1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Handle firewalling
4  *	Linux ethernet bridge
5  *
6  *	Authors:
7  *	Lennert Buytenhek		<buytenh@gnu.org>
8  *	Bart De Schuymer		<bdschuym@pandora.be>
9  *
10  *	Lennert dedicates this file to Kerstin Wurdinger.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/ip.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/if_ether.h>
21 #include <linux/if_vlan.h>
22 #include <linux/if_pppox.h>
23 #include <linux/ppp_defs.h>
24 #include <linux/netfilter_bridge.h>
25 #include <uapi/linux/netfilter_bridge.h>
26 #include <linux/netfilter_ipv4.h>
27 #include <linux/netfilter_ipv6.h>
28 #include <linux/netfilter_arp.h>
29 #include <linux/in_route.h>
30 #include <linux/rculist.h>
31 #include <linux/inetdevice.h>
32 
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/addrconf.h>
36 #include <net/route.h>
37 #include <net/netfilter/br_netfilter.h>
38 #include <net/netns/generic.h>
39 
40 #include <linux/uaccess.h>
41 #include "br_private.h"
42 #ifdef CONFIG_SYSCTL
43 #include <linux/sysctl.h>
44 #endif
45 
46 static unsigned int brnf_net_id __read_mostly;
47 
48 struct brnf_net {
49 	bool enabled;
50 
51 #ifdef CONFIG_SYSCTL
52 	struct ctl_table_header *ctl_hdr;
53 #endif
54 
55 	/* default value is 1 */
56 	int call_iptables;
57 	int call_ip6tables;
58 	int call_arptables;
59 
60 	/* default value is 0 */
61 	int filter_vlan_tagged;
62 	int filter_pppoe_tagged;
63 	int pass_vlan_indev;
64 };
65 
66 #define IS_IP(skb) \
67 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
68 
69 #define IS_IPV6(skb) \
70 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
71 
72 #define IS_ARP(skb) \
73 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
74 
75 static inline __be16 vlan_proto(const struct sk_buff *skb)
76 {
77 	if (skb_vlan_tag_present(skb))
78 		return skb->protocol;
79 	else if (skb->protocol == htons(ETH_P_8021Q))
80 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
81 	else
82 		return 0;
83 }
84 
85 static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net)
86 {
87 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
88 
89 	return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged;
90 }
91 
92 static inline bool is_vlan_ipv6(const struct sk_buff *skb,
93 				const struct net *net)
94 {
95 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
96 
97 	return vlan_proto(skb) == htons(ETH_P_IPV6) &&
98 	       brnet->filter_vlan_tagged;
99 }
100 
101 static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net)
102 {
103 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
104 
105 	return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged;
106 }
107 
108 static inline __be16 pppoe_proto(const struct sk_buff *skb)
109 {
110 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
111 			    sizeof(struct pppoe_hdr)));
112 }
113 
114 static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net)
115 {
116 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
117 
118 	return skb->protocol == htons(ETH_P_PPP_SES) &&
119 	       pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged;
120 }
121 
122 static inline bool is_pppoe_ipv6(const struct sk_buff *skb,
123 				 const struct net *net)
124 {
125 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
126 
127 	return skb->protocol == htons(ETH_P_PPP_SES) &&
128 	       pppoe_proto(skb) == htons(PPP_IPV6) &&
129 	       brnet->filter_pppoe_tagged;
130 }
131 
132 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
133 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
134 
135 struct brnf_frag_data {
136 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
137 	u8 encap_size;
138 	u8 size;
139 	u16 vlan_tci;
140 	__be16 vlan_proto;
141 };
142 
143 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
144 
145 static void nf_bridge_info_free(struct sk_buff *skb)
146 {
147 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
148 }
149 
150 static inline struct net_device *bridge_parent(const struct net_device *dev)
151 {
152 	struct net_bridge_port *port;
153 
154 	port = br_port_get_rcu(dev);
155 	return port ? port->br->dev : NULL;
156 }
157 
158 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
159 {
160 	return skb_ext_add(skb, SKB_EXT_BRIDGE_NF);
161 }
162 
163 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
164 {
165 	switch (skb->protocol) {
166 	case __cpu_to_be16(ETH_P_8021Q):
167 		return VLAN_HLEN;
168 	case __cpu_to_be16(ETH_P_PPP_SES):
169 		return PPPOE_SES_HLEN;
170 	default:
171 		return 0;
172 	}
173 }
174 
175 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
176 {
177 	unsigned int len = nf_bridge_encap_header_len(skb);
178 
179 	skb_pull(skb, len);
180 	skb->network_header += len;
181 }
182 
183 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
184 {
185 	unsigned int len = nf_bridge_encap_header_len(skb);
186 
187 	skb_pull_rcsum(skb, len);
188 	skb->network_header += len;
189 }
190 
191 /* When handing a packet over to the IP layer
192  * check whether we have a skb that is in the
193  * expected format
194  */
195 
196 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
197 {
198 	const struct iphdr *iph;
199 	u32 len;
200 
201 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
202 		goto inhdr_error;
203 
204 	iph = ip_hdr(skb);
205 
206 	/* Basic sanity checks */
207 	if (iph->ihl < 5 || iph->version != 4)
208 		goto inhdr_error;
209 
210 	if (!pskb_may_pull(skb, iph->ihl*4))
211 		goto inhdr_error;
212 
213 	iph = ip_hdr(skb);
214 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
215 		goto csum_error;
216 
217 	len = ntohs(iph->tot_len);
218 	if (skb->len < len) {
219 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
220 		goto drop;
221 	} else if (len < (iph->ihl*4))
222 		goto inhdr_error;
223 
224 	if (pskb_trim_rcsum(skb, len)) {
225 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
226 		goto drop;
227 	}
228 
229 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
230 	/* We should really parse IP options here but until
231 	 * somebody who actually uses IP options complains to
232 	 * us we'll just silently ignore the options because
233 	 * we're lazy!
