1 /* 2 RFCOMM implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com> 4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 /* 25 * RFCOMM sockets. 26 */ 27 #include <linux/compat.h> 28 #include <linux/export.h> 29 #include <linux/debugfs.h> 30 #include <linux/sched/signal.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/l2cap.h> 35 #include <net/bluetooth/rfcomm.h> 36 37 static const struct proto_ops rfcomm_sock_ops; 38 39 static struct bt_sock_list rfcomm_sk_list = { 40 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock) 41 }; 42 43 static void rfcomm_sock_close(struct sock *sk); 44 static void rfcomm_sock_kill(struct sock *sk); 45 46 /* ---- DLC callbacks ---- 47 * 48 * called under rfcomm_dlc_lock() 49 */ 50 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb) 51 { 52 struct sock *sk = d->owner; 53 if (!sk) 54 return; 55 56 atomic_add(skb->len, &sk->sk_rmem_alloc); 57 skb_queue_tail(&sk->sk_receive_queue, skb); 58 sk->sk_data_ready(sk); 59 60 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 61 rfcomm_dlc_throttle(d); 62 } 63 64 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err) 65 { 66 struct sock *sk = d->owner, *parent; 67 68 if (!sk) 69 return; 70 71 BT_DBG("dlc %p state %ld err %d", d, d->state, err); 72 73 lock_sock(sk); 74 75 if (err) 76 sk->sk_err = err; 77 78 sk->sk_state = d->state; 79 80 parent = bt_sk(sk)->parent; 81 if (parent) { 82 if (d->state == BT_CLOSED) { 83 sock_set_flag(sk, SOCK_ZAPPED); 84 bt_accept_unlink(sk); 85 } 86 parent->sk_data_ready(parent); 87 } else { 88 if (d->state == BT_CONNECTED) 89 rfcomm_session_getaddr(d->session, 90 &rfcomm_pi(sk)->src, NULL); 91 sk->sk_state_change(sk); 92 } 93 94 release_sock(sk); 95 96 if (parent && sock_flag(sk, SOCK_ZAPPED)) { 97 /* We have to drop DLC lock here, otherwise 98 * rfcomm_sock_destruct() will dead lock. */ 99 rfcomm_dlc_unlock(d); 100 rfcomm_sock_kill(sk); 101 rfcomm_dlc_lock(d); 102 } 103 } 104 105 /* ---- Socket functions ---- */ 106 static struct sock *__rfcomm_get_listen_sock_by_addr(u8 channel, bdaddr_t *src) 107 { 108 struct sock *sk = NULL; 109 110 sk_for_each(sk, &rfcomm_sk_list.head) { 111 if (rfcomm_pi(sk)->channel != channel) 112 continue; 113 114 if (bacmp(&rfcomm_pi(sk)->src, src)) 115 continue; 116 117 if (sk->sk_state == BT_BOUND || sk->sk_state == BT_LISTEN) 118 break; 119 } 120 121 return sk ? sk : NULL; 122 } 123 124 /* Find socket with channel and source bdaddr. 125 * Returns closest match. 126 */ 127 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src) 128 { 129 struct sock *sk = NULL, *sk1 = NULL; 130 131 read_lock(&rfcomm_sk_list.lock); 132 133 sk_for_each(sk, &rfcomm_sk_list.head) { 134 if (state && sk->sk_state != state) 135 continue; 136 137 if (rfcomm_pi(sk)->channel == channel) { 138 /* Exact match. */ 139 if (!bacmp(&rfcomm_pi(sk)->src, src)) 140 break; 141 142 /* Closest match */ 143 if (!bacmp(&rfcomm_pi(sk)->src, BDADDR_ANY)) 144 sk1 = sk; 145 } 146 } 147 148 read_unlock(&rfcomm_sk_list.lock); 149 150 return sk ? sk : sk1; 151 } 152 153 static void rfcomm_sock_destruct(struct sock *sk) 154 { 155 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 156 157 BT_DBG("sk %p dlc %p", sk, d); 158 159 skb_queue_purge(&sk->sk_receive_queue); 160 skb_queue_purge(&sk->sk_write_queue); 161 162 rfcomm_dlc_lock(d); 163 rfcomm_pi(sk)->dlc = NULL; 164 165 /* Detach DLC if it's owned by this socket */ 166 if (d->owner == sk) 167 d->owner = NULL; 168 rfcomm_dlc_unlock(d); 169 170 rfcomm_dlc_put(d); 171 } 172 173 static void rfcomm_sock_cleanup_listen(struct sock *parent) 174 { 175 struct sock *sk; 176 177 BT_DBG("parent %p", parent); 178 179 /* Close not yet accepted dlcs */ 180 while ((sk = bt_accept_dequeue(parent, NULL))) { 181 rfcomm_sock_close(sk); 182 rfcomm_sock_kill(sk); 183 } 184 185 parent->sk_state = BT_CLOSED; 186 sock_set_flag(parent, SOCK_ZAPPED); 187 } 188 189 /* Kill socket (only if zapped and orphan) 190 * Must be called on unlocked socket. 