xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision e9eeb0dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  * Copyright 2023 NXP
7  */
8 
9 #include <linux/property.h>
10 
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14 
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23 
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 				  struct sk_buff *skb)
26 {
27 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
28 
29 	if (hdev->req_status != HCI_REQ_PEND)
30 		return;
31 
32 	hdev->req_result = result;
33 	hdev->req_status = HCI_REQ_DONE;
34 
35 	if (skb) {
36 		struct sock *sk = hci_skb_sk(skb);
37 
38 		/* Drop sk reference if set */
39 		if (sk)
40 			sock_put(sk);
41 
42 		hdev->req_skb = skb_get(skb);
43 	}
44 
45 	wake_up_interruptible(&hdev->req_wait_q);
46 }
47 
48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
49 					  u32 plen, const void *param,
50 					  struct sock *sk)
51 {
52 	int len = HCI_COMMAND_HDR_SIZE + plen;
53 	struct hci_command_hdr *hdr;
54 	struct sk_buff *skb;
55 
56 	skb = bt_skb_alloc(len, GFP_ATOMIC);
57 	if (!skb)
58 		return NULL;
59 
60 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
61 	hdr->opcode = cpu_to_le16(opcode);
62 	hdr->plen   = plen;
63 
64 	if (plen)
65 		skb_put_data(skb, param, plen);
66 
67 	bt_dev_dbg(hdev, "skb len %d", skb->len);
68 
69 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
70 	hci_skb_opcode(skb) = opcode;
71 
72 	/* Grab a reference if command needs to be associated with a sock (e.g.
73 	 * likely mgmt socket that initiated the command).
74 	 */
75 	if (sk) {
76 		hci_skb_sk(skb) = sk;
77 		sock_hold(sk);
78 	}
79 
80 	return skb;
81 }
82 
83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
84 			     const void *param, u8 event, struct sock *sk)
85 {
86 	struct hci_dev *hdev = req->hdev;
87 	struct sk_buff *skb;
88 
89 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
90 
91 	/* If an error occurred during request building, there is no point in
92 	 * queueing the HCI command. We can simply return.
93 	 */
94 	if (req->err)
95 		return;
96 
97 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
98 	if (!skb) {
99 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
100 			   opcode);
101 		req->err = -ENOMEM;
102 		return;
103 	}
104 
105 	if (skb_queue_empty(&req->cmd_q))
106 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
107 
108 	hci_skb_event(skb) = event;
109 
110 	skb_queue_tail(&req->cmd_q, skb);
111 }
112 
113 static int hci_cmd_sync_run(struct hci_request *req)
114 {
115 	struct hci_dev *hdev = req->hdev;
116 	struct sk_buff *skb;
117 	unsigned long flags;
118 
119 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
120 
121 	/* If an error occurred during request building, remove all HCI
122 	 * commands queued on the HCI request queue.
123 	 */
124 	if (req->err) {
125 		skb_queue_purge(&req->cmd_q);
126 		return req->err;
127 	}
128 
129 	/* Do not allow empty requests */
130 	if (skb_queue_empty(&req->cmd_q))
131 		return -ENODATA;
132 
133 	skb = skb_peek_tail(&req->cmd_q);
134 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
135 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
136 
137 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
138 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
139 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
140 
141 	queue_work(hdev->workqueue, &hdev->cmd_work);
142 
143 	return 0;
144 }
145 
146 /* This function requires the caller holds hdev->req_lock. */
147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
148 				  const void *param, u8 event, u32 timeout,
149 				  struct sock *sk)
150 {
151 	struct hci_request req;
152 	struct sk_buff *skb;
153 	int err = 0;
154 
155 	bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
156 
157 	hci_req_init(&req, hdev);
158 
159 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
160 
161 	hdev->req_status = HCI_REQ_PEND;
162 
163 	err = hci_cmd_sync_run(&req);
164 	if (err < 0)
165 		return ERR_PTR(err);
166 
167 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
168 					       hdev->req_status != HCI_REQ_PEND,
169 					       timeout);
170 
171 	if (err == -ERESTARTSYS)
172 		return ERR_PTR(-EINTR);
173 
174 	switch (hdev->req_status) {
175 	case HCI_REQ_DONE:
176 		err = -bt_to_errno(hdev->req_result);
177 		break;
178 
179 	case HCI_REQ_CANCELED:
180 		err = -hdev->req_result;
181 		break;
182 
183 	default:
184 		err = -ETIMEDOUT;
185 		break;
186 	}
187 
188 	hdev->req_status = 0;
189 	hdev->req_result = 0;
190 	skb = hdev->req_skb;
191 	hdev->req_skb = NULL;
192 
193 	bt_dev_dbg(hdev, "end: err %d", err);
194 
195 	if (err < 0) {
196 		kfree_skb(skb);
197 		return ERR_PTR(err);
198 	}
199 
200 	return skb;
201 }
202 EXPORT_SYMBOL(__hci_cmd_sync_sk);
203 
204 /* This function requires the caller holds hdev->req_lock. */
205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
206 			       const void *param, u32 timeout)
207 {
208 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
209 }
210 EXPORT_SYMBOL(__hci_cmd_sync);
211 
212 /* Send HCI command and wait for command complete event */
213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
214 			     const void *param, u32 timeout)
215 {
216 	struct sk_buff *skb;
217 
218 	if (!test_bit(HCI_UP, &hdev->flags))
219 		return ERR_PTR(-ENETDOWN);
220 
221 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
222 
223 	hci_req_sync_lock(hdev);
224 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
225 	hci_req_sync_unlock(hdev);
226 
227 	return skb;
228 }
229 EXPORT_SYMBOL(hci_cmd_sync);
230 
231 /* This function requires the caller holds hdev->req_lock. */
232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
233 				  const void *param, u8 event, u32 timeout)
234 {
235 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
236 				 NULL);
237 }
238 EXPORT_SYMBOL(__hci_cmd_sync_ev);
239 
240 /* This function requires the caller holds hdev->req_lock. */
241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
242 			     const void *param, u8 event, u32 timeout,
243 			     struct sock *sk)
244 {
245 	struct sk_buff *skb;
246 	u8 status;
247 
248 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
249 	if (IS_ERR(skb)) {
250 		if (!event)
251 			bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
252 				   PTR_ERR(skb));
253 		return PTR_ERR(skb);
254 	}
255 
256 	/* If command return a status event skb will be set to NULL as there are
257 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
258 	 * the actual error would be found with PTR_ERR(skb).
259 	 */
260 	if (!skb)
261 		return 0;
262 
263 	status = skb->data[0];
264 
265 	kfree_skb(skb);
266 
267 	return status;
268 }
269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
270 
271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
272 			  const void *param, u32 timeout)
273 {
274 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
275 					NULL);
276 }
277 EXPORT_SYMBOL(__hci_cmd_sync_status);
278 
279 static void hci_cmd_sync_work(struct work_struct *work)
280 {
281 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
282 
283 	bt_dev_dbg(hdev, "");
284 
285 	/* Dequeue all entries and run them */
286 	while (1) {
287 		struct hci_cmd_sync_work_entry *entry;
288 
289 		mutex_lock(&hdev->cmd_sync_work_lock);
290 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
291 						 struct hci_cmd_sync_work_entry,
292 						 list);
293 		if (entry)
294 			list_del(&entry->list);
295 		mutex_unlock(&hdev->cmd_sync_work_lock);
296 
297 		if (!entry)
298 			break;
299 
300 		bt_dev_dbg(hdev, "entry %p", entry);
301 
302 		if (entry->func) {
303 			int err;
304 
305 			hci_req_sync_lock(hdev);
306 			err = entry->func(hdev, entry->data);
307 			if (entry->destroy)
308 				entry->destroy(hdev, entry->data, err);
309 			hci_req_sync_unlock(hdev);
310 		}
311 
312 		kfree(entry);
313 	}
314 }
315 
316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319 
320 	cancel_delayed_work_sync(&hdev->cmd_timer);
321 	cancel_delayed_work_sync(&hdev->ncmd_timer);
322 	atomic_set(&hdev->cmd_cnt, 1);
323 
324 	wake_up_interruptible(&hdev->req_wait_q);
325 }
326 
327 static int hci_scan_disable_sync(struct hci_dev *hdev);
328 static int scan_disable_sync(struct hci_dev *hdev, void *data)
329 {
330 	return hci_scan_disable_sync(hdev);
331 }
332 
333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
335 {
336 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
337 }
338 
339 static void le_scan_disable(struct work_struct *work)
340 {
341 	struct hci_dev *hdev = container_of(work, struct hci_dev,
342 					    le_scan_disable.work);
343 	int status;
344 
345 	bt_dev_dbg(hdev, "");
346 	hci_dev_lock(hdev);
347 
348 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
349 		goto _return;
350 
351 	cancel_delayed_work(&hdev->le_scan_restart);
352 
353 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
354 	if (status) {
355 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
356 		goto _return;
357 	}
358 
359 	hdev->discovery.scan_start = 0;
360 
361 	/* If we were running LE only scan, change discovery state. If
362 	 * we were running both LE and BR/EDR inquiry simultaneously,
363 	 * and BR/EDR inquiry is already finished, stop discovery,
364 	 * otherwise BR/EDR inquiry will stop discovery when finished.
365 	 * If we will resolve remote device name, do not change
366 	 * discovery state.
367 	 */
368 
369 	if (hdev->discovery.type == DISCOV_TYPE_LE)
370 		goto discov_stopped;
371 
372 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
373 		goto _return;
374 
375 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
376 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
377 		    hdev->discovery.state != DISCOVERY_RESOLVING)
378 			goto discov_stopped;
379 
380 		goto _return;
381 	}
382 
383 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
384 	if (status) {
385 		bt_dev_err(hdev, "inquiry failed: status %d", status);
386 		goto discov_stopped;
387 	}
388 
389 	goto _return;
390 
391 discov_stopped:
392 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
393 
394 _return:
395 	hci_dev_unlock(hdev);
396 }
397 
398 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
399 				       u8 filter_dup);
400 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
401 {
402 	/* If controller is not scanning we are done. */
403 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
404 		return 0;
405 
406 	if (hdev->scanning_paused) {
407 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
408 		return 0;
409 	}
410 
411 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
412 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
413 					   LE_SCAN_FILTER_DUP_ENABLE);
414 }
415 
416 static void le_scan_restart(struct work_struct *work)
417 {
418 	struct hci_dev *hdev = container_of(work, struct hci_dev,
419 					    le_scan_restart.work);
420 	unsigned long timeout, duration, scan_start, now;
421 	int status;
422 
423 	bt_dev_dbg(hdev, "");
424 
425 	status = hci_le_scan_restart_sync(hdev);
426 	if (status) {
427 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
428 			   status);
429 		return;
430 	}
431 
432 	hci_dev_lock(hdev);
433 
434 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
435 	    !hdev->discovery.scan_start)
436 		goto unlock;
437 
438 	/* When the scan was started, hdev->le_scan_disable has been queued
439 	 * after duration from scan_start. During scan restart this job
440 	 * has been canceled, and we need to queue it again after proper
441 	 * timeout, to make sure that scan does not run indefinitely.
442 	 */
443 	duration = hdev->discovery.scan_duration;
444 	scan_start = hdev->discovery.scan_start;
445 	now = jiffies;
446 	if (now - scan_start <= duration) {
447 		int elapsed;
448 
449 		if (now >= scan_start)
450 			elapsed = now - scan_start;
451 		else
452 			elapsed = ULONG_MAX - scan_start + now;
453 
454 		timeout = duration - elapsed;
455 	} else {
456 		timeout = 0;
457 	}
458 
459 	queue_delayed_work(hdev->req_workqueue,
460 			   &hdev->le_scan_disable, timeout);
461 
462 unlock:
463 	hci_dev_unlock(hdev);
464 }
465 
466 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
467 {
468 	bt_dev_dbg(hdev, "");
469 
470 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
471 	    list_empty(&hdev->adv_instances))
472 		return 0;
473 
474 	if (hdev->cur_adv_instance) {
475 		return hci_schedule_adv_instance_sync(hdev,
476 						      hdev->cur_adv_instance,
477 						      true);
478 	} else {
479 		if (ext_adv_capable(hdev)) {
480 			hci_start_ext_adv_sync(hdev, 0x00);
481 		} else {
482 			hci_update_adv_data_sync(hdev, 0x00);
483 			hci_update_scan_rsp_data_sync(hdev, 0x00);
484 			hci_enable_advertising_sync(hdev);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static void reenable_adv(struct work_struct *work)
492 {
493 	struct hci_dev *hdev = container_of(work, struct hci_dev,
494 					    reenable_adv_work);
495 	int status;
496 
497 	bt_dev_dbg(hdev, "");
498 
499 	hci_dev_lock(hdev);
500 
501 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
502 	if (status)
503 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
504 
505 	hci_dev_unlock(hdev);
506 }
507 
508 static void cancel_adv_timeout(struct hci_dev *hdev)
509 {
510 	if (hdev->adv_instance_timeout) {
511 		hdev->adv_instance_timeout = 0;
512 		cancel_delayed_work(&hdev->adv_instance_expire);
513 	}
514 }
515 
516 /* For a single instance:
517  * - force == true: The instance will be removed even when its remaining
518  *   lifetime is not zero.
519  * - force == false: the instance will be deactivated but kept stored unless
520  *   the remaining lifetime is zero.
