1 /* 2 RFCOMM implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com> 4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 /* 25 * Bluetooth RFCOMM core. 26 */ 27 28 #include <linux/module.h> 29 #include <linux/debugfs.h> 30 #include <linux/kthread.h> 31 #include <asm/unaligned.h> 32 33 #include <net/bluetooth/bluetooth.h> 34 #include <net/bluetooth/hci_core.h> 35 #include <net/bluetooth/l2cap.h> 36 #include <net/bluetooth/rfcomm.h> 37 38 #define VERSION "1.11" 39 40 static bool disable_cfc; 41 static bool l2cap_ertm; 42 static int channel_mtu = -1; 43 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU; 44 45 static struct task_struct *rfcomm_thread; 46 47 static DEFINE_MUTEX(rfcomm_mutex); 48 #define rfcomm_lock() mutex_lock(&rfcomm_mutex) 49 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex) 50 51 52 static LIST_HEAD(session_list); 53 54 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len); 55 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci); 56 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci); 57 static int rfcomm_queue_disc(struct rfcomm_dlc *d); 58 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type); 59 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d); 60 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig); 61 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len); 62 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits); 63 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr); 64 65 static void rfcomm_process_connect(struct rfcomm_session *s); 66 67 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, 68 bdaddr_t *dst, 69 u8 sec_level, 70 int *err); 71 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst); 72 static struct rfcomm_session *rfcomm_session_del(struct rfcomm_session *s); 73 74 /* ---- RFCOMM frame parsing macros ---- */ 75 #define __get_dlci(b) ((b & 0xfc) >> 2) 76 #define __get_channel(b) ((b & 0xf8) >> 3) 77 #define __get_dir(b) ((b & 0x04) >> 2) 78 #define __get_type(b) ((b & 0xef)) 79 80 #define __test_ea(b) ((b & 0x01)) 81 #define __test_cr(b) ((b & 0x02)) 82 #define __test_pf(b) ((b & 0x10)) 83 84 #define __addr(cr, dlci) (((dlci & 0x3f) << 2) | (cr << 1) | 0x01) 85 #define __ctrl(type, pf) (((type & 0xef) | (pf << 4))) 86 #define __dlci(dir, chn) (((chn & 0x1f) << 1) | dir) 87 #define __srv_channel(dlci) (dlci >> 1) 88 #define __dir(dlci) (dlci & 0x01) 89 90 #define __len8(len) (((len) << 1) | 1) 91 #define __len16(len) ((len) << 1) 92 93 /* MCC macros */ 94 #define __mcc_type(cr, type) (((type << 2) | (cr << 1) | 0x01)) 95 #define __get_mcc_type(b) ((b & 0xfc) >> 2) 96 #define __get_mcc_len(b) ((b & 0xfe) >> 1) 97 98 /* RPN macros */ 99 #define __rpn_line_settings(data, stop, parity) ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3)) 100 #define __get_rpn_data_bits(line) ((line) & 0x3) 101 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1) 102 #define __get_rpn_parity(line) (((line) >> 3) & 0x7) 103 104 static void rfcomm_schedule(void) 105 { 106 if (!rfcomm_thread) 107 return; 108 wake_up_process(rfcomm_thread); 109 } 110 111 /* ---- RFCOMM FCS computation ---- */ 112 113 /* reversed, 8-bit, poly=0x07 */ 114 static unsigned char rfcomm_crc_table[256] = { 115 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75, 116 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b, 117 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69, 118 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67, 119 120 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d, 121 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43, 122 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51, 123 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f, 124 125 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05, 126 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b, 127 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19, 128 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17, 129 130 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d, 131 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33, 132 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21, 133 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f, 134 135 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95, 136 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b, 137 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89, 138 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87, 139 140 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad, 141 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3, 142 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1, 143 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf, 144 145 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5, 146 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb, 147 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9, 148 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7, 149 150 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd, 151 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3, 152 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1, 153 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf 154 }; 155 156 /* CRC on 2 bytes */ 157 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]]) 158 159 /* FCS on 2 bytes */ 160 static inline u8 __fcs(u8 *data) 161 { 162 return 0xff - __crc(data); 163 } 164 165 /* FCS on 3 bytes */ 166 static inline u8 __fcs2(u8 *data) 167 { 168 return 0xff - rfcomm_crc_table[__crc(data) ^ data[2]]; 169 } 170 171 /* Check FCS */ 172 static inline int __check_fcs(u8 *data, int type, u8 fcs) 173 { 174 u8 f = __crc(data); 175 176 if (type != RFCOMM_UIH) 177 f = rfcomm_crc_table[f ^ data[2]]; 178 179 return rfcomm_crc_table[f ^ fcs] != 0xcf; 180 } 181 182 /* ---- L2CAP callbacks ---- */ 183 static void rfcomm_l2state_change(struct sock *sk) 184 { 185 BT_DBG("%p state %d", sk, sk->sk_state); 186 rfcomm_schedule(); 187 } 188 189 static void rfcomm_l2data_ready(struct sock *sk, int bytes) 190 { 191 BT_DBG("%p bytes %d", sk, bytes); 192 rfcomm_schedule(); 193 } 194 195 static int rfcomm_l2sock_create(struct socket **sock) 196 { 197 int err; 198 199 BT_DBG(""); 200 201 err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock); 202 if (!err) { 203 struct sock *sk = (*sock)->sk; 204 sk->sk_data_ready = rfcomm_l2data_ready; 205 sk->sk_state_change = rfcomm_l2state_change; 206 } 207 return err; 208 } 209 210 static int rfcomm_check_security(struct rfcomm_dlc *d) 211 { 212 struct sock *sk = d->session->sock->sk; 213 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn; 214 215 __u8 auth_type; 216 217 switch (d->sec_level) { 218 case BT_SECURITY_HIGH: 219 auth_type = HCI_AT_GENERAL_BONDING_MITM; 220 break; 221 case BT_SECURITY_MEDIUM: 222 auth_type = HCI_AT_GENERAL_BONDING; 223 break; 224 default: 225 auth_type = HCI_AT_NO_BONDING; 226 break; 227 } 228 229 return hci_conn_security(conn->hcon, d->sec_level, auth_type); 230 } 231 232 static void rfcomm_session_timeout(unsigned long arg) 233 { 234 struct