191 */ 192 static void rfcomm_sock_kill(struct sock *sk) 193 { 194 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) 195 return; 196 197 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, refcount_read(&sk->sk_refcnt)); 198 199 /* Kill poor orphan */ 200 bt_sock_unlink(&rfcomm_sk_list, sk); 201 sock_set_flag(sk, SOCK_DEAD); 202 sock_put(sk); 203 } 204 205 static void __rfcomm_sock_close(struct sock *sk) 206 { 207 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 208 209 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket); 210 211 switch (sk->sk_state) { 212 case BT_LISTEN: 213 rfcomm_sock_cleanup_listen(sk); 214 break; 215 216 case BT_CONNECT: 217 case BT_CONNECT2: 218 case BT_CONFIG: 219 case BT_CONNECTED: 220 rfcomm_dlc_close(d, 0); 221 fallthrough; 222 223 default: 224 sock_set_flag(sk, SOCK_ZAPPED); 225 break; 226 } 227 } 228 229 /* Close socket. 230 * Must be called on unlocked socket. 231 */ 232 static void rfcomm_sock_close(struct sock *sk) 233 { 234 lock_sock(sk); 235 __rfcomm_sock_close(sk); 236 release_sock(sk); 237 } 238 239 static void rfcomm_sock_init(struct sock *sk, struct sock *parent) 240 { 241 struct rfcomm_pinfo *pi = rfcomm_pi(sk); 242 243 BT_DBG("sk %p", sk); 244 245 if (parent) { 246 sk->sk_type = parent->sk_type; 247 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP, 248 &bt_sk(parent)->flags); 249 250 pi->sec_level = rfcomm_pi(parent)->sec_level; 251 pi->role_switch = rfcomm_pi(parent)->role_switch; 252 253 security_sk_clone(parent, sk); 254 } else { 255 pi->dlc->defer_setup = 0; 256 257 pi->sec_level = BT_SECURITY_LOW; 258 pi->role_switch = 0; 259 } 260 261 pi->dlc->sec_level = pi->sec_level; 262 pi->dlc->role_switch = pi->role_switch; 263 } 264 265 static struct proto rfcomm_proto = { 266 .name = "RFCOMM", 267 .owner = THIS_MODULE, 268 .obj_size = sizeof(struct rfcomm_pinfo) 269 }; 270 271 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, 272 int proto, gfp_t prio, int kern) 273 { 274 struct rfcomm_dlc *d; 275 struct sock *sk; 276 277 sk = bt_sock_alloc(net, sock, &rfcomm_proto, proto, prio, kern); 278 if (!sk) 279 return NULL; 280 281 d = rfcomm_dlc_alloc(prio); 282 if (!d) { 283 sk_free(sk); 284 return NULL; 285 } 286 287 d->data_ready = rfcomm_sk_data_ready; 288 d->state_change = rfcomm_sk_state_change; 289 290 rfcomm_pi(sk)->dlc = d; 291 d->owner = sk; 292 293 sk->sk_destruct = rfcomm_sock_destruct; 294 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT; 295 296 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 297 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 298 299 bt_sock_link(&rfcomm_sk_list, sk); 300 301 BT_DBG("sk %p", sk); 302 return sk; 303 } 304 305 static int rfcomm_sock_create(struct net *net, struct socket *sock, 306 int protocol, int kern) 307 { 308 struct sock *sk; 309 310 BT_DBG("sock %p", sock); 311 312 sock->state = SS_UNCONNECTED; 313 314 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW) 315 return -ESOCKTNOSUPPORT; 316 317 sock->ops = &rfcomm_sock_ops; 318 319 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern); 320 if (!sk) 321 return -ENOMEM; 322 323 rfcomm_sock_init(sk, NULL); 324 return 0; 325 } 326 327 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 328 { 329 struct sockaddr_rc sa; 330 struct sock *sk = sock->sk; 331 int len, err = 0; 332 333 if (!addr || addr_len < offsetofend(struct sockaddr, sa_family) || 334 addr->sa_family != AF_BLUETOOTH) 335 return -EINVAL; 336 337 memset(&sa, 0, sizeof(sa)); 338 len = min_t(unsigned int, sizeof(sa), addr_len); 339 memcpy(&sa, addr, len); 340 341 BT_DBG("sk %p %pMR", sk, &sa.rc_bdaddr); 342 343 lock_sock(sk); 344 345 if (sk->sk_state != BT_OPEN) { 346 err = -EBADFD; 347 goto done; 348 } 349 350 if (sk->sk_type != SOCK_STREAM) { 351 err = -EINVAL; 352 goto done; 353 } 354 355 write_lock(&rfcomm_sk_list.lock); 356 357 if (sa.rc_channel && 358 __rfcomm_get_listen_sock_by_addr(sa.rc_channel, &sa.rc_bdaddr)) { 359 err = -EADDRINUSE; 360 } else { 361 /* Save source address */ 362 bacpy(&rfcomm_pi(sk)->src, &sa.rc_bdaddr); 363 rfcomm_pi(sk)->channel = sa.rc_channel; 364 sk->sk_state = BT_BOUND; 365 } 366 367 write_unlock(&rfcomm_sk_list.lock); 368 369 done: 370 release_sock(sk); 371 return err; 372 } 373 374 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) 375 { 376 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 377 struct sock *sk = sock->sk; 378 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 379 int err = 0; 380 381 BT_DBG("sk %p", sk); 382 383 if (alen < sizeof(struct sockaddr_rc) || 384 addr->sa_family != AF_BLUETOOTH) 385 return -EINVAL; 386 387 sock_hold(sk); 388 lock_sock(sk); 389 390 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) { 391 err = -EBADFD; 392 goto done; 393 } 394 395 if (sk->sk_type != SOCK_STREAM) { 396 err = -EINVAL; 397 goto done; 398 } 399 400 sk->sk_state = BT_CONNECT; 401 bacpy(&rfcomm_pi(sk)->dst, &sa->rc_bdaddr); 402 rfcomm_pi(sk)->channel = sa->rc_channel; 403 404 d->sec_level = rfcomm_pi(sk)->sec_level; 405 d->role_switch = rfcomm_pi(sk)->role_switch; 406 407 /* Drop sock lock to avoid potential deadlock with the RFCOMM lock */ 408 release_sock(sk); 409 err = rfcomm_dlc_open(d, &rfcomm_pi(sk)->src, &sa->rc_bdaddr, 410 sa->rc_channel); 411 lock_sock(sk); 412 if (!err && !sock_flag(sk, SOCK_ZAPPED)) 413 err = bt_sock_wait_state(sk, BT_CONNECTED, 414 sock_sndtimeo(sk, flags & O_NONBLOCK)); 415 416 done: 417 release_sock(sk); 418 sock_put(sk); 419 return err; 420 } 421 422 static int rfcomm_sock_listen(struct socket *sock, int backlog) 423 { 424 struct sock *sk = sock->sk; 425 int err = 0; 426 427 BT_DBG("sk %p backlog %d", sk, backlog); 428 429 lock_sock(sk); 430 431 if (sk->sk_state != BT_BOUND) { 432 err = -EBADFD; 433 goto done; 434 } 435 436 if (sk->sk_type != SOCK_STREAM) { 437 err = -EINVAL; 438 goto done; 439 } 440 441 if (!rfcomm_pi(sk)->channel) { 442 bdaddr_t *src = &rfcomm_pi(sk)->src; 443 u8 channel; 444 445 err = -EINVAL; 446 447 write_lock(&rfcomm_sk_list.lock); 448 449 for (channel = 1; channel < 31; channel++) 450 if (!