1 /* 2 RFCOMM implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com> 4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 /* 25 * Bluetooth RFCOMM core. 26 */ 27 28 #include <linux/module.h> 29 #include <linux/errno.h> 30 #include <linux/kernel.h> 31 #include <linux/sched.h> 32 #include <linux/signal.h> 33 #include <linux/init.h> 34 #include <linux/wait.h> 35 #include <linux/device.h> 36 #include <linux/debugfs.h> 37 #include <linux/seq_file.h> 38 #include <linux/net.h> 39 #include <linux/mutex.h> 40 #include <linux/kthread.h> 41 #include <linux/slab.h> 42 43 #include <net/sock.h> 44 #include <linux/uaccess.h> 45 #include <asm/unaligned.h> 46 47 #include <net/bluetooth/bluetooth.h> 48 #include <net/bluetooth/hci_core.h> 49 #include <net/bluetooth/l2cap.h> 50 #include <net/bluetooth/rfcomm.h> 51 52 #define VERSION "1.11" 53 54 static bool disable_cfc; 55 static bool l2cap_ertm; 56 static int channel_mtu = -1; 57 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU; 58 59 static struct task_struct *rfcomm_thread; 60 61 static DEFINE_MUTEX(rfcomm_mutex); 62 #define rfcomm_lock() mutex_lock(&rfcomm_mutex) 63 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex) 64 65 66 static LIST_HEAD(session_list); 67 68 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len); 69 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci); 70 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci); 71 static int rfcomm_queue_disc(struct rfcomm_dlc *d); 72 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type); 73 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d); 74 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig); 75 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len); 76 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits); 77 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr); 78 79 static void rfcomm_process_connect(struct rfcomm_session *s); 80 81 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, 82 bdaddr_t *dst, 83 u8 sec_level, 84 int *err); 85 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst); 86 static void rfcomm_session_del(struct rfcomm_session *s); 87 88 /* ---- RFCOMM frame parsing macros ---- */ 89 #define __get_dlci(b) ((b & 0xfc) >> 2) 90 #define __get_channel(b) ((b & 0xf8) >> 3) 91 #define __get_dir(b) ((b & 0x04) >> 2) 92 #define __get_type(b) ((b & 0xef)) 93 94 #define __test_ea(b) ((b & 0x01)) 95 #define __test_cr(b) ((b & 0x02)) 96 #define __test_pf(b) ((b & 0x10)) 97 98 #define __addr(cr, dlci) (((dlci & 0x3f) << 2) | (cr << 1) | 0x01) 99 #define __ctrl(type, pf) (((type & 0xef) | (pf << 4))) 100 #define __dlci(dir, chn) (((chn & 0x1f) << 1) | dir) 101 #define __srv_channel(dlci) (dlci >> 1) 102 #define __dir(dlci) (dlci & 0x01) 103 104 #define __len8(len) (((len) << 1) | 1) 105 #define __len16(len) ((len) << 1) 106 107 /* MCC macros */ 108 #define __mcc_type(cr, type) (((type << 2) | (cr << 1) | 0x01)) 109 #define __get_mcc_type(b) ((b & 0xfc) >> 2) 110 #define __get_mcc_len(b) ((b & 0xfe) >> 1) 111 112 /* RPN macros */ 113 #define __rpn_line_settings(data, stop, parity) ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3)) 114 #define __get_rpn_data_bits(line) ((line) & 0x3) 115 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1) 116 #define __get_rpn_parity(line) (((line) >> 3) & 0x7) 117 118 static inline void rfcomm_schedule(void) 119 { 120 if (!rfcomm_thread) 121 return; 122 wake_up_process(rfcomm_thread); 123 } 124 125 static inline void rfcomm_session_put(struct rfcomm_session *s) 126 { 127 if (atomic_dec_and_test(&s->refcnt)) 128 rfcomm_session_del(s); 129 } 130 131 /* ---- RFCOMM FCS computation ---- */ 132 133 /* reversed, 8-bit, poly=0x07 */ 134 static unsigned char rfcomm_crc_table[256] = { 135 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75, 136 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b, 137 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69, 138 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67, 139 140 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d, 141 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43, 142 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51, 143 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f, 144 145 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05, 146 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b, 147 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19, 148 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17, 149 150 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d, 151 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33, 152 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21, 153 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f, 154 155 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95, 156 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b, 157 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89, 158 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87, 159 160 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad, 161 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3, 162 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1, 163 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf, 164 165 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5, 166 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb, 167 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9, 168 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7, 169 170 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd, 171 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3, 172 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1, 173 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf 174 }; 175 176 /* CRC on 2 bytes */ 177 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]]) 178 179 /* FCS on 2 bytes */ 180 static inline u8 __fcs(u8 *data) 181 { 182 return 0xff - __crc(data); 183 } 184 185 /* FCS on 3 bytes */ 186 static inline u8 __fcs2(u8 *data) 187 { 188 return 0xff - rfcomm_crc_table[__crc(data) ^ data[2]]; 189 } 190 191 /* Check FCS */ 192 static inline int __check_fcs(u8 *data, int type, u8 fcs) 193 { 194 u8 f = __crc(data); 195 196 if (type != RFCOMM_UIH) 197 f = rfcomm_crc_table[f ^ data[2]]; 198 199 return rfcomm_crc_table[f ^ fcs] != 0xcf; 200 } 201 202 /* ---- L2CAP callbacks ---- */ 203 static void rfcomm_l2state_change(struct sock *sk) 204 { 205 BT_DBG("%p state %d", sk, sk->sk_state); 206 rfcomm_schedule(); 207 } 208 209 static void rfcomm_l2data_ready(struct sock *sk, int bytes) 210 { 211 BT_DBG("%p bytes %d", sk, bytes); 212 rfcomm_schedule(); 213 } 214 215 static int rfcomm_l2sock_create(struct socket **sock) 216 { 217 int err; 218 219 BT_DBG(""); 220 221 err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock); 222 if (!err) { 223 struct sock *sk = (*sock)->sk; 224 sk->sk_data_ready = rfcomm_l2data_ready; 225 sk->sk_state_change = rfcomm_l2state_change; 226 } 227 return err; 228 } 229 230 static inline int rfcomm_check_security(struct rfcomm_dlc *d) 231 { 232 struct sock *sk = d->session->sock->sk; 233 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn; 