1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Handle firewalling
4  *	Linux ethernet bridge
5  *
6  *	Authors:
7  *	Lennert Buytenhek		<buytenh@gnu.org>
8  *	Bart De Schuymer		<bdschuym@pandora.be>
9  *
10  *	Lennert dedicates this file to Kerstin Wurdinger.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/ip.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/if_ether.h>
21 #include <linux/if_vlan.h>
22 #include <linux/if_pppox.h>
23 #include <linux/ppp_defs.h>
24 #include <linux/netfilter_bridge.h>
25 #include <uapi/linux/netfilter_bridge.h>
26 #include <linux/netfilter_ipv4.h>
27 #include <linux/netfilter_ipv6.h>
28 #include <linux/netfilter_arp.h>
29 #include <linux/in_route.h>
30 #include <linux/rculist.h>
31 #include <linux/inetdevice.h>
32 
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/addrconf.h>
36 #include <net/route.h>
37 #include <net/netfilter/br_netfilter.h>
38 #include <net/netns/generic.h>
39 
40 #include <linux/uaccess.h>
41 #include "br_private.h"
42 #ifdef CONFIG_SYSCTL
43 #include <linux/sysctl.h>
44 #endif
45 
46 static unsigned int brnf_net_id __read_mostly;
47 
48 struct brnf_net {
49 	bool enabled;
50 
51 #ifdef CONFIG_SYSCTL
52 	struct ctl_table_header *ctl_hdr;
53 #endif
54 
55 	/* default value is 1 */
56 	int call_iptables;
57 	int call_ip6tables;
58 	int call_arptables;
59 
60 	/* default value is 0 */
61 	int filter_vlan_tagged;
62 	int filter_pppoe_tagged;
63 	int pass_vlan_indev;
64 };
65 
66 #define IS_IP(skb) \
67 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
68 
69 #define IS_IPV6(skb) \
70 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
71 
72 #define IS_ARP(skb) \
73 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
74 
75 static inline __be16 vlan_proto(const struct sk_buff *skb)
76 {
77 	if (skb_vlan_tag_present(skb))
78 		return skb->protocol;
79 	else if (skb->protocol == htons(ETH_P_8021Q))
80 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
81 	else
82 		return 0;
83 }
84 
85 static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net)
86 {
87 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
88 
89 	return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged;
90 }
91 
92 static inline bool is_vlan_ipv6(const struct sk_buff *skb,
93 				const struct net *net)
94 {
95 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
96 
97 	return vlan_proto(skb) == htons(ETH_P_IPV6) &&
98 	       brnet->filter_vlan_tagged;
99 }
100 
101 static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net)
102 {
103 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
104 
105 	return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged;
106 }
107 
108 static inline __be16 pppoe_proto(const struct sk_buff *skb)
109 {
110 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
111 			    sizeof(struct pppoe_hdr)));
112 }
113 
114 static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net)
115 {
116 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
117 
118 	return skb->protocol == htons(ETH_P_PPP_SES) &&
119 	       pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged;
120 }
121 
122 static inline bool is_pppoe_ipv6(const struct sk_buff *skb,
123 				 const struct net *net)
124 {
125 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
126 
127 	return skb->protocol == htons(ETH_P_PPP_SES) &&
128 	       pppoe_proto(skb) == htons(PPP_IPV6) &&
129 	       brnet->filter_pppoe_tagged;
130 }
131 
132 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
133 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
134 
135 struct brnf_frag_data {
136 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
137 	u8 encap_size;
138 	u8 size;
139 	u16 vlan_tci;
140 	__be16 vlan_proto;
141 };
142 
143 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
144 
145 static void nf_bridge_info_free(struct sk_buff *skb)
146 {
147 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
148 }
149 
150 static inline struct net_device *bridge_parent(const struct net_device *dev)
151 {
152 	struct net_bridge_port *port;
153 
154 	port = br_port_get_rcu(dev);
155 	return port ? port->br->dev : NULL;
156 }
157 
158 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
159 {
160 	return skb_ext_add(skb, SKB_EXT_BRIDGE_NF);
161 }
162 
163 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
164 {
165 	switch (skb->protocol) {
166 	case __cpu_to_be16(ETH_P_8021Q):
167 		return VLAN_HLEN;
168 	case __cpu_to_be16(ETH_P_PPP_SES):
169 		return PPPOE_SES_HLEN;
170 	default:
171 		return 0;
172 	}
173 }
174 
175 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
176 {
177 	unsigned int len = nf_bridge_encap_header_len(skb);
178 
179 	skb_pull(skb, len);
180 	skb->network_header += len;
181 }
182 
183 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
184 {
185 	unsigned int len = nf_bridge_encap_header_len(skb);
186 
187 	skb_pull_rcsum(skb, len);
188 	skb->network_header += len;
189 }
190 
191 /* When handing a packet over to the IP layer
192  * check whether we have a skb that is in the
193  * expected format
194  */
195 
196 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
197 {
198 	const struct iphdr *iph;
199 	u32 len;
200 
201 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
202 		goto inhdr_error;
203 
204 	iph = ip_hdr(skb);
205 
206 	/* Basic sanity checks */
207 	if (iph->ihl < 5 || iph->version != 4)
208 		goto inhdr_error;
209 
210 	if (!pskb_may_pull(skb, iph->ihl*4))
211 		goto inhdr_error;
212 
213 	iph = ip_hdr(skb);
214 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
215 		goto csum_error;
216 
217 	len = skb_ip_totlen(skb);
218 	if (skb->len < len) {
219 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
220 		goto drop;
221 	} else if (len < (iph->ihl*4))
222 		goto inhdr_error;
223 
224 	if (pskb_trim_rcsum(skb, len)) {
225 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
226 		goto drop;
227 	}
228 
229 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
230 	/* We should really parse IP options here but until
231 	 * somebody who actually uses IP options complains to
232 	 * us we'll just silently ignore the options because
233 	 * we're lazy!
