1 /* 2 * af_can.c - Protocol family CAN core module 3 * (used by different CAN protocol modules) 4 * 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Volkswagen nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * Alternatively, provided that this notice is retained in full, this 21 * software may be distributed under the terms of the GNU General 22 * Public License ("GPL") version 2, in which case the provisions of the 23 * GPL apply INSTEAD OF those given above. 24 * 25 * The provided data structures and external interfaces from this code 26 * are not restricted to be used by modules with a GPL compatible license. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 * 41 */ 42 43 #include <linux/module.h> 44 #include <linux/stddef.h> 45 #include <linux/init.h> 46 #include <linux/kmod.h> 47 #include <linux/slab.h> 48 #include <linux/list.h> 49 #include <linux/spinlock.h> 50 #include <linux/rcupdate.h> 51 #include <linux/uaccess.h> 52 #include <linux/net.h> 53 #include <linux/netdevice.h> 54 #include <linux/socket.h> 55 #include <linux/if_ether.h> 56 #include <linux/if_arp.h> 57 #include <linux/skbuff.h> 58 #include <linux/can.h> 59 #include <linux/can/core.h> 60 #include <linux/can/skb.h> 61 #include <linux/ratelimit.h> 62 #include <net/net_namespace.h> 63 #include <net/sock.h> 64 65 #include "af_can.h" 66 67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 68 MODULE_LICENSE("Dual BSD/GPL"); 69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 70 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 71 72 MODULE_ALIAS_NETPROTO(PF_CAN); 73 74 static int stats_timer __read_mostly = 1; 75 module_param(stats_timer, int, S_IRUGO); 76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 77 78 /* receive filters subscribed for 'all' CAN devices */ 79 struct dev_rcv_lists can_rx_alldev_list; 80 static DEFINE_SPINLOCK(can_rcvlists_lock); 81 82 static struct kmem_cache *rcv_cache __read_mostly; 83 84 /* table of registered CAN protocols */ 85 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 86 static DEFINE_MUTEX(proto_tab_lock); 87 88 struct timer_list can_stattimer; /* timer for statistics update */ 89 struct s_stats can_stats; /* packet statistics */ 90 struct s_pstats can_pstats; /* receive list statistics */ 91 92 /* 93 * af_can socket functions 94 */ 95 96 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 97 { 98 struct sock *sk = sock->sk; 99 100 switch (cmd) { 101 102 case SIOCGSTAMP: 103 return sock_get_timestamp(sk, (struct timeval __user *)arg); 104 105 default: 106 return -ENOIOCTLCMD; 107 } 108 } 109 EXPORT_SYMBOL(can_ioctl); 110 111 static void can_sock_destruct(struct sock *sk) 112 { 113 skb_queue_purge(&sk->sk_receive_queue); 114 } 115 116 static const struct can_proto *can_get_proto(int protocol) 117 { 118 const struct can_proto *cp; 119 120 rcu_read_lock(); 121 cp = rcu_dereference(proto_tab[protocol]); 122 if (cp && !try_module_get(cp->prot->owner)) 123 cp = NULL; 124 rcu_read_unlock(); 125 126 return cp; 127 } 128 129 static inline void can_put_proto(const struct can_proto *cp) 130 { 131 module_put(cp->prot->owner); 132 } 133 134 static int can_create(struct net *net, struct socket *sock, int protocol, 135 int kern) 136 { 137 struct sock *sk; 138 const struct can_proto *cp; 139 int err = 0; 140 141 sock->state = SS_UNCONNECTED; 142 143 if (protocol < 0 || protocol >= CAN_NPROTO) 144 return -EINVAL; 145 146 if (!net_eq(net, &init_net)) 147 return -EAFNOSUPPORT; 148 149 cp = can_get_proto(protocol); 150 151 #ifdef CONFIG_MODULES 152 if (!cp) { 153 /* try to load protocol module if kernel is modular */ 154 155 err = request_module("can-proto-%d", protocol); 156 157 /* 158 * In case of error we only print a message but don't 159 * return the error code immediately. Below we will 160 * return -EPROTONOSUPPORT 161 */ 162 if (err) 163 printk_ratelimited(KERN_ERR "can: request_module " 164 "(can-proto-%d) failed.