234 235 __u8 auth_type; 236 237 switch (d->sec_level) { 238 case BT_SECURITY_HIGH: 239 auth_type = HCI_AT_GENERAL_BONDING_MITM; 240 break; 241 case BT_SECURITY_MEDIUM: 242 auth_type = HCI_AT_GENERAL_BONDING; 243 break; 244 default: 245 auth_type = HCI_AT_NO_BONDING; 246 break; 247 } 248 249 return hci_conn_security(conn->hcon, d->sec_level, auth_type); 250 } 251 252 static void rfcomm_session_timeout(unsigned long arg) 253 { 254 struct rfcomm_session *s = (void *) arg; 255 256 BT_DBG("session %p state %ld", s, s->state); 257 258 set_bit(RFCOMM_TIMED_OUT, &s->flags); 259 rfcomm_schedule(); 260 } 261 262 static void rfcomm_session_set_timer(struct rfcomm_session *s, long timeout) 263 { 264 BT_DBG("session %p state %ld timeout %ld", s, s->state, timeout); 265 266 if (!mod_timer(&s->timer, jiffies + timeout)) 267 rfcomm_session_hold(s); 268 } 269 270 static void rfcomm_session_clear_timer(struct rfcomm_session *s) 271 { 272 BT_DBG("session %p state %ld", s, s->state); 273 274 if (timer_pending(&s->timer) && del_timer(&s->timer)) 275 rfcomm_session_put(s); 276 } 277 278 /* ---- RFCOMM DLCs ---- */ 279 static void rfcomm_dlc_timeout(unsigned long arg) 280 { 281 struct rfcomm_dlc *d = (void *) arg; 282 283 BT_DBG("dlc %p state %ld", d, d->state); 284 285 set_bit(RFCOMM_TIMED_OUT, &d->flags); 286 rfcomm_dlc_put(d); 287 rfcomm_schedule(); 288 } 289 290 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout) 291 { 292 BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout); 293 294 if (!mod_timer(&d->timer, jiffies + timeout)) 295 rfcomm_dlc_hold(d); 296 } 297 298 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d) 299 { 300 BT_DBG("dlc %p state %ld", d, d->state); 301 302 if (timer_pending(&d->timer) && del_timer(&d->timer)) 303 rfcomm_dlc_put(d); 304 } 305 306 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d) 307 { 308 BT_DBG("%p", d); 309 310 d->state = BT_OPEN; 311 d->flags = 0; 312 d->mscex = 0; 313 d->sec_level = BT_SECURITY_LOW; 314 d->mtu = RFCOMM_DEFAULT_MTU; 315 d->v24_sig = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV; 316 317 d->cfc = RFCOMM_CFC_DISABLED; 318 d->rx_credits = RFCOMM_DEFAULT_CREDITS; 319 } 320 321 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio) 322 { 323 struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio); 324 325 if (!d) 326 return NULL; 327 328 setup_timer(&d->timer, rfcomm_dlc_timeout, (unsigned long)d); 329 330 skb_queue_head_init(&d->tx_queue); 331 spin_lock_init(&d->lock); 332 atomic_set(&d->refcnt, 1); 333 334 rfcomm_dlc_clear_state(d); 335 336 BT_DBG("%p", d); 337 338 return d; 339 } 340 341 void rfcomm_dlc_free(struct rfcomm_dlc *d) 342 { 343 BT_DBG("%p", d); 344 345 skb_queue_purge(&d->tx_queue); 346 kfree(d); 347 } 348 349 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d) 350 { 351 BT_DBG("dlc %p session %p", d, s); 352 353 rfcomm_session_hold(s); 354 355 rfcomm_session_clear_timer(s); 356 rfcomm_dlc_hold(d); 357 list_add(&d->list, &s->dlcs); 358 d->session = s; 359 } 360 361 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d) 362 { 363 struct rfcomm_session *s = d->session; 364 365 BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s); 366 367 list_del(&d->list); 368 d->session = NULL; 369 rfcomm_dlc_put(d); 370 371 if (list_empty(&s->dlcs)) 372 rfcomm_session_set_timer(s, RFCOMM_IDLE_TIMEOUT); 373 374 rfcomm_session_put(s); 375 } 376 377 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci) 378 { 379 struct rfcomm_dlc *d; 380 381 list_for_each_entry(d, &s->dlcs, list) 382 if (d->dlci == dlci) 383 return d; 384 385 return NULL; 386 } 387 388 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel) 389 { 390 struct rfcomm_session *s; 391 int err = 0; 392 u8 dlci; 393 394 BT_DBG("dlc %p state %ld %s %s channel %d", 395 d, d->state, batostr(src), batostr(dst), channel); 396 397 if (channel < 1 || channel > 30) 398 return -EINVAL; 399 400 if (d->state != BT_OPEN && d->state != BT_CLOSED) 401 return 0; 402 403 s = rfcomm_session_get(src, dst); 404 if (!s) { 405 s = rfcomm_session_create(src, dst, d->sec_level, &err); 406 if (!s) 407 return err; 408 } 409 410 dlci = __dlci(!s->initiator, channel); 411 412 /* Check if DLCI already exists */ 413 if (rfcomm_dlc_get(s, dlci)) 414 return -EBUSY; 415 416 rfcomm_dlc_clear_state(d); 417 418 d->dlci = dlci; 419 d->addr = __addr(s->initiator, dlci); 420 d->priority = 7; 421 422 d->state = BT_CONFIG; 423 rfcomm_dlc_link(s, d); 424 425 d->out = 1; 426 427 d->mtu = s->mtu; 428 d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc; 429 430 if (s->state == BT_CONNECTED) { 431 if (rfcomm_check_security(d)) 432 rfcomm_send_pn(s, 1, d); 433 else 434 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 435 } 436 437 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT); 438 439 return 0; 440 } 441 442 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel) 443 { 444 int r; 445 446 rfcomm_lock(); 447 448 r = __rfcomm_dlc_open(d, src, dst, channel); 449 450 rfcomm_unlock(); 451 return r; 452 } 453 454 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err) 455 { 456 struct rfcomm_session *s = d->session; 457 if (!s) 458 return 0; 459 460 BT_DBG("dlc %p state %ld dlci %d err %d session %p", 461 d, d->state, d->dlci, err, s); 462 463 switch (d->state) { 464 case BT_CONNECT: 465 case BT_CONFIG: 466 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 467 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 468 rfcomm_schedule(); 469 break; 470 } 471 /* Fall through */ 472 473 case BT_CONNECTED: 474 d->state = BT_DISCONN; 475 if (skb_queue_empty(&d->tx_queue)) { 476 rfcomm_send_disc(s, d->dlci); 477 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT); 478 } else { 479 rfcomm_queue_disc(d); 480 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2); 481 } 482 break; 483 484 case BT_OPEN: 485 case BT_CONNECT2: 486 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 487 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 488 rfcomm_schedule(); 489 break; 490 } 491 /* Fall through */ 492 493 default: 494 rfcomm_dlc_clear_timer(d); 495 496 rfcomm_dlc_lock(d); 497 d->state = BT_CLOSED; 498 d->state_change(d, err); 499 rfcomm_dlc_unlock(d); 500 501 skb_queue_purge(&d->tx_queue); 502 rfcomm_dlc_unlink(d); 503 } 504 505 return 0; 506 } 507 508 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err) 509 { 510 int r; 511 512 rfcomm_lock(); 513 514 r = __rfcomm_dlc_close(d, err); 515 516 rfcomm_unlock(); 517 return r; 518 } 519 520 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb) 521 { 522 int len = skb->len; 523 524 if (d->state != BT_CONNECTED) 525 return -ENOTCONN; 526 527 BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len); 528 529 if (len > d->mtu) 530 return -EINVAL; 531 532 rfcomm_make_uih(skb, d->addr); 533 skb_queue_tail(&d->tx_queue, skb); 534 535 if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags)) 536 rfcomm_schedule(); 537 return len; 538 } 539 540 void __rfcomm_dlc_throttle(struct rfcomm_dlc *d) 541 { 542 BT_DBG("dlc %p state %ld", d, d->state); 543 544 if (!d->cfc) { 545 d->v24_sig |= RFCOMM_V24_FC; 546 set_bit(RFCOMM_MSC_PENDING, &d->flags); 547 } 548 rfcomm_schedule(); 549 } 550 551 void __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d) 552 { 553 BT_DBG("dlc %p state %ld", d, d->state); 554 555 if (!d->cfc) { 556 d->v24_sig &= ~RFCOMM_V24_FC; 557 set_bit(RFCOMM_MSC_PENDING, &d->flags); 558 } 559 rfcomm_schedule(); 560 } 561 562 /* 563 Set/get modem status functions use _local_ status i.e. what we report 564 to the other side. 565 Remote status is provided by dlc->modem_status() callback. 