(can_rx_unregister);
601 
602 static inline void deliver(struct sk_buff *skb, struct receiver *r)
603 {
604 	r->func(skb, r->data);
605 	r->matches++;
606 }
607 
608 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
609 {
610 	struct receiver *r;
611 	int matches = 0;
612 	struct can_frame *cf = (struct can_frame *)skb->data;
613 	canid_t can_id = cf->can_id;
614 
615 	if (d->entries == 0)
616 		return 0;
617 
618 	if (can_id & CAN_ERR_FLAG) {
619 		/* check for error message frame entries only */
620 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
621 			if (can_id & r->mask) {
622 				deliver(skb, r);
623 				matches++;
624 			}
625 		}
626 		return matches;
627 	}
628 
629 	/* check for unfiltered entries */
630 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
631 		deliver(skb, r);
632 		matches++;
633 	}
634 
635 	/* check for can_id/mask entries */
636 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
637 		if ((can_id & r->mask) == r->can_id) {
638 			deliver(skb, r);
639 			matches++;
640 		}
641 	}
642 
643 	/* check for inverted can_id/mask entries */
644 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
645 		if ((can_id & r->mask) != r->can_id) {
646 			deliver(skb, r);
647 			matches++;
648 		}
649 	}
650 
651 	/* check filterlists for single non-RTR can_ids */
652 	if (can_id & CAN_RTR_FLAG)
653 		return matches;
654 
655 	if (can_id & CAN_EFF_FLAG) {
656 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
657 			if (r->can_id == can_id) {
658 				deliver(skb, r);
659 				matches++;
660 			}
661 		}
662 	} else {
663 		can_id &= CAN_SFF_MASK;
664 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
665 			deliver(skb, r);
666 			matches++;
667 		}
668 	}
669 
670 	return matches;
671 }
672 
673 static void can_receive(struct sk_buff *skb, struct net_device *dev)
674 {
675 	struct dev_rcv_lists *d;
676 	int matches;
677 
678 	/* update statistics */
679 	can_stats.rx_frames++;
680 	can_stats.rx_frames_delta++;
681 
682 	rcu_read_lock();
683 
684 	/* deliver the packet to sockets listening on all devices */
685 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
686 
687 	/* find receive list for this device */
688 	d = find_dev_rcv_lists(dev);
689 	if (d)
690 		matches += can_rcv_filter(d, skb);
691 
692 	rcu_read_unlock();
693 
694 	/* consume the skbuff allocated by the netdevice driver */
695 	consume_skb(skb);
696 
697 	if (matches > 0) {
698 		can_stats.matches++;
699 		can_stats.matches_delta++;
700 	}
701 }
702 
703 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
704 		   struct packet_type *pt, struct net_device *orig_dev)
705 {
706 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
707 
708 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
709 		goto drop;
710 
711 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
712 		      skb->len != CAN_MTU ||
713 		      cfd->len > CAN_MAX_DLEN,
714 		      "PF_CAN: dropped non conform CAN skbuf: "
715 		      "dev type %d, len %d, datalen %d\n",
716 		      dev->type, skb->len, cfd->len))
717 		goto drop;
718 
719 	can_receive(skb, dev);
720 	return NET_RX_SUCCESS;
721 
722 drop:
723 	kfree_skb(skb);
724 	return NET_RX_DROP;
725 }
726 
727 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
728 		   struct packet_type *pt, struct net_device *orig_dev)
729 {
730 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
731 
732 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
733 		goto drop;
734 
735 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
736 		      skb->len != CANFD_MTU ||
737 		      cfd->len > CANFD_MAX_DLEN,
738 		      "PF_CAN: dropped non conform CAN FD skbuf: "
739 		      "dev type %d, len %d, datalen %d\n",
740 		      dev->type, skb->len, cfd->len))
741 		goto drop;
742 
743 	can_receive(skb, dev);
744 	return NET_RX_SUCCESS;
745 
746 drop:
747 	kfree_skb(skb);
748 	return NET_RX_DROP;
749 }
750 
751 /*
752  * af_can protocol functions
753  */
754 
755 /**
756  * can_proto_register - register CAN transport protocol
757  * @cp: pointer to CAN protocol structure
758  *
759  * Return:
760  *  0 on success
761  *  -EINVAL invalid (out of range) protocol number
762  *  -EBUSY  protocol already in use
763  *  -ENOBUF if proto_register() fails
764  */
765 int can_proto_register(const struct can_proto *cp)
766 {
767 	int proto = cp->protocol;
768 	int err = 0;
769 
770 	if (proto < 0 || proto >= CAN_NPROTO) {
771 		pr_err("can: protocol number %d out of range\n", proto);
772 		return -EINVAL;
773 	}
774 
775 	err = proto_register(cp->prot, 0);
776 	if (err < 0)
777 		return err;
778 