\n", protocol); 165 166 cp = can_get_proto(protocol); 167 } 168 #endif 169 170 /* check for available protocol and correct usage */ 171 172 if (!cp) 173 return -EPROTONOSUPPORT; 174 175 if (cp->type != sock->type) { 176 err = -EPROTOTYPE; 177 goto errout; 178 } 179 180 sock->ops = cp->ops; 181 182 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 183 if (!sk) { 184 err = -ENOMEM; 185 goto errout; 186 } 187 188 sock_init_data(sock, sk); 189 sk->sk_destruct = can_sock_destruct; 190 191 if (sk->sk_prot->init) 192 err = sk->sk_prot->init(sk); 193 194 if (err) { 195 /* release sk on errors */ 196 sock_orphan(sk); 197 sock_put(sk); 198 } 199 200 errout: 201 can_put_proto(cp); 202 return err; 203 } 204 205 /* 206 * af_can tx path 207 */ 208 209 /** 210 * can_send - transmit a CAN frame (optional with local loopback) 211 * @skb: pointer to socket buffer with CAN frame in data section 212 * @loop: loopback for listeners on local CAN sockets (recommended default!) 213 * 214 * Due to the loopback this routine must not be called from hardirq context. 215 * 216 * Return: 217 * 0 on success 218 * -ENETDOWN when the selected interface is down 219 * -ENOBUFS on full driver queue (see net_xmit_errno()) 220 * -ENOMEM when local loopback failed at calling skb_clone() 221 * -EPERM when trying to send on a non-CAN interface 222 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU 223 * -EINVAL when the skb->data does not contain a valid CAN frame 224 */ 225 int can_send(struct sk_buff *skb, int loop) 226 { 227 struct sk_buff *newskb = NULL; 228 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 229 int err = -EINVAL; 230 231 if (skb->len == CAN_MTU) { 232 skb->protocol = htons(ETH_P_CAN); 233 if (unlikely(cfd->len > CAN_MAX_DLEN)) 234 goto inval_skb; 235 } else if (skb->len == CANFD_MTU) { 236 skb->protocol = htons(ETH_P_CANFD); 237 if (unlikely(cfd->len > CANFD_MAX_DLEN)) 238 goto inval_skb; 239 } else 240 goto inval_skb; 241 242 /* 243 * Make sure the CAN frame can pass the selected CAN netdevice. 244 * As structs can_frame and canfd_frame are similar, we can provide 245 * CAN FD frames to legacy CAN drivers as long as the length is <= 8 246 */ 247 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { 248 err = -EMSGSIZE; 249 goto inval_skb; 250 } 251 252 if (unlikely(skb->dev->type != ARPHRD_CAN)) { 253 err = -EPERM; 254 goto inval_skb; 255 } 256 257 if (unlikely(!(skb->dev->flags & IFF_UP))) { 258 err = -ENETDOWN; 259 goto inval_skb; 260 } 261 262 skb->ip_summed = CHECKSUM_UNNECESSARY; 263 264 skb_reset_mac_header(skb); 265 skb_reset_network_header(skb); 266 skb_reset_transport_header(skb); 267 268 if (loop) { 269 /* local loopback of sent CAN frames */ 270 271 /* indication for the CAN driver: do loopback */ 272 skb->pkt_type = PACKET_LOOPBACK; 273 274 /* 275 * The reference to the originating sock may be required 276 * by the receiving socket to check whether the frame is 277 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 278 * Therefore we have to ensure that skb->sk remains the 279 * reference to the originating sock by restoring skb->sk 280 * after each skb_clone() or skb_orphan() usage. 281 */ 282 283 if (!