xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_codec.h"
16 #include "hci_debugfs.h"
17 #include "smp.h"
18 #include "eir.h"
19 #include "msft.h"
20 #include "aosp.h"
21 #include "leds.h"
22 
23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24 				  struct sk_buff *skb)
25 {
26 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
27 
28 	if (hdev->req_status != HCI_REQ_PEND)
29 		return;
30 
31 	hdev->req_result = result;
32 	hdev->req_status = HCI_REQ_DONE;
33 
34 	if (skb) {
35 		struct sock *sk = hci_skb_sk(skb);
36 
37 		/* Drop sk reference if set */
38 		if (sk)
39 			sock_put(sk);
40 
41 		hdev->req_skb = skb_get(skb);
42 	}
43 
44 	wake_up_interruptible(&hdev->req_wait_q);
45 }
46 
47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
48 					  u32 plen, const void *param,
49 					  struct sock *sk)
50 {
51 	int len = HCI_COMMAND_HDR_SIZE + plen;
52 	struct hci_command_hdr *hdr;
53 	struct sk_buff *skb;
54 
55 	skb = bt_skb_alloc(len, GFP_ATOMIC);
56 	if (!skb)
57 		return NULL;
58 
59 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
60 	hdr->opcode = cpu_to_le16(opcode);
61 	hdr->plen   = plen;
62 
63 	if (plen)
64 		skb_put_data(skb, param, plen);
65 
66 	bt_dev_dbg(hdev, "skb len %d", skb->len);
67 
68 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
69 	hci_skb_opcode(skb) = opcode;
70 
71 	/* Grab a reference if command needs to be associated with a sock (e.g.
72 	 * likely mgmt socket that initiated the command).
73 	 */
74 	if (sk) {
75 		hci_skb_sk(skb) = sk;
76 		sock_hold(sk);
77 	}
78 
79 	return skb;
80 }
81 
82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
83 			     const void *param, u8 event, struct sock *sk)
84 {
85 	struct hci_dev *hdev = req->hdev;
86 	struct sk_buff *skb;
87 
88 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
89 
90 	/* If an error occurred during request building, there is no point in
91 	 * queueing the HCI command. We can simply return.
92 	 */
93 	if (req->err)
94 		return;
95 
96 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
97 	if (!skb) {
98 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
99 			   opcode);
100 		req->err = -ENOMEM;
101 		return;
102 	}
103 
104 	if (skb_queue_empty(&req->cmd_q))
105 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
106 
107 	hci_skb_event(skb) = event;
108 
109 	skb_queue_tail(&req->cmd_q, skb);
110 }
111 
112 static int hci_cmd_sync_run(struct hci_request *req)
113 {
114 	struct hci_dev *hdev = req->hdev;
115 	struct sk_buff *skb;
116 	unsigned long flags;
117 
118 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
119 
120 	/* If an error occurred during request building, remove all HCI
121 	 * commands queued on the HCI request queue.
122 	 */
123 	if (req->err) {
124 		skb_queue_purge(&req->cmd_q);
125 		return req->err;
126 	}
127 
128 	/* Do not allow empty requests */
129 	if (skb_queue_empty(&req->cmd_q))
130 		return -ENODATA;
131 
132 	skb = skb_peek_tail(&req->cmd_q);
133 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
134 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
135 
136 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
137 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
138 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
139 
140 	queue_work(hdev->workqueue, &hdev->cmd_work);
141 
142 	return 0;
143 }
144 
145 /* This function requires the caller holds hdev->req_lock. */
146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
147 				  const void *param, u8 event, u32 timeout,
148 				  struct sock *sk)
149 {
150 	struct hci_request req;
151 	struct sk_buff *skb;
152 	int err = 0;
153 
154 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
155 
156 	hci_req_init(&req, hdev);
157 
158 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
159 
160 	hdev->req_status = HCI_REQ_PEND;
161 
162 	err = hci_cmd_sync_run(&req);
163 	if (err < 0)
164 		return ERR_PTR(err);
165 
166 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
167 					       hdev->req_status != HCI_REQ_PEND,
168 					       timeout);
169 
170 	if (err == -ERESTARTSYS)
171 		return ERR_PTR(-EINTR);
172 
173 	switch (hdev->req_status) {
174 	case HCI_REQ_DONE:
175 		err = -bt_to_errno(hdev->req_result);
176 		break;
177 
178 	case HCI_REQ_CANCELED:
179 		err = -hdev->req_result;
180 		break;
181 
182 	default:
183 		err = -ETIMEDOUT;
184 		break;
185 	}
186 
187 	hdev->req_status = 0;
188 	hdev->req_result = 0;
189 	skb = hdev->req_skb;
190 	hdev->req_skb = NULL;
191 
192 	bt_dev_dbg(hdev, "end: err %d", err);
193 
194 	if (err < 0) {
195 		kfree_skb(skb);
196 		return ERR_PTR(err);
197 	}
198 
199 	return skb;
200 }
201 EXPORT_SYMBOL(__hci_cmd_sync_sk);
202 
203 /* This function requires the caller holds hdev->req_lock. */
204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
205 			       const void *param, u32 timeout)
206 {
207 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
208 }
209 EXPORT_SYMBOL(__hci_cmd_sync);
210 
211 /* Send HCI command and wait for command complete event */
212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
213 			     const void *param, u32 timeout)
214 {
215 	struct sk_buff *skb;
216 
217 	if (!test_bit(HCI_UP, &hdev->flags))
218 		return ERR_PTR(-ENETDOWN);
219 
220 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
221 
222 	hci_req_sync_lock(hdev);
223 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
224 	hci_req_sync_unlock(hdev);
225 
226 	return skb;
227 }
228 EXPORT_SYMBOL(hci_cmd_sync);
229 
230 /* This function requires the caller holds hdev->req_lock. */
231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
232 				  const void *param, u8 event, u32 timeout)
233 {
234 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
235 				 NULL);
236 }
237 EXPORT_SYMBOL(__hci_cmd_sync_ev);
238 
239 /* This function requires the caller holds hdev->req_lock. */
240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
241 			     const void *param, u8 event, u32 timeout,
242 			     struct sock *sk)
243 {
244 	struct sk_buff *skb;
245 	u8 status;
246 
247 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
248 	if (IS_ERR(skb)) {
249 		if (!event)
250 			bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
251 				   PTR_ERR(skb));
252 		return PTR_ERR(skb);
253 	}
254 
255 	/* If command return a status event skb will be set to NULL as there are
256 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
257 	 * the actual error would be found with PTR_ERR(skb).
258 	 */
259 	if (!skb)
260 		return 0;
261 
262 	status = skb->data[0];
263 
264 	kfree_skb(skb);
265 
266 	return status;
267 }
268 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
269 
270 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
271 			  const void *param, u32 timeout)
272 {
273 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
274 					NULL);
275 }
276 EXPORT_SYMBOL(__hci_cmd_sync_status);
277 
278 static void hci_cmd_sync_work(struct work_struct *work)
279 {
280 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
281 
282 	bt_dev_dbg(hdev, "");
283 
284 	/* Dequeue all entries and run them */
285 	while (1) {
286 		struct hci_cmd_sync_work_entry *entry;
287 
288 		mutex_lock(&hdev->cmd_sync_work_lock);
289 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
290 						 struct hci_cmd_sync_work_entry,
291 						 list);
292 		if (entry)
293 			list_del(&entry->list);
294 		mutex_unlock(&hdev->cmd_sync_work_lock);
295 
296 		if (!entry)
297 			break;
298 
299 		bt_dev_dbg(hdev, "entry %p", entry);
300 
301 		if (entry->func) {
302 			int err;
303 
304 			hci_req_sync_lock(hdev);
305 			err = entry->func(hdev, entry->data);
306 			if (entry->destroy)
307 				entry->destroy(hdev, entry->data, err);
308 			hci_req_sync_unlock(hdev);
309 		}
310 
311 		kfree(entry);
312 	}
313 }
314 
315 static void hci_cmd_sync_cancel_work(struct work_struct *work)
316 {
317 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
318 
319 	cancel_delayed_work_sync(&hdev->cmd_timer);
320 	cancel_delayed_work_sync(&hdev->ncmd_timer);
321 	atomic_set(&hdev->cmd_cnt, 1);
322 
323 	wake_up_interruptible(&hdev->req_wait_q);
324 }
325 
326 static int hci_scan_disable_sync(struct hci_dev *hdev);
327 static int scan_disable_sync(struct hci_dev *hdev, void *data)
328 {
329 	return hci_scan_disable_sync(hdev);
330 }
331 
332 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
333 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
334 {
335 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
336 }
337 
338 static void le_scan_disable(struct work_struct *work)
339 {
340 	struct hci_dev *hdev = container_of(work, struct hci_dev,
341 					    le_scan_disable.work);
342 	int status;
343 
344 	bt_dev_dbg(hdev, "");
345 	hci_dev_lock(hdev);
346 
347 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
348 		goto _return;
349 
350 	cancel_delayed_work(&hdev->le_scan_restart);
351 
352 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
353 	if (status) {
354 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
355 		goto _return;
356 	}
357 
358 	hdev->discovery.scan_start = 0;
359 
360 	/* If we were running LE only scan, change discovery state. If
361 	 * we were running both LE and BR/EDR inquiry simultaneously,
362 	 * and BR/EDR inquiry is already finished, stop discovery,
363 	 * otherwise BR/EDR inquiry will stop discovery when finished.
364 	 * If we will resolve remote device name, do not change
365 	 * discovery state.
366 	 */
367 
368 	if (hdev->discovery.type == DISCOV_TYPE_LE)
369 		goto discov_stopped;
370 
371 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
372 		goto _return;
373 
374 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
375 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
376 		    hdev->discovery.state != DISCOVERY_RESOLVING)
377 			goto discov_stopped;
378 
379 		goto _return;
380 	}
381 
382 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
383 	if (status) {
384 		bt_dev_err(hdev, "inquiry failed: status %d", status);
385 		goto discov_stopped;
386 	}
387 
388 	goto _return;
389 
390 discov_stopped:
391 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
392 
393 _return:
394 	hci_dev_unlock(hdev);
395 }
396 
397 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
398 				       u8 filter_dup);
399 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
400 {
401 	/* If controller is not scanning we are done. */
402 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
403 		return 0;
404 
405 	if (hdev->scanning_paused) {
406 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
407 		return 0;
408 	}
409 
410 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
411 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
412 					   LE_SCAN_FILTER_DUP_ENABLE);
413 }
414 
415 static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
416 {
417 	return hci_le_scan_restart_sync(hdev);
418 }
419 
420 static void le_scan_restart(struct work_struct *work)
421 {
422 	struct hci_dev *hdev = container_of(work, struct hci_dev,
423 					    le_scan_restart.work);
424 	unsigned long timeout, duration, scan_start, now;
425 	int status;
426 
427 	bt_dev_dbg(hdev, "");
428 
429 	hci_dev_lock(hdev);
430 
431 	status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
432 	if (status) {
433 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
434 			   status);
435 		goto unlock;
436 	}
437 
438 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
439 	    !hdev->discovery.scan_start)
440 		goto unlock;
441 
442 	/* When the scan was started, hdev->le_scan_disable has been queued
443 	 * after duration from scan_start. During scan restart this job
444 	 * has been canceled, and we need to queue it again after proper
445 	 * timeout, to make sure that scan does not run indefinitely.
446 	 */
447 	duration = hdev->discovery.scan_duration;
448 	scan_start = hdev->discovery.scan_start;
449 	now = jiffies;
450 	if (now - scan_start <= duration) {
451 		int elapsed;
452 
453 		if (now >= scan_start)
454 			elapsed = now - scan_start;
455 		else
456 			elapsed = ULONG_MAX - scan_start + now;
457 
458 		timeout = duration - elapsed;
459 	} else {
460 		timeout = 0;
461 	}
462 
463 	queue_delayed_work(hdev->req_workqueue,
464 			   &hdev->le_scan_disable, timeout);
465 
466 unlock:
467 	hci_dev_unlock(hdev);
468 }
469 
470 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
471 {
472 	bt_dev_dbg(hdev, "");
473 
474 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
475 	    list_empty(&hdev->adv_instances))
476 		return 0;
477 
478 	if (hdev->cur_adv_instance) {
479 		return hci_schedule_adv_instance_sync(hdev,
480 						      hdev->cur_adv_instance,
481 						      true);
482 	} else {
483 		if (ext_adv_capable(hdev)) {
484 			hci_start_ext_adv_sync(hdev, 0x00);
485 		} else {
486 			hci_update_adv_data_sync(hdev, 0x00);
487 			hci_update_scan_rsp_data_sync(hdev, 0x00);
488 			hci_enable_advertising_sync(hdev);
489 		}
490 	}
491 
492 	return 0;
493 }
494 
495 static void reenable_adv(struct work_struct *work)
496 {
497 	struct hci_dev *hdev = container_of(work, struct hci_dev,
498 					    reenable_adv_work);
499 	int status;
500 
501 	bt_dev_dbg(hdev, "");
502 
503 	hci_dev_lock(hdev);
504 
505 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
506 	if (status)
507 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
508 
509 	hci_dev_unlock(hdev);
510 }
511 
512 static void cancel_adv_timeout(struct hci_dev *hdev)
513 {
514 	if (hdev->adv_instance_timeout) {
515 		hdev->adv_instance_timeout = 0;
516 		cancel_delayed_work(&hdev->adv_instance_expire);
517 	}
518 }
519 
520 /* For a single instance:
521  * - force == true: The instance will be removed even when its remaining
522  *   lifetime is not zero.
523  * - force == false: the instance will be deactivated but kept stored unless
524  *   the remaining lifetime is zero.
525  *
526  * For instance == 0x00:
527  * - force == true: All instances will be removed regardless of their timeout
528  *   setting.
529  * - force == false: Only instances that have a timeout will be removed.
530  */
531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
532 				u8 instance, bool force)
533 {
534 	struct adv_info *adv_instance, *n, *next_instance = NULL;
535 	int err;
536 	u8 rem_inst;
537 
538 	/* Cancel any timeout concerning the removed instance(s). */
539 	if (!instance || hdev->cur_adv_instance == instance)
540 		cancel_adv_timeout(hdev);
541 
542 	/* Get the next instance to advertise BEFORE we remove
543 	 * the current one. This can be the same instance again
544 	 * if there is only one instance.
545 	 */
546 	if (instance && hdev->cur_adv_instance == instance)
547 		next_instance = hci_get_next_instance(hdev, instance);
548 
549 	if (instance == 0x00) {
550 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
551 					 list) {
552 			if (!(force || adv_instance->timeout))
553 				continue;
554 
555 			rem_inst = adv_instance->instance;
556 			err = hci_remove_adv_instance(hdev, rem_inst);
557 			if (!err)
558 				mgmt_advertising_removed(sk, hdev, rem_inst);
559 		}
560 	} else {
561 		adv_instance = hci_find_adv_instance(hdev, instance);
562 
563 		if (force || (adv_instance && adv_instance->timeout &&
564 			      !adv_instance->remaining_time)) {
565 			/* Don't advertise a removed instance. */
566 			if (next_instance &&
567 			    next_instance->instance == instance)
568 				next_instance = NULL;
569 
570 			err = hci_remove_adv_instance(hdev, instance);
571 			if (!err)
572 				mgmt_advertising_removed(sk, hdev, instance);
573 		}
574 	}
575 
576 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
577 		return 0;
578 
579 	if (next_instance && !ext_adv_capable(hdev))
580 		return hci_schedule_adv_instance_sync(hdev,
581 						      next_instance->instance,
582 						      false);
583 
584 	return 0;
585 }
586 
587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
588 {
589 	u8 instance = *(u8 *)data;
590 
591 	kfree(data);
592 
593 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
594 
595 	if (list_empty(&hdev->adv_instances))
596 		return hci_disable_advertising_sync(hdev);
597 
598 	return 0;
599 }
600 
601 static void adv_timeout_expire(struct work_struct *work)
602 {
603 	u8 *inst_ptr;
604 	struct hci_dev *hdev = container_of(work, struct hci_dev,
605 					    adv_instance_expire.work);
606 
607 	bt_dev_dbg(hdev, "");
608 
609 	hci_dev_lock(hdev);
610 
611 	hdev->adv_instance_timeout = 0;
612 
613 	if (hdev->cur_adv_instance == 0x00)
614 		goto unlock;
615 
616 	inst_ptr = kmalloc(1, GFP_KERNEL);
617 	if (!inst_ptr)
618 		goto unlock;
619 
620 	*inst_ptr = hdev->cur_adv_instance;
621 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
622 
623 unlock:
624 	hci_dev_unlock(hdev);
625 }
626 
627 void hci_cmd_sync_init(struct hci_dev *hdev)
628 {
629 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
630 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
631 	mutex_init(&hdev->cmd_sync_work_lock);
632 
633 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
634 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
635 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
636 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
637 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
638 }
639 
640 void hci_cmd_sync_clear(struct hci_dev *hdev)
641 {
642 	struct hci_cmd_sync_work_entry *entry, *tmp;
643 
644 	cancel_work_sync(&hdev->cmd_sync_work);
645 	cancel_work_sync(&hdev->reenable_adv_work);
646 
647 	mutex_lock(&hdev->cmd_sync_work_lock);
648 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
649 		if (entry->destroy)
650 			entry->destroy(hdev, entry->data, -ECANCELED);
651 
652 		list_del(&entry->list);
653 		kfree(entry);
654 	}
655 	mutex_unlock(&hdev->cmd_sync_work_lock);
656 }
657 
658 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
659 {
660 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
661 
662 	if (hdev->req_status == HCI_REQ_PEND) {
663 		hdev->req_result = err;
664 		hdev->req_status = HCI_REQ_CANCELED;
665 
666 		cancel_delayed_work_sync(&hdev->cmd_timer);
667 		cancel_delayed_work_sync(&hdev->ncmd_timer);
668 		atomic_set(&hdev->cmd_cnt, 1);
669 
670 		wake_up_interruptible(&hdev->req_wait_q);
671 	}
672 }
673 
674 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
675 {
676 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
677 
678 	if (hdev->req_status == HCI_REQ_PEND) {
679 		hdev->req_result = err;
680 		hdev->req_status = HCI_REQ_CANCELED;
681 
682 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
683 	}
684 }
685 EXPORT_SYMBOL(hci_cmd_sync_cancel);
686 
687 /* Submit HCI command to be run in as cmd_sync_work:
688  *
689  * - hdev must _not_ be unregistered
690  */
691 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
692 			void *data, hci_cmd_sync_work_destroy_t destroy)
693 {
694 	struct hci_cmd_sync_work_entry *entry;
695 
696 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
697 		return -ENODEV;
698 
699 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
700 	if (!entry)
701 		return -ENOMEM;
702 
703 	entry->func = func;
704 	entry->data = data;
705 	entry->destroy = destroy;
706 
707 	mutex_lock(&hdev->cmd_sync_work_lock);
708 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
709 	mutex_unlock(&hdev->cmd_sync_work_lock);
710 
711 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
712 
713 	return 0;
714 }
715 EXPORT_SYMBOL(hci_cmd_sync_submit);
716 
717 /* Queue HCI command:
718  *
719  * - hdev must be running
720  */
721 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
722 		       void *data, hci_cmd_sync_work_destroy_t destroy)
723 {
724 	/* Only queue command if hdev is running which means it had been opened
725 	 * and is either on init phase or is already up.
726 	 */
727 	if (!test_bit(HCI_RUNNING, &hdev->flags))
728 		return -ENETDOWN;
729 
730 	return hci_cmd_sync_submit(hdev, func, data, destroy);
731 }
732 EXPORT_SYMBOL(hci_cmd_sync_queue);
733 
734 int hci_update_eir_sync(struct hci_dev *hdev)
735 {
736 	struct hci_cp_write_eir cp;
737 
738 	bt_dev_dbg(hdev, "");
739 
740 	if (!hdev_is_powered(hdev))
741 		return 0;
742 
743 	if (!lmp_ext_inq_capable(hdev))
744 		return 0;
745 
746 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
747 		return 0;
748 
749 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
750 		return 0;
751 
752 	memset(&cp, 0, sizeof(cp));
753 
754 	eir_create(hdev, cp.data);
755 
756 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
757 		return 0;
758 
759 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
760 
761 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
762 				     HCI_CMD_TIMEOUT);
763 }
764 
765 static u8 get_service_classes(struct hci_dev *hdev)
766 {
767 	struct bt_uuid *uuid;
768 	u8 val = 0;
769 
770 	list_for_each_entry(uuid, &hdev->uuids, list)
771 		val |= uuid->svc_hint;
772 
773 	return val;
774 }
775 
776 int hci_update_class_sync(struct hci_dev *hdev)
777 {
778 	u8 cod[3];
779 
780 	bt_dev_dbg(hdev, "");
781 
782 	if (!hdev_is_powered(hdev))
783 		return 0;
784 
785 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
786 		return 0;
787 
788 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
789 		return 0;
790 
791 	cod[0] = hdev->minor_class;
792 	cod[1] = hdev->major_class;
793 	cod[2] = get_service_classes(hdev);
794 
795 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
796 		cod[1] |= 0x20;
797 
798 	if (memcmp(cod, hdev->dev_class, 3) == 0)
799 		return 0;
800 
801 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
802 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
803 }
804 
805 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
806 {
807 	/* If there is no connection we are OK to advertise. */
808 	if (hci_conn_num(hdev, LE_LINK) == 0)
809 		return true;
810 
811 	/* Check le_states if there is any connection in peripheral role. */
812 	if (hdev->conn_hash.le_num_peripheral > 0) {
813 		/* Peripheral connection state and non connectable mode
814 		 * bit 20.
815 		 */
816 		if (!connectable && !(hdev->le_states[2] & 0x10))
817 			return false;
818 
819 		/* Peripheral connection state and connectable mode bit 38
820 		 * and scannable bit 21.
821 		 */
822 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
823 				    !(hdev->le_states[2] & 0x20)))
824 			return false;
825 	}
826 
827 	/* Check le_states if there is any connection in central role. */
828 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
829 		/* Central connection state and non connectable mode bit 18. */
830 		if (!connectable && !(hdev->le_states[2] & 0x02))
831 			return false;
832 
833 		/* Central connection state and connectable mode bit 35 and
834 		 * scannable 19.