234 	 */
235 	return 0;
236 
237 csum_error:
238 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
239 inhdr_error:
240 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
241 drop:
242 	return -1;
243 }
244 
245 void nf_bridge_update_protocol(struct sk_buff *skb)
246 {
247 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
248 
249 	switch (nf_bridge->orig_proto) {
250 	case BRNF_PROTO_8021Q:
251 		skb->protocol = htons(ETH_P_8021Q);
252 		break;
253 	case BRNF_PROTO_PPPOE:
254 		skb->protocol = htons(ETH_P_PPP_SES);
255 		break;
256 	case BRNF_PROTO_UNCHANGED:
257 		break;
258 	}
259 }
260 
261 /* Obtain the correct destination MAC address, while preserving the original
262  * source MAC address. If we already know this address, we just copy it. If we
263  * don't, we use the neighbour framework to find out. In both cases, we make
264  * sure that br_handle_frame_finish() is called afterwards.
265  */
266 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
267 {
268 	struct neighbour *neigh;
269 	struct dst_entry *dst;
270 
271 	skb->dev = bridge_parent(skb->dev);
272 	if (!skb->dev)
273 		goto free_skb;
274 	dst = skb_dst(skb);
275 	neigh = dst_neigh_lookup_skb(dst, skb);
276 	if (neigh) {
277 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
278 		int ret;
279 
280 		if ((READ_ONCE(neigh->nud_state) & NUD_CONNECTED) &&
281 		    READ_ONCE(neigh->hh.hh_len)) {
282 			neigh_hh_bridge(&neigh->hh, skb);
283 			skb->dev = nf_bridge->physindev;
284 			ret = br_handle_frame_finish(net, sk, skb);
285 		} else {
286 			/* the neighbour function below overwrites the complete
287 			 * MAC header, so we save the Ethernet source address and
288 			 * protocol number.
289 			 */
290 			skb_copy_from_linear_data_offset(skb,
291 							 -(ETH_HLEN-ETH_ALEN),
292 							 nf_bridge->neigh_header,
293 							 ETH_HLEN-ETH_ALEN);
294 			/* tell br_dev_xmit to continue with forwarding */
295 			nf_bridge->bridged_dnat = 1;
296 			/* FIXME Need to refragment */
297 			ret = READ_ONCE(neigh->output)(neigh, skb);
298 		}
299 		neigh_release(neigh);
300 		return ret;
301 	}
302 free_skb:
303 	kfree_skb(skb);
304 	return 0;
305 }
306 
307 static inline bool
308 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
309 			     const struct nf_bridge_info *nf_bridge)
310 {
311 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
312 }
313 
314 /* This requires some explaining. If DNAT has taken place,
315  * we will need to fix up the destination Ethernet address.
316  * This is also true when SNAT takes place (for the reply direction).
317  *
318  * There are two cases to consider:
319  * 1. The packet was DNAT'ed to a device in the same bridge
320  *    port group as it was received on. We can still bridge
321  *    the packet.
322  * 2. The packet was DNAT'ed to a different device, either
323  *    a non-bridged device or another bridge port group.
324  *    The packet will need to be routed.
325  *
326  * The correct way of distinguishing between these two cases is to
327  * call ip_route_input() and to look at skb->dst->dev, which is
328  * changed to the destination device if ip_route_input() succeeds.
329  *
330  * Let's first consider the case that ip_route_input() succeeds:
331  *
332  * If the output device equals the logical bridge device the packet
333  * came in on, we can consider this bridging. The corresponding MAC
334  * address will be obtained in br_nf_pre_routing_finish_bridge.
335  * Otherwise, the packet is considered to be routed and we just
336  * change the destination MAC address so that the packet will
337  * later be passed up to the IP stack to be routed. For a redirected
338  * packet, ip_route_input() will give back the localhost as output device,
339  * which differs from the bridge device.