234 	 */
235 	return 0;
236 
237 csum_error:
238 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
239 inhdr_error:
240 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
241 drop:
242 	return -1;
243 }
244 
245 void nf_bridge_update_protocol(struct sk_buff *skb)
246 {
247 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
248 
249 	switch (nf_bridge->orig_proto) {
250 	case BRNF_PROTO_8021Q:
251 		skb->protocol = htons(ETH_P_8021Q);
252 		break;
253 	case BRNF_PROTO_PPPOE:
254 		skb->protocol = htons(ETH_P_PPP_SES);
255 		break;
256 	case BRNF_PROTO_UNCHANGED:
257 		break;
258 	}
259 }
260 
261 /* Obtain the correct destination MAC address, while preserving the original
262  * source MAC address. If we already know this address, we just copy it. If we
263  * don't, we use the neighbour framework to find out. In both cases, we make
264  * sure that br_handle_frame_finish() is called afterwards.
265  */
266 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
267 {
268 	struct neighbour *neigh;
269 	struct dst_entry *dst;
270 
271 	skb->dev = bridge_parent(skb->dev);
272 	if (!skb->dev)
273 		goto free_skb;
274 	dst = skb_dst(skb);
275 	neigh = dst_neigh_lookup_skb(dst, skb);
276 	if (neigh) {
277 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
278 		int ret;
279 
280 		if ((neigh->nud_state & NUD_CONNECTED) && neigh->hh.hh_len) {
281 			neigh_hh_bridge(&neigh->hh, skb);
282 			skb->dev = nf_bridge->physindev;
283 			ret = br_handle_frame_finish(net, sk, skb);
284 		} else {
285 			/* the neighbour function below overwrites the complete
286 			 * MAC header, so we save the Ethernet source address and
287 			 * protocol number.
288 			 */
289 			skb_copy_from_linear_data_offset(skb,
290 							 -(ETH_HLEN-ETH_ALEN),
291 							 nf_bridge->neigh_header,
292 							 ETH_HLEN-ETH_ALEN);
293 			/* tell br_dev_xmit to continue with forwarding */
294 			nf_bridge->bridged_dnat = 1;
295 			/* FIXME Need to refragment */
296 			ret = neigh->output(neigh, skb);
297 		}
298 		neigh_release(neigh);
299 		return ret;
300 	}
301 free_skb:
302 	kfree_skb(skb);
303 	return 0;
304 }
305 
306 static inline bool
307 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
308 			     const struct nf_bridge_info *nf_bridge)
309 {
310 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
311 }
312 
313 /* This requires some explaining. If DNAT has taken place,
314  * we will need to fix up the destination Ethernet address.
315  * This is also true when SNAT takes place (for the reply direction).
316  *
317  * There are two cases to consider:
318  * 1. The packet was DNAT'ed to a device in the same bridge
319  *    port group as it was received on. We can still bridge
320  *    the packet.
321  * 2. The packet was DNAT'ed to a different device, either
322  *    a non-bridged device or another bridge port group.
323  *    The packet will need to be routed.
324  *
325  * The correct way of distinguishing between these two cases is to
326  * call ip_route_input() and to look at skb->dst->dev, which is
327  * changed to the destination device if ip_route_input() succeeds.
328  *
329  * Let's first consider the case that ip_route_input() succeeds:
330  *
331  * If the output device equals the logical bridge device the packet
332  * came in on, we can consider this bridging. The corresponding MAC
333  * address will be obtained in br_nf_pre_routing_finish_bridge.
