xref: /openbmc/linux/net/can/af_can.c (revision 367b8112)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  * Send feedback to <socketcan-users@lists.berlios.de>
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
63 
64 #include "af_can.h"
65 
66 static __initdata const char banner[] = KERN_INFO
67 	"can: controller area network core (" CAN_VERSION_STRING ")\n";
68 
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
73 
74 MODULE_ALIAS_NETPROTO(PF_CAN);
75 
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
79 
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
83 
84 static struct kmem_cache *rcv_cache __read_mostly;
85 
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
89 
90 struct timer_list can_stattimer;   /* timer for statistics update */
91 struct s_stats    can_stats;       /* packet statistics */
92 struct s_pstats   can_pstats;      /* receive list statistics */
93 
94 /*
95  * af_can socket functions
96  */
97 
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
99 {
100 	struct sock *sk = sock->sk;
101 
102 	switch (cmd) {
103 
104 	case SIOCGSTAMP:
105 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
106 
107 	default:
108 		return -ENOIOCTLCMD;
109 	}
110 }
111 
112 static void can_sock_destruct(struct sock *sk)
113 {
114 	skb_queue_purge(&sk->sk_receive_queue);
115 }
116 
117 static int can_create(struct net *net, struct socket *sock, int protocol)
118 {
119 	struct sock *sk;
120 	struct can_proto *cp;
121 	int err = 0;
122 
123 	sock->state = SS_UNCONNECTED;
124 
125 	if (protocol < 0 || protocol >= CAN_NPROTO)
126 		return -EINVAL;
127 
128 	if (net != &init_net)
129 		return -EAFNOSUPPORT;
130 
131 #ifdef CONFIG_MODULES
132 	/* try to load protocol module kernel is modular */
133 	if (!proto_tab[protocol]) {
134 		err = request_module("can-proto-%d", protocol);
135 
136 		/*
137 		 * In case of error we only print a message but don't
138 		 * return the error code immediately.  Below we will
139 		 * return -EPROTONOSUPPORT
140 		 */
141 		if (err && printk_ratelimit())
142 			printk(KERN_ERR "can: request_module "
143 			       "(can-proto-%d) failed.\n", protocol);
144 	}
145 #endif
146 
147 	spin_lock(&proto_tab_lock);
148 	cp = proto_tab[protocol];
149 	if (cp && !try_module_get(cp->prot->owner))
150 		cp = NULL;
151 	spin_unlock(&proto_tab_lock);
152 
153 	/* check for available protocol and correct usage */
154 
155 	if (!cp)
156 		return -EPROTONOSUPPORT;
157 
158 	if (cp->type != sock->type) {
159 		err = -EPROTONOSUPPORT;
160 		goto errout;
161 	}
162 
163 	if (cp->capability >= 0 && !capable(cp->capability)) {
164 		err = -EPERM;
165 		goto errout;
166 	}
167 
168 	sock->ops = cp->ops;
169 
170 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 	if (!sk) {
172 		err = -ENOMEM;
173 		goto errout;
174 	}
175 
176 	sock_init_data(sock, sk);
177 	sk->sk_destruct = can_sock_destruct;
178 
179 	if (sk->sk_prot->init)
180 		err = sk->sk_prot->init(sk);
181 
182 	if (err) {
183 		/* release sk on errors */
184 		sock_orphan(sk);
185 		sock_put(sk);
186 	}
187 
188  errout:
189 	module_put(cp->prot->owner);
190 	return err;
191 }
192 
193 /*
194  * af_can tx path
195  */
196 
197 /**
198  * can_send - transmit a CAN frame (optional with local loopback)
199  * @skb: pointer to socket buffer with CAN frame in data section
200  * @loop: loopback for listeners on local CAN sockets (recommended default!)