835 		 */
836 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
837 				    !(hdev->le_states[2] & 0x08)))
838 			return false;
839 	}
840 
841 	return true;
842 }
843 
844 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
845 {
846 	/* If privacy is not enabled don't use RPA */
847 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
848 		return false;
849 
850 	/* If basic privacy mode is enabled use RPA */
851 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
852 		return true;
853 
854 	/* If limited privacy mode is enabled don't use RPA if we're
855 	 * both discoverable and bondable.
856 	 */
857 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
858 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
859 		return false;
860 
861 	/* We're neither bondable nor discoverable in the limited
862 	 * privacy mode, therefore use RPA.
863 	 */
864 	return true;
865 }
866 
867 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
868 {
869 	/* If we're advertising or initiating an LE connection we can't
870 	 * go ahead and change the random address at this time. This is
871 	 * because the eventual initiator address used for the
872 	 * subsequently created connection will be undefined (some
873 	 * controllers use the new address and others the one we had
874 	 * when the operation started).
875 	 *
876 	 * In this kind of scenario skip the update and let the random
877 	 * address be updated at the next cycle.
878 	 */
879 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
880 	    hci_lookup_le_connect(hdev)) {
881 		bt_dev_dbg(hdev, "Deferring random address update");
882 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
883 		return 0;
884 	}
885 
886 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
887 				     6, rpa, HCI_CMD_TIMEOUT);
888 }
889 
890 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
891 				   bool rpa, u8 *own_addr_type)
892 {
893 	int err;
894 
895 	/* If privacy is enabled use a resolvable private address. If
896 	 * current RPA has expired or there is something else than
897 	 * the current RPA in use, then generate a new one.
898 	 */
899 	if (rpa) {
900 		/* If Controller supports LL Privacy use own address type is
901 		 * 0x03
902 		 */
903 		if (use_ll_privacy(hdev))
904 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
905 		else
906 			*own_addr_type = ADDR_LE_DEV_RANDOM;
907 
908 		/* Check if RPA is valid */
909 		if (rpa_valid(hdev))
910 			return 0;
911 
912 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
913 		if (err < 0) {
914 			bt_dev_err(hdev, "failed to generate new RPA");
915 			return err;
916 		}
917 
918 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
919 		if (err)
920 			return err;
921 
922 		return 0;
923 	}
924 
925 	/* In case of required privacy without resolvable private address,
926 	 * use an non-resolvable private address. This is useful for active
927 	 * scanning and non-connectable advertising.
928 	 */
929 	if (require_privacy) {
930 		bdaddr_t nrpa;
931 
932 		while (true) {
933 			/* The non-resolvable private address is generated
934 			 * from random six bytes with the two most significant
935 			 * bits cleared.
936 			 */
937 			get_random_bytes(&nrpa, 6);
938 			nrpa.b[5] &= 0x3f;
939 
940 			/* The non-resolvable private address shall not be
941 			 * equal to the public address.
942 			 */
943 			if (bacmp(&hdev->bdaddr, &nrpa))
944 				break;
945 		}
946 
947 		*own_addr_type = ADDR_LE_DEV_RANDOM;
948 
949 		return hci_set_random_addr_sync(hdev, &nrpa);
950 	}
951 
952 	/* If forcing static address is in use or there is no public
953 	 * address use the static address as random address (but skip
954 	 * the HCI command if the current random address is already the
955 	 * static one.
956 	 *
957 	 * In case BR/EDR has been disabled on a dual-mode controller
958 	 * and a static address has been configured, then use that
959 	 * address instead of the public BR/EDR address.
960 	 */
961 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
962 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
963 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
964 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
965 		*own_addr_type = ADDR_LE_DEV_RANDOM;
966 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
967 			return hci_set_random_addr_sync(hdev,
968 							&hdev->static_addr);
969 		return 0;
970 	}
971 
972 	/* Neither privacy nor static address is being used so use a
973 	 * public address.
974 	 */
975 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
976 
977 	return 0;
978 }
979 
980 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
981 {
982 	struct hci_cp_le_set_ext_adv_enable *cp;
983 	struct hci_cp_ext_adv_set *set;
984 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
985 	u8 size;
986 
987 	/* If request specifies an instance that doesn't exist, fail */
988 	if (instance > 0) {
989 		struct adv_info *adv;
990 
991 		adv = hci_find_adv_instance(hdev, instance);
992 		if (!adv)
993 			return -EINVAL;
994 
995 		/* If not enabled there is nothing to do */
996 		if (!adv->enabled)
997 			return 0;
998 	}
999 
1000 	memset(data, 0, sizeof(data));
1001 
1002 	cp = (void *)data;
1003 	set = (void *)cp->data;
1004 
1005 	/* Instance 0x00 indicates all advertising instances will be disabled */
1006 	cp->num_of_sets = !!instance;
1007 	cp->enable = 0x00;
1008 
1009 	set->handle = instance;
1010 
1011 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1012 
1013 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1014 				     size, data, HCI_CMD_TIMEOUT);
1015 }
1016 
1017 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1018 					    bdaddr_t *random_addr)
1019 {
1020 	struct hci_cp_le_set_adv_set_rand_addr cp;
1021 	int err;
1022 
1023 	if (!instance) {
1024 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1025 		 * hdev->random_addr to track its address so whenever it needs
1026 		 * to be updated this also set the random address since
1027 		 * hdev->random_addr is shared with scan state machine.
1028 		 */
1029 		err = hci_set_random_addr_sync(hdev, random_addr);
1030 		if (err)
1031 			return err;
1032 	}
1033 
1034 	memset(&cp, 0, sizeof(cp));
1035 
1036 	cp.handle = instance;
1037 	bacpy(&cp.bdaddr, random_addr);
1038 
1039 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1040 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1041 }
1042 
1043 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1044 {
1045 	struct hci_cp_le_set_ext_adv_params cp;
1046 	bool connectable;
1047 	u32 flags;
1048 	bdaddr_t random_addr;
1049 	u8 own_addr_type;
1050 	int err;
1051 	struct adv_info *adv;
1052 	bool secondary_adv;
1053 
1054 	if (instance > 0) {
1055 		adv = hci_find_adv_instance(hdev, instance);
1056 		if (!adv)
1057 			return -EINVAL;
1058 	} else {
1059 		adv = NULL;
1060 	}
1061 
1062 	/* Updating parameters of an active instance will return a
1063 	 * Command Disallowed error, so we must first disable the
1064 	 * instance if it is active.
1065 	 */
1066 	if (adv && !adv->pending) {
1067 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1068 		if (err)
1069 			return err;
1070 	}
1071 
1072 	flags = hci_adv_instance_flags(hdev, instance);
1073 
1074 	/* If the "connectable" instance flag was not set, then choose between
1075 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1076 	 */
1077 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1078 		      mgmt_get_connectable(hdev);
1079 
1080 	if (!is_advertising_allowed(hdev, connectable))
1081 		return -EPERM;
1082 
1083 	/* Set require_privacy to true only when non-connectable
1084 	 * advertising is used. In that case it is fine to use a
1085 	 * non-resolvable private address.
1086 	 */
1087 	err = hci_get_random_address(hdev, !connectable,
1088 				     adv_use_rpa(hdev, flags), adv,
1089 				     &own_addr_type, &random_addr);
1090 	if (err < 0)
1091 		return err;
1092 
1093 	memset(&cp, 0, sizeof(cp));
1094 
1095 	if (adv) {
1096 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1097 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1098 		cp.tx_power = adv->tx_power;
1099 	} else {
1100 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1101 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1102 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1103 	}
1104 
1105 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1106 
1107 	if (connectable) {
1108 		if (secondary_adv)
1109 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1110 		else
1111 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1112 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1113 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1114 		if (secondary_adv)
1115 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1116 		else
1117 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1118 	} else {
1119 		if (secondary_adv)
1120 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1121 		else
1122 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1123 	}
1124 
1125 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1126 	 * contains the peer’s Identity Address and the Peer_Address_Type
1127 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1128 	 * These parameters are used to locate the corresponding local IRK in
1129 	 * the resolving list; this IRK is used to generate their own address
1130 	 * used in the advertisement.
1131 	 */
1132 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1133 		hci_copy_identity_address(hdev, &cp.peer_addr,
1134 					  &cp.peer_addr_type);
1135 
1136 	cp.own_addr_type = own_addr_type;
1137 	cp.channel_map = hdev->le_adv_channel_map;
1138 	cp.handle = instance;
1139 
1140 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1141 		cp.primary_phy = HCI_ADV_PHY_1M;
1142 		cp.secondary_phy = HCI_ADV_PHY_2M;
1143 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1144 		cp.primary_phy = HCI_ADV_PHY_CODED;
1145 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1146 	} else {
1147 		/* In all other cases use 1M */
1148 		cp.primary_phy = HCI_ADV_PHY_1M;
1149 		cp.secondary_phy = HCI_ADV_PHY_1M;
1150 	}
1151 
1152 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1153 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1154 	if (err)
1155 		return err;
1156 
1157 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1158 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1159 	    bacmp(&random_addr, BDADDR_ANY)) {
1160 		/* Check if random address need to be updated */
1161 		if (adv) {
1162 			if (!bacmp(&random_addr, &adv->random_addr))
1163 				return 0;
1164 		} else {
1165 			if (!bacmp(&random_addr, &hdev->random_addr))
1166 				return 0;
1167 		}
1168 
1169 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1170 							&random_addr);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1177 {
1178 	struct {
1179 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1180 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1181 	} pdu;
1182 	u8 len;
1183 	struct adv_info *adv = NULL;
1184 	int err;
1185 
1186 	memset(&pdu, 0, sizeof(pdu));
1187 
1188 	if (instance) {
1189 		adv = hci_find_adv_instance(hdev, instance);
1190 		if (!adv || !adv->scan_rsp_changed)
1191 			return 0;
1192 	}
1193 
1194 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1195 
1196 	pdu.cp.handle = instance;
1197 	pdu.cp.length = len;
1198 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1199 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1200 
1201 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1202 				    sizeof(pdu.cp) + len, &pdu.cp,
1203 				    HCI_CMD_TIMEOUT);
1204 	if (err)
1205 		return err;
1206 
1207 	if (adv) {
1208 		adv->scan_rsp_changed = false;
1209 	} else {
1210 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1211 		hdev->scan_rsp_data_len = len;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1218 {
1219 	struct hci_cp_le_set_scan_rsp_data cp;
1220 	u8 len;
1221 
1222 	memset(&cp, 0, sizeof(cp));
1223 
1224 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1225 
1226 	if (hdev->scan_rsp_data_len == len &&
1227 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1228 		return 0;
1229 
1230 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1231 	hdev->scan_rsp_data_len = len;
1232 
1233 	cp.length = len;
1234 
1235 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1236 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1237 }
1238 
1239 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1240 {
1241 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1242 		return 0;
1243 
1244 	if (ext_adv_capable(hdev))
1245 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1246 
1247 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1248 }
1249 
1250 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1251 {
1252 	struct hci_cp_le_set_ext_adv_enable *cp;
1253 	struct hci_cp_ext_adv_set *set;
1254 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1255 	struct adv_info *adv;
1256 
1257 	if (instance > 0) {
1258 		adv = hci_find_adv_instance(hdev, instance);
1259 		if (!adv)
1260 			return -EINVAL;
1261 		/* If already enabled there is nothing to do */
1262 		if (adv->enabled)
1263 			return 0;
1264 	} else {
1265 		adv = NULL;
1266 	}
1267 
1268 	cp = (void *)data;
1269 	set = (void *)cp->data;
1270 
1271 	memset(cp, 0, sizeof(*cp));
1272 
1273 	cp->enable = 0x01;
1274 	cp->num_of_sets = 0x01;
1275 
1276 	memset(set, 0, sizeof(*set));
1277 
1278 	set->handle = instance;
1279 
1280 	/* Set duration per instance since controller is responsible for
1281 	 * scheduling it.
1282 	 */
1283 	if (adv && adv->timeout) {
1284 		u16 duration = adv->timeout * MSEC_PER_SEC;
1285 
1286 		/* Time = N * 10 ms */
1287 		set->duration = cpu_to_le16(duration / 10);
1288 	}
1289 
1290 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1291 				     sizeof(*cp) +
1292 				     sizeof(*set) * cp->num_of_sets,
1293 				     data, HCI_CMD_TIMEOUT);
1294 }
1295 
1296 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1297 {
1298 	int err;
1299 
1300 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1301 	if (err)
1302 		return err;
1303 
1304 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1305 	if (err)
1306 		return err;
1307 
1308 	return hci_enable_ext_advertising_sync(hdev, instance);
1309 }
1310 
1311 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1312 {
1313 	struct hci_cp_le_set_per_adv_enable cp;
1314 
1315 	/* If periodic advertising already disabled there is nothing to do. */
1316 	if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1317 		return 0;
1318 
1319 	memset(&cp, 0, sizeof(cp));
1320 
1321 	cp.enable = 0x00;
1322 	cp.handle = instance;
1323 
1324 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1325 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1326 }
1327 
1328 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1329 				       u16 min_interval, u16 max_interval)
1330 {
1331 	struct hci_cp_le_set_per_adv_params cp;
1332 
1333 	memset(&cp, 0, sizeof(cp));
1334 
1335 	if (!min_interval)
1336 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1337 
1338 	if (!max_interval)
1339 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1340 
1341 	cp.handle = instance;
1342 	cp.min_interval = cpu_to_le16(min_interval);
1343 	cp.max_interval = cpu_to_le16(max_interval);
1344 	cp.periodic_properties = 0x0000;
1345 
1346 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1347 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1348 }
1349 
1350 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1351 {
1352 	struct {
1353 		struct hci_cp_le_set_per_adv_data cp;
1354 		u8 data[HCI_MAX_PER_AD_LENGTH];
1355 	} pdu;
1356 	u8 len;
1357 
1358 	memset(&pdu, 0, sizeof(pdu));
1359 
1360 	if (instance) {
1361 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1362 
1363 		if (!adv || !adv->periodic)
1364 			return 0;
1365 	}
1366 
1367 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1368 
1369 	pdu.cp.length = len;
1370 	pdu.cp.handle = instance;
1371 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1372 
1373 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1374 				     sizeof(pdu.cp) + len, &pdu,
1375 				     HCI_CMD_TIMEOUT);
1376 }
1377 
1378 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1379 {
1380 	struct hci_cp_le_set_per_adv_enable cp;
1381 
1382 	/* If periodic advertising already enabled there is nothing to do. */
1383 	if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1384 		return 0;
1385 
1386 	memset(&cp, 0, sizeof(cp));
1387 
1388 	cp.enable = 0x01;
1389 	cp.handle = instance;
1390 
1391 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1392 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1393 }
1394 
1395 /* Checks if periodic advertising data contains a Basic Announcement and if it
1396  * does generates a Broadcast ID and add Broadcast Announcement.
1397  */
1398 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1399 {
1400 	u8 bid[3];
1401 	u8 ad[4 + 3];
1402 
1403 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1404 	 * advertising so it cannot used for the likes of Broadcast Announcement
1405 	 * as it can be overwritten at any point.
1406 	 */
1407 	if (!adv)
1408 		return 0;
1409 
1410 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1411 	 * there is nothing to do.
1412 	 */
1413 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1414 				  0x1851, NULL))
1415 		return 0;
1416 
1417 	/* Check if advertising data already has a Broadcast Announcement since
1418 	 * the process may want to control the Broadcast ID directly and in that
1419 	 * case the kernel shall no interfere.
1420 	 */
1421 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1422 				 NULL))
1423 		return 0;
1424 
1425 	/* Generate Broadcast ID */
1426 	get_random_bytes(bid, sizeof(bid));
1427 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1428 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1429 
1430 	return hci_update_adv_data_sync(hdev, adv->instance);
1431 }
1432 
1433 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1434 			   u8 *data, u32 flags, u16 min_interval,
1435 			   u16 max_interval, u16 sync_interval)
1436 {
1437 	struct adv_info *adv = NULL;
1438 	int err;
1439 	bool added = false;
1440 
1441 	hci_disable_per_advertising_sync(hdev, instance);
1442 
1443 	if (instance) {
1444 		adv = hci_find_adv_instance(hdev, instance);
1445 		/* Create an instance if that could not be found */
1446 		if (!adv) {
1447 			adv = hci_add_per_instance(hdev, instance, flags,
1448 						   data_len, data,
1449 						   sync_interval,
1450 						   sync_interval);
1451 			if (IS_ERR(adv))
1452 				return PTR_ERR(adv);
1453 			added = true;
1454 		}
1455 	}
1456 
1457 	/* Only start advertising if instance 0 or if a dedicated instance has
1458 	 * been added.
1459 	 */
1460 	if (!adv || added) {
1461 		err = hci_start_ext_adv_sync(hdev, instance);
1462 		if (err < 0)
1463 			goto fail;
1464 
1465 		err = hci_adv_bcast_annoucement(hdev, adv);
1466 		if (err < 0)
1467 			goto fail;
1468 	}
1469 
1470 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1471 					  max_interval);
1472 	if (err < 0)
1473 		goto fail;
1474 
1475 	err = hci_set_per_adv_data_sync(hdev, instance);
1476 	if (err < 0)
1477 		goto fail;
1478 
1479 	err = hci_enable_per_advertising_sync(hdev, instance);
1480 	if (err < 0)
1481 		goto fail;
1482 
1483 	return 0;
1484 
1485 fail:
1486 	if (added)
1487 		hci_remove_adv_instance(hdev, instance);
1488 
1489 	return err;
1490 }
1491 
1492 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1493 {
1494 	int err;
1495 
1496 	if (ext_adv_capable(hdev))
1497 		return hci_start_ext_adv_sync(hdev, instance);
1498 
1499 	err = hci_update_adv_data_sync(hdev, instance);
1500 	if (err)
1501 		return err;
1502 
1503 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1504 	if (err)
1505 		return err;
1506 
1507 	return hci_enable_advertising_sync(hdev);
1508 }
1509 
1510 int hci_enable_advertising_sync(struct hci_dev *hdev)
1511 {
1512 	struct adv_info *adv_instance;
1513 	struct hci_cp_le_set_adv_param cp;
1514 	u8 own_addr_type, enable = 0x01;
1515 	bool connectable;
1516 	u16 adv_min_interval, adv_max_interval;
1517 	u32 flags;
1518 	u8 status;
1519 
1520 	if (ext_adv_capable(hdev))
1521 		return hci_enable_ext_advertising_sync(hdev,
1522 						       hdev->cur_adv_instance);
1523 
1524 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1525 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1526 
1527 	/* If the "connectable" instance flag was not set, then choose between
1528 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1529 	 */
1530 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1531 		      mgmt_get_connectable(hdev);
1532 
1533 	if (!is_advertising_allowed(hdev, connectable))
1534 		return -EINVAL;
1535 
1536 	status = hci_disable_advertising_sync(hdev);
1537 	if (status)
1538 		return status;
1539 
1540 	/* Clear the HCI_LE_ADV bit temporarily so that the
1541 	 * hci_update_random_address knows that it's safe to go ahead
1542 	 * and write a new random address. The flag will be set back on
1543 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1544 	 */
1545 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1546 
1547 	/* Set require_privacy to true only when non-connectable
1548 	 * advertising is used. In that case it is fine to use a
1549 	 * non-resolvable private address.
1550 	 */
1551 	status = hci_update_random_address_sync(hdev, !connectable,
1552 						adv_use_rpa(hdev, flags),
1553 						&own_addr_type);
1554 	if (status)
1555 		return status;
1556 
1557 	memset(&cp, 0, sizeof(cp));
1558 
1559 	if (adv_instance) {
1560 		adv_min_interval = adv_instance->min_interval;
1561 		adv_max_interval = adv_instance->max_interval;
1562 	} else {
1563 		adv_min_interval = hdev->le_adv_min_interval;
1564 		adv_max_interval = hdev->le_adv_max_interval;
1565 	}
1566 
1567 	if (connectable) {
1568 		cp.type = LE_ADV_IND;
1569 	} else {
1570 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1571 			cp.type = LE_ADV_SCAN_IND;
1572 		else
1573 			cp.type = LE_ADV_NONCONN_IND;
1574 
1575 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1576 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1577 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1578 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1579 		}
1580 	}
1581 
1582 	cp.min_interval = cpu_to_le16(adv_min_interval);
1583 	cp.max_interval = cpu_to_le16(adv_max_interval);
1584 	cp.own_address_type = own_addr_type;
1585 	cp.channel_map = hdev->le_adv_channel_map;
1586 
1587 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1588 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1589 	if (status)
1590 		return status;
1591 
1592 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1593 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1594 }
1595 
1596 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1597 {
1598 	return hci_enable_advertising_sync(hdev);
1599 }
1600 
1601 int hci_enable_advertising(struct hci_dev *hdev)
1602 {
1603 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1604 	    list_empty(&hdev->adv_instances))
1605 		return 0;
1606 
1607 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1608 }
1609 
1610 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1611 				     struct sock *sk)
1612 {
1613 	int err;
1614 
1615 	if (!ext_adv_capable(hdev))
1616 		return 0;
1617 
1618 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1619 	if (err)
1620 		return err;
1621 
1622 	/* If request specifies an instance that doesn't exist, fail */
1623 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1624 		return -EINVAL;
1625 
1626 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1627 					sizeof(instance), &instance, 0,
1628 					HCI_CMD_TIMEOUT, sk);
1629 }
1630 
1631 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1632 {
1633 	struct adv_info *adv = data;
1634 	u8 instance = 0;
1635 
1636 	if (adv)
1637 		instance = adv->instance;
1638 
1639 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1640 }
1641 
1642 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1643 {
1644 	struct adv_info *adv = NULL;
1645 
1646 	if (instance) {
1647 		adv = hci_find_adv_instance(hdev, instance);
1648 		if (!adv)
1649 			return -EINVAL;
1650 	}
1651 
1652 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1653 }
1654 
1655 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1656 {
1657 	struct hci_cp_le_term_big cp;
1658 
1659 	memset(&cp, 0, sizeof(cp));
1660 	cp.handle = handle;
1661 	cp.reason = reason;
1662 
1663 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1664 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1665 }
1666 
1667 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1668 {
1669 	struct {
1670 		struct hci_cp_le_set_ext_adv_data cp;
1671 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1672 	} pdu;
1673 	u8 len;
1674 	struct adv_info *adv = NULL;
1675 	int err;
1676 
1677 	memset(&pdu, 0, sizeof(pdu));
1678 
1679 	if (instance) {
1680 		adv = hci_find_adv_instance(hdev, instance);
1681 		if (!adv || !adv->adv_data_changed)
1682 			return 0;
1683 	}
1684 
1685 	len = eir_create_adv_data(hdev, instance, pdu.data);
1686 
1687 	pdu.cp.length = len;
1688 	pdu.cp.handle = instance;
1689 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1690 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1691 
1692 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1693 				    sizeof(pdu.cp) + len, &pdu.cp,
1694 				    HCI_CMD_TIMEOUT);
1695 	if (err)
1696 		return err;
1697 
1698 	/* Update data if the command succeed */
1699 	if (adv) {
1700 		adv->adv_data_changed = false;
1701 	} else {
1702 		memcpy(hdev->adv_data, pdu.data, len);
1703 		hdev->adv_data_len = len;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1710 {
1711 	struct hci_cp_le_set_adv_data cp;
1712 	u8 len;
1713 
1714 	memset(&cp, 0, sizeof(cp));
1715 
1716 	len = eir_create_adv_data(hdev, instance, cp.data);
1717 
1718 	/* There's nothing to do if the data hasn't changed */
1719 	if (hdev->adv_data_len == len &&
1720 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1721 		return 0;
1722 
1723 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1724 	hdev->adv_data_len = len;
1725 
1726 	cp.length = len;
1727 
1728 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1729 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1730 }
1731 
1732 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1733 {
1734 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1735 		return 0;
1736 
1737 	if (ext_adv_capable(hdev))
1738 		return hci_set_ext_adv_data_sync(hdev, instance);
1739 
1740 	return hci_set_adv_data_sync(hdev, instance);
1741 }
1742 
1743 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1744 				   bool force)
1745 {
1746 	struct adv_info *adv = NULL;
1747 	u16 timeout;
1748 
1749 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1750 		return -EPERM;
1751 
1752 	if (hdev->adv_instance_timeout)
1753 		return -EBUSY;
1754 
1755 	adv = hci_find_adv_instance(hdev, instance);
1756 	if (!adv)
1757 		return -ENOENT;
1758 
1759 	/* A zero timeout means unlimited advertising. As long as there is
1760 	 * only one instance, duration should be ignored. We still set a timeout
1761 	 * in case further instances are being added later on.