334  * Otherwise, the packet is considered to be routed and we just
335  * change the destination MAC address so that the packet will
336  * later be passed up to the IP stack to be routed. For a redirected
337  * packet, ip_route_input() will give back the localhost as output device,
338  * which differs from the bridge device.
339  *
340  * Let's now consider the case that ip_route_input() fails:
341  *
342  * This can be because the destination address is martian, in which case
343  * the packet will be dropped.
344  * If IP forwarding is disabled, ip_route_input() will fail, while
345  * ip_route_output_key() can return success. The source
346  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
347  * thinks we're handling a locally generated packet and won't care
348  * if IP forwarding is enabled. If the output device equals the logical bridge
349  * device, we proceed as if ip_route_input() succeeded. If it differs from the
350  * logical bridge port or if ip_route_output_key() fails we drop the packet.
351  */
352 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
353 {
354 	struct net_device *dev = skb->dev;
355 	struct iphdr *iph = ip_hdr(skb);
356 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
357 	struct rtable *rt;
358 	int err;
359 
360 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
361 
362 	if (nf_bridge->pkt_otherhost) {
363 		skb->pkt_type = PACKET_OTHERHOST;
364 		nf_bridge->pkt_otherhost = false;
365 	}
366 	nf_bridge->in_prerouting = 0;
367 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
368 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
369 			struct in_device *in_dev = __in_dev_get_rcu(dev);
370 
371 			/* If err equals -EHOSTUNREACH the error is due to a
372 			 * martian destination or due to the fact that
373 			 * forwarding is disabled. For most martian packets,
374 			 * ip_route_output_key() will fail. It won't fail for 2 types of
375 			 * martian destinations: loopback destinations and destination
376 			 * 0.0.0.0. In both cases the packet will be dropped because the
377 			 * destination is the loopback device and not the bridge. */
378 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
379 				goto free_skb;
380 
381 			rt = ip_route_output(net, iph->daddr, 0,
382 					     RT_TOS(iph->tos), 0);
383 			if (!IS_ERR(rt)) {
384 				/* - Bridged-and-DNAT'ed traffic doesn't
385 				 *   require ip_forwarding. */
386 				if (rt->dst.dev == dev) {
387 					skb_dst_set(skb, &rt->dst);
388 					goto bridged_dnat;
389 				}
390 				ip_rt_put(rt);
391 			}
392 free_skb:
393 			kfree_skb(skb);
394 			return 0;
395 		} else {
396 			if (skb_dst(skb)->dev == dev) {
397 bridged_dnat:
398 				skb->dev = nf_bridge->physindev;
399 				nf_bridge_update_protocol(skb);
400 				nf_bridge_push_encap_header(skb);
401 				br_nf_hook_thresh(NF_BR_PRE_ROUTING,
402 						  net, sk, skb, skb->dev,
403 						  NULL,
404 						  br_nf_pre_routing_finish_bridge);
405 				return 0;
406 			}
407 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
408 			skb->pkt_type = PACKET_HOST;
409 		}
410 	} else {
411 		rt = bridge_parent_rtable(nf_bridge->physindev);
412 		if (!rt) {
413 			kfree_skb(skb);
414 			return 0;
415 		}
416 		skb_dst_set_noref(skb, &rt->dst);
417 	}
418 
419 	skb->dev = nf_bridge->physindev;
420 	nf_bridge_update_protocol(skb);
421 	nf_bridge_push_encap_header(skb);
422 	br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL,
423 			  br_handle_frame_finish);
424 	return 0;
425 }
426 
427 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb,
428 					       const struct net_device *dev,
429 					       const struct net *net)
430 {
431 	struct net_device *vlan, *br;
432 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
433 
434 	br = bridge_parent(dev);
435 
436 	if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
437 		return br;
438 
439 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
440 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
441 
442 	return vlan ? vlan : br;
443 }
444 
445 /* Some common code for IPv4/IPv6 */
446 struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net)
447 {
448 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
449 
450 	if (skb->pkt_type == PACKET_OTHERHOST) {
451 		skb->pkt_type = PACKET_HOST;
452 		nf_bridge->pkt_otherhost = true;
453 	}
454 
455 	nf_bridge->in_prerouting = 1;
456 	nf_bridge->physindev = skb->dev;
457 	skb->dev = brnf_get_logical_dev(skb, skb->dev, net);
458 
459 	if (skb->protocol == htons(ETH_P_8021Q))
460 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
461 	else if (skb->protocol == htons(ETH_P_PPP_SES))
462 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
463 
464 	/* Must drop socket now because of tproxy. */
465 	skb_orphan(skb);
466 	return skb->dev;
467 }
468 
469 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
470  * Replicate the checks that IPv4 does on packet reception.