rfcomm_session *s = (void *) arg; 235 236 BT_DBG("session %p state %ld", s, s->state); 237 238 set_bit(RFCOMM_TIMED_OUT, &s->flags); 239 rfcomm_schedule(); 240 } 241 242 static void rfcomm_session_set_timer(struct rfcomm_session *s, long timeout) 243 { 244 BT_DBG("session %p state %ld timeout %ld", s, s->state, timeout); 245 246 mod_timer(&s->timer, jiffies + timeout); 247 } 248 249 static void rfcomm_session_clear_timer(struct rfcomm_session *s) 250 { 251 BT_DBG("session %p state %ld", s, s->state); 252 253 del_timer_sync(&s->timer); 254 } 255 256 /* ---- RFCOMM DLCs ---- */ 257 static void rfcomm_dlc_timeout(unsigned long arg) 258 { 259 struct rfcomm_dlc *d = (void *) arg; 260 261 BT_DBG("dlc %p state %ld", d, d->state); 262 263 set_bit(RFCOMM_TIMED_OUT, &d->flags); 264 rfcomm_dlc_put(d); 265 rfcomm_schedule(); 266 } 267 268 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout) 269 { 270 BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout); 271 272 if (!mod_timer(&d->timer, jiffies + timeout)) 273 rfcomm_dlc_hold(d); 274 } 275 276 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d) 277 { 278 BT_DBG("dlc %p state %ld", d, d->state); 279 280 if (del_timer(&d->timer)) 281 rfcomm_dlc_put(d); 282 } 283 284 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d) 285 { 286 BT_DBG("%p", d); 287 288 d->state = BT_OPEN; 289 d->flags = 0; 290 d->mscex = 0; 291 d->sec_level = BT_SECURITY_LOW; 292 d->mtu = RFCOMM_DEFAULT_MTU; 293 d->v24_sig = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV; 294 295 d->cfc = RFCOMM_CFC_DISABLED; 296 d->rx_credits = RFCOMM_DEFAULT_CREDITS; 297 } 298 299 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio) 300 { 301 struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio); 302 303 if (!d) 304 return NULL; 305 306 setup_timer(&d->timer, rfcomm_dlc_timeout, (unsigned long)d); 307 308 skb_queue_head_init(&d->tx_queue); 309 spin_lock_init(&d->lock); 310 atomic_set(&d->refcnt, 1); 311 312 rfcomm_dlc_clear_state(d); 313 314 BT_DBG("%p", d); 315 316 return d; 317 } 318 319 void rfcomm_dlc_free(struct rfcomm_dlc *d) 320 { 321 BT_DBG("%p", d); 322 323 skb_queue_purge(&d->tx_queue); 324 kfree(d); 325 } 326 327 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d) 328 { 329 BT_DBG("dlc %p session %p", d, s); 330 331 rfcomm_session_clear_timer(s); 332 rfcomm_dlc_hold(d); 333 list_add(&d->list, &s->dlcs); 334 d->session = s; 335 } 336 337 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d) 338 { 339 struct rfcomm_session *s = d->session; 340 341 BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s); 342 343 list_del(&d->list); 344 d->session = NULL; 345 rfcomm_dlc_put(d); 346 347 if (list_empty(&s->dlcs)) 348 rfcomm_session_set_timer(s, RFCOMM_IDLE_TIMEOUT); 349 } 350 351 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci) 352 { 353 struct rfcomm_dlc *d; 354 355 list_for_each_entry(d, &s->dlcs, list) 356 if (d->dlci == dlci) 357 return d; 358 359 return NULL; 360 } 361 362 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel) 363 { 364 struct rfcomm_session *s; 365 int err = 0; 366 u8 dlci; 367 368 BT_DBG("dlc %p state %ld %pMR -> %pMR channel %d", 369 d, d->state, src, dst, channel); 370 371 if (channel < 1 || channel > 30) 372 return -EINVAL; 373 374 if (d->state != BT_OPEN && d->state != BT_CLOSED) 375 return 0; 376 377 s = rfcomm_session_get(src, dst); 378 if (!s) { 379 s = rfcomm_session_create(src, dst, d->sec_level, &err); 380 if (!s) 381 return err; 382 } 383 384 dlci = __dlci(!s->initiator, channel); 385 386 /* Check if DLCI already exists */ 387 if (rfcomm_dlc_get(s, dlci)) 388 return -EBUSY; 389 390 rfcomm_dlc_clear_state(d); 391 392 d->dlci = dlci; 393 d->addr = __addr(s->initiator, dlci); 394 d->priority = 7; 395 396 d->state = BT_CONFIG; 397 rfcomm_dlc_link(s, d); 398 399 d->out = 1; 400 401 d->mtu = s->mtu; 402 d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc; 403 404 if (s->state == BT_CONNECTED) { 405 if (rfcomm_check_security(d)) 406 rfcomm_send_pn(s, 1, d); 407 else 408 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 409 } 410 411 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT); 412 413 return 0; 414 } 415 416 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel) 417 { 418 int r; 419 420 rfcomm_lock(); 421 422 r = __rfcomm_dlc_open(d, src, dst, channel); 423 424 rfcomm_unlock(); 425 return r; 426 } 427 428 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err) 429 { 430 struct rfcomm_session *s = d->session; 431 if (!s) 432 return 0; 433 434 BT_DBG("dlc %p state %ld dlci %d err %d session %p", 435 d, d->state, d->dlci, err, s); 436 437 switch (d->state) { 438 case BT_CONNECT: 439 case BT_CONFIG: 440 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 441 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 442 rfcomm_schedule(); 443 break; 444 } 445 /* Fall through */ 446 447 case BT_CONNECTED: 448 d->state = BT_DISCONN; 449 if (skb_queue_empty(&d->tx_queue)) { 450 rfcomm_send_disc(s, d->dlci); 451 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT); 452 } else { 453 rfcomm_queue_disc(d); 454 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2); 455 } 456 break; 457 458 case BT_OPEN: 459 case BT_CONNECT2: 460 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 461 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 462 rfcomm_schedule(); 463 break; 464 } 465 /* Fall through */ 466 467 default: 468 rfcomm_dlc_clear_timer(d); 469 470 rfcomm_dlc_lock(d); 471 d->state = BT_CLOSED; 472 d->state_change(d, err); 473 rfcomm_dlc_unlock(d); 474 475 skb_queue_purge(&d->tx_queue); 476 rfcomm_dlc_unlink(d); 477 } 478 479 return 0; 480 } 481 482 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err) 483 { 484 int r = 0; 485 struct rfcomm_dlc *d_list; 486 struct rfcomm_session *s, *s_list; 487 488 BT_DBG("dlc %p state %ld dlci %d err %d", d, d->state, d->dlci, err); 489 490 rfcomm_lock(); 491 492 s = d->session; 493 if (!s) 494 goto no_session; 495 496 /* after waiting on the mutex check the session still exists 497 * then check the dlc still exists 498 */ 499 list_for_each_entry(s_list, &session_list, list) { 500 if (s_list == s) { 501 list_for_each_entry(d_list, &s->dlcs, list) { 502 if (d_list == d) { 503 r = __rfcomm_dlc_close(d, err); 504 break; 505 } 506 } 507 break; 508 } 509 } 510 511 no_session: 512 rfcomm_unlock(); 513 return r; 514 } 515 516 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb) 517 { 518 int len = skb->len; 519 520 if (d->state != BT_CONNECTED) 521 return -ENOTCONN; 522 523 BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len); 524 525 if (len > d->mtu) 526 return -EINVAL; 527 528 rfcomm_make_uih(skb, d->addr); 529 skb_queue_tail(&d->tx_queue, skb); 530 531 if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags)) 532 rfcomm_schedule(); 533 return len; 534 } 535 536 void __rfcomm_dlc_throttle(struct rfcomm_dlc *d) 537 { 538 BT_DBG("dlc %p state %ld", d, d->state); 539 540 if (!d->cfc) { 541 d->v24_sig |= RFCOMM_V24_FC; 542 set_bit(RFCOMM_MSC_PENDING, &d->flags); 543 } 544 rfcomm_schedule(); 545 } 546 547 void __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d) 548 { 549 BT_DBG("dlc %p state %ld", d, d->state); 550 551 if (!d->cfc) { 552 d->v24_sig &= ~RFCOMM_V24_FC; 553 set_bit(RFCOMM_MSC_PENDING, &d->flags); 554 } 555 rfcomm_schedule(); 556 } 557 558 /* 559 Set/get modem status functions use _local_ status i.e. what we report 560 to the other side. 561 Remote status is provided by dlc->modem_status() callback. 