340  *
341  * Let's now consider the case that ip_route_input() fails:
342  *
343  * This can be because the destination address is martian, in which case
344  * the packet will be dropped.
345  * If IP forwarding is disabled, ip_route_input() will fail, while
346  * ip_route_output_key() can return success. The source
347  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
348  * thinks we're handling a locally generated packet and won't care
349  * if IP forwarding is enabled. If the output device equals the logical bridge
350  * device, we proceed as if ip_route_input() succeeded. If it differs from the
351  * logical bridge port or if ip_route_output_key() fails we drop the packet.
352  */
353 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
354 {
355 	struct net_device *dev = skb->dev;
356 	struct iphdr *iph = ip_hdr(skb);
357 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
358 	struct rtable *rt;
359 	int err;
360 
361 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
362 
363 	if (nf_bridge->pkt_otherhost) {
364 		skb->pkt_type = PACKET_OTHERHOST;
365 		nf_bridge->pkt_otherhost = false;
366 	}
367 	nf_bridge->in_prerouting = 0;
368 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
369 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
370 			struct in_device *in_dev = __in_dev_get_rcu(dev);
371 
372 			/* If err equals -EHOSTUNREACH the error is due to a
373 			 * martian destination or due to the fact that
374 			 * forwarding is disabled. For most martian packets,
375 			 * ip_route_output_key() will fail. It won't fail for 2 types of
376 			 * martian destinations: loopback destinations and destination
377 			 * 0.0.0.0. In both cases the packet will be dropped because the
378 			 * destination is the loopback device and not the bridge. */
379 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
380 				goto free_skb;
381 
382 			rt = ip_route_output(net, iph->daddr, 0,
383 					     RT_TOS(iph->tos), 0);
384 			if (!IS_ERR(rt)) {
385 				/* - Bridged-and-DNAT'ed traffic doesn't
386 				 *   require ip_forwarding. */
387 				if (rt->dst.dev == dev) {
388 					skb_dst_drop(skb);
389 					skb_dst_set(skb, &rt->dst);
390 					goto bridged_dnat;
391 				}
392 				ip_rt_put(rt);
393 			}
394 free_skb:
395 			kfree_skb(skb);
396 			return 0;
397 		} else {
398 			if (skb_dst(skb)->dev == dev) {
399 bridged_dnat:
400 				skb->dev = nf_bridge->physindev;
401 				nf_bridge_update_protocol(skb);
402 				nf_bridge_push_encap_header(skb);
403 				br_nf_hook_thresh(NF_BR_PRE_ROUTING,
404 						  net, sk, skb, skb->dev,
405 						  NULL,
406 						  br_nf_pre_routing_finish_bridge);
407 				return 0;
408 			}
409 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
410 			skb->pkt_type = PACKET_HOST;
411 		}
412 	} else {
413 		rt = bridge_parent_rtable(nf_bridge->physindev);
414 		if (!rt) {
415 			kfree_skb(skb);
416 			return 0;
417 		}
418 		skb_dst_drop(skb);
419 		skb_dst_set_noref(skb, &rt->dst);
420 	}
421 
422 	skb->dev = nf_bridge->physindev;
423 	nf_bridge_update_protocol(skb);
424 	nf_bridge_push_encap_header(skb);
425 	br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL,
426 			  br_handle_frame_finish);
427 	return 0;
428 }
429 
430 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb,
431 					       const struct net_device *dev,
432 					       const struct net *net)
433 {
434 	struct net_device *vlan, *br;
435 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
436 
437 	br = bridge_parent(dev);
438 
439 	if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
440 		return br;
441 
442 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
443 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
444 
445 	return vlan ? vlan : br;
446 }
447 
448 /* Some common code for IPv4/IPv6 */
449 struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net)
450 {
451 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
452 
453 	if (skb->pkt_type == PACKET_OTHERHOST) {
454 		skb->pkt_type = PACKET_HOST;
455 		nf_bridge->pkt_otherhost = true;
456 	}
457 
458 	nf_bridge->in_prerouting = 1;
459 	nf_bridge->physindev = skb->dev;
460 	skb->dev = brnf_get_logical_dev(skb, skb->dev, net);
461 
462 	if (skb->protocol == htons(ETH_P_8021Q))
463 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
464 	else if (skb->protocol == htons(ETH_P_PPP_SES))
465 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
466 
467 	/* Must drop socket now because of tproxy. */
468 	skb_orphan(skb);
469 	return skb->dev;
470 }
471 
472 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
473  * Replicate the checks that IPv4 does on packet reception.