471  * Set skb->dev to the bridge device (i.e. parent of the
472  * receiving device) to make netfilter happy, the REDIRECT
473  * target in particular.  Save the original destination IP
474  * address to be able to detect DNAT afterwards. */
475 static unsigned int br_nf_pre_routing(void *priv,
476 				      struct sk_buff *skb,
477 				      const struct nf_hook_state *state)
478 {
479 	struct nf_bridge_info *nf_bridge;
480 	struct net_bridge_port *p;
481 	struct net_bridge *br;
482 	__u32 len = nf_bridge_encap_header_len(skb);
483 	struct brnf_net *brnet;
484 
485 	if (unlikely(!pskb_may_pull(skb, len)))
486 		return NF_DROP;
487 
488 	p = br_port_get_rcu(state->in);
489 	if (p == NULL)
490 		return NF_DROP;
491 	br = p->br;
492 
493 	brnet = net_generic(state->net, brnf_net_id);
494 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
495 	    is_pppoe_ipv6(skb, state->net)) {
496 		if (!brnet->call_ip6tables &&
497 		    !br_opt_get(br, BROPT_NF_CALL_IP6TABLES))
498 			return NF_ACCEPT;
499 		if (!ipv6_mod_enabled()) {
500 			pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported.");
501 			return NF_DROP;
502 		}
503 
504 		nf_bridge_pull_encap_header_rcsum(skb);
505 		return br_nf_pre_routing_ipv6(priv, skb, state);
506 	}
507 
508 	if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES))
509 		return NF_ACCEPT;
510 
511 	if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) &&
512 	    !is_pppoe_ip(skb, state->net))
513 		return NF_ACCEPT;
514 
515 	nf_bridge_pull_encap_header_rcsum(skb);
516 
517 	if (br_validate_ipv4(state->net, skb))
518 		return NF_DROP;
519 
520 	if (!nf_bridge_alloc(skb))
521 		return NF_DROP;
522 	if (!setup_pre_routing(skb, state->net))
523 		return NF_DROP;
524 
525 	nf_bridge = nf_bridge_info_get(skb);
526 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
527 
528 	skb->protocol = htons(ETH_P_IP);
529 	skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4;
530 
531 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
532 		skb->dev, NULL,
533 		br_nf_pre_routing_finish);
534 
535 	return NF_STOLEN;
536 }
537 
538 
539 /* PF_BRIDGE/FORWARD *************************************************/
540 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
541 {
542 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
543 	struct net_device *in;
544 
545 	if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) {
546 
547 		if (skb->protocol == htons(ETH_P_IP))
548 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
549 
550 		if (skb->protocol == htons(ETH_P_IPV6))
551 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
552 
553 		in = nf_bridge->physindev;
554 		if (nf_bridge->pkt_otherhost) {
555 			skb->pkt_type = PACKET_OTHERHOST;
556 			nf_bridge->pkt_otherhost = false;
557 		}
558 		nf_bridge_update_protocol(skb);
559 	} else {
560 		in = *((struct net_device **)(skb->cb));
561 	}
562 	nf_bridge_push_encap_header(skb);
563 
564 	br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev,
565 			  br_forward_finish);
566 	return 0;
567 }
568 
569 
570 /* This is the 'purely bridged' case.  For IP, we pass the packet to
571  * netfilter with indev and outdev set to the bridge device,
572  * but we are still able to filter on the 'real' indev/outdev
573  * because of the physdev module. For ARP, indev and outdev are the
574  * bridge ports. */
575 static unsigned int br_nf_forward_ip(void *priv,
576 				     struct sk_buff *skb,
577 				     const struct nf_hook_state *state)
578 {
579 	struct nf_bridge_info *nf_bridge;
580 	struct net_device *parent;
581 	u_int8_t pf;
582 
583 	nf_bridge = nf_bridge_info_get(skb);
584 	if (!nf_bridge)
585 		return NF_ACCEPT;
586 
587 	/* Need exclusive nf_bridge_info since we might have multiple
588 	 * different physoutdevs. */
589 	if (!nf_bridge_unshare(skb))
590 		return NF_DROP;
591 
592 	nf_bridge = nf_bridge_info_get(skb);
593 	if (!nf_bridge)
594 		return NF_DROP;
595 
596 	parent = bridge_parent(state->out);
597 	if (!parent)
598 		return NF_DROP;
599 
600 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
601 	    is_pppoe_ip(skb, state->net))
602 		pf = NFPROTO_IPV4;
603 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
604 		 is_pppoe_ipv6(skb, state->net))