562 */ 563 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig) 564 { 565 BT_DBG("dlc %p state %ld v24_sig 0x%x", 566 d, d->state, v24_sig); 567 568 if (test_bit(RFCOMM_RX_THROTTLED, &d->flags)) 569 v24_sig |= RFCOMM_V24_FC; 570 else 571 v24_sig &= ~RFCOMM_V24_FC; 572 573 d->v24_sig = v24_sig; 574 575 if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags)) 576 rfcomm_schedule(); 577 578 return 0; 579 } 580 581 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig) 582 { 583 BT_DBG("dlc %p state %ld v24_sig 0x%x", 584 d, d->state, d->v24_sig); 585 586 *v24_sig = d->v24_sig; 587 return 0; 588 } 589 590 /* ---- RFCOMM sessions ---- */ 591 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state) 592 { 593 struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL); 594 595 if (!s) 596 return NULL; 597 598 BT_DBG("session %p sock %p", s, sock); 599 600 setup_timer(&s->timer, rfcomm_session_timeout, (unsigned long) s); 601 602 INIT_LIST_HEAD(&s->dlcs); 603 s->state = state; 604 s->sock = sock; 605 606 s->mtu = RFCOMM_DEFAULT_MTU; 607 s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN; 608 609 /* Do not increment module usage count for listening sessions. 610 * Otherwise we won't be able to unload the module. */ 611 if (state != BT_LISTEN) 612 if (!try_module_get(THIS_MODULE)) { 613 kfree(s); 614 return NULL; 615 } 616 617 list_add(&s->list, &session_list); 618 619 return s; 620 } 621 622 static struct rfcomm_session *rfcomm_session_del(struct rfcomm_session *s) 623 { 624 int state = s->state; 625 626 BT_DBG("session %p state %ld", s, s->state); 627 628 list_del(&s->list); 629 630 rfcomm_session_clear_timer(s); 631 sock_release(s->sock); 632 kfree(s); 633 634 if (state != BT_LISTEN) 635 module_put(THIS_MODULE); 636 637 return NULL; 638 } 639 640 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst) 641 { 642 struct rfcomm_session *s; 643 struct list_head *p, *n; 644 struct l2cap_chan *chan; 645 list_for_each_safe(p, n, &session_list) { 646 s = list_entry(p, struct rfcomm_session, list); 647 chan = l2cap_pi(s->sock->sk)->chan; 648 649 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&chan->src, src)) && 650 !bacmp(&chan->dst, dst)) 651 return s; 652 } 653 return NULL; 654 } 655 656 static struct rfcomm_session *rfcomm_session_close(struct rfcomm_session *s, 657 int err) 658 { 659 struct rfcomm_dlc *d; 660 struct list_head *p, *n; 661 662 s->state = BT_CLOSED; 663 664 BT_DBG("session %p state %ld err %d", s, s->state, err); 665 666 /* Close all dlcs */ 667 list_for_each_safe(p, n, &s->dlcs) { 668 d = list_entry(p, struct rfcomm_dlc, list); 669 d->state = BT_CLOSED; 670 __rfcomm_dlc_close(d, err); 671 } 672 673 rfcomm_session_clear_timer(s); 674 return rfcomm_session_del(s); 675 } 676 677 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, 678 bdaddr_t *dst, 679 u8 sec_level, 680 int *err) 681 { 682 struct rfcomm_session *s = NULL; 683 struct sockaddr_l2 addr; 684 struct socket *sock; 685 struct sock *sk; 686 687 BT_DBG("%pMR -> %pMR", src, dst); 688 689 *err = rfcomm_l2sock_create(&sock); 690 if (*err < 0) 691 return NULL; 692 693 bacpy(&addr.l2_bdaddr, src); 694 addr.l2_family = AF_BLUETOOTH; 695 addr.l2_psm = 0; 696 addr.l2_cid = 0; 697 addr.l2_bdaddr_type = BDADDR_BREDR; 698 *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr)); 699 if (*err < 0) 700 goto failed; 701 702 /* Set L2CAP options */ 703 sk = sock->sk; 704 lock_sock(sk); 705 l2cap_pi(sk)->chan->imtu = l2cap_mtu; 706 l2cap_pi(sk)->chan->sec_level = sec_level; 707 if (l2cap_ertm) 708 l2cap_pi(sk)->chan->mode = L2CAP_MODE_ERTM; 709 release_sock(sk); 710 711 s = rfcomm_session_add(sock, BT_BOUND); 712 if (!s) { 713 *err = -ENOMEM; 714 goto failed; 715 } 716 717 s->initiator = 1; 718 719 bacpy(&addr.l2_bdaddr, dst); 720 addr.l2_family = AF_BLUETOOTH; 721 addr.l2_psm = __constant_cpu_to_le16(RFCOMM_PSM); 722 addr.l2_cid = 0; 723 addr.l2_bdaddr_type = BDADDR_BREDR; 724 *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK); 725 if (*err == 0 || *err == -EINPROGRESS) 726 return s; 727 728 return rfcomm_session_del(s); 729 730 failed: 731 sock_release(sock); 732 return NULL; 733 } 734 735 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst) 736 { 737 struct l2cap_chan *chan = l2cap_pi(s->sock->sk)->chan; 738 if (src) 739 bacpy(src, &chan->src); 740 if (dst) 741 bacpy(dst, &chan->dst); 742 } 743 744 /* ---- RFCOMM frame sending ---- */ 745 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len) 746 { 747 struct kvec iv = { data, len }; 748 struct msghdr msg; 749 750 BT_DBG("session %p len %d", s, len); 751 752 memset(&msg, 0, sizeof(msg)); 753 754 return kernel_sendmsg(s->sock, &msg, &iv, 1, len); 755 } 756 757 static int rfcomm_send_cmd(struct rfcomm_session *s, struct rfcomm_cmd *cmd) 758 { 759 BT_DBG("%p cmd %u", s, cmd->ctrl); 760 761 return rfcomm_send_frame(s, (void *) cmd, sizeof(*cmd)); 762 } 763 764 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci) 765 { 766 struct rfcomm_cmd cmd; 767 768 BT_DBG("%p dlci %d", s, dlci); 769 770 cmd.addr = __addr(s->initiator, dlci); 771 cmd.ctrl = __ctrl(RFCOMM_SABM, 1); 772 cmd.len = __len8(0); 773 cmd.fcs = __fcs2((u8 *) &cmd); 774 775 return rfcomm_send_cmd(s, &cmd); 776 } 777 778 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci) 779 { 780 struct rfcomm_cmd cmd; 781 782 BT_DBG("%p dlci %d", s, dlci); 783 784 cmd.addr = __addr(!s->initiator, dlci); 785 cmd.ctrl = __ctrl(RFCOMM_UA, 1); 786 cmd.len = __len8(0); 787 cmd.fcs = __fcs2((u8 *) &cmd); 788 789 return rfcomm_send_cmd(s, &cmd); 790 } 791 792 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci) 793 { 794 struct rfcomm_cmd cmd; 795 796 BT_DBG("%p dlci %d", s, dlci); 797 798 cmd.addr = __addr(s->initiator, dlci); 799 cmd.ctrl = __ctrl(RFCOMM_DISC, 1); 800 cmd.len = __len8(0); 801 cmd.fcs = __fcs2((u8 *) &cmd); 802 803 return rfcomm_send_cmd(s, &cmd); 804 } 805 806 static int rfcomm_queue_disc(struct rfcomm_dlc *d) 807 { 808 struct rfcomm_cmd *cmd; 809 struct sk_buff *skb; 810 811 BT_DBG("dlc %p dlci %d", d, d->dlci); 812 813 skb = alloc_skb(sizeof(*cmd), GFP_KERNEL); 814 if (!skb) 815 return -ENOMEM; 816 817 cmd = (void *) __skb_put(skb, sizeof(*cmd)); 818 cmd->addr = d->addr; 819 cmd->ctrl = __ctrl(RFCOMM_DISC, 1); 820 cmd->len = __len8(0); 821 cmd->fcs = __fcs2((u8 *) cmd); 822 823 skb_queue_tail(&d->tx_queue, skb); 824 rfcomm_schedule(); 825 return 0; 826 } 827 828 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci) 829 { 830 struct rfcomm_cmd cmd; 831 832 BT_DBG("%p dlci %d", s, dlci); 833 834 cmd.addr = __addr(!s->initiator, dlci); 835 cmd.ctrl = __ctrl(RFCOMM_DM, 