201  *
202  * Return:
203  *  0 on success
204  *  -ENETDOWN when the selected interface is down
205  *  -ENOBUFS on full driver queue (see net_xmit_errno())
206  *  -ENOMEM when local loopback failed at calling skb_clone()
207  *  -EPERM when trying to send on a non-CAN interface
208  *  -EINVAL when the skb->data does not contain a valid CAN frame
209  */
210 int can_send(struct sk_buff *skb, int loop)
211 {
212 	struct sk_buff *newskb = NULL;
213 	struct can_frame *cf = (struct can_frame *)skb->data;
214 	int err;
215 
216 	if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
217 		kfree_skb(skb);
218 		return -EINVAL;
219 	}
220 
221 	if (skb->dev->type != ARPHRD_CAN) {
222 		kfree_skb(skb);
223 		return -EPERM;
224 	}
225 
226 	if (!(skb->dev->flags & IFF_UP)) {
227 		kfree_skb(skb);
228 		return -ENETDOWN;
229 	}
230 
231 	skb->protocol = htons(ETH_P_CAN);
232 	skb_reset_network_header(skb);
233 	skb_reset_transport_header(skb);
234 
235 	if (loop) {
236 		/* local loopback of sent CAN frames */
237 
238 		/* indication for the CAN driver: do loopback */
239 		skb->pkt_type = PACKET_LOOPBACK;
240 
241 		/*
242 		 * The reference to the originating sock may be required
243 		 * by the receiving socket to check whether the frame is
244 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
245 		 * Therefore we have to ensure that skb->sk remains the
246 		 * reference to the originating sock by restoring skb->sk
247 		 * after each skb_clone() or skb_orphan() usage.
248 		 */
249 
250 		if (!(skb->dev->flags & IFF_ECHO)) {
251 			/*
252 			 * If the interface is not capable to do loopback
253 			 * itself, we do it here.
254 			 */
255 			newskb = skb_clone(skb, GFP_ATOMIC);
256 			if (!newskb) {
257 				kfree_skb(skb);
258 				return -ENOMEM;
259 			}
260 
261 			newskb->sk = skb->sk;
262 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
263 			newskb->pkt_type = PACKET_BROADCAST;
264 		}
265 	} else {
266 		/* indication for the CAN driver: no loopback required */
267 		skb->pkt_type = PACKET_HOST;
268 	}
269 
270 	/* send to netdevice */
271 	err = dev_queue_xmit(skb);
272 	if (err > 0)
273 		err = net_xmit_errno(err);
274 
275 	if (err) {
276 		if (newskb)
277 			kfree_skb(newskb);
278 		return err;
279 	}
280 
281 	if (newskb)
282 		netif_rx(newskb);
283 
284 	/* update statistics */
285 	can_stats.tx_frames++;
286 	can_stats.tx_frames_delta++;
287 
288 	return 0;
289 }
290 EXPORT_SYMBOL(can_send);
291 
292 /*
293  * af_can rx path
294  */
295 
296 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
297 {
298 	struct dev_rcv_lists *d = NULL;
299 	struct hlist_node *n;
300 
301 	/*
302 	 * find receive list for this device
303 	 *
304 	 * The hlist_for_each_entry*() macros curse through the list
305 	 * using the pointer variable n and set d to the containing
306 	 * struct in each list iteration.  Therefore, after list
307 	 * iteration, d is unmodified when the list is empty, and it
308 	 * points to last list element, when the list is non-empty
309 	 * but no match in the loop body is found.  I.e. d is *not*
310 	 * NULL when no match is found.  We can, however, use the
311 	 * cursor variable n to decide if a match was found.
