1 /* 2 RFCOMM implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com> 4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 /* 25 * RFCOMM sockets. 26 */ 27 28 #include <linux/module.h> 29 30 #include <linux/types.h> 31 #include <linux/errno.h> 32 #include <linux/kernel.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/poll.h> 36 #include <linux/fcntl.h> 37 #include <linux/init.h> 38 #include <linux/interrupt.h> 39 #include <linux/socket.h> 40 #include <linux/skbuff.h> 41 #include <linux/list.h> 42 #include <linux/device.h> 43 #include <linux/debugfs.h> 44 #include <linux/seq_file.h> 45 #include <net/sock.h> 46 47 #include <asm/system.h> 48 #include <linux/uaccess.h> 49 50 #include <net/bluetooth/bluetooth.h> 51 #include <net/bluetooth/hci_core.h> 52 #include <net/bluetooth/l2cap.h> 53 #include <net/bluetooth/rfcomm.h> 54 55 static const struct proto_ops rfcomm_sock_ops; 56 57 static struct bt_sock_list rfcomm_sk_list = { 58 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock) 59 }; 60 61 static void rfcomm_sock_close(struct sock *sk); 62 static void rfcomm_sock_kill(struct sock *sk); 63 64 /* ---- DLC callbacks ---- 65 * 66 * called under rfcomm_dlc_lock() 67 */ 68 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb) 69 { 70 struct sock *sk = d->owner; 71 if (!sk) 72 return; 73 74 atomic_add(skb->len, &sk->sk_rmem_alloc); 75 skb_queue_tail(&sk->sk_receive_queue, skb); 76 sk->sk_data_ready(sk, skb->len); 77 78 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 79 rfcomm_dlc_throttle(d); 80 } 81 82 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err) 83 { 84 struct sock *sk = d->owner, *parent; 85 unsigned long flags; 86 87 if (!sk) 88 return; 89 90 BT_DBG("dlc %p state %ld err %d", d, d->state, err); 91 92 local_irq_save(flags); 93 bh_lock_sock(sk); 94 95 if (err) 96 sk->sk_err = err; 97 98 sk->sk_state = d->state; 99 100 parent = bt_sk(sk)->parent; 101 if (parent) { 102 if (d->state == BT_CLOSED) { 103 sock_set_flag(sk, SOCK_ZAPPED); 104 bt_accept_unlink(sk); 105 } 106 parent->sk_data_ready(parent, 0); 107 } else { 108 if (d->state == BT_CONNECTED) 109 rfcomm_session_getaddr(d->session, &bt_sk(sk)->src, NULL); 110 sk->sk_state_change(sk); 111 } 112 113 bh_unlock_sock(sk); 114 local_irq_restore(flags); 115 116 if (parent && sock_flag(sk, SOCK_ZAPPED)) { 117 /* We have to drop DLC lock here, otherwise 118 * rfcomm_sock_destruct() will dead lock. */ 119 rfcomm_dlc_unlock(d); 120 rfcomm_sock_kill(sk); 121 rfcomm_dlc_lock(d); 122 } 123 } 124 125 /* ---- Socket functions ---- */ 126 static struct sock *__rfcomm_get_sock_by_addr(u8 channel, bdaddr_t *src) 127 { 128 struct sock *sk = NULL; 129 struct hlist_node *node; 130 131 sk_for_each(sk, node, &rfcomm_sk_list.head) { 132 if (rfcomm_pi(sk)->channel == channel && 133 !bacmp(&bt_sk(sk)->src, src)) 134 break; 135 } 136 137 return node ? sk : NULL; 138 } 139 140 /* Find socket with channel and source bdaddr. 141 * Returns closest match. 