1); 836 cmd.len = __len8(0); 837 cmd.fcs = __fcs2((u8 *) &cmd); 838 839 return rfcomm_send_cmd(s, &cmd); 840 } 841 842 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type) 843 { 844 struct rfcomm_hdr *hdr; 845 struct rfcomm_mcc *mcc; 846 u8 buf[16], *ptr = buf; 847 848 BT_DBG("%p cr %d type %d", s, cr, type); 849 850 hdr = (void *) ptr; ptr += sizeof(*hdr); 851 hdr->addr = __addr(s->initiator, 0); 852 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 853 hdr->len = __len8(sizeof(*mcc) + 1); 854 855 mcc = (void *) ptr; ptr += sizeof(*mcc); 856 mcc->type = __mcc_type(cr, RFCOMM_NSC); 857 mcc->len = __len8(1); 858 859 /* Type that we didn't like */ 860 *ptr = __mcc_type(cr, type); ptr++; 861 862 *ptr = __fcs(buf); ptr++; 863 864 return rfcomm_send_frame(s, buf, ptr - buf); 865 } 866 867 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d) 868 { 869 struct rfcomm_hdr *hdr; 870 struct rfcomm_mcc *mcc; 871 struct rfcomm_pn *pn; 872 u8 buf[16], *ptr = buf; 873 874 BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu); 875 876 hdr = (void *) ptr; ptr += sizeof(*hdr); 877 hdr->addr = __addr(s->initiator, 0); 878 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 879 hdr->len = __len8(sizeof(*mcc) + sizeof(*pn)); 880 881 mcc = (void *) ptr; ptr += sizeof(*mcc); 882 mcc->type = __mcc_type(cr, RFCOMM_PN); 883 mcc->len = __len8(sizeof(*pn)); 884 885 pn = (void *) ptr; ptr += sizeof(*pn); 886 pn->dlci = d->dlci; 887 pn->priority = d->priority; 888 pn->ack_timer = 0; 889 pn->max_retrans = 0; 890 891 if (s->cfc) { 892 pn->flow_ctrl = cr ? 0xf0 : 0xe0; 893 pn->credits = RFCOMM_DEFAULT_CREDITS; 894 } else { 895 pn->flow_ctrl = 0; 896 pn->credits = 0; 897 } 898 899 if (cr && channel_mtu >= 0) 900 pn->mtu = cpu_to_le16(channel_mtu); 901 else 902 pn->mtu = cpu_to_le16(d->mtu); 903 904 *ptr = __fcs(buf); ptr++; 905 906 return rfcomm_send_frame(s, buf, ptr - buf); 907 } 908 909 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci, 910 u8 bit_rate, u8 data_bits, u8 stop_bits, 911 u8 parity, u8 flow_ctrl_settings, 912 u8 xon_char, u8 xoff_char, u16 param_mask) 913 { 914 struct rfcomm_hdr *hdr; 915 struct rfcomm_mcc *mcc; 916 struct rfcomm_rpn *rpn; 917 u8 buf[16], *ptr = buf; 918 919 BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x" 920 " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x", 921 s, cr, dlci, bit_rate, data_bits, stop_bits, parity, 922 flow_ctrl_settings, xon_char, xoff_char, param_mask); 923 924 hdr = (void *) ptr; ptr += sizeof(*hdr); 925 hdr->addr = __addr(s->initiator, 0); 926 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 927 hdr->len = __len8(sizeof(*mcc) + sizeof(*rpn)); 928 929 mcc = (void *) ptr; ptr += sizeof(*mcc); 930 mcc->type = __mcc_type(cr, RFCOMM_RPN); 931 mcc->len = __len8(sizeof(*rpn)); 932 933 rpn = (void *) ptr; ptr += sizeof(*rpn); 934 rpn->dlci = __addr(1, dlci); 935 rpn->bit_rate = bit_rate; 936 rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity); 937 rpn->flow_ctrl = flow_ctrl_settings; 938 rpn->xon_char = xon_char; 939 rpn->xoff_char = xoff_char; 940 rpn->param_mask = cpu_to_le16(param_mask); 941 942 *ptr = __fcs(buf); ptr++; 943 944 return rfcomm_send_frame(s, buf, ptr - buf); 945 } 946 947 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status) 948 { 949 struct rfcomm_hdr *hdr; 950 struct rfcomm_mcc *mcc; 951 struct rfcomm_rls *rls; 952 u8 buf[16], *ptr = buf; 953 954 BT_DBG("%p cr %d status 0x%x", s, cr, status); 955 956 hdr = (void *) ptr; ptr += sizeof(*hdr); 957 hdr->addr = __addr(s->initiator, 0); 958 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 959 hdr->len = __len8(sizeof(*mcc) + sizeof(*rls)); 960 961 mcc = (void *) ptr; ptr += sizeof(*mcc); 962 mcc->type = __mcc_type(cr, RFCOMM_RLS); 963 mcc->len = __len8(sizeof(*rls)); 964 965 rls = (void *) ptr; ptr += sizeof(*rls); 966 rls->dlci = __addr(1, dlci); 967 rls->status = status; 968 969 *ptr = __fcs(buf); ptr++; 970 971 return rfcomm_send_frame(s, buf, ptr - buf); 972 } 973 974 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig) 975 { 976 struct rfcomm_hdr *hdr; 977 struct rfcomm_mcc *mcc; 978 struct rfcomm_msc *msc; 979 u8 buf[16], *ptr = buf; 980 981 BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig); 982 983 hdr = (void *) ptr; ptr += sizeof(*hdr); 984 hdr->addr = __addr(s->initiator, 0); 985 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 986 hdr->len = __len8(sizeof(*mcc) + sizeof(*msc)); 987 988 mcc = (void *) ptr; ptr += sizeof(*mcc); 989 mcc->type = __mcc_type(cr, RFCOMM_MSC); 990 mcc->len = __len8(sizeof(*msc)); 991 992 msc = (void *) ptr; ptr += sizeof(*msc); 993 msc->dlci = __addr(1, dlci); 994 msc->v24_sig = v24_sig | 0x01; 995 996 *ptr = __fcs(buf); ptr++; 997 998 return rfcomm_send_frame(s, buf, ptr - buf); 999 } 1000 1001 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr) 1002 { 1003 struct rfcomm_hdr *hdr; 1004 struct rfcomm_mcc *mcc; 1005 u8 buf[16], *ptr = buf; 1006 1007 BT_DBG("%p cr %d", s, cr); 1008 1009 hdr = (void *) ptr; ptr += sizeof(*hdr); 1010 hdr->addr = __addr(s->initiator, 0); 1011 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1012 hdr->len = __len8(sizeof(*mcc)); 1013 1014 mcc = (void *) ptr; ptr += sizeof(*mcc); 1015 mcc->type = __mcc_type(cr, RFCOMM_FCOFF); 1016 mcc->len = __len8(0); 1017 1018 *ptr = __fcs(buf); ptr++; 1019 1020 return rfcomm_send_frame(s, buf, ptr - buf); 1021 } 1022 1023 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr) 1024 { 1025 struct rfcomm_hdr *hdr; 1026 struct rfcomm_mcc *mcc; 1027 u8 buf[16], *ptr = buf; 1028 1029 BT_DBG("%p cr %d", s, cr); 1030 1031 hdr = (void *) ptr; ptr += sizeof(*hdr); 1032 hdr->addr = __addr(s->initiator, 0); 1033 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1034 hdr->len = __len8(sizeof(*mcc)); 1035 1036 mcc = (void *) ptr; ptr += sizeof(*mcc); 1037 mcc->type = __mcc_type(cr, RFCOMM_FCON); 1038 mcc->len = __len8(0); 1039 1040 *ptr = __fcs(buf); ptr++; 1041 1042 return rfcomm_send_frame(s, buf, ptr - buf); 1043 } 1044 1045 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len) 1046 { 1047 struct socket *sock = s->sock; 1048 struct kvec iv[3]; 1049 struct msghdr msg; 1050 unsigned char hdr[5], crc[1]; 1051 1052 if (len > 125) 1053 return -EINVAL; 1054 1055 BT_DBG("%p cr %d", s, cr); 1056 1057 hdr[0] = __addr(s->initiator, 0); 1058 hdr[1] = __ctrl(RFCOMM_UIH, 0); 1059 hdr[2] = 0x01 | ((len + 2) << 1); 1060 hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2); 1061 hdr[4] = 0x01 | (len << 1); 1062 1063 crc[0] = __fcs(hdr); 1064 1065 iv[0].iov_base = hdr; 1066 iv[0].iov_len = 5; 1067 iv[1].iov_base = pattern; 1068 iv[1].iov_len = len; 1069 iv[2].iov_base = crc; 1070 iv[2].iov_len = 1; 1071 1072 memset(&msg, 0, sizeof(msg)); 1073 1074 return kernel_sendmsg(sock, &msg, iv, 3, 6 + len); 1075 } 1076 1077 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits) 1078 { 1079 struct rfcomm_hdr *hdr; 1080 u8 buf[16], *ptr = buf; 1081 1082 BT_DBG("%p addr %d credits %d", s, addr, credits); 1083 1084 hdr = (void *) ptr; ptr += sizeof(*hdr); 1085 hdr->addr = addr; 