(skb->dev->flags & IFF_ECHO)) { 284 /* 285 * If the interface is not capable to do loopback 286 * itself, we do it here. 287 */ 288 newskb = skb_clone(skb, GFP_ATOMIC); 289 if (!newskb) { 290 kfree_skb(skb); 291 return -ENOMEM; 292 } 293 294 can_skb_set_owner(newskb, skb->sk); 295 newskb->ip_summed = CHECKSUM_UNNECESSARY; 296 newskb->pkt_type = PACKET_BROADCAST; 297 } 298 } else { 299 /* indication for the CAN driver: no loopback required */ 300 skb->pkt_type = PACKET_HOST; 301 } 302 303 /* send to netdevice */ 304 err = dev_queue_xmit(skb); 305 if (err > 0) 306 err = net_xmit_errno(err); 307 308 if (err) { 309 kfree_skb(newskb); 310 return err; 311 } 312 313 if (newskb) 314 netif_rx_ni(newskb); 315 316 /* update statistics */ 317 can_stats.tx_frames++; 318 can_stats.tx_frames_delta++; 319 320 return 0; 321 322 inval_skb: 323 kfree_skb(skb); 324 return err; 325 } 326 EXPORT_SYMBOL(can_send); 327 328 /* 329 * af_can rx path 330 */ 331 332 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 333 { 334 if (!dev) 335 return &can_rx_alldev_list; 336 else 337 return (struct dev_rcv_lists *)dev->ml_priv; 338 } 339 340 /** 341 * effhash - hash function for 29 bit CAN identifier reduction 342 * @can_id: 29 bit CAN identifier 343 * 344 * Description: 345 * To reduce the linear traversal in one linked list of _single_ EFF CAN 346 * frame subscriptions the 29 bit identifier is mapped to 10 bits. 347 * (see CAN_EFF_RCV_HASH_BITS definition) 348 * 349 * Return: 350 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) 351 */ 352 static unsigned int effhash(canid_t can_id) 353 { 354 unsigned int hash; 355 356 hash = can_id; 357 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; 358 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); 359 360 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); 361 } 362 363 /** 364 * find_rcv_list - determine optimal filterlist inside device filter struct 365 * @can_id: pointer to CAN identifier of a given can_filter 366 * @mask: pointer to CAN mask of a given can_filter 367 * @d: pointer to the device filter struct 368 * 369 * Description: 370 * Returns the optimal filterlist to reduce the filter handling in the 371 * receive path. This function is called by service functions that need 372 * to register or unregister a can_filter in the filter lists. 373 * 374 * A filter matches in general, when 375 * 376 * <received_can_id> & mask == can_id & mask 377 * 378 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 379 * relevant bits for the filter. 380 * 381 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 382 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg 383 * frames there is a special filterlist and a special rx path filter handling. 384 * 385 * Return: 386 * Pointer to optimal filterlist for the given can_id/mask pair. 387 * Constistency checked mask. 388 * Reduced can_id to have a preprocessed filter compare value. 389 */ 390 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 391 struct dev_rcv_lists *d) 392 { 393 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 394 395 /* filter for error message frames in extra filterlist */ 396 if (*mask & CAN_ERR_FLAG) { 397 /* clear CAN_ERR_FLAG in filter entry */ 398 *mask &= CAN_ERR_MASK; 399 return &d->rx[RX_ERR]; 400 } 401 402 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 403 404 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 405 406 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 407 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 408 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 409 410 /* reduce condition testing at receive time */ 411 *can_id &= *mask; 412 413 /* inverse can_id/can_mask filter */ 414 if (inv) 415 return &d->rx[RX_INV]; 416 417 /* mask == 0 => no condition testing at receive time */ 418 if (!