474  * Set skb->dev to the bridge device (i.e. parent of the
475  * receiving device) to make netfilter happy, the REDIRECT
476  * target in particular.  Save the original destination IP
477  * address to be able to detect DNAT afterwards. */
478 static unsigned int br_nf_pre_routing(void *priv,
479 				      struct sk_buff *skb,
480 				      const struct nf_hook_state *state)
481 {
482 	struct nf_bridge_info *nf_bridge;
483 	struct net_bridge_port *p;
484 	struct net_bridge *br;
485 	__u32 len = nf_bridge_encap_header_len(skb);
486 	struct brnf_net *brnet;
487 
488 	if (unlikely(!pskb_may_pull(skb, len)))
489 		return NF_DROP;
490 
491 	p = br_port_get_rcu(state->in);
492 	if (p == NULL)
493 		return NF_DROP;
494 	br = p->br;
495 
496 	brnet = net_generic(state->net, brnf_net_id);
497 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
498 	    is_pppoe_ipv6(skb, state->net)) {
499 		if (!brnet->call_ip6tables &&
500 		    !br_opt_get(br, BROPT_NF_CALL_IP6TABLES))
501 			return NF_ACCEPT;
502 		if (!ipv6_mod_enabled()) {
503 			pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported.");
504 			return NF_DROP;
505 		}
506 
507 		nf_bridge_pull_encap_header_rcsum(skb);
508 		return br_nf_pre_routing_ipv6(priv, skb, state);
509 	}
510 
511 	if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES))
512 		return NF_ACCEPT;
513 
514 	if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) &&
515 	    !is_pppoe_ip(skb, state->net))
516 		return NF_ACCEPT;
517 
518 	nf_bridge_pull_encap_header_rcsum(skb);
519 
520 	if (br_validate_ipv4(state->net, skb))
521 		return NF_DROP;
522 
523 	if (!nf_bridge_alloc(skb))
524 		return NF_DROP;
525 	if (!setup_pre_routing(skb, state->net))
526 		return NF_DROP;
527 
528 	nf_bridge = nf_bridge_info_get(skb);
529 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
530 
531 	skb->protocol = htons(ETH_P_IP);
532 	skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4;
533 
534 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
535 		skb->dev, NULL,
536 		br_nf_pre_routing_finish);
537 
538 	return NF_STOLEN;
539 }
540 
541 
542 /* PF_BRIDGE/FORWARD *************************************************/
543 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
544 {
545 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
546 	struct net_device *in;
547 
548 	if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) {
549 
550 		if (skb->protocol == htons(ETH_P_IP))
551 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
552 
553 		if (skb->protocol == htons(ETH_P_IPV6))
554 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
555 
556 		in = nf_bridge->physindev;
557 		if (nf_bridge->pkt_otherhost) {
558 			skb->pkt_type = PACKET_OTHERHOST;
559 			nf_bridge->pkt_otherhost = false;
560 		}
561 		nf_bridge_update_protocol(skb);
562 	} else {
563 		in = *((struct net_device **)(skb->cb));
564 	}
565 	nf_bridge_push_encap_header(skb);
566 
567 	br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev,
568 			  br_forward_finish);
569 	return 0;
570 }
571 
572 
573 /* This is the 'purely bridged' case.  For IP, we pass the packet to
574  * netfilter with indev and outdev set to the bridge device,
575  * but we are still able to filter on the 'real' indev/outdev
576  * because of the physdev module. For ARP, indev and outdev are the
577  * bridge ports. */
578 static unsigned int br_nf_forward_ip(void *priv,
579 				     struct sk_buff *skb,
580 				     const struct nf_hook_state *state)
581 {
582 	struct nf_bridge_info *nf_bridge;
583 	struct net_device *parent;
584 	u_int8_t pf;
585 
586 	nf_bridge = nf_bridge_info_get(skb);
587 	if (!nf_bridge)
588 		return NF_ACCEPT;
589 
590 	/* Need exclusive nf_bridge_info since we might have multiple
591 	 * different physoutdevs. */
592 	if (!nf_bridge_unshare(skb))
593 		return NF_DROP;
594 
595 	nf_bridge = nf_bridge_info_get(skb);
596 	if (!nf_bridge)
597 		return NF_DROP;
598 
599 	parent = bridge_parent(state->out);
600 	if (!parent)
601 		return NF_DROP;
602 
603 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
604 	    is_pppoe_ip(skb, state->net))
605 		pf = NFPROTO_IPV4;
606 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
607 		 is_pppoe_ipv6(skb, state->net))