605 		pf = NFPROTO_IPV6;
606 	else
607 		return NF_ACCEPT;
608 
609 	nf_bridge_pull_encap_header(skb);
610 
611 	if (skb->pkt_type == PACKET_OTHERHOST) {
612 		skb->pkt_type = PACKET_HOST;
613 		nf_bridge->pkt_otherhost = true;
614 	}
615 
616 	if (pf == NFPROTO_IPV4) {
617 		if (br_validate_ipv4(state->net, skb))
618 			return NF_DROP;
619 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
620 	}
621 
622 	if (pf == NFPROTO_IPV6) {
623 		if (br_validate_ipv6(state->net, skb))
624 			return NF_DROP;
625 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
626 	}
627 
628 	nf_bridge->physoutdev = skb->dev;
629 	if (pf == NFPROTO_IPV4)
630 		skb->protocol = htons(ETH_P_IP);
631 	else
632 		skb->protocol = htons(ETH_P_IPV6);
633 
634 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
635 		brnf_get_logical_dev(skb, state->in, state->net),
636 		parent,	br_nf_forward_finish);
637 
638 	return NF_STOLEN;
639 }
640 
641 static unsigned int br_nf_forward_arp(void *priv,
642 				      struct sk_buff *skb,
643 				      const struct nf_hook_state *state)
644 {
645 	struct net_bridge_port *p;
646 	struct net_bridge *br;
647 	struct net_device **d = (struct net_device **)(skb->cb);
648 	struct brnf_net *brnet;
649 
650 	p = br_port_get_rcu(state->out);
651 	if (p == NULL)
652 		return NF_ACCEPT;
653 	br = p->br;
654 
655 	brnet = net_generic(state->net, brnf_net_id);
656 	if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES))
657 		return NF_ACCEPT;
658 
659 	if (!IS_ARP(skb)) {
660 		if (!is_vlan_arp(skb, state->net))
661 			return NF_ACCEPT;
662 		nf_bridge_pull_encap_header(skb);
663 	}
664 
665 	if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr))))
666 		return NF_DROP;
667 
668 	if (arp_hdr(skb)->ar_pln != 4) {
669 		if (is_vlan_arp(skb, state->net))
670 			nf_bridge_push_encap_header(skb);
671 		return NF_ACCEPT;
672 	}
673 	*d = state->in;
674 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
675 		state->in, state->out, br_nf_forward_finish);
676 
677 	return NF_STOLEN;
678 }
679 
680 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
681 {
682 	struct brnf_frag_data *data;
683 	int err;
684 
685 	data = this_cpu_ptr(&brnf_frag_data_storage);
686 	err = skb_cow_head(skb, data->size);
687 
688 	if (err) {
689 		kfree_skb(skb);
690 		return 0;
691 	}
692 
693 	if (data->vlan_proto)
694 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci);
695 
696 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
697 	__skb_push(skb, data->encap_size);
698 
699 	nf_bridge_info_free(skb);
700 	return br_dev_queue_push_xmit(net, sk, skb);
701 }
702 
703 static int
704 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
705 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
706 {
707 	unsigned int mtu = ip_skb_dst_mtu(sk, skb);
708 	struct iphdr *iph = ip_hdr(skb);
709 
710 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
711 		     (IPCB(skb)->frag_max_size &&
712 		      IPCB(skb)->frag_max_size > mtu))) {
713 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
714 		kfree_skb(skb);
715 		return -EMSGSIZE;
716 	}
717 
718 	return ip_do_fragment(net, sk, skb, output);
719 }
720 
721 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
722 {
723 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
724 
725 	if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
726 		return PPPOE_SES_HLEN;
727 	return 0;
728 }
729 
730 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
731 {
732 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
733 	unsigned int mtu, mtu_reserved;
734 
735 	mtu_reserved = nf_bridge_mtu_reduction(skb);
736 	mtu = skb->dev->mtu;
737 
738 	if (nf_bridge->pkt_otherhost) {
739 		skb->pkt_type = PACKET_OTHERHOST;
740 		nf_bridge->pkt_otherhost = false;
741 	}
742 
743 	if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu)
744 		mtu = nf_bridge->frag_max_size;
745 
746 	nf_bridge_update_protocol(skb);
747 	nf_bridge_push_encap_header(skb);
748 
749 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) {
750 		nf_bridge_info_free(skb);
751 		return br_dev_queue_push_xmit(net, sk, skb);
752 	}
753 
754 	/* This is wrong! We should preserve the original fragment
755 	 * boundaries by preserving frag_list rather than refragmenting.