312 	 */
313 
314 	hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
315 		if (d->dev == dev)
316 			break;
317 	}
318 
319 	return n ? d : NULL;
320 }
321 
322 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
323 					struct dev_rcv_lists *d)
324 {
325 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
326 
327 	/* filter error frames */
328 	if (*mask & CAN_ERR_FLAG) {
329 		/* clear CAN_ERR_FLAG in list entry */
330 		*mask &= CAN_ERR_MASK;
331 		return &d->rx[RX_ERR];
332 	}
333 
334 	/* ensure valid values in can_mask */
335 	if (*mask & CAN_EFF_FLAG)
336 		*mask &= (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG);
337 	else
338 		*mask &= (CAN_SFF_MASK | CAN_RTR_FLAG);
339 
340 	/* reduce condition testing at receive time */
341 	*can_id &= *mask;
342 
343 	/* inverse can_id/can_mask filter */
344 	if (inv)
345 		return &d->rx[RX_INV];
346 
347 	/* mask == 0 => no condition testing at receive time */
348 	if (!(*mask))
349 		return &d->rx[RX_ALL];
350 
351 	/* use extra filterset for the subscription of exactly *ONE* can_id */
352 	if (*can_id & CAN_EFF_FLAG) {
353 		if (*mask == (CAN_EFF_MASK | CAN_EFF_FLAG)) {
354 			/* RFC: a use-case for hash-tables in the future? */
355 			return &d->rx[RX_EFF];
356 		}
357 	} else {
358 		if (*mask == CAN_SFF_MASK)
359 			return &d->rx_sff[*can_id];
360 	}
361 
362 	/* default: filter via can_id/can_mask */
363 	return &d->rx[RX_FIL];
364 }
365 
366 /**
367  * can_rx_register - subscribe CAN frames from a specific interface
368  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
369  * @can_id: CAN identifier (see description)
370  * @mask: CAN mask (see description)
371  * @func: callback function on filter match
372  * @data: returned parameter for callback function
373  * @ident: string for calling module indentification
374  *
375  * Description:
376  *  Invokes the callback function with the received sk_buff and the given
377  *  parameter 'data' on a matching receive filter. A filter matches, when
378  *
379  *          <received_can_id> & mask == can_id & mask
380  *
381  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
382  *  filter for error frames (CAN_ERR_FLAG bit set in mask).
383  *
384  * Return:
385  *  0 on success
386  *  -ENOMEM on missing cache mem to create subscription entry
387  *  -ENODEV unknown device
388  */
389 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
390 		    void (*func)(struct sk_buff *, void *), void *data,
391 		    char *ident)
392 {
393 	struct receiver *r;
394 	struct hlist_head *rl;
395 	struct dev_rcv_lists *d;
396 	int err = 0;
397 
398 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
399 
400 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
401 	if (!r)
402 		return -ENOMEM;
403 
404 	spin_lock(&can_rcvlists_lock);
405 
406 	d = find_dev_rcv_lists(dev);
407 	if (d) {
408 		rl = find_rcv_list(&can_id, &mask, d);
409 
410 		r->can_id  = can_id;
411 		r->mask    = mask;
412 		r->matches = 0;
413 		r->func    = func;
414 		r->data    = data;
415 		r->ident   = ident;
416 
417 		hlist_add_head_rcu(&r->list, rl);
418 		d->entries++;
419 
420 		can_pstats.rcv_entries++;
421 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
422 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
423 	} else {
424 		kmem_cache_free(rcv_cache, r);
425 		err = -ENODEV;
426 	}
427 
428 	spin_unlock(&can_rcvlists_lock);
429 
430 	return err;
431 }
432 EXPORT_SYMBOL(can_rx_register);
433 
434 /*
435  * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
436  */
437 static void can_rx_delete_device(struct rcu_head *rp)
438 {
439 	struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
440 
441 	kfree(d);
442 }
443 
444 /*
445  * can_rx_delete_receiver - rcu callback for single receiver entry removal
446  */
447 static void can_rx_delete_receiver(struct rcu_head *rp)
448 {
449 	struct receiver *r = container_of(rp, struct receiver, rcu);
450 
451 	kmem_cache_free(rcv_cache, r);
452 }
453 
454 /**
455  * can_rx_unregister - unsubscribe CAN frames from a specific interface
456  * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
457  * @can_id: CAN identifier
458  * @mask: CAN mask
459  * @func: callback function on filter match
460  * @data: returned parameter for callback function
461  *
462  * Description:
463  *  Removes subscription entry depending on given (subscription) values.