608 		pf = NFPROTO_IPV6;
609 	else
610 		return NF_ACCEPT;
611 
612 	nf_bridge_pull_encap_header(skb);
613 
614 	if (skb->pkt_type == PACKET_OTHERHOST) {
615 		skb->pkt_type = PACKET_HOST;
616 		nf_bridge->pkt_otherhost = true;
617 	}
618 
619 	if (pf == NFPROTO_IPV4) {
620 		if (br_validate_ipv4(state->net, skb))
621 			return NF_DROP;
622 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
623 	}
624 
625 	if (pf == NFPROTO_IPV6) {
626 		if (br_validate_ipv6(state->net, skb))
627 			return NF_DROP;
628 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
629 	}
630 
631 	nf_bridge->physoutdev = skb->dev;
632 	if (pf == NFPROTO_IPV4)
633 		skb->protocol = htons(ETH_P_IP);
634 	else
635 		skb->protocol = htons(ETH_P_IPV6);
636 
637 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
638 		brnf_get_logical_dev(skb, state->in, state->net),
639 		parent,	br_nf_forward_finish);
640 
641 	return NF_STOLEN;
642 }
643 
644 static unsigned int br_nf_forward_arp(void *priv,
645 				      struct sk_buff *skb,
646 				      const struct nf_hook_state *state)
647 {
648 	struct net_bridge_port *p;
649 	struct net_bridge *br;
650 	struct net_device **d = (struct net_device **)(skb->cb);
651 	struct brnf_net *brnet;
652 
653 	p = br_port_get_rcu(state->out);
654 	if (p == NULL)
655 		return NF_ACCEPT;
656 	br = p->br;
657 
658 	brnet = net_generic(state->net, brnf_net_id);
659 	if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES))
660 		return NF_ACCEPT;
661 
662 	if (!IS_ARP(skb)) {
663 		if (!is_vlan_arp(skb, state->net))
664 			return NF_ACCEPT;
665 		nf_bridge_pull_encap_header(skb);
666 	}
667 
668 	if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr))))
669 		return NF_DROP;
670 
671 	if (arp_hdr(skb)->ar_pln != 4) {
672 		if (is_vlan_arp(skb, state->net))
673 			nf_bridge_push_encap_header(skb);
674 		return NF_ACCEPT;
675 	}
676 	*d = state->in;
677 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
678 		state->in, state->out, br_nf_forward_finish);
679 
680 	return NF_STOLEN;
681 }
682 
683 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
684 {
685 	struct brnf_frag_data *data;
686 	int err;
687 
688 	data = this_cpu_ptr(&brnf_frag_data_storage);
689 	err = skb_cow_head(skb, data->size);
690 
691 	if (err) {
692 		kfree_skb(skb);
693 		return 0;
694 	}
695 
696 	if (data->vlan_proto)
697 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci);
698 
699 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
700 	__skb_push(skb, data->encap_size);
701 
702 	nf_bridge_info_free(skb);
703 	return br_dev_queue_push_xmit(net, sk, skb);
704 }
705 
706 static int
707 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
708 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
709 {
710 	unsigned int mtu = ip_skb_dst_mtu(sk, skb);
711 	struct iphdr *iph = ip_hdr(skb);
712 
713 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
714 		     (IPCB(skb)->frag_max_size &&
715 		      IPCB(skb)->frag_max_size > mtu))) {
716 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
717 		kfree_skb(skb);
718 		return -EMSGSIZE;
719 	}
720 
721 	return ip_do_fragment(net, sk, skb, output);
722 }
723 
724 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
725 {
726 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
727 
728 	if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
729 		return PPPOE_SES_HLEN;
730 	return 0;
731 }
732 
733 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
734 {
735 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
736 	unsigned int mtu, mtu_reserved;
737 
738 	mtu_reserved = nf_bridge_mtu_reduction(skb);
739 	mtu = skb->dev->mtu;
740 
741 	if (nf_bridge->pkt_otherhost) {
742 		skb->pkt_type = PACKET_OTHERHOST;
743 		nf_bridge->pkt_otherhost = false;
744 	}
745 
746 	if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu)
747 		mtu = nf_bridge->frag_max_size;
748 
749 	nf_bridge_update_protocol(skb);
750 	nf_bridge_push_encap_header(skb);
751 
752 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) {
753 		nf_bridge_info_free(skb);
754 		return br_dev_queue_push_xmit(net, sk, skb);
755 	}
756 
757 	/* This is wrong! We should preserve the original fragment
758 	 * boundaries by preserving frag_list rather than refragmenting.
