xref: /openbmc/linux/net/can/af_can.c (revision 179dd8c0)
1 /*
2  * af_can.c - Protocol family CAN core module
3  *            (used by different CAN protocol modules)
4  *
5  * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of Volkswagen nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * Alternatively, provided that this notice is retained in full, this
21  * software may be distributed under the terms of the GNU General
22  * Public License ("GPL") version 2, in which case the provisions of the
23  * GPL apply INSTEAD OF those given above.
24  *
25  * The provided data structures and external interfaces from this code
26  * are not restricted to be used by modules with a GPL compatible license.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64 
65 #include "af_can.h"
66 
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 	      "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71 
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73 
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, S_IRUGO);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77 
78 /* receive filters subscribed for 'all' CAN devices */
79 struct dev_rcv_lists can_rx_alldev_list;
80 static DEFINE_SPINLOCK(can_rcvlists_lock);
81 
82 static struct kmem_cache *rcv_cache __read_mostly;
83 
84 /* table of registered CAN protocols */
85 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
86 static DEFINE_MUTEX(proto_tab_lock);
87 
88 struct timer_list can_stattimer;   /* timer for statistics update */
89 struct s_stats    can_stats;       /* packet statistics */
90 struct s_pstats   can_pstats;      /* receive list statistics */
91 
92 /*
93  * af_can socket functions
94  */
95 
96 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
97 {
98 	struct sock *sk = sock->sk;
99 
100 	switch (cmd) {
101 
102 	case SIOCGSTAMP:
103 		return sock_get_timestamp(sk, (struct timeval __user *)arg);
104 
105 	default:
106 		return -ENOIOCTLCMD;
107 	}
108 }
109 EXPORT_SYMBOL(can_ioctl);
110 
111 static void can_sock_destruct(struct sock *sk)
112 {
113 	skb_queue_purge(&sk->sk_receive_queue);
114 }
115 
116 static const struct can_proto *can_get_proto(int protocol)
117 {
118 	const struct can_proto *cp;
119 
120 	rcu_read_lock();
121 	cp = rcu_dereference(proto_tab[protocol]);
122 	if (cp && !try_module_get(cp->prot->owner))
123 		cp = NULL;
124 	rcu_read_unlock();
125 
126 	return cp;
127 }
128 
129 static inline void can_put_proto(const struct can_proto *cp)
130 {
131 	module_put(cp->prot->owner);
132 }
133 
134 static int can_create(struct net *net, struct socket *sock, int protocol,
135 		      int kern)
136 {
137 	struct sock *sk;
138 	const struct can_proto *cp;
139 	int err = 0;
140 
141 	sock->state = SS_UNCONNECTED;
142 
143 	if (protocol < 0 || protocol >= CAN_NPROTO)
144 		return -EINVAL;
145 
146 	if (!net_eq(net, &init_net))
147 		return -EAFNOSUPPORT;
148 
149 	cp = can_get_proto(protocol);
150 
151 #ifdef CONFIG_MODULES
152 	if (!cp) {
153 		/* try to load protocol module if kernel is modular */
154 
155 		err = request_module("can-proto-%d", protocol);
156 
157 		/*
158 		 * In case of error we only print a message but don't
159 		 * return the error code immediately.  Below we will
160 		 * return -EPROTONOSUPPORT
161 		 */
162 		if (err)
163 			printk_ratelimited(KERN_ERR "can: request_module "
164 			       "(can-proto-%d) failed.\n", protocol);
165 
166 		cp = can_get_proto(protocol);
167 	}
168 #endif
169 
170 	/* check for available protocol and correct usage */
171 
172 	if (!cp)
173 		return -EPROTONOSUPPORT;
174 
175 	if (cp->type != sock->type) {
176 		err = -EPROTOTYPE;
177 		goto errout;
178 	}
179 
180 	sock->ops = cp->ops;
181 
182 	sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
183 	if (!sk) {
184 		err = -ENOMEM;
185 		goto errout;
186 	}
187 
188 	sock_init_data(sock, sk);
189 	sk->sk_destruct = can_sock_destruct;
190 
191 	if (sk->sk_prot->init)
192 		err = sk->sk_prot->init(sk);
193 
194 	if (err) {
195 		/* release sk on errors */
196 		sock_orphan(sk);
197 		sock_put(sk);
198 	}
199 
200  errout:
201 	can_put_proto(cp);
202 	return err;
203 }
204 
205 /*
206  * af_can tx path
207  */
208 
209 /**
210  * can_send - transmit a CAN frame (optional with local loopback)
211  * @skb: pointer to socket buffer with CAN frame in data section
212  * @loop: loopback for listeners on local CAN sockets (recommended default!)