1762 	 *
1763 	 * If the remaining lifetime of the instance is more than the duration
1764 	 * then the timeout corresponds to the duration, otherwise it will be
1765 	 * reduced to the remaining instance lifetime.
1766 	 */
1767 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1768 		timeout = adv->duration;
1769 	else
1770 		timeout = adv->remaining_time;
1771 
1772 	/* The remaining time is being reduced unless the instance is being
1773 	 * advertised without time limit.
1774 	 */
1775 	if (adv->timeout)
1776 		adv->remaining_time = adv->remaining_time - timeout;
1777 
1778 	/* Only use work for scheduling instances with legacy advertising */
1779 	if (!ext_adv_capable(hdev)) {
1780 		hdev->adv_instance_timeout = timeout;
1781 		queue_delayed_work(hdev->req_workqueue,
1782 				   &hdev->adv_instance_expire,
1783 				   msecs_to_jiffies(timeout * 1000));
1784 	}
1785 
1786 	/* If we're just re-scheduling the same instance again then do not
1787 	 * execute any HCI commands. This happens when a single instance is
1788 	 * being advertised.
1789 	 */
1790 	if (!force && hdev->cur_adv_instance == instance &&
1791 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1792 		return 0;
1793 
1794 	hdev->cur_adv_instance = instance;
1795 
1796 	return hci_start_adv_sync(hdev, instance);
1797 }
1798 
1799 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1800 {
1801 	int err;
1802 
1803 	if (!ext_adv_capable(hdev))
1804 		return 0;
1805 
1806 	/* Disable instance 0x00 to disable all instances */
1807 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1808 	if (err)
1809 		return err;
1810 
1811 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1812 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1813 }
1814 
1815 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1816 {
1817 	struct adv_info *adv, *n;
1818 	int err = 0;
1819 
1820 	if (ext_adv_capable(hdev))
1821 		/* Remove all existing sets */
1822 		err = hci_clear_adv_sets_sync(hdev, sk);
1823 	if (ext_adv_capable(hdev))
1824 		return err;
1825 
1826 	/* This is safe as long as there is no command send while the lock is
1827 	 * held.
1828 	 */
1829 	hci_dev_lock(hdev);
1830 
1831 	/* Cleanup non-ext instances */
1832 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1833 		u8 instance = adv->instance;
1834 		int err;
1835 
1836 		if (!(force || adv->timeout))
1837 			continue;
1838 
1839 		err = hci_remove_adv_instance(hdev, instance);
1840 		if (!err)
1841 			mgmt_advertising_removed(sk, hdev, instance);
1842 	}
1843 
1844 	hci_dev_unlock(hdev);
1845 
1846 	return 0;
1847 }
1848 
1849 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1850 			       struct sock *sk)
1851 {
1852 	int err = 0;
1853 
1854 	/* If we use extended advertising, instance has to be removed first. */
1855 	if (ext_adv_capable(hdev))
1856 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1857 	if (ext_adv_capable(hdev))
1858 		return err;
1859 
1860 	/* This is safe as long as there is no command send while the lock is
1861 	 * held.
1862 	 */
1863 	hci_dev_lock(hdev);
1864 
1865 	err = hci_remove_adv_instance(hdev, instance);
1866 	if (!err)
1867 		mgmt_advertising_removed(sk, hdev, instance);
1868 
1869 	hci_dev_unlock(hdev);
1870 
1871 	return err;
1872 }
1873 
1874 /* For a single instance:
1875  * - force == true: The instance will be removed even when its remaining
1876  *   lifetime is not zero.
1877  * - force == false: the instance will be deactivated but kept stored unless
1878  *   the remaining lifetime is zero.
1879  *
1880  * For instance == 0x00:
1881  * - force == true: All instances will be removed regardless of their timeout
1882  *   setting.
1883  * - force == false: Only instances that have a timeout will be removed.
1884  */
1885 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1886 				u8 instance, bool force)
1887 {
1888 	struct adv_info *next = NULL;
1889 	int err;
1890 
1891 	/* Cancel any timeout concerning the removed instance(s). */
1892 	if (!instance || hdev->cur_adv_instance == instance)
1893 		cancel_adv_timeout(hdev);
1894 
1895 	/* Get the next instance to advertise BEFORE we remove
1896 	 * the current one. This can be the same instance again
1897 	 * if there is only one instance.
1898 	 */
1899 	if (hdev->cur_adv_instance == instance)
1900 		next = hci_get_next_instance(hdev, instance);
1901 
1902 	if (!instance) {
1903 		err = hci_clear_adv_sync(hdev, sk, force);
1904 		if (err)
1905 			return err;
1906 	} else {
1907 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1908 
1909 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1910 			/* Don't advertise a removed instance. */
1911 			if (next && next->instance == instance)
1912 				next = NULL;
1913 
1914 			err = hci_remove_adv_sync(hdev, instance, sk);
1915 			if (err)
1916 				return err;
1917 		}
1918 	}
1919 
1920 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1921 		return 0;
1922 
1923 	if (next && !ext_adv_capable(hdev))
1924 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1925 
1926 	return 0;
1927 }
1928 
1929 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1930 {
1931 	struct hci_cp_read_rssi cp;
1932 
1933 	cp.handle = handle;
1934 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1935 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1936 }
1937 
1938 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1939 {
1940 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1941 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1942 }
1943 
1944 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1945 {
1946 	struct hci_cp_read_tx_power cp;
1947 
1948 	cp.handle = handle;
1949 	cp.type = type;
1950 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1951 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1952 }
1953 
1954 int hci_disable_advertising_sync(struct hci_dev *hdev)
1955 {
1956 	u8 enable = 0x00;
1957 	int err = 0;
1958 
1959 	/* If controller is not advertising we are done. */
1960 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1961 		return 0;
1962 
1963 	if (ext_adv_capable(hdev))
1964 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1965 	if (ext_adv_capable(hdev))
1966 		return err;
1967 
1968 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1969 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1970 }
1971 
1972 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1973 					   u8 filter_dup)
1974 {
1975 	struct hci_cp_le_set_ext_scan_enable cp;
1976 
1977 	memset(&cp, 0, sizeof(cp));
1978 	cp.enable = val;
1979 
1980 	if (hci_dev_test_flag(hdev, HCI_MESH))
1981 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1982 	else
1983 		cp.filter_dup = filter_dup;
1984 
1985 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1986 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1987 }
1988 
1989 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1990 				       u8 filter_dup)
1991 {
1992 	struct hci_cp_le_set_scan_enable cp;
1993 
1994 	if (use_ext_scan(hdev))
1995 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1996 
1997 	memset(&cp, 0, sizeof(cp));
1998 	cp.enable = val;
1999 
2000 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2001 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2002 	else
2003 		cp.filter_dup = filter_dup;
2004 
2005 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2006 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2007 }
2008 
2009 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2010 {
2011 	if (!use_ll_privacy(hdev))
2012 		return 0;
2013 
2014 	/* If controller is not/already resolving we are done. */
2015 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2016 		return 0;
2017 
2018 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2019 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2020 }
2021 
2022 static int hci_scan_disable_sync(struct hci_dev *hdev)
2023 {
2024 	int err;
2025 
2026 	/* If controller is not scanning we are done. */
2027 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2028 		return 0;
2029 
2030 	if (hdev->scanning_paused) {
2031 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2032 		return 0;
2033 	}
2034 
2035 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2036 	if (err) {
2037 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2038 		return err;
2039 	}
2040 
2041 	return err;
2042 }
2043 
2044 static bool scan_use_rpa(struct hci_dev *hdev)
2045 {
2046 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2047 }
2048 
2049 static void hci_start_interleave_scan(struct hci_dev *hdev)
2050 {
2051 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2052 	queue_delayed_work(hdev->req_workqueue,
2053 			   &hdev->interleave_scan, 0);
2054 }
2055 
2056 static bool is_interleave_scanning(struct hci_dev *hdev)
2057 {
2058 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2059 }
2060 
2061 static void cancel_interleave_scan(struct hci_dev *hdev)
2062 {
2063 	bt_dev_dbg(hdev, "cancelling interleave scan");
2064 
2065 	cancel_delayed_work_sync(&hdev->interleave_scan);
2066 
2067 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2068 }
2069 
2070 /* Return true if interleave_scan wasn't started until exiting this function,
2071  * otherwise, return false
2072  */
2073 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2074 {
2075 	/* Do interleaved scan only if all of the following are true:
2076 	 * - There is at least one ADV monitor
2077 	 * - At least one pending LE connection or one device to be scanned for
2078 	 * - Monitor offloading is not supported
2079 	 * If so, we should alternate between allowlist scan and one without
2080 	 * any filters to save power.
2081 	 */
2082 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2083 				!(list_empty(&hdev->pend_le_conns) &&
2084 				  list_empty(&hdev->pend_le_reports)) &&
2085 				hci_get_adv_monitor_offload_ext(hdev) ==
2086 				    HCI_ADV_MONITOR_EXT_NONE;
2087 	bool is_interleaving = is_interleave_scanning(hdev);
2088 
2089 	if (use_interleaving && !is_interleaving) {
2090 		hci_start_interleave_scan(hdev);
2091 		bt_dev_dbg(hdev, "starting interleave scan");
2092 		return true;
2093 	}
2094 
2095 	if (!use_interleaving && is_interleaving)
2096 		cancel_interleave_scan(hdev);
2097 
2098 	return false;
2099 }
2100 
2101 /* Removes connection to resolve list if needed.*/
2102 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2103 					bdaddr_t *bdaddr, u8 bdaddr_type)
2104 {
2105 	struct hci_cp_le_del_from_resolv_list cp;
2106 	struct bdaddr_list_with_irk *entry;
2107 
2108 	if (!use_ll_privacy(hdev))
2109 		return 0;
2110 
2111 	/* Check if the IRK has been programmed */
2112 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2113 						bdaddr_type);
2114 	if (!entry)
2115 		return 0;
2116 
2117 	cp.bdaddr_type = bdaddr_type;
2118 	bacpy(&cp.bdaddr, bdaddr);
2119 
2120 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2121 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2122 }
2123 
2124 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2125 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2126 {
2127 	struct hci_cp_le_del_from_accept_list cp;
2128 	int err;
2129 
2130 	/* Check if device is on accept list before removing it */
2131 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2132 		return 0;
2133 
2134 	cp.bdaddr_type = bdaddr_type;
2135 	bacpy(&cp.bdaddr, bdaddr);
2136 
2137 	/* Ignore errors when removing from resolving list as that is likely
2138 	 * that the device was never added.
2139 	 */
2140 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2141 
2142 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2143 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2144 	if (err) {
2145 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2146 		return err;
2147 	}
2148 
2149 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2150 		   cp.bdaddr_type);
2151 
2152 	return 0;
2153 }
2154 
2155 /* Adds connection to resolve list if needed.
2156  * Setting params to NULL programs local hdev->irk
2157  */
2158 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2159 					struct hci_conn_params *params)
2160 {
2161 	struct hci_cp_le_add_to_resolv_list cp;
2162 	struct smp_irk *irk;
2163 	struct bdaddr_list_with_irk *entry;
2164 
2165 	if (!use_ll_privacy(hdev))
2166 		return 0;
2167 
2168 	/* Attempt to program local identity address, type and irk if params is
2169 	 * NULL.
2170 	 */
2171 	if (!params) {
2172 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2173 			return 0;
2174 
2175 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2176 		memcpy(cp.peer_irk, hdev->irk, 16);
2177 		goto done;
2178 	}
2179 
2180 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2181 	if (!irk)
2182 		return 0;
2183 
2184 	/* Check if the IK has _not_ been programmed yet. */
2185 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2186 						&params->addr,
2187 						params->addr_type);
2188 	if (entry)
2189 		return 0;
2190 
2191 	cp.bdaddr_type = params->addr_type;
2192 	bacpy(&cp.bdaddr, &params->addr);
2193 	memcpy(cp.peer_irk, irk->val, 16);
2194 
2195 	/* Default privacy mode is always Network */
2196 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2197 
2198 done:
2199 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2200 		memcpy(cp.local_irk, hdev->irk, 16);
2201 	else
2202 		memset(cp.local_irk, 0, 16);
2203 
2204 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2205 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2206 }
2207 
2208 /* Set Device Privacy Mode. */
2209 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2210 					struct hci_conn_params *params)
2211 {
2212 	struct hci_cp_le_set_privacy_mode cp;
2213 	struct smp_irk *irk;
2214 
2215 	/* If device privacy mode has already been set there is nothing to do */
2216 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2217 		return 0;
2218 
2219 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2220 	 * indicates that LL Privacy has been enabled and
2221 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2222 	 */
2223 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2224 		return 0;
2225 
2226 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2227 	if (!irk)
2228 		return 0;
2229 
2230 	memset(&cp, 0, sizeof(cp));
2231 	cp.bdaddr_type = irk->addr_type;
2232 	bacpy(&cp.bdaddr, &irk->bdaddr);
2233 	cp.mode = HCI_DEVICE_PRIVACY;
2234 
2235 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2236 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2237 }
2238 
2239 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2240  * this attempts to program the device in the resolving list as well and
2241  * properly set the privacy mode.
2242  */
2243 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2244 				       struct hci_conn_params *params,
2245 				       u8 *num_entries)
2246 {
2247 	struct hci_cp_le_add_to_accept_list cp;
2248 	int err;
2249 
2250 	/* During suspend, only wakeable devices can be in acceptlist */
2251 	if (hdev->suspended &&
2252 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2253 		return 0;
2254 
2255 	/* Select filter policy to accept all advertising */
2256 	if (*num_entries >= hdev->le_accept_list_size)
2257 		return -ENOSPC;
2258 
2259 	/* Accept list can not be used with RPAs */
2260 	if (!use_ll_privacy(hdev) &&
2261 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2262 		return -EINVAL;
2263 
2264 	/* Attempt to program the device in the resolving list first to avoid
2265 	 * having to rollback in case it fails since the resolving list is
2266 	 * dynamic it can probably be smaller than the accept list.
2267 	 */
2268 	err = hci_le_add_resolve_list_sync(hdev, params);
2269 	if (err) {
2270 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2271 		return err;
2272 	}
2273 
2274 	/* Set Privacy Mode */
2275 	err = hci_le_set_privacy_mode_sync(hdev, params);
2276 	if (err) {
2277 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2278 		return err;
2279 	}
2280 
2281 	/* Check if already in accept list */
2282 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2283 				   params->addr_type))
2284 		return 0;
2285 
2286 	*num_entries += 1;
2287 	cp.bdaddr_type = params->addr_type;
2288 	bacpy(&cp.bdaddr, &params->addr);
2289 
2290 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2291 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2292 	if (err) {
2293 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2294 		/* Rollback the device from the resolving list */
2295 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2296 		return err;
2297 	}
2298 
2299 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2300 		   cp.bdaddr_type);
2301 
2302 	return 0;
2303 }
2304 
2305 /* This function disables/pause all advertising instances */
2306 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2307 {
2308 	int err;
2309 	int old_state;
2310 
2311 	/* If already been paused there is nothing to do. */
2312 	if (hdev->advertising_paused)
2313 		return 0;
2314 
2315 	bt_dev_dbg(hdev, "Pausing directed advertising");
2316 
2317 	/* Stop directed advertising */
2318 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2319 	if (old_state) {
2320 		/* When discoverable timeout triggers, then just make sure
2321 		 * the limited discoverable flag is cleared. Even in the case
2322 		 * of a timeout triggered from general discoverable, it is
2323 		 * safe to unconditionally clear the flag.
2324 		 */
2325 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2326 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2327 		hdev->discov_timeout = 0;
2328 	}
2329 
2330 	bt_dev_dbg(hdev, "Pausing advertising instances");
2331 
2332 	/* Call to disable any advertisements active on the controller.
2333 	 * This will succeed even if no advertisements are configured.
2334 	 */
2335 	err = hci_disable_advertising_sync(hdev);
2336 	if (err)
2337 		return err;
2338 
2339 	/* If we are using software rotation, pause the loop */
2340 	if (!ext_adv_capable(hdev))
2341 		cancel_adv_timeout(hdev);
2342 
2343 	hdev->advertising_paused = true;
2344 	hdev->advertising_old_state = old_state;
2345 
2346 	return 0;
2347 }
2348 
2349 /* This function enables all user advertising instances */
2350 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2351 {
2352 	struct adv_info *adv, *tmp;
2353 	int err;
2354 
2355 	/* If advertising has not been paused there is nothing  to do. */
2356 	if (!hdev->advertising_paused)
2357 		return 0;
2358 
2359 	/* Resume directed advertising */
2360 	hdev->advertising_paused = false;
2361 	if (hdev->advertising_old_state) {
2362 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2363 		hdev->advertising_old_state = 0;
2364 	}
2365 
2366 	bt_dev_dbg(hdev, "Resuming advertising instances");
2367 
2368 	if (ext_adv_capable(hdev)) {
2369 		/* Call for each tracked instance to be re-enabled */
2370 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2371 			err = hci_enable_ext_advertising_sync(hdev,
2372 							      adv->instance);
2373 			if (!err)
2374 				continue;
2375 
2376 			/* If the instance cannot be resumed remove it */
2377 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2378 							 NULL);
2379 		}
2380 	} else {
2381 		/* Schedule for most recent instance to be restarted and begin
2382 		 * the software rotation loop
2383 		 */
2384 		err = hci_schedule_adv_instance_sync(hdev,
2385 						     hdev->cur_adv_instance,
2386 						     true);
2387 	}
2388 
2389 	hdev->advertising_paused = false;
2390 
2391 	return err;
2392 }
2393 
2394 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2395 {
2396 	int err;
2397 
2398 	if (!use_ll_privacy(hdev))
2399 		return 0;
2400 
2401 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2402 		return 0;
2403 
2404 	/* Cannot disable addr resolution if scanning is enabled or
2405 	 * when initiating an LE connection.
2406 	 */
2407 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2408 	    hci_lookup_le_connect(hdev)) {
2409 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2410 		return -EPERM;
2411 	}
2412 
2413 	/* Cannot disable addr resolution if advertising is enabled. */
2414 	err = hci_pause_advertising_sync(hdev);
2415 	if (err) {
2416 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2417 		return err;
2418 	}
2419 
2420 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2421 	if (err)
2422 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2423 			   err);
2424 
2425 	/* Return if address resolution is disabled and RPA is not used. */
2426 	if (!err && scan_use_rpa(hdev))
2427 		return 0;
2428 
2429 	hci_resume_advertising_sync(hdev);
2430 	return err;
2431 }
2432 
2433 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2434 					     bool extended, struct sock *sk)
2435 {
2436 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2437 					HCI_OP_READ_LOCAL_OOB_DATA;
2438 
2439 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2440 }
2441 
2442 /* Device must not be scanning when updating the accept list.
2443  *
2444  * Update is done using the following sequence:
2445  *
2446  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2447  * Remove Devices From Accept List ->
2448  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2449  * Add Devices to Accept List ->
2450  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2451  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2452  * Enable Scanning
2453  *
2454  * In case of failure advertising shall be restored to its original state and
2455  * return would disable accept list since either accept or resolving list could
2456  * not be programmed.
2457  *
2458  */
2459 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2460 {
2461 	struct hci_conn_params *params;
2462 	struct bdaddr_list *b, *t;
2463 	u8 num_entries = 0;
2464 	bool pend_conn, pend_report;
2465 	u8 filter_policy;
2466 	int err;
2467 
2468 	/* Pause advertising if resolving list can be used as controllers
2469 	 * cannot accept resolving list modifications while advertising.
2470 	 */
2471 	if (use_ll_privacy(hdev)) {
2472 		err = hci_pause_advertising_sync(hdev);
2473 		if (err) {
2474 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2475 			return 0x00;
2476 		}
2477 	}
2478 
2479 	/* Disable address resolution while reprogramming accept list since
2480 	 * devices that do have an IRK will be programmed in the resolving list
2481 	 * when LL Privacy is enabled.
2482 	 */
2483 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2484 	if (err) {
2485 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2486 		goto done;
2487 	}
2488 
2489 	/* Go through the current accept list programmed into the
2490 	 * controller one by one and check if that address is connected or is
2491 	 * still in the list of pending connections or list of devices to
2492 	 * report. If not present in either list, then remove it from
2493 	 * the controller.