759 	 */
760 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
761 	    skb->protocol == htons(ETH_P_IP)) {
762 		struct brnf_frag_data *data;
763 
764 		if (br_validate_ipv4(net, skb))
765 			goto drop;
766 
767 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
768 
769 		data = this_cpu_ptr(&brnf_frag_data_storage);
770 
771 		if (skb_vlan_tag_present(skb)) {
772 			data->vlan_tci = skb->vlan_tci;
773 			data->vlan_proto = skb->vlan_proto;
774 		} else {
775 			data->vlan_proto = 0;
776 		}
777 
778 		data->encap_size = nf_bridge_encap_header_len(skb);
779 		data->size = ETH_HLEN + data->encap_size;
780 
781 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
782 						 data->size);
783 
784 		return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
785 	}
786 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
787 	    skb->protocol == htons(ETH_P_IPV6)) {
788 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
789 		struct brnf_frag_data *data;
790 
791 		if (br_validate_ipv6(net, skb))
792 			goto drop;
793 
794 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
795 
796 		data = this_cpu_ptr(&brnf_frag_data_storage);
797 		data->encap_size = nf_bridge_encap_header_len(skb);
798 		data->size = ETH_HLEN + data->encap_size;
799 
800 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
801 						 data->size);
802 
803 		if (v6ops)
804 			return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
805 
806 		kfree_skb(skb);
807 		return -EMSGSIZE;
808 	}
809 	nf_bridge_info_free(skb);
810 	return br_dev_queue_push_xmit(net, sk, skb);
811  drop:
812 	kfree_skb(skb);
813 	return 0;
814 }
815 
816 /* PF_BRIDGE/POST_ROUTING ********************************************/
817 static unsigned int br_nf_post_routing(void *priv,
818 				       struct sk_buff *skb,
819 				       const struct nf_hook_state *state)
820 {
821 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
822 	struct net_device *realoutdev = bridge_parent(skb->dev);
823 	u_int8_t pf;
824 
825 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
826 	 * on a bridge, but was delivered locally and is now being routed:
827 	 *
828 	 * POST_ROUTING was already invoked from the ip stack.
829 	 */
830 	if (!nf_bridge || !nf_bridge->physoutdev)
831 		return NF_ACCEPT;
832 
833 	if (!realoutdev)
834 		return NF_DROP;
835 
836 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
837 	    is_pppoe_ip(skb, state->net))
838 		pf = NFPROTO_IPV4;
839 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
840 		 is_pppoe_ipv6(skb, state->net))
841 		pf = NFPROTO_IPV6;
842 	else
843 		return NF_ACCEPT;
844 
845 	if (skb->pkt_type == PACKET_OTHERHOST) {
846 		skb->pkt_type = PACKET_HOST;
847 		nf_bridge->pkt_otherhost = true;
848 	}
849 
850 	nf_bridge_pull_encap_header(skb);
851 	if (pf == NFPROTO_IPV4)
852 		skb->protocol = htons(ETH_P_IP);
853 	else
854 		skb->protocol = htons(ETH_P_IPV6);
855 
856 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
857 		NULL, realoutdev,
858 		br_nf_dev_queue_xmit);
859 
860 	return NF_STOLEN;
861 }
862 
863 /* IP/SABOTAGE *****************************************************/
864 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
865  * for the second time. */
866 static unsigned int ip_sabotage_in(void *priv,
867 				   struct sk_buff *skb,
868 				   const struct nf_hook_state *state)
869 {
870 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
871 
872 	if (nf_bridge) {
873 		if (nf_bridge->sabotage_in_done)
874 			return NF_ACCEPT;
875 
876 		if (!nf_bridge->in_prerouting &&
877 		    !netif_is_l3_master(skb->dev) &&
878 		    !netif_is_l3_slave(skb->dev)) {
879 			nf_bridge->sabotage_in_done = 1;
880 			state->okfn(state->net, state->sk, skb);
881 			return NF_STOLEN;
882 		}
883 	}
884 
885 	return NF_ACCEPT;
886 }
887 
888 /* This is called when br_netfilter has called into iptables/netfilter,
889  * and DNAT has taken place on a bridge-forwarded packet.
890  *
891  * neigh->output has created a new MAC header, with local br0 MAC
892  * as saddr.
893  *
894  * This restores the original MAC saddr of the bridged packet
895  * before invoking bridge forward logic to transmit the packet.