566 */ 567 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig) 568 { 569 BT_DBG("dlc %p state %ld v24_sig 0x%x", 570 d, d->state, v24_sig); 571 572 if (test_bit(RFCOMM_RX_THROTTLED, &d->flags)) 573 v24_sig |= RFCOMM_V24_FC; 574 else 575 v24_sig &= ~RFCOMM_V24_FC; 576 577 d->v24_sig = v24_sig; 578 579 if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags)) 580 rfcomm_schedule(); 581 582 return 0; 583 } 584 585 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig) 586 { 587 BT_DBG("dlc %p state %ld v24_sig 0x%x", 588 d, d->state, d->v24_sig); 589 590 *v24_sig = d->v24_sig; 591 return 0; 592 } 593 594 /* ---- RFCOMM sessions ---- */ 595 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state) 596 { 597 struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL); 598 599 if (!s) 600 return NULL; 601 602 BT_DBG("session %p sock %p", s, sock); 603 604 setup_timer(&s->timer, rfcomm_session_timeout, (unsigned long) s); 605 606 INIT_LIST_HEAD(&s->dlcs); 607 s->state = state; 608 s->sock = sock; 609 610 s->mtu = RFCOMM_DEFAULT_MTU; 611 s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN; 612 613 /* Do not increment module usage count for listening sessions. 614 * Otherwise we won't be able to unload the module. */ 615 if (state != BT_LISTEN) 616 if (!try_module_get(THIS_MODULE)) { 617 kfree(s); 618 return NULL; 619 } 620 621 list_add(&s->list, &session_list); 622 623 return s; 624 } 625 626 static void rfcomm_session_del(struct rfcomm_session *s) 627 { 628 int state = s->state; 629 630 BT_DBG("session %p state %ld", s, s->state); 631 632 list_del(&s->list); 633 634 if (state == BT_CONNECTED) 635 rfcomm_send_disc(s, 0); 636 637 rfcomm_session_clear_timer(s); 638 sock_release(s->sock); 639 kfree(s); 640 641 if (state != BT_LISTEN) 642 module_put(THIS_MODULE); 643 } 644 645 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst) 646 { 647 struct rfcomm_session *s; 648 struct list_head *p, *n; 649 struct bt_sock *sk; 650 list_for_each_safe(p, n, &session_list) { 651 s = list_entry(p, struct rfcomm_session, list); 652 sk = bt_sk(s->sock->sk); 653 654 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&sk->src, src)) && 655 !bacmp(&sk->dst, dst)) 656 return s; 657 } 658 return NULL; 659 } 660 661 static void rfcomm_session_close(struct rfcomm_session *s, int err) 662 { 663 struct rfcomm_dlc *d; 664 struct list_head *p, *n; 665 666 BT_DBG("session %p state %ld err %d", s, s->state, err); 667 668 rfcomm_session_hold(s); 669 670 s->state = BT_CLOSED; 671 672 /* Close all dlcs */ 673 list_for_each_safe(p, n, &s->dlcs) { 674 d = list_entry(p, struct rfcomm_dlc, list); 675 d->state = BT_CLOSED; 676 __rfcomm_dlc_close(d, err); 677 } 678 679 rfcomm_session_clear_timer(s); 680 rfcomm_session_put(s); 681 } 682 683 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, 684 bdaddr_t *dst, 685 u8 sec_level, 686 int *err) 687 { 688 struct rfcomm_session *s = NULL; 689 struct sockaddr_l2 addr; 690 struct socket *sock; 691 struct sock *sk; 692 693 BT_DBG("%s %s", batostr(src), batostr(dst)); 694 695 *err = rfcomm_l2sock_create(&sock); 696 if (*err < 0) 697 return NULL; 698 699 bacpy(&addr.l2_bdaddr, src); 700 addr.l2_family = AF_BLUETOOTH; 701 addr.l2_psm = 0; 702 addr.l2_cid = 0; 703 *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr)); 704 if (*err < 0) 705 goto failed; 706 707 /* Set L2CAP options */ 708 sk = sock->sk; 709 lock_sock(sk); 710 l2cap_pi(sk)->chan->imtu = l2cap_mtu; 711 l2cap_pi(sk)->chan->sec_level = sec_level; 712 if (l2cap_ertm) 713 l2cap_pi(sk)->chan->mode = L2CAP_MODE_ERTM; 714 release_sock(sk); 715 716 s = rfcomm_session_add(sock, BT_BOUND); 717 if (!s) { 718 *err = -ENOMEM; 719 goto failed; 720 } 721 722 s->initiator = 1; 723 724 bacpy(&addr.l2_bdaddr, dst); 725 addr.l2_family = AF_BLUETOOTH; 726 addr.l2_psm = cpu_to_le16(RFCOMM_PSM); 727 addr.l2_cid = 0; 728 *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK); 729 if (*err == 0 || *err == -EINPROGRESS) 730 return s; 731 732 rfcomm_session_del(s); 733 return NULL; 734 735 failed: 736 sock_release(sock); 737 return NULL; 738 } 739 740 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst) 741 { 742 struct sock *sk = s->sock->sk; 743 if (src) 744 bacpy(src, &bt_sk(sk)->src); 745 if (dst) 746 bacpy(dst, &bt_sk(sk)->dst); 747 } 748 749 /* ---- RFCOMM frame sending ---- */ 750 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len) 751 { 752 struct kvec iv = { data, len }; 753 struct msghdr msg; 754 755 BT_DBG("session %p len %d", s, len); 756 757 memset(&msg, 0, sizeof(msg)); 758 759 return kernel_sendmsg(s->sock, &msg, &iv, 1, len); 760 } 761 762 static int rfcomm_send_cmd(struct rfcomm_session *s, struct rfcomm_cmd *cmd) 763 { 764 BT_DBG("%p cmd %u", s, cmd->ctrl); 765 766 return rfcomm_send_frame(s, (void *) cmd, sizeof(*cmd)); 767 } 768 769 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci) 770 { 771 struct rfcomm_cmd cmd; 772 773 BT_DBG("%p dlci %d", s, dlci); 774 775 cmd.addr = __addr(s->initiator, dlci); 776 cmd.ctrl = __ctrl(RFCOMM_SABM, 1); 777 cmd.len = __len8(0); 778 cmd.fcs = __fcs2((u8 *) &cmd); 779 780 return rfcomm_send_cmd(s, &cmd); 781 } 782 783 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci) 784 { 785 struct rfcomm_cmd cmd; 786 787 BT_DBG("%p dlci %d", s, dlci); 788 789 cmd.addr = __addr(!s->initiator, dlci); 790 cmd.ctrl = __ctrl(RFCOMM_UA, 1); 791 cmd.len = __len8(0); 792 cmd.fcs = __fcs2((u8 *) &cmd); 793 794 return rfcomm_send_cmd(s, &cmd); 795 } 796 797 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci) 798 { 799 struct rfcomm_cmd cmd; 800 801 BT_DBG("%p dlci %d", s, dlci); 802 803 cmd.addr = __addr(s->initiator, dlci); 804 cmd.ctrl = __ctrl(RFCOMM_DISC, 1); 805 cmd.len = __len8(0); 806 cmd.fcs = __fcs2((u8 *) &cmd); 807 808 return rfcomm_send_cmd(s, &cmd); 809 } 810 811 static int rfcomm_queue_disc(struct rfcomm_dlc *d) 812 { 813 struct rfcomm_cmd *cmd; 814 struct sk_buff *skb; 815 816 BT_DBG("dlc %p dlci %d", d, d->dlci); 817 818 skb = alloc_skb(sizeof(*cmd), GFP_KERNEL); 819 if (!skb) 820 return -ENOMEM; 821 822 cmd = (void *) __skb_put(skb, sizeof(*cmd)); 823 cmd->addr = d->addr; 824 cmd->ctrl = __ctrl(RFCOMM_DISC, 1); 825 cmd->len = __len8(0); 826 cmd->fcs = __fcs2((u8 *) cmd); 827 828 skb_queue_tail(&d->tx_queue, skb); 829 rfcomm_schedule(); 830 return 0; 831 } 832 833 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci) 834 { 835 struct rfcomm_cmd cmd; 836 837 BT_DBG("%p dlci %d", s, dlci); 838 839 cmd.addr = __addr(!s->initiator, dlci); 840 cmd.ctrl = __ctrl(RFCOMM_DM, 1); 841 cmd.len = __len8(0); 842 cmd.fcs = __fcs2((u8 *) &cmd); 843 844 return rfcomm_send_cmd(s, &cmd); 845 } 