213  *
214  * Due to the loopback this routine must not be called from hardirq context.
215  *
216  * Return:
217  *  0 on success
218  *  -ENETDOWN when the selected interface is down
219  *  -ENOBUFS on full driver queue (see net_xmit_errno())
220  *  -ENOMEM when local loopback failed at calling skb_clone()
221  *  -EPERM when trying to send on a non-CAN interface
222  *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
223  *  -EINVAL when the skb->data does not contain a valid CAN frame
224  */
225 int can_send(struct sk_buff *skb, int loop)
226 {
227 	struct sk_buff *newskb = NULL;
228 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
229 	int err = -EINVAL;
230 
231 	if (skb->len == CAN_MTU) {
232 		skb->protocol = htons(ETH_P_CAN);
233 		if (unlikely(cfd->len > CAN_MAX_DLEN))
234 			goto inval_skb;
235 	} else if (skb->len == CANFD_MTU) {
236 		skb->protocol = htons(ETH_P_CANFD);
237 		if (unlikely(cfd->len > CANFD_MAX_DLEN))
238 			goto inval_skb;
239 	} else
240 		goto inval_skb;
241 
242 	/*
243 	 * Make sure the CAN frame can pass the selected CAN netdevice.
244 	 * As structs can_frame and canfd_frame are similar, we can provide
245 	 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
246 	 */
247 	if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
248 		err = -EMSGSIZE;
249 		goto inval_skb;
250 	}
251 
252 	if (unlikely(skb->dev->type != ARPHRD_CAN)) {
253 		err = -EPERM;
254 		goto inval_skb;
255 	}
256 
257 	if (unlikely(!(skb->dev->flags & IFF_UP))) {
258 		err = -ENETDOWN;
259 		goto inval_skb;
260 	}
261 
262 	skb->ip_summed = CHECKSUM_UNNECESSARY;
263 
264 	skb_reset_mac_header(skb);
265 	skb_reset_network_header(skb);
266 	skb_reset_transport_header(skb);
267 
268 	if (loop) {
269 		/* local loopback of sent CAN frames */
270 
271 		/* indication for the CAN driver: do loopback */
272 		skb->pkt_type = PACKET_LOOPBACK;
273 
274 		/*
275 		 * The reference to the originating sock may be required
276 		 * by the receiving socket to check whether the frame is
277 		 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 		 * Therefore we have to ensure that skb->sk remains the
279 		 * reference to the originating sock by restoring skb->sk
280 		 * after each skb_clone() or skb_orphan() usage.
281 		 */
282 
283 		if (!(skb->dev->flags & IFF_ECHO)) {
284 			/*
285 			 * If the interface is not capable to do loopback
286 			 * itself, we do it here.