521  *
522  * For instance == 0x00:
523  * - force == true: All instances will be removed regardless of their timeout
524  *   setting.
525  * - force == false: Only instances that have a timeout will be removed.
526  */
527 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
528 				u8 instance, bool force)
529 {
530 	struct adv_info *adv_instance, *n, *next_instance = NULL;
531 	int err;
532 	u8 rem_inst;
533 
534 	/* Cancel any timeout concerning the removed instance(s). */
535 	if (!instance || hdev->cur_adv_instance == instance)
536 		cancel_adv_timeout(hdev);
537 
538 	/* Get the next instance to advertise BEFORE we remove
539 	 * the current one. This can be the same instance again
540 	 * if there is only one instance.
541 	 */
542 	if (instance && hdev->cur_adv_instance == instance)
543 		next_instance = hci_get_next_instance(hdev, instance);
544 
545 	if (instance == 0x00) {
546 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
547 					 list) {
548 			if (!(force || adv_instance->timeout))
549 				continue;
550 
551 			rem_inst = adv_instance->instance;
552 			err = hci_remove_adv_instance(hdev, rem_inst);
553 			if (!err)
554 				mgmt_advertising_removed(sk, hdev, rem_inst);
555 		}
556 	} else {
557 		adv_instance = hci_find_adv_instance(hdev, instance);
558 
559 		if (force || (adv_instance && adv_instance->timeout &&
560 			      !adv_instance->remaining_time)) {
561 			/* Don't advertise a removed instance. */
562 			if (next_instance &&
563 			    next_instance->instance == instance)
564 				next_instance = NULL;
565 
566 			err = hci_remove_adv_instance(hdev, instance);
567 			if (!err)
568 				mgmt_advertising_removed(sk, hdev, instance);
569 		}
570 	}
571 
572 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
573 		return 0;
574 
575 	if (next_instance && !ext_adv_capable(hdev))
576 		return hci_schedule_adv_instance_sync(hdev,
577 						      next_instance->instance,
578 						      false);
579 
580 	return 0;
581 }
582 
583 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
584 {
585 	u8 instance = *(u8 *)data;
586 
587 	kfree(data);
588 
589 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
590 
591 	if (list_empty(&hdev->adv_instances))
592 		return hci_disable_advertising_sync(hdev);
593 
594 	return 0;
595 }
596 
597 static void adv_timeout_expire(struct work_struct *work)
598 {
599 	u8 *inst_ptr;
600 	struct hci_dev *hdev = container_of(work, struct hci_dev,
601 					    adv_instance_expire.work);
602 
603 	bt_dev_dbg(hdev, "");
604 
605 	hci_dev_lock(hdev);
606 
607 	hdev->adv_instance_timeout = 0;
608 
609 	if (hdev->cur_adv_instance == 0x00)
610 		goto unlock;
611 
612 	inst_ptr = kmalloc(1, GFP_KERNEL);
613 	if (!inst_ptr)
614 		goto unlock;
615 
616 	*inst_ptr = hdev->cur_adv_instance;
617 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
618 
619 unlock:
620 	hci_dev_unlock(hdev);
621 }
622 
623 void hci_cmd_sync_init(struct hci_dev *hdev)
624 {
625 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
626 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
627 	mutex_init(&hdev->cmd_sync_work_lock);
628 	mutex_init(&hdev->unregister_lock);
629 
630 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
631 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
632 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
633 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
634 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
635 }
636 
637 void hci_cmd_sync_clear(struct hci_dev *hdev)
638 {
639 	struct hci_cmd_sync_work_entry *entry, *tmp;
640 
641 	cancel_work_sync(&hdev->cmd_sync_work);
642 	cancel_work_sync(&hdev->reenable_adv_work);
643 
644 	mutex_lock(&hdev->cmd_sync_work_lock);
645 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
646 		if (entry->destroy)
647 			entry->destroy(hdev, entry->data, -ECANCELED);
648 
649 		list_del(&entry->list);
650 		kfree(entry);
651 	}
652 	mutex_unlock(&hdev->cmd_sync_work_lock);
653 }
654 
655 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
656 {
657 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
658 
659 	if (hdev->req_status == HCI_REQ_PEND) {
660 		hdev->req_result = err;
661 		hdev->req_status = HCI_REQ_CANCELED;
662 
663 		cancel_delayed_work_sync(&hdev->cmd_timer);
664 		cancel_delayed_work_sync(&hdev->ncmd_timer);
665 		atomic_set(&hdev->cmd_cnt, 1);
666 
667 		wake_up_interruptible(&hdev->req_wait_q);
668 	}
669 }
670 
671 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
672 {
673 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
674 
675 	if (hdev->req_status == HCI_REQ_PEND) {
676 		hdev->req_result = err;
677 		hdev->req_status = HCI_REQ_CANCELED;
678 
679 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
680 	}
681 }
682 EXPORT_SYMBOL(hci_cmd_sync_cancel);
683 
684 /* Submit HCI command to be run in as cmd_sync_work:
685  *
686  * - hdev must _not_ be unregistered
687  */
688 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
689 			void *data, hci_cmd_sync_work_destroy_t destroy)
690 {
691 	struct hci_cmd_sync_work_entry *entry;
692 	int err = 0;
693 
694 	mutex_lock(&hdev->unregister_lock);
695 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
696 		err = -ENODEV;
697 		goto unlock;
698 	}
699 
700 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
701 	if (!entry) {
702 		err = -ENOMEM;
703 		goto unlock;
704 	}
705 	entry->func = func;
706 	entry->data = data;
707 	entry->destroy = destroy;
708 
709 	mutex_lock(&hdev->cmd_sync_work_lock);
710 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
711 	mutex_unlock(&hdev->cmd_sync_work_lock);
712 
713 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
714 
715 unlock:
716 	mutex_unlock(&hdev->unregister_lock);
717 	return err;
718 }
719 EXPORT_SYMBOL(hci_cmd_sync_submit);
720 
721 /* Queue HCI command:
722  *
723  * - hdev must be running
724  */
725 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
726 		       void *data, hci_cmd_sync_work_destroy_t destroy)
727 {
728 	/* Only queue command if hdev is running which means it had been opened
729 	 * and is either on init phase or is already up.
730 	 */
731 	if (!test_bit(HCI_RUNNING, &hdev->flags))
732 		return -ENETDOWN;
733 
734 	return hci_cmd_sync_submit(hdev, func, data, destroy);
735 }
736 EXPORT_SYMBOL(hci_cmd_sync_queue);
737 
738 int hci_update_eir_sync(struct hci_dev *hdev)
739 {
740 	struct hci_cp_write_eir cp;
741 
742 	bt_dev_dbg(hdev, "");
743 
744 	if (!hdev_is_powered(hdev))
745 		return 0;
746 
747 	if (!lmp_ext_inq_capable(hdev))
748 		return 0;
749 
750 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
751 		return 0;
752 
753 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
754 		return 0;
755 
756 	memset(&cp, 0, sizeof(cp));
757 
758 	eir_create(hdev, cp.data);
759 
760 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
761 		return 0;
762 
763 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
764 
765 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
766 				     HCI_CMD_TIMEOUT);
767 }
768 
769 static u8 get_service_classes(struct hci_dev *hdev)
770 {
771 	struct bt_uuid *uuid;
772 	u8 val = 0;
773 
774 	list_for_each_entry(uuid, &hdev->uuids, list)
775 		val |= uuid->svc_hint;
776 
777 	return val;
778 }
779 
780 int hci_update_class_sync(struct hci_dev *hdev)
781 {
782 	u8 cod[3];
783 
784 	bt_dev_dbg(hdev, "");
785 
786 	if (!hdev_is_powered(hdev))
787 		return 0;
788 
789 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
790 		return 0;
791 
792 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
793 		return 0;
794 
795 	cod[0] = hdev->minor_class;
796 	cod[1] = hdev->major_class;
797 	cod[2] = get_service_classes(hdev);
798 
799 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
800 		cod[1] |= 0x20;
801 
802 	if (memcmp(cod, hdev->dev_class, 3) == 0)
803 		return 0;
804 
805 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
806 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
807 }
808 
809 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
810 {
811 	/* If there is no connection we are OK to advertise. */
812 	if (hci_conn_num(hdev, LE_LINK) == 0)
813 		return true;
814 
815 	/* Check le_states if there is any connection in peripheral role. */
816 	if (hdev->conn_hash.le_num_peripheral > 0) {
817 		/* Peripheral connection state and non connectable mode
818 		 * bit 20.
819 		 */
820 		if (!connectable && !(hdev->le_states[2] & 0x10))
821 			return false;
822 
823 		/* Peripheral connection state and connectable mode bit 38
824 		 * and scannable bit 21.
825 		 */
826 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
827 				    !(hdev->le_states[2] & 0x20)))
828 			return false;
829 	}
830 
831 	/* Check le_states if there is any connection in central role. */
832 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
833 		/* Central connection state and non connectable mode bit 18. */
834 		if (!connectable && !(hdev->le_states[2] & 0x02))
835 			return false;
836 
837 		/* Central connection state and connectable mode bit 35 and
838 		 * scannable 19.
839 		 */
840 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
841 				    !(hdev->le_states[2] & 0x08)))
842 			return false;
843 	}
844 
845 	return true;
846 }
847 
848 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
849 {
850 	/* If privacy is not enabled don't use RPA */
851 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
852 		return false;
853 
854 	/* If basic privacy mode is enabled use RPA */
855 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
856 		return true;
857 
858 	/* If limited privacy mode is enabled don't use RPA if we're
859 	 * both discoverable and bondable.
860 	 */
861 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
862 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
863 		return false;
864 
865 	/* We're neither bondable nor discoverable in the limited
866 	 * privacy mode, therefore use RPA.
867 	 */
868 	return true;
869 }
870 
871 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
872 {
873 	/* If we're advertising or initiating an LE connection we can't
874 	 * go ahead and change the random address at this time. This is
875 	 * because the eventual initiator address used for the
876 	 * subsequently created connection will be undefined (some
877 	 * controllers use the new address and others the one we had
878 	 * when the operation started).
879 	 *
880 	 * In this kind of scenario skip the update and let the random
881 	 * address be updated at the next cycle.
882 	 */
883 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
884 	    hci_lookup_le_connect(hdev)) {
885 		bt_dev_dbg(hdev, "Deferring random address update");
886 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
887 		return 0;
888 	}
889 
890 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
891 				     6, rpa, HCI_CMD_TIMEOUT);
892 }
893 
894 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
895 				   bool rpa, u8 *own_addr_type)
896 {
897 	int err;
898 
899 	/* If privacy is enabled use a resolvable private address. If
900 	 * current RPA has expired or there is something else than
901 	 * the current RPA in use, then generate a new one.
902 	 */
903 	if (rpa) {
904 		/* If Controller supports LL Privacy use own address type is
905 		 * 0x03
906 		 */
907 		if (use_ll_privacy(hdev))
908 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
909 		else
910 			*own_addr_type = ADDR_LE_DEV_RANDOM;
911 
912 		/* Check if RPA is valid */
913 		if (rpa_valid(hdev))
914 			return 0;
915 
916 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
917 		if (err < 0) {
918 			bt_dev_err(hdev, "failed to generate new RPA");
919 			return err;
920 		}
921 
922 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
923 		if (err)
924 			return err;
925 
926 		return 0;
927 	}
928 
929 	/* In case of required privacy without resolvable private address,
930 	 * use an non-resolvable private address. This is useful for active
931 	 * scanning and non-connectable advertising.
932 	 */
933 	if (require_privacy) {
934 		bdaddr_t nrpa;
935 
936 		while (true) {
937 			/* The non-resolvable private address is generated
938 			 * from random six bytes with the two most significant
939 			 * bits cleared.
940 			 */
941 			get_random_bytes(&nrpa, 6);
942 			nrpa.b[5] &= 0x3f;
943 
944 			/* The non-resolvable private address shall not be
945 			 * equal to the public address.
946 			 */
947 			if (bacmp(&hdev->bdaddr, &nrpa))
948 				break;
949 		}
950 
951 		*own_addr_type = ADDR_LE_DEV_RANDOM;
952 
953 		return hci_set_random_addr_sync(hdev, &nrpa);
954 	}
955 
956 	/* If forcing static address is in use or there is no public
957 	 * address use the static address as random address (but skip
958 	 * the HCI command if the current random address is already the
959 	 * static one.
960 	 *
961 	 * In case BR/EDR has been disabled on a dual-mode controller
962 	 * and a static address has been configured, then use that
963 	 * address instead of the public BR/EDR address.
964 	 */
965 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
966 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
967 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
968 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
969 		*own_addr_type = ADDR_LE_DEV_RANDOM;
970 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
971 			return hci_set_random_addr_sync(hdev,
972 							&hdev->static_addr);
973 		return 0;
974 	}
975 
976 	/* Neither privacy nor static address is being used so use a
977 	 * public address.