464  */
465 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
466 		       void (*func)(struct sk_buff *, void *), void *data)
467 {
468 	struct receiver *r = NULL;
469 	struct hlist_head *rl;
470 	struct hlist_node *next;
471 	struct dev_rcv_lists *d;
472 
473 	spin_lock(&can_rcvlists_lock);
474 
475 	d = find_dev_rcv_lists(dev);
476 	if (!d) {
477 		printk(KERN_ERR "BUG: receive list not found for "
478 		       "dev %s, id %03X, mask %03X\n",
479 		       DNAME(dev), can_id, mask);
480 		goto out;
481 	}
482 
483 	rl = find_rcv_list(&can_id, &mask, d);
484 
485 	/*
486 	 * Search the receiver list for the item to delete.  This should
487 	 * exist, since no receiver may be unregistered that hasn't
488 	 * been registered before.
489 	 */
490 
491 	hlist_for_each_entry_rcu(r, next, rl, list) {
492 		if (r->can_id == can_id && r->mask == mask
493 		    && r->func == func && r->data == data)
494 			break;
495 	}
496 
497 	/*
498 	 * Check for bugs in CAN protocol implementations:
499 	 * If no matching list item was found, the list cursor variable next
500 	 * will be NULL, while r will point to the last item of the list.
501 	 */
502 
503 	if (!next) {
504 		printk(KERN_ERR "BUG: receive list entry not found for "
505 		       "dev %s, id %03X, mask %03X\n",
506 		       DNAME(dev), can_id, mask);
507 		r = NULL;
508 		d = NULL;
509 		goto out;
510 	}
511 
512 	hlist_del_rcu(&r->list);
513 	d->entries--;
514 
515 	if (can_pstats.rcv_entries > 0)
516 		can_pstats.rcv_entries--;
517 
518 	/* remove device structure requested by NETDEV_UNREGISTER */
519 	if (d->remove_on_zero_entries && !d->entries)
520 		hlist_del_rcu(&d->list);
521 	else
522 		d = NULL;
523 
524  out:
525 	spin_unlock(&can_rcvlists_lock);
526 
527 	/* schedule the receiver item for deletion */
528 	if (r)
529 		call_rcu(&r->rcu, can_rx_delete_receiver);
530 
531 	/* schedule the device structure for deletion */
532 	if (d)
533 		call_rcu(&d->rcu, can_rx_delete_device);
534 }
535 EXPORT_SYMBOL(can_rx_unregister);
536 
537 static inline void deliver(struct sk_buff *skb, struct receiver *r)
538 {
539 	struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC);
540 
541 	if (clone) {
542 		clone->sk = skb->sk;
543 		r->func(clone, r->data);
544 		r->matches++;
545 	}
546 }
547 
548 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
549 {
550 	struct receiver *r;
551 	struct hlist_node *n;
552 	int matches = 0;
553 	struct can_frame *cf = (struct can_frame *)skb->data;
554 	canid_t can_id = cf->can_id;
555 
556 	if (d->entries == 0)
557 		return 0;
558 
559 	if (can_id & CAN_ERR_FLAG) {
560 		/* check for error frame entries only */
561 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
562 			if (can_id & r->mask) {
563 				deliver(skb, r);
564 				matches++;
565 			}
566 		}
567 		return matches;
568 	}
569 
570 	/* check for unfiltered entries */
571 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
572 		deliver(skb, r);
573 		matches++;
574 	}
575 
576 	/* check for can_id/mask entries */
577 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
578 		if ((can_id & r->mask) == r->can_id) {
579 			deliver(skb, r);
580 			matches++;
581 		}
582 	}
583 
584 	/* check for inverted can_id/mask entries */
585 	hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
586 		if ((can_id & r->mask) != r->can_id) {
587 			deliver(skb, r);
588 			matches++;
589 		}
590 	}
591 
592 	/* check CAN_ID specific entries */
593 	if (can_id & CAN_EFF_FLAG) {
594 		hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
595 			if (r->can_id == can_id) {
596 				deliver(skb, r);
597 				matches++;
598 			}
599 		}
600 	} else {