287 			 */
288 			newskb = skb_clone(skb, GFP_ATOMIC);
289 			if (!newskb) {
290 				kfree_skb(skb);
291 				return -ENOMEM;
292 			}
293 
294 			can_skb_set_owner(newskb, skb->sk);
295 			newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 			newskb->pkt_type = PACKET_BROADCAST;
297 		}
298 	} else {
299 		/* indication for the CAN driver: no loopback required */
300 		skb->pkt_type = PACKET_HOST;
301 	}
302 
303 	/* send to netdevice */
304 	err = dev_queue_xmit(skb);
305 	if (err > 0)
306 		err = net_xmit_errno(err);
307 
308 	if (err) {
309 		kfree_skb(newskb);
310 		return err;
311 	}
312 
313 	if (newskb) {
314 		if (!(newskb->tstamp.tv64))
315 			__net_timestamp(newskb);
316 
317 		netif_rx_ni(newskb);
318 	}
319 
320 	/* update statistics */
321 	can_stats.tx_frames++;
322 	can_stats.tx_frames_delta++;
323 
324 	return 0;
325 
326 inval_skb:
327 	kfree_skb(skb);
328 	return err;
329 }
330 EXPORT_SYMBOL(can_send);
331 
332 /*
333  * af_can rx path
334  */
335 
336 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
337 {
338 	if (!dev)
339 		return &can_rx_alldev_list;
340 	else
341 		return (struct dev_rcv_lists *)dev->ml_priv;
342 }
343 
344 /**
345  * effhash - hash function for 29 bit CAN identifier reduction
346  * @can_id: 29 bit CAN identifier
347  *
348  * Description:
349  *  To reduce the linear traversal in one linked list of _single_ EFF CAN
350  *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
351  *  (see CAN_EFF_RCV_HASH_BITS definition)
352  *
353  * Return:
354  *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
355  */
356 static unsigned int effhash(canid_t can_id)
357 {
358 	unsigned int hash;
359 
360 	hash = can_id;
361 	hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
362 	hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
363 
364 	return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
365 }
366 
367 /**
368  * find_rcv_list - determine optimal filterlist inside device filter struct
369  * @can_id: pointer to CAN identifier of a given can_filter
370  * @mask: pointer to CAN mask of a given can_filter
371  * @d: pointer to the device filter struct
372  *
373  * Description:
374  *  Returns the optimal filterlist to reduce the filter handling in the
375  *  receive path. This function is called by service functions that need
376  *  to register or unregister a can_filter in the filter lists.
377  *
378  *  A filter matches in general, when
379  *
380  *          <received_can_id> & mask == can_id & mask
381  *
382  *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
383  *  relevant bits for the filter.
384  *
385  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
386  *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
387  *  frames there is a special filterlist and a special rx path filter handling.
388  *
389  * Return:
390  *  Pointer to optimal filterlist for the given can_id/mask pair.
391  *  Constistency checked mask.
392  *  Reduced can_id to have a preprocessed filter compare value.
393  */
394 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
395 					struct dev_rcv_lists *d)
396 {
397 	canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
398 
399 	/* filter for error message frames in extra filterlist */
400 	if (*mask & CAN_ERR_FLAG) {
401 		/* clear CAN_ERR_FLAG in filter entry */
402 		*mask &= CAN_ERR_MASK;
403 		return &d->rx[RX_ERR];
404 	}
405 
406 	/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
407 
408 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
409 
410 	/* ensure valid values in can_mask for 'SFF only' frame filtering */
411 	if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
412 		*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
413 
414 	/* reduce condition testing at receive time */
415 	*can_id &= *mask;
416 
417 	/* inverse can_id/can_mask filter */
418 	if (inv)
419 		return &d->rx[RX_INV];
420 
421 	/* mask == 0 => no condition testing at receive time */
422 	if (!(*mask))
423 		return &d->rx[RX_ALL];
424 
425 	/* extra filterlists for the subscription of a single non-RTR can_id */
426 	if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
427 	    !(*can_id & CAN_RTR_FLAG)) {
428 
429 		if (*can_id & CAN_EFF_FLAG) {
430 			if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
431 				return &d->rx_eff[effhash(*can_id)];
432 		} else {
433 			if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
434 				return &d->rx_sff[*can_id];
435 		}
436 	}
437 
438 	/* default: filter via can_id/can_mask */
439 	return &d->rx[RX_FIL];
440 }
441 
442 /**
443  * can_rx_register - subscribe CAN frames from a specific interface
444  * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
445  * @can_id: CAN identifier (see description)
446  * @mask: CAN mask (see description)
447  * @func: callback function on filter match
448  * @data: returned parameter for callback function
449  * @ident: string for calling module identification
450  *
451  * Description:
452  *  Invokes the callback function with the received sk_buff and the given
453  *  parameter 'data' on a matching receive filter. A filter matches, when
454  *
455  *          <received_can_id> & mask == can_id & mask
456  *
457  *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
458  *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
459  *
460  *  The provided pointer to the sk_buff is guaranteed to be valid as long as
461  *  the callback function is running. The callback function must *not* free
462  *  the given sk_buff while processing it's task. When the given sk_buff is
463  *  needed after the end of the callback function it must be cloned inside
464  *  the callback function with skb_clone().