978 	 */
979 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
980 
981 	return 0;
982 }
983 
984 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
985 {
986 	struct hci_cp_le_set_ext_adv_enable *cp;
987 	struct hci_cp_ext_adv_set *set;
988 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
989 	u8 size;
990 
991 	/* If request specifies an instance that doesn't exist, fail */
992 	if (instance > 0) {
993 		struct adv_info *adv;
994 
995 		adv = hci_find_adv_instance(hdev, instance);
996 		if (!adv)
997 			return -EINVAL;
998 
999 		/* If not enabled there is nothing to do */
1000 		if (!adv->enabled)
1001 			return 0;
1002 	}
1003 
1004 	memset(data, 0, sizeof(data));
1005 
1006 	cp = (void *)data;
1007 	set = (void *)cp->data;
1008 
1009 	/* Instance 0x00 indicates all advertising instances will be disabled */
1010 	cp->num_of_sets = !!instance;
1011 	cp->enable = 0x00;
1012 
1013 	set->handle = instance;
1014 
1015 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1016 
1017 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1018 				     size, data, HCI_CMD_TIMEOUT);
1019 }
1020 
1021 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1022 					    bdaddr_t *random_addr)
1023 {
1024 	struct hci_cp_le_set_adv_set_rand_addr cp;
1025 	int err;
1026 
1027 	if (!instance) {
1028 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1029 		 * hdev->random_addr to track its address so whenever it needs
1030 		 * to be updated this also set the random address since
1031 		 * hdev->random_addr is shared with scan state machine.
1032 		 */
1033 		err = hci_set_random_addr_sync(hdev, random_addr);
1034 		if (err)
1035 			return err;
1036 	}
1037 
1038 	memset(&cp, 0, sizeof(cp));
1039 
1040 	cp.handle = instance;
1041 	bacpy(&cp.bdaddr, random_addr);
1042 
1043 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1044 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1045 }
1046 
1047 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1048 {
1049 	struct hci_cp_le_set_ext_adv_params cp;
1050 	bool connectable;
1051 	u32 flags;
1052 	bdaddr_t random_addr;
1053 	u8 own_addr_type;
1054 	int err;
1055 	struct adv_info *adv;
1056 	bool secondary_adv;
1057 
1058 	if (instance > 0) {
1059 		adv = hci_find_adv_instance(hdev, instance);
1060 		if (!adv)
1061 			return -EINVAL;
1062 	} else {
1063 		adv = NULL;
1064 	}
1065 
1066 	/* Updating parameters of an active instance will return a
1067 	 * Command Disallowed error, so we must first disable the
1068 	 * instance if it is active.
1069 	 */
1070 	if (adv && !adv->pending) {
1071 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1072 		if (err)
1073 			return err;
1074 	}
1075 
1076 	flags = hci_adv_instance_flags(hdev, instance);
1077 
1078 	/* If the "connectable" instance flag was not set, then choose between
1079 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1080 	 */
1081 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1082 		      mgmt_get_connectable(hdev);
1083 
1084 	if (!is_advertising_allowed(hdev, connectable))
1085 		return -EPERM;
1086 
1087 	/* Set require_privacy to true only when non-connectable
1088 	 * advertising is used. In that case it is fine to use a
1089 	 * non-resolvable private address.
1090 	 */
1091 	err = hci_get_random_address(hdev, !connectable,
1092 				     adv_use_rpa(hdev, flags), adv,
1093 				     &own_addr_type, &random_addr);
1094 	if (err < 0)
1095 		return err;
1096 
1097 	memset(&cp, 0, sizeof(cp));
1098 
1099 	if (adv) {
1100 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1101 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1102 		cp.tx_power = adv->tx_power;
1103 	} else {
1104 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1105 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1106 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1107 	}
1108 
1109 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1110 
1111 	if (connectable) {
1112 		if (secondary_adv)
1113 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1114 		else
1115 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1116 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1117 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1118 		if (secondary_adv)
1119 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1120 		else
1121 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1122 	} else {
1123 		if (secondary_adv)
1124 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1125 		else
1126 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1127 	}
1128 
1129 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1130 	 * contains the peer’s Identity Address and the Peer_Address_Type
1131 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1132 	 * These parameters are used to locate the corresponding local IRK in
1133 	 * the resolving list; this IRK is used to generate their own address
1134 	 * used in the advertisement.
1135 	 */
1136 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1137 		hci_copy_identity_address(hdev, &cp.peer_addr,
1138 					  &cp.peer_addr_type);
1139 
1140 	cp.own_addr_type = own_addr_type;
1141 	cp.channel_map = hdev->le_adv_channel_map;
1142 	cp.handle = instance;
1143 
1144 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1145 		cp.primary_phy = HCI_ADV_PHY_1M;
1146 		cp.secondary_phy = HCI_ADV_PHY_2M;
1147 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1148 		cp.primary_phy = HCI_ADV_PHY_CODED;
1149 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1150 	} else {
1151 		/* In all other cases use 1M */
1152 		cp.primary_phy = HCI_ADV_PHY_1M;
1153 		cp.secondary_phy = HCI_ADV_PHY_1M;
1154 	}
1155 
1156 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1157 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1158 	if (err)
1159 		return err;
1160 
1161 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1162 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1163 	    bacmp(&random_addr, BDADDR_ANY)) {
1164 		/* Check if random address need to be updated */
1165 		if (adv) {
1166 			if (!bacmp(&random_addr, &adv->random_addr))
1167 				return 0;
1168 		} else {
1169 			if (!bacmp(&random_addr, &hdev->random_addr))
1170 				return 0;
1171 		}
1172 
1173 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1174 							&random_addr);
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1181 {
1182 	struct {
1183 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1184 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1185 	} pdu;
1186 	u8 len;
1187 	struct adv_info *adv = NULL;
1188 	int err;
1189 
1190 	memset(&pdu, 0, sizeof(pdu));
1191 
1192 	if (instance) {
1193 		adv = hci_find_adv_instance(hdev, instance);
1194 		if (!adv || !adv->scan_rsp_changed)
1195 			return 0;
1196 	}
1197 
1198 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1199 
1200 	pdu.cp.handle = instance;
1201 	pdu.cp.length = len;
1202 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1203 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1204 
1205 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1206 				    sizeof(pdu.cp) + len, &pdu.cp,
1207 				    HCI_CMD_TIMEOUT);
1208 	if (err)
1209 		return err;
1210 
1211 	if (adv) {
1212 		adv->scan_rsp_changed = false;
1213 	} else {
1214 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1215 		hdev->scan_rsp_data_len = len;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1222 {
1223 	struct hci_cp_le_set_scan_rsp_data cp;
1224 	u8 len;
1225 
1226 	memset(&cp, 0, sizeof(cp));
1227 
1228 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1229 
1230 	if (hdev->scan_rsp_data_len == len &&
1231 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1232 		return 0;
1233 
1234 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1235 	hdev->scan_rsp_data_len = len;
1236 
1237 	cp.length = len;
1238 
1239 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1240 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1241 }
1242 
1243 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1244 {
1245 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1246 		return 0;
1247 
1248 	if (ext_adv_capable(hdev))
1249 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1250 
1251 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1252 }
1253 
1254 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1255 {
1256 	struct hci_cp_le_set_ext_adv_enable *cp;
1257 	struct hci_cp_ext_adv_set *set;
1258 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1259 	struct adv_info *adv;
1260 
1261 	if (instance > 0) {
1262 		adv = hci_find_adv_instance(hdev, instance);
1263 		if (!adv)
1264 			return -EINVAL;
1265 		/* If already enabled there is nothing to do */
1266 		if (adv->enabled)
1267 			return 0;
1268 	} else {
1269 		adv = NULL;
1270 	}
1271 
1272 	cp = (void *)data;
1273 	set = (void *)cp->data;
1274 
1275 	memset(cp, 0, sizeof(*cp));
1276 
1277 	cp->enable = 0x01;
1278 	cp->num_of_sets = 0x01;
1279 
1280 	memset(set, 0, sizeof(*set));
1281 
1282 	set->handle = instance;
1283 
1284 	/* Set duration per instance since controller is responsible for
1285 	 * scheduling it.
1286 	 */
1287 	if (adv && adv->timeout) {
1288 		u16 duration = adv->timeout * MSEC_PER_SEC;
1289 
1290 		/* Time = N * 10 ms */
1291 		set->duration = cpu_to_le16(duration / 10);
1292 	}
1293 
1294 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1295 				     sizeof(*cp) +
1296 				     sizeof(*set) * cp->num_of_sets,
1297 				     data, HCI_CMD_TIMEOUT);
1298 }
1299 
1300 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1301 {
1302 	int err;
1303 
1304 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1305 	if (err)
1306 		return err;
1307 
1308 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1309 	if (err)
1310 		return err;
1311 
1312 	return hci_enable_ext_advertising_sync(hdev, instance);
1313 }
1314 
1315 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1316 {
1317 	struct hci_cp_le_set_per_adv_enable cp;
1318 	struct adv_info *adv = NULL;
1319 
1320 	/* If periodic advertising already disabled there is nothing to do. */
1321 	adv = hci_find_adv_instance(hdev, instance);
1322 	if (!adv || !adv->periodic || !adv->enabled)
1323 		return 0;
1324 
1325 	memset(&cp, 0, sizeof(cp));
1326 
1327 	cp.enable = 0x00;
1328 	cp.handle = instance;
1329 
1330 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1331 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1332 }
1333 
1334 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1335 				       u16 min_interval, u16 max_interval)
1336 {
1337 	struct hci_cp_le_set_per_adv_params cp;
1338 
1339 	memset(&cp, 0, sizeof(cp));
1340 
1341 	if (!min_interval)
1342 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1343 
1344 	if (!max_interval)
1345 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1346 
1347 	cp.handle = instance;
1348 	cp.min_interval = cpu_to_le16(min_interval);
1349 	cp.max_interval = cpu_to_le16(max_interval);
1350 	cp.periodic_properties = 0x0000;
1351 
1352 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1353 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1354 }
1355 
1356 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1357 {
1358 	struct {
1359 		struct hci_cp_le_set_per_adv_data cp;
1360 		u8 data[HCI_MAX_PER_AD_LENGTH];
1361 	} pdu;
1362 	u8 len;
1363 
1364 	memset(&pdu, 0, sizeof(pdu));
1365 
1366 	if (instance) {
1367 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1368 
1369 		if (!adv || !adv->periodic)
1370 			return 0;
1371 	}
1372 
1373 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1374 
1375 	pdu.cp.length = len;
1376 	pdu.cp.handle = instance;
1377 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1378 
1379 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1380 				     sizeof(pdu.cp) + len, &pdu,
1381 				     HCI_CMD_TIMEOUT);
1382 }
1383 
1384 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1385 {
1386 	struct hci_cp_le_set_per_adv_enable cp;
1387 	struct adv_info *adv = NULL;
1388 
1389 	/* If periodic advertising already enabled there is nothing to do. */
1390 	adv = hci_find_adv_instance(hdev, instance);
1391 	if (adv && adv->periodic && adv->enabled)
1392 		return 0;
1393 
1394 	memset(&cp, 0, sizeof(cp));
1395 
1396 	cp.enable = 0x01;
1397 	cp.handle = instance;
1398 
1399 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1400 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1401 }
1402 
1403 /* Checks if periodic advertising data contains a Basic Announcement and if it
1404  * does generates a Broadcast ID and add Broadcast Announcement.
1405  */
1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1407 {
1408 	u8 bid[3];
1409 	u8 ad[4 + 3];
1410 
1411 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1412 	 * advertising so it cannot used for the likes of Broadcast Announcement
1413 	 * as it can be overwritten at any point.
1414 	 */
1415 	if (!adv)
1416 		return 0;
1417 
1418 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1419 	 * there is nothing to do.
1420 	 */
1421 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1422 				  0x1851, NULL))
1423 		return 0;
1424 
1425 	/* Check if advertising data already has a Broadcast Announcement since
1426 	 * the process may want to control the Broadcast ID directly and in that
1427 	 * case the kernel shall no interfere.