846 847 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type) 848 { 849 struct rfcomm_hdr *hdr; 850 struct rfcomm_mcc *mcc; 851 u8 buf[16], *ptr = buf; 852 853 BT_DBG("%p cr %d type %d", s, cr, type); 854 855 hdr = (void *) ptr; ptr += sizeof(*hdr); 856 hdr->addr = __addr(s->initiator, 0); 857 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 858 hdr->len = __len8(sizeof(*mcc) + 1); 859 860 mcc = (void *) ptr; ptr += sizeof(*mcc); 861 mcc->type = __mcc_type(cr, RFCOMM_NSC); 862 mcc->len = __len8(1); 863 864 /* Type that we didn't like */ 865 *ptr = __mcc_type(cr, type); ptr++; 866 867 *ptr = __fcs(buf); ptr++; 868 869 return rfcomm_send_frame(s, buf, ptr - buf); 870 } 871 872 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d) 873 { 874 struct rfcomm_hdr *hdr; 875 struct rfcomm_mcc *mcc; 876 struct rfcomm_pn *pn; 877 u8 buf[16], *ptr = buf; 878 879 BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu); 880 881 hdr = (void *) ptr; ptr += sizeof(*hdr); 882 hdr->addr = __addr(s->initiator, 0); 883 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 884 hdr->len = __len8(sizeof(*mcc) + sizeof(*pn)); 885 886 mcc = (void *) ptr; ptr += sizeof(*mcc); 887 mcc->type = __mcc_type(cr, RFCOMM_PN); 888 mcc->len = __len8(sizeof(*pn)); 889 890 pn = (void *) ptr; ptr += sizeof(*pn); 891 pn->dlci = d->dlci; 892 pn->priority = d->priority; 893 pn->ack_timer = 0; 894 pn->max_retrans = 0; 895 896 if (s->cfc) { 897 pn->flow_ctrl = cr ? 0xf0 : 0xe0; 898 pn->credits = RFCOMM_DEFAULT_CREDITS; 899 } else { 900 pn->flow_ctrl = 0; 901 pn->credits = 0; 902 } 903 904 if (cr && channel_mtu >= 0) 905 pn->mtu = cpu_to_le16(channel_mtu); 906 else 907 pn->mtu = cpu_to_le16(d->mtu); 908 909 *ptr = __fcs(buf); ptr++; 910 911 return rfcomm_send_frame(s, buf, ptr - buf); 912 } 913 914 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci, 915 u8 bit_rate, u8 data_bits, u8 stop_bits, 916 u8 parity, u8 flow_ctrl_settings, 917 u8 xon_char, u8 xoff_char, u16 param_mask) 918 { 919 struct rfcomm_hdr *hdr; 920 struct rfcomm_mcc *mcc; 921 struct rfcomm_rpn *rpn; 922 u8 buf[16], *ptr = buf; 923 924 BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x" 925 " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x", 926 s, cr, dlci, bit_rate, data_bits, stop_bits, parity, 927 flow_ctrl_settings, xon_char, xoff_char, param_mask); 928 929 hdr = (void *) ptr; ptr += sizeof(*hdr); 930 hdr->addr = __addr(s->initiator, 0); 931 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 932 hdr->len = __len8(sizeof(*mcc) + sizeof(*rpn)); 933 934 mcc = (void *) ptr; ptr += sizeof(*mcc); 935 mcc->type = __mcc_type(cr, RFCOMM_RPN); 936 mcc->len = __len8(sizeof(*rpn)); 937 938 rpn = (void *) ptr; ptr += sizeof(*rpn); 939 rpn->dlci = __addr(1, dlci); 940 rpn->bit_rate = bit_rate; 941 rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity); 942 rpn->flow_ctrl = flow_ctrl_settings; 943 rpn->xon_char = xon_char; 944 rpn->xoff_char = xoff_char; 945 rpn->param_mask = cpu_to_le16(param_mask); 946 947 *ptr = __fcs(buf); ptr++; 948 949 return rfcomm_send_frame(s, buf, ptr - buf); 950 } 951 952 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status) 953 { 954 struct rfcomm_hdr *hdr; 955 struct rfcomm_mcc *mcc; 956 struct rfcomm_rls *rls; 957 u8 buf[16], *ptr = buf; 958 959 BT_DBG("%p cr %d status 0x%x", s, cr, status); 960 961 hdr = (void *) ptr; ptr += sizeof(*hdr); 962 hdr->addr = __addr(s->initiator, 0); 963 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 964 hdr->len = __len8(sizeof(*mcc) + sizeof(*rls)); 965 966 mcc = (void *) ptr; ptr += sizeof(*mcc); 967 mcc->type = __mcc_type(cr, RFCOMM_RLS); 968 mcc->len = __len8(sizeof(*rls)); 969 970 rls = (void *) ptr; ptr += sizeof(*rls); 971 rls->dlci = __addr(1, dlci); 972 rls->status = status; 973 974 *ptr = __fcs(buf); ptr++; 975 976 return rfcomm_send_frame(s, buf, ptr - buf); 977 } 978 979 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig) 980 { 981 struct rfcomm_hdr *hdr; 982 struct rfcomm_mcc *mcc; 983 struct rfcomm_msc *msc; 984 u8 buf[16], *ptr = buf; 985 986 BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig); 987 988 hdr = (void *) ptr; ptr += sizeof(*hdr); 989 hdr->addr = __addr(s->initiator, 0); 990 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 991 hdr->len = __len8(sizeof(*mcc) + sizeof(*msc)); 992 993 mcc = (void *) ptr; ptr += sizeof(*mcc); 994 mcc->type = __mcc_type(cr, RFCOMM_MSC); 995 mcc->len = __len8(sizeof(*msc)); 996 997 msc = (void *) ptr; ptr += sizeof(*msc); 998 msc->dlci = __addr(1, dlci); 999 msc->v24_sig = v24_sig | 0x01; 1000 1001 *ptr = __fcs(buf); ptr++; 1002 1003 return rfcomm_send_frame(s, buf, ptr - buf); 1004 } 1005 1006 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr) 1007 { 1008 struct rfcomm_hdr *hdr; 1009 struct rfcomm_mcc *mcc; 1010 u8 buf[16], *ptr = buf; 1011 1012 BT_DBG("%p cr %d", s, cr); 1013 1014 hdr = (void *) ptr; ptr += sizeof(*hdr); 1015 hdr->addr = __addr(s->initiator, 0); 1016 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1017 hdr->len = __len8(sizeof(*mcc)); 1018 1019 mcc = (void *) ptr; ptr += sizeof(*mcc); 1020 mcc->type = __mcc_type(cr, RFCOMM_FCOFF); 1021 mcc->len = __len8(0); 1022 1023 *ptr = __fcs(buf); ptr++; 1024 1025 return rfcomm_send_frame(s, buf, ptr - buf); 1026 } 1027 1028 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr) 1029 { 1030 struct rfcomm_hdr *hdr; 1031 struct rfcomm_mcc *mcc; 1032 u8 buf[16], *ptr = buf; 1033 1034 BT_DBG("%p cr %d", s, cr); 1035 1036 hdr = (void *) ptr; ptr += sizeof(*hdr); 1037 hdr->addr = __addr(s->initiator, 0); 1038 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1039 hdr->len = __len8(sizeof(*mcc)); 1040 1041 mcc = (void *) ptr; ptr += sizeof(*mcc); 1042 mcc->type = __mcc_type(cr, RFCOMM_FCON); 1043 mcc->len = __len8(0); 1044 1045 *ptr = __fcs(buf); ptr++; 1046 1047 return rfcomm_send_frame(s, buf, ptr - buf); 1048 } 1049 1050 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len) 1051 { 1052 struct socket *sock = s->sock; 1053 struct kvec iv[3]; 1054 struct msghdr msg; 1055 unsigned char hdr[5], crc[1]; 1056 1057 if (len > 125) 1058 return -EINVAL; 1059 1060 BT_DBG("%p cr %d", s, cr); 1061 1062 hdr[0] = __addr(s->initiator, 0); 1063 hdr[1] = __ctrl(RFCOMM_UIH, 0); 1064 hdr[2] = 0x01 | ((len + 2) << 1); 1065 hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2); 1066 hdr[4] = 0x01 | (len << 1); 1067 1068 crc[0] = __fcs(hdr); 1069 1070 iv[0].iov_base = hdr; 1071 iv[0].iov_len = 5; 1072 iv[1].iov_base = pattern; 1073 iv[1].iov_len = len; 1074 iv[2].iov_base = crc; 1075 iv[2].iov_len = 1; 1076 1077 memset(&msg, 0, sizeof(msg)); 1078 1079 return kernel_sendmsg(sock, &msg, iv, 3, 6 + len); 1080 } 1081 1082 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits) 1083 { 1084 struct rfcomm_hdr *hdr; 1085 u8 buf[16], *ptr = buf; 1086 1087 BT_DBG("%p addr %d credits %d", s, addr, credits); 1088 1089 hdr = (void *) ptr; ptr += sizeof(*hdr); 1090 hdr->addr = addr; 1091 hdr->ctrl = __ctrl(RFCOMM_UIH, 1); 1092 hdr->len = __len8(0); 1093 1094 *ptr = credits; ptr++; 1095 1096 *ptr = __fcs(buf); ptr++; 1097 1098 return rfcomm_send_frame(s, buf, ptr - buf); 1099 } 1100 1101 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr) 1102 { 1103 struct rfcomm_hdr *hdr; 1104 int len = skb->len; 1105 u8 *crc; 1106 1107 if (len > 127) { 1108 hdr = (void *) skb_push(skb, 4); 1109 put_unaligned(cpu_to_le16(__len16(len)), (__le16 *) &hdr->len); 1110 } else { 1111 hdr = (void *) skb_push(skb, 3); 1112 hdr->len = __len8(len); 1113 } 1114 hdr->addr = addr; 1115 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1116 1117 crc = skb_put(skb, 1); 1118 *crc = __fcs((void *) hdr); 1119 } 1120 1121 /* ---- RFCOMM frame reception ---- */ 1122 static int rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci) 1123 { 1124 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1125 1126 if (dlci) { 1127 /* Data channel */ 1128 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1129 if (!d) { 1130 rfcomm_send_dm(s, dlci); 1131 return 0; 1132 } 1133 1134 switch (d->state) { 1135 case BT_CONNECT: 1136 rfcomm_dlc_clear_timer(d); 1137 1138 rfcomm_dlc_lock(d); 1139 d->state = BT_CONNECTED; 1140 d->state_change(d, 0); 1141 rfcomm_dlc_unlock(d); 1142 1143 rfcomm_send_msc(s, 1, dlci, d->v24_sig); 1144 break; 1145 1146 case BT_DISCONN: 1147 d->state = BT_CLOSED; 1148 __rfcomm_dlc_close(d, 0); 1149 1150 if (list_empty(&s->dlcs)) { 1151 s->state = BT_DISCONN; 1152 rfcomm_send_disc(s, 0); 1153 rfcomm_session_clear_timer(s); 1154 } 1155 1156 break; 1157 } 1158 } else { 1159 /* Control channel */ 1160 switch (s->state) { 1161 case BT_CONNECT: 1162 s->state = BT_CONNECTED; 1163 rfcomm_process_connect(s); 1164 break; 1165 1166 case BT_DISCONN: 1167 /* rfcomm_session_put is called later so don't do 1168 * anything here otherwise we will mess up the session 1169 * reference counter: 1170 * 1171 * (a) when we are the initiator dlc_unlink will drive 1172 * the reference counter to 0 (there is no initial put 1173 * after session_add) 1174 * 1175 * (b) when we are not the initiator rfcomm_rx_process 1176 * will explicitly call put to balance the initial hold 1177 * done after session add. 1178 */ 1179 break; 1180 } 1181 } 1182 return 0; 1183 } 1184 1185 static int rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci) 1186 { 1187 int err = 0; 1188 1189 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1190 1191 if (dlci) { 1192 /* Data DLC */ 1193 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1194 if (d) { 1195 if (d->state == BT_CONNECT || d->state == BT_CONFIG) 1196 err = ECONNREFUSED; 1197 else 1198 err = ECONNRESET; 1199 1200 d->state = BT_CLOSED; 1201 __rfcomm_dlc_close(d, err); 1202 } 1203 } else { 1204 if (s->state == BT_CONNECT) 1205 err = ECONNREFUSED; 1206 else 1207 err = ECONNRESET; 1208 1209 s->state = BT_CLOSED; 1210 rfcomm_session_close(s, err); 1211 } 1212 return 0; 1213 } 1214 1215 static int rfcomm_recv_disc(struct rfcomm_session *s, u8 dlci) 1216 { 1217 int err = 0; 1218 1219 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1220 1221 if (dlci) { 1222 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1223 if (d) { 1224 rfcomm_send_ua(s, dlci); 1225 1226 if (d->state == BT_CONNECT || d->state == BT_CONFIG) 1227 err = ECONNREFUSED; 1228 else 1229 err = ECONNRESET; 1230 1231 d->state = BT_CLOSED; 1232 __rfcomm_dlc_close(d, err); 1233 } else 1234 rfcomm_send_dm(s, dlci); 1235 1236 } else { 1237 rfcomm_send_ua(s, 0); 1238 1239 if (s->state == BT_CONNECT) 1240 err = ECONNREFUSED; 1241 else 1242 err = ECONNRESET; 1243 1244 s->state = BT_CLOSED; 1245 rfcomm_session_close(s, err); 1246 } 1247 1248 return 0; 1249 } 1250 1251 void rfcomm_dlc_accept(struct rfcomm_dlc *d) 1252 { 1253 struct sock *sk = d->session->sock->sk; 1254 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn; 1255 1256 BT_DBG("dlc %p", d); 1257 1258 rfcomm_send_ua(d->session, d->dlci); 1259 1260 rfcomm_dlc_clear_timer(d); 1261 1262 rfcomm_dlc_lock(d); 1263 d->state = BT_CONNECTED; 1264 d->state_change(d, 0); 1265 rfcomm_dlc_unlock(d); 1266 1267 if (d->role_switch) 1268 hci_conn_switch_role(conn->hcon, 0x00); 1269 1270 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig); 1271 } 1272 1273 static void rfcomm_check_accept(struct rfcomm_dlc *d) 1274 { 1275 if (rfcomm_check_security(d)) { 1276 if (d->defer_setup) { 1277 set_bit(RFCOMM_DEFER_SETUP, &d->flags); 1278 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1279 1280 rfcomm_dlc_lock(d); 1281 d->state = BT_CONNECT2; 1282 d->state_change(d, 0); 1283 rfcomm_dlc_unlock(d); 1284 } else 1285 rfcomm_dlc_accept(d); 1286 } else { 1287 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 1288 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1289 } 1290 } 1291 1292 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci) 1293 { 1294 struct rfcomm_dlc *d; 1295 u8 channel; 1296 1297 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1298 1299 if (!dlci) { 1300 rfcomm_send_ua(s, 0); 1301 1302 if (s->state == BT_OPEN) { 1303 s->state = BT_CONNECTED; 1304 rfcomm_process_connect(s); 1305 } 1306 return 0; 1307 } 1308 1309 /* Check if DLC exists */ 1310 d = rfcomm_dlc_get(s, dlci); 1311 if (d) { 1312 if (d->state == BT_OPEN) { 1313 /* DLC was previously opened by PN request */ 1314 rfcomm_check_accept(d); 1315 } 1316 return 0; 1317 } 1318 1319 /* Notify socket layer about incoming connection */ 1320 channel = __srv_channel(dlci); 1321 if (rfcomm_connect_ind(s, channel, &d)) { 1322 d->dlci = dlci; 1323 d->addr = __addr(s->initiator, dlci); 1324 rfcomm_dlc_link(s, d); 1325 1326 rfcomm_check_accept(d); 1327 } else { 1328 rfcomm_send_dm(s, dlci); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn) 1335 { 1336 struct rfcomm_session *s = d->session; 1337 1338 BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d", 1339 d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits); 1340 1341 if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) || 1342 pn->flow_ctrl == 0xe0) { 1343 d->cfc = RFCOMM_CFC_ENABLED; 1344 d->tx_credits = pn->credits; 1345 } else { 1346 d->cfc = RFCOMM_CFC_DISABLED; 1347 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1348 } 1349 1350 if (s->cfc == RFCOMM_CFC_UNKNOWN) 1351 s->cfc = d->cfc; 1352 1353 d->priority = pn->priority; 1354 1355 d->mtu = __le16_to_cpu(pn->mtu); 1356 1357 if (cr && d->mtu > s->mtu) 1358 d->mtu = s->mtu; 1359 1360 return 0; 1361 } 1362 1363 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1364 { 1365 struct rfcomm_pn *pn = (void *) skb->data; 1366 struct rfcomm_dlc *d; 1367 u8 dlci = pn->dlci; 1368 1369 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1370 1371 if (!dlci) 1372 return 0; 1373 1374 d = rfcomm_dlc_get(s, dlci); 1375 if (d) { 1376 if (cr) { 1377 /* PN request */ 1378 rfcomm_apply_pn(d, cr, pn); 1379 rfcomm_send_pn(s, 0, d); 1380 } else { 1381 /* PN response */ 1382 switch (d->state) { 1383 case BT_CONFIG: 1384 rfcomm_apply_pn(d, cr, pn); 1385 1386 d->state = BT_CONNECT; 1387 rfcomm_send_sabm(s, d->dlci); 1388 break; 1389 } 1390 } 1391 } else { 1392 u8 channel = __srv_channel(dlci); 1393 1394 if (!cr) 1395 return 0; 1396 1397 /* PN request for non existing DLC. 1398 * Assume incoming connection. */ 1399 if (rfcomm_connect_ind(s, channel, &d)) { 1400 