465  *
466  * Return:
467  *  0 on success
468  *  -ENOMEM on missing cache mem to create subscription entry
469  *  -ENODEV unknown device
470  */
471 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
472 		    void (*func)(struct sk_buff *, void *), void *data,
473 		    char *ident)
474 {
475 	struct receiver *r;
476 	struct hlist_head *rl;
477 	struct dev_rcv_lists *d;
478 	int err = 0;
479 
480 	/* insert new receiver  (dev,canid,mask) -> (func,data) */
481 
482 	if (dev && dev->type != ARPHRD_CAN)
483 		return -ENODEV;
484 
485 	r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
486 	if (!r)
487 		return -ENOMEM;
488 
489 	spin_lock(&can_rcvlists_lock);
490 
491 	d = find_dev_rcv_lists(dev);
492 	if (d) {
493 		rl = find_rcv_list(&can_id, &mask, d);
494 
495 		r->can_id  = can_id;
496 		r->mask    = mask;
497 		r->matches = 0;
498 		r->func    = func;
499 		r->data    = data;
500 		r->ident   = ident;
501 
502 		hlist_add_head_rcu(&r->list, rl);
503 		d->entries++;
504 
505 		can_pstats.rcv_entries++;
506 		if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
507 			can_pstats.rcv_entries_max = can_pstats.rcv_entries;
508 	} else {
509 		kmem_cache_free(rcv_cache, r);
510 		err = -ENODEV;
511 	}
512 
513 	spin_unlock(&can_rcvlists_lock);
514 
515 	return err;
516 }
517 EXPORT_SYMBOL(can_rx_register);
518 
519 /*
520  * can_rx_delete_receiver - rcu callback for single receiver entry removal
521  */
522 static void can_rx_delete_receiver(struct rcu_head *rp)
523 {
524 	struct receiver *r = container_of(rp, struct receiver, rcu);
525 
526 	kmem_cache_free(rcv_cache, r);
527 }
528 
529 /**
530  * can_rx_unregister - unsubscribe CAN frames from a specific interface
531  * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
532  * @can_id: CAN identifier
533  * @mask: CAN mask
534  * @func: callback function on filter match
535  * @data: returned parameter for callback function
536  *
537  * Description:
538  *  Removes subscription entry depending on given (subscription) values.
539  */
540 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
541 		       void (*func)(struct sk_buff *, void *), void *data)
542 {
543 	struct receiver *r = NULL;
544 	struct hlist_head *rl;
545 	struct dev_rcv_lists *d;
546 
547 	if (dev && dev->type != ARPHRD_CAN)
548 		return;
549 
550 	spin_lock(&can_rcvlists_lock);
551 
552 	d = find_dev_rcv_lists(dev);
553 	if (!d) {
554 		pr_err("BUG: receive list not found for "
555 		       "dev %s, id %03X, mask %03X\n",
556 		       DNAME(dev), can_id, mask);
557 		goto out;
558 	}
559 
560 	rl = find_rcv_list(&can_id, &mask, d);
561 
562 	/*
563 	 * Search the receiver list for the item to delete.  This should
564 	 * exist, since no receiver may be unregistered that hasn't
565 	 * been registered before.