1428 	 */
1429 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1430 				 NULL))
1431 		return 0;
1432 
1433 	/* Generate Broadcast ID */
1434 	get_random_bytes(bid, sizeof(bid));
1435 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1436 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1437 
1438 	return hci_update_adv_data_sync(hdev, adv->instance);
1439 }
1440 
1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1442 			   u8 *data, u32 flags, u16 min_interval,
1443 			   u16 max_interval, u16 sync_interval)
1444 {
1445 	struct adv_info *adv = NULL;
1446 	int err;
1447 	bool added = false;
1448 
1449 	hci_disable_per_advertising_sync(hdev, instance);
1450 
1451 	if (instance) {
1452 		adv = hci_find_adv_instance(hdev, instance);
1453 		/* Create an instance if that could not be found */
1454 		if (!adv) {
1455 			adv = hci_add_per_instance(hdev, instance, flags,
1456 						   data_len, data,
1457 						   sync_interval,
1458 						   sync_interval);
1459 			if (IS_ERR(adv))
1460 				return PTR_ERR(adv);
1461 			adv->pending = false;
1462 			added = true;
1463 		}
1464 	}
1465 
1466 	/* Start advertising */
1467 	err = hci_start_ext_adv_sync(hdev, instance);
1468 	if (err < 0)
1469 		goto fail;
1470 
1471 	err = hci_adv_bcast_annoucement(hdev, adv);
1472 	if (err < 0)
1473 		goto fail;
1474 
1475 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1476 					  max_interval);
1477 	if (err < 0)
1478 		goto fail;
1479 
1480 	err = hci_set_per_adv_data_sync(hdev, instance);
1481 	if (err < 0)
1482 		goto fail;
1483 
1484 	err = hci_enable_per_advertising_sync(hdev, instance);
1485 	if (err < 0)
1486 		goto fail;
1487 
1488 	return 0;
1489 
1490 fail:
1491 	if (added)
1492 		hci_remove_adv_instance(hdev, instance);
1493 
1494 	return err;
1495 }
1496 
1497 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1498 {
1499 	int err;
1500 
1501 	if (ext_adv_capable(hdev))
1502 		return hci_start_ext_adv_sync(hdev, instance);
1503 
1504 	err = hci_update_adv_data_sync(hdev, instance);
1505 	if (err)
1506 		return err;
1507 
1508 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1509 	if (err)
1510 		return err;
1511 
1512 	return hci_enable_advertising_sync(hdev);
1513 }
1514 
1515 int hci_enable_advertising_sync(struct hci_dev *hdev)
1516 {
1517 	struct adv_info *adv_instance;
1518 	struct hci_cp_le_set_adv_param cp;
1519 	u8 own_addr_type, enable = 0x01;
1520 	bool connectable;
1521 	u16 adv_min_interval, adv_max_interval;
1522 	u32 flags;
1523 	u8 status;
1524 
1525 	if (ext_adv_capable(hdev))
1526 		return hci_enable_ext_advertising_sync(hdev,
1527 						       hdev->cur_adv_instance);
1528 
1529 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1530 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1531 
1532 	/* If the "connectable" instance flag was not set, then choose between
1533 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1534 	 */
1535 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1536 		      mgmt_get_connectable(hdev);
1537 
1538 	if (!is_advertising_allowed(hdev, connectable))
1539 		return -EINVAL;
1540 
1541 	status = hci_disable_advertising_sync(hdev);
1542 	if (status)
1543 		return status;
1544 
1545 	/* Clear the HCI_LE_ADV bit temporarily so that the
1546 	 * hci_update_random_address knows that it's safe to go ahead
1547 	 * and write a new random address. The flag will be set back on
1548 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1549 	 */
1550 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1551 
1552 	/* Set require_privacy to true only when non-connectable
1553 	 * advertising is used. In that case it is fine to use a
1554 	 * non-resolvable private address.
1555 	 */
1556 	status = hci_update_random_address_sync(hdev, !connectable,
1557 						adv_use_rpa(hdev, flags),
1558 						&own_addr_type);
1559 	if (status)
1560 		return status;
1561 
1562 	memset(&cp, 0, sizeof(cp));
1563 
1564 	if (adv_instance) {
1565 		adv_min_interval = adv_instance->min_interval;
1566 		adv_max_interval = adv_instance->max_interval;
1567 	} else {
1568 		adv_min_interval = hdev->le_adv_min_interval;
1569 		adv_max_interval = hdev->le_adv_max_interval;
1570 	}
1571 
1572 	if (connectable) {
1573 		cp.type = LE_ADV_IND;
1574 	} else {
1575 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1576 			cp.type = LE_ADV_SCAN_IND;
1577 		else
1578 			cp.type = LE_ADV_NONCONN_IND;
1579 
1580 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1581 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1582 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1583 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1584 		}
1585 	}
1586 
1587 	cp.min_interval = cpu_to_le16(adv_min_interval);
1588 	cp.max_interval = cpu_to_le16(adv_max_interval);
1589 	cp.own_address_type = own_addr_type;
1590 	cp.channel_map = hdev->le_adv_channel_map;
1591 
1592 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1593 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1594 	if (status)
1595 		return status;
1596 
1597 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1598 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1599 }
1600 
1601 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1602 {
1603 	return hci_enable_advertising_sync(hdev);
1604 }
1605 
1606 int hci_enable_advertising(struct hci_dev *hdev)
1607 {
1608 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1609 	    list_empty(&hdev->adv_instances))
1610 		return 0;
1611 
1612 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1613 }
1614 
1615 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1616 				     struct sock *sk)
1617 {
1618 	int err;
1619 
1620 	if (!ext_adv_capable(hdev))
1621 		return 0;
1622 
1623 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1624 	if (err)
1625 		return err;
1626 
1627 	/* If request specifies an instance that doesn't exist, fail */
1628 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1629 		return -EINVAL;
1630 
1631 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1632 					sizeof(instance), &instance, 0,
1633 					HCI_CMD_TIMEOUT, sk);
1634 }
1635 
1636 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1637 {
1638 	struct adv_info *adv = data;
1639 	u8 instance = 0;
1640 
1641 	if (adv)
1642 		instance = adv->instance;
1643 
1644 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1645 }
1646 
1647 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv = NULL;
1650 
1651 	if (instance) {
1652 		adv = hci_find_adv_instance(hdev, instance);
1653 		if (!adv)
1654 			return -EINVAL;
1655 	}
1656 
1657 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1658 }
1659 
1660 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1661 {
1662 	struct hci_cp_le_term_big cp;
1663 
1664 	memset(&cp, 0, sizeof(cp));
1665 	cp.handle = handle;
1666 	cp.reason = reason;
1667 
1668 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1669 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1670 }
1671 
1672 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1673 {
1674 	struct {
1675 		struct hci_cp_le_set_ext_adv_data cp;
1676 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1677 	} pdu;
1678 	u8 len;
1679 	struct adv_info *adv = NULL;
1680 	int err;
1681 
1682 	memset(&pdu, 0, sizeof(pdu));
1683 
1684 	if (instance) {
1685 		adv = hci_find_adv_instance(hdev, instance);
1686 		if (!adv || !adv->adv_data_changed)
1687 			return 0;
1688 	}
1689 
1690 	len = eir_create_adv_data(hdev, instance, pdu.data);
1691 
1692 	pdu.cp.length = len;
1693 	pdu.cp.handle = instance;
1694 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696 
1697 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1698 				    sizeof(pdu.cp) + len, &pdu.cp,
1699 				    HCI_CMD_TIMEOUT);
1700 	if (err)
1701 		return err;
1702 
1703 	/* Update data if the command succeed */
1704 	if (adv) {
1705 		adv->adv_data_changed = false;
1706 	} else {
1707 		memcpy(hdev->adv_data, pdu.data, len);
1708 		hdev->adv_data_len = len;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1715 {
1716 	struct hci_cp_le_set_adv_data cp;
1717 	u8 len;
1718 
1719 	memset(&cp, 0, sizeof(cp));
1720 
1721 	len = eir_create_adv_data(hdev, instance, cp.data);
1722 
1723 	/* There's nothing to do if the data hasn't changed */
1724 	if (hdev->adv_data_len == len &&
1725 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1726 		return 0;
1727 
1728 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1729 	hdev->adv_data_len = len;
1730 
1731 	cp.length = len;
1732 
1733 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1734 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1735 }
1736 
1737 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1738 {
1739 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1740 		return 0;
1741 
1742 	if (ext_adv_capable(hdev))
1743 		return hci_set_ext_adv_data_sync(hdev, instance);
1744 
1745 	return hci_set_adv_data_sync(hdev, instance);
1746 }
1747 
1748 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1749 				   bool force)
1750 {
1751 	struct adv_info *adv = NULL;
1752 	u16 timeout;
1753 
1754 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1755 		return -EPERM;
1756 
1757 	if (hdev->adv_instance_timeout)
1758 		return -EBUSY;
1759 
1760 	adv = hci_find_adv_instance(hdev, instance);
1761 	if (!adv)
1762 		return -ENOENT;
1763 
1764 	/* A zero timeout means unlimited advertising. As long as there is
1765 	 * only one instance, duration should be ignored. We still set a timeout
1766 	 * in case further instances are being added later on.
1767 	 *
1768 	 * If the remaining lifetime of the instance is more than the duration
1769 	 * then the timeout corresponds to the duration, otherwise it will be
1770 	 * reduced to the remaining instance lifetime.
1771 	 */
1772 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1773 		timeout = adv->duration;
1774 	else
1775 		timeout = adv->remaining_time;
1776 
1777 	/* The remaining time is being reduced unless the instance is being
1778 	 * advertised without time limit.
1779 	 */
1780 	if (adv->timeout)
1781 		adv->remaining_time = adv->remaining_time - timeout;
1782 
1783 	/* Only use work for scheduling instances with legacy advertising */
1784 	if (!ext_adv_capable(hdev)) {
1785 		hdev->adv_instance_timeout = timeout;
1786 		queue_delayed_work(hdev->req_workqueue,
1787 				   &hdev->adv_instance_expire,
1788 				   msecs_to_jiffies(timeout * 1000));
1789 	}
1790 
1791 	/* If we're just re-scheduling the same instance again then do not
1792 	 * execute any HCI commands. This happens when a single instance is
1793 	 * being advertised.
1794 	 */
1795 	if (!force && hdev->cur_adv_instance == instance &&
1796 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1797 		return 0;
1798 
1799 	hdev->cur_adv_instance = instance;
1800 
1801 	return hci_start_adv_sync(hdev, instance);
1802 }
1803 
1804 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1805 {
1806 	int err;
1807 
1808 	if (!ext_adv_capable(hdev))
1809 		return 0;
1810 
1811 	/* Disable instance 0x00 to disable all instances */
1812 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1813 	if (err)
1814 		return err;
1815 
1816 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1817 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1818 }
1819 
1820 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1821 {
1822 	struct adv_info *adv, *n;
1823 	int err = 0;
1824 
1825 	if (ext_adv_capable(hdev))
1826 		/* Remove all existing sets */
1827 		err = hci_clear_adv_sets_sync(hdev, sk);
1828 	if (ext_adv_capable(hdev))
1829 		return err;
1830 
1831 	/* This is safe as long as there is no command send while the lock is
1832 	 * held.
1833 	 */
1834 	hci_dev_lock(hdev);
1835 
1836 	/* Cleanup non-ext instances */
1837 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1838 		u8 instance = adv->instance;
1839 		int err;
1840 
1841 		if (!(force || adv->timeout))
1842 			continue;
1843 
1844 		err = hci_remove_adv_instance(hdev, instance);
1845 		if (!err)
1846 			mgmt_advertising_removed(sk, hdev, instance);
1847 	}
1848 
1849 	hci_dev_unlock(hdev);
1850 
1851 	return 0;
1852 }
1853 
1854 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1855 			       struct sock *sk)
1856 {
1857 	int err = 0;
1858 
1859 	/* If we use extended advertising, instance has to be removed first. */
1860 	if (ext_adv_capable(hdev))
1861 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1862 	if (ext_adv_capable(hdev))
1863 		return err;
1864 
1865 	/* This is safe as long as there is no command send while the lock is
1866 	 * held.
1867 	 */
1868 	hci_dev_lock(hdev);
1869 
1870 	err = hci_remove_adv_instance(hdev, instance);
1871 	if (!err)
1872 		mgmt_advertising_removed(sk, hdev, instance);
1873 
1874 	hci_dev_unlock(hdev);
1875 
1876 	return err;
1877 }
1878 
1879 /* For a single instance:
1880  * - force == true: The instance will be removed even when its remaining
1881  *   lifetime is not zero.
1882  * - force == false: the instance will be deactivated but kept stored unless
1883  *   the remaining lifetime is zero.
1884  *
1885  * For instance == 0x00:
1886  * - force == true: All instances will be removed regardless of their timeout
1887  *   setting.
1888  * - force == false: Only instances that have a timeout will be removed.
1889  */
1890 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1891 				u8 instance, bool force)
1892 {
1893 	struct adv_info *next = NULL;
1894 	int err;
1895 
1896 	/* Cancel any timeout concerning the removed instance(s). */
1897 	if (!instance || hdev->cur_adv_instance == instance)
1898 		cancel_adv_timeout(hdev);
1899 
1900 	/* Get the next instance to advertise BEFORE we remove
1901 	 * the current one. This can be the same instance again
1902 	 * if there is only one instance.