142 */ 143 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src) 144 { 145 struct sock *sk = NULL, *sk1 = NULL; 146 struct hlist_node *node; 147 148 read_lock(&rfcomm_sk_list.lock); 149 150 sk_for_each(sk, node, &rfcomm_sk_list.head) { 151 if (state && sk->sk_state != state) 152 continue; 153 154 if (rfcomm_pi(sk)->channel == channel) { 155 /* Exact match. */ 156 if (!bacmp(&bt_sk(sk)->src, src)) 157 break; 158 159 /* Closest match */ 160 if (!bacmp(&bt_sk(sk)->src, BDADDR_ANY)) 161 sk1 = sk; 162 } 163 } 164 165 read_unlock(&rfcomm_sk_list.lock); 166 167 return node ? sk : sk1; 168 } 169 170 static void rfcomm_sock_destruct(struct sock *sk) 171 { 172 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 173 174 BT_DBG("sk %p dlc %p", sk, d); 175 176 skb_queue_purge(&sk->sk_receive_queue); 177 skb_queue_purge(&sk->sk_write_queue); 178 179 rfcomm_dlc_lock(d); 180 rfcomm_pi(sk)->dlc = NULL; 181 182 /* Detach DLC if it's owned by this socket */ 183 if (d->owner == sk) 184 d->owner = NULL; 185 rfcomm_dlc_unlock(d); 186 187 rfcomm_dlc_put(d); 188 } 189 190 static void rfcomm_sock_cleanup_listen(struct sock *parent) 191 { 192 struct sock *sk; 193 194 BT_DBG("parent %p", parent); 195 196 /* Close not yet accepted dlcs */ 197 while ((sk = bt_accept_dequeue(parent, NULL))) { 198 rfcomm_sock_close(sk); 199 rfcomm_sock_kill(sk); 200 } 201 202 parent->sk_state = BT_CLOSED; 203 sock_set_flag(parent, SOCK_ZAPPED); 204 } 205 206 /* Kill socket (only if zapped and orphan) 207 * Must be called on unlocked socket. 208 */ 209 static void rfcomm_sock_kill(struct sock *sk) 210 { 211 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) 212 return; 213 214 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt)); 215 216 /* Kill poor orphan */ 217 bt_sock_unlink(&rfcomm_sk_list, sk); 218 sock_set_flag(sk, SOCK_DEAD); 219 sock_put(sk); 220 } 221 222 static void __rfcomm_sock_close(struct sock *sk) 223 { 224 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 225 226 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket); 227 228 switch (sk->sk_state) { 229 case BT_LISTEN: 230 rfcomm_sock_cleanup_listen(sk); 231 break; 232 233 case BT_CONNECT: 234 case BT_CONNECT2: 235 case BT_CONFIG: 236 case BT_CONNECTED: 237 rfcomm_dlc_close(d, 0); 238 239 default: 240 sock_set_flag(sk, SOCK_ZAPPED); 241 break; 242 } 243 } 244 245 /* Close socket. 246 * Must be called on unlocked socket. 247 */ 248 static void rfcomm_sock_close(struct sock *sk) 249 { 250 lock_sock(sk); 251 __rfcomm_sock_close(sk); 252 release_sock(sk); 253 } 254 255 static void rfcomm_sock_init(struct sock *sk, struct sock *parent) 256 { 257 struct rfcomm_pinfo *pi = rfcomm_pi(sk); 258 259 BT_DBG("sk %p", sk); 260 261 if (parent) { 262 sk->sk_type = parent->sk_type; 263 pi->dlc->defer_setup = bt_sk(parent)->defer_setup; 264 265 pi->sec_level = rfcomm_pi(parent)->sec_level; 266 pi->role_switch = rfcomm_pi(parent)->role_switch; 267 } else { 268 pi->dlc->defer_setup = 0; 269 270 pi->sec_level = BT_SECURITY_LOW; 271 pi->role_switch = 0; 272 } 273 274 pi->dlc->sec_level = pi->sec_level; 275 pi->dlc->role_switch = pi->role_switch; 276 } 277 278 static struct proto rfcomm_proto = { 279 .name = "RFCOMM", 280 .owner = THIS_MODULE, 281 .obj_size = sizeof(struct rfcomm_pinfo) 282 }; 283 284 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio) 285 { 286 struct rfcomm_dlc *d; 287 struct sock *sk; 288 289 sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto); 290 if (!sk) 291 return NULL; 292 293 sock_init_data(sock, sk); 294 INIT_LIST_HEAD(&bt_sk(sk)->accept_q); 295 296 d = rfcomm_dlc_alloc(prio); 297 if (!d) { 298 sk_free(sk); 299 return NULL; 300 } 301 302 d->data_ready = rfcomm_sk_data_ready; 303 d->state_change = rfcomm_sk_state_change; 304 305 rfcomm_pi(sk)->dlc = d; 306 d->owner = sk; 307 308 sk->sk_destruct = rfcomm_sock_destruct; 