__rfcomm_get_listen_sock_by_addr(channel, src)) { 451 rfcomm_pi(sk)->channel = channel; 452 err = 0; 453 break; 454 } 455 456 write_unlock(&rfcomm_sk_list.lock); 457 458 if (err < 0) 459 goto done; 460 } 461 462 sk->sk_max_ack_backlog = backlog; 463 sk->sk_ack_backlog = 0; 464 sk->sk_state = BT_LISTEN; 465 466 done: 467 release_sock(sk); 468 return err; 469 } 470 471 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags, 472 bool kern) 473 { 474 DEFINE_WAIT_FUNC(wait, woken_wake_function); 475 struct sock *sk = sock->sk, *nsk; 476 long timeo; 477 int err = 0; 478 479 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 480 481 if (sk->sk_type != SOCK_STREAM) { 482 err = -EINVAL; 483 goto done; 484 } 485 486 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 487 488 BT_DBG("sk %p timeo %ld", sk, timeo); 489 490 /* Wait for an incoming connection. (wake-one). */ 491 add_wait_queue_exclusive(sk_sleep(sk), &wait); 492 while (1) { 493 if (sk->sk_state != BT_LISTEN) { 494 err = -EBADFD; 495 break; 496 } 497 498 nsk = bt_accept_dequeue(sk, newsock); 499 if (nsk) 500 break; 501 502 if (!timeo) { 503 err = -EAGAIN; 504 break; 505 } 506 507 if (signal_pending(current)) { 508 err = sock_intr_errno(timeo); 509 break; 510 } 511 512 release_sock(sk); 513 514 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 515 516 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 517 } 518 remove_wait_queue(sk_sleep(sk), &wait); 519 520 if (err) 521 goto done; 522 523 newsock->state = SS_CONNECTED; 524 525 BT_DBG("new socket %p", nsk); 526 527 done: 528 release_sock(sk); 529 return err; 530 } 531 532 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int peer) 533 { 534 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 535 struct sock *sk = sock->sk; 536 537 BT_DBG("sock %p, sk %p", sock, sk); 538 539 if (peer && sk->sk_state != BT_CONNECTED && 540 sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2) 541 return -ENOTCONN; 542 543 memset(sa, 0, sizeof(*sa)); 544 sa->rc_family = AF_BLUETOOTH; 545 sa->rc_channel = rfcomm_pi(sk)->channel; 546 if (peer) 547 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->dst); 548 else 549 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->src); 550 551 return sizeof(struct sockaddr_rc); 552 } 553 554 static int rfcomm_sock_sendmsg(struct socket *sock, struct msghdr *msg, 555 size_t len) 556 { 557 struct sock *sk = sock->sk; 558 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 559 struct sk_buff *skb; 560 int sent; 561 562 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags)) 563 return -ENOTCONN; 564 565 if (msg->msg_flags & MSG_OOB) 566 return -EOPNOTSUPP; 567 568 if (sk->sk_shutdown & SEND_SHUTDOWN) 569 return -EPIPE; 570 571 BT_DBG("sock %p, sk %p", sock, sk); 572 573 lock_sock(sk); 574 575 sent = bt_sock_wait_ready(sk, msg->msg_flags); 576 577 release_sock(sk); 578 579 if (sent) 580 return sent; 581 582 skb = bt_skb_sendmmsg(sk, msg, len, d->mtu, RFCOMM_SKB_HEAD_RESERVE, 583 RFCOMM_SKB_TAIL_RESERVE); 584 if (IS_ERR(skb)) 585 return PTR_ERR(skb); 586 587 sent = rfcomm_dlc_send(d, skb); 588 if (sent < 0) 589 kfree_skb(skb); 590 591 return sent; 592 } 593 594 static int rfcomm_sock_recvmsg(struct socket *sock, struct msghdr *msg, 595 size_t size, int flags) 596 { 597 struct sock *sk = sock->sk; 598 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 599 int len; 600 601 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 602 rfcomm_dlc_accept(d); 603 return 0; 604 } 605 606 len = bt_sock_stream_recvmsg(sock, msg, size, flags); 607 608 lock_sock(sk); 609 if (!