2494 	 */
2495 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2496 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2497 			continue;
2498 
2499 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2500 						      &b->bdaddr,
2501 						      b->bdaddr_type);
2502 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2503 							&b->bdaddr,
2504 							b->bdaddr_type);
2505 
2506 		/* If the device is not likely to connect or report,
2507 		 * remove it from the acceptlist.
2508 		 */
2509 		if (!pend_conn && !pend_report) {
2510 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2511 						    b->bdaddr_type);
2512 			continue;
2513 		}
2514 
2515 		num_entries++;
2516 	}
2517 
2518 	/* Since all no longer valid accept list entries have been
2519 	 * removed, walk through the list of pending connections
2520 	 * and ensure that any new device gets programmed into
2521 	 * the controller.
2522 	 *
2523 	 * If the list of the devices is larger than the list of
2524 	 * available accept list entries in the controller, then
2525 	 * just abort and return filer policy value to not use the
2526 	 * accept list.
2527 	 */
2528 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
2529 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2530 		if (err)
2531 			goto done;
2532 	}
2533 
2534 	/* After adding all new pending connections, walk through
2535 	 * the list of pending reports and also add these to the
2536 	 * accept list if there is still space. Abort if space runs out.
2537 	 */
2538 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
2539 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2540 		if (err)
2541 			goto done;
2542 	}
2543 
2544 	/* Use the allowlist unless the following conditions are all true:
2545 	 * - We are not currently suspending
2546 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2547 	 * - Interleaved scanning is not currently using the allowlist
2548 	 */
2549 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2550 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2551 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2552 		err = -EINVAL;
2553 
2554 done:
2555 	filter_policy = err ? 0x00 : 0x01;
2556 
2557 	/* Enable address resolution when LL Privacy is enabled. */
2558 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2559 	if (err)
2560 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2561 
2562 	/* Resume advertising if it was paused */
2563 	if (use_ll_privacy(hdev))
2564 		hci_resume_advertising_sync(hdev);
2565 
2566 	/* Select filter policy to use accept list */
2567 	return filter_policy;
2568 }
2569 
2570 /* Returns true if an le connection is in the scanning state */
2571 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
2572 {
2573 	struct hci_conn_hash *h = &hdev->conn_hash;
2574 	struct hci_conn  *c;
2575 
2576 	rcu_read_lock();
2577 
2578 	list_for_each_entry_rcu(c, &h->list, list) {
2579 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
2580 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
2581 			rcu_read_unlock();
2582 			return true;
2583 		}
2584 	}
2585 
2586 	rcu_read_unlock();
2587 
2588 	return false;
2589 }
2590 
2591 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2592 					  u16 interval, u16 window,
2593 					  u8 own_addr_type, u8 filter_policy)
2594 {
2595 	struct hci_cp_le_set_ext_scan_params *cp;
2596 	struct hci_cp_le_scan_phy_params *phy;
2597 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2598 	u8 num_phy = 0;
2599 
2600 	cp = (void *)data;
2601 	phy = (void *)cp->data;
2602 
2603 	memset(data, 0, sizeof(data));
2604 
2605 	cp->own_addr_type = own_addr_type;
2606 	cp->filter_policy = filter_policy;
2607 
2608 	if (scan_1m(hdev) || scan_2m(hdev)) {
2609 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2610 
2611 		phy->type = type;
2612 		phy->interval = cpu_to_le16(interval);
2613 		phy->window = cpu_to_le16(window);
2614 
2615 		num_phy++;
2616 		phy++;
2617 	}
2618 
2619 	if (scan_coded(hdev)) {
2620 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2621 
2622 		phy->type = type;
2623 		phy->interval = cpu_to_le16(interval);
2624 		phy->window = cpu_to_le16(window);
2625 
2626 		num_phy++;
2627 		phy++;
2628 	}
2629 
2630 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2631 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2632 				     data, HCI_CMD_TIMEOUT);
2633 }
2634 
2635 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2636 				      u16 interval, u16 window,
2637 				      u8 own_addr_type, u8 filter_policy)
2638 {
2639 	struct hci_cp_le_set_scan_param cp;
2640 
2641 	if (use_ext_scan(hdev))
2642 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2643 						      window, own_addr_type,
2644 						      filter_policy);
2645 
2646 	memset(&cp, 0, sizeof(cp));
2647 	cp.type = type;
2648 	cp.interval = cpu_to_le16(interval);
2649 	cp.window = cpu_to_le16(window);
2650 	cp.own_address_type = own_addr_type;
2651 	cp.filter_policy = filter_policy;
2652 
2653 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2654 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2655 }
2656 
2657 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2658 			       u16 window, u8 own_addr_type, u8 filter_policy,
2659 			       u8 filter_dup)
2660 {
2661 	int err;
2662 
2663 	if (hdev->scanning_paused) {
2664 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2665 		return 0;
2666 	}
2667 
2668 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2669 					 own_addr_type, filter_policy);
2670 	if (err)
2671 		return err;
2672 
2673 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2674 }
2675 
2676 static int hci_passive_scan_sync(struct hci_dev *hdev)
2677 {
2678 	u8 own_addr_type;
2679 	u8 filter_policy;
2680 	u16 window, interval;
2681 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2682 	int err;
2683 
2684 	if (hdev->scanning_paused) {
2685 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2686 		return 0;
2687 	}
2688 
2689 	err = hci_scan_disable_sync(hdev);
2690 	if (err) {
2691 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2692 		return err;
2693 	}
2694 
2695 	/* Set require_privacy to false since no SCAN_REQ are send
2696 	 * during passive scanning. Not using an non-resolvable address
2697 	 * here is important so that peer devices using direct
2698 	 * advertising with our address will be correctly reported
2699 	 * by the controller.
2700 	 */
2701 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2702 					   &own_addr_type))
2703 		return 0;
2704 
2705 	if (hdev->enable_advmon_interleave_scan &&
2706 	    hci_update_interleaved_scan_sync(hdev))
2707 		return 0;
2708 
2709 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2710 
2711 	/* Adding or removing entries from the accept list must
2712 	 * happen before enabling scanning. The controller does
2713 	 * not allow accept list modification while scanning.
2714 	 */
2715 	filter_policy = hci_update_accept_list_sync(hdev);
2716 
2717 	/* When the controller is using random resolvable addresses and
2718 	 * with that having LE privacy enabled, then controllers with
2719 	 * Extended Scanner Filter Policies support can now enable support
2720 	 * for handling directed advertising.
2721 	 *
2722 	 * So instead of using filter polices 0x00 (no acceptlist)
2723 	 * and 0x01 (acceptlist enabled) use the new filter policies
2724 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2725 	 */
2726 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2727 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2728 		filter_policy |= 0x02;
2729 
2730 	if (hdev->suspended) {
2731 		window = hdev->le_scan_window_suspend;
2732 		interval = hdev->le_scan_int_suspend;
2733 	} else if (hci_is_le_conn_scanning(hdev)) {
2734 		window = hdev->le_scan_window_connect;
2735 		interval = hdev->le_scan_int_connect;
2736 	} else if (hci_is_adv_monitoring(hdev)) {
2737 		window = hdev->le_scan_window_adv_monitor;
2738 		interval = hdev->le_scan_int_adv_monitor;
2739 	} else {
2740 		window = hdev->le_scan_window;
2741 		interval = hdev->le_scan_interval;
2742 	}
2743 
2744 	/* Disable all filtering for Mesh */
2745 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2746 		filter_policy = 0;
2747 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2748 	}
2749 
2750 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2751 
2752 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2753 				   own_addr_type, filter_policy, filter_dups);
2754 }
2755 
2756 /* This function controls the passive scanning based on hdev->pend_le_conns
2757  * list. If there are pending LE connection we start the background scanning,
2758  * otherwise we stop it in the following sequence:
2759  *
2760  * If there are devices to scan:
2761  *
2762  * Disable Scanning -> Update Accept List ->
2763  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2764  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2765  * Enable Scanning
2766  *
2767  * Otherwise:
2768  *
2769  * Disable Scanning
2770  */
2771 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2772 {
2773 	int err;
2774 
2775 	if (!test_bit(HCI_UP, &hdev->flags) ||
2776 	    test_bit(HCI_INIT, &hdev->flags) ||
2777 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2778 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2779 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2780 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2781 		return 0;
2782 
2783 	/* No point in doing scanning if LE support hasn't been enabled */
2784 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2785 		return 0;
2786 
2787 	/* If discovery is active don't interfere with it */
2788 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2789 		return 0;
2790 
2791 	/* Reset RSSI and UUID filters when starting background scanning
2792 	 * since these filters are meant for service discovery only.
2793 	 *
2794 	 * The Start Discovery and Start Service Discovery operations
2795 	 * ensure to set proper values for RSSI threshold and UUID
2796 	 * filter list. So it is safe to just reset them here.
2797 	 */
2798 	hci_discovery_filter_clear(hdev);
2799 
2800 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2801 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2802 
2803 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2804 	    list_empty(&hdev->pend_le_conns) &&
2805 	    list_empty(&hdev->pend_le_reports) &&
2806 	    !hci_is_adv_monitoring(hdev) &&
2807 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2808 		/* If there is no pending LE connections or devices
2809 		 * to be scanned for or no ADV monitors, we should stop the
2810 		 * background scanning.
2811 		 */
2812 
2813 		bt_dev_dbg(hdev, "stopping background scanning");
2814 
2815 		err = hci_scan_disable_sync(hdev);
2816 		if (err)
2817 			bt_dev_err(hdev, "stop background scanning failed: %d",
2818 				   err);
2819 	} else {
2820 		/* If there is at least one pending LE connection, we should
2821 		 * keep the background scan running.
2822 		 */
2823 
2824 		/* If controller is connecting, we should not start scanning
2825 		 * since some controllers are not able to scan and connect at
2826 		 * the same time.
2827 		 */
2828 		if (hci_lookup_le_connect(hdev))
2829 			return 0;
2830 
2831 		bt_dev_dbg(hdev, "start background scanning");
2832 
2833 		err = hci_passive_scan_sync(hdev);
2834 		if (err)
2835 			bt_dev_err(hdev, "start background scanning failed: %d",
2836 				   err);
2837 	}
2838 
2839 	return err;
2840 }
2841 
2842 static int update_scan_sync(struct hci_dev *hdev, void *data)
2843 {
2844 	return hci_update_scan_sync(hdev);
2845 }
2846 
2847 int hci_update_scan(struct hci_dev *hdev)
2848 {
2849 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2850 }
2851 
2852 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2853 {
2854 	return hci_update_passive_scan_sync(hdev);
2855 }
2856 
2857 int hci_update_passive_scan(struct hci_dev *hdev)
2858 {
2859 	/* Only queue if it would have any effect */
2860 	if (!test_bit(HCI_UP, &hdev->flags) ||
2861 	    test_bit(HCI_INIT, &hdev->flags) ||
2862 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2863 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2864 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2865 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2866 		return 0;
2867 
2868 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2869 }
2870 
2871 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2872 {
2873 	int err;
2874 
2875 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2876 		return 0;
2877 
2878 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2879 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2880 
2881 	if (!err) {
2882 		if (val) {
2883 			hdev->features[1][0] |= LMP_HOST_SC;
2884 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2885 		} else {
2886 			hdev->features[1][0] &= ~LMP_HOST_SC;
2887 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2888 		}
2889 	}
2890 
2891 	return err;
2892 }
2893 
2894 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2895 {
2896 	int err;
2897 
2898 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2899 	    lmp_host_ssp_capable(hdev))
2900 		return 0;
2901 
2902 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2903 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2904 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2905 	}
2906 
2907 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2908 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2909 	if (err)
2910 		return err;
2911 
2912 	return hci_write_sc_support_sync(hdev, 0x01);
2913 }
2914 
2915 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2916 {
2917 	struct hci_cp_write_le_host_supported cp;
2918 
2919 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2920 	    !lmp_bredr_capable(hdev))
2921 		return 0;
2922 
2923 	/* Check first if we already have the right host state
2924 	 * (host features set)
2925 	 */
2926 	if (le == lmp_host_le_capable(hdev) &&
2927 	    simul == lmp_host_le_br_capable(hdev))
2928 		return 0;
2929 
2930 	memset(&cp, 0, sizeof(cp));
2931 
2932 	cp.le = le;
2933 	cp.simul = simul;
2934 
2935 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2936 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2937 }
2938 
2939 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2940 {
2941 	struct adv_info *adv, *tmp;
2942 	int err;
2943 
2944 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2945 		return 0;
2946 
2947 	/* If RPA Resolution has not been enable yet it means the
2948 	 * resolving list is empty and we should attempt to program the
2949 	 * local IRK in order to support using own_addr_type
2950 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2951 	 */
2952 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2953 		hci_le_add_resolve_list_sync(hdev, NULL);
2954 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2955 	}
2956 
2957 	/* Make sure the controller has a good default for
2958 	 * advertising data. This also applies to the case
2959 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2960 	 */
2961 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2962 	    list_empty(&hdev->adv_instances)) {
2963 		if (ext_adv_capable(hdev)) {
2964 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2965 			if (!err)
2966 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2967 		} else {
2968 			err = hci_update_adv_data_sync(hdev, 0x00);
2969 			if (!err)
2970 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2971 		}
2972 
2973 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2974 			hci_enable_advertising_sync(hdev);
2975 	}
2976 
2977 	/* Call for each tracked instance to be scheduled */
2978 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2979 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2980 
2981 	return 0;
2982 }
2983 
2984 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2985 {
2986 	u8 link_sec;
2987 
2988 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2989 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2990 		return 0;
2991 
2992 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2993 				     sizeof(link_sec), &link_sec,
2994 				     HCI_CMD_TIMEOUT);
2995 }
2996 
2997 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2998 {
2999 	struct hci_cp_write_page_scan_activity cp;
3000 	u8 type;
3001 	int err = 0;
3002 
3003 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3004 		return 0;
3005 
3006 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3007 		return 0;
3008 
3009 	memset(&cp, 0, sizeof(cp));
3010 
3011 	if (enable) {
3012 		type = PAGE_SCAN_TYPE_INTERLACED;
3013 
3014 		/* 160 msec page scan interval */
3015 		cp.interval = cpu_to_le16(0x0100);
3016 	} else {
3017 		type = hdev->def_page_scan_type;
3018 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3019 	}
3020 
3021 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3022 
3023 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3024 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3025 		err = __hci_cmd_sync_status(hdev,
3026 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3027 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3028 		if (err)
3029 			return err;
3030 	}
3031 
3032 	if (hdev->page_scan_type != type)
3033 		err = __hci_cmd_sync_status(hdev,
3034 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3035 					    sizeof(type), &type,
3036 					    HCI_CMD_TIMEOUT);
3037 
3038 	return err;
3039 }
3040 
3041 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3042 {
3043 	struct bdaddr_list *b;
3044 
3045 	list_for_each_entry(b, &hdev->accept_list, list) {
3046 		struct hci_conn *conn;
3047 
3048 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3049 		if (!conn)
3050 			return true;
3051 
3052 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3053 			return true;
3054 	}
3055 
3056 	return false;
3057 }
3058 
3059 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3060 {
3061 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3062 					    sizeof(val), &val,
3063 					    HCI_CMD_TIMEOUT);
3064 }
3065 
3066 int hci_update_scan_sync(struct hci_dev *hdev)
3067 {
3068 	u8 scan;
3069 
3070 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3071 		return 0;
3072 
3073 	if (!hdev_is_powered(hdev))
3074 		return 0;
3075 
3076 	if (mgmt_powering_down(hdev))
3077 		return 0;
3078 
3079 	if (hdev->scanning_paused)
3080 		return 0;
3081 
3082 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3083 	    disconnected_accept_list_entries(hdev))
3084 		scan = SCAN_PAGE;
3085 	else
3086 		scan = SCAN_DISABLED;
3087 
3088 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3089 		scan |= SCAN_INQUIRY;
3090 
3091 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3092 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3093 		return 0;
3094 
3095 	return hci_write_scan_enable_sync(hdev, scan);
3096 }
3097 
3098 int hci_update_name_sync(struct hci_dev *hdev)
3099 {
3100 	struct hci_cp_write_local_name cp;
3101 
3102 	memset(&cp, 0, sizeof(cp));
3103 
3104 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3105 
3106 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3107 					    sizeof(cp), &cp,
3108 					    HCI_CMD_TIMEOUT);
3109 }
3110 
3111 /* This function perform powered update HCI command sequence after the HCI init
3112  * sequence which end up resetting all states, the sequence is as follows:
3113  *
3114  * HCI_SSP_ENABLED(Enable SSP)
3115  * HCI_LE_ENABLED(Enable LE)
3116  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3117  * Update adv data)
3118  * Enable Authentication
3119  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3120  * Set Name -> Set EIR)
3121  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3122  */
3123 int hci_powered_update_sync(struct hci_dev *hdev)
3124 {
3125 	int err;
3126 
3127 	/* Register the available SMP channels (BR/EDR and LE) only when
3128 	 * successfully powering on the controller. This late
3129 	 * registration is required so that LE SMP can clearly decide if
3130 	 * the public address or static address is used.
3131 	 */
3132 	smp_register(hdev);
3133 
3134 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3135 	if (err)
3136 		return err;
3137 
3138 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3139 	if (err)
3140 		return err;
3141 
3142 	err = hci_powered_update_adv_sync(hdev);
3143 	if (err)
3144 		return err;
3145 
3146 	err = hci_write_auth_enable_sync(hdev);
3147 	if (err)
3148 		return err;
3149 
3150 	if (lmp_bredr_capable(hdev)) {
3151 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3152 			hci_write_fast_connectable_sync(hdev, true);
3153 		else
3154 			hci_write_fast_connectable_sync(hdev, false);
3155 		hci_update_scan_sync(hdev);
3156 		hci_update_class_sync(hdev);
3157 		hci_update_name_sync(hdev);
3158 		hci_update_eir_sync(hdev);
3159 	}
3160 
3161 	/* If forcing static address is in use or there is no public
3162 	 * address use the static address as random address (but skip
3163 	 * the HCI command if the current random address is already the
3164 	 * static one.
3165 	 *
3166 	 * In case BR/EDR has been disabled on a dual-mode controller
3167 	 * and a static address has been configured, then use that
3168 	 * address instead of the public BR/EDR address.
3169 	 */
3170 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3171 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3172 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3173 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3174 			return hci_set_random_addr_sync(hdev,
3175 							&hdev->static_addr);
3176 	}
3177 
3178 	return 0;
3179 }
3180 
3181 /**
3182  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3183  *				       (BD_ADDR) for a HCI device from
3184  *				       a firmware node property.
3185  * @hdev:	The HCI device
3186  *
3187  * Search the firmware node for 'local-bd-address'.
3188  *
3189  * All-zero BD addresses are rejected, because those could be properties
3190  * that exist in the firmware tables, but were not updated by the firmware. For
3191  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3192  */
3193 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3194 {
3195 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3196 	bdaddr_t ba;
3197 	int ret;
3198 
3199 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3200 					    (u8 *)&ba, sizeof(ba));
3201 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3202 		return;
3203 
3204 	bacpy(&hdev->public_addr, &ba);
3205 }
3206 
3207 struct hci_init_stage {
3208 	int (*func)(struct hci_dev *hdev);
3209 };
3210 
3211 /* Run init stage NULL terminated function table */
3212 static int hci_init_stage_sync(struct hci_dev *hdev,
3213 			       const struct hci_init_stage *stage)
3214 {
3215 	size_t i;
3216 
3217 	for (i = 0; stage[i].func; i++) {
3218 		int err;
3219 
3220 		err = stage[i].func(hdev);
3221 		if (err)
3222 			return err;
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 /* Read Local Version */
3229 static int hci_read_local_version_sync(struct hci_dev *hdev)
3230 {
3231 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3232 				     0, NULL, HCI_CMD_TIMEOUT);
3233 }
3234 
3235 /* Read BD Address */
3236 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3237 {
3238 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3239 				     0, NULL, HCI_CMD_TIMEOUT);
3240 }
3241 
3242 #define HCI_INIT(_func) \
3243 { \
3244 	.func = _func, \
3245 }
3246 
3247 static const struct hci_init_stage hci_init0[] = {
3248 	/* HCI_OP_READ_LOCAL_VERSION */
3249 	HCI_INIT(hci_read_local_version_sync),
3250 	/* HCI_OP_READ_BD_ADDR */
3251 	HCI_INIT(hci_read_bd_addr_sync),
3252 	{}
3253 };
3254 
3255 int hci_reset_sync(struct hci_dev *hdev)
3256 {
3257 	int err;
3258 
3259 	set_bit(HCI_RESET, &hdev->flags);
3260 
3261 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3262 				    HCI_CMD_TIMEOUT);
3263 	if (err)
3264 		return err;
3265 
3266 	return 0;
3267 }
3268 
3269 static int hci_init0_sync(struct hci_dev *hdev)
3270 {
3271 	int err;
3272 
3273 	bt_dev_dbg(hdev, "");
3274 
3275 	/* Reset */
3276 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3277 		err = hci_reset_sync(hdev);
3278 		if (err)
3279 			return err;
3280 	}
3281 
3282 	return hci_init_stage_sync(hdev, hci_init0);
3283 }
3284 
3285 static int hci_unconf_init_sync(struct hci_dev *hdev)
3286 {
3287 	int err;
3288 
3289 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3290 		return 0;
3291 
3292 	err = hci_init0_sync(hdev);
3293 	if (err < 0)
3294 		return err;
3295 
3296 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3297 		hci_debugfs_create_basic(hdev);
3298 
3299 	return 0;
3300 }
3301 
3302 /* Read Local Supported Features. */
3303 static int hci_read_local_features_sync(struct hci_dev *hdev)
3304 {
3305 	 /* Not all AMP controllers support this command */
3306 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3307 		return 0;
3308 
3309 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3310 				     0, NULL, HCI_CMD_TIMEOUT);
3311 }
3312 
3313 /* BR Controller init stage 1 command sequence */
3314 static const struct hci_init_stage br_init1[] = {
3315 	/* HCI_OP_READ_LOCAL_FEATURES */
3316 	HCI_INIT(hci_read_local_features_sync),
3317 	/* HCI_OP_READ_LOCAL_VERSION */
3318 	HCI_INIT(hci_read_local_version_sync),
3319 	/* HCI_OP_READ_BD_ADDR */
3320 	HCI_INIT(hci_read_bd_addr_sync),
3321 	{}
3322 };
3323 
3324 /* Read Local Commands */
3325 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3326 {
3327 	/* All Bluetooth 1.2 and later controllers should support the
3328 	 * HCI command for reading the local supported commands.