309 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT; 310 311 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 312 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 313 314 sock_reset_flag(sk, SOCK_ZAPPED); 315 316 sk->sk_protocol = proto; 317 sk->sk_state = BT_OPEN; 318 319 bt_sock_link(&rfcomm_sk_list, sk); 320 321 BT_DBG("sk %p", sk); 322 return sk; 323 } 324 325 static int rfcomm_sock_create(struct net *net, struct socket *sock, 326 int protocol, int kern) 327 { 328 struct sock *sk; 329 330 BT_DBG("sock %p", sock); 331 332 sock->state = SS_UNCONNECTED; 333 334 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW) 335 return -ESOCKTNOSUPPORT; 336 337 sock->ops = &rfcomm_sock_ops; 338 339 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC); 340 if (!sk) 341 return -ENOMEM; 342 343 rfcomm_sock_init(sk, NULL); 344 return 0; 345 } 346 347 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 348 { 349 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 350 struct sock *sk = sock->sk; 351 int err = 0; 352 353 BT_DBG("sk %p %s", sk, batostr(&sa->rc_bdaddr)); 354 355 if (!addr || addr->sa_family != AF_BLUETOOTH) 356 return -EINVAL; 357 358 lock_sock(sk); 359 360 if (sk->sk_state != BT_OPEN) { 361 err = -EBADFD; 362 goto done; 363 } 364 365 if (sk->sk_type != SOCK_STREAM) { 366 err = -EINVAL; 367 goto done; 368 } 369 370 write_lock_bh(&rfcomm_sk_list.lock); 371 372 if (sa->rc_channel && __rfcomm_get_sock_by_addr(sa->rc_channel, &sa->rc_bdaddr)) { 373 err = -EADDRINUSE; 374 } else { 375 /* Save source address */ 376 bacpy(&bt_sk(sk)->src, &sa->rc_bdaddr); 377 rfcomm_pi(sk)->channel = sa->rc_channel; 378 sk->sk_state = BT_BOUND; 379 } 380 381 write_unlock_bh(&rfcomm_sk_list.lock); 382 383 done: 384 release_sock(sk); 385 return err; 386 } 387 388 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) 389 { 390 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 391 struct sock *sk = sock->sk; 392 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 393 int err = 0; 394 395 BT_DBG("sk %p", sk); 396 397 if (alen < sizeof(struct sockaddr_rc) || 398 addr->sa_family != AF_BLUETOOTH) 399 return -EINVAL; 400 401 lock_sock(sk); 402 403 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) { 404 err = -EBADFD; 405 goto done; 406 } 407 408 if (sk->sk_type != SOCK_STREAM) { 409 err = -EINVAL; 410 goto done; 411 } 412 413 sk->sk_state = BT_CONNECT; 414 bacpy(&bt_sk(sk)->dst, &sa->rc_bdaddr); 415 rfcomm_pi(sk)->channel = sa->rc_channel; 416 417 d->sec_level = rfcomm_pi(sk)->sec_level; 418 d->role_switch = rfcomm_pi(sk)->role_switch; 419 420 err = rfcomm_dlc_open(d, &bt_sk(sk)->src, &sa->rc_bdaddr, sa->rc_channel); 421 if (!err) 422 err = bt_sock_wait_state(sk, BT_CONNECTED, 423 sock_sndtimeo(sk, flags & O_NONBLOCK)); 424 425 done: 426 release_sock(sk); 427 return err; 428 } 429 430 static int rfcomm_sock_listen(struct socket *sock, int backlog) 431 { 432 struct sock *sk = sock->sk; 433 int err = 0; 434 435 BT_DBG("sk %p backlog %d", sk, backlog); 436 437 lock_sock(sk); 438 439 if (sk->sk_state != BT_BOUND) { 440 err = -EBADFD; 441 goto done; 442 } 443 444 if (sk->sk_type != SOCK_STREAM) { 445 err = -EINVAL; 446 goto done; 447 } 448 449 if (!rfcomm_pi(sk)->channel) { 450 bdaddr_t *src = &bt_sk(sk)->src; 451 u8 channel; 452 453 err = -EINVAL; 454 455 write_lock_bh(&rfcomm_sk_list.lock); 456 457 for (channel = 1; channel < 31; channel++) 458 if (!