1903 	 */
1904 	if (hdev->cur_adv_instance == instance)
1905 		next = hci_get_next_instance(hdev, instance);
1906 
1907 	if (!instance) {
1908 		err = hci_clear_adv_sync(hdev, sk, force);
1909 		if (err)
1910 			return err;
1911 	} else {
1912 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1913 
1914 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1915 			/* Don't advertise a removed instance. */
1916 			if (next && next->instance == instance)
1917 				next = NULL;
1918 
1919 			err = hci_remove_adv_sync(hdev, instance, sk);
1920 			if (err)
1921 				return err;
1922 		}
1923 	}
1924 
1925 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1926 		return 0;
1927 
1928 	if (next && !ext_adv_capable(hdev))
1929 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1930 
1931 	return 0;
1932 }
1933 
1934 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1935 {
1936 	struct hci_cp_read_rssi cp;
1937 
1938 	cp.handle = handle;
1939 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1940 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1941 }
1942 
1943 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1944 {
1945 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1946 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1947 }
1948 
1949 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1950 {
1951 	struct hci_cp_read_tx_power cp;
1952 
1953 	cp.handle = handle;
1954 	cp.type = type;
1955 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1956 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1957 }
1958 
1959 int hci_disable_advertising_sync(struct hci_dev *hdev)
1960 {
1961 	u8 enable = 0x00;
1962 	int err = 0;
1963 
1964 	/* If controller is not advertising we are done. */
1965 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1966 		return 0;
1967 
1968 	if (ext_adv_capable(hdev))
1969 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1970 	if (ext_adv_capable(hdev))
1971 		return err;
1972 
1973 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1974 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1975 }
1976 
1977 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1978 					   u8 filter_dup)
1979 {
1980 	struct hci_cp_le_set_ext_scan_enable cp;
1981 
1982 	memset(&cp, 0, sizeof(cp));
1983 	cp.enable = val;
1984 
1985 	if (hci_dev_test_flag(hdev, HCI_MESH))
1986 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1987 	else
1988 		cp.filter_dup = filter_dup;
1989 
1990 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1991 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1992 }
1993 
1994 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1995 				       u8 filter_dup)
1996 {
1997 	struct hci_cp_le_set_scan_enable cp;
1998 
1999 	if (use_ext_scan(hdev))
2000 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2001 
2002 	memset(&cp, 0, sizeof(cp));
2003 	cp.enable = val;
2004 
2005 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2006 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2007 	else
2008 		cp.filter_dup = filter_dup;
2009 
2010 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2011 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2012 }
2013 
2014 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2015 {
2016 	if (!use_ll_privacy(hdev))
2017 		return 0;
2018 
2019 	/* If controller is not/already resolving we are done. */
2020 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2021 		return 0;
2022 
2023 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2024 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2025 }
2026 
2027 static int hci_scan_disable_sync(struct hci_dev *hdev)
2028 {
2029 	int err;
2030 
2031 	/* If controller is not scanning we are done. */
2032 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2033 		return 0;
2034 
2035 	if (hdev->scanning_paused) {
2036 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2037 		return 0;
2038 	}
2039 
2040 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2041 	if (err) {
2042 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2043 		return err;
2044 	}
2045 
2046 	return err;
2047 }
2048 
2049 static bool scan_use_rpa(struct hci_dev *hdev)
2050 {
2051 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2052 }
2053 
2054 static void hci_start_interleave_scan(struct hci_dev *hdev)
2055 {
2056 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2057 	queue_delayed_work(hdev->req_workqueue,
2058 			   &hdev->interleave_scan, 0);
2059 }
2060 
2061 static bool is_interleave_scanning(struct hci_dev *hdev)
2062 {
2063 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2064 }
2065 
2066 static void cancel_interleave_scan(struct hci_dev *hdev)
2067 {
2068 	bt_dev_dbg(hdev, "cancelling interleave scan");
2069 
2070 	cancel_delayed_work_sync(&hdev->interleave_scan);
2071 
2072 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2073 }
2074 
2075 /* Return true if interleave_scan wasn't started until exiting this function,
2076  * otherwise, return false
2077  */
2078 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2079 {
2080 	/* Do interleaved scan only if all of the following are true:
2081 	 * - There is at least one ADV monitor
2082 	 * - At least one pending LE connection or one device to be scanned for
2083 	 * - Monitor offloading is not supported
2084 	 * If so, we should alternate between allowlist scan and one without
2085 	 * any filters to save power.
2086 	 */
2087 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2088 				!(list_empty(&hdev->pend_le_conns) &&
2089 				  list_empty(&hdev->pend_le_reports)) &&
2090 				hci_get_adv_monitor_offload_ext(hdev) ==
2091 				    HCI_ADV_MONITOR_EXT_NONE;
2092 	bool is_interleaving = is_interleave_scanning(hdev);
2093 
2094 	if (use_interleaving && !is_interleaving) {
2095 		hci_start_interleave_scan(hdev);
2096 		bt_dev_dbg(hdev, "starting interleave scan");
2097 		return true;
2098 	}
2099 
2100 	if (!use_interleaving && is_interleaving)
2101 		cancel_interleave_scan(hdev);
2102 
2103 	return false;
2104 }
2105 
2106 /* Removes connection to resolve list if needed.*/
2107 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2108 					bdaddr_t *bdaddr, u8 bdaddr_type)
2109 {
2110 	struct hci_cp_le_del_from_resolv_list cp;
2111 	struct bdaddr_list_with_irk *entry;
2112 
2113 	if (!use_ll_privacy(hdev))
2114 		return 0;
2115 
2116 	/* Check if the IRK has been programmed */
2117 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2118 						bdaddr_type);
2119 	if (!entry)
2120 		return 0;
2121 
2122 	cp.bdaddr_type = bdaddr_type;
2123 	bacpy(&cp.bdaddr, bdaddr);
2124 
2125 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2126 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2127 }
2128 
2129 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2130 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2131 {
2132 	struct hci_cp_le_del_from_accept_list cp;
2133 	int err;
2134 
2135 	/* Check if device is on accept list before removing it */
2136 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2137 		return 0;
2138 
2139 	cp.bdaddr_type = bdaddr_type;
2140 	bacpy(&cp.bdaddr, bdaddr);
2141 
2142 	/* Ignore errors when removing from resolving list as that is likely
2143 	 * that the device was never added.
2144 	 */
2145 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2146 
2147 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2148 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2149 	if (err) {
2150 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2151 		return err;
2152 	}
2153 
2154 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2155 		   cp.bdaddr_type);
2156 
2157 	return 0;
2158 }
2159 
2160 struct conn_params {
2161 	bdaddr_t addr;
2162 	u8 addr_type;
2163 	hci_conn_flags_t flags;
2164 	u8 privacy_mode;
2165 };
2166 
2167 /* Adds connection to resolve list if needed.
2168  * Setting params to NULL programs local hdev->irk
2169  */
2170 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2171 					struct conn_params *params)
2172 {
2173 	struct hci_cp_le_add_to_resolv_list cp;
2174 	struct smp_irk *irk;
2175 	struct bdaddr_list_with_irk *entry;
2176 	struct hci_conn_params *p;
2177 
2178 	if (!use_ll_privacy(hdev))
2179 		return 0;
2180 
2181 	/* Attempt to program local identity address, type and irk if params is
2182 	 * NULL.
2183 	 */
2184 	if (!params) {
2185 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2186 			return 0;
2187 
2188 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2189 		memcpy(cp.peer_irk, hdev->irk, 16);
2190 		goto done;
2191 	}
2192 
2193 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2194 	if (!irk)
2195 		return 0;
2196 
2197 	/* Check if the IK has _not_ been programmed yet. */
2198 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2199 						&params->addr,
2200 						params->addr_type);
2201 	if (entry)
2202 		return 0;
2203 
2204 	cp.bdaddr_type = params->addr_type;
2205 	bacpy(&cp.bdaddr, &params->addr);
2206 	memcpy(cp.peer_irk, irk->val, 16);
2207 
2208 	/* Default privacy mode is always Network */
2209 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2210 
2211 	rcu_read_lock();
2212 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2213 				      &params->addr, params->addr_type);
2214 	if (!p)
2215 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2216 					      &params->addr, params->addr_type);
2217 	if (p)
2218 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2219 	rcu_read_unlock();
2220 
2221 done:
2222 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2223 		memcpy(cp.local_irk, hdev->irk, 16);
2224 	else
2225 		memset(cp.local_irk, 0, 16);
2226 
2227 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2228 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2229 }
2230 
2231 /* Set Device Privacy Mode. */
2232 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2233 					struct conn_params *params)
2234 {
2235 	struct hci_cp_le_set_privacy_mode cp;
2236 	struct smp_irk *irk;
2237 
2238 	/* If device privacy mode has already been set there is nothing to do */
2239 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2240 		return 0;
2241 
2242 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2243 	 * indicates that LL Privacy has been enabled and
2244 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2245 	 */
2246 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2247 		return 0;
2248 
2249 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2250 	if (!irk)
2251 		return 0;
2252 
2253 	memset(&cp, 0, sizeof(cp));
2254 	cp.bdaddr_type = irk->addr_type;
2255 	bacpy(&cp.bdaddr, &irk->bdaddr);
2256 	cp.mode = HCI_DEVICE_PRIVACY;
2257 
2258 	/* Note: params->privacy_mode is not updated since it is a copy */
2259 
2260 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2261 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2262 }
2263 
2264 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2265  * this attempts to program the device in the resolving list as well and
2266  * properly set the privacy mode.
2267  */
2268 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2269 				       struct conn_params *params,
2270 				       u8 *num_entries)
2271 {
2272 	struct hci_cp_le_add_to_accept_list cp;
2273 	int err;
2274 
2275 	/* During suspend, only wakeable devices can be in acceptlist */
2276 	if (hdev->suspended &&
2277 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2278 		hci_le_del_accept_list_sync(hdev, &params->addr,
2279 					    params->addr_type);
2280 		return 0;
2281 	}
2282 
2283 	/* Select filter policy to accept all advertising */
2284 	if (*num_entries >= hdev->le_accept_list_size)
2285 		return -ENOSPC;
2286 
2287 	/* Accept list can not be used with RPAs */
2288 	if (!use_ll_privacy(hdev) &&
2289 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2290 		return -EINVAL;
2291 
2292 	/* Attempt to program the device in the resolving list first to avoid
2293 	 * having to rollback in case it fails since the resolving list is
2294 	 * dynamic it can probably be smaller than the accept list.
2295 	 */
2296 	err = hci_le_add_resolve_list_sync(hdev, params);
2297 	if (err) {
2298 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2299 		return err;
2300 	}
2301 
2302 	/* Set Privacy Mode */
2303 	err = hci_le_set_privacy_mode_sync(hdev, params);
2304 	if (err) {
2305 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2306 		return err;
2307 	}
2308 
2309 	/* Check if already in accept list */
2310 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2311 				   params->addr_type))
2312 		return 0;
2313 
2314 	*num_entries += 1;
2315 	cp.bdaddr_type = params->addr_type;
2316 	bacpy(&cp.bdaddr, &params->addr);
2317 
2318 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2319 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2320 	if (err) {
2321 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2322 		/* Rollback the device from the resolving list */
2323 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2324 		return err;
2325 	}
2326 
2327 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2328 		   cp.bdaddr_type);
2329 
2330 	return 0;
2331 }
2332 
2333 /* This function disables/pause all advertising instances */
2334 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2335 {
2336 	int err;
2337 	int old_state;
2338 
2339 	/* If already been paused there is nothing to do. */
2340 	if (hdev->advertising_paused)
2341 		return 0;
2342 
2343 	bt_dev_dbg(hdev, "Pausing directed advertising");
2344 
2345 	/* Stop directed advertising */
2346 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2347 	if (old_state) {
2348 		/* When discoverable timeout triggers, then just make sure
2349 		 * the limited discoverable flag is cleared. Even in the case
2350 		 * of a timeout triggered from general discoverable, it is
2351 		 * safe to unconditionally clear the flag.
2352 		 */
2353 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2354 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2355 		hdev->discov_timeout = 0;
2356 	}
2357 
2358 	bt_dev_dbg(hdev, "Pausing advertising instances");
2359 
2360 	/* Call to disable any advertisements active on the controller.
2361 	 * This will succeed even if no advertisements are configured.
2362 	 */
2363 	err = hci_disable_advertising_sync(hdev);
2364 	if (err)
2365 		return err;
2366 
2367 	/* If we are using software rotation, pause the loop */
2368 	if (!ext_adv_capable(hdev))
2369 		cancel_adv_timeout(hdev);
2370 
2371 	hdev->advertising_paused = true;
2372 	hdev->advertising_old_state = old_state;
2373 
2374 	return 0;
2375 }
2376 
2377 /* This function enables all user advertising instances */
2378 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2379 {
2380 	struct adv_info *adv, *tmp;
2381 	int err;
2382 
2383 	/* If advertising has not been paused there is nothing  to do. */
2384 	if (!hdev->advertising_paused)
2385 		return 0;
2386 
2387 	/* Resume directed advertising */
2388 	hdev->advertising_paused = false;
2389 	if (hdev->advertising_old_state) {
2390 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2391 		hdev->advertising_old_state = 0;
2392 	}
2393 
2394 	bt_dev_dbg(hdev, "Resuming advertising instances");
2395 
2396 	if (ext_adv_capable(hdev)) {
2397 		/* Call for each tracked instance to be re-enabled */
2398 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2399 			err = hci_enable_ext_advertising_sync(hdev,
2400 							      adv->instance);
2401 			if (!err)
2402 				continue;
2403 
2404 			/* If the instance cannot be resumed remove it */
2405 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2406 							 NULL);
2407 		}
2408 	} else {
2409 		/* Schedule for most recent instance to be restarted and begin
2410 		 * the software rotation loop
2411 		 */
2412 		err = hci_schedule_adv_instance_sync(hdev,
2413 						     hdev->cur_adv_instance,
2414 						     true);
2415 	}
2416 
2417 	hdev->advertising_paused = false;
2418 
2419 	return err;
2420 }
2421 
2422 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2423 {
2424 	int err;
2425 
2426 	if (!use_ll_privacy(hdev))
2427 		return 0;
2428 
2429 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2430 		return 0;
2431 
2432 	/* Cannot disable addr resolution if scanning is enabled or
2433 	 * when initiating an LE connection.
2434 	 */
2435 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2436 	    hci_lookup_le_connect(hdev)) {
2437 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2438 		return -EPERM;
2439 	}
2440 
2441 	/* Cannot disable addr resolution if advertising is enabled. */
2442 	err = hci_pause_advertising_sync(hdev);
2443 	if (err) {
2444 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2445 		return err;
2446 	}
2447 
2448 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2449 	if (err)
2450 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2451 			   err);
2452 
2453 	/* Return if address resolution is disabled and RPA is not used. */
2454 	if (!err && scan_use_rpa(hdev))
2455 		return 0;
2456 
2457 	hci_resume_advertising_sync(hdev);
2458 	return err;
2459 }
2460 
2461 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2462 					     bool extended, struct sock *sk)
2463 {
2464 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2465 					HCI_OP_READ_LOCAL_OOB_DATA;
2466 
2467 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2468 }
2469 
2470 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2471 {
2472 	struct hci_conn_params *params;
2473 	struct conn_params *p;
2474 	size_t i;
2475 
2476 	rcu_read_lock();
2477 
2478 	i = 0;
2479 	list_for_each_entry_rcu(params, list, action)
2480 		++i;
2481 	*n = i;
2482 
2483 	rcu_read_unlock();
2484 
2485 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2486 	if (!p)
2487 		return NULL;
2488 
2489 	rcu_read_lock();
2490 
2491 	i = 0;
2492 	list_for_each_entry_rcu(params, list, action) {
2493 		/* Racing adds are handled in next scan update */
2494 		if (i >= *n)
2495 			break;
2496 
2497 		/* No hdev->lock, but: addr, addr_type are immutable.