566 	 */
567 
568 	hlist_for_each_entry_rcu(r, rl, list) {
569 		if (r->can_id == can_id && r->mask == mask &&
570 		    r->func == func && r->data == data)
571 			break;
572 	}
573 
574 	/*
575 	 * Check for bugs in CAN protocol implementations using af_can.c:
576 	 * 'r' will be NULL if no matching list item was found for removal.
577 	 */
578 
579 	if (!r) {
580 		WARN(1, "BUG: receive list entry not found for dev %s, "
581 		     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
582 		goto out;
583 	}
584 
585 	hlist_del_rcu(&r->list);
586 	d->entries--;
587 
588 	if (can_pstats.rcv_entries > 0)
589 		can_pstats.rcv_entries--;
590 
591 	/* remove device structure requested by NETDEV_UNREGISTER */
592 	if (d->remove_on_zero_entries && !d->entries) {
593 		kfree(d);
594 		dev->ml_priv = NULL;
595 	}
596 
597  out:
598 	spin_unlock(&can_rcvlists_lock);
599 
600 	/* schedule the receiver item for deletion */
601 	if (r)
602 		call_rcu(&r->rcu, can_rx_delete_receiver);
603 }
604 EXPORT_SYMBOL(can_rx_unregister);
605 
606 static inline void deliver(struct sk_buff *skb, struct receiver *r)
607 {
608 	r->func(skb, r->data);
609 	r->matches++;
610 }
611 
612 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
613 {
614 	struct receiver *r;
615 	int matches = 0;
616 	struct can_frame *cf = (struct can_frame *)skb->data;
617 	canid_t can_id = cf->can_id;
618 
619 	if (d->entries == 0)
620 		return 0;
621 
622 	if (can_id & CAN_ERR_FLAG) {
623 		/* check for error message frame entries only */
624 		hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
625 			if (can_id & r->mask) {
626 				deliver(skb, r);
627 				matches++;
628 			}
629 		}
630 		return matches;
631 	}
632 
633 	/* check for unfiltered entries */
634 	hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
635 		deliver(skb, r);
636 		matches++;
637 	}
638 
639 	/* check for can_id/mask entries */
640 	hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
641 		if ((can_id & r->mask) == r->can_id) {
642 			deliver(skb, r);
643 			matches++;
644 		}
645 	}
646 
647 	/* check for inverted can_id/mask entries */
648 	hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
649 		if ((can_id & r->mask) != r->can_id) {
650 			deliver(skb, r);
651 			matches++;
652 		}
653 	}
654 
655 	/* check filterlists for single non-RTR can_ids */
656 	if (can_id & CAN_RTR_FLAG)
657 		return matches;
658 
659 	if (can_id & CAN_EFF_FLAG) {
660 		hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
661 			if (r->can_id == can_id) {
662 				deliver(skb, r);
663 				matches++;
664 			}
665 		}
666 	} else {
667 		can_id &= CAN_SFF_MASK;
668 		hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
669 			deliver(skb, r);
670 			matches++;
671 		}
672 	}
673 
674 	return matches;
675 }
676 
677 static void can_receive(struct sk_buff *skb, struct net_device *dev)
678 {
679 	struct dev_rcv_lists *d;
680 	int matches;
681 
682 	/* update statistics */
683 	can_stats.rx_frames++;
684 	can_stats.rx_frames_delta++;
685 
686 	rcu_read_lock();
687 
688 	/* deliver the packet to sockets listening on all devices */
689 	matches = can_rcv_filter(&can_rx_alldev_list, skb);
690 
691 	/* find receive list for this device */
692 	d = find_dev_rcv_lists(dev);
693 	if (d)
694 		matches += can_rcv_filter(d, skb);
695 
696 	rcu_read_unlock();
697 
698 	/* consume the skbuff allocated by the netdevice driver */
699 	consume_skb(skb);
700 