__rfcomm_get_sock_by_addr(channel, src)) { 459 rfcomm_pi(sk)->channel = channel; 460 err = 0; 461 break; 462 } 463 464 write_unlock_bh(&rfcomm_sk_list.lock); 465 466 if (err < 0) 467 goto done; 468 } 469 470 sk->sk_max_ack_backlog = backlog; 471 sk->sk_ack_backlog = 0; 472 sk->sk_state = BT_LISTEN; 473 474 done: 475 release_sock(sk); 476 return err; 477 } 478 479 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags) 480 { 481 DECLARE_WAITQUEUE(wait, current); 482 struct sock *sk = sock->sk, *nsk; 483 long timeo; 484 int err = 0; 485 486 lock_sock(sk); 487 488 if (sk->sk_type != SOCK_STREAM) { 489 err = -EINVAL; 490 goto done; 491 } 492 493 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 494 495 BT_DBG("sk %p timeo %ld", sk, timeo); 496 497 /* Wait for an incoming connection. (wake-one). */ 498 add_wait_queue_exclusive(sk_sleep(sk), &wait); 499 while (1) { 500 set_current_state(TASK_INTERRUPTIBLE); 501 502 if (sk->sk_state != BT_LISTEN) { 503 err = -EBADFD; 504 break; 505 } 506 507 nsk = bt_accept_dequeue(sk, newsock); 508 if (nsk) 509 break; 510 511 if (!timeo) { 512 err = -EAGAIN; 513 break; 514 } 515 516 if (signal_pending(current)) { 517 err = sock_intr_errno(timeo); 518 break; 519 } 520 521 release_sock(sk); 522 timeo = schedule_timeout(timeo); 523 lock_sock(sk); 524 } 525 __set_current_state(TASK_RUNNING); 526 remove_wait_queue(sk_sleep(sk), &wait); 527 528 if (err) 529 goto done; 530 531 newsock->state = SS_CONNECTED; 532 533 BT_DBG("new socket %p", nsk); 534 535 done: 536 release_sock(sk); 537 return err; 538 } 539 540 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer) 541 { 542 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 543 struct sock *sk = sock->sk; 544 545 BT_DBG("sock %p, sk %p", sock, sk); 546 547 sa->rc_family = AF_BLUETOOTH; 548 sa->rc_channel = rfcomm_pi(sk)->channel; 549 if (peer) 550 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->dst); 551 else 552 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->src); 553 554 *len = sizeof(struct sockaddr_rc); 555 return 0; 556 } 557 558 static int rfcomm_sock_sendmsg(struct kiocb *iocb, struct socket *sock, 559 struct msghdr *msg, size_t len) 560 { 561 struct sock *sk = sock->sk; 562 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 563 struct sk_buff *skb; 564 int sent = 0; 565 566 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags)) 567 return -ENOTCONN; 568 569 if (msg->msg_flags & MSG_OOB) 570 return -EOPNOTSUPP; 571 572 if (sk->sk_shutdown & SEND_SHUTDOWN) 573 return -EPIPE; 574 575 BT_DBG("sock %p, sk %p", sock, sk); 576 577 lock_sock(sk); 578 579 while (len) { 580 size_t size = min_t(size_t, len, d->mtu); 581 int err; 582 583 skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE, 584 msg->msg_flags & MSG_DONTWAIT, &err); 585 if (!skb) { 586 if (sent == 0) 587 sent = err; 588 break; 589 } 590 skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE); 591 592 err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size); 593 if (err) { 594 kfree_skb(skb); 595 if (sent == 0) 596 sent = err; 597 break; 598 } 599 600 err = rfcomm_dlc_send(d, skb); 601 if (err < 0) { 602 kfree_skb(skb); 603 if (sent == 0) 604 sent = err; 605 break; 606 } 607 608 sent += size; 609 len -= size; 610 } 611 612 release_sock(sk); 613 614 return sent; 615 } 616 617 static int rfcomm_sock_recvmsg(struct kiocb *iocb, struct socket *sock, 618 struct msghdr *msg, size_t size, int flags) 619 { 620 struct sock *sk = sock->sk; 621 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 622 int len; 623 624 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 625 rfcomm_dlc_accept(d); 626 return 0; 627 } 628 629 len = bt_sock_stream_recvmsg(iocb, sock, msg, size, flags); 630 631 lock_sock(sk); 632 if (!