2498 		 * privacy_mode is only written by us or in
2499 		 * hci_cc_le_set_privacy_mode that we wait for.
2500 		 * We should be idempotent so MGMT updating flags
2501 		 * while we are processing is OK.
2502 		 */
2503 		bacpy(&p[i].addr, &params->addr);
2504 		p[i].addr_type = params->addr_type;
2505 		p[i].flags = READ_ONCE(params->flags);
2506 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2507 		++i;
2508 	}
2509 
2510 	rcu_read_unlock();
2511 
2512 	*n = i;
2513 	return p;
2514 }
2515 
2516 /* Device must not be scanning when updating the accept list.
2517  *
2518  * Update is done using the following sequence:
2519  *
2520  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2521  * Remove Devices From Accept List ->
2522  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2523  * Add Devices to Accept List ->
2524  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2525  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2526  * Enable Scanning
2527  *
2528  * In case of failure advertising shall be restored to its original state and
2529  * return would disable accept list since either accept or resolving list could
2530  * not be programmed.
2531  *
2532  */
2533 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2534 {
2535 	struct conn_params *params;
2536 	struct bdaddr_list *b, *t;
2537 	u8 num_entries = 0;
2538 	bool pend_conn, pend_report;
2539 	u8 filter_policy;
2540 	size_t i, n;
2541 	int err;
2542 
2543 	/* Pause advertising if resolving list can be used as controllers
2544 	 * cannot accept resolving list modifications while advertising.
2545 	 */
2546 	if (use_ll_privacy(hdev)) {
2547 		err = hci_pause_advertising_sync(hdev);
2548 		if (err) {
2549 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2550 			return 0x00;
2551 		}
2552 	}
2553 
2554 	/* Disable address resolution while reprogramming accept list since
2555 	 * devices that do have an IRK will be programmed in the resolving list
2556 	 * when LL Privacy is enabled.
2557 	 */
2558 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2559 	if (err) {
2560 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2561 		goto done;
2562 	}
2563 
2564 	/* Go through the current accept list programmed into the
2565 	 * controller one by one and check if that address is connected or is
2566 	 * still in the list of pending connections or list of devices to
2567 	 * report. If not present in either list, then remove it from
2568 	 * the controller.
2569 	 */
2570 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2571 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2572 			continue;
2573 
2574 		/* Pointers not dereferenced, no locks needed */
2575 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2576 						      &b->bdaddr,
2577 						      b->bdaddr_type);
2578 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2579 							&b->bdaddr,
2580 							b->bdaddr_type);
2581 
2582 		/* If the device is not likely to connect or report,
2583 		 * remove it from the acceptlist.
2584 		 */
2585 		if (!pend_conn && !pend_report) {
2586 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2587 						    b->bdaddr_type);
2588 			continue;
2589 		}
2590 
2591 		num_entries++;
2592 	}
2593 
2594 	/* Since all no longer valid accept list entries have been
2595 	 * removed, walk through the list of pending connections
2596 	 * and ensure that any new device gets programmed into
2597 	 * the controller.
2598 	 *
2599 	 * If the list of the devices is larger than the list of
2600 	 * available accept list entries in the controller, then
2601 	 * just abort and return filer policy value to not use the
2602 	 * accept list.
2603 	 *
2604 	 * The list and params may be mutated while we wait for events,
2605 	 * so make a copy and iterate it.
2606 	 */
2607 
2608 	params = conn_params_copy(&hdev->pend_le_conns, &n);
2609 	if (!params) {
2610 		err = -ENOMEM;
2611 		goto done;
2612 	}
2613 
2614 	for (i = 0; i < n; ++i) {
2615 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2616 						  &num_entries);
2617 		if (err) {
2618 			kvfree(params);
2619 			goto done;
2620 		}
2621 	}
2622 
2623 	kvfree(params);
2624 
2625 	/* After adding all new pending connections, walk through
2626 	 * the list of pending reports and also add these to the
2627 	 * accept list if there is still space. Abort if space runs out.
2628 	 */
2629 
2630 	params = conn_params_copy(&hdev->pend_le_reports, &n);
2631 	if (!params) {
2632 		err = -ENOMEM;
2633 		goto done;
2634 	}
2635 
2636 	for (i = 0; i < n; ++i) {
2637 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2638 						  &num_entries);
2639 		if (err) {
2640 			kvfree(params);
2641 			goto done;
2642 		}
2643 	}
2644 
2645 	kvfree(params);
2646 
2647 	/* Use the allowlist unless the following conditions are all true:
2648 	 * - We are not currently suspending
2649 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2650 	 * - Interleaved scanning is not currently using the allowlist
2651 	 */
2652 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2653 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2654 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2655 		err = -EINVAL;
2656 
2657 done:
2658 	filter_policy = err ? 0x00 : 0x01;
2659 
2660 	/* Enable address resolution when LL Privacy is enabled. */
2661 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2662 	if (err)
2663 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2664 
2665 	/* Resume advertising if it was paused */
2666 	if (use_ll_privacy(hdev))
2667 		hci_resume_advertising_sync(hdev);
2668 
2669 	/* Select filter policy to use accept list */
2670 	return filter_policy;
2671 }
2672 
2673 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2674 					  u16 interval, u16 window,
2675 					  u8 own_addr_type, u8 filter_policy)
2676 {
2677 	struct hci_cp_le_set_ext_scan_params *cp;
2678 	struct hci_cp_le_scan_phy_params *phy;
2679 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2680 	u8 num_phy = 0;
2681 
2682 	cp = (void *)data;
2683 	phy = (void *)cp->data;
2684 
2685 	memset(data, 0, sizeof(data));
2686 
2687 	cp->own_addr_type = own_addr_type;
2688 	cp->filter_policy = filter_policy;
2689 
2690 	if (scan_1m(hdev) || scan_2m(hdev)) {
2691 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2692 
2693 		phy->type = type;
2694 		phy->interval = cpu_to_le16(interval);
2695 		phy->window = cpu_to_le16(window);
2696 
2697 		num_phy++;
2698 		phy++;
2699 	}
2700 
2701 	if (scan_coded(hdev)) {
2702 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2703 
2704 		phy->type = type;
2705 		phy->interval = cpu_to_le16(interval);
2706 		phy->window = cpu_to_le16(window);
2707 
2708 		num_phy++;
2709 		phy++;
2710 	}
2711 
2712 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2713 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2714 				     data, HCI_CMD_TIMEOUT);
2715 }
2716 
2717 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2718 				      u16 interval, u16 window,
2719 				      u8 own_addr_type, u8 filter_policy)
2720 {
2721 	struct hci_cp_le_set_scan_param cp;
2722 
2723 	if (use_ext_scan(hdev))
2724 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2725 						      window, own_addr_type,
2726 						      filter_policy);
2727 
2728 	memset(&cp, 0, sizeof(cp));
2729 	cp.type = type;
2730 	cp.interval = cpu_to_le16(interval);
2731 	cp.window = cpu_to_le16(window);
2732 	cp.own_address_type = own_addr_type;
2733 	cp.filter_policy = filter_policy;
2734 
2735 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2736 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2737 }
2738 
2739 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2740 			       u16 window, u8 own_addr_type, u8 filter_policy,
2741 			       u8 filter_dup)
2742 {
2743 	int err;
2744 
2745 	if (hdev->scanning_paused) {
2746 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2747 		return 0;
2748 	}
2749 
2750 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2751 					 own_addr_type, filter_policy);
2752 	if (err)
2753 		return err;
2754 
2755 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2756 }
2757 
2758 static int hci_passive_scan_sync(struct hci_dev *hdev)
2759 {
2760 	u8 own_addr_type;
2761 	u8 filter_policy;
2762 	u16 window, interval;
2763 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2764 	int err;
2765 
2766 	if (hdev->scanning_paused) {
2767 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2768 		return 0;
2769 	}
2770 
2771 	err = hci_scan_disable_sync(hdev);
2772 	if (err) {
2773 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2774 		return err;
2775 	}
2776 
2777 	/* Set require_privacy to false since no SCAN_REQ are send
2778 	 * during passive scanning. Not using an non-resolvable address
2779 	 * here is important so that peer devices using direct
2780 	 * advertising with our address will be correctly reported
2781 	 * by the controller.
2782 	 */
2783 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2784 					   &own_addr_type))
2785 		return 0;
2786 
2787 	if (hdev->enable_advmon_interleave_scan &&
2788 	    hci_update_interleaved_scan_sync(hdev))
2789 		return 0;
2790 
2791 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2792 
2793 	/* Adding or removing entries from the accept list must
2794 	 * happen before enabling scanning. The controller does
2795 	 * not allow accept list modification while scanning.
2796 	 */
2797 	filter_policy = hci_update_accept_list_sync(hdev);
2798 
2799 	/* When the controller is using random resolvable addresses and
2800 	 * with that having LE privacy enabled, then controllers with
2801 	 * Extended Scanner Filter Policies support can now enable support
2802 	 * for handling directed advertising.
2803 	 *
2804 	 * So instead of using filter polices 0x00 (no acceptlist)
2805 	 * and 0x01 (acceptlist enabled) use the new filter policies
2806 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2807 	 */
2808 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2809 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2810 		filter_policy |= 0x02;
2811 
2812 	if (hdev->suspended) {
2813 		window = hdev->le_scan_window_suspend;
2814 		interval = hdev->le_scan_int_suspend;
2815 	} else if (hci_is_le_conn_scanning(hdev)) {
2816 		window = hdev->le_scan_window_connect;
2817 		interval = hdev->le_scan_int_connect;
2818 	} else if (hci_is_adv_monitoring(hdev)) {
2819 		window = hdev->le_scan_window_adv_monitor;
2820 		interval = hdev->le_scan_int_adv_monitor;
2821 	} else {
2822 		window = hdev->le_scan_window;
2823 		interval = hdev->le_scan_interval;
2824 	}
2825 
2826 	/* Disable all filtering for Mesh */
2827 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2828 		filter_policy = 0;
2829 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2830 	}
2831 
2832 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2833 
2834 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2835 				   own_addr_type, filter_policy, filter_dups);
2836 }
2837 
2838 /* This function controls the passive scanning based on hdev->pend_le_conns
2839  * list. If there are pending LE connection we start the background scanning,
2840  * otherwise we stop it in the following sequence:
2841  *
2842  * If there are devices to scan:
2843  *
2844  * Disable Scanning -> Update Accept List ->
2845  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2846  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2847  * Enable Scanning
2848  *
2849  * Otherwise:
2850  *
2851  * Disable Scanning
2852  */
2853 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2854 {
2855 	int err;
2856 
2857 	if (!test_bit(HCI_UP, &hdev->flags) ||
2858 	    test_bit(HCI_INIT, &hdev->flags) ||
2859 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2860 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2861 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2862 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2863 		return 0;
2864 
2865 	/* No point in doing scanning if LE support hasn't been enabled */
2866 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2867 		return 0;
2868 
2869 	/* If discovery is active don't interfere with it */
2870 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2871 		return 0;
2872 
2873 	/* Reset RSSI and UUID filters when starting background scanning
2874 	 * since these filters are meant for service discovery only.
2875 	 *
2876 	 * The Start Discovery and Start Service Discovery operations
2877 	 * ensure to set proper values for RSSI threshold and UUID
2878 	 * filter list. So it is safe to just reset them here.
2879 	 */
2880 	hci_discovery_filter_clear(hdev);
2881 
2882 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2883 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2884 
2885 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2886 	    list_empty(&hdev->pend_le_conns) &&
2887 	    list_empty(&hdev->pend_le_reports) &&
2888 	    !hci_is_adv_monitoring(hdev) &&
2889 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2890 		/* If there is no pending LE connections or devices
2891 		 * to be scanned for or no ADV monitors, we should stop the
2892 		 * background scanning.
2893 		 */
2894 
2895 		bt_dev_dbg(hdev, "stopping background scanning");
2896 
2897 		err = hci_scan_disable_sync(hdev);
2898 		if (err)
2899 			bt_dev_err(hdev, "stop background scanning failed: %d",
2900 				   err);
2901 	} else {
2902 		/* If there is at least one pending LE connection, we should
2903 		 * keep the background scan running.
2904 		 */
2905 
2906 		/* If controller is connecting, we should not start scanning
2907 		 * since some controllers are not able to scan and connect at
2908 		 * the same time.