779 	mutex_lock(&proto_tab_lock);
780 
781 	if (proto_tab[proto]) {
782 		pr_err("can: protocol %d already registered\n", proto);
783 		err = -EBUSY;
784 	} else
785 		RCU_INIT_POINTER(proto_tab[proto], cp);
786 
787 	mutex_unlock(&proto_tab_lock);
788 
789 	if (err < 0)
790 		proto_unregister(cp->prot);
791 
792 	return err;
793 }
794 EXPORT_SYMBOL(can_proto_register);
795 
796 /**
797  * can_proto_unregister - unregister CAN transport protocol
798  * @cp: pointer to CAN protocol structure
799  */
800 void can_proto_unregister(const struct can_proto *cp)
801 {
802 	int proto = cp->protocol;
803 
804 	mutex_lock(&proto_tab_lock);
805 	BUG_ON(proto_tab[proto] != cp);
806 	RCU_INIT_POINTER(proto_tab[proto], NULL);
807 	mutex_unlock(&proto_tab_lock);
808 
809 	synchronize_rcu();
810 
811 	proto_unregister(cp->prot);
812 }
813 EXPORT_SYMBOL(can_proto_unregister);
814 
815 /*
816  * af_can notifier to create/remove CAN netdevice specific structs
817  */
818 static int can_notifier(struct notifier_block *nb, unsigned long msg,
819 			void *ptr)
820 {
821 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
822 	struct dev_rcv_lists *d;
823 
824 	if (!net_eq(dev_net(dev), &init_net))
825 		return NOTIFY_DONE;
826 
827 	if (dev->type != ARPHRD_CAN)
828 		return NOTIFY_DONE;
829 
830 	switch (msg) {
831 
832 	case NETDEV_REGISTER:
833 
834 		/* create new dev_rcv_lists for this device */
835 		d = kzalloc(sizeof(*d), GFP_KERNEL);
836 		if (!d)
837 			return NOTIFY_DONE;
838 		BUG_ON(dev->ml_priv);
839 		dev->ml_priv = d;
840 
841 		break;
842 
843 	case NETDEV_UNREGISTER:
844 		spin_lock(&can_rcvlists_lock);
845 
846 		d = dev->ml_priv;
847 		if (d) {
848 			if (d->entries)
849 				d->remove_on_zero_entries = 1;
850 			else {
851 				kfree(d);
852 				dev->ml_priv = NULL;
853 			}
854 		} else
855 			pr_err("can: notifier: receive list not found for dev "
856 			       "%s\n", dev->name);
857 
858 		spin_unlock(&can_rcvlists_lock);
859 
860 		break;
861 	}
862 
863 	return NOTIFY_DONE;
864 }
865 
866 /*
867  * af_can module init/exit functions
868  */
869 
870 static struct packet_type can_packet __read_mostly = {
871 	.type = cpu_to_be16(ETH_P_CAN),
872 	.func = can_rcv,
873 };
874 
875 static struct packet_type canfd_packet __read_mostly = {
876 	.type = cpu_to_be16(ETH_P_CANFD),
877 	.func = canfd_rcv,
878 };
879 
880 static const struct net_proto_family can_family_ops = {
881 	.family = PF_CAN,
882 	.create = can_create,
883 	.owner  = THIS_MODULE,
884 };
885 
886 /* notifier block for netdevice event */
887 static struct notifier_block can_netdev_notifier __read_mostly = {
888 	.notifier_call = can_notifier,
889 };
890 
891 static __init int can_init(void)
892 {
893 	/* check for correct padding to be able to use the structs similarly */
894 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
895 		     offsetof(struct canfd_frame, len) ||
896 		     offsetof(struct can_frame, data) !=
897 		     offsetof(struct canfd_frame, data));
898 
899 	printk(banner);
900 
901 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
902 
903 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
904 				      0, 0, NULL);
905 	if (!rcv_cache)
906 		return -ENOMEM;
907 
908 	if (stats_timer) {
909 		/* the statistics are updated every second (timer triggered) */
910 		setup_timer(&can_stattimer, can_stat_update, 0);
911 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
912 	} else
913 		can_stattimer.function = NULL;
914 
915 	can_init_proc();
916 
917 	/* protocol register */
918 	sock_register(&can_family_ops);
919 	register_netdevice_notifier(&can_netdev_notifier);
920 	dev_add_pack(&can_packet);
921 	dev_add_pack(&canfd_packet);
922 
923 	return 0;
924 }
925 
926 static __exit void can_exit(void)
927 {
928 	struct net_device *dev;
929 
930 	if (stats_timer)
931 		del_timer_sync(&can_stattimer);
932 
933 	can_remove_proc();
934 
935 	/* protocol unregister */
936 	dev_remove_pack(&canfd_packet);
937 	dev_remove_pack(&can_packet);
938 	unregister_netdevice_notifier(&can_netdev_notifier);
939 	sock_unregister(PF_CAN);
940 
941 	/* remove created dev_rcv_lists from still registered CAN devices */
942 	rcu_read_lock();
943 	for_each_netdev_rcu(&init_net, dev) {
944 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
945 
946 			struct dev_rcv_lists *d = dev->ml_priv;
947 
948 			BUG_ON(d->entries);
949 			kfree(d);
950 			dev->ml_priv = NULL;
951 		}
952 	}
953 	rcu_read_unlock();
954 
955 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
956 
957 	kmem_cache_destroy(rcv_cache);
958 }
959 
960 module_init(can_init);
961 module_exit(can_exit);
962