3329 	 *
3330 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3331 	 * but do not have support for this command. If that is the case,
3332 	 * the driver can quirk the behavior and skip reading the local
3333 	 * supported commands.
3334 	 */
3335 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3336 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3337 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3338 					     0, NULL, HCI_CMD_TIMEOUT);
3339 
3340 	return 0;
3341 }
3342 
3343 /* Read Local AMP Info */
3344 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3345 {
3346 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3347 				     0, NULL, HCI_CMD_TIMEOUT);
3348 }
3349 
3350 /* Read Data Blk size */
3351 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3352 {
3353 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3354 				     0, NULL, HCI_CMD_TIMEOUT);
3355 }
3356 
3357 /* Read Flow Control Mode */
3358 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3359 {
3360 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3361 				     0, NULL, HCI_CMD_TIMEOUT);
3362 }
3363 
3364 /* Read Location Data */
3365 static int hci_read_location_data_sync(struct hci_dev *hdev)
3366 {
3367 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3368 				     0, NULL, HCI_CMD_TIMEOUT);
3369 }
3370 
3371 /* AMP Controller init stage 1 command sequence */
3372 static const struct hci_init_stage amp_init1[] = {
3373 	/* HCI_OP_READ_LOCAL_VERSION */
3374 	HCI_INIT(hci_read_local_version_sync),
3375 	/* HCI_OP_READ_LOCAL_COMMANDS */
3376 	HCI_INIT(hci_read_local_cmds_sync),
3377 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3378 	HCI_INIT(hci_read_local_amp_info_sync),
3379 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3380 	HCI_INIT(hci_read_data_block_size_sync),
3381 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3382 	HCI_INIT(hci_read_flow_control_mode_sync),
3383 	/* HCI_OP_READ_LOCATION_DATA */
3384 	HCI_INIT(hci_read_location_data_sync),
3385 	{}
3386 };
3387 
3388 static int hci_init1_sync(struct hci_dev *hdev)
3389 {
3390 	int err;
3391 
3392 	bt_dev_dbg(hdev, "");
3393 
3394 	/* Reset */
3395 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3396 		err = hci_reset_sync(hdev);
3397 		if (err)
3398 			return err;
3399 	}
3400 
3401 	switch (hdev->dev_type) {
3402 	case HCI_PRIMARY:
3403 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3404 		return hci_init_stage_sync(hdev, br_init1);
3405 	case HCI_AMP:
3406 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3407 		return hci_init_stage_sync(hdev, amp_init1);
3408 	default:
3409 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3410 		break;
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 /* AMP Controller init stage 2 command sequence */
3417 static const struct hci_init_stage amp_init2[] = {
3418 	/* HCI_OP_READ_LOCAL_FEATURES */
3419 	HCI_INIT(hci_read_local_features_sync),
3420 	{}
3421 };
3422 
3423 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3424 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3425 {
3426 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3427 				     0, NULL, HCI_CMD_TIMEOUT);
3428 }
3429 
3430 /* Read Class of Device */
3431 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3432 {
3433 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3434 				     0, NULL, HCI_CMD_TIMEOUT);
3435 }
3436 
3437 /* Read Local Name */
3438 static int hci_read_local_name_sync(struct hci_dev *hdev)
3439 {
3440 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3441 				     0, NULL, HCI_CMD_TIMEOUT);
3442 }
3443 
3444 /* Read Voice Setting */
3445 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3446 {
3447 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3448 				     0, NULL, HCI_CMD_TIMEOUT);
3449 }
3450 
3451 /* Read Number of Supported IAC */
3452 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3453 {
3454 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3455 				     0, NULL, HCI_CMD_TIMEOUT);
3456 }
3457 
3458 /* Read Current IAC LAP */
3459 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3460 {
3461 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3462 				     0, NULL, HCI_CMD_TIMEOUT);
3463 }
3464 
3465 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3466 				     u8 cond_type, bdaddr_t *bdaddr,
3467 				     u8 auto_accept)
3468 {
3469 	struct hci_cp_set_event_filter cp;
3470 
3471 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3472 		return 0;
3473 
3474 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3475 		return 0;
3476 
3477 	memset(&cp, 0, sizeof(cp));
3478 	cp.flt_type = flt_type;
3479 
3480 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3481 		cp.cond_type = cond_type;
3482 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3483 		cp.addr_conn_flt.auto_accept = auto_accept;
3484 	}
3485 
3486 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3487 				     flt_type == HCI_FLT_CLEAR_ALL ?
3488 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3489 				     HCI_CMD_TIMEOUT);
3490 }
3491 
3492 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3493 {
3494 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3495 		return 0;
3496 
3497 	/* In theory the state machine should not reach here unless
3498 	 * a hci_set_event_filter_sync() call succeeds, but we do
3499 	 * the check both for parity and as a future reminder.
3500 	 */
3501 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3502 		return 0;
3503 
3504 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3505 					 BDADDR_ANY, 0x00);
3506 }
3507 
3508 /* Connection accept timeout ~20 secs */
3509 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3510 {
3511 	__le16 param = cpu_to_le16(0x7d00);
3512 
3513 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3514 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3515 }
3516 
3517 /* BR Controller init stage 2 command sequence */
3518 static const struct hci_init_stage br_init2[] = {
3519 	/* HCI_OP_READ_BUFFER_SIZE */
3520 	HCI_INIT(hci_read_buffer_size_sync),
3521 	/* HCI_OP_READ_CLASS_OF_DEV */
3522 	HCI_INIT(hci_read_dev_class_sync),
3523 	/* HCI_OP_READ_LOCAL_NAME */
3524 	HCI_INIT(hci_read_local_name_sync),
3525 	/* HCI_OP_READ_VOICE_SETTING */
3526 	HCI_INIT(hci_read_voice_setting_sync),
3527 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3528 	HCI_INIT(hci_read_num_supported_iac_sync),
3529 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3530 	HCI_INIT(hci_read_current_iac_lap_sync),
3531 	/* HCI_OP_SET_EVENT_FLT */
3532 	HCI_INIT(hci_clear_event_filter_sync),
3533 	/* HCI_OP_WRITE_CA_TIMEOUT */
3534 	HCI_INIT(hci_write_ca_timeout_sync),
3535 	{}
3536 };
3537 
3538 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3539 {
3540 	u8 mode = 0x01;
3541 
3542 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3543 		return 0;
3544 
3545 	/* When SSP is available, then the host features page
3546 	 * should also be available as well. However some
3547 	 * controllers list the max_page as 0 as long as SSP
3548 	 * has not been enabled. To achieve proper debugging
3549 	 * output, force the minimum max_page to 1 at least.
3550 	 */
3551 	hdev->max_page = 0x01;
3552 
3553 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3554 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3555 }
3556 
3557 static int hci_write_eir_sync(struct hci_dev *hdev)
3558 {
3559 	struct hci_cp_write_eir cp;
3560 
3561 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3562 		return 0;
3563 
3564 	memset(hdev->eir, 0, sizeof(hdev->eir));
3565 	memset(&cp, 0, sizeof(cp));
3566 
3567 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3568 				     HCI_CMD_TIMEOUT);
3569 }
3570 
3571 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3572 {
3573 	u8 mode;
3574 
3575 	if (!lmp_inq_rssi_capable(hdev) &&
3576 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3577 		return 0;
3578 
3579 	/* If Extended Inquiry Result events are supported, then
3580 	 * they are clearly preferred over Inquiry Result with RSSI
3581 	 * events.
3582 	 */
3583 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3584 
3585 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3586 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3587 }
3588 
3589 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3590 {
3591 	if (!lmp_inq_tx_pwr_capable(hdev))
3592 		return 0;
3593 
3594 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3595 				     0, NULL, HCI_CMD_TIMEOUT);
3596 }
3597 
3598 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3599 {
3600 	struct hci_cp_read_local_ext_features cp;
3601 
3602 	if (!lmp_ext_feat_capable(hdev))
3603 		return 0;
3604 
3605 	memset(&cp, 0, sizeof(cp));
3606 	cp.page = page;
3607 
3608 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3609 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3610 }
3611 
3612 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3613 {
3614 	return hci_read_local_ext_features_sync(hdev, 0x01);
3615 }
3616 
3617 /* HCI Controller init stage 2 command sequence */
3618 static const struct hci_init_stage hci_init2[] = {
3619 	/* HCI_OP_READ_LOCAL_COMMANDS */
3620 	HCI_INIT(hci_read_local_cmds_sync),
3621 	/* HCI_OP_WRITE_SSP_MODE */
3622 	HCI_INIT(hci_write_ssp_mode_1_sync),
3623 	/* HCI_OP_WRITE_EIR */
3624 	HCI_INIT(hci_write_eir_sync),
3625 	/* HCI_OP_WRITE_INQUIRY_MODE */
3626 	HCI_INIT(hci_write_inquiry_mode_sync),
3627 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3628 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3629 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3630 	HCI_INIT(hci_read_local_ext_features_1_sync),
3631 	/* HCI_OP_WRITE_AUTH_ENABLE */
3632 	HCI_INIT(hci_write_auth_enable_sync),
3633 	{}
3634 };
3635 
3636 /* Read LE Buffer Size */
3637 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3638 {
3639 	/* Use Read LE Buffer Size V2 if supported */
3640 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3641 		return __hci_cmd_sync_status(hdev,
3642 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3643 					     0, NULL, HCI_CMD_TIMEOUT);
3644 
3645 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3646 				     0, NULL, HCI_CMD_TIMEOUT);
3647 }
3648 
3649 /* Read LE Local Supported Features */
3650 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3651 {
3652 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3653 				     0, NULL, HCI_CMD_TIMEOUT);
3654 }
3655 
3656 /* Read LE Supported States */
3657 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3658 {
3659 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3660 				     0, NULL, HCI_CMD_TIMEOUT);
3661 }
3662 
3663 /* LE Controller init stage 2 command sequence */
3664 static const struct hci_init_stage le_init2[] = {
3665 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3666 	HCI_INIT(hci_le_read_local_features_sync),
3667 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3668 	HCI_INIT(hci_le_read_buffer_size_sync),
3669 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3670 	HCI_INIT(hci_le_read_supported_states_sync),
3671 	{}
3672 };
3673 
3674 static int hci_init2_sync(struct hci_dev *hdev)
3675 {
3676 	int err;
3677 
3678 	bt_dev_dbg(hdev, "");
3679 
3680 	if (hdev->dev_type == HCI_AMP)
3681 		return hci_init_stage_sync(hdev, amp_init2);
3682 
3683 	err = hci_init_stage_sync(hdev, hci_init2);
3684 	if (err)
3685 		return err;
3686 
3687 	if (lmp_bredr_capable(hdev)) {
3688 		err = hci_init_stage_sync(hdev, br_init2);
3689 		if (err)
3690 			return err;
3691 	} else {
3692 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3693 	}
3694 
3695 	if (lmp_le_capable(hdev)) {
3696 		err = hci_init_stage_sync(hdev, le_init2);
3697 		if (err)
3698 			return err;
3699 		/* LE-only controllers have LE implicitly enabled */
3700 		if (!lmp_bredr_capable(hdev))
3701 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3702 	}
3703 
3704 	return 0;
3705 }
3706 
3707 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3708 {
3709 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3710 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3711 	 * command otherwise.
3712 	 */
3713 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3714 
3715 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3716 	 * any event mask for pre 1.2 devices.
3717 	 */
3718 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3719 		return 0;
3720 
3721 	if (lmp_bredr_capable(hdev)) {
3722 		events[4] |= 0x01; /* Flow Specification Complete */
3723 
3724 		/* Don't set Disconnect Complete when suspended as that
3725 		 * would wakeup the host when disconnecting due to
3726 		 * suspend.
3727 		 */
3728 		if (hdev->suspended)
3729 			events[0] &= 0xef;
3730 	} else {
3731 		/* Use a different default for LE-only devices */
3732 		memset(events, 0, sizeof(events));
3733 		events[1] |= 0x20; /* Command Complete */
3734 		events[1] |= 0x40; /* Command Status */
3735 		events[1] |= 0x80; /* Hardware Error */
3736 
3737 		/* If the controller supports the Disconnect command, enable
3738 		 * the corresponding event. In addition enable packet flow
3739 		 * control related events.
3740 		 */
3741 		if (hdev->commands[0] & 0x20) {
3742 			/* Don't set Disconnect Complete when suspended as that
3743 			 * would wakeup the host when disconnecting due to
3744 			 * suspend.
3745 			 */
3746 			if (!hdev->suspended)
3747 				events[0] |= 0x10; /* Disconnection Complete */
3748 			events[2] |= 0x04; /* Number of Completed Packets */
3749 			events[3] |= 0x02; /* Data Buffer Overflow */
3750 		}
3751 
3752 		/* If the controller supports the Read Remote Version
3753 		 * Information command, enable the corresponding event.
3754 		 */
3755 		if (hdev->commands[2] & 0x80)
3756 			events[1] |= 0x08; /* Read Remote Version Information
3757 					    * Complete
3758 					    */
3759 
3760 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3761 			events[0] |= 0x80; /* Encryption Change */
3762 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3763 		}
3764 	}
3765 
3766 	if (lmp_inq_rssi_capable(hdev) ||
3767 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3768 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3769 
3770 	if (lmp_ext_feat_capable(hdev))
3771 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3772 
3773 	if (lmp_esco_capable(hdev)) {
3774 		events[5] |= 0x08; /* Synchronous Connection Complete */
3775 		events[5] |= 0x10; /* Synchronous Connection Changed */
3776 	}
3777 
3778 	if (lmp_sniffsubr_capable(hdev))
3779 		events[5] |= 0x20; /* Sniff Subrating */
3780 
3781 	if (lmp_pause_enc_capable(hdev))
3782 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3783 
3784 	if (lmp_ext_inq_capable(hdev))
3785 		events[5] |= 0x40; /* Extended Inquiry Result */
3786 
3787 	if (lmp_no_flush_capable(hdev))
3788 		events[7] |= 0x01; /* Enhanced Flush Complete */
3789 
3790 	if (lmp_lsto_capable(hdev))
3791 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3792 
3793 	if (lmp_ssp_capable(hdev)) {
3794 		events[6] |= 0x01;	/* IO Capability Request */
3795 		events[6] |= 0x02;	/* IO Capability Response */
3796 		events[6] |= 0x04;	/* User Confirmation Request */
3797 		events[6] |= 0x08;	/* User Passkey Request */
3798 		events[6] |= 0x10;	/* Remote OOB Data Request */
3799 		events[6] |= 0x20;	/* Simple Pairing Complete */
3800 		events[7] |= 0x04;	/* User Passkey Notification */
3801 		events[7] |= 0x08;	/* Keypress Notification */
3802 		events[7] |= 0x10;	/* Remote Host Supported
3803 					 * Features Notification
3804 					 */
3805 	}
3806 
3807 	if (lmp_le_capable(hdev))
3808 		events[7] |= 0x20;	/* LE Meta-Event */
3809 
3810 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3811 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3812 }
3813 
3814 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3815 {
3816 	struct hci_cp_read_stored_link_key cp;
3817 
3818 	if (!(hdev->commands[6] & 0x20) ||
3819 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3820 		return 0;
3821 
3822 	memset(&cp, 0, sizeof(cp));
3823 	bacpy(&cp.bdaddr, BDADDR_ANY);
3824 	cp.read_all = 0x01;
3825 
3826 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3827 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3828 }
3829 
3830 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3831 {
3832 	struct hci_cp_write_def_link_policy cp;
3833 	u16 link_policy = 0;
3834 
3835 	if (!(hdev->commands[5] & 0x10))
3836 		return 0;
3837 
3838 	memset(&cp, 0, sizeof(cp));
3839 
3840 	if (lmp_rswitch_capable(hdev))
3841 		link_policy |= HCI_LP_RSWITCH;
3842 	if (lmp_hold_capable(hdev))
3843 		link_policy |= HCI_LP_HOLD;
3844 	if (lmp_sniff_capable(hdev))
3845 		link_policy |= HCI_LP_SNIFF;
3846 	if (lmp_park_capable(hdev))
3847 		link_policy |= HCI_LP_PARK;
3848 
3849 	cp.policy = cpu_to_le16(link_policy);
3850 
3851 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3852 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3853 }
3854 
3855 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3856 {
3857 	if (!(hdev->commands[8] & 0x01))
3858 		return 0;
3859 
3860 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3861 				     0, NULL, HCI_CMD_TIMEOUT);
3862 }
3863 
3864 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3865 {
3866 	if (!(hdev->commands[18] & 0x04) ||
3867 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3868 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3869 		return 0;
3870 
3871 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3872 				     0, NULL, HCI_CMD_TIMEOUT);
3873 }
3874 
3875 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3876 {
3877 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3878 	 * support the Read Page Scan Type command. Check support for
3879 	 * this command in the bit mask of supported commands.
3880 	 */
3881 	if (!(hdev->commands[13] & 0x01))
3882 		return 0;
3883 
3884 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3885 				     0, NULL, HCI_CMD_TIMEOUT);
3886 }
3887 
3888 /* Read features beyond page 1 if available */
3889 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3890 {
3891 	u8 page;
3892 	int err;
3893 
3894 	if (!lmp_ext_feat_capable(hdev))
3895 		return 0;
3896 
3897 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3898 	     page++) {
3899 		err = hci_read_local_ext_features_sync(hdev, page);
3900 		if (err)
3901 			return err;
3902 	}
3903 
3904 	return 0;
3905 }
3906 
3907 /* HCI Controller init stage 3 command sequence */
3908 static const struct hci_init_stage hci_init3[] = {
3909 	/* HCI_OP_SET_EVENT_MASK */
3910 	HCI_INIT(hci_set_event_mask_sync),
3911 	/* HCI_OP_READ_STORED_LINK_KEY */
3912 	HCI_INIT(hci_read_stored_link_key_sync),
3913 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3914 	HCI_INIT(hci_setup_link_policy_sync),
3915 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3916 	HCI_INIT(hci_read_page_scan_activity_sync),
3917 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3918 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3919 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3920 	HCI_INIT(hci_read_page_scan_type_sync),
3921 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3922 	HCI_INIT(hci_read_local_ext_features_all_sync),
3923 	{}
3924 };
3925 
3926 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3927 {
3928 	u8 events[8];
3929 
3930 	if (!lmp_le_capable(hdev))
3931 		return 0;
3932 
3933 	memset(events, 0, sizeof(events));
3934 
3935 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3936 		events[0] |= 0x10;	/* LE Long Term Key Request */
3937 
3938 	/* If controller supports the Connection Parameters Request
3939 	 * Link Layer Procedure, enable the corresponding event.
3940 	 */
3941 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3942 		/* LE Remote Connection Parameter Request */
3943 		events[0] |= 0x20;
3944 
3945 	/* If the controller supports the Data Length Extension
3946 	 * feature, enable the corresponding event.
3947 	 */
3948 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3949 		events[0] |= 0x40;	/* LE Data Length Change */
3950 
3951 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3952 	 * enable the corresponding event.
3953 	 */
3954 	if (use_enhanced_conn_complete(hdev))
3955 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3956 
3957 	/* If the controller supports Extended Scanner Filter
3958 	 * Policies, enable the corresponding event.
3959 	 */
3960 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3961 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3962 
3963 	/* If the controller supports Channel Selection Algorithm #2
3964 	 * feature, enable the corresponding event.
3965 	 */
3966 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3967 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3968 
3969 	/* If the controller supports the LE Set Scan Enable command,
3970 	 * enable the corresponding advertising report event.
3971 	 */
3972 	if (hdev->commands[26] & 0x08)
3973 		events[0] |= 0x02;	/* LE Advertising Report */
3974 
3975 	/* If the controller supports the LE Create Connection
3976 	 * command, enable the corresponding event.
3977 	 */
3978 	if (hdev->commands[26] & 0x10)
3979 		events[0] |= 0x01;	/* LE Connection Complete */
3980 
3981 	/* If the controller supports the LE Connection Update
3982 	 * command, enable the corresponding event.
3983 	 */
3984 	if (hdev->commands[27] & 0x04)
3985 		events[0] |= 0x04;	/* LE Connection Update Complete */
3986 
3987 	/* If the controller supports the LE Read Remote Used Features
3988 	 * command, enable the corresponding event.
3989 	 */
3990 	if (hdev->commands[27] & 0x20)
3991 		/* LE Read Remote Used Features Complete */
3992 		events[0] |= 0x08;
3993 
3994 	/* If the controller supports the LE Read Local P-256
3995 	 * Public Key command, enable the corresponding event.
3996 	 */
3997 	if (hdev->commands[34] & 0x02)
3998 		/* LE Read Local P-256 Public Key Complete */
3999 		events[0] |= 0x80;
4000 
4001 	/* If the controller supports the LE Generate DHKey
4002 	 * command, enable the corresponding event.
4003 	 */
4004 	if (hdev->commands[34] & 0x04)
4005 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4006 
4007 	/* If the controller supports the LE Set Default PHY or
4008 	 * LE Set PHY commands, enable the corresponding event.
4009 	 */
4010 	if (hdev->commands[35] & (0x20 | 0x40))
4011 		events[1] |= 0x08;        /* LE PHY Update Complete */
4012 
4013 	/* If the controller supports LE Set Extended Scan Parameters
4014 	 * and LE Set Extended Scan Enable commands, enable the
4015 	 * corresponding event.
4016 	 */
4017 	if (use_ext_scan(hdev))
4018 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4019 
4020 	/* If the controller supports the LE Extended Advertising
4021 	 * command, enable the corresponding event.