1086 hdr->ctrl = __ctrl(RFCOMM_UIH, 1); 1087 hdr->len = __len8(0); 1088 1089 *ptr = credits; ptr++; 1090 1091 *ptr = __fcs(buf); ptr++; 1092 1093 return rfcomm_send_frame(s, buf, ptr - buf); 1094 } 1095 1096 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr) 1097 { 1098 struct rfcomm_hdr *hdr; 1099 int len = skb->len; 1100 u8 *crc; 1101 1102 if (len > 127) { 1103 hdr = (void *) skb_push(skb, 4); 1104 put_unaligned(cpu_to_le16(__len16(len)), (__le16 *) &hdr->len); 1105 } else { 1106 hdr = (void *) skb_push(skb, 3); 1107 hdr->len = __len8(len); 1108 } 1109 hdr->addr = addr; 1110 hdr->ctrl = __ctrl(RFCOMM_UIH, 0); 1111 1112 crc = skb_put(skb, 1); 1113 *crc = __fcs((void *) hdr); 1114 } 1115 1116 /* ---- RFCOMM frame reception ---- */ 1117 static struct rfcomm_session *rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci) 1118 { 1119 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1120 1121 if (dlci) { 1122 /* Data channel */ 1123 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1124 if (!d) { 1125 rfcomm_send_dm(s, dlci); 1126 return s; 1127 } 1128 1129 switch (d->state) { 1130 case BT_CONNECT: 1131 rfcomm_dlc_clear_timer(d); 1132 1133 rfcomm_dlc_lock(d); 1134 d->state = BT_CONNECTED; 1135 d->state_change(d, 0); 1136 rfcomm_dlc_unlock(d); 1137 1138 rfcomm_send_msc(s, 1, dlci, d->v24_sig); 1139 break; 1140 1141 case BT_DISCONN: 1142 d->state = BT_CLOSED; 1143 __rfcomm_dlc_close(d, 0); 1144 1145 if (list_empty(&s->dlcs)) { 1146 s->state = BT_DISCONN; 1147 rfcomm_send_disc(s, 0); 1148 rfcomm_session_clear_timer(s); 1149 } 1150 1151 break; 1152 } 1153 } else { 1154 /* Control channel */ 1155 switch (s->state) { 1156 case BT_CONNECT: 1157 s->state = BT_CONNECTED; 1158 rfcomm_process_connect(s); 1159 break; 1160 1161 case BT_DISCONN: 1162 s = rfcomm_session_close(s, ECONNRESET); 1163 break; 1164 } 1165 } 1166 return s; 1167 } 1168 1169 static struct rfcomm_session *rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci) 1170 { 1171 int err = 0; 1172 1173 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1174 1175 if (dlci) { 1176 /* Data DLC */ 1177 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1178 if (d) { 1179 if (d->state == BT_CONNECT || d->state == BT_CONFIG) 1180 err = ECONNREFUSED; 1181 else 1182 err = ECONNRESET; 1183 1184 d->state = BT_CLOSED; 1185 __rfcomm_dlc_close(d, err); 1186 } 1187 } else { 1188 if (s->state == BT_CONNECT) 1189 err = ECONNREFUSED; 1190 else 1191 err = ECONNRESET; 1192 1193 s = rfcomm_session_close(s, err); 1194 } 1195 return s; 1196 } 1197 1198 static struct rfcomm_session *rfcomm_recv_disc(struct rfcomm_session *s, 1199 u8 dlci) 1200 { 1201 int err = 0; 1202 1203 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1204 1205 if (dlci) { 1206 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci); 1207 if (d) { 1208 rfcomm_send_ua(s, dlci); 1209 1210 if (d->state == BT_CONNECT || d->state == BT_CONFIG) 1211 err = ECONNREFUSED; 1212 else 1213 err = ECONNRESET; 1214 1215 d->state = BT_CLOSED; 1216 __rfcomm_dlc_close(d, err); 1217 } else 1218 rfcomm_send_dm(s, dlci); 1219 1220 } else { 1221 rfcomm_send_ua(s, 0); 1222 1223 if (s->state == BT_CONNECT) 1224 err = ECONNREFUSED; 1225 else 1226 err = ECONNRESET; 1227 1228 s = rfcomm_session_close(s, err); 1229 } 1230 return s; 1231 } 1232 1233 void rfcomm_dlc_accept(struct rfcomm_dlc *d) 1234 { 1235 struct sock *sk = d->session->sock->sk; 1236 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn; 1237 1238 BT_DBG("dlc %p", d); 1239 1240 rfcomm_send_ua(d->session, d->dlci); 1241 1242 rfcomm_dlc_clear_timer(d); 1243 1244 rfcomm_dlc_lock(d); 1245 d->state = BT_CONNECTED; 1246 d->state_change(d, 0); 1247 rfcomm_dlc_unlock(d); 1248 1249 if (d->role_switch) 1250 hci_conn_switch_role(conn->hcon, 0x00); 1251 1252 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig); 1253 } 1254 1255 static void rfcomm_check_accept(struct rfcomm_dlc *d) 1256 { 1257 if (rfcomm_check_security(d)) { 1258 if (d->defer_setup) { 1259 set_bit(RFCOMM_DEFER_SETUP, &d->flags); 1260 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1261 1262 rfcomm_dlc_lock(d); 1263 d->state = BT_CONNECT2; 1264 d->state_change(d, 0); 1265 rfcomm_dlc_unlock(d); 1266 } else 1267 rfcomm_dlc_accept(d); 1268 } else { 1269 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 1270 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1271 } 1272 } 1273 1274 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci) 1275 { 1276 struct rfcomm_dlc *d; 1277 u8 channel; 1278 1279 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1280 1281 if (!dlci) { 1282 rfcomm_send_ua(s, 0); 1283 1284 if (s->state == BT_OPEN) { 1285 s->state = BT_CONNECTED; 1286 rfcomm_process_connect(s); 1287 } 1288 return 0; 1289 } 1290 1291 /* Check if DLC exists */ 1292 d = rfcomm_dlc_get(s, dlci); 1293 if (d) { 1294 if (d->state == BT_OPEN) { 1295 /* DLC was previously opened by PN request */ 1296 rfcomm_check_accept(d); 1297 } 1298 return 0; 1299 } 1300 1301 /* Notify socket layer about incoming connection */ 1302 channel = __srv_channel(dlci); 1303 if (rfcomm_connect_ind(s, channel, &d)) { 1304 d->dlci = dlci; 1305 d->addr = __addr(s->initiator, dlci); 1306 rfcomm_dlc_link(s, d); 1307 1308 rfcomm_check_accept(d); 1309 } else { 1310 rfcomm_send_dm(s, dlci); 1311 } 1312 1313 return 0; 1314 } 1315 1316 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn) 1317 { 1318 struct rfcomm_session *s = d->session; 1319 1320 BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d", 1321 d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits); 1322 1323 if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) || 1324 pn->flow_ctrl == 0xe0) { 1325 d->cfc = RFCOMM_CFC_ENABLED; 1326 d->tx_credits = pn->credits; 1327 } else { 1328 d->cfc = RFCOMM_CFC_DISABLED; 1329 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1330 } 1331 1332 if (s->cfc == RFCOMM_CFC_UNKNOWN) 1333 s->cfc = d->cfc; 1334 1335 d->priority = pn->priority; 1336 1337 d->mtu = __le16_to_cpu(pn->mtu); 1338 1339 if (cr && d->mtu > s->mtu) 1340 d->mtu = s->mtu; 1341 1342 return 0; 1343 } 1344 1345 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1346 { 1347 struct rfcomm_pn *pn = (void *) skb->data; 1348 struct rfcomm_dlc *d; 1349 u8 dlci = pn->dlci; 1350 1351 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci); 1352 1353 if (!dlci) 1354 return 0; 1355 1356 d = rfcomm_dlc_get(s, dlci); 1357 if (d) { 1358 if (cr) { 1359 /* PN request */ 1360 rfcomm_apply_pn(d, cr, pn); 1361 rfcomm_send_pn(s, 0, d); 1362 } else { 1363 /* PN response */ 1364 switch (d->state) { 1365 case BT_CONFIG: 1366 rfcomm_apply_pn(d, cr, pn); 1367 1368 d->state = BT_CONNECT; 1369 rfcomm_send_sabm(s, d->dlci); 1370 break; 1371 } 1372 } 1373 } else { 1374 u8 channel = __srv_channel(dlci); 1375 1376 if (!cr) 1377 return 0; 1378 1379 /* PN request for non existing DLC. 1380 * Assume incoming connection. */ 1381 if (rfcomm_connect_ind(s, channel, &d)) { 1382 d->dlci = dlci; 1383 d->addr = __addr(s->initiator, dlci); 1384 rfcomm_dlc_link(s, d); 1385 1386 