701 	if (matches > 0) {
702 		can_stats.matches++;
703 		can_stats.matches_delta++;
704 	}
705 }
706 
707 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
708 		   struct packet_type *pt, struct net_device *orig_dev)
709 {
710 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
711 
712 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
713 		goto drop;
714 
715 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
716 		      skb->len != CAN_MTU ||
717 		      cfd->len > CAN_MAX_DLEN,
718 		      "PF_CAN: dropped non conform CAN skbuf: "
719 		      "dev type %d, len %d, datalen %d\n",
720 		      dev->type, skb->len, cfd->len))
721 		goto drop;
722 
723 	can_receive(skb, dev);
724 	return NET_RX_SUCCESS;
725 
726 drop:
727 	kfree_skb(skb);
728 	return NET_RX_DROP;
729 }
730 
731 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
732 		   struct packet_type *pt, struct net_device *orig_dev)
733 {
734 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
735 
736 	if (unlikely(!net_eq(dev_net(dev), &init_net)))
737 		goto drop;
738 
739 	if (WARN_ONCE(dev->type != ARPHRD_CAN ||
740 		      skb->len != CANFD_MTU ||
741 		      cfd->len > CANFD_MAX_DLEN,
742 		      "PF_CAN: dropped non conform CAN FD skbuf: "
743 		      "dev type %d, len %d, datalen %d\n",
744 		      dev->type, skb->len, cfd->len))
745 		goto drop;
746 
747 	can_receive(skb, dev);
748 	return NET_RX_SUCCESS;
749 
750 drop:
751 	kfree_skb(skb);
752 	return NET_RX_DROP;
753 }
754 
755 /*
756  * af_can protocol functions
757  */
758 
759 /**
760  * can_proto_register - register CAN transport protocol
761  * @cp: pointer to CAN protocol structure
762  *
763  * Return:
764  *  0 on success
765  *  -EINVAL invalid (out of range) protocol number
766  *  -EBUSY  protocol already in use
767  *  -ENOBUF if proto_register() fails
768  */
769 int can_proto_register(const struct can_proto *cp)
770 {
771 	int proto = cp->protocol;
772 	int err = 0;
773 
774 	if (proto < 0 || proto >= CAN_NPROTO) {
775 		pr_err("can: protocol number %d out of range\n", proto);
776 		return -EINVAL;
777 	}
778 
779 	err = proto_register(cp->prot, 0);
780 	if (err < 0)
781 		return err;
782 
783 	mutex_lock(&proto_tab_lock);
784 
785 	if (proto_tab[proto]) {
786 		pr_err("can: protocol %d already registered\n", proto);
787 		err = -EBUSY;
788 	} else
789 		RCU_INIT_POINTER(proto_tab[proto], cp);
790 
791 	mutex_unlock(&proto_tab_lock);
792 
793 	if (err < 0)
794 		proto_unregister(cp->prot);
795 
796 	return err;
797 }
798 EXPORT_SYMBOL(can_proto_register);
799 
800 /**
801  * can_proto_unregister - unregister CAN transport protocol
802  * @cp: pointer to CAN protocol structure
803  */
804 void can_proto_unregister(const struct can_proto *cp)
805 {
806 	int proto = cp->protocol;
807 
808 	mutex_lock(&proto_tab_lock);
809 	BUG_ON(proto_tab[proto] != cp);
810 	RCU_INIT_POINTER(proto_tab[proto], NULL);
811 	mutex_unlock(&proto_tab_lock);
812 
813 	synchronize_rcu();
814 
815 	proto_unregister(cp->prot);
816 }
817 EXPORT_SYMBOL(can_proto_unregister);
818 
819 /*
820  * af_can notifier to create/remove CAN netdevice specific structs
821  */
822 static int can_notifier(struct notifier_block *nb, unsigned long msg,
823 			void *ptr)
824 {
825 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
826 	struct dev_rcv_lists *d;
827 
828 	if (!net_eq(dev_net(dev), &init_net))
829 		return NOTIFY_DONE;
830 
831 	if (dev->type != ARPHRD_CAN)