756 	 */
757 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
758 	    skb->protocol == htons(ETH_P_IP)) {
759 		struct brnf_frag_data *data;
760 
761 		if (br_validate_ipv4(net, skb))
762 			goto drop;
763 
764 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
765 
766 		data = this_cpu_ptr(&brnf_frag_data_storage);
767 
768 		if (skb_vlan_tag_present(skb)) {
769 			data->vlan_tci = skb->vlan_tci;
770 			data->vlan_proto = skb->vlan_proto;
771 		} else {
772 			data->vlan_proto = 0;
773 		}
774 
775 		data->encap_size = nf_bridge_encap_header_len(skb);
776 		data->size = ETH_HLEN + data->encap_size;
777 
778 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
779 						 data->size);
780 
781 		return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
782 	}
783 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
784 	    skb->protocol == htons(ETH_P_IPV6)) {
785 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
786 		struct brnf_frag_data *data;
787 
788 		if (br_validate_ipv6(net, skb))
789 			goto drop;
790 
791 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
792 
793 		data = this_cpu_ptr(&brnf_frag_data_storage);
794 		data->encap_size = nf_bridge_encap_header_len(skb);
795 		data->size = ETH_HLEN + data->encap_size;
796 
797 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
798 						 data->size);
799 
800 		if (v6ops)
801 			return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
802 
803 		kfree_skb(skb);
804 		return -EMSGSIZE;
805 	}
806 	nf_bridge_info_free(skb);
807 	return br_dev_queue_push_xmit(net, sk, skb);
808  drop:
809 	kfree_skb(skb);
810 	return 0;
811 }
812 
813 /* PF_BRIDGE/POST_ROUTING ********************************************/
814 static unsigned int br_nf_post_routing(void *priv,
815 				       struct sk_buff *skb,
816 				       const struct nf_hook_state *state)
817 {
818 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
819 	struct net_device *realoutdev = bridge_parent(skb->dev);
820 	u_int8_t pf;
821 
822 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
823 	 * on a bridge, but was delivered locally and is now being routed:
824 	 *
825 	 * POST_ROUTING was already invoked from the ip stack.
826 	 */
827 	if (!nf_bridge || !nf_bridge->physoutdev)
828 		return NF_ACCEPT;
829 
830 	if (!realoutdev)
831 		return NF_DROP;
832 
833 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
834 	    is_pppoe_ip(skb, state->net))
835 		pf = NFPROTO_IPV4;
836 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
837 		 is_pppoe_ipv6(skb, state->net))
838 		pf = NFPROTO_IPV6;
839 	else
840 		return NF_ACCEPT;
841 
842 	if (skb->pkt_type == PACKET_OTHERHOST) {
843 		skb->pkt_type = PACKET_HOST;
844 		nf_bridge->pkt_otherhost = true;
845 	}
846 
847 	nf_bridge_pull_encap_header(skb);
848 	if (pf == NFPROTO_IPV4)
849 		skb->protocol = htons(ETH_P_IP);
850 	else
851 		skb->protocol = htons(ETH_P_IPV6);
852 
853 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
854 		NULL, realoutdev,
855 		br_nf_dev_queue_xmit);
856 
857 	return NF_STOLEN;
858 }
859 
860 /* IP/SABOTAGE *****************************************************/
861 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
862  * for the second time. */
863 static unsigned int ip_sabotage_in(void *priv,
864 				   struct sk_buff *skb,
865 				   const struct nf_hook_state *state)
866 {
867 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
868 
869 	if (nf_bridge && !nf_bridge->in_prerouting &&
870 	    !netif_is_l3_master(skb->dev) &&
871 	    !netif_is_l3_slave(skb->dev)) {
872 		state->okfn(state->net, state->sk, skb);
873 		return NF_STOLEN;
874 	}
875 
876 	return NF_ACCEPT;
877 }
878 
879 /* This is called when br_netfilter has called into iptables/netfilter,
880  * and DNAT has taken place on a bridge-forwarded packet.
881  *
882  * neigh->output has created a new MAC header, with local br0 MAC
883  * as saddr.
884  *
885  * This restores the original MAC saddr of the bridged packet
886  * before invoking bridge forward logic to transmit the packet.