4022 	 */
4023 	if (ext_adv_capable(hdev))
4024 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4025 
4026 	if (cis_capable(hdev)) {
4027 		events[3] |= 0x01;	/* LE CIS Established */
4028 		if (cis_peripheral_capable(hdev))
4029 			events[3] |= 0x02; /* LE CIS Request */
4030 	}
4031 
4032 	if (bis_capable(hdev)) {
4033 		events[3] |= 0x04;	/* LE Create BIG Complete */
4034 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4035 		events[3] |= 0x10;	/* LE BIG Sync Established */
4036 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4037 	}
4038 
4039 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4040 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4041 }
4042 
4043 /* Read LE Advertising Channel TX Power */
4044 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4045 {
4046 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4047 		/* HCI TS spec forbids mixing of legacy and extended
4048 		 * advertising commands wherein READ_ADV_TX_POWER is
4049 		 * also included. So do not call it if extended adv
4050 		 * is supported otherwise controller will return
4051 		 * COMMAND_DISALLOWED for extended commands.
4052 		 */
4053 		return __hci_cmd_sync_status(hdev,
4054 					       HCI_OP_LE_READ_ADV_TX_POWER,
4055 					       0, NULL, HCI_CMD_TIMEOUT);
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 /* Read LE Min/Max Tx Power*/
4062 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4063 {
4064 	if (!(hdev->commands[38] & 0x80) ||
4065 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4066 		return 0;
4067 
4068 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4069 				     0, NULL, HCI_CMD_TIMEOUT);
4070 }
4071 
4072 /* Read LE Accept List Size */
4073 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4074 {
4075 	if (!(hdev->commands[26] & 0x40))
4076 		return 0;
4077 
4078 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4079 				     0, NULL, HCI_CMD_TIMEOUT);
4080 }
4081 
4082 /* Clear LE Accept List */
4083 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4084 {
4085 	if (!(hdev->commands[26] & 0x80))
4086 		return 0;
4087 
4088 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4089 				     HCI_CMD_TIMEOUT);
4090 }
4091 
4092 /* Read LE Resolving List Size */
4093 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4094 {
4095 	if (!(hdev->commands[34] & 0x40))
4096 		return 0;
4097 
4098 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4099 				     0, NULL, HCI_CMD_TIMEOUT);
4100 }
4101 
4102 /* Clear LE Resolving List */
4103 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4104 {
4105 	if (!(hdev->commands[34] & 0x20))
4106 		return 0;
4107 
4108 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4109 				     HCI_CMD_TIMEOUT);
4110 }
4111 
4112 /* Set RPA timeout */
4113 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4114 {
4115 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4116 
4117 	if (!(hdev->commands[35] & 0x04) ||
4118 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4119 		return 0;
4120 
4121 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4122 				     sizeof(timeout), &timeout,
4123 				     HCI_CMD_TIMEOUT);
4124 }
4125 
4126 /* Read LE Maximum Data Length */
4127 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4128 {
4129 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4130 		return 0;
4131 
4132 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4133 				     HCI_CMD_TIMEOUT);
4134 }
4135 
4136 /* Read LE Suggested Default Data Length */
4137 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4138 {
4139 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4140 		return 0;
4141 
4142 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4143 				     HCI_CMD_TIMEOUT);
4144 }
4145 
4146 /* Read LE Number of Supported Advertising Sets */
4147 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4148 {
4149 	if (!ext_adv_capable(hdev))
4150 		return 0;
4151 
4152 	return __hci_cmd_sync_status(hdev,
4153 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4154 				     0, NULL, HCI_CMD_TIMEOUT);
4155 }
4156 
4157 /* Write LE Host Supported */
4158 static int hci_set_le_support_sync(struct hci_dev *hdev)
4159 {
4160 	struct hci_cp_write_le_host_supported cp;
4161 
4162 	/* LE-only devices do not support explicit enablement */
4163 	if (!lmp_bredr_capable(hdev))
4164 		return 0;
4165 
4166 	memset(&cp, 0, sizeof(cp));
4167 
4168 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4169 		cp.le = 0x01;
4170 		cp.simul = 0x00;
4171 	}
4172 
4173 	if (cp.le == lmp_host_le_capable(hdev))
4174 		return 0;
4175 
4176 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4177 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4178 }
4179 
4180 /* LE Set Host Feature */
4181 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4182 {
4183 	struct hci_cp_le_set_host_feature cp;
4184 
4185 	if (!iso_capable(hdev))
4186 		return 0;
4187 
4188 	memset(&cp, 0, sizeof(cp));
4189 
4190 	/* Isochronous Channels (Host Support) */
4191 	cp.bit_number = 32;
4192 	cp.bit_value = 1;
4193 
4194 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4195 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4196 }
4197 
4198 /* LE Controller init stage 3 command sequence */
4199 static const struct hci_init_stage le_init3[] = {
4200 	/* HCI_OP_LE_SET_EVENT_MASK */
4201 	HCI_INIT(hci_le_set_event_mask_sync),
4202 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4203 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4204 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4205 	HCI_INIT(hci_le_read_tx_power_sync),
4206 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4207 	HCI_INIT(hci_le_read_accept_list_size_sync),
4208 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4209 	HCI_INIT(hci_le_clear_accept_list_sync),
4210 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4211 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4212 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4213 	HCI_INIT(hci_le_clear_resolv_list_sync),
4214 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4215 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4216 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4217 	HCI_INIT(hci_le_read_max_data_len_sync),
4218 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4219 	HCI_INIT(hci_le_read_def_data_len_sync),
4220 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4221 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4222 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4223 	HCI_INIT(hci_set_le_support_sync),
4224 	/* HCI_OP_LE_SET_HOST_FEATURE */
4225 	HCI_INIT(hci_le_set_host_feature_sync),
4226 	{}
4227 };
4228 
4229 static int hci_init3_sync(struct hci_dev *hdev)
4230 {
4231 	int err;
4232 
4233 	bt_dev_dbg(hdev, "");
4234 
4235 	err = hci_init_stage_sync(hdev, hci_init3);
4236 	if (err)
4237 		return err;
4238 
4239 	if (lmp_le_capable(hdev))
4240 		return hci_init_stage_sync(hdev, le_init3);
4241 
4242 	return 0;
4243 }
4244 
4245 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4246 {
4247 	struct hci_cp_delete_stored_link_key cp;
4248 
4249 	/* Some Broadcom based Bluetooth controllers do not support the
4250 	 * Delete Stored Link Key command. They are clearly indicating its
4251 	 * absence in the bit mask of supported commands.
4252 	 *
4253 	 * Check the supported commands and only if the command is marked
4254 	 * as supported send it. If not supported assume that the controller
4255 	 * does not have actual support for stored link keys which makes this
4256 	 * command redundant anyway.
4257 	 *
4258 	 * Some controllers indicate that they support handling deleting
4259 	 * stored link keys, but they don't. The quirk lets a driver
4260 	 * just disable this command.
4261 	 */
4262 	if (!(hdev->commands[6] & 0x80) ||
4263 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4264 		return 0;
4265 
4266 	memset(&cp, 0, sizeof(cp));
4267 	bacpy(&cp.bdaddr, BDADDR_ANY);
4268 	cp.delete_all = 0x01;
4269 
4270 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4271 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4272 }
4273 
4274 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4275 {
4276 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4277 	bool changed = false;
4278 
4279 	/* Set event mask page 2 if the HCI command for it is supported */
4280 	if (!(hdev->commands[22] & 0x04))
4281 		return 0;
4282 
4283 	/* If Connectionless Peripheral Broadcast central role is supported
4284 	 * enable all necessary events for it.
4285 	 */
4286 	if (lmp_cpb_central_capable(hdev)) {
4287 		events[1] |= 0x40;	/* Triggered Clock Capture */
4288 		events[1] |= 0x80;	/* Synchronization Train Complete */
4289 		events[2] |= 0x08;	/* Truncated Page Complete */
4290 		events[2] |= 0x20;	/* CPB Channel Map Change */
4291 		changed = true;
4292 	}
4293 
4294 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4295 	 * enable all necessary events for it.
4296 	 */
4297 	if (lmp_cpb_peripheral_capable(hdev)) {
4298 		events[2] |= 0x01;	/* Synchronization Train Received */
4299 		events[2] |= 0x02;	/* CPB Receive */
4300 		events[2] |= 0x04;	/* CPB Timeout */
4301 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4302 		changed = true;
4303 	}
4304 
4305 	/* Enable Authenticated Payload Timeout Expired event if supported */
4306 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4307 		events[2] |= 0x80;
4308 		changed = true;
4309 	}
4310 
4311 	/* Some Broadcom based controllers indicate support for Set Event
4312 	 * Mask Page 2 command, but then actually do not support it. Since
4313 	 * the default value is all bits set to zero, the command is only
4314 	 * required if the event mask has to be changed. In case no change
4315 	 * to the event mask is needed, skip this command.
4316 	 */
4317 	if (!changed)
4318 		return 0;
4319 
4320 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4321 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4322 }
4323 
4324 /* Read local codec list if the HCI command is supported */
4325 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4326 {
4327 	if (hdev->commands[45] & 0x04)
4328 		hci_read_supported_codecs_v2(hdev);
4329 	else if (hdev->commands[29] & 0x20)
4330 		hci_read_supported_codecs(hdev);
4331 
4332 	return 0;
4333 }
4334 
4335 /* Read local pairing options if the HCI command is supported */
4336 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4337 {
4338 	if (!(hdev->commands[41] & 0x08))
4339 		return 0;
4340 
4341 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4342 				     0, NULL, HCI_CMD_TIMEOUT);
4343 }
4344 
4345 /* Get MWS transport configuration if the HCI command is supported */
4346 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4347 {
4348 	if (!mws_transport_config_capable(hdev))
4349 		return 0;
4350 
4351 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4352 				     0, NULL, HCI_CMD_TIMEOUT);
4353 }
4354 
4355 /* Check for Synchronization Train support */
4356 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4357 {
4358 	if (!lmp_sync_train_capable(hdev))
4359 		return 0;
4360 
4361 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4362 				     0, NULL, HCI_CMD_TIMEOUT);
4363 }
4364 
4365 /* Enable Secure Connections if supported and configured */
4366 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4367 {
4368 	u8 support = 0x01;
4369 
4370 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4371 	    !bredr_sc_enabled(hdev))
4372 		return 0;
4373 
4374 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4375 				     sizeof(support), &support,
4376 				     HCI_CMD_TIMEOUT);
4377 }
4378 
4379 /* Set erroneous data reporting if supported to the wideband speech
4380  * setting value
4381  */
4382 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4383 {
4384 	struct hci_cp_write_def_err_data_reporting cp;
4385 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4386 
4387 	if (!(hdev->commands[18] & 0x08) ||
4388 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4389 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4390 		return 0;
4391 
4392 	if (enabled == hdev->err_data_reporting)
4393 		return 0;
4394 
4395 	memset(&cp, 0, sizeof(cp));
4396 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4397 				ERR_DATA_REPORTING_DISABLED;
4398 
4399 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4400 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4401 }
4402 
4403 static const struct hci_init_stage hci_init4[] = {
4404 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4405 	HCI_INIT(hci_delete_stored_link_key_sync),
4406 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4407 	HCI_INIT(hci_set_event_mask_page_2_sync),
4408 	/* HCI_OP_READ_LOCAL_CODECS */
4409 	HCI_INIT(hci_read_local_codecs_sync),
4410 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4411 	HCI_INIT(hci_read_local_pairing_opts_sync),
4412 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4413 	HCI_INIT(hci_get_mws_transport_config_sync),
4414 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4415 	HCI_INIT(hci_read_sync_train_params_sync),
4416 	/* HCI_OP_WRITE_SC_SUPPORT */
4417 	HCI_INIT(hci_write_sc_support_1_sync),
4418 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4419 	HCI_INIT(hci_set_err_data_report_sync),
4420 	{}
4421 };
4422 
4423 /* Set Suggested Default Data Length to maximum if supported */
4424 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4425 {
4426 	struct hci_cp_le_write_def_data_len cp;
4427 
4428 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4429 		return 0;
4430 
4431 	memset(&cp, 0, sizeof(cp));
4432 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4433 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4434 
4435 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4436 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4437 }
4438 
4439 /* Set Default PHY parameters if command is supported, enables all supported
4440  * PHYs according to the LE Features bits.
4441  */
4442 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4443 {
4444 	struct hci_cp_le_set_default_phy cp;
4445 
4446 	if (!(hdev->commands[35] & 0x20)) {
4447 		/* If the command is not supported it means only 1M PHY is
4448 		 * supported.
4449 		 */
4450 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4451 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4452 		return 0;
4453 	}
4454 
4455 	memset(&cp, 0, sizeof(cp));
4456 	cp.all_phys = 0x00;
4457 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4458 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4459 
4460 	/* Enables 2M PHY if supported */
4461 	if (le_2m_capable(hdev)) {
4462 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4463 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4464 	}
4465 
4466 	/* Enables Coded PHY if supported */
4467 	if (le_coded_capable(hdev)) {
4468 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4469 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4470 	}
4471 
4472 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4473 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4474 }
4475 
4476 static const struct hci_init_stage le_init4[] = {
4477 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4478 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4479 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4480 	HCI_INIT(hci_le_set_default_phy_sync),
4481 	{}
4482 };
4483 
4484 static int hci_init4_sync(struct hci_dev *hdev)
4485 {
4486 	int err;
4487 
4488 	bt_dev_dbg(hdev, "");
4489 
4490 	err = hci_init_stage_sync(hdev, hci_init4);
4491 	if (err)
4492 		return err;
4493 
4494 	if (lmp_le_capable(hdev))
4495 		return hci_init_stage_sync(hdev, le_init4);
4496 
4497 	return 0;
4498 }
4499 
4500 static int hci_init_sync(struct hci_dev *hdev)
4501 {
4502 	int err;
4503 
4504 	err = hci_init1_sync(hdev);
4505 	if (err < 0)
4506 		return err;
4507 
4508 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4509 		hci_debugfs_create_basic(hdev);
4510 
4511 	err = hci_init2_sync(hdev);
4512 	if (err < 0)
4513 		return err;
4514 
4515 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4516 	 * BR/EDR/LE type controllers. AMP controllers only need the
4517 	 * first two stages of init.
4518 	 */
4519 	if (hdev->dev_type != HCI_PRIMARY)
4520 		return 0;
4521 
4522 	err = hci_init3_sync(hdev);
4523 	if (err < 0)
4524 		return err;
4525 
4526 	err = hci_init4_sync(hdev);
4527 	if (err < 0)
4528 		return err;
4529 
4530 	/* This function is only called when the controller is actually in
4531 	 * configured state. When the controller is marked as unconfigured,
4532 	 * this initialization procedure is not run.
4533 	 *
4534 	 * It means that it is possible that a controller runs through its
4535 	 * setup phase and then discovers missing settings. If that is the
4536 	 * case, then this function will not be called. It then will only
4537 	 * be called during the config phase.
4538 	 *
4539 	 * So only when in setup phase or config phase, create the debugfs
4540 	 * entries and register the SMP channels.
4541 	 */
4542 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4543 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4544 		return 0;
4545 
4546 	hci_debugfs_create_common(hdev);
4547 
4548 	if (lmp_bredr_capable(hdev))
4549 		hci_debugfs_create_bredr(hdev);
4550 
4551 	if (lmp_le_capable(hdev))
4552 		hci_debugfs_create_le(hdev);
4553 
4554 	return 0;
4555 }
4556 
4557 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4558 
4559 static const struct {
4560 	unsigned long quirk;
4561 	const char *desc;
4562 } hci_broken_table[] = {
4563 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4564 			 "HCI Read Local Supported Commands not supported"),
4565 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4566 			 "HCI Delete Stored Link Key command is advertised, "
4567 			 "but not supported."),
4568 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4569 			 "HCI Read Default Erroneous Data Reporting command is "
4570 			 "advertised, but not supported."),
4571 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4572 			 "HCI Read Transmit Power Level command is advertised, "
4573 			 "but not supported."),
4574 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4575 			 "HCI Set Event Filter command not supported."),
4576 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4577 			 "HCI Enhanced Setup Synchronous Connection command is "
4578 			 "advertised, but not supported."),
4579 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4580 			 "HCI LE Set Random Private Address Timeout command is "
4581 			 "advertised, but not supported.")
4582 };
4583 
4584 /* This function handles hdev setup stage:
4585  *
4586  * Calls hdev->setup
4587  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4588  */
4589 static int hci_dev_setup_sync(struct hci_dev *hdev)
4590 {
4591 	int ret = 0;
4592 	bool invalid_bdaddr;
4593 	size_t i;
4594 
4595 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4596 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4597 		return 0;
4598 
4599 	bt_dev_dbg(hdev, "");
4600 
4601 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4602 
4603 	if (hdev->setup)
4604 		ret = hdev->setup(hdev);
4605 
4606 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4607 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4608 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4609 	}
4610 
4611 	/* The transport driver can set the quirk to mark the
4612 	 * BD_ADDR invalid before creating the HCI device or in
4613 	 * its setup callback.
4614 	 */
4615 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
4616 
4617 	if (!ret) {
4618 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
4619 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
4620 				hci_dev_get_bd_addr_from_property(hdev);
4621 
4622 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4623 			    hdev->set_bdaddr) {
4624 				ret = hdev->set_bdaddr(hdev,
4625 						       &hdev->public_addr);
4626 
4627 				/* If setting of the BD_ADDR from the device
4628 				 * property succeeds, then treat the address
4629 				 * as valid even if the invalid BD_ADDR
4630 				 * quirk indicates otherwise.
4631 				 */
4632 				if (!ret)
4633 					invalid_bdaddr = false;
4634 			}
4635 		}
4636 	}
4637 
4638 	/* The transport driver can set these quirks before
4639 	 * creating the HCI device or in its setup callback.
4640 	 *
4641 	 * For the invalid BD_ADDR quirk it is possible that
4642 	 * it becomes a valid address if the bootloader does
4643 	 * provide it (see above).
4644 	 *
4645 	 * In case any of them is set, the controller has to
4646 	 * start up as unconfigured.
4647 	 */
4648 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4649 	    invalid_bdaddr)
4650 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4651 
4652 	/* For an unconfigured controller it is required to
4653 	 * read at least the version information provided by
4654 	 * the Read Local Version Information command.
4655 	 *
4656 	 * If the set_bdaddr driver callback is provided, then
4657 	 * also the original Bluetooth public device address
4658 	 * will be read using the Read BD Address command.
4659 	 */
4660 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4661 		return hci_unconf_init_sync(hdev);
4662 
4663 	return ret;
4664 }
4665 
4666 /* This function handles hdev init stage:
4667  *
4668  * Calls hci_dev_setup_sync to perform setup stage
4669  * Calls hci_init_sync to perform HCI command init sequence
4670  */
4671 static int hci_dev_init_sync(struct hci_dev *hdev)
4672 {
4673 	int ret;
4674 
4675 	bt_dev_dbg(hdev, "");
4676 
4677 	atomic_set(&hdev->cmd_cnt, 1);
4678 	set_bit(HCI_INIT, &hdev->flags);
4679 
4680 	ret = hci_dev_setup_sync(hdev);
4681 
4682 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4683 		/* If public address change is configured, ensure that
4684 		 * the address gets programmed. If the driver does not
4685 		 * support changing the public address, fail the power
4686 		 * on procedure.
4687 		 */
4688 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4689 		    hdev->set_bdaddr)
4690 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4691 		else
4692 			ret = -EADDRNOTAVAIL;
4693 	}
4694 
4695 	if (!ret) {
4696 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4697 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4698 			ret = hci_init_sync(hdev);
4699 			if (!ret && hdev->post_init)
4700 				ret = hdev->post_init(hdev);
4701 		}
4702 	}
4703 
4704 	/* If the HCI Reset command is clearing all diagnostic settings,
4705 	 * then they need to be reprogrammed after the init procedure
4706 	 * completed.
4707 	 */
4708 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4709 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4710 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4711 		ret = hdev->set_diag(hdev, true);
4712 
4713 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4714 		msft_do_open(hdev);
4715 		aosp_do_open(hdev);
4716 	}
4717 
4718 	clear_bit(HCI_INIT, &hdev->flags);
4719 
4720 	return ret;
4721 }
4722 
4723 int hci_dev_open_sync(struct hci_dev *hdev)
4724 {
4725 	int ret;
4726 
4727 	bt_dev_dbg(hdev, "");
4728 
4729 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4730 		ret = -ENODEV;
4731 		goto done;
4732 	}
4733 
4734 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4735 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4736 		/* Check for rfkill but allow the HCI setup stage to
4737 		 * proceed (which in itself doesn't cause any RF activity).
4738 		 */
4739 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4740 			ret = -ERFKILL;
4741 			goto done;
4742 		}
4743 
4744 		/* Check for valid public address or a configured static
4745 		 * random address, but let the HCI setup proceed to
4746 		 * be able to determine if there is a public address
4747 		 * or not.
4748 		 *
4749 		 * In case of user channel usage, it is not important
4750 		 * if a public address or static random address is
4751 		 * available.
4752 		 *
4753 		 * This check is only valid for BR/EDR controllers
4754 		 * since AMP controllers do not have an address.
4755 		 */
4756 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4757 		    hdev->dev_type == HCI_PRIMARY &&
4758 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4759 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4760 			ret = -EADDRNOTAVAIL;
4761 			goto done;
4762 		}
4763 	}
4764 
4765 	if (test_bit(HCI_UP, &hdev->flags)) {
4766 		ret = -EALREADY;
4767 		goto done;
4768 	}
4769 
4770 	if (hdev->open(hdev)) {
4771 		ret = -EIO;
4772 		goto done;
4773 	}
4774 
4775 	hci_devcd_reset(hdev);
4776 
4777 	set_bit(HCI_RUNNING, &hdev->flags);
4778 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4779 
4780 	ret = hci_dev_init_sync(hdev);
4781 	if (!ret) {
4782 		hci_dev_hold(hdev);
4783 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4784 		hci_adv_instances_set_rpa_expired(hdev, true);
4785 		set_bit(HCI_UP, &hdev->flags);
4786 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4787 		hci_leds_update_powered(hdev, true);
4788 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4789 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4790 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4791 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4792 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4793 		    hdev->dev_type == HCI_PRIMARY) {
4794 			ret = hci_powered_update_sync(hdev);
4795 			mgmt_power_on(hdev, ret);
4796 		}
4797 	} else {
4798 		/* Init failed, cleanup */
4799 		flush_work(&hdev->tx_work);
4800 
4801 		/* Since hci_rx_work() is possible to awake new cmd_work
4802 		 * it should be flushed first to avoid unexpected call of
4803 		 * hci_cmd_work()
4804 		 */
4805 		flush_work(&hdev->rx_work);
4806 		flush_work(&hdev->cmd_work);
4807 
4808 		skb_queue_purge(&hdev->cmd_q);
4809 		skb_queue_purge(&hdev->rx_q);
4810 
4811 		if (hdev->flush)
4812 			hdev->flush(hdev);
4813 
4814 		if (hdev->sent_cmd) {
4815 			cancel_delayed_work_sync(&hdev->cmd_timer);
4816 			kfree_skb(hdev->sent_cmd);
4817 			hdev->sent_cmd = NULL;
4818 		}
4819 
4820 		clear_bit(HCI_RUNNING, &hdev->flags);
4821 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4822 
4823 		hdev->close(hdev);
4824 		hdev->flags &= BIT(HCI_RAW);
4825 	}
4826 
4827 done:
4828 	return ret;
4829 }
4830 
4831 /* This function requires the caller holds hdev->lock */
4832 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4833 {
4834 	struct hci_conn_params *p;
4835 
4836 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4837 		if (p->conn) {
4838 			hci_conn_drop(p->conn);
4839 			hci_conn_put(p->conn);
4840 			p->conn = NULL;
4841 		}
4842 		list_del_init(&p->action);
4843 	}
4844 
4845 	BT_DBG("All LE pending actions cleared");
4846 }
4847 
4848 static int hci_dev_shutdown(struct hci_dev *hdev)
4849 {
4850 	int err = 0;
4851 	/* Similar to how we first do setup and then set the exclusive access
4852 	 * bit for userspace, we must first unset userchannel and then clean up.