832 		return NOTIFY_DONE;
833 
834 	switch (msg) {
835 
836 	case NETDEV_REGISTER:
837 
838 		/* create new dev_rcv_lists for this device */
839 		d = kzalloc(sizeof(*d), GFP_KERNEL);
840 		if (!d)
841 			return NOTIFY_DONE;
842 		BUG_ON(dev->ml_priv);
843 		dev->ml_priv = d;
844 
845 		break;
846 
847 	case NETDEV_UNREGISTER:
848 		spin_lock(&can_rcvlists_lock);
849 
850 		d = dev->ml_priv;
851 		if (d) {
852 			if (d->entries)
853 				d->remove_on_zero_entries = 1;
854 			else {
855 				kfree(d);
856 				dev->ml_priv = NULL;
857 			}
858 		} else
859 			pr_err("can: notifier: receive list not found for dev "
860 			       "%s\n", dev->name);
861 
862 		spin_unlock(&can_rcvlists_lock);
863 
864 		break;
865 	}
866 
867 	return NOTIFY_DONE;
868 }
869 
870 /*
871  * af_can module init/exit functions
872  */
873 
874 static struct packet_type can_packet __read_mostly = {
875 	.type = cpu_to_be16(ETH_P_CAN),
876 	.func = can_rcv,
877 };
878 
879 static struct packet_type canfd_packet __read_mostly = {
880 	.type = cpu_to_be16(ETH_P_CANFD),
881 	.func = canfd_rcv,
882 };
883 
884 static const struct net_proto_family can_family_ops = {
885 	.family = PF_CAN,
886 	.create = can_create,
887 	.owner  = THIS_MODULE,
888 };
889 
890 /* notifier block for netdevice event */
891 static struct notifier_block can_netdev_notifier __read_mostly = {
892 	.notifier_call = can_notifier,
893 };
894 
895 static __init int can_init(void)
896 {
897 	/* check for correct padding to be able to use the structs similarly */
898 	BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
899 		     offsetof(struct canfd_frame, len) ||
900 		     offsetof(struct can_frame, data) !=
901 		     offsetof(struct canfd_frame, data));
902 
903 	pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
904 
905 	memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
906 
907 	rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
908 				      0, 0, NULL);
909 	if (!rcv_cache)
910 		return -ENOMEM;
911 
912 	if (stats_timer) {
913 		/* the statistics are updated every second (timer triggered) */
914 		setup_timer(&can_stattimer, can_stat_update, 0);
915 		mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
916 	} else
917 		can_stattimer.function = NULL;
918 
919 	can_init_proc();
920 
921 	/* protocol register */
922 	sock_register(&can_family_ops);
923 	register_netdevice_notifier(&can_netdev_notifier);
924 	dev_add_pack(&can_packet);
925 	dev_add_pack(&canfd_packet);
926 
927 	return 0;
928 }
929 
930 static __exit void can_exit(void)
931 {
932 	struct net_device *dev;
933 
934 	if (stats_timer)
935 		del_timer_sync(&can_stattimer);
936 
937 	can_remove_proc();
938 
939 	/* protocol unregister */
940 	dev_remove_pack(&canfd_packet);
941 	dev_remove_pack(&can_packet);
942 	unregister_netdevice_notifier(&can_netdev_notifier);
943 	sock_unregister(PF_CAN);
944 
945 	/* remove created dev_rcv_lists from still registered CAN devices */
946 	rcu_read_lock();
947 	for_each_netdev_rcu(&init_net, dev) {
948 		if (dev->type == ARPHRD_CAN && dev->ml_priv) {
949 
950 			struct dev_rcv_lists *d = dev->ml_priv;
951 
952 			BUG_ON(d->entries);
953 			kfree(d);
954 			dev->ml_priv = NULL;
955 		}
956 	}
957 	rcu_read_unlock();
958 
959 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
960 
961 	kmem_cache_destroy(rcv_cache);
962 }
963 
964 module_init(can_init);
965 module_exit(can_exit);
966