887  */
888 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
889 {
890 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
891 
892 	skb_pull(skb, ETH_HLEN);
893 	nf_bridge->bridged_dnat = 0;
894 
895 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
896 
897 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
898 				       nf_bridge->neigh_header,
899 				       ETH_HLEN - ETH_ALEN);
900 	skb->dev = nf_bridge->physindev;
901 
902 	nf_bridge->physoutdev = NULL;
903 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
904 }
905 
906 static int br_nf_dev_xmit(struct sk_buff *skb)
907 {
908 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
909 
910 	if (nf_bridge && nf_bridge->bridged_dnat) {
911 		br_nf_pre_routing_finish_bridge_slow(skb);
912 		return 1;
913 	}
914 	return 0;
915 }
916 
917 static const struct nf_br_ops br_ops = {
918 	.br_dev_xmit_hook =	br_nf_dev_xmit,
919 };
920 
921 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
922  * br_dev_queue_push_xmit is called afterwards */
923 static const struct nf_hook_ops br_nf_ops[] = {
924 	{
925 		.hook = br_nf_pre_routing,
926 		.pf = NFPROTO_BRIDGE,
927 		.hooknum = NF_BR_PRE_ROUTING,
928 		.priority = NF_BR_PRI_BRNF,
929 	},
930 	{
931 		.hook = br_nf_forward_ip,
932 		.pf = NFPROTO_BRIDGE,
933 		.hooknum = NF_BR_FORWARD,
934 		.priority = NF_BR_PRI_BRNF - 1,
935 	},
936 	{
937 		.hook = br_nf_forward_arp,
938 		.pf = NFPROTO_BRIDGE,
939 		.hooknum = NF_BR_FORWARD,
940 		.priority = NF_BR_PRI_BRNF,
941 	},
942 	{
943 		.hook = br_nf_post_routing,
944 		.pf = NFPROTO_BRIDGE,
945 		.hooknum = NF_BR_POST_ROUTING,
946 		.priority = NF_BR_PRI_LAST,
947 	},
948 	{
949 		.hook = ip_sabotage_in,
950 		.pf = NFPROTO_IPV4,
951 		.hooknum = NF_INET_PRE_ROUTING,
952 		.priority = NF_IP_PRI_FIRST,
953 	},
954 	{
955 		.hook = ip_sabotage_in,
956 		.pf = NFPROTO_IPV6,
957 		.hooknum = NF_INET_PRE_ROUTING,
958 		.priority = NF_IP6_PRI_FIRST,
959 	},
960 };
961 
962 static int brnf_device_event(struct notifier_block *unused, unsigned long event,
963 			     void *ptr)
964 {
965 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
966 	struct brnf_net *brnet;
967 	struct net *net;
968 	int ret;
969 
970 	if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev))
971 		return NOTIFY_DONE;
972 
973 	ASSERT_RTNL();
974 
975 	net = dev_net(dev);
976 	brnet = net_generic(net, brnf_net_id);
977 	if (brnet->enabled)
978 		return NOTIFY_OK;
979 
980 	ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
981 	if (ret)
982 		return NOTIFY_BAD;
983 
984 	brnet->enabled = true;
985 	return NOTIFY_OK;
986 }
987 
988 static struct notifier_block brnf_notifier __read_mostly = {
989 	.notifier_call = brnf_device_event,
990 };
991 
992 /* recursively invokes nf_hook_slow (again), skipping already-called
993  * hooks (< NF_BR_PRI_BRNF).
994  *
995  * Called with rcu read lock held.
996  */
997 int br_nf_hook_thresh(unsigned int hook, struct net *net,
998 		      struct sock *sk, struct sk_buff *skb,
999 		      struct net_device *indev,
1000 		      struct net_device *outdev,
1001 		      int (*okfn)(struct net *, struct sock *,
1002 				  struct sk_buff *))
1003 {
1004 	const struct nf_hook_entries *e;
1005 	struct nf_hook_state state;
1006 	struct nf_hook_ops **ops;
1007 	unsigned int i;
1008 	int ret;
1009 
1010 	e = rcu_dereference(net->nf.hooks_bridge[hook]);
1011 	if (!e)
1012 		return okfn(net, sk, skb);
1013 
1014 	ops = nf_hook_entries_get_hook_ops(e);
1015 	for (i = 0; i < e->num_hook_entries &&
1016 	      ops[i]->priority <= NF_BR_PRI_BRNF; i++)
1017 		;
1018 
1019 	nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev,
1020 			   sk, net, okfn);
1021 
1022 	ret = nf_hook_slow(skb, &state, e, i);
1023 	if (ret == 1)
1024 		ret = okfn(net, sk, skb);
1025 
1026 	return ret;
1027 }
1028 
1029 #ifdef CONFIG_SYSCTL
1030 static
1031 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1032 			    void *buffer, size_t *lenp, loff_t *ppos)
1033 {
1034 	int ret;
1035 
1036 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1037 
1038 	if (write && *(int *)(ctl->data))
1039 		*(int *)(ctl->data) = 1;
1040 	return ret;
1041 }
1042 
1043 static struct ctl_table brnf_table[] = {
1044 	{
1045 		.procname	= "bridge-nf-call-arptables",