(*mask)) 419 return &d->rx[RX_ALL]; 420 421 /* extra filterlists for the subscription of a single non-RTR can_id */ 422 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 423 !(*can_id & CAN_RTR_FLAG)) { 424 425 if (*can_id & CAN_EFF_FLAG) { 426 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) 427 return &d->rx_eff[effhash(*can_id)]; 428 } else { 429 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 430 return &d->rx_sff[*can_id]; 431 } 432 } 433 434 /* default: filter via can_id/can_mask */ 435 return &d->rx[RX_FIL]; 436 } 437 438 /** 439 * can_rx_register - subscribe CAN frames from a specific interface 440 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 441 * @can_id: CAN identifier (see description) 442 * @mask: CAN mask (see description) 443 * @func: callback function on filter match 444 * @data: returned parameter for callback function 445 * @ident: string for calling module identification 446 * 447 * Description: 448 * Invokes the callback function with the received sk_buff and the given 449 * parameter 'data' on a matching receive filter. A filter matches, when 450 * 451 * <received_can_id> & mask == can_id & mask 452 * 453 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 454 * filter for error message frames (CAN_ERR_FLAG bit set in mask). 455 * 456 * The provided pointer to the sk_buff is guaranteed to be valid as long as 457 * the callback function is running. The callback function must *not* free 458 * the given sk_buff while processing it's task. When the given sk_buff is 459 * needed after the end of the callback function it must be cloned inside 460 * the callback function with skb_clone(). 461 * 462 * Return: 463 * 0 on success 464 * -ENOMEM on missing cache mem to create subscription entry 465 * -ENODEV unknown device 466 */ 467 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 468 void (*func)(struct sk_buff *, void *), void *data, 469 char *ident) 470 { 471 struct receiver *r; 472 struct hlist_head *rl; 473 struct dev_rcv_lists *d; 474 int err = 0; 475 476 /* insert new receiver (dev,canid,mask) -> (func,data) */ 477 478 if (dev && dev->type != ARPHRD_CAN) 479 return -ENODEV; 480 481 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 482 if (!r) 483 return -ENOMEM; 484 485 spin_lock(&can_rcvlists_lock); 486 487 d = find_dev_rcv_lists(dev); 488 if (d) { 489 rl = find_rcv_list(&can_id, &mask, d); 490 491 r->can_id = can_id; 492 r->mask = mask; 493 r->matches = 0; 494 r->func = func; 495 r->data = data; 496 r->ident = ident; 497 498 hlist_add_head_rcu(&r->list, rl); 499 d->entries++; 500 501 can_pstats.rcv_entries++; 502 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 503 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 504 } else { 505 kmem_cache_free(rcv_cache, r); 506 err = -ENODEV; 507 } 508 509 spin_unlock(&can_rcvlists_lock); 510 511 return err; 512 } 513 EXPORT_SYMBOL(can_rx_register); 514 515 /* 516 * can_rx_delete_receiver - rcu callback for single receiver entry removal 517 */ 518 static void can_rx_delete_receiver(struct rcu_head *rp) 519 { 520 struct receiver *r = container_of(rp, struct receiver, rcu); 521 522 kmem_cache_free(rcv_cache, r); 523 } 524 525 /** 526 * can_rx_unregister - unsubscribe CAN frames from a specific interface 527 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) 528 * @can_id: CAN identifier 529 * @mask: CAN mask 530 * @func: callback function on filter match 531 * @data: returned parameter for callback function 532 * 533 * Description: 534 * Removes subscription entry depending on given (subscription) values. 