896  */
897 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
898 {
899 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
900 
901 	skb_pull(skb, ETH_HLEN);
902 	nf_bridge->bridged_dnat = 0;
903 
904 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
905 
906 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
907 				       nf_bridge->neigh_header,
908 				       ETH_HLEN - ETH_ALEN);
909 	skb->dev = nf_bridge->physindev;
910 
911 	nf_bridge->physoutdev = NULL;
912 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
913 }
914 
915 static int br_nf_dev_xmit(struct sk_buff *skb)
916 {
917 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
918 
919 	if (nf_bridge && nf_bridge->bridged_dnat) {
920 		br_nf_pre_routing_finish_bridge_slow(skb);
921 		return 1;
922 	}
923 	return 0;
924 }
925 
926 static const struct nf_br_ops br_ops = {
927 	.br_dev_xmit_hook =	br_nf_dev_xmit,
928 };
929 
930 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
931  * br_dev_queue_push_xmit is called afterwards */
932 static const struct nf_hook_ops br_nf_ops[] = {
933 	{
934 		.hook = br_nf_pre_routing,
935 		.pf = NFPROTO_BRIDGE,
936 		.hooknum = NF_BR_PRE_ROUTING,
937 		.priority = NF_BR_PRI_BRNF,
938 	},
939 	{
940 		.hook = br_nf_forward_ip,
941 		.pf = NFPROTO_BRIDGE,
942 		.hooknum = NF_BR_FORWARD,
943 		.priority = NF_BR_PRI_BRNF - 1,
944 	},
945 	{
946 		.hook = br_nf_forward_arp,
947 		.pf = NFPROTO_BRIDGE,
948 		.hooknum = NF_BR_FORWARD,
949 		.priority = NF_BR_PRI_BRNF,
950 	},
951 	{
952 		.hook = br_nf_post_routing,
953 		.pf = NFPROTO_BRIDGE,
954 		.hooknum = NF_BR_POST_ROUTING,
955 		.priority = NF_BR_PRI_LAST,
956 	},
957 	{
958 		.hook = ip_sabotage_in,
959 		.pf = NFPROTO_IPV4,
960 		.hooknum = NF_INET_PRE_ROUTING,
961 		.priority = NF_IP_PRI_FIRST,
962 	},
963 	{
964 		.hook = ip_sabotage_in,
965 		.pf = NFPROTO_IPV6,
966 		.hooknum = NF_INET_PRE_ROUTING,
967 		.priority = NF_IP6_PRI_FIRST,
968 	},
969 };
970 
971 static int brnf_device_event(struct notifier_block *unused, unsigned long event,
972 			     void *ptr)
973 {
974 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
975 	struct brnf_net *brnet;
976 	struct net *net;
977 	int ret;
978 
979 	if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev))
980 		return NOTIFY_DONE;
981 
982 	ASSERT_RTNL();
983 
984 	net = dev_net(dev);
985 	brnet = net_generic(net, brnf_net_id);
986 	if (brnet->enabled)
987 		return NOTIFY_OK;
988 
989 	ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
990 	if (ret)
991 		return NOTIFY_BAD;
992 
993 	brnet->enabled = true;
994 	return NOTIFY_OK;
995 }
996 
997 static struct notifier_block brnf_notifier __read_mostly = {
998 	.notifier_call = brnf_device_event,
999 };
1000 
1001 /* recursively invokes nf_hook_slow (again), skipping already-called
1002  * hooks (< NF_BR_PRI_BRNF).
1003  *
1004  * Called with rcu read lock held.
1005  */
1006 int br_nf_hook_thresh(unsigned int hook, struct net *net,
1007 		      struct sock *sk, struct sk_buff *skb,
1008 		      struct net_device *indev,
1009 		      struct net_device *outdev,
1010 		      int (*okfn)(struct net *, struct sock *,
1011 				  struct sk_buff *))
1012 {
1013 	const struct nf_hook_entries *e;
1014 	struct nf_hook_state state;
1015 	struct nf_hook_ops **ops;
1016 	unsigned int i;
1017 	int ret;
1018 
1019 	e = rcu_dereference(net->nf.hooks_bridge[hook]);
1020 	if (!e)
1021 		return okfn(net, sk, skb);
1022 
1023 	ops = nf_hook_entries_get_hook_ops(e);
1024 	for (i = 0; i < e->num_hook_entries; i++) {
1025 		/* These hooks have already been called */
1026 		if (ops[i]->priority < NF_BR_PRI_BRNF)
1027 			continue;
1028 
1029 		/* These hooks have not been called yet, run them. */
1030 		if (ops[i]->priority > NF_BR_PRI_BRNF)
1031 			break;
1032 
1033 		/* take a closer look at NF_BR_PRI_BRNF. */
1034 		if (ops[i]->hook == br_nf_pre_routing) {
1035 			/* This hook diverted the skb to this function,
1036 			 * hooks after this have not been run yet.