601 		can_id &= CAN_SFF_MASK;
602 		hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
603 			deliver(skb, r);
604 			matches++;
605 		}
606 	}
607 
608 	return matches;
609 }
610 
611 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
612 		   struct packet_type *pt, struct net_device *orig_dev)
613 {
614 	struct dev_rcv_lists *d;
615 	struct can_frame *cf = (struct can_frame *)skb->data;
616 	int matches;
617 
618 	if (dev->type != ARPHRD_CAN || !net_eq(dev_net(dev), &init_net)) {
619 		kfree_skb(skb);
620 		return 0;
621 	}
622 
623 	BUG_ON(skb->len != sizeof(struct can_frame) || cf->can_dlc > 8);
624 
625 	/* update statistics */
626 	can_stats.rx_frames++;
627 	can_stats.rx_frames_delta++;
628 
629 	rcu_read_lock();
630 
631 	/* deliver the packet to sockets listening on all devices */
632 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
633 
634 	/* find receive list for this device */
635 	d = find_dev_rcv_lists(dev);
636 	if (d)
637 		matches += can_rcv_filter(d, skb);
638 
639 	rcu_read_unlock();
640 
641 	/* free the skbuff allocated by the netdevice driver */
642 	kfree_skb(skb);
643 
644 	if (matches > 0) {
645 		can_stats.matches++;
646 		can_stats.matches_delta++;
647 	}
648 
649 	return 0;
650 }
651 
652 /*
653  * af_can protocol functions
654  */
655 
656 /**
657  * can_proto_register - register CAN transport protocol
658  * @cp: pointer to CAN protocol structure
659  *
660  * Return:
661  *  0 on success
662  *  -EINVAL invalid (out of range) protocol number
663  *  -EBUSY  protocol already in use
664  *  -ENOBUF if proto_register() fails
665  */
666 int can_proto_register(struct can_proto *cp)
667 {
668 	int proto = cp->protocol;
669 	int err = 0;
670 
671 	if (proto < 0 || proto >= CAN_NPROTO) {
672 		printk(KERN_ERR "can: protocol number %d out of range\n",
673 		       proto);
674 		return -EINVAL;
675 	}
676 
677 	err = proto_register(cp->prot, 0);
678 	if (err < 0)
679 		return err;
680 
681 	spin_lock(&proto_tab_lock);
682 	if (proto_tab[proto]) {
683 		printk(KERN_ERR "can: protocol %d already registered\n",
684 		       proto);
685 		err = -EBUSY;
686 	} else {
687 		proto_tab[proto] = cp;
688 
689 		/* use generic ioctl function if not defined by module */
690 		if (!cp->ops->ioctl)
691 			cp->ops->ioctl = can_ioctl;
692 	}
693 	spin_unlock(&proto_tab_lock);
694 
695 	if (err < 0)
696 		proto_unregister(cp->prot);
697 
698 	return err;
699 }
700 EXPORT_SYMBOL(can_proto_register);
701 
702 /**
703  * can_proto_unregister - unregister CAN transport protocol
704  * @cp: pointer to CAN protocol structure
705  */
706 void can_proto_unregister(struct can_proto *cp)
707 {
708 	int proto = cp->protocol;
709 
710 	spin_lock(&proto_tab_lock);
711 	if (!proto_tab[proto]) {
712 		printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
713 		       proto);
714 	}
715 	proto_tab[proto] = NULL;
716 	spin_unlock(&proto_tab_lock);
717 
718 	proto_unregister(cp->prot);
719 }
720 EXPORT_SYMBOL(can_proto_unregister);
721 
722 /*
723  * af_can notifier to create/remove CAN netdevice specific structs
724  */
725 static int can_notifier(struct notifier_block *nb, unsigned long msg,
726 			void *data)
727 {
728 	struct net_device *dev = (struct net_device *)data;
729 	struct dev_rcv_lists *d;
730 
731 	if (!net_eq(dev_net(dev), &init_net))
732 		return NOTIFY_DONE;
733 
734 	if (dev->type != ARPHRD_CAN)
735 		return NOTIFY_DONE;
736 
737 	switch (msg) {
738 
739 	case NETDEV_REGISTER:
740 
741 		/*
742 		 * create new dev_rcv_lists for this device
743 		 *
744 		 * N.B. zeroing the struct is the correct initialization
745 		 * for the embedded hlist_head structs.