535 */ 536 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 537 void (*func)(struct sk_buff *, void *), void *data) 538 { 539 struct receiver *r = NULL; 540 struct hlist_head *rl; 541 struct dev_rcv_lists *d; 542 543 if (dev && dev->type != ARPHRD_CAN) 544 return; 545 546 spin_lock(&can_rcvlists_lock); 547 548 d = find_dev_rcv_lists(dev); 549 if (!d) { 550 pr_err("BUG: receive list not found for " 551 "dev %s, id %03X, mask %03X\n", 552 DNAME(dev), can_id, mask); 553 goto out; 554 } 555 556 rl = find_rcv_list(&can_id, &mask, d); 557 558 /* 559 * Search the receiver list for the item to delete. This should 560 * exist, since no receiver may be unregistered that hasn't 561 * been registered before. 562 */ 563 564 hlist_for_each_entry_rcu(r, rl, list) { 565 if (r->can_id == can_id && r->mask == mask && 566 r->func == func && r->data == data) 567 break; 568 } 569 570 /* 571 * Check for bugs in CAN protocol implementations using af_can.c: 572 * 'r' will be NULL if no matching list item was found for removal. 573 */ 574 575 if (!r) { 576 WARN(1, "BUG: receive list entry not found for dev %s, " 577 "id %03X, mask %03X\n", DNAME(dev), can_id, mask); 578 goto out; 579 } 580 581 hlist_del_rcu(&r->list); 582 d->entries--; 583 584 if (can_pstats.rcv_entries > 0) 585 can_pstats.rcv_entries--; 586 587 /* remove device structure requested by NETDEV_UNREGISTER */ 588 if (d->remove_on_zero_entries && !d->entries) { 589 kfree(d); 590 dev->ml_priv = NULL; 591 } 592 593 out: 594 spin_unlock(&can_rcvlists_lock); 595 596 /* schedule the receiver item for deletion */ 597 if (r) 598 call_rcu(&r->rcu, can_rx_delete_receiver); 599 } 600 EXPORT_SYMBOL(can_rx_unregister); 601 602 static inline void deliver(struct sk_buff *skb, struct receiver *r) 603 { 604 r->func(skb, r->data); 605 r->matches++; 606 } 607 608 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 609 { 610 struct receiver *r; 611 int matches = 0; 612 struct can_frame *cf = (struct can_frame *)skb->data; 613 canid_t can_id = cf->can_id; 614 615 if (d->entries == 0) 616 return 0; 617 618 if (can_id & CAN_ERR_FLAG) { 619 /* check for error message frame entries only */ 620 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) { 621 if (can_id & r->mask) { 622 deliver(skb, r); 623 matches++; 624 } 625 } 626 return matches; 627 } 628 629 /* check for unfiltered entries */ 630 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) { 631 deliver(skb, r); 632 matches++; 633 } 634 635 /* check for can_id/mask entries */ 636 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) { 637 if ((can_id & r->mask) == r->can_id) { 638 deliver(skb, r); 639 matches++; 640 } 641 } 642 643 /* check for inverted can_id/mask entries */ 644 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) { 645 if ((can_id & r->mask) != r->can_id) { 646 deliver(skb, r); 647 matches++; 648 } 649 } 650 651 /* check filterlists for single non-RTR can_ids */ 652 if (can_id & CAN_RTR_FLAG) 653 return matches; 654 655 if (can_id & CAN_EFF_FLAG) { 656 hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) { 657 if (r->can_id == can_id) { 658 deliver(skb, r); 659 matches++; 660 } 661 } 662 } else { 663 can_id &= CAN_SFF_MASK; 664 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) { 665 deliver(skb, r); 666 matches++; 667 } 668 } 669 670 return matches; 671 } 672 673 static void can_receive(struct sk_buff *skb, struct net_device *dev) 674 { 675 struct dev_rcv_lists *d; 676 int matches; 677 678 /* update statistics */ 679 can_stats.rx_frames++; 680 can_stats.rx_frames_delta++; 681 682 rcu_read_lock(); 683 684 /* deliver the packet to sockets listening on all devices */ 685 matches = can_rcv_filter(&can_rx_alldev_list, skb); 686 687 /* find receive list for this device */ 688 d = find_dev_rcv_lists(dev); 689 if (d) 690 matches += can_rcv_filter(d, skb); 691 692 rcu_read_unlock(); 693 694 /* consume the skbuff allocated by the netdevice driver */ 695 consume_skb(skb); 696 697 if (matches > 0) { 698 can_stats.matches++; 699 can_stats.matches_delta++; 700 } 701 } 702 703 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 704 struct packet_type *pt, struct net_device *orig_dev) 705 { 706 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 707 708 if (unlikely(!net_eq(dev_net(dev), &init_net))) 709 goto drop; 710 711 if (WARN_ONCE(dev->type != ARPHRD_CAN || 712 skb->len != CAN_MTU || 713 cfd->len > CAN_MAX_DLEN, 714 "PF_CAN: dropped non conform CAN skbuf: " 715 "dev type %d, len %d, datalen %d\n", 716 dev->type, skb->len, cfd->len)) 717 goto drop; 718 719 can_receive(skb, dev); 720 return NET_RX_SUCCESS; 721 722 drop: 723 kfree_skb(skb); 724 return NET_RX_DROP; 725 } 726 727 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, 728 struct packet_type *pt, struct net_device *orig_dev) 729 { 730 struct canfd_frame *cfd = (struct canfd_frame *)skb->data; 731 732 if (unlikely(!net_eq(dev_net(dev), &init_net))) 733 goto drop; 734 735 if (WARN_ONCE(dev->type != ARPHRD_CAN || 736 skb->len != CANFD_MTU || 737 cfd->len > CANFD_MAX_DLEN, 738 "PF_CAN: dropped non conform CAN FD skbuf: " 739 "dev type %d, len %d, datalen %d\n", 740 dev->type, skb->len, cfd->len)) 741 goto drop; 742 743 can_receive(skb, dev); 744 return NET_RX_SUCCESS; 745 746 drop: 747 kfree_skb(skb); 748 return NET_RX_DROP; 749 } 750 751 /* 752 * af_can protocol functions 753 */ 754 755 /** 756 * can_proto_register - register CAN transport protocol 757 * @cp: pointer to CAN protocol structure 758 * 759 * Return: 760 * 0 on success 761 * -EINVAL invalid (out of range) protocol number 762 * -EBUSY protocol already in use 763 * -ENOBUF if proto_register() fails 764 */ 765 int can_proto_register(const struct can_proto *cp) 766 { 767 int proto = cp->protocol; 768 int err = 0; 769 770 if (proto < 0 || proto >= CAN_NPROTO) { 771 pr_err("can: protocol number %d out of range\n", proto); 772 return -EINVAL; 773 } 774 775 err = proto_register(cp->prot, 0); 776 if (err < 0) 777 return err; 778 779 mutex_lock(&proto_tab_lock); 780 781 if (proto_tab[proto]) { 782 pr_err("can: protocol %d already registered\n", proto); 783 err = -EBUSY; 784 } else 785 RCU_INIT_POINTER(proto_tab[proto], cp); 786 787 mutex_unlock(&proto_tab_lock); 788 789 if (err < 0) 790 proto_unregister(cp->prot); 791 792 return err; 793 } 794 EXPORT_SYMBOL(can_proto_register); 795 796 /** 797 * can_proto_unregister - unregister CAN transport protocol 798 * @cp: pointer to CAN protocol structure 799 */ 800 void can_proto_unregister(const struct can_proto *cp) 801 { 802 int proto = cp->protocol; 803 804 mutex_lock(&proto_tab_lock); 805 BUG_ON(proto_tab[proto] != cp); 806 RCU_INIT_POINTER(proto_tab[proto], NULL); 807 mutex_unlock(&proto_tab_lock); 808 809 synchronize_rcu(); 810 811 proto_unregister(cp->prot); 812 } 813 EXPORT_SYMBOL(can_proto_unregister); 814 815 /* 816 * af_can notifier to create/remove