rfcomm_apply_pn(d, cr, pn); 1387 1388 d->state = BT_OPEN; 1389 rfcomm_send_pn(s, 0, d); 1390 } else { 1391 rfcomm_send_dm(s, dlci); 1392 } 1393 } 1394 return 0; 1395 } 1396 1397 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb) 1398 { 1399 struct rfcomm_rpn *rpn = (void *) skb->data; 1400 u8 dlci = __get_dlci(rpn->dlci); 1401 1402 u8 bit_rate = 0; 1403 u8 data_bits = 0; 1404 u8 stop_bits = 0; 1405 u8 parity = 0; 1406 u8 flow_ctrl = 0; 1407 u8 xon_char = 0; 1408 u8 xoff_char = 0; 1409 u16 rpn_mask = RFCOMM_RPN_PM_ALL; 1410 1411 BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x", 1412 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl, 1413 rpn->xon_char, rpn->xoff_char, rpn->param_mask); 1414 1415 if (!cr) 1416 return 0; 1417 1418 if (len == 1) { 1419 /* This is a request, return default (according to ETSI TS 07.10) settings */ 1420 bit_rate = RFCOMM_RPN_BR_9600; 1421 data_bits = RFCOMM_RPN_DATA_8; 1422 stop_bits = RFCOMM_RPN_STOP_1; 1423 parity = RFCOMM_RPN_PARITY_NONE; 1424 flow_ctrl = RFCOMM_RPN_FLOW_NONE; 1425 xon_char = RFCOMM_RPN_XON_CHAR; 1426 xoff_char = RFCOMM_RPN_XOFF_CHAR; 1427 goto rpn_out; 1428 } 1429 1430 /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit, 1431 * no parity, no flow control lines, normal XON/XOFF chars */ 1432 1433 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) { 1434 bit_rate = rpn->bit_rate; 1435 if (bit_rate > RFCOMM_RPN_BR_230400) { 1436 BT_DBG("RPN bit rate mismatch 0x%x", bit_rate); 1437 bit_rate = RFCOMM_RPN_BR_9600; 1438 rpn_mask ^= RFCOMM_RPN_PM_BITRATE; 1439 } 1440 } 1441 1442 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) { 1443 data_bits = __get_rpn_data_bits(rpn->line_settings); 1444 if (data_bits != RFCOMM_RPN_DATA_8) { 1445 BT_DBG("RPN data bits mismatch 0x%x", data_bits); 1446 data_bits = RFCOMM_RPN_DATA_8; 1447 rpn_mask ^= RFCOMM_RPN_PM_DATA; 1448 } 1449 } 1450 1451 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) { 1452 stop_bits = __get_rpn_stop_bits(rpn->line_settings); 1453 if (stop_bits != RFCOMM_RPN_STOP_1) { 1454 BT_DBG("RPN stop bits mismatch 0x%x", stop_bits); 1455 stop_bits = RFCOMM_RPN_STOP_1; 1456 rpn_mask ^= RFCOMM_RPN_PM_STOP; 1457 } 1458 } 1459 1460 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) { 1461 parity = __get_rpn_parity(rpn->line_settings); 1462 if (parity != RFCOMM_RPN_PARITY_NONE) { 1463 BT_DBG("RPN parity mismatch 0x%x", parity); 1464 parity = RFCOMM_RPN_PARITY_NONE; 1465 rpn_mask ^= RFCOMM_RPN_PM_PARITY; 1466 } 1467 } 1468 1469 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) { 1470 flow_ctrl = rpn->flow_ctrl; 1471 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) { 1472 BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl); 1473 flow_ctrl = RFCOMM_RPN_FLOW_NONE; 1474 rpn_mask ^= RFCOMM_RPN_PM_FLOW; 1475 } 1476 } 1477 1478 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) { 1479 xon_char = rpn->xon_char; 1480 if (xon_char != RFCOMM_RPN_XON_CHAR) { 1481 BT_DBG("RPN XON char mismatch 0x%x", xon_char); 1482 xon_char = RFCOMM_RPN_XON_CHAR; 1483 rpn_mask ^= RFCOMM_RPN_PM_XON; 1484 } 1485 } 1486 1487 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) { 1488 xoff_char = rpn->xoff_char; 1489 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) { 1490 BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char); 1491 xoff_char = RFCOMM_RPN_XOFF_CHAR; 1492 rpn_mask ^= RFCOMM_RPN_PM_XOFF; 1493 } 1494 } 1495 1496 rpn_out: 1497 rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits, 1498 parity, flow_ctrl, xon_char, xoff_char, rpn_mask); 1499 1500 return 0; 1501 } 1502 1503 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1504 { 1505 struct rfcomm_rls *rls = (void *) skb->data; 1506 u8 dlci = __get_dlci(rls->dlci); 1507 1508 BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status); 1509 1510 if (!cr) 1511 return 0; 1512 1513 /* We should probably do something with this information here. But 1514 * for now it's sufficient just to reply -- Bluetooth 1.1 says it's 1515 * mandatory to recognise and respond to RLS */ 1516 1517 rfcomm_send_rls(s, 0, dlci, rls->status); 1518 1519 return 0; 1520 } 1521 1522 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb) 1523 { 1524 struct rfcomm_msc *msc = (void *) skb->data; 1525 struct rfcomm_dlc *d; 1526 u8 dlci = __get_dlci(msc->dlci); 1527 1528 BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig); 1529 1530 d = rfcomm_dlc_get(s, dlci); 1531 if (!d) 1532 return 0; 1533 1534 if (cr) { 1535 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc) 1536 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1537 else 1538 clear_bit(RFCOMM_TX_THROTTLED, &d->flags); 1539 1540 rfcomm_dlc_lock(d); 1541 1542 d->remote_v24_sig = msc->v24_sig; 1543 1544 if (d->modem_status) 1545 d->modem_status(d, msc->v24_sig); 1546 1547 rfcomm_dlc_unlock(d); 1548 1549 rfcomm_send_msc(s, 0, dlci, msc->v24_sig); 1550 1551 d->mscex |= RFCOMM_MSCEX_RX; 1552 } else 1553 d->mscex |= RFCOMM_MSCEX_TX; 1554 1555 return 0; 1556 } 1557 1558 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb) 1559 { 1560 struct rfcomm_mcc *mcc = (void *) skb->data; 1561 u8 type, cr, len; 1562 1563 cr = __test_cr(mcc->type); 1564 type = __get_mcc_type(mcc->type); 1565 len = __get_mcc_len(mcc->len); 1566 1567 BT_DBG("%p type 0x%x cr %d", s, type, cr); 1568 1569 skb_pull(skb, 2); 1570 1571 switch (type) { 1572 case RFCOMM_PN: 1573 rfcomm_recv_pn(s, cr, skb); 1574 break; 1575 1576 case RFCOMM_RPN: 1577 rfcomm_recv_rpn(s, cr, len, skb); 1578 break; 1579 1580 case RFCOMM_RLS: 1581 rfcomm_recv_rls(s, cr, skb); 1582 break; 1583 1584 case RFCOMM_MSC: 1585 rfcomm_recv_msc(s, cr, skb); 1586 break; 1587 1588 case RFCOMM_FCOFF: 1589 if (cr) { 1590 set_bit(RFCOMM_TX_THROTTLED, &s->flags); 1591 rfcomm_send_fcoff(s, 0); 1592 } 1593 break; 1594 1595 case RFCOMM_FCON: 1596 if (cr) { 1597 clear_bit(RFCOMM_TX_THROTTLED, &s->flags); 1598 rfcomm_send_fcon(s, 0); 1599 } 1600 break; 1601 1602 case RFCOMM_TEST: 1603 if (cr) 1604 rfcomm_send_test(s, 0, skb->data, skb->len); 1605 break; 1606 1607 case RFCOMM_NSC: 1608 break; 1609 1610 default: 1611 BT_ERR("Unknown control type 0x%02x", type); 1612 rfcomm_send_nsc(s, cr, type); 1613 break; 1614 } 1615 return 0; 1616 } 1617 1618 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb) 1619 { 1620 struct rfcomm_dlc *d; 1621 1622 BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf); 1623 1624 d = rfcomm_dlc_get(s, dlci); 1625 if (!d) { 1626 rfcomm_send_dm(s, dlci); 1627 goto drop; 1628 } 1629 1630 if (pf && d->cfc) { 1631 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1); 1632 1633 d->tx_credits += credits; 1634 if (d->tx_credits) 1635 clear_bit(RFCOMM_TX_THROTTLED, &d->flags); 1636 } 1637 1638 if (skb->len && d->state == BT_CONNECTED) { 1639 rfcomm_dlc_lock(d); 1640 d->rx_credits--; 1641 d->data_ready(d, skb); 1642 rfcomm_dlc_unlock(d); 1643 return 0; 1644 } 1645 1646 drop: 1647 kfree_skb(skb); 1648 return 0; 1649 } 1650 1651 static struct rfcomm_session *rfcomm_recv_frame(struct rfcomm_session *s, 1652 struct sk_buff *skb) 1653 { 1654 struct rfcomm_hdr *hdr = (void *) skb->data; 1655 u8 type, dlci, fcs; 1656 1657 if (!s) { 1658 /* no session, so free socket data */ 1659 kfree_skb(skb); 1660 return s; 1661 } 1662 1663 dlci = __get_dlci(hdr->addr); 1664 type = __get_type(hdr->ctrl); 1665 1666 /* Trim FCS */ 1667 skb->len--; skb->tail--; 1668 fcs = *(u8 *)skb_tail_pointer(skb); 1669 1670 if (__check_fcs(skb->data, type, fcs)) { 1671 BT_ERR("bad checksum in packet"); 1672 kfree_skb(skb); 1673 return s; 1674 } 1675 1676 if (__test_ea(hdr->len)) 1677 skb_pull(skb, 3); 1678 else 1679 skb_pull(skb, 4); 1680 1681 switch (type) { 1682 case RFCOMM_SABM: 1683 if (__test_pf(hdr->ctrl)) 1684 rfcomm_recv_sabm(s, dlci); 1685 break; 1686 1687 case RFCOMM_DISC: 1688 if (__test_pf(hdr->ctrl)) 1689 s = rfcomm_recv_disc(s, dlci); 1690 break; 1691 1692 case RFCOMM_UA: 1693 if (__test_pf(hdr->ctrl)) 1694 s = rfcomm_recv_ua(s, dlci); 1695 break; 1696 1697 case RFCOMM_DM: 1698 s = rfcomm_recv_dm(s, dlci); 1699 break; 1700 1701 case RFCOMM_UIH: 1702 if (dlci) { 1703 rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb); 1704 return s; 1705 } 1706 rfcomm_recv_mcc(s, skb); 1707 break; 1708 1709 default: 1710 BT_ERR("Unknown packet type 0x%02x", type); 1711 break; 1712 } 1713 kfree_skb(skb); 1714 return s; 1715 } 1716 1717 /* ---- Connection and data processing ---- */ 1718 1719 static void rfcomm_process_connect(struct rfcomm_session *s) 1720 { 1721 struct rfcomm_dlc *d; 1722 struct list_head *p, *n; 1723 1724 BT_DBG("session %p state %ld", s, s->state); 1725 1726 list_for_each_safe(p, n, &s->dlcs) { 1727 d = list_entry(p, struct rfcomm_dlc, list); 1728 if (d->state == BT_CONFIG) { 1729 d->mtu = s->mtu; 1730 if (rfcomm_check_security(d)) { 1731 rfcomm_send_pn(s, 1, d); 1732 } else { 1733 set_bit(RFCOMM_AUTH_PENDING, &d->flags); 1734 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1735 } 1736 } 1737 } 1738 } 1739 1740 /* Send data queued for the DLC. 1741 * Return number of frames left in the queue. 1742 */ 1743 static int rfcomm_process_tx(struct rfcomm_dlc *d) 1744 { 1745 struct sk_buff *skb; 1746 int err; 1747 1748 BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d", 1749 d, d->state, d->cfc, d->rx_credits, d->tx_credits); 1750 1751 /* Send pending MSC */ 1752 if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags)) 1753 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig); 1754 1755 if (d->cfc) { 1756 /* CFC enabled. 1757 * Give them some credits */ 1758 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) && 1759 d->rx_credits <= (d->cfc >> 2)) { 1760 rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits); 1761 d->rx_credits = d->cfc; 1762 } 1763 } else { 1764 /* CFC disabled. 1765 * Give ourselves some credits */ 1766 d->tx_credits = 5; 1767 } 1768 1769 if (test_bit(RFCOMM_TX_THROTTLED, &d->flags)) 1770 return skb_queue_len(&d->tx_queue); 1771 1772 while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) { 1773 err = rfcomm_send_frame(d->session, skb->data, skb->len); 1774 if (err < 0) { 1775 skb_queue_head(&d->tx_queue, skb); 1776 break; 1777 } 1778 kfree_skb(skb); 1779 d->tx_credits--; 1780 } 1781 1782 if (d->cfc && !d->tx_credits) { 1783 /* We're out of TX credits. 1784 * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */ 1785 set_bit(RFCOMM_TX_THROTTLED, &d->flags); 1786 } 1787 1788 return skb_queue_len(&d->tx_queue); 1789 } 1790 1791 static void rfcomm_process_dlcs(struct rfcomm_session *s) 1792 { 1793 struct rfcomm_dlc *d; 1794 struct list_head *p, *n; 1795 1796 BT_DBG("session %p state %ld", s, s->state); 1797 1798 list_for_each_safe(p, n, &s->dlcs) { 1799 d = list_entry(p, struct rfcomm_dlc, list); 1800 1801 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) { 1802 __rfcomm_dlc_close(d, ETIMEDOUT); 1803 continue; 1804 } 1805 1806 if (test_bit(RFCOMM_ENC_DROP, &d->flags)) { 1807 __rfcomm_dlc_close(d, ECONNREFUSED); 1808 continue; 1809 } 1810 1811 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) { 1812 rfcomm_dlc_clear_timer(d); 1813 if (d->out) { 1814 rfcomm_send_pn(s, 1, d); 1815 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT); 1816 } else { 1817 if (d->defer_setup) { 1818 set_bit(RFCOMM_DEFER_SETUP, &d->flags); 1819 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 1820 1821 rfcomm_dlc_lock(d); 1822 d->state = BT_CONNECT2; 1823 d->state_change(d, 0); 1824 rfcomm_dlc_unlock(d); 1825 } else 1826 rfcomm_dlc_accept(d); 1827 } 1828 continue; 1829 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) { 1830 rfcomm_dlc_clear_timer(d); 1831 if (!d->out) 1832 rfcomm_send_dm(s, d->dlci); 1833 else 1834 d->state = BT_CLOSED; 1835 __rfcomm_dlc_close(d, ECONNREFUSED); 1836 continue; 1837 } 1838 1839 if (test_bit(RFCOMM_SEC_PENDING, &d->flags)) 1840 continue; 1841 1842 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags)) 1843 continue; 1844 1845 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) && 1846 d->mscex == RFCOMM_MSCEX_OK) 1847 rfcomm_process_tx(d); 1848 } 1849 } 1850 1851 static struct rfcomm_session *rfcomm_process_rx(struct rfcomm_session *s) 1852 { 1853 struct socket *sock = s->sock; 1854 struct sock *sk = sock->sk; 1855 struct sk_buff *skb; 1856 1857 BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue)); 1858 1859 /* Get data directly from socket receive queue without copying it. */ 1860 while ((skb = skb_dequeue(&sk->sk_receive_queue))) { 1861 skb_orphan(skb); 1862 if (!skb_linearize(skb)) 1863 s = rfcomm_recv_frame(s, skb); 1864 else 1865 kfree_skb(skb); 1866 } 1867 1868 if (s && (sk->sk_state == BT_CLOSED)) 1869 s = rfcomm_session_close(s, sk->sk_err); 1870 1871 return s; 1872 } 1873 1874 static void rfcomm_accept_connection(struct rfcomm_session *s) 1875 { 1876 struct socket *sock = s->sock, *nsock; 1877 int err; 1878 1879 /* Fast check for a new connection. 1880 * Avoids unnesesary socket allocations. */ 1881 if (list_empty(&bt_sk(sock->sk)->accept_q)) 1882 return; 1883 1884 BT_DBG("session %p", s); 1885 1886 err = kernel_accept(sock, &nsock, O_NONBLOCK); 1887 if (err < 0) 1888 return; 1889 1890 /* Set our callbacks */ 1891 nsock->sk->sk_data_ready = rfcomm_l2data_ready; 1892 nsock->sk->sk_state_change = rfcomm_l2state_change; 1893 1894 s = rfcomm_session_add(nsock, BT_OPEN); 1895 if (s) { 1896 /* We should adjust MTU on incoming sessions. 1897 * L2CAP MTU minus UIH header and FCS. */ 1898 s->mtu = min(l2cap_pi(nsock->sk)->chan->omtu, 1899 l2cap_pi(nsock->sk)->chan->imtu) - 5; 1900 1901 rfcomm_schedule(); 1902 } else 1903 sock_release(nsock); 1904 } 1905 1906 static struct rfcomm_session *rfcomm_check_connection(struct rfcomm_session *s) 1907 { 1908 struct sock *sk = s->sock->sk; 1909 1910 BT_DBG("%p state %ld", s, s->state); 1911 1912 switch (sk->sk_state) { 1913 case BT_CONNECTED: 1914 s->state = BT_CONNECT; 1915 1916 /* We can adjust MTU on outgoing sessions. 