2909 		 */
2910 		if (hci_lookup_le_connect(hdev))
2911 			return 0;
2912 
2913 		bt_dev_dbg(hdev, "start background scanning");
2914 
2915 		err = hci_passive_scan_sync(hdev);
2916 		if (err)
2917 			bt_dev_err(hdev, "start background scanning failed: %d",
2918 				   err);
2919 	}
2920 
2921 	return err;
2922 }
2923 
2924 static int update_scan_sync(struct hci_dev *hdev, void *data)
2925 {
2926 	return hci_update_scan_sync(hdev);
2927 }
2928 
2929 int hci_update_scan(struct hci_dev *hdev)
2930 {
2931 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2932 }
2933 
2934 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2935 {
2936 	return hci_update_passive_scan_sync(hdev);
2937 }
2938 
2939 int hci_update_passive_scan(struct hci_dev *hdev)
2940 {
2941 	/* Only queue if it would have any effect */
2942 	if (!test_bit(HCI_UP, &hdev->flags) ||
2943 	    test_bit(HCI_INIT, &hdev->flags) ||
2944 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2945 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2946 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2947 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2948 		return 0;
2949 
2950 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2951 }
2952 
2953 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2954 {
2955 	int err;
2956 
2957 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2958 		return 0;
2959 
2960 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2961 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2962 
2963 	if (!err) {
2964 		if (val) {
2965 			hdev->features[1][0] |= LMP_HOST_SC;
2966 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2967 		} else {
2968 			hdev->features[1][0] &= ~LMP_HOST_SC;
2969 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2970 		}
2971 	}
2972 
2973 	return err;
2974 }
2975 
2976 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2977 {
2978 	int err;
2979 
2980 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2981 	    lmp_host_ssp_capable(hdev))
2982 		return 0;
2983 
2984 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2985 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2986 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2987 	}
2988 
2989 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2990 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2991 	if (err)
2992 		return err;
2993 
2994 	return hci_write_sc_support_sync(hdev, 0x01);
2995 }
2996 
2997 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2998 {
2999 	struct hci_cp_write_le_host_supported cp;
3000 
3001 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3002 	    !lmp_bredr_capable(hdev))
3003 		return 0;
3004 
3005 	/* Check first if we already have the right host state
3006 	 * (host features set)
3007 	 */
3008 	if (le == lmp_host_le_capable(hdev) &&
3009 	    simul == lmp_host_le_br_capable(hdev))
3010 		return 0;
3011 
3012 	memset(&cp, 0, sizeof(cp));
3013 
3014 	cp.le = le;
3015 	cp.simul = simul;
3016 
3017 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3018 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3019 }
3020 
3021 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3022 {
3023 	struct adv_info *adv, *tmp;
3024 	int err;
3025 
3026 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3027 		return 0;
3028 
3029 	/* If RPA Resolution has not been enable yet it means the
3030 	 * resolving list is empty and we should attempt to program the
3031 	 * local IRK in order to support using own_addr_type
3032 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3033 	 */
3034 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3035 		hci_le_add_resolve_list_sync(hdev, NULL);
3036 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3037 	}
3038 
3039 	/* Make sure the controller has a good default for
3040 	 * advertising data. This also applies to the case
3041 	 * where BR/EDR was toggled during the AUTO_OFF phase.
3042 	 */
3043 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3044 	    list_empty(&hdev->adv_instances)) {
3045 		if (ext_adv_capable(hdev)) {
3046 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3047 			if (!err)
3048 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3049 		} else {
3050 			err = hci_update_adv_data_sync(hdev, 0x00);
3051 			if (!err)
3052 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3053 		}
3054 
3055 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3056 			hci_enable_advertising_sync(hdev);
3057 	}
3058 
3059 	/* Call for each tracked instance to be scheduled */
3060 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3061 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3062 
3063 	return 0;
3064 }
3065 
3066 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3067 {
3068 	u8 link_sec;
3069 
3070 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3071 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3072 		return 0;
3073 
3074 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3075 				     sizeof(link_sec), &link_sec,
3076 				     HCI_CMD_TIMEOUT);
3077 }
3078 
3079 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3080 {
3081 	struct hci_cp_write_page_scan_activity cp;
3082 	u8 type;
3083 	int err = 0;
3084 
3085 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3086 		return 0;
3087 
3088 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3089 		return 0;
3090 
3091 	memset(&cp, 0, sizeof(cp));
3092 
3093 	if (enable) {
3094 		type = PAGE_SCAN_TYPE_INTERLACED;
3095 
3096 		/* 160 msec page scan interval */
3097 		cp.interval = cpu_to_le16(0x0100);
3098 	} else {
3099 		type = hdev->def_page_scan_type;
3100 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3101 	}
3102 
3103 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3104 
3105 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3106 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3107 		err = __hci_cmd_sync_status(hdev,
3108 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3109 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3110 		if (err)
3111 			return err;
3112 	}
3113 
3114 	if (hdev->page_scan_type != type)
3115 		err = __hci_cmd_sync_status(hdev,
3116 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3117 					    sizeof(type), &type,
3118 					    HCI_CMD_TIMEOUT);
3119 
3120 	return err;
3121 }
3122 
3123 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3124 {
3125 	struct bdaddr_list *b;
3126 
3127 	list_for_each_entry(b, &hdev->accept_list, list) {
3128 		struct hci_conn *conn;
3129 
3130 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3131 		if (!conn)
3132 			return true;
3133 
3134 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3135 			return true;
3136 	}
3137 
3138 	return false;
3139 }
3140 
3141 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3142 {
3143 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3144 					    sizeof(val), &val,
3145 					    HCI_CMD_TIMEOUT);
3146 }
3147 
3148 int hci_update_scan_sync(struct hci_dev *hdev)
3149 {
3150 	u8 scan;
3151 
3152 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3153 		return 0;
3154 
3155 	if (!hdev_is_powered(hdev))
3156 		return 0;
3157 
3158 	if (mgmt_powering_down(hdev))
3159 		return 0;
3160 
3161 	if (hdev->scanning_paused)
3162 		return 0;
3163 
3164 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3165 	    disconnected_accept_list_entries(hdev))
3166 		scan = SCAN_PAGE;
3167 	else
3168 		scan = SCAN_DISABLED;
3169 
3170 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3171 		scan |= SCAN_INQUIRY;
3172 
3173 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3174 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3175 		return 0;
3176 
3177 	return hci_write_scan_enable_sync(hdev, scan);
3178 }
3179 
3180 int hci_update_name_sync(struct hci_dev *hdev)
3181 {
3182 	struct hci_cp_write_local_name cp;
3183 
3184 	memset(&cp, 0, sizeof(cp));
3185 
3186 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3187 
3188 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3189 					    sizeof(cp), &cp,
3190 					    HCI_CMD_TIMEOUT);
3191 }
3192 
3193 /* This function perform powered update HCI command sequence after the HCI init
3194  * sequence which end up resetting all states, the sequence is as follows:
3195  *
3196  * HCI_SSP_ENABLED(Enable SSP)
3197  * HCI_LE_ENABLED(Enable LE)
3198  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3199  * Update adv data)
3200  * Enable Authentication
3201  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3202  * Set Name -> Set EIR)
3203  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3204  */
3205 int hci_powered_update_sync(struct hci_dev *hdev)
3206 {
3207 	int err;
3208 
3209 	/* Register the available SMP channels (BR/EDR and LE) only when
3210 	 * successfully powering on the controller. This late
3211 	 * registration is required so that LE SMP can clearly decide if
3212 	 * the public address or static address is used.
3213 	 */
3214 	smp_register(hdev);
3215 
3216 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3217 	if (err)
3218 		return err;
3219 
3220 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3221 	if (err)
3222 		return err;
3223 
3224 	err = hci_powered_update_adv_sync(hdev);
3225 	if (err)
3226 		return err;
3227 
3228 	err = hci_write_auth_enable_sync(hdev);
3229 	if (err)
3230 		return err;
3231 
3232 	if (lmp_bredr_capable(hdev)) {
3233 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3234 			hci_write_fast_connectable_sync(hdev, true);
3235 		else
3236 			hci_write_fast_connectable_sync(hdev, false);
3237 		hci_update_scan_sync(hdev);
3238 		hci_update_class_sync(hdev);
3239 		hci_update_name_sync(hdev);
3240 		hci_update_eir_sync(hdev);
3241 	}
3242 
3243 	/* If forcing static address is in use or there is no public
3244 	 * address use the static address as random address (but skip
3245 	 * the HCI command if the current random address is already the
3246 	 * static one.
3247 	 *
3248 	 * In case BR/EDR has been disabled on a dual-mode controller
3249 	 * and a static address has been configured, then use that
3250 	 * address instead of the public BR/EDR address.
3251 	 */
3252 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3253 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3254 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3255 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3256 			return hci_set_random_addr_sync(hdev,
3257 							&hdev->static_addr);
3258 	}
3259 
3260 	return 0;
3261 }
3262 
3263 /**
3264  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3265  *				       (BD_ADDR) for a HCI device from
3266  *				       a firmware node property.
3267  * @hdev:	The HCI device
3268  *
3269  * Search the firmware node for 'local-bd-address'.
3270  *
3271  * All-zero BD addresses are rejected, because those could be properties
3272  * that exist in the firmware tables, but were not updated by the firmware. For
3273  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3274  */
3275 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3276 {
3277 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3278 	bdaddr_t ba;
3279 	int ret;
3280 
3281 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3282 					    (u8 *)&ba, sizeof(ba));
3283 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3284 		return;
3285 
3286 	bacpy(&hdev->public_addr, &ba);
3287 }
3288 
3289 struct hci_init_stage {
3290 	int (*func)(struct hci_dev *hdev);
3291 };
3292 
3293 /* Run init stage NULL terminated function table */
3294 static int hci_init_stage_sync(struct hci_dev *hdev,
3295 			       const struct hci_init_stage *stage)
3296 {
3297 	size_t i;
3298 
3299 	for (i = 0; stage[i].func; i++) {
3300 		int err;
3301 
3302 		err = stage[i].func(hdev);
3303 		if (err)
3304 			return err;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 /* Read Local Version */
3311 static int hci_read_local_version_sync(struct hci_dev *hdev)
3312 {
3313 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3314 				     0, NULL, HCI_CMD_TIMEOUT);
3315 }
3316 
3317 /* Read BD Address */
3318 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3319 {
3320 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3321 				     0, NULL, HCI_CMD_TIMEOUT);
3322 }
3323 
3324 #define HCI_INIT(_func) \
3325 { \
3326 	.func = _func, \
3327 }
3328 
3329 static const struct hci_init_stage hci_init0[] = {
3330 	/* HCI_OP_READ_LOCAL_VERSION */
3331 	HCI_INIT(hci_read_local_version_sync),
3332 	/* HCI_OP_READ_BD_ADDR */
3333 	HCI_INIT(hci_read_bd_addr_sync),
3334 	{}
3335 };
3336 
3337 int hci_reset_sync(struct hci_dev *hdev)
3338 {
3339 	int err;
3340 
3341 	set_bit(HCI_RESET, &hdev->flags);
3342 
3343 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3344 				    HCI_CMD_TIMEOUT);
3345 	if (err)
3346 		return err;
3347 
3348 	return 0;
3349 }
3350 
3351 static int hci_init0_sync(struct hci_dev *hdev)
3352 {
3353 	int err;
3354 
3355 	bt_dev_dbg(hdev, "");
3356 
3357 	/* Reset */
3358 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3359 		err = hci_reset_sync(hdev);
3360 		if (err)
3361 			return err;
3362 	}
3363 
3364 	return hci_init_stage_sync(hdev, hci_init0);
3365 }
3366 
3367 static int hci_unconf_init_sync(struct hci_dev *hdev)
3368 {
3369 	int err;
3370 
3371 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3372 		return 0;
3373 
3374 	err = hci_init0_sync(hdev);
3375 	if (err < 0)
3376 		return err;
3377 
3378 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3379 		hci_debugfs_create_basic(hdev);
3380 
3381 	return 0;
3382 }
3383 
3384 /* Read Local Supported Features. */
3385 static int hci_read_local_features_sync(struct hci_dev *hdev)
3386 {
3387 	 /* Not all AMP controllers support this command */
3388 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3389 		return 0;
3390 
3391 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3392 				     0, NULL, HCI_CMD_TIMEOUT);
3393 }
3394 
3395 /* BR Controller init stage 1 command sequence */
3396 static const struct hci_init_stage br_init1[] = {
3397 	/* HCI_OP_READ_LOCAL_FEATURES */
3398 	HCI_INIT(hci_read_local_features_sync),
3399 	/* HCI_OP_READ_LOCAL_VERSION */
3400 	HCI_INIT(hci_read_local_version_sync),
3401 	/* HCI_OP_READ_BD_ADDR */
3402 	HCI_INIT(hci_read_bd_addr_sync),
3403 	{}
3404 };
3405 
3406 /* Read Local Commands */
3407 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3408 {
3409 	/* All Bluetooth 1.2 and later controllers should support the
3410 	 * HCI command for reading the local supported commands.
3411 	 *
3412 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3413 	 * but do not have support for this command. If that is the case,
3414 	 * the driver can quirk the behavior and skip reading the local
3415 	 * supported commands.