d->dlci = dlci; 1401 d->addr = __addr(s->initiator, dlci); 1402 rfcomm_dlc_link(s, d); 1403 1404 rfcomm_apply_pn(d, cr, pn); 1405 1406 d->state = BT_OPEN; 1407 rfcomm_send_pn(s, 0, d); 1408 } else { 1409 rfcomm_send_dm(s, dlci); 1410 } 1411 } 1412 return 0; 1413 } 1414 1415 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb) 1416 { 1417 struct rfcomm_rpn *rpn = (void *) skb->data; 1418 u8 dlci = __get_dlci(rpn->dlci); 1419 1420 u8 bit_rate = 0; 1421 u8 data_bits = 0; 1422 u8 stop_bits = 0; 1423 u8 parity = 0; 1424 u8 flow_ctrl = 0; 1425 u8 xon_char = 0; 1426 u8 xoff_char = 0; 1427 u16 rpn_mask = RFCOMM_RPN_PM_ALL; 1428 1429 BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x", 1430 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl, 1431 rpn->xon_char, rpn->xoff_char, rpn->param_mask); 1432 1433 if (!cr) 1434 return 0; 1435 1436 if (len == 1) { 1437 /* This is a request, return default (according to ETSI TS 07.10) settings */ 1438 bit_rate = RFCOMM_RPN_BR_9600; 1439 data_bits = RFCOMM_RPN_DATA_8; 1440 stop_bits = RFCOMM_RPN_STOP_1; 1441 parity = RFCOMM_RPN_PARITY_NONE; 1442 flow_ctrl = RFCOMM_RPN_FLOW_NONE; 1443 xon_char = RFCOMM_RPN_XON_CHAR; 1444 xoff_char = RFCOMM_RPN_XOFF_CHAR; 1445 goto rpn_out; 1446 } 1447 1448 /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit, 1449 * no parity, no flow control lines, normal XON/XOFF chars */ 1450 1451 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) { 1452 bit_rate = rpn->bit_rate; 1453 if (bit_rate > RFCOMM_RPN_BR_230400) { 1454 BT_DBG("RPN bit rate mismatch 0x%x", bit_rate); 1455 bit_rate = RFCOMM_RPN_BR_9600; 1456 rpn_mask ^= RFCOMM_RPN_PM_BITRATE; 1457 } 1458 } 1459 1460 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) { 1461 data_bits = __get_rpn_data_bits(rpn->line_settings); 1462 if (data_bits != RFCOMM_RPN_DATA_8) { 1463 BT_DBG("RPN data bits mismatch 0x%x", data_bits); 1464 data_bits = RFCOMM_RPN_DATA_8; 1465 rpn_mask ^= RFCOMM_RPN_PM_DATA; 1466 } 1467 } 1468 1469 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) { 1470 stop_bits = __get_rpn_stop_bits(rpn->line_settings); 1471 if (stop_bits != RFCOMM_RPN_STOP_1) { 1472 BT_DBG("RPN stop bits mismatch 0x%x", stop_bits); 1473 stop_bits = RFCOMM_RPN_STOP_1; 1474 rpn_mask ^= RFCOMM_RPN_PM_STOP; 1475 } 1476 } 1477 1478 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) { 1479 parity = __get_rpn_parity(rpn->line_settings); 1480 if (parity != RFCOMM_RPN_PARITY_NONE) { 1481 BT_DBG("RPN parity mismatch 0x%x", parity); 1482 parity = RFCOMM_RPN_PARITY_NONE; 1483 rpn_mask ^= RFCOMM_RPN_PM_PARITY; 1484 } 1485 } 1486 1487 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) { 1488 flow_ctrl = rpn->flow_ctrl; 1489 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) { 1490 BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl); 1491 flow_ctrl = RFCOMM_RPN_FLOW_NONE; 1492 rpn_mask ^= RFCOMM_RPN_PM_FLOW; 1493 } 1494 } 1495 1496 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) { 1497 xon_char = rpn->xon_char; 1498 if (xon_char != RFCOMM_RPN_XON_CHAR) { 1499 BT_DBG("RPN XON char mismatch 0x%x", xon_char); 1500 xon_char = RFCOMM_RPN_XON_CHAR; 1501 rpn_mask ^= RFCOMM_RPN_PM_XON; 1502 } 1503 } 1504 1505 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) { 1506 xoff_char = rpn->xoff_char; 1507 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) { 1508 BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char); 1509 xoff_char = RFCOMM_RPN_XOFF_CHAR; 1510 rpn_mask ^= RFCOMM_RPN_PM_XOFF; 1511 } 1512 } 1513 1514 rpn_out: 1515 rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits, 1516 parity, flow_ctrl, xon_char, xoff_char, rpn_mask); 1517 1518 return 0; 1519 } 1520 1521 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1522 { 1523 struct rfcomm_rls *rls = (void *) skb->data; 1524 u8 dlci = __get_dlci(rls->dlci); 1525 1526 BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status); 1527 1528 if (!cr) 1529 return 0; 1530 1531 /* We should probably do something with this information here. But 1532 * for now it's sufficient just to reply -- Bluetooth 1.1 says it's 1533 * mandatory to recognise and respond to RLS */ 1534 1535 rfcomm_send_rls(s, 0, dlci, rls->status); 1536 1537 return 0; 1538 } 1539 1540 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1541 { 1542 struct rfcomm_msc *msc = (void *) skb->data; 1543 struct rfcomm_dlc *d; 1544 u8 dlci = __get_dlci(msc->dlci); 1545 1546 BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig); 1547 1548 d = rfcomm_dlc_get(s, dlci); 1549 if (!d) 1550 return 0; 1551 1552 if (cr) { 1553 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc) 1554 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1555 else 1556 clear_bit(RFCOMM_TX_THROTTLED, &d->flags); 1557 1558 rfcomm_dlc_lock(d); 1559 1560 d->remote_v24_sig = msc->v24_sig; 1561 1562 if (d->modem_status) 1563 d->modem_status(d, msc->v24_sig); 1564 1565 rfcomm_dlc_unlock(d); 1566 1567 rfcomm_send_msc(s, 0, dlci, msc->v24_sig); 1568 1569 d->mscex |= RFCOMM_MSCEX_RX; 1570 } else 1571 d->mscex |= RFCOMM_MSCEX_TX; 1572 1573 return 0; 1574 } 1575 1576 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb) 1577 { 1578 struct rfcomm_mcc *mcc = (void *) skb->data; 1579 u8 type, cr, len; 1580 1581 cr = __test_cr(mcc->type); 1582 type = __get_mcc_type(mcc->type); 1583 len = __get_mcc_len(mcc->len); 1584 1585 BT_DBG("%p type 0x%x cr %d", s, type, cr); 1586 1587 skb_pull(skb, 2); 1588 1589 switch (type) { 1590 case RFCOMM_PN: 1591 rfcomm_recv_pn(s, cr, skb); 1592 break; 1593 1594 case RFCOMM_RPN: 1595 rfcomm_recv_rpn(s, cr, len, skb); 1596 break; 1597 1598 case RFCOMM_RLS: 1599 rfcomm_recv_rls(s, cr, skb); 1600 break; 1601 1602 case RFCOMM_MSC: 1603 rfcomm_recv_msc(s, cr, skb); 1604 break; 1605 1606 case RFCOMM_FCOFF: 1607 if (cr) { 1608 set_bit(RFCOMM_TX_THROTTLED, &s->flags); 1609 rfcomm_send_fcoff(s, 0); 1610 } 1611 break; 1612 1613 case RFCOMM_FCON: 1614 if (cr) { 1615 clear_bit(RFCOMM_TX_THROTTLED, &s->flags); 1616 rfcomm_send_fcon(s, 0); 1617 } 1618 break; 1619 1620 case RFCOMM_TEST: 1621 if (cr) 1622 rfcomm_send_test(s, 0, skb->data, skb->len); 1623 break; 1624 1625 case RFCOMM_NSC: 1626 break; 1627 1628 default: 1629 BT_ERR("Unknown control type 0x%02x", type); 1630 rfcomm_send_nsc(s, cr, type); 1631 break; 1632 } 1633 return 0; 1634 } 1635 1636 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb) 1637 { 1638 struct rfcomm_dlc *d; 1639 1640 BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf); 1641 1642 d = rfcomm_dlc_get(s, dlci); 1643 if (!d) { 1644 rfcomm_send_dm(s, dlci); 1645 goto drop; 1646 } 1647 1648 if (pf && d->cfc) { 1649 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1); 1650 1651 d->tx_credits += credits; 1652 if (d->tx_credits) 1653 clear_bit(RFCOMM_TX_THROTTLED, &d->flags); 1654 } 1655 1656 if (skb->len && d->state == BT_CONNECTED) { 1657 rfcomm_dlc_lock(d); 1658 d->rx_credits--; 1659 d->data_ready(d, skb); 1660 rfcomm_dlc_unlock(d); 1661 return 0; 1662 } 1663 1664 drop: 1665 kfree_skb(skb); 1666 return 0; 1667 } 1668 1669 static int rfcomm_recv_frame(struct rfcomm_session *s, struct sk_buff *skb) 1670 { 1671 struct rfcomm_hdr *hdr = (void *) skb->data; 1672 u8 type, dlci, fcs; 1673 1674 dlci = __get_dlci(hdr->addr); 1675 type = __get_type(hdr->ctrl); 1676 1677 /* Trim FCS */ 1678 skb->len--; skb->tail--; 1679 fcs = *(u8 *)skb_tail_pointer(skb); 1680 1681 if (__check_fcs(skb->data, type, fcs)) { 1682 BT_ERR("bad checksum in packet"); 1683 kfree_skb(skb); 1684 return -EILSEQ; 1685 } 1686 1687 if (__test_ea(hdr->len)) 1688 skb_pull(skb, 3); 1689 else 1690 skb_pull(skb, 4); 1691 1692 switch (type) { 1693 case RFCOMM_SABM: 1694 if (__test_pf(hdr->ctrl)) 1695 rfcomm_recv_sabm(s, dlci); 1696 break; 1697 1698 case RFCOMM_DISC: 1699 if (__test_pf(hdr->ctrl)) 1700 rfcomm_recv_disc(s, dlci); 1701 break; 1702 1703 case RFCOMM_UA: 1704 if (__test_pf(hdr->ctrl)) 1705 rfcomm_recv_ua(s, dlci); 1706 break; 1707 1708 case RFCOMM_DM: 1709 rfcomm_recv_dm(s, dlci); 1710 break; 1711 1712 case RFCOMM_UIH: 1713 if (dlci) 1714 return rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb); 1715 1716 rfcomm_recv_mcc(s, skb); 1717 break; 1718 1719 default: 1720 BT_ERR("Unknown packet type 0x%02x", type); 1721 break; 1722 } 1723 kfree_skb(skb); 1724 return 0; 1725 } 1726 1727 /* ---- Connection and data processing ---- */ 1728 1729 static void rfcomm_process_connect(struct rfcomm_session *s) 1730 { 1731 struct rfcomm_dlc *d; 1732 struct list_head *p, *n; 1733 1734 BT_DBG("session %p state %ld", s, s->state); 1735 1736 list_for_each_safe(p, n, &s->dlcs) { 1737 d = list_entry(p, struct rfcomm_dlc, list); 1738 if (d->state == BT_CONFIG) { 1739 d->mtu = s->mtu; 1740 if (rfcomm_check_security(d)) { 1741 rfcomm_send_pn(s, 1, d); 1742 } else { 1743 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 1744 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1745 } 1746 } 1747 } 1748 } 1749 1750 /* Send data queued for the DLC. 1751 * Return number of frames left in the queue. 1752 */ 1753 static inline int rfcomm_process_tx(struct rfcomm_dlc *d) 1754 { 1755 struct sk_buff *skb; 1756 int err; 1757 1758 BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d", 1759 d, d->state, d->cfc, d->rx_credits, d->tx_credits); 1760 1761 /* Send pending MSC */ 1762 if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags)) 1763 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig); 1764 1765 if (d->cfc) { 1766 /* CFC enabled. 1767 * Give them some credits */ 1768 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) && 1769 d->rx_credits <= (d->cfc >> 2)) { 1770 rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits); 1771 d->rx_credits = d->cfc; 1772 } 1773 } else { 1774 /* CFC disabled. 1775 * Give ourselves some credits */ 1776 d->tx_credits = 5; 1777 } 1778 1779 if (test_bit(RFCOMM_TX_THROTTLED, &d->flags)) 1780 return skb_queue_len(&d->tx_queue); 1781 1782 while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) { 1783 err = rfcomm_send_frame(d->session, skb->data, skb->len); 1784 if (err < 0) { 1785 skb_queue_head(&d->tx_queue, skb); 1786 break; 1787 } 1788 kfree_skb(skb); 1789 d->tx_credits--; 1790 } 1791 1792 if (d->cfc && !d->tx_credits) { 1793 /* We're out of TX credits. 1794 * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */ 1795 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1796 } 1797 1798 return skb_queue_len(&d->tx_queue); 1799 } 1800 1801 static inline void rfcomm_process_dlcs(struct rfcomm_session *s) 1802 { 1803 struct rfcomm_dlc *d; 1804 struct list_head *p, *n; 1805 1806 BT_DBG("session %p state %ld", s, s->state); 1807 1808 list_for_each_safe(p, n, &s->dlcs) { 1809 d = list_entry(p, struct rfcomm_dlc, list); 1810 1811 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) { 1812 __rfcomm_dlc_close(d, ETIMEDOUT); 1813 continue; 1814 } 1815 1816 if (test_bit(RFCOMM_ENC_DROP, &d->flags)) { 1817 __rfcomm_dlc_close(d, ECONNREFUSED); 1818 continue; 1819 } 1820 1821 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) { 1822 rfcomm_dlc_clear_timer(d); 1823 if (d->out) { 1824 rfcomm_send_pn(s, 1, d); 1825 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT); 1826 } else { 1827 if (d->defer_setup) { 1828 set_bit(RFCOMM_DEFER_SETUP, &d->flags); 1829 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1830 1831 rfcomm_dlc_lock(d); 1832 d->state = BT_CONNECT2; 1833 d->state_change(d, 0); 1834 rfcomm_dlc_unlock(d); 1835 } else 1836 rfcomm_dlc_accept(d); 1837 } 1838 continue; 1839 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) { 1840 rfcomm_dlc_clear_timer(d); 1841 if (!d->out) 1842 rfcomm_send_dm(s, d->dlci); 1843 else 1844 d->state = BT_CLOSED; 1845 __rfcomm_dlc_close(d, ECONNREFUSED); 1846 continue; 1847 } 1848 1849 if (test_bit(RFCOMM_SEC_PENDING, &d->flags)) 1850 continue; 1851 1852 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags)) 1853 continue; 1854 1855 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) && 1856 d->mscex == RFCOMM_MSCEX_OK) 1857 rfcomm_process_tx(d); 1858 } 1859 } 1860 1861 static inline void rfcomm_process_rx(struct rfcomm_session *s) 1862 { 1863 struct socket *sock = s->sock; 1864 struct sock *sk = sock->sk; 1865 struct sk_buff *skb; 1866 1867 BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue)); 1868 1869 /* Get data directly from socket receive queue without copying it. */ 1870 while ((skb = skb_dequeue(&sk->sk_receive_queue))) { 1871 skb_orphan(skb); 1872 if (!skb_linearize(skb)) 1873 rfcomm_recv_frame(s, skb); 1874 else 1875 kfree_skb(skb); 1876 } 1877 1878 if (sk->sk_state == BT_CLOSED) { 1879 if (!s->initiator) 1880 rfcomm_session_put(s); 1881 1882 rfcomm_session_close(s, sk->sk_err); 1883 } 1884 } 1885 1886 static inline void rfcomm_accept_connection(struct rfcomm_session *s) 1887 { 1888 struct socket *sock = s->sock, *nsock; 1889 int err; 1890 1891 /* Fast check for a new connection. 1892 * Avoids unnesesary socket allocations. */ 1893 if (list_empty(&bt_sk(sock->sk)->accept_q)) 1894 return; 1895 1896 BT_DBG("session %p", s); 1897 1898 err = kernel_accept(sock, &nsock, O_NONBLOCK); 1899 if (err < 0) 1900 return; 1901 1902 /* Set our callbacks */ 1903 nsock->sk->sk_data_ready = rfcomm_l2data_ready; 1904 nsock->sk->sk_state_change = rfcomm_l2state_change; 1905 1906 s = rfcomm_session_add(nsock, BT_OPEN); 1907 if (s) { 1908 rfcomm_session_hold(s); 1909 1910 /* We should adjust MTU on incoming sessions. 1911 * L2CAP MTU minus UIH header and FCS. */ 1912 s->mtu = min(l2cap_pi(nsock->sk)->chan->omtu, 1913 l2cap_pi(nsock->sk)->chan->imtu) - 5; 1914 1915 rfcomm_schedule(); 1916 } else 1917 sock_release(nsock); 1918 } 1919 1920 static inline void rfcomm_check_connection(struct rfcomm_session *s) 1921 { 1922 struct sock *sk = s->sock->sk; 1923 1924 BT_DBG("%p state %ld", s, s->state); 1925 1926 switch (sk->sk_state) { 1927 case BT_CONNECTED: 1928 s->state = BT_CONNECT; 1929 1930 /* We can adjust MTU on outgoing sessions. 