(flags & MSG_PEEK) && len > 0) 633 atomic_sub(len, &sk->sk_rmem_alloc); 634 635 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2)) 636 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc); 637 release_sock(sk); 638 639 return len; 640 } 641 642 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen) 643 { 644 struct sock *sk = sock->sk; 645 int err = 0; 646 u32 opt; 647 648 BT_DBG("sk %p", sk); 649 650 lock_sock(sk); 651 652 switch (optname) { 653 case RFCOMM_LM: 654 if (get_user(opt, (u32 __user *) optval)) { 655 err = -EFAULT; 656 break; 657 } 658 659 if (opt & RFCOMM_LM_AUTH) 660 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW; 661 if (opt & RFCOMM_LM_ENCRYPT) 662 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM; 663 if (opt & RFCOMM_LM_SECURE) 664 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH; 665 666 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER); 667 break; 668 669 default: 670 err = -ENOPROTOOPT; 671 break; 672 } 673 674 release_sock(sk); 675 return err; 676 } 677 678 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 679 { 680 struct sock *sk = sock->sk; 681 struct bt_security sec; 682 int err = 0; 683 size_t len; 684 u32 opt; 685 686 BT_DBG("sk %p", sk); 687 688 if (level == SOL_RFCOMM) 689 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen); 690 691 if (level != SOL_BLUETOOTH) 692 return -ENOPROTOOPT; 693 694 lock_sock(sk); 695 696 switch (optname) { 697 case BT_SECURITY: 698 if (sk->sk_type != SOCK_STREAM) { 699 err = -EINVAL; 700 break; 701 } 702 703 sec.level = BT_SECURITY_LOW; 704 705 len = min_t(unsigned int, sizeof(sec), optlen); 706 if (copy_from_user((char *) &sec, optval, len)) { 707 err = -EFAULT; 708 break; 709 } 710 711 if (sec.level > BT_SECURITY_HIGH) { 712 err = -EINVAL; 713 break; 714 } 715 716 rfcomm_pi(sk)->sec_level = sec.level; 717 break; 718 719 case BT_DEFER_SETUP: 720 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 721 err = -EINVAL; 722 break; 723 } 724 725 if (get_user(opt, (u32 __user *) optval)) { 726 err = -EFAULT; 727 break; 728 } 729 730 bt_sk(sk)->defer_setup = opt; 731 break; 732 733 default: 734 err = -ENOPROTOOPT; 735 break; 736 } 737 738 release_sock(sk); 739 return err; 740 } 741 742 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen) 743 { 744 struct sock *sk = sock->sk; 745 struct rfcomm_conninfo cinfo; 746 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn; 747 int len, err = 0; 748 u32 opt; 749 750 BT_DBG("sk %p", sk); 751 752 if (get_user(len, optlen)) 753 return -EFAULT; 754 755 lock_sock(sk); 756 757 switch (optname) { 758 case RFCOMM_LM: 759 switch (rfcomm_pi(sk)->sec_level) { 760 case BT_SECURITY_LOW: 761 opt = RFCOMM_LM_AUTH; 762 break; 763 case BT_SECURITY_MEDIUM: 764 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT; 765 break; 766 case BT_SECURITY_HIGH: 767 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | 768 RFCOMM_LM_SECURE; 769 break; 770 default: 771 opt = 0; 772 break; 773 } 774 775 if (rfcomm_pi(sk)->role_switch) 776 opt |= RFCOMM_LM_MASTER; 777 778 if (put_user(opt, (u32 __user *) optval)) 779 err = -EFAULT; 780 break; 781 782 case RFCOMM_CONNINFO: 783 if (sk->sk_state != BT_CONNECTED && 784 !rfcomm_pi(sk)->dlc->defer_setup) { 785 err = -ENOTCONN; 786 break; 787 } 788 789 memset(&cinfo, 0, sizeof(cinfo)); 790 cinfo.hci_handle = conn->hcon->handle; 791 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3); 792 793 len = min_t(unsigned int, len, sizeof(cinfo)); 794 if (copy_to_user(optval, (char *) &cinfo, len)) 795 err = -EFAULT; 796 797 break; 798 799 default: 800 err = -ENOPROTOOPT; 801 break; 802 } 803 804 release_sock(sk); 805 return err; 806 } 807 808 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) 809 { 810 struct sock *sk = sock->sk; 811 struct bt_security sec; 812 int len, err = 0; 813 814 BT_DBG("sk %p", sk); 815 816 if (level == SOL_RFCOMM) 817 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen); 818 819 if (level != SOL_BLUETOOTH) 820 return -ENOPROTOOPT; 821 822 if (get_user(len, optlen)) 823 return -EFAULT; 824 825 lock_sock(sk); 826 827 switch (optname) { 828 case BT_SECURITY: 829 if (sk->sk_type != SOCK_STREAM) { 830 err = -EINVAL; 831 break; 832 } 833 834 sec.level = rfcomm_pi(sk)->sec_level; 835 836 len = min_t(unsigned int, len, sizeof(sec)); 837 if (copy_to_user(optval, (char *) &sec, len)) 838 err = -EFAULT; 839 840 break; 841 842 case BT_DEFER_SETUP: 843 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 844 err = -EINVAL; 845 break; 846 } 847 848 if (put_user(bt_sk(sk)->defer_setup, (u32 __user *) optval)) 849 err = -EFAULT; 850 851 break; 852 853 default: 854 err = -ENOPROTOOPT; 855 break; 856 } 857 858 release_sock(sk); 859 return err; 860 } 861 862 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 863 { 864 struct sock *sk __maybe_unused = sock->sk; 865 int err; 866 867 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg); 868 869 err = bt_sock_ioctl(sock, cmd, arg); 870 871 if (err == -ENOIOCTLCMD) { 872 #ifdef CONFIG_BT_RFCOMM_TTY 873 lock_sock(sk); 874 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg); 875 release_sock(sk); 876 #else 877 err = -EOPNOTSUPP; 878 #endif 879 } 880 881 return err; 882 } 883 884 static int rfcomm_sock_shutdown(struct socket *sock, int how) 885 { 886 struct sock *sk = sock->sk; 887 int err = 0; 888 889 BT_DBG("sock %p, sk %p", sock, sk); 890 891 if (!sk) 892 return 0; 893 894 lock_sock(sk); 895 if (!sk->sk_shutdown) { 896 sk->sk_shutdown = SHUTDOWN_MASK; 897 __rfcomm_sock_close(sk); 898 899 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime) 900 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime); 901 } 902 release_sock(sk); 903 return err; 904 } 905 906 static int rfcomm_sock_release(struct socket *sock) 907 { 908 struct sock *sk = sock->sk; 909 int err; 910 911 BT_DBG("sock %p, sk %p", sock, sk); 912 913 if (!sk) 914 return 0; 915 916 err = rfcomm_sock_shutdown(sock, 2); 917 918 sock_orphan(sk); 919 rfcomm_sock_kill(sk); 920 return err; 921 } 922 923 /* ---- RFCOMM core layer callbacks ---- 924 * 925 * called under rfcomm_lock() 926 */ 927 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d) 928 { 929 struct sock *sk, *parent; 930 bdaddr_t src, dst; 931 int result = 0; 932 933 BT_DBG("session %p channel %d", s, channel); 934 935 rfcomm_session_getaddr(s, &src, &dst); 936 937 /* Check if we have socket listening on channel */ 938 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src); 