746 		 * Another list type, e.g. list_head, would require
747 		 * explicit initialization.
748 		 */
749 
750 		d = kzalloc(sizeof(*d), GFP_KERNEL);
751 		if (!d) {
752 			printk(KERN_ERR
753 			       "can: allocation of receive list failed\n");
754 			return NOTIFY_DONE;
755 		}
756 		d->dev = dev;
757 
758 		spin_lock(&can_rcvlists_lock);
759 		hlist_add_head_rcu(&d->list, &can_rx_dev_list);
760 		spin_unlock(&can_rcvlists_lock);
761 
762 		break;
763 
764 	case NETDEV_UNREGISTER:
765 		spin_lock(&can_rcvlists_lock);
766 
767 		d = find_dev_rcv_lists(dev);
768 		if (d) {
769 			if (d->entries) {
770 				d->remove_on_zero_entries = 1;
771 				d = NULL;
772 			} else
773 				hlist_del_rcu(&d->list);
774 		} else
775 			printk(KERN_ERR "can: notifier: receive list not "
776 			       "found for dev %s\n", dev->name);
777 
778 		spin_unlock(&can_rcvlists_lock);
779 
780 		if (d)
781 			call_rcu(&d->rcu, can_rx_delete_device);
782 
783 		break;
784 	}
785 
786 	return NOTIFY_DONE;
787 }
788 
789 /*
790  * af_can module init/exit functions
791  */
792 
793 static struct packet_type can_packet __read_mostly = {
794 	.type = __constant_htons(ETH_P_CAN),
795 	.dev  = NULL,
796 	.func = can_rcv,
797 };
798 
799 static struct net_proto_family can_family_ops __read_mostly = {
800 	.family = PF_CAN,
801 	.create = can_create,
802 	.owner  = THIS_MODULE,
803 };
804 
805 /* notifier block for netdevice event */
806 static struct notifier_block can_netdev_notifier __read_mostly = {
807 	.notifier_call = can_notifier,
808 };
809 
810 static __init int can_init(void)
811 {
812 	printk(banner);
813 
814 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
815 				      0, 0, NULL);
816 	if (!rcv_cache)
817 		return -ENOMEM;
818 
819 	/*
820 	 * Insert can_rx_alldev_list for reception on all devices.
821 	 * This struct is zero initialized which is correct for the
822 	 * embedded hlist heads, the dev pointer, and the entries counter.
823 	 */
824 
825 	spin_lock(&can_rcvlists_lock);
826 	hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
827 	spin_unlock(&can_rcvlists_lock);
828 
829 	if (stats_timer) {
830 		/* the statistics are updated every second (timer triggered) */
831 		setup_timer(&can_stattimer, can_stat_update, 0);
832 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
833 	} else
834 		can_stattimer.function = NULL;
835 
836 	can_init_proc();
837 
838 	/* protocol register */
839 	sock_register(&can_family_ops);
840 	register_netdevice_notifier(&can_netdev_notifier);
841 	dev_add_pack(&can_packet);
842 
843 	return 0;
844 }
845 
846 static __exit void can_exit(void)
847 {
848 	struct dev_rcv_lists *d;
849 	struct hlist_node *n, *next;
850 
851 	if (stats_timer)
852 		del_timer(&can_stattimer);
853 
854 	can_remove_proc();
855 
856 	/* protocol unregister */
857 	dev_remove_pack(&can_packet);
858 	unregister_netdevice_notifier(&can_netdev_notifier);
859 	sock_unregister(PF_CAN);
860 
861 	/* remove can_rx_dev_list */
862 	spin_lock(&can_rcvlists_lock);
863 	hlist_del(&can_rx_alldev_list.list);
864 	hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
865 		hlist_del(&d->list);
866 		kfree(d);
867 	}
868 	spin_unlock(&can_rcvlists_lock);
869 
870 	kmem_cache_destroy(rcv_cache);
871 }
872 
873 module_init(can_init);
874 module_exit(can_exit);
875