CAN netdevice specific structs 817 */ 818 static int can_notifier(struct notifier_block *nb, unsigned long msg, 819 void *ptr) 820 { 821 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 822 struct dev_rcv_lists *d; 823 824 if (!net_eq(dev_net(dev), &init_net)) 825 return NOTIFY_DONE; 826 827 if (dev->type != ARPHRD_CAN) 828 return NOTIFY_DONE; 829 830 switch (msg) { 831 832 case NETDEV_REGISTER: 833 834 /* create new dev_rcv_lists for this device */ 835 d = kzalloc(sizeof(*d), GFP_KERNEL); 836 if (!d) 837 return NOTIFY_DONE; 838 BUG_ON(dev->ml_priv); 839 dev->ml_priv = d; 840 841 break; 842 843 case NETDEV_UNREGISTER: 844 spin_lock(&can_rcvlists_lock); 845 846 d = dev->ml_priv; 847 if (d) { 848 if (d->entries) 849 d->remove_on_zero_entries = 1; 850 else { 851 kfree(d); 852 dev->ml_priv = NULL; 853 } 854 } else 855 pr_err("can: notifier: receive list not found for dev " 856 "%s\n", dev->name); 857 858 spin_unlock(&can_rcvlists_lock); 859 860 break; 861 } 862 863 return NOTIFY_DONE; 864 } 865 866 /* 867 * af_can module init/exit functions 868 */ 869 870 static struct packet_type can_packet __read_mostly = { 871 .type = cpu_to_be16(ETH_P_CAN), 872 .func = can_rcv, 873 }; 874 875 static struct packet_type canfd_packet __read_mostly = { 876 .type = cpu_to_be16(ETH_P_CANFD), 877 .func = canfd_rcv, 878 }; 879 880 static const struct net_proto_family can_family_ops = { 881 .family = PF_CAN, 882 .create = can_create, 883 .owner = THIS_MODULE, 884 }; 885 886 /* notifier block for netdevice event */ 887 static struct notifier_block can_netdev_notifier __read_mostly = { 888 .notifier_call = can_notifier, 889 }; 890 891 static __init int can_init(void) 892 { 893 /* check for correct padding to be able to use the structs similarly */ 894 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) != 895 offsetof(struct canfd_frame, len) || 896 offsetof(struct can_frame, data) != 897 offsetof(struct canfd_frame, data)); 898 899 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n"); 900 901 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list)); 902 903 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 904 0, 0, NULL); 905 if (!rcv_cache) 906 return -ENOMEM; 907 908 if (stats_timer) { 909 /* the statistics are updated every second (timer triggered) */ 910 setup_timer(&can_stattimer, can_stat_update, 0); 911 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 912 } else 913 can_stattimer.function = NULL; 914 915 can_init_proc(); 916 917 /* protocol register */ 918 sock_register(&can_family_ops); 919 register_netdevice_notifier(&can_netdev_notifier); 920 dev_add_pack(&can_packet); 921 dev_add_pack(&canfd_packet); 922 923 return 0; 924 } 925 926 static __exit void can_exit(void) 927 { 928 struct net_device *dev; 929 930 if (stats_timer) 931 del_timer_sync(&can_stattimer); 932 933 can_remove_proc(); 934 935 /* protocol unregister */ 936 dev_remove_pack(&canfd_packet); 937 dev_remove_pack(&can_packet); 938 unregister_netdevice_notifier(&can_netdev_notifier); 939 sock_unregister(PF_CAN); 940 941 /* remove created dev_rcv_lists from still registered CAN devices */ 942 rcu_read_lock(); 943 for_each_netdev_rcu(&init_net, dev) { 944 if (dev->type == ARPHRD_CAN && dev->ml_priv) { 945 946 struct dev_rcv_lists *d = dev->ml_priv; 947 948 BUG_ON(d->entries); 949 kfree(d); 950 dev->ml_priv = NULL; 951 } 952 } 953 rcu_read_unlock(); 954 955 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 956 957 kmem_cache_destroy(rcv_cache); 958 } 959 960 module_init(can_init); 961 module_exit(can_exit); 962