4853 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4854 	 * the controller (some shutdown routines require sending additional
4855 	 * commands to the controller for example).
4856 	 */
4857 	bool was_userchannel =
4858 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4859 
4860 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4861 	    test_bit(HCI_UP, &hdev->flags)) {
4862 		/* Execute vendor specific shutdown routine */
4863 		if (hdev->shutdown)
4864 			err = hdev->shutdown(hdev);
4865 	}
4866 
4867 	if (was_userchannel)
4868 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4869 
4870 	return err;
4871 }
4872 
4873 int hci_dev_close_sync(struct hci_dev *hdev)
4874 {
4875 	bool auto_off;
4876 	int err = 0;
4877 
4878 	bt_dev_dbg(hdev, "");
4879 
4880 	cancel_delayed_work(&hdev->power_off);
4881 	cancel_delayed_work(&hdev->ncmd_timer);
4882 	cancel_delayed_work(&hdev->le_scan_disable);
4883 	cancel_delayed_work(&hdev->le_scan_restart);
4884 
4885 	hci_request_cancel_all(hdev);
4886 
4887 	if (hdev->adv_instance_timeout) {
4888 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4889 		hdev->adv_instance_timeout = 0;
4890 	}
4891 
4892 	err = hci_dev_shutdown(hdev);
4893 
4894 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4895 		cancel_delayed_work_sync(&hdev->cmd_timer);
4896 		return err;
4897 	}
4898 
4899 	hci_leds_update_powered(hdev, false);
4900 
4901 	/* Flush RX and TX works */
4902 	flush_work(&hdev->tx_work);
4903 	flush_work(&hdev->rx_work);
4904 
4905 	if (hdev->discov_timeout > 0) {
4906 		hdev->discov_timeout = 0;
4907 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4908 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4909 	}
4910 
4911 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4912 		cancel_delayed_work(&hdev->service_cache);
4913 
4914 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4915 		struct adv_info *adv_instance;
4916 
4917 		cancel_delayed_work_sync(&hdev->rpa_expired);
4918 
4919 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4920 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4921 	}
4922 
4923 	/* Avoid potential lockdep warnings from the *_flush() calls by
4924 	 * ensuring the workqueue is empty up front.
4925 	 */
4926 	drain_workqueue(hdev->workqueue);
4927 
4928 	hci_dev_lock(hdev);
4929 
4930 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4931 
4932 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4933 
4934 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4935 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4936 	    hci_dev_test_flag(hdev, HCI_MGMT))
4937 		__mgmt_power_off(hdev);
4938 
4939 	hci_inquiry_cache_flush(hdev);
4940 	hci_pend_le_actions_clear(hdev);
4941 	hci_conn_hash_flush(hdev);
4942 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4943 	smp_unregister(hdev);
4944 	hci_dev_unlock(hdev);
4945 
4946 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4947 
4948 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4949 		aosp_do_close(hdev);
4950 		msft_do_close(hdev);
4951 	}
4952 
4953 	if (hdev->flush)
4954 		hdev->flush(hdev);
4955 
4956 	/* Reset device */
4957 	skb_queue_purge(&hdev->cmd_q);
4958 	atomic_set(&hdev->cmd_cnt, 1);
4959 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4960 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4961 		set_bit(HCI_INIT, &hdev->flags);
4962 		hci_reset_sync(hdev);
4963 		clear_bit(HCI_INIT, &hdev->flags);
4964 	}
4965 
4966 	/* flush cmd  work */
4967 	flush_work(&hdev->cmd_work);
4968 
4969 	/* Drop queues */
4970 	skb_queue_purge(&hdev->rx_q);
4971 	skb_queue_purge(&hdev->cmd_q);
4972 	skb_queue_purge(&hdev->raw_q);
4973 
4974 	/* Drop last sent command */
4975 	if (hdev->sent_cmd) {
4976 		cancel_delayed_work_sync(&hdev->cmd_timer);
4977 		kfree_skb(hdev->sent_cmd);
4978 		hdev->sent_cmd = NULL;
4979 	}
4980 
4981 	clear_bit(HCI_RUNNING, &hdev->flags);
4982 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4983 
4984 	/* After this point our queues are empty and no tasks are scheduled. */
4985 	hdev->close(hdev);
4986 
4987 	/* Clear flags */
4988 	hdev->flags &= BIT(HCI_RAW);
4989 	hci_dev_clear_volatile_flags(hdev);
4990 
4991 	/* Controller radio is available but is currently powered down */
4992 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4993 
4994 	memset(hdev->eir, 0, sizeof(hdev->eir));
4995 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4996 	bacpy(&hdev->random_addr, BDADDR_ANY);
4997 
4998 	hci_dev_put(hdev);
4999 	return err;
5000 }
5001 
5002 /* This function perform power on HCI command sequence as follows:
5003  *
5004  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5005  * sequence otherwise run hci_dev_open_sync which will follow with
5006  * hci_powered_update_sync after the init sequence is completed.
5007  */
5008 static int hci_power_on_sync(struct hci_dev *hdev)
5009 {
5010 	int err;
5011 
5012 	if (test_bit(HCI_UP, &hdev->flags) &&
5013 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5014 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5015 		cancel_delayed_work(&hdev->power_off);
5016 		return hci_powered_update_sync(hdev);
5017 	}
5018 
5019 	err = hci_dev_open_sync(hdev);
5020 	if (err < 0)
5021 		return err;
5022 
5023 	/* During the HCI setup phase, a few error conditions are
5024 	 * ignored and they need to be checked now. If they are still
5025 	 * valid, it is important to return the device back off.
5026 	 */
5027 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5028 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5029 	    (hdev->dev_type == HCI_PRIMARY &&
5030 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5031 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5032 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5033 		hci_dev_close_sync(hdev);
5034 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5035 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5036 				   HCI_AUTO_OFF_TIMEOUT);
5037 	}
5038 
5039 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5040 		/* For unconfigured devices, set the HCI_RAW flag
5041 		 * so that userspace can easily identify them.
5042 		 */
5043 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5044 			set_bit(HCI_RAW, &hdev->flags);
5045 
5046 		/* For fully configured devices, this will send
5047 		 * the Index Added event. For unconfigured devices,
5048 		 * it will send Unconfigued Index Added event.
5049 		 *
5050 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5051 		 * and no event will be send.
5052 		 */
5053 		mgmt_index_added(hdev);
5054 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5055 		/* When the controller is now configured, then it
5056 		 * is important to clear the HCI_RAW flag.
5057 		 */
5058 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5059 			clear_bit(HCI_RAW, &hdev->flags);
5060 
5061 		/* Powering on the controller with HCI_CONFIG set only
5062 		 * happens with the transition from unconfigured to
5063 		 * configured. This will send the Index Added event.
5064 		 */
5065 		mgmt_index_added(hdev);
5066 	}
5067 
5068 	return 0;
5069 }
5070 
5071 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5072 {
5073 	struct hci_cp_remote_name_req_cancel cp;
5074 
5075 	memset(&cp, 0, sizeof(cp));
5076 	bacpy(&cp.bdaddr, addr);
5077 
5078 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5079 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5080 }
5081 
5082 int hci_stop_discovery_sync(struct hci_dev *hdev)
5083 {
5084 	struct discovery_state *d = &hdev->discovery;
5085 	struct inquiry_entry *e;
5086 	int err;
5087 
5088 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5089 
5090 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5091 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5092 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5093 						    0, NULL, HCI_CMD_TIMEOUT);
5094 			if (err)
5095 				return err;
5096 		}
5097 
5098 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5099 			cancel_delayed_work(&hdev->le_scan_disable);
5100 			cancel_delayed_work(&hdev->le_scan_restart);
5101 
5102 			err = hci_scan_disable_sync(hdev);
5103 			if (err)
5104 				return err;
5105 		}
5106 
5107 	} else {
5108 		err = hci_scan_disable_sync(hdev);
5109 		if (err)
5110 			return err;
5111 	}
5112 
5113 	/* Resume advertising if it was paused */
5114 	if (use_ll_privacy(hdev))
5115 		hci_resume_advertising_sync(hdev);
5116 
5117 	/* No further actions needed for LE-only discovery */
5118 	if (d->type == DISCOV_TYPE_LE)
5119 		return 0;
5120 
5121 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5122 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5123 						     NAME_PENDING);
5124 		if (!e)
5125 			return 0;
5126 
5127 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5134 					u8 reason)
5135 {
5136 	struct hci_cp_disconn_phy_link cp;
5137 
5138 	memset(&cp, 0, sizeof(cp));
5139 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5140 	cp.reason = reason;
5141 
5142 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5143 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5144 }
5145 
5146 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5147 			       u8 reason)
5148 {
5149 	struct hci_cp_disconnect cp;
5150 
5151 	if (conn->type == AMP_LINK)
5152 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5153 
5154 	memset(&cp, 0, sizeof(cp));
5155 	cp.handle = cpu_to_le16(conn->handle);
5156 	cp.reason = reason;
5157 
5158 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5159 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5160 	 * used when suspending or powering off, where we don't want to wait
5161 	 * for the peer's response.
5162 	 */
5163 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5164 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5165 						sizeof(cp), &cp,
5166 						HCI_EV_DISCONN_COMPLETE,
5167 						HCI_CMD_TIMEOUT, NULL);
5168 
5169 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5170 				     HCI_CMD_TIMEOUT);
5171 }
5172 
5173 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5174 				      struct hci_conn *conn)
5175 {
5176 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5177 		return 0;
5178 
5179 	if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5180 		return 0;
5181 
5182 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5183 				     0, NULL, HCI_CMD_TIMEOUT);
5184 }
5185 
5186 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
5187 {
5188 	if (conn->type == LE_LINK)
5189 		return hci_le_connect_cancel_sync(hdev, conn);
5190 
5191 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5192 		return 0;
5193 
5194 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5195 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5196 }
5197 
5198 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5199 			       u8 reason)
5200 {
5201 	struct hci_cp_reject_sync_conn_req cp;
5202 
5203 	memset(&cp, 0, sizeof(cp));
5204 	bacpy(&cp.bdaddr, &conn->dst);
5205 	cp.reason = reason;
5206 
5207 	/* SCO rejection has its own limited set of
5208 	 * allowed error values (0x0D-0x0F).
5209 	 */
5210 	if (reason < 0x0d || reason > 0x0f)
5211 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5212 
5213 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5214 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5215 }
5216 
5217 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5218 				u8 reason)
5219 {
5220 	struct hci_cp_reject_conn_req cp;
5221 
5222 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5223 		return hci_reject_sco_sync(hdev, conn, reason);
5224 
5225 	memset(&cp, 0, sizeof(cp));
5226 	bacpy(&cp.bdaddr, &conn->dst);
5227 	cp.reason = reason;
5228 
5229 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5230 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5231 }
5232 
5233 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5234 {
5235 	int err;
5236 
5237 	switch (conn->state) {
5238 	case BT_CONNECTED:
5239 	case BT_CONFIG:
5240 		return hci_disconnect_sync(hdev, conn, reason);
5241 	case BT_CONNECT:
5242 		err = hci_connect_cancel_sync(hdev, conn);
5243 		/* Cleanup hci_conn object if it cannot be cancelled as it
5244 		 * likelly means the controller and host stack are out of sync.
5245 		 */
5246 		if (err) {
5247 			hci_dev_lock(hdev);
5248 			hci_conn_failed(conn, err);
5249 			hci_dev_unlock(hdev);
5250 		}
5251 		return err;
5252 	case BT_CONNECT2:
5253 		return hci_reject_conn_sync(hdev, conn, reason);
5254 	default:
5255 		conn->state = BT_CLOSED;
5256 		break;
5257 	}
5258 
5259 	return 0;
5260 }
5261 
5262 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5263 {
5264 	struct hci_conn *conn, *tmp;
5265 	int err;
5266 
5267 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
5268 		err = hci_abort_conn_sync(hdev, conn, reason);
5269 		if (err)
5270 			return err;
5271 	}
5272 
5273 	return 0;
5274 }
5275 
5276 /* This function perform power off HCI command sequence as follows:
5277  *
5278  * Clear Advertising
5279  * Stop Discovery
5280  * Disconnect all connections
5281  * hci_dev_close_sync
5282  */
5283 static int hci_power_off_sync(struct hci_dev *hdev)
5284 {
5285 	int err;
5286 
5287 	/* If controller is already down there is nothing to do */
5288 	if (!test_bit(HCI_UP, &hdev->flags))
5289 		return 0;
5290 
5291 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5292 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5293 		err = hci_write_scan_enable_sync(hdev, 0x00);
5294 		if (err)
5295 			return err;
5296 	}
5297 
5298 	err = hci_clear_adv_sync(hdev, NULL, false);
5299 	if (err)
5300 		return err;
5301 
5302 	err = hci_stop_discovery_sync(hdev);
5303 	if (err)
5304 		return err;
5305 
5306 	/* Terminated due to Power Off */
5307 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5308 	if (err)
5309 		return err;
5310 
5311 	return hci_dev_close_sync(hdev);
5312 }
5313 
5314 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5315 {
5316 	if (val)
5317 		return hci_power_on_sync(hdev);
5318 
5319 	return hci_power_off_sync(hdev);
5320 }
5321 
5322 static int hci_write_iac_sync(struct hci_dev *hdev)
5323 {
5324 	struct hci_cp_write_current_iac_lap cp;
5325 
5326 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5327 		return 0;
5328 
5329 	memset(&cp, 0, sizeof(cp));
5330 
5331 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5332 		/* Limited discoverable mode */
5333 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5334 		cp.iac_lap[0] = 0x00;	/* LIAC */
5335 		cp.iac_lap[1] = 0x8b;
5336 		cp.iac_lap[2] = 0x9e;
5337 		cp.iac_lap[3] = 0x33;	/* GIAC */
5338 		cp.iac_lap[4] = 0x8b;
5339 		cp.iac_lap[5] = 0x9e;
5340 	} else {
5341 		/* General discoverable mode */
5342 		cp.num_iac = 1;
5343 		cp.iac_lap[0] = 0x33;	/* GIAC */
5344 		cp.iac_lap[1] = 0x8b;
5345 		cp.iac_lap[2] = 0x9e;
5346 	}
5347 
5348 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5349 				     (cp.num_iac * 3) + 1, &cp,
5350 				     HCI_CMD_TIMEOUT);
5351 }
5352 
5353 int hci_update_discoverable_sync(struct hci_dev *hdev)
5354 {
5355 	int err = 0;
5356 
5357 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5358 		err = hci_write_iac_sync(hdev);
5359 		if (err)
5360 			return err;
5361 
5362 		err = hci_update_scan_sync(hdev);
5363 		if (err)
5364 			return err;
5365 
5366 		err = hci_update_class_sync(hdev);
5367 		if (err)
5368 			return err;
5369 	}
5370 
5371 	/* Advertising instances don't use the global discoverable setting, so
5372 	 * only update AD if advertising was enabled using Set Advertising.
5373 	 */
5374 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5375 		err = hci_update_adv_data_sync(hdev, 0x00);
5376 		if (err)
5377 			return err;
5378 
5379 		/* Discoverable mode affects the local advertising
5380 		 * address in limited privacy mode.
5381 		 */
5382 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5383 			if (ext_adv_capable(hdev))
5384 				err = hci_start_ext_adv_sync(hdev, 0x00);
5385 			else
5386 				err = hci_enable_advertising_sync(hdev);
5387 		}
5388 	}
5389 
5390 	return err;
5391 }
5392 
5393 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5394 {
5395 	return hci_update_discoverable_sync(hdev);
5396 }
5397 
5398 int hci_update_discoverable(struct hci_dev *hdev)
5399 {
5400 	/* Only queue if it would have any effect */
5401 	if (hdev_is_powered(hdev) &&
5402 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5403 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5404 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5405 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5406 					  NULL);
5407 
5408 	return 0;
5409 }
5410 
5411 int hci_update_connectable_sync(struct hci_dev *hdev)
5412 {
5413 	int err;
5414 
5415 	err = hci_update_scan_sync(hdev);
5416 	if (err)
5417 		return err;
5418 
5419 	/* If BR/EDR is not enabled and we disable advertising as a
5420 	 * by-product of disabling connectable, we need to update the
5421 	 * advertising flags.
5422 	 */
5423 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5424 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5425 
5426 	/* Update the advertising parameters if necessary */
5427 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5428 	    !list_empty(&hdev->adv_instances)) {
5429 		if (ext_adv_capable(hdev))
5430 			err = hci_start_ext_adv_sync(hdev,
5431 						     hdev->cur_adv_instance);
5432 		else
5433 			err = hci_enable_advertising_sync(hdev);
5434 
5435 		if (err)
5436 			return err;
5437 	}
5438 
5439 	return hci_update_passive_scan_sync(hdev);
5440 }
5441 
5442 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5443 {
5444 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5445 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5446 	struct hci_cp_inquiry cp;
5447 
5448 	bt_dev_dbg(hdev, "");
5449 
5450 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5451 		return 0;
5452 
5453 	hci_dev_lock(hdev);
5454 	hci_inquiry_cache_flush(hdev);
5455 	hci_dev_unlock(hdev);
5456 
5457 	memset(&cp, 0, sizeof(cp));
5458 
5459 	if (hdev->discovery.limited)
5460 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5461 	else
5462 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5463 
5464 	cp.length = length;
5465 
5466 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5467 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5468 }
5469 
5470 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5471 {
5472 	u8 own_addr_type;
5473 	/* Accept list is not used for discovery */
5474 	u8 filter_policy = 0x00;
5475 	/* Default is to enable duplicates filter */
5476 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5477 	int err;
5478 
5479 	bt_dev_dbg(hdev, "");
5480 
5481 	/* If controller is scanning, it means the passive scanning is
5482 	 * running. Thus, we should temporarily stop it in order to set the
5483 	 * discovery scanning parameters.
5484 	 */
5485 	err = hci_scan_disable_sync(hdev);
5486 	if (err) {
5487 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5488 		return err;
5489 	}
5490 
5491 	cancel_interleave_scan(hdev);
5492 
5493 	/* Pause address resolution for active scan and stop advertising if
5494 	 * privacy is enabled.
5495 	 */
5496 	err = hci_pause_addr_resolution(hdev);
5497 	if (err)
5498 		goto failed;
5499 
5500 	/* All active scans will be done with either a resolvable private
5501 	 * address (when privacy feature has been enabled) or non-resolvable
5502 	 * private address.
5503 	 */
5504 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5505 					     &own_addr_type);
5506 	if (err < 0)
5507 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5508 
5509 	if (hci_is_adv_monitoring(hdev)) {
5510 		/* Duplicate filter should be disabled when some advertisement
5511 		 * monitor is activated, otherwise AdvMon can only receive one
5512 		 * advertisement for one peer(*) during active scanning, and
5513 		 * might report loss to these peers.
5514 		 *
5515 		 * Note that different controllers have different meanings of
5516 		 * |duplicate|. Some of them consider packets with the same
5517 		 * address as duplicate, and others consider packets with the
5518 		 * same address and the same RSSI as duplicate. Although in the
5519 		 * latter case we don't need to disable duplicate filter, but
5520 		 * it is common to have active scanning for a short period of
5521 		 * time, the power impact should be neglectable.
5522 		 */
5523 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5524 	}
5525 
5526 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5527 				  hdev->le_scan_window_discovery,
5528 				  own_addr_type, filter_policy, filter_dup);
5529 	if (!err)
5530 		return err;
5531 
5532 failed:
5533 	/* Resume advertising if it was paused */
5534 	if (use_ll_privacy(hdev))
5535 		hci_resume_advertising_sync(hdev);
5536 
5537 	/* Resume passive scanning */
5538 	hci_update_passive_scan_sync(hdev);
5539 	return err;
5540 }
5541 
5542 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5543 {
5544 	int err;
5545 
5546 	bt_dev_dbg(hdev, "");
5547 
5548 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5549 	if (err)
5550 		return err;
5551 
5552 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5553 }
5554 
5555 int hci_start_discovery_sync(struct hci_dev *hdev)
5556 {
5557 	unsigned long timeout;
5558 	int err;
5559 
5560 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5561 
5562 	switch (hdev->discovery.type) {
5563 	case DISCOV_TYPE_BREDR:
5564 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5565 	case DISCOV_TYPE_INTERLEAVED:
5566 		/* When running simultaneous discovery, the LE scanning time
5567 		 * should occupy the whole discovery time sine BR/EDR inquiry
5568 		 * and LE scanning are scheduled by the controller.
5569 		 *
5570 		 * For interleaving discovery in comparison, BR/EDR inquiry
5571 		 * and LE scanning are done sequentially with separate
5572 		 * timeouts.
5573 		 */
5574 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5575 			     &hdev->quirks)) {
5576 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5577 			/* During simultaneous discovery, we double LE scan
5578 			 * interval. We must leave some time for the controller
5579 			 * to do BR/EDR inquiry.