1037 			 */
1038 			i++;
1039 			break;
1040 		}
1041 	}
1042 
1043 	nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev,
1044 			   sk, net, okfn);
1045 
1046 	ret = nf_hook_slow(skb, &state, e, i);
1047 	if (ret == 1)
1048 		ret = okfn(net, sk, skb);
1049 
1050 	return ret;
1051 }
1052 
1053 #ifdef CONFIG_SYSCTL
1054 static
1055 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1056 			    void *buffer, size_t *lenp, loff_t *ppos)
1057 {
1058 	int ret;
1059 
1060 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1061 
1062 	if (write && *(int *)(ctl->data))
1063 		*(int *)(ctl->data) = 1;
1064 	return ret;
1065 }
1066 
1067 static struct ctl_table brnf_table[] = {
1068 	{
1069 		.procname	= "bridge-nf-call-arptables",
1070 		.maxlen		= sizeof(int),
1071 		.mode		= 0644,
1072 		.proc_handler	= brnf_sysctl_call_tables,
1073 	},
1074 	{
1075 		.procname	= "bridge-nf-call-iptables",
1076 		.maxlen		= sizeof(int),
1077 		.mode		= 0644,
1078 		.proc_handler	= brnf_sysctl_call_tables,
1079 	},
1080 	{
1081 		.procname	= "bridge-nf-call-ip6tables",
1082 		.maxlen		= sizeof(int),
1083 		.mode		= 0644,
1084 		.proc_handler	= brnf_sysctl_call_tables,
1085 	},
1086 	{
1087 		.procname	= "bridge-nf-filter-vlan-tagged",
1088 		.maxlen		= sizeof(int),
1089 		.mode		= 0644,
1090 		.proc_handler	= brnf_sysctl_call_tables,
1091 	},
1092 	{
1093 		.procname	= "bridge-nf-filter-pppoe-tagged",
1094 		.maxlen		= sizeof(int),
1095 		.mode		= 0644,
1096 		.proc_handler	= brnf_sysctl_call_tables,
1097 	},
1098 	{
1099 		.procname	= "bridge-nf-pass-vlan-input-dev",
1100 		.maxlen		= sizeof(int),
1101 		.mode		= 0644,
1102 		.proc_handler	= brnf_sysctl_call_tables,
1103 	},
1104 	{ }
1105 };
1106 
1107 static inline void br_netfilter_sysctl_default(struct brnf_net *brnf)
1108 {
1109 	brnf->call_iptables = 1;
1110 	brnf->call_ip6tables = 1;
1111 	brnf->call_arptables = 1;
1112 	brnf->filter_vlan_tagged = 0;
1113 	brnf->filter_pppoe_tagged = 0;
1114 	brnf->pass_vlan_indev = 0;
1115 }
1116 
1117 static int br_netfilter_sysctl_init_net(struct net *net)
1118 {
1119 	struct ctl_table *table = brnf_table;
1120 	struct brnf_net *brnet;
1121 
1122 	if (!net_eq(net, &init_net)) {
1123 		table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL);
1124 		if (!table)
1125 			return -ENOMEM;
1126 	}
1127 
1128 	brnet = net_generic(net, brnf_net_id);
1129 	table[0].data = &brnet->call_arptables;
1130 	table[1].data = &brnet->call_iptables;
1131 	table[2].data = &brnet->call_ip6tables;
1132 	table[3].data = &brnet->filter_vlan_tagged;
1133 	table[4].data = &brnet->filter_pppoe_tagged;
1134 	table[5].data = &brnet->pass_vlan_indev;
1135 
1136 	br_netfilter_sysctl_default(brnet);
1137 
1138 	brnet->ctl_hdr = register_net_sysctl_sz(net, "net/bridge", table,
1139 						ARRAY_SIZE(brnf_table));
1140 	if (!brnet->ctl_hdr) {
1141 		if (!net_eq(net, &init_net))
1142 			kfree(table);
1143 
1144 		return -ENOMEM;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static void br_netfilter_sysctl_exit_net(struct net *net,
1151 					 struct brnf_net *brnet)
1152 {
1153 	struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg;
1154 
1155 	unregister_net_sysctl_table(brnet->ctl_hdr);
1156 	if (!net_eq(net, &init_net))
1157 		kfree(table);
1158 }
1159 
1160 static int __net_init brnf_init_net(struct net *net)
1161 {
1162 	return br_netfilter_sysctl_init_net(net);
1163 }
1164 #endif
1165 
1166 static void __net_exit brnf_exit_net(struct net *net)
1167 {
1168 	struct brnf_net *brnet;
1169 
1170 	brnet = net_generic(net, brnf_net_id);
1171 	if (brnet->enabled) {
1172 		nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1173 		brnet->enabled = false;
1174 	}
1175 
1176 #ifdef CONFIG_SYSCTL
1177 	br_netfilter_sysctl_exit_net(net, brnet);
1178 #endif
1179 }
1180 
1181 static struct pernet_operations brnf_net_ops __read_mostly = {
1182 #ifdef CONFIG_SYSCTL
1183 	.init = brnf_init_net,
1184 #endif
1185 	.exit = brnf_exit_net,
1186 	.id   = &brnf_net_id,
1187 	.size = sizeof(struct brnf_net),
1188 };
1189 
1190 static int __init br_netfilter_init(void)
1191 {
1192 	int ret;
1193 
1194 	ret = register_pernet_subsys(&brnf_net_ops);
1195 	if (ret < 0)
1196 		return ret;
1197 
1198 	ret = register_netdevice_notifier(&brnf_notifier);
1199 	if (ret < 0) {
1200 		unregister_pernet_subsys(&brnf_net_ops);
1201 		return ret;
1202 	}
1203 
1204 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1205 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1206 	return 0;
1207 }
1208 
1209 static void __exit br_netfilter_fini(void)
1210 {
1211 	RCU_INIT_POINTER(nf_br_ops, NULL);
1212 	unregister_netdevice_notifier(&brnf_notifier);
1213 	unregister_pernet_subsys(&brnf_net_ops);
1214 }
1215 
1216 module_init(br_netfilter_init);
1217 module_exit(br_netfilter_fini);
1218 
1219 MODULE_LICENSE("GPL");
1220 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1221 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1222 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1223