3416 	 */
3417 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3418 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3419 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3420 					     0, NULL, HCI_CMD_TIMEOUT);
3421 
3422 	return 0;
3423 }
3424 
3425 /* Read Local AMP Info */
3426 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3427 {
3428 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3429 				     0, NULL, HCI_CMD_TIMEOUT);
3430 }
3431 
3432 /* Read Data Blk size */
3433 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3434 {
3435 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3436 				     0, NULL, HCI_CMD_TIMEOUT);
3437 }
3438 
3439 /* Read Flow Control Mode */
3440 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3441 {
3442 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3443 				     0, NULL, HCI_CMD_TIMEOUT);
3444 }
3445 
3446 /* Read Location Data */
3447 static int hci_read_location_data_sync(struct hci_dev *hdev)
3448 {
3449 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3450 				     0, NULL, HCI_CMD_TIMEOUT);
3451 }
3452 
3453 /* AMP Controller init stage 1 command sequence */
3454 static const struct hci_init_stage amp_init1[] = {
3455 	/* HCI_OP_READ_LOCAL_VERSION */
3456 	HCI_INIT(hci_read_local_version_sync),
3457 	/* HCI_OP_READ_LOCAL_COMMANDS */
3458 	HCI_INIT(hci_read_local_cmds_sync),
3459 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3460 	HCI_INIT(hci_read_local_amp_info_sync),
3461 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3462 	HCI_INIT(hci_read_data_block_size_sync),
3463 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3464 	HCI_INIT(hci_read_flow_control_mode_sync),
3465 	/* HCI_OP_READ_LOCATION_DATA */
3466 	HCI_INIT(hci_read_location_data_sync),
3467 	{}
3468 };
3469 
3470 static int hci_init1_sync(struct hci_dev *hdev)
3471 {
3472 	int err;
3473 
3474 	bt_dev_dbg(hdev, "");
3475 
3476 	/* Reset */
3477 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3478 		err = hci_reset_sync(hdev);
3479 		if (err)
3480 			return err;
3481 	}
3482 
3483 	switch (hdev->dev_type) {
3484 	case HCI_PRIMARY:
3485 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3486 		return hci_init_stage_sync(hdev, br_init1);
3487 	case HCI_AMP:
3488 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3489 		return hci_init_stage_sync(hdev, amp_init1);
3490 	default:
3491 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3492 		break;
3493 	}
3494 
3495 	return 0;
3496 }
3497 
3498 /* AMP Controller init stage 2 command sequence */
3499 static const struct hci_init_stage amp_init2[] = {
3500 	/* HCI_OP_READ_LOCAL_FEATURES */
3501 	HCI_INIT(hci_read_local_features_sync),
3502 	{}
3503 };
3504 
3505 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3506 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3507 {
3508 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3509 				     0, NULL, HCI_CMD_TIMEOUT);
3510 }
3511 
3512 /* Read Class of Device */
3513 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3514 {
3515 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3516 				     0, NULL, HCI_CMD_TIMEOUT);
3517 }
3518 
3519 /* Read Local Name */
3520 static int hci_read_local_name_sync(struct hci_dev *hdev)
3521 {
3522 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3523 				     0, NULL, HCI_CMD_TIMEOUT);
3524 }
3525 
3526 /* Read Voice Setting */
3527 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3528 {
3529 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3530 				     0, NULL, HCI_CMD_TIMEOUT);
3531 }
3532 
3533 /* Read Number of Supported IAC */
3534 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3535 {
3536 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3537 				     0, NULL, HCI_CMD_TIMEOUT);
3538 }
3539 
3540 /* Read Current IAC LAP */
3541 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3542 {
3543 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3544 				     0, NULL, HCI_CMD_TIMEOUT);
3545 }
3546 
3547 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3548 				     u8 cond_type, bdaddr_t *bdaddr,
3549 				     u8 auto_accept)
3550 {
3551 	struct hci_cp_set_event_filter cp;
3552 
3553 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3554 		return 0;
3555 
3556 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3557 		return 0;
3558 
3559 	memset(&cp, 0, sizeof(cp));
3560 	cp.flt_type = flt_type;
3561 
3562 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3563 		cp.cond_type = cond_type;
3564 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3565 		cp.addr_conn_flt.auto_accept = auto_accept;
3566 	}
3567 
3568 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3569 				     flt_type == HCI_FLT_CLEAR_ALL ?
3570 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3571 				     HCI_CMD_TIMEOUT);
3572 }
3573 
3574 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3575 {
3576 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3577 		return 0;
3578 
3579 	/* In theory the state machine should not reach here unless
3580 	 * a hci_set_event_filter_sync() call succeeds, but we do
3581 	 * the check both for parity and as a future reminder.
3582 	 */
3583 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3584 		return 0;
3585 
3586 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3587 					 BDADDR_ANY, 0x00);
3588 }
3589 
3590 /* Connection accept timeout ~20 secs */
3591 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3592 {
3593 	__le16 param = cpu_to_le16(0x7d00);
3594 
3595 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3596 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3597 }
3598 
3599 /* BR Controller init stage 2 command sequence */
3600 static const struct hci_init_stage br_init2[] = {
3601 	/* HCI_OP_READ_BUFFER_SIZE */
3602 	HCI_INIT(hci_read_buffer_size_sync),
3603 	/* HCI_OP_READ_CLASS_OF_DEV */
3604 	HCI_INIT(hci_read_dev_class_sync),
3605 	/* HCI_OP_READ_LOCAL_NAME */
3606 	HCI_INIT(hci_read_local_name_sync),
3607 	/* HCI_OP_READ_VOICE_SETTING */
3608 	HCI_INIT(hci_read_voice_setting_sync),
3609 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3610 	HCI_INIT(hci_read_num_supported_iac_sync),
3611 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3612 	HCI_INIT(hci_read_current_iac_lap_sync),
3613 	/* HCI_OP_SET_EVENT_FLT */
3614 	HCI_INIT(hci_clear_event_filter_sync),
3615 	/* HCI_OP_WRITE_CA_TIMEOUT */
3616 	HCI_INIT(hci_write_ca_timeout_sync),
3617 	{}
3618 };
3619 
3620 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3621 {
3622 	u8 mode = 0x01;
3623 
3624 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3625 		return 0;
3626 
3627 	/* When SSP is available, then the host features page
3628 	 * should also be available as well. However some
3629 	 * controllers list the max_page as 0 as long as SSP
3630 	 * has not been enabled. To achieve proper debugging
3631 	 * output, force the minimum max_page to 1 at least.
3632 	 */
3633 	hdev->max_page = 0x01;
3634 
3635 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3636 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3637 }
3638 
3639 static int hci_write_eir_sync(struct hci_dev *hdev)
3640 {
3641 	struct hci_cp_write_eir cp;
3642 
3643 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3644 		return 0;
3645 
3646 	memset(hdev->eir, 0, sizeof(hdev->eir));
3647 	memset(&cp, 0, sizeof(cp));
3648 
3649 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3650 				     HCI_CMD_TIMEOUT);
3651 }
3652 
3653 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3654 {
3655 	u8 mode;
3656 
3657 	if (!lmp_inq_rssi_capable(hdev) &&
3658 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3659 		return 0;
3660 
3661 	/* If Extended Inquiry Result events are supported, then
3662 	 * they are clearly preferred over Inquiry Result with RSSI
3663 	 * events.
3664 	 */
3665 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3666 
3667 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3668 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3669 }
3670 
3671 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3672 {
3673 	if (!lmp_inq_tx_pwr_capable(hdev))
3674 		return 0;
3675 
3676 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3677 				     0, NULL, HCI_CMD_TIMEOUT);
3678 }
3679 
3680 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3681 {
3682 	struct hci_cp_read_local_ext_features cp;
3683 
3684 	if (!lmp_ext_feat_capable(hdev))
3685 		return 0;
3686 
3687 	memset(&cp, 0, sizeof(cp));
3688 	cp.page = page;
3689 
3690 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3691 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3692 }
3693 
3694 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3695 {
3696 	return hci_read_local_ext_features_sync(hdev, 0x01);
3697 }
3698 
3699 /* HCI Controller init stage 2 command sequence */
3700 static const struct hci_init_stage hci_init2[] = {
3701 	/* HCI_OP_READ_LOCAL_COMMANDS */
3702 	HCI_INIT(hci_read_local_cmds_sync),
3703 	/* HCI_OP_WRITE_SSP_MODE */
3704 	HCI_INIT(hci_write_ssp_mode_1_sync),
3705 	/* HCI_OP_WRITE_EIR */
3706 	HCI_INIT(hci_write_eir_sync),
3707 	/* HCI_OP_WRITE_INQUIRY_MODE */
3708 	HCI_INIT(hci_write_inquiry_mode_sync),
3709 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3710 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3711 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3712 	HCI_INIT(hci_read_local_ext_features_1_sync),
3713 	/* HCI_OP_WRITE_AUTH_ENABLE */
3714 	HCI_INIT(hci_write_auth_enable_sync),
3715 	{}
3716 };
3717 
3718 /* Read LE Buffer Size */
3719 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3720 {
3721 	/* Use Read LE Buffer Size V2 if supported */
3722 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3723 		return __hci_cmd_sync_status(hdev,
3724 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3725 					     0, NULL, HCI_CMD_TIMEOUT);
3726 
3727 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3728 				     0, NULL, HCI_CMD_TIMEOUT);
3729 }
3730 
3731 /* Read LE Local Supported Features */
3732 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3733 {
3734 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3735 				     0, NULL, HCI_CMD_TIMEOUT);
3736 }
3737 
3738 /* Read LE Supported States */
3739 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3740 {
3741 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3742 				     0, NULL, HCI_CMD_TIMEOUT);
3743 }
3744 
3745 /* LE Controller init stage 2 command sequence */
3746 static const struct hci_init_stage le_init2[] = {
3747 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3748 	HCI_INIT(hci_le_read_local_features_sync),
3749 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3750 	HCI_INIT(hci_le_read_buffer_size_sync),
3751 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3752 	HCI_INIT(hci_le_read_supported_states_sync),
3753 	{}
3754 };
3755 
3756 static int hci_init2_sync(struct hci_dev *hdev)
3757 {
3758 	int err;
3759 
3760 	bt_dev_dbg(hdev, "");
3761 
3762 	if (hdev->dev_type == HCI_AMP)
3763 		return hci_init_stage_sync(hdev, amp_init2);
3764 
3765 	err = hci_init_stage_sync(hdev, hci_init2);
3766 	if (err)
3767 		return err;
3768 
3769 	if (lmp_bredr_capable(hdev)) {
3770 		err = hci_init_stage_sync(hdev, br_init2);
3771 		if (err)
3772 			return err;
3773 	} else {
3774 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3775 	}
3776 
3777 	if (lmp_le_capable(hdev)) {
3778 		err = hci_init_stage_sync(hdev, le_init2);
3779 		if (err)
3780 			return err;
3781 		/* LE-only controllers have LE implicitly enabled */
3782 		if (!lmp_bredr_capable(hdev))
3783 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3784 	}
3785 
3786 	return 0;
3787 }
3788 
3789 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3790 {
3791 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3792 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3793 	 * command otherwise.
3794 	 */
3795 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3796 
3797 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3798 	 * any event mask for pre 1.2 devices.
3799 	 */
3800 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3801 		return 0;
3802 
3803 	if (lmp_bredr_capable(hdev)) {
3804 		events[4] |= 0x01; /* Flow Specification Complete */
3805 
3806 		/* Don't set Disconnect Complete and mode change when
3807 		 * suspended as that would wakeup the host when disconnecting
3808 		 * due to suspend.
3809 		 */
3810 		if (hdev->suspended) {
3811 			events[0] &= 0xef;
3812 			events[2] &= 0xf7;
3813 		}
3814 	} else {
3815 		/* Use a different default for LE-only devices */
3816 		memset(events, 0, sizeof(events));
3817 		events[1] |= 0x20; /* Command Complete */
3818 		events[1] |= 0x40; /* Command Status */
3819 		events[1] |= 0x80; /* Hardware Error */
3820 
3821 		/* If the controller supports the Disconnect command, enable
3822 		 * the corresponding event. In addition enable packet flow
3823 		 * control related events.
3824 		 */
3825 		if (hdev->commands[0] & 0x20) {
3826 			/* Don't set Disconnect Complete when suspended as that
3827 			 * would wakeup the host when disconnecting due to
3828 			 * suspend.
3829 			 */
3830 			if (!hdev->suspended)
3831 				events[0] |= 0x10; /* Disconnection Complete */
3832 			events[2] |= 0x04; /* Number of Completed Packets */
3833 			events[3] |= 0x02; /* Data Buffer Overflow */
3834 		}
3835 
3836 		/* If the controller supports the Read Remote Version
3837 		 * Information command, enable the corresponding event.
3838 		 */
3839 		if (hdev->commands[2] & 0x80)
3840 			events[1] |= 0x08; /* Read Remote Version Information
3841 					    * Complete
3842 					    */
3843 
3844 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3845 			events[0] |= 0x80; /* Encryption Change */
3846 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3847 		}
3848 	}
3849 
3850 	if (lmp_inq_rssi_capable(hdev) ||
3851 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3852 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3853 
3854 	if (lmp_ext_feat_capable(hdev))
3855 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3856 
3857 	if (lmp_esco_capable(hdev)) {
3858 		events[5] |= 0x08; /* Synchronous Connection Complete */
3859 		events[5] |= 0x10; /* Synchronous Connection Changed */
3860 	}
3861 
3862 	if (lmp_sniffsubr_capable(hdev))
3863 		events[5] |= 0x20; /* Sniff Subrating */
3864 
3865 	if (lmp_pause_enc_capable(hdev))
3866 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3867 
3868 	if (lmp_ext_inq_capable(hdev))
3869 		events[5] |= 0x40; /* Extended Inquiry Result */
3