5580 			 */
5581 			err = hci_start_interleaved_discovery_sync(hdev);
5582 			break;
5583 		}
5584 
5585 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5586 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5587 		break;
5588 	case DISCOV_TYPE_LE:
5589 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5590 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5591 		break;
5592 	default:
5593 		return -EINVAL;
5594 	}
5595 
5596 	if (err)
5597 		return err;
5598 
5599 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5600 
5601 	/* When service discovery is used and the controller has a
5602 	 * strict duplicate filter, it is important to remember the
5603 	 * start and duration of the scan. This is required for
5604 	 * restarting scanning during the discovery phase.
5605 	 */
5606 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5607 	    hdev->discovery.result_filtering) {
5608 		hdev->discovery.scan_start = jiffies;
5609 		hdev->discovery.scan_duration = timeout;
5610 	}
5611 
5612 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5613 			   timeout);
5614 	return 0;
5615 }
5616 
5617 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5618 {
5619 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5620 	case HCI_ADV_MONITOR_EXT_MSFT:
5621 		msft_suspend_sync(hdev);
5622 		break;
5623 	default:
5624 		return;
5625 	}
5626 }
5627 
5628 /* This function disables discovery and mark it as paused */
5629 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5630 {
5631 	int old_state = hdev->discovery.state;
5632 	int err;
5633 
5634 	/* If discovery already stopped/stopping/paused there nothing to do */
5635 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5636 	    hdev->discovery_paused)
5637 		return 0;
5638 
5639 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5640 	err = hci_stop_discovery_sync(hdev);
5641 	if (err)
5642 		return err;
5643 
5644 	hdev->discovery_paused = true;
5645 	hdev->discovery_old_state = old_state;
5646 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5647 
5648 	return 0;
5649 }
5650 
5651 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5652 {
5653 	struct bdaddr_list_with_flags *b;
5654 	u8 scan = SCAN_DISABLED;
5655 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5656 	int err;
5657 
5658 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5659 		return 0;
5660 
5661 	/* Some fake CSR controllers lock up after setting this type of
5662 	 * filter, so avoid sending the request altogether.
5663 	 */
5664 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5665 		return 0;
5666 
5667 	/* Always clear event filter when starting */
5668 	hci_clear_event_filter_sync(hdev);
5669 
5670 	list_for_each_entry(b, &hdev->accept_list, list) {
5671 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5672 			continue;
5673 
5674 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5675 
5676 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5677 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5678 						 &b->bdaddr,
5679 						 HCI_CONN_SETUP_AUTO_ON);
5680 		if (err)
5681 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5682 				   &b->bdaddr);
5683 		else
5684 			scan = SCAN_PAGE;
5685 	}
5686 
5687 	if (scan && !scanning)
5688 		hci_write_scan_enable_sync(hdev, scan);
5689 	else if (!scan && scanning)
5690 		hci_write_scan_enable_sync(hdev, scan);
5691 
5692 	return 0;
5693 }
5694 
5695 /* This function disables scan (BR and LE) and mark it as paused */
5696 static int hci_pause_scan_sync(struct hci_dev *hdev)
5697 {
5698 	if (hdev->scanning_paused)
5699 		return 0;
5700 
5701 	/* Disable page scan if enabled */
5702 	if (test_bit(HCI_PSCAN, &hdev->flags))
5703 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5704 
5705 	hci_scan_disable_sync(hdev);
5706 
5707 	hdev->scanning_paused = true;
5708 
5709 	return 0;
5710 }
5711 
5712 /* This function performs the HCI suspend procedures in the follow order:
5713  *
5714  * Pause discovery (active scanning/inquiry)
5715  * Pause Directed Advertising/Advertising
5716  * Pause Scanning (passive scanning in case discovery was not active)
5717  * Disconnect all connections
5718  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5719  * otherwise:
5720  * Update event mask (only set events that are allowed to wake up the host)
5721  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5722  * Update passive scanning (lower duty cycle)
5723  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5724  */
5725 int hci_suspend_sync(struct hci_dev *hdev)
5726 {
5727 	int err;
5728 
5729 	/* If marked as suspended there nothing to do */
5730 	if (hdev->suspended)
5731 		return 0;
5732 
5733 	/* Mark device as suspended */
5734 	hdev->suspended = true;
5735 
5736 	/* Pause discovery if not already stopped */
5737 	hci_pause_discovery_sync(hdev);
5738 
5739 	/* Pause other advertisements */
5740 	hci_pause_advertising_sync(hdev);
5741 
5742 	/* Suspend monitor filters */
5743 	hci_suspend_monitor_sync(hdev);
5744 
5745 	/* Prevent disconnects from causing scanning to be re-enabled */
5746 	hci_pause_scan_sync(hdev);
5747 
5748 	if (hci_conn_count(hdev)) {
5749 		/* Soft disconnect everything (power off) */
5750 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5751 		if (err) {
5752 			/* Set state to BT_RUNNING so resume doesn't notify */
5753 			hdev->suspend_state = BT_RUNNING;
5754 			hci_resume_sync(hdev);
5755 			return err;
5756 		}
5757 
5758 		/* Update event mask so only the allowed event can wakeup the
5759 		 * host.
5760 		 */
5761 		hci_set_event_mask_sync(hdev);
5762 	}
5763 
5764 	/* Only configure accept list if disconnect succeeded and wake
5765 	 * isn't being prevented.
5766 	 */
5767 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5768 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5769 		return 0;
5770 	}
5771 
5772 	/* Unpause to take care of updating scanning params */
5773 	hdev->scanning_paused = false;
5774 
5775 	/* Enable event filter for paired devices */
5776 	hci_update_event_filter_sync(hdev);
5777 
5778 	/* Update LE passive scan if enabled */
5779 	hci_update_passive_scan_sync(hdev);
5780 
5781 	/* Pause scan changes again. */
5782 	hdev->scanning_paused = true;
5783 
5784 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5785 
5786 	return 0;
5787 }
5788 
5789 /* This function resumes discovery */
5790 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5791 {
5792 	int err;
5793 
5794 	/* If discovery not paused there nothing to do */
5795 	if (!hdev->discovery_paused)
5796 		return 0;
5797 
5798 	hdev->discovery_paused = false;
5799 
5800 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5801 
5802 	err = hci_start_discovery_sync(hdev);
5803 
5804 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5805 				DISCOVERY_FINDING);
5806 
5807 	return err;
5808 }
5809 
5810 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5811 {
5812 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5813 	case HCI_ADV_MONITOR_EXT_MSFT:
5814 		msft_resume_sync(hdev);
5815 		break;
5816 	default:
5817 		return;
5818 	}
5819 }
5820 
5821 /* This function resume scan and reset paused flag */
5822 static int hci_resume_scan_sync(struct hci_dev *hdev)
5823 {
5824 	if (!hdev->scanning_paused)
5825 		return 0;
5826 
5827 	hdev->scanning_paused = false;
5828 
5829 	hci_update_scan_sync(hdev);
5830 
5831 	/* Reset passive scanning to normal */
5832 	hci_update_passive_scan_sync(hdev);
5833 
5834 	return 0;
5835 }
5836 
5837 /* This function performs the HCI suspend procedures in the follow order:
5838  *
5839  * Restore event mask
5840  * Clear event filter
5841  * Update passive scanning (normal duty cycle)
5842  * Resume Directed Advertising/Advertising
5843  * Resume discovery (active scanning/inquiry)
5844  */
5845 int hci_resume_sync(struct hci_dev *hdev)
5846 {
5847 	/* If not marked as suspended there nothing to do */
5848 	if (!hdev->suspended)
5849 		return 0;
5850 
5851 	hdev->suspended = false;
5852 
5853 	/* Restore event mask */
5854 	hci_set_event_mask_sync(hdev);
5855 
5856 	/* Clear any event filters and restore scan state */
5857 	hci_clear_event_filter_sync(hdev);
5858 
5859 	/* Resume scanning */
5860 	hci_resume_scan_sync(hdev);
5861 
5862 	/* Resume monitor filters */
5863 	hci_resume_monitor_sync(hdev);
5864 
5865 	/* Resume other advertisements */
5866 	hci_resume_advertising_sync(hdev);
5867 
5868 	/* Resume discovery */
5869 	hci_resume_discovery_sync(hdev);
5870 
5871 	return 0;
5872 }
5873 
5874 static bool conn_use_rpa(struct hci_conn *conn)
5875 {
5876 	struct hci_dev *hdev = conn->hdev;
5877 
5878 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5879 }
5880 
5881 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5882 						struct hci_conn *conn)
5883 {
5884 	struct hci_cp_le_set_ext_adv_params cp;
5885 	int err;
5886 	bdaddr_t random_addr;
5887 	u8 own_addr_type;
5888 
5889 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5890 					     &own_addr_type);
5891 	if (err)
5892 		return err;
5893 
5894 	/* Set require_privacy to false so that the remote device has a
5895 	 * chance of identifying us.
5896 	 */
5897 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5898 				     &own_addr_type, &random_addr);
5899 	if (err)
5900 		return err;
5901 
5902 	memset(&cp, 0, sizeof(cp));
5903 
5904 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5905 	cp.channel_map = hdev->le_adv_channel_map;
5906 	cp.tx_power = HCI_TX_POWER_INVALID;
5907 	cp.primary_phy = HCI_ADV_PHY_1M;
5908 	cp.secondary_phy = HCI_ADV_PHY_1M;
5909 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5910 	cp.own_addr_type = own_addr_type;
5911 	cp.peer_addr_type = conn->dst_type;
5912 	bacpy(&cp.peer_addr, &conn->dst);
5913 
5914 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5915 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5916 	 * does not supports advertising data when the advertising set already
5917 	 * contains some, the controller shall return erroc code 'Invalid
5918 	 * HCI Command Parameters(0x12).
5919 	 * So it is required to remove adv set for handle 0x00. since we use
5920 	 * instance 0 for directed adv.
5921 	 */
5922 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5923 	if (err)
5924 		return err;
5925 
5926 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5927 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5928 	if (err)
5929 		return err;
5930 
5931 	/* Check if random address need to be updated */
5932 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5933 	    bacmp(&random_addr, BDADDR_ANY) &&
5934 	    bacmp(&random_addr, &hdev->random_addr)) {
5935 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5936 						       &random_addr);
5937 		if (err)
5938 			return err;
5939 	}
5940 
5941 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5942 }
5943 
5944 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5945 					    struct hci_conn *conn)
5946 {
5947 	struct hci_cp_le_set_adv_param cp;
5948 	u8 status;
5949 	u8 own_addr_type;
5950 	u8 enable;
5951 
5952 	if (ext_adv_capable(hdev))
5953 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5954 
5955 	/* Clear the HCI_LE_ADV bit temporarily so that the
5956 	 * hci_update_random_address knows that it's safe to go ahead
5957 	 * and write a new random address. The flag will be set back on
5958 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5959 	 */
5960 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5961 
5962 	/* Set require_privacy to false so that the remote device has a
5963 	 * chance of identifying us.
5964 	 */
5965 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5966 						&own_addr_type);
5967 	if (status)
5968 		return status;
5969 
5970 	memset(&cp, 0, sizeof(cp));
5971 
5972 	/* Some controllers might reject command if intervals are not
5973 	 * within range for undirected advertising.
5974 	 * BCM20702A0 is known to be affected by this.
5975 	 */
5976 	cp.min_interval = cpu_to_le16(0x0020);
5977 	cp.max_interval = cpu_to_le16(0x0020);
5978 
5979 	cp.type = LE_ADV_DIRECT_IND;
5980 	cp.own_address_type = own_addr_type;
5981 	cp.direct_addr_type = conn->dst_type;
5982 	bacpy(&cp.direct_addr, &conn->dst);
5983 	cp.channel_map = hdev->le_adv_channel_map;
5984 
5985 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5986 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5987 	if (status)
5988 		return status;
5989 
5990 	enable = 0x01;
5991 
5992 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5993 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5994 }
5995 
5996 static void set_ext_conn_params(struct hci_conn *conn,
5997 				struct hci_cp_le_ext_conn_param *p)
5998 {
5999 	struct hci_dev *hdev = conn->hdev;
6000 
6001 	memset(p, 0, sizeof(*p));
6002 
6003 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6004 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6005 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6006 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6007 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6008 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6009 	p->min_ce_len = cpu_to_le16(0x0000);
6010 	p->max_ce_len = cpu_to_le16(0x0000);
6011 }
6012 
6013 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6014 				       struct hci_conn *conn, u8 own_addr_type)
6015 {
6016 	struct hci_cp_le_ext_create_conn *cp;
6017 	struct hci_cp_le_ext_conn_param *p;
6018 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6019 	u32 plen;
6020 
6021 	cp = (void *)data;
6022 	p = (void *)cp->data;
6023 
6024 	memset(cp, 0, sizeof(*cp));
6025 
6026 	bacpy(&cp->peer_addr, &conn->dst);
6027 	cp->peer_addr_type = conn->dst_type;
6028 	cp->own_addr_type = own_addr_type;
6029 
6030 	plen = sizeof(*cp);
6031 
6032 	if (scan_1m(hdev)) {
6033 		cp->phys |= LE_SCAN_PHY_1M;
6034 		set_ext_conn_params(conn, p);
6035 
6036 		p++;
6037 		plen += sizeof(*p);
6038 	}
6039 
6040 	if (scan_2m(hdev)) {
6041 		cp->phys |= LE_SCAN_PHY_2M;
6042 		set_ext_conn_params(conn, p);
6043 
6044 		p++;
6045 		plen += sizeof(*p);
6046 	}
6047 
6048 	if (scan_coded(hdev)) {
6049 		cp->phys |= LE_SCAN_PHY_CODED;
6050 		set_ext_conn_params(conn, p);
6051 
6052 		plen += sizeof(*p);
6053 	}
6054 
6055 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6056 					plen, data,
6057 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6058 					conn->conn_timeout, NULL);
6059 }
6060 
6061 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6062 {
6063 	struct hci_cp_le_create_conn cp;
6064 	struct hci_conn_params *params;
6065 	u8 own_addr_type;
6066 	int err;
6067 
6068 	/* If requested to connect as peripheral use directed advertising */
6069 	if (conn->role == HCI_ROLE_SLAVE) {
6070 		/* If we're active scanning and simultaneous roles is not
6071 		 * enabled simply reject the attempt.
6072 		 */
6073 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6074 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6075 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6076 			hci_conn_del(conn);
6077 			return -EBUSY;
6078 		}
6079 
6080 		/* Pause advertising while doing directed advertising. */
6081 		hci_pause_advertising_sync(hdev);
6082 
6083 		err = hci_le_directed_advertising_sync(hdev, conn);
6084 		goto done;
6085 	}
6086 
6087 	/* Disable advertising if simultaneous roles is not in use. */
6088 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6089 		hci_pause_advertising_sync(hdev);
6090 
6091 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6092 	if (params) {
6093 		conn->le_conn_min_interval = params->conn_min_interval;
6094 		conn->le_conn_max_interval = params->conn_max_interval;
6095 		conn->le_conn_latency = params->conn_latency;
6096 		conn->le_supv_timeout = params->supervision_timeout;
6097 	} else {
6098 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6099 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6100 		conn->le_conn_latency = hdev->le_conn_latency;
6101 		conn->le_supv_timeout = hdev->le_supv_timeout;
6102 	}
6103 
6104 	/* If controller is scanning, we stop it since some controllers are
6105 	 * not able to scan and connect at the same time. Also set the
6106 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6107 	 * handler for scan disabling knows to set the correct discovery
6108 	 * state.
6109 	 */
6110 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6111 		hci_scan_disable_sync(hdev);
6112 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6113 	}
6114 
6115 	/* Update random address, but set require_privacy to false so
6116 	 * that we never connect with an non-resolvable address.
6117 	 */
6118 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6119 					     &own_addr_type);
6120 	if (err)
6121 		goto done;
6122 
6123 	if (use_ext_conn(hdev)) {
6124 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6125 		goto done;
6126 	}
6127 
6128 	memset(&cp, 0, sizeof(cp));
6129 
6130 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6131 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6132 
6133 	bacpy(&cp.peer_addr, &conn->dst);
6134 	cp.peer_addr_type = conn->dst_type;
6135 	cp.own_address_type = own_addr_type;
6136 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6137 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6138 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6139 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6140 	cp.min_ce_len = cpu_to_le16(0x0000);
6141 	cp.max_ce_len = cpu_to_le16(0x0000);
6142 
6143 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6144 	 *
6145 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6146 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6147 	 * sent when a new connection has been created.
6148 	 */
6149 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6150 				       sizeof(cp), &cp,
6151 				       use_enhanced_conn_complete(hdev) ?
6152 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6153 				       HCI_EV_LE_CONN_COMPLETE,
6154 				       conn->conn_timeout, NULL);
6155 
6156 done:
6157 	if (err == -ETIMEDOUT)
6158 		hci_le_connect_cancel_sync(hdev, conn);
6159 
6160 	/* Re-enable advertising after the connection attempt is finished. */
6161 	hci_resume_advertising_sync(hdev);
6162 	return err;
6163 }
6164 
6165 int hci_le_create_cis_sync(struct hci_dev *hdev, struct hci_conn *conn)
6166 {
6167 	struct {
6168 		struct hci_cp_le_create_cis cp;
6169 		struct hci_cis cis[0x1f];
6170 	} cmd;
6171 	u8 cig;
6172 	struct hci_conn *hcon = conn;
6173 
6174 	memset(&cmd, 0, sizeof(cmd));
6175 	cmd.cis[0].acl_handle = cpu_to_le16(conn->parent->handle);
6176 	cmd.cis[0].cis_handle = cpu_to_le16(conn->handle);
6177 	cmd.cp.num_cis++;
6178 	cig = conn->iso_qos.ucast.cig;
6179 
6180 	hci_dev_lock(hdev);
6181 
6182 	rcu_read_lock();
6183 
6184 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6185 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6186 
6187 		if (conn == hcon || conn->type != ISO_LINK ||
6188 		    conn->state == BT_CONNECTED ||
6189 		    conn->iso_qos.ucast.cig != cig)
6190 			continue;
6191 
6192 		/* Check if all CIS(s) belonging to a CIG are ready */
6193 		if (!conn->parent || conn->parent->state != BT_CONNECTED ||
6194 		    conn->state != BT_CONNECT) {
6195 			cmd.cp.num_cis = 0;
6196 			break;
6197 		}
6198 
6199 		/* Group all CIS with state BT_CONNECT since the spec don't
6200 		 * allow to send them individually:
6201 		 *
6202 		 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6203 		 * page 2566:
6204 		 *
6205 		 * If the Host issues this command before all the
6206 		 * HCI_LE_CIS_Established events from the previous use of the
6207 		 * command have been generated, the Controller shall return the
6208 		 * error code Command Disallowed (0x0C).
6209 		 */
6210 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6211 		cis->cis_handle = cpu_to_le16(conn->handle);
6212 		cmd.cp.num_cis++;
6213 	}
6214 
6215 	rcu_read_unlock();
6216 
6217 	hci_dev_unlock(hdev);
6218 
6219 	if (!cmd.cp.num_cis)
6220 		return 0;
6221 
6222 	/* Wait for HCI_LE_CIS_Established */
6223 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6224 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6225 					cmd.cp.num_cis, &cmd,
6226 					HCI_EVT_LE_CIS_ESTABLISHED,
6227 					conn->conn_timeout, NULL);
6228 }
6229 
6230 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6231 {
6232 	struct hci_cp_le_remove_cig cp;
6233 
6234 	memset(&cp, 0, sizeof(cp));
6235 	cp.cig_id = handle;
6236 
6237 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6238 				     &cp, HCI_CMD_TIMEOUT);
6239 }
6240 
6241 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6242 {
6243 	struct hci_cp_le_big_term_sync cp;
6244 
6245 	memset(&cp, 0, sizeof(cp));
6246 	cp.handle = handle;
6247 
6248 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6249 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6250 }
6251 
6252 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6253 {
6254 	struct hci_cp_le_pa_term_sync cp;
6255 
6256 	memset(&cp, 0, sizeof(cp));
6257 	cp.handle = cpu_to_le16(handle);
6258 
6259 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6260 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6261 }
6262 
6263 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6264 			   bool use_rpa, struct adv_info *adv_instance,
6265 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6266 {
6267 	int err;
6268 
6269 	bacpy(rand_addr, BDADDR_ANY);
6270 
6271 	/* If privacy is enabled use a resolvable private address. If
6272 	 * current RPA has expired then generate a new one.
6273 	 */
6274 	if (use_rpa) {
6275 		/* If Controller supports LL Privacy use own address type is
6276 		 * 0x03
6277 		 */
6278 		if (use_ll_privacy(hdev))
6279 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6280 		else
6281 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6282 
6283 		if (adv_instance) {
6284 			if (adv_rpa_valid(adv_instance))
6285 				return 0;
6286 		} else {
6287 			if (rpa_valid(hdev))
6288 				return 0;
6289 		}
6290 
6291 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6292 		if (err < 0) {
6293 			bt_dev_err(hdev, "failed to generate new RPA");
6294 			return err;
6295 		}
6296 
6297 		bacpy(rand_addr, &hdev->rpa);
6298 
6299 		return 0;
6300 	}
6301 
6302 	/* In case of required privacy without resolvable private address,
6303 	 * use an non-resolvable private address. This is useful for
6304 	 * non-connectable advertising.
6305 	 */
6306 	if (require_privacy) {
6307 		bdaddr_t nrpa;
6308 
6309 		while (true) {
6310 			/* The non-resolvable private address is generated
6311 			 * from random six bytes with the two most significant
6312 			 * bits cleared.
6313 			 */
6314 			get_random_bytes(&nrpa, 6);
6315 			nrpa.b[5] &= 0x3f;
6316 
6317 			/* The non-resolvable private address shall not be
6318 			 * equal to the public address.
6319 			 */
6320 			if (bacmp(&hdev->bdaddr, &nrpa))
6321 				break;
6322 		}
6323 
6324 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6325 		bacpy(rand_addr, &nrpa);
6326 
6327 		return 0;
6328 	}
6329 
6330 	/* No privacy so use a public address. */
6331 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6332 
6333 	return 0;
6334 }
6335 
6336 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6337 {
6338 	u8 instance = PTR_ERR(data);
6339 
6340 	return hci_update_adv_data_sync(hdev, instance);
6341 }
6342 
6343 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6344 {
6345 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6346 				  ERR_PTR(instance), NULL);
6347 }
6348