1917 * L2CAP MTU minus UIH header and FCS. */ 1918 s->mtu = min(l2cap_pi(sk)->chan->omtu, l2cap_pi(sk)->chan->imtu) - 5; 1919 1920 rfcomm_send_sabm(s, 0); 1921 break; 1922 1923 case BT_CLOSED: 1924 s = rfcomm_session_close(s, sk->sk_err); 1925 break; 1926 } 1927 return s; 1928 } 1929 1930 static void rfcomm_process_sessions(void) 1931 { 1932 struct list_head *p, *n; 1933 1934 rfcomm_lock(); 1935 1936 list_for_each_safe(p, n, &session_list) { 1937 struct rfcomm_session *s; 1938 s = list_entry(p, struct rfcomm_session, list); 1939 1940 if (test_and_clear_bit(RFCOMM_TIMED_OUT, &s->flags)) { 1941 s->state = BT_DISCONN; 1942 rfcomm_send_disc(s, 0); 1943 continue; 1944 } 1945 1946 if (s->state == BT_LISTEN) { 1947 rfcomm_accept_connection(s); 1948 continue; 1949 } 1950 1951 switch (s->state) { 1952 case BT_BOUND: 1953 s = rfcomm_check_connection(s); 1954 break; 1955 1956 default: 1957 s = rfcomm_process_rx(s); 1958 break; 1959 } 1960 1961 if (s) 1962 rfcomm_process_dlcs(s); 1963 } 1964 1965 rfcomm_unlock(); 1966 } 1967 1968 static int rfcomm_add_listener(bdaddr_t *ba) 1969 { 1970 struct sockaddr_l2 addr; 1971 struct socket *sock; 1972 struct sock *sk; 1973 struct rfcomm_session *s; 1974 int err = 0; 1975 1976 /* Create socket */ 1977 err = rfcomm_l2sock_create(&sock); 1978 if (err < 0) { 1979 BT_ERR("Create socket failed %d", err); 1980 return err; 1981 } 1982 1983 /* Bind socket */ 1984 bacpy(&addr.l2_bdaddr, ba); 1985 addr.l2_family = AF_BLUETOOTH; 1986 addr.l2_psm = __constant_cpu_to_le16(RFCOMM_PSM); 1987 addr.l2_cid = 0; 1988 addr.l2_bdaddr_type = BDADDR_BREDR; 1989 err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr)); 1990 if (err < 0) { 1991 BT_ERR("Bind failed %d", err); 1992 goto failed; 1993 } 1994 1995 /* Set L2CAP options */ 1996 sk = sock->sk; 1997 lock_sock(sk); 1998 l2cap_pi(sk)->chan->imtu = l2cap_mtu; 1999 release_sock(sk); 2000 2001 /* Start listening on the socket */ 2002 err = kernel_listen(sock, 10); 2003 if (err) { 2004 BT_ERR("Listen failed %d", err); 2005 goto failed; 2006 } 2007 2008 /* Add listening session */ 2009 s = rfcomm_session_add(sock, BT_LISTEN); 2010 if (!s) { 2011 err = -ENOMEM; 2012 goto failed; 2013 } 2014 2015 return 0; 2016 failed: 2017 sock_release(sock); 2018 return err; 2019 } 2020 2021 static void rfcomm_kill_listener(void) 2022 { 2023 struct rfcomm_session *s; 2024 struct list_head *p, *n; 2025 2026 BT_DBG(""); 2027 2028 list_for_each_safe(p, n, &session_list) { 2029 s = list_entry(p, struct rfcomm_session, list); 2030 rfcomm_session_del(s); 2031 } 2032 } 2033 2034 static int rfcomm_run(void *unused) 2035 { 2036 BT_DBG(""); 2037 2038 set_user_nice(current, -10); 2039 2040 rfcomm_add_listener(BDADDR_ANY); 2041 2042 while (1) { 2043 set_current_state(TASK_INTERRUPTIBLE); 2044 2045 if (kthread_should_stop()) 2046 break; 2047 2048 /* Process stuff */ 2049 rfcomm_process_sessions(); 2050 2051 schedule(); 2052 } 2053 __set_current_state(TASK_RUNNING); 2054 2055 rfcomm_kill_listener(); 2056 2057 return 0; 2058 } 2059 2060 static void rfcomm_security_cfm(struct hci_conn *conn, u8 status, u8 encrypt) 2061 { 2062 struct rfcomm_session *s; 2063 struct rfcomm_dlc *d; 2064 struct list_head *p, *n; 2065 2066 BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt); 2067 2068 s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst); 2069 if (!s) 2070 return; 2071 2072 list_for_each_safe(p, n, &s->dlcs) { 2073 d = list_entry(p, struct rfcomm_dlc, list); 2074 2075 if (test_and_clear_bit(RFCOMM_SEC_PENDING, &d->flags)) { 2076 rfcomm_dlc_clear_timer(d); 2077 if (status || encrypt == 0x00) { 2078 set_bit(RFCOMM_ENC_DROP, &d->flags); 2079 continue; 2080 } 2081 } 2082 2083 if (d->state == BT_CONNECTED && !status && encrypt == 0x00) { 2084 if (d->sec_level == BT_SECURITY_MEDIUM) { 2085 set_bit(RFCOMM_SEC_PENDING, &d->flags); 2086 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT); 2087 continue; 2088 } else if (d->sec_level == BT_SECURITY_HIGH) { 2089 set_bit(RFCOMM_ENC_DROP, &d->flags); 2090 continue; 2091 } 2092 } 2093 2094 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags)) 2095 continue; 2096 2097 if (!status && hci_conn_check_secure(conn, d->sec_level)) 2098 set_bit(RFCOMM_AUTH_ACCEPT, &d->flags); 2099 else 2100 set_bit(RFCOMM_AUTH_REJECT, &d->flags); 2101 } 2102 2103 rfcomm_schedule(); 2104 } 2105 2106 static struct hci_cb rfcomm_cb = { 2107 .name = "RFCOMM", 2108 .security_cfm = rfcomm_security_cfm 2109 }; 2110 2111 static int rfcomm_dlc_debugfs_show(struct seq_file *f, void *x) 2112 { 2113 struct rfcomm_session *s; 2114 2115 rfcomm_lock(); 2116 2117 list_for_each_entry(s, &session_list, list) { 2118 struct l2cap_chan *chan = l2cap_pi(s->sock->sk)->chan; 2119 struct rfcomm_dlc *d; 2120 list_for_each_entry(d, &s->dlcs, list) { 2121 seq_printf(f, "%pMR %pMR %ld %d %d %d %d\n", 2122 &chan->src, &chan->dst, 2123 d->state, d->dlci, d->mtu, 2124 d->rx_credits, d->tx_credits); 2125 } 2126 } 2127 2128 rfcomm_unlock(); 2129 2130 return 0; 2131 } 2132 2133 static int rfcomm_dlc_debugfs_open(struct inode *inode, struct file *file) 2134 { 2135 return single_open(file, rfcomm_dlc_debugfs_show, inode->i_private); 2136 } 2137 2138 static const struct file_operations rfcomm_dlc_debugfs_fops = { 2139 .open = rfcomm_dlc_debugfs_open, 2140 .read = seq_read, 2141 .llseek = seq_lseek, 2142 .release = single_release, 2143 }; 2144 2145 static struct dentry *rfcomm_dlc_debugfs; 2146 2147 /* ---- Initialization ---- */ 2148 static int __init rfcomm_init(void) 2149 { 2150 int err; 2151 2152 hci_register_cb(&rfcomm_cb); 2153 2154 rfcomm_thread = kthread_run(rfcomm_run, NULL, "krfcommd"); 2155 if (IS_ERR(rfcomm_thread)) { 2156 err = PTR_ERR(rfcomm_thread); 2157 goto unregister; 2158 } 2159 2160 err = rfcomm_init_ttys(); 2161 if (err < 0) 2162 goto stop; 2163 2164 err = rfcomm_init_sockets(); 2165 if (err < 0) 2166 goto cleanup; 2167 2168 BT_INFO("RFCOMM ver %s", VERSION); 2169 2170 if (IS_ERR_OR_NULL(bt_debugfs)) 2171 return 0; 2172 2173 rfcomm_dlc_debugfs = debugfs_create_file("rfcomm_dlc", 0444, 2174 bt_debugfs, NULL, 2175 &rfcomm_dlc_debugfs_fops); 2176 2177 return 0; 2178 2179 cleanup: 2180 rfcomm_cleanup_ttys(); 2181 2182 stop: 2183 kthread_stop(rfcomm_thread); 2184 2185 unregister: 2186 hci_unregister_cb(&rfcomm_cb); 2187 2188 return err; 2189 } 2190 2191 static void __exit rfcomm_exit(void) 2192 { 2193 debugfs_remove(rfcomm_dlc_debugfs); 2194 2195 hci_unregister_cb(&rfcomm_cb); 2196 2197 kthread_stop(rfcomm_thread); 2198 2199 rfcomm_cleanup_ttys(); 2200 2201 rfcomm_cleanup_sockets(); 2202 } 2203 2204 module_init(rfcomm_init); 2205 module_exit(rfcomm_exit); 2206 2207 module_param(disable_cfc, bool, 0644); 2208 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control"); 2209 2210 module_param(channel_mtu, int, 0644); 2211 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel"); 2212 2213 module_param(l2cap_mtu, uint, 0644); 2214 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection"); 2215 2216 module_param(l2cap_ertm, bool, 0644); 2217 MODULE_PARM_DESC(l2cap_ertm, "Use L2CAP ERTM mode for connection"); 2218 2219 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 2220 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION); 2221 MODULE_VERSION(VERSION); 2222 MODULE_LICENSE("GPL"); 2223 MODULE_ALIAS("bt-proto-3"); 2224