1046 		.maxlen		= sizeof(int),
1047 		.mode		= 0644,
1048 		.proc_handler	= brnf_sysctl_call_tables,
1049 	},
1050 	{
1051 		.procname	= "bridge-nf-call-iptables",
1052 		.maxlen		= sizeof(int),
1053 		.mode		= 0644,
1054 		.proc_handler	= brnf_sysctl_call_tables,
1055 	},
1056 	{
1057 		.procname	= "bridge-nf-call-ip6tables",
1058 		.maxlen		= sizeof(int),
1059 		.mode		= 0644,
1060 		.proc_handler	= brnf_sysctl_call_tables,
1061 	},
1062 	{
1063 		.procname	= "bridge-nf-filter-vlan-tagged",
1064 		.maxlen		= sizeof(int),
1065 		.mode		= 0644,
1066 		.proc_handler	= brnf_sysctl_call_tables,
1067 	},
1068 	{
1069 		.procname	= "bridge-nf-filter-pppoe-tagged",
1070 		.maxlen		= sizeof(int),
1071 		.mode		= 0644,
1072 		.proc_handler	= brnf_sysctl_call_tables,
1073 	},
1074 	{
1075 		.procname	= "bridge-nf-pass-vlan-input-dev",
1076 		.maxlen		= sizeof(int),
1077 		.mode		= 0644,
1078 		.proc_handler	= brnf_sysctl_call_tables,
1079 	},
1080 	{ }
1081 };
1082 
1083 static inline void br_netfilter_sysctl_default(struct brnf_net *brnf)
1084 {
1085 	brnf->call_iptables = 1;
1086 	brnf->call_ip6tables = 1;
1087 	brnf->call_arptables = 1;
1088 	brnf->filter_vlan_tagged = 0;
1089 	brnf->filter_pppoe_tagged = 0;
1090 	brnf->pass_vlan_indev = 0;
1091 }
1092 
1093 static int br_netfilter_sysctl_init_net(struct net *net)
1094 {
1095 	struct ctl_table *table = brnf_table;
1096 	struct brnf_net *brnet;
1097 
1098 	if (!net_eq(net, &init_net)) {
1099 		table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL);
1100 		if (!table)
1101 			return -ENOMEM;
1102 	}
1103 
1104 	brnet = net_generic(net, brnf_net_id);
1105 	table[0].data = &brnet->call_arptables;
1106 	table[1].data = &brnet->call_iptables;
1107 	table[2].data = &brnet->call_ip6tables;
1108 	table[3].data = &brnet->filter_vlan_tagged;
1109 	table[4].data = &brnet->filter_pppoe_tagged;
1110 	table[5].data = &brnet->pass_vlan_indev;
1111 
1112 	br_netfilter_sysctl_default(brnet);
1113 
1114 	brnet->ctl_hdr = register_net_sysctl(net, "net/bridge", table);
1115 	if (!brnet->ctl_hdr) {
1116 		if (!net_eq(net, &init_net))
1117 			kfree(table);
1118 
1119 		return -ENOMEM;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static void br_netfilter_sysctl_exit_net(struct net *net,
1126 					 struct brnf_net *brnet)
1127 {
1128 	struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg;
1129 
1130 	unregister_net_sysctl_table(brnet->ctl_hdr);
1131 	if (!net_eq(net, &init_net))
1132 		kfree(table);
1133 }
1134 
1135 static int __net_init brnf_init_net(struct net *net)
1136 {
1137 	return br_netfilter_sysctl_init_net(net);
1138 }
1139 #endif
1140 
1141 static void __net_exit brnf_exit_net(struct net *net)
1142 {
1143 	struct brnf_net *brnet;
1144 
1145 	brnet = net_generic(net, brnf_net_id);
1146 	if (brnet->enabled) {
1147 		nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1148 		brnet->enabled = false;
1149 	}
1150 
1151 #ifdef CONFIG_SYSCTL
1152 	br_netfilter_sysctl_exit_net(net, brnet);
1153 #endif
1154 }
1155 
1156 static struct pernet_operations brnf_net_ops __read_mostly = {
1157 #ifdef CONFIG_SYSCTL
1158 	.init = brnf_init_net,
1159 #endif
1160 	.exit = brnf_exit_net,
1161 	.id   = &brnf_net_id,
1162 	.size = sizeof(struct brnf_net),
1163 };
1164 
1165 static int __init br_netfilter_init(void)
1166 {
1167 	int ret;
1168 
1169 	ret = register_pernet_subsys(&brnf_net_ops);
1170 	if (ret < 0)
1171 		return ret;
1172 
1173 	ret = register_netdevice_notifier(&brnf_notifier);
1174 	if (ret < 0) {
1175 		unregister_pernet_subsys(&brnf_net_ops);
1176 		return ret;
1177 	}
1178 
1179 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1180 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1181 	return 0;
1182 }
1183 
1184 static void __exit br_netfilter_fini(void)
1185 {
1186 	RCU_INIT_POINTER(nf_br_ops, NULL);
1187 	unregister_netdevice_notifier(&brnf_notifier);
1188 	unregister_pernet_subsys(&brnf_net_ops);
1189 }
1190 
1191 module_init(br_netfilter_init);
1192 module_exit(br_netfilter_fini);
1193 
1194 MODULE_LICENSE("GPL");
1195 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1196 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1197 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1198