1931 * L2CAP MTU minus UIH header and FCS. */ 1932 s->mtu = min(l2cap_pi(sk)->chan->omtu, l2cap_pi(sk)->chan->imtu) - 5; 1933 1934 rfcomm_send_sabm(s, 0); 1935 break; 1936 1937 case BT_CLOSED: 1938 s->state = BT_CLOSED; 1939 rfcomm_session_close(s, sk->sk_err); 1940 break; 1941 } 1942 } 1943 1944 static inline void rfcomm_process_sessions(void) 1945 { 1946 struct list_head *p, *n; 1947 1948 rfcomm_lock(); 1949 1950 list_for_each_safe(p, n, &session_list) { 1951 struct rfcomm_session *s; 1952 s = list_entry(p, struct rfcomm_session, list); 1953 1954 if (test_and_clear_bit(RFCOMM_TIMED_OUT, &s->flags)) { 1955 s->state = BT_DISCONN; 1956 rfcomm_send_disc(s, 0); 1957 rfcomm_session_put(s); 1958 continue; 1959 } 1960 1961 if (s->state == BT_LISTEN) { 1962 rfcomm_accept_connection(s); 1963 continue; 1964 } 1965 1966 rfcomm_session_hold(s); 1967 1968 switch (s->state) { 1969 case BT_BOUND: 1970 rfcomm_check_connection(s); 1971 break; 1972 1973 default: 1974 rfcomm_process_rx(s); 1975 break; 1976 } 1977 1978 rfcomm_process_dlcs(s); 1979 1980 rfcomm_session_put(s); 1981 } 1982 1983 rfcomm_unlock(); 1984 } 1985 1986 static int rfcomm_add_listener(bdaddr_t *ba) 1987 { 1988 struct sockaddr_l2 addr; 1989 struct socket *sock; 1990 struct sock *sk; 1991 struct rfcomm_session *s; 1992 int err = 0; 1993 1994 /* Create socket */ 1995 err = rfcomm_l2sock_create(&sock); 1996 if (err < 0) { 1997 BT_ERR("Create socket failed %d", err); 1998 return err; 1999 } 2000 2001 /* Bind socket */ 2002 bacpy(&addr.l2_bdaddr, ba); 2003 addr.l2_family = AF_BLUETOOTH; 2004 addr.l2_psm = cpu_to_le16(RFCOMM_PSM); 2005 addr.l2_cid = 0; 2006 err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr)); 2007 if (err < 0) { 2008 BT_ERR("Bind failed %d", err); 2009 goto failed; 2010 } 2011 2012 /* Set L2CAP options */ 2013 sk = sock->sk; 2014 lock_sock(sk); 2015 l2cap_pi(sk)->chan->imtu = l2cap_mtu; 2016 release_sock(sk); 2017 2018 /* Start listening on the socket */ 2019 err = kernel_listen(sock, 10); 2020 if (err) { 2021 BT_ERR("Listen failed %d", err); 2022 goto failed; 2023 } 2024 2025 /* Add listening session */ 2026 s = rfcomm_session_add(sock, BT_LISTEN); 2027 if (!s) 2028 goto failed; 2029 2030 rfcomm_session_hold(s); 2031 return 0; 2032 failed: 2033 sock_release(sock); 2034 return err; 2035 } 2036 2037 static void rfcomm_kill_listener(void) 2038 { 2039 struct rfcomm_session *s; 2040 struct list_head *p, *n; 2041 2042 BT_DBG(""); 2043 2044 list_for_each_safe(p, n, &session_list) { 2045 s = list_entry(p, struct rfcomm_session, list); 2046 rfcomm_session_del(s); 2047 } 2048 } 2049 2050 static int rfcomm_run(void *unused) 2051 { 2052 BT_DBG(""); 2053 2054 set_user_nice(current, -10); 2055 2056 rfcomm_add_listener(BDADDR_ANY); 2057 2058 while (1) { 2059 set_current_state(TASK_INTERRUPTIBLE); 2060 2061 if (kthread_should_stop()) 2062 break; 2063 2064 /* Process stuff */ 2065 rfcomm_process_sessions(); 2066 2067 schedule(); 2068 } 2069 __set_current_state(TASK_RUNNING); 2070 2071 rfcomm_kill_listener(); 2072 2073 return 0; 2074 } 2075 2076 static void rfcomm_security_cfm(struct hci_conn *conn, u8 status, u8 encrypt) 2077 { 2078 struct rfcomm_session *s; 2079 struct rfcomm_dlc *d; 2080 struct list_head *p, *n; 2081 2082 BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt); 2083 2084 s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst); 2085 if (!s) 2086 return; 2087 2088 rfcomm_session_hold(s); 2089 2090 list_for_each_safe(p, n, &s->dlcs) { 2091 d = list_entry(p, struct rfcomm_dlc, list); 2092 2093 if (test_and_clear_bit(RFCOMM_SEC_PENDING, &d->flags)) { 2094 rfcomm_dlc_clear_timer(d); 2095 if (status || encrypt == 0x00) { 2096 set_bit(RFCOMM_ENC_DROP, &d->flags); 2097 continue; 2098 } 2099 } 2100 2101 if (d->state == BT_CONNECTED && !status && encrypt == 0x00) { 2102 if (d->sec_level == BT_SECURITY_MEDIUM) { 2103 set_bit(RFCOMM_SEC_PENDING, &d->flags); 2104 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 2105 continue; 2106 } else if (d->sec_level == BT_SECURITY_HIGH) { 2107 set_bit(RFCOMM_ENC_DROP, &d->flags); 2108 continue; 2109 } 2110 } 2111 2112 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags)) 2113 continue; 2114 2115 if (!status && hci_conn_check_secure(conn, d->sec_level)) 2116 set_bit(RFCOMM_AUTH_ACCEPT, &d->flags); 2117 else 2118 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 2119 } 2120 2121 rfcomm_session_put(s); 2122 2123 rfcomm_schedule(); 2124 } 2125 2126 static struct hci_cb rfcomm_cb = { 2127 .name = "RFCOMM", 2128 .security_cfm = rfcomm_security_cfm 2129 }; 2130 2131 static int rfcomm_dlc_debugfs_show(struct seq_file *f, void *x) 2132 { 2133 struct rfcomm_session *s; 2134 2135 rfcomm_lock(); 2136 2137 list_for_each_entry(s, &session_list, list) { 2138 struct rfcomm_dlc *d; 2139 list_for_each_entry(d, &s->dlcs, list) { 2140 struct sock *sk = s->sock->sk; 2141 2142 seq_printf(f, "%s %s %ld %d %d %d %d\n", 2143 batostr(&bt_sk(sk)->src), 2144 batostr(&bt_sk(sk)->dst), 2145 d->state, d->dlci, d->mtu, 2146 d->rx_credits, d->tx_credits); 2147 } 2148 } 2149 2150 rfcomm_unlock(); 2151 2152 return 0; 2153 } 2154 2155 static int rfcomm_dlc_debugfs_open(struct inode *inode, struct file *file) 2156 { 2157 return single_open(file, rfcomm_dlc_debugfs_show, inode->i_private); 2158 } 2159 2160 static const struct file_operations rfcomm_dlc_debugfs_fops = { 2161 .open = rfcomm_dlc_debugfs_open, 2162 .read = seq_read, 2163 .llseek = seq_lseek, 2164 .release = single_release, 2165 }; 2166 2167 static struct dentry *rfcomm_dlc_debugfs; 2168 2169 /* ---- Initialization ---- */ 2170 static int __init rfcomm_init(void) 2171 { 2172 int err; 2173 2174 hci_register_cb(&rfcomm_cb); 2175 2176 rfcomm_thread = kthread_run(rfcomm_run, NULL, "krfcommd"); 2177 if (IS_ERR(rfcomm_thread)) { 2178 err = PTR_ERR(rfcomm_thread); 2179 goto unregister; 2180 } 2181 2182 if (bt_debugfs) { 2183 rfcomm_dlc_debugfs = debugfs_create_file("rfcomm_dlc", 0444, 2184 bt_debugfs, NULL, &rfcomm_dlc_debugfs_fops); 2185 if (!rfcomm_dlc_debugfs) 2186 BT_ERR("Failed to create RFCOMM debug file"); 2187 } 2188 2189 err = rfcomm_init_ttys(); 2190 if (err < 0) 2191 goto stop; 2192 2193 err = rfcomm_init_sockets(); 2194 if (err < 0) 2195 goto cleanup; 2196 2197 BT_INFO("RFCOMM ver %s", VERSION); 2198 2199 return 0; 2200 2201 cleanup: 2202 rfcomm_cleanup_ttys(); 2203 2204 stop: 2205 kthread_stop(rfcomm_thread); 2206 2207 unregister: 2208 hci_unregister_cb(&rfcomm_cb); 2209 2210 return err; 2211 } 2212 2213 static void __exit rfcomm_exit(void) 2214 { 2215 debugfs_remove(rfcomm_dlc_debugfs); 2216 2217 hci_unregister_cb(&rfcomm_cb); 2218 2219 kthread_stop(rfcomm_thread); 2220 2221 rfcomm_cleanup_ttys(); 2222 2223 rfcomm_cleanup_sockets(); 2224 } 2225 2226 module_init(rfcomm_init); 2227 module_exit(rfcomm_exit); 2228 2229 module_param(disable_cfc, bool, 0644); 2230 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control"); 2231 2232 module_param(channel_mtu, int, 0644); 2233 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel"); 2234 2235 module_param(l2cap_mtu, uint, 0644); 2236 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection"); 2237 2238 module_param(l2cap_ertm, bool, 0644); 2239 MODULE_PARM_DESC(l2cap_ertm, "Use L2CAP ERTM mode for connection"); 2240 2241 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 2242 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION); 2243 MODULE_VERSION(VERSION); 2244 MODULE_LICENSE("GPL"); 2245 MODULE_ALIAS("bt-proto-3"); 2246