(flags & MSG_PEEK) && len > 0) 610 atomic_sub(len, &sk->sk_rmem_alloc); 611 612 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2)) 613 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc); 614 release_sock(sk); 615 616 return len; 617 } 618 619 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, 620 sockptr_t optval, unsigned int optlen) 621 { 622 struct sock *sk = sock->sk; 623 int err = 0; 624 u32 opt; 625 626 BT_DBG("sk %p", sk); 627 628 lock_sock(sk); 629 630 switch (optname) { 631 case RFCOMM_LM: 632 if (bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen)) { 633 err = -EFAULT; 634 break; 635 } 636 637 if (opt & RFCOMM_LM_FIPS) { 638 err = -EINVAL; 639 break; 640 } 641 642 if (opt & RFCOMM_LM_AUTH) 643 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW; 644 if (opt & RFCOMM_LM_ENCRYPT) 645 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM; 646 if (opt & RFCOMM_LM_SECURE) 647 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH; 648 649 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER); 650 break; 651 652 default: 653 err = -ENOPROTOOPT; 654 break; 655 } 656 657 release_sock(sk); 658 return err; 659 } 660 661 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, 662 sockptr_t optval, unsigned int optlen) 663 { 664 struct sock *sk = sock->sk; 665 struct bt_security sec; 666 int err = 0; 667 u32 opt; 668 669 BT_DBG("sk %p", sk); 670 671 if (level == SOL_RFCOMM) 672 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen); 673 674 if (level != SOL_BLUETOOTH) 675 return -ENOPROTOOPT; 676 677 lock_sock(sk); 678 679 switch (optname) { 680 case BT_SECURITY: 681 if (sk->sk_type != SOCK_STREAM) { 682 err = -EINVAL; 683 break; 684 } 685 686 sec.level = BT_SECURITY_LOW; 687 688 err = bt_copy_from_sockptr(&sec, sizeof(sec), optval, optlen); 689 if (err) 690 break; 691 692 if (sec.level > BT_SECURITY_HIGH) { 693 err = -EINVAL; 694 break; 695 } 696 697 rfcomm_pi(sk)->sec_level = sec.level; 698 break; 699 700 case BT_DEFER_SETUP: 701 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 702 err = -EINVAL; 703 break; 704 } 705 706 err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen); 707 if (err) 708 break; 709 710 if (opt) 711 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); 712 else 713 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); 714 715 break; 716 717 default: 718 err = -ENOPROTOOPT; 719 break; 720 } 721 722 release_sock(sk); 723 return err; 724 } 725 726 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen) 727 { 728 struct sock *sk = sock->sk; 729 struct sock *l2cap_sk; 730 struct l2cap_conn *conn; 731 struct rfcomm_conninfo cinfo; 732 int len, err = 0; 733 u32 opt; 734 735 BT_DBG("sk %p", sk); 736 737 if (get_user(len, optlen)) 738 return -EFAULT; 739 740 lock_sock(sk); 741 742 switch (optname) { 743 case RFCOMM_LM: 744 switch (rfcomm_pi(sk)->sec_level) { 745 case BT_SECURITY_LOW: 746 opt = RFCOMM_LM_AUTH; 747 break; 748 case BT_SECURITY_MEDIUM: 749 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT; 750 break; 751 case BT_SECURITY_HIGH: 752 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | 753 RFCOMM_LM_SECURE; 754 break; 755 case BT_SECURITY_FIPS: 756 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | 757 RFCOMM_LM_SECURE | RFCOMM_LM_FIPS; 758 break; 759 default: 760 opt = 0; 761 break; 762 } 763 764 if (rfcomm_pi(sk)->role_switch) 765 opt |= RFCOMM_LM_MASTER; 766 767 if (put_user(opt, (u32 __user *) optval)) 768 err = -EFAULT; 769 770 break; 771 772 case RFCOMM_CONNINFO: 773 if (sk->sk_state != BT_CONNECTED && 774 !rfcomm_pi(sk)->dlc->defer_setup) { 775 err = -ENOTCONN; 776 break; 777 } 778 779 l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk; 780 conn = l2cap_pi(l2cap_sk)->chan->conn; 781 782 memset(&cinfo, 