939 if (!parent) 940 return 0; 941 942 bh_lock_sock(parent); 943 944 /* Check for backlog size */ 945 if (sk_acceptq_is_full(parent)) { 946 BT_DBG("backlog full %d", parent->sk_ack_backlog); 947 goto done; 948 } 949 950 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC); 951 if (!sk) 952 goto done; 953 954 rfcomm_sock_init(sk, parent); 955 bacpy(&bt_sk(sk)->src, &src); 956 bacpy(&bt_sk(sk)->dst, &dst); 957 rfcomm_pi(sk)->channel = channel; 958 959 sk->sk_state = BT_CONFIG; 960 bt_accept_enqueue(parent, sk); 961 962 /* Accept connection and return socket DLC */ 963 *d = rfcomm_pi(sk)->dlc; 964 result = 1; 965 966 done: 967 bh_unlock_sock(parent); 968 969 if (bt_sk(parent)->defer_setup) 970 parent->sk_state_change(parent); 971 972 return result; 973 } 974 975 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p) 976 { 977 struct sock *sk; 978 struct hlist_node *node; 979 980 read_lock_bh(&rfcomm_sk_list.lock); 981 982 sk_for_each(sk, node, &rfcomm_sk_list.head) { 983 seq_printf(f, "%s %s %d %d\n", 984 batostr(&bt_sk(sk)->src), 985 batostr(&bt_sk(sk)->dst), 986 sk->sk_state, rfcomm_pi(sk)->channel); 987 } 988 989 read_unlock_bh(&rfcomm_sk_list.lock); 990 991 return 0; 992 } 993 994 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file) 995 { 996 return single_open(file, rfcomm_sock_debugfs_show, inode->i_private); 997 } 998 999 static const struct file_operations rfcomm_sock_debugfs_fops = { 1000 .open = rfcomm_sock_debugfs_open, 1001 .read = seq_read, 1002 .llseek = seq_lseek, 1003 .release = single_release, 1004 }; 1005 1006 static struct dentry *rfcomm_sock_debugfs; 1007 1008 static const struct proto_ops rfcomm_sock_ops = { 1009 .family = PF_BLUETOOTH, 1010 .owner = THIS_MODULE, 1011 .release = rfcomm_sock_release, 1012 .bind = rfcomm_sock_bind, 1013 .connect = rfcomm_sock_connect, 1014 .listen = rfcomm_sock_listen, 1015 .accept = rfcomm_sock_accept, 1016 .getname = rfcomm_sock_getname, 1017 .sendmsg = rfcomm_sock_sendmsg, 1018 .recvmsg = rfcomm_sock_recvmsg, 1019 .shutdown = rfcomm_sock_shutdown, 1020 .setsockopt = rfcomm_sock_setsockopt, 1021 .getsockopt = rfcomm_sock_getsockopt, 1022 .ioctl = rfcomm_sock_ioctl, 1023 .poll = bt_sock_poll, 1024 .socketpair = sock_no_socketpair, 1025 .mmap = sock_no_mmap 1026 }; 1027 1028 static const struct net_proto_family rfcomm_sock_family_ops = { 1029 .family = PF_BLUETOOTH, 1030 .owner = THIS_MODULE, 1031 .create = rfcomm_sock_create 1032 }; 1033 1034 int __init rfcomm_init_sockets(void) 1035 { 1036 int err; 1037 1038 err = proto_register(&rfcomm_proto, 0); 1039 if (err < 0) 1040 return err; 1041 1042 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops); 1043 if (err < 0) 1044 goto error; 1045 1046 if (bt_debugfs) { 1047 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444, 1048 bt_debugfs, NULL, &rfcomm_sock_debugfs_fops); 1049 if (!rfcomm_sock_debugfs) 1050 BT_ERR("Failed to create RFCOMM debug file"); 1051 } 1052 1053 BT_INFO("RFCOMM socket layer initialized"); 1054 1055 return 0; 1056 1057 error: 1058 BT_ERR("RFCOMM socket layer registration failed"); 1059 proto_unregister(&rfcomm_proto); 1060 return err; 1061 } 1062 1063 void __exit rfcomm_cleanup_sockets(void) 1064 { 1065 debugfs_remove(rfcomm_sock_debugfs); 1066 1067 if (bt_sock_unregister(BTPROTO_RFCOMM) < 0) 1068 BT_ERR("RFCOMM socket layer unregistration failed"); 1069 1070 proto_unregister(&rfcomm_proto); 1071 } 1072