0, sizeof(cinfo)); 783 cinfo.hci_handle = conn->hcon->handle; 784 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3); 785 786 len = min_t(unsigned int, len, sizeof(cinfo)); 787 if (copy_to_user(optval, (char *) &cinfo, len)) 788 err = -EFAULT; 789 790 break; 791 792 default: 793 err = -ENOPROTOOPT; 794 break; 795 } 796 797 release_sock(sk); 798 return err; 799 } 800 801 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) 802 { 803 struct sock *sk = sock->sk; 804 struct bt_security sec; 805 int len, err = 0; 806 807 BT_DBG("sk %p", sk); 808 809 if (level == SOL_RFCOMM) 810 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen); 811 812 if (level != SOL_BLUETOOTH) 813 return -ENOPROTOOPT; 814 815 if (get_user(len, optlen)) 816 return -EFAULT; 817 818 lock_sock(sk); 819 820 switch (optname) { 821 case BT_SECURITY: 822 if (sk->sk_type != SOCK_STREAM) { 823 err = -EINVAL; 824 break; 825 } 826 827 sec.level = rfcomm_pi(sk)->sec_level; 828 sec.key_size = 0; 829 830 len = min_t(unsigned int, len, sizeof(sec)); 831 if (copy_to_user(optval, (char *) &sec, len)) 832 err = -EFAULT; 833 834 break; 835 836 case BT_DEFER_SETUP: 837 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 838 err = -EINVAL; 839 break; 840 } 841 842 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags), 843 (u32 __user *) optval)) 844 err = -EFAULT; 845 846 break; 847 848 default: 849 err = -ENOPROTOOPT; 850 break; 851 } 852 853 release_sock(sk); 854 return err; 855 } 856 857 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 858 { 859 struct sock *sk __maybe_unused = sock->sk; 860 int err; 861 862 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg); 863 864 err = bt_sock_ioctl(sock, cmd, arg); 865 866 if (err == -ENOIOCTLCMD) { 867 #ifdef CONFIG_BT_RFCOMM_TTY 868 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg); 869 #else 870 err = -EOPNOTSUPP; 871 #endif 872 } 873 874 return err; 875 } 876 877 #ifdef CONFIG_COMPAT 878 static int rfcomm_sock_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 879 { 880 return rfcomm_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 881 } 882 #endif 883 884 static int rfcomm_sock_shutdown(struct socket *sock, int how) 885 { 886 struct sock *sk = sock->sk; 887 int err = 0; 888 889 BT_DBG("sock %p, sk %p", sock, sk); 890 891 if (!sk) 892 return 0; 893 894 lock_sock(sk); 895 if (!sk->sk_shutdown) { 896 sk->sk_shutdown = SHUTDOWN_MASK; 897 898 release_sock(sk); 899 __rfcomm_sock_close(sk); 900 lock_sock(sk); 901 902 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime && 903 !(current->flags & PF_EXITING)) 904 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime); 905 } 906 release_sock(sk); 907 return err; 908 } 909 910 static int rfcomm_sock_release(struct socket *sock) 911 { 912 struct sock *sk = sock->sk; 913 int err; 914 915 BT_DBG("sock %p, sk %p", sock, sk); 916 917 if (!sk) 918 return 0; 919 920 err = rfcomm_sock_shutdown(sock, 2); 921 922 sock_orphan(sk); 923 rfcomm_sock_kill(sk); 924 return err; 925 } 926 927 /* ---- RFCOMM core layer callbacks ---- 928 * 929 * called under rfcomm_lock() 930 */ 931 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d) 932 { 933 struct sock *sk, *parent; 934 bdaddr_t src, dst; 935 int result = 0; 936 937 BT_DBG("session %p channel %d", s, channel); 938 939 rfcomm_session_getaddr(s, &src, &dst); 940 941 /* Check if we have socket listening on channel */ 942 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src); 943 if (!parent) 944 return 0; 945 946 lock_sock(parent); 947 948 /* Check for backlog size */ 949 if (sk_acceptq_is_full(parent)) { 950 BT_DBG("backlog full %d", parent->sk_ack_backlog); 951 goto done; 952 } 953 954 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC, 0); 955 if (!sk) 956 goto done; 957 958 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM); 959 960 rfcomm_sock_init(sk, parent); 961 bacpy(&rfcomm_pi(sk)->src, &src); 962 bacpy(&rfcomm_pi(sk)->dst, &dst); 963 rfcomm_pi(sk)->channel = channel; 964 965 sk->sk_state = BT_CONFIG; 966 bt_accept_enqueue(parent, sk, true); 967 968 /* Accept connection and return socket DLC */ 969 *d = rfcomm_pi(sk)->dlc; 970 result = 1; 971 972 done: 973 release_sock(parent); 974 975 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags)) 976 parent->sk_state_change(parent); 977 978 return result; 979 } 980 981 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p) 982 { 983 struct sock *sk; 984 985 read_lock(&rfcomm_sk_list.lock); 986 987 sk_for_each(sk, &rfcomm_sk_list.head) { 988 seq_printf(f, "%pMR %pMR %d %d\n", 989 &rfcomm_pi(sk)->src, &rfcomm_pi(sk)->dst, 990 sk->sk_state, rfcomm_pi(sk)->channel); 991 } 992 993 read_unlock(&rfcomm_sk_list.lock); 994 995 return 0; 996 } 997 998 DEFINE_SHOW_ATTRIBUTE(rfcomm_sock_debugfs); 999 1000 static struct dentry *rfcomm_sock_debugfs; 1001 1002 static const struct proto_ops rfcomm_sock_ops = { 1003 .family = PF_BLUETOOTH, 1004 .owner = THIS_MODULE, 1005 .release = rfcomm_sock_release, 1006 .bind = rfcomm_sock_bind, 1007 .connect = rfcomm_sock_connect, 1008 .listen = rfcomm_sock_listen, 1009 .accept = rfcomm_sock_accept, 1010 .getname = rfcomm_sock_getname, 1011 .sendmsg = rfcomm_sock_sendmsg, 1012 .recvmsg = rfcomm_sock_recvmsg, 1013 .shutdown = rfcomm_sock_shutdown, 1014 .setsockopt = rfcomm_sock_setsockopt, 1015 .getsockopt = rfcomm_sock_getsockopt, 1016 .ioctl = rfcomm_sock_ioctl, 1017 .gettstamp = sock_gettstamp, 1018 .poll = bt_sock_poll, 1019 .socketpair = sock_no_socketpair, 1020 .mmap = sock_no_mmap, 1021 #ifdef CONFIG_COMPAT 1022 .compat_ioctl = rfcomm_sock_compat_ioctl, 1023 #endif 1024 }; 1025 1026 static const struct net_proto_family rfcomm_sock_family_ops = { 1027 .family = PF_BLUETOOTH, 1028 .owner = THIS_MODULE, 1029 .create = rfcomm_sock_create 1030 }; 1031 1032 int __init rfcomm_init_sockets(void) 1033 { 1034 int err; 1035 1036 BUILD_BUG_ON(sizeof(struct sockaddr_rc) > sizeof(struct sockaddr)); 1037 1038 err = proto_register(&rfcomm_proto, 0); 1039 if (err < 0) 1040 return err; 1041 1042 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops); 1043 if (err < 0) { 1044 BT_ERR("RFCOMM socket layer registration failed"); 1045 goto error; 1046 } 1047 1048 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL); 1049 if (err < 0) { 1050 BT_ERR("Failed to create RFCOMM proc file"); 1051 bt_sock_unregister(BTPROTO_RFCOMM); 1052 goto error; 1053 } 1054 1055 BT_INFO("RFCOMM socket layer initialized"); 1056 1057 if (IS_ERR_OR_NULL(bt_debugfs)) 1058 return 0; 1059 1060 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444, 1061 bt_debugfs, NULL, 1062 &rfcomm_sock_debugfs_fops); 1063 1064 return 0; 1065 1066 error: 1067 proto_unregister(&rfcomm_proto); 1068 return err; 1069 } 1070 1071 void __exit rfcomm_cleanup_sockets(void) 1072 { 1073 bt_procfs_cleanup(&init_net, "rfcomm"); 1074 1075 debugfs_remove(rfcomm_sock_debugfs); 1076 1077 bt_sock_unregister(BTPROTO_RFCOMM); 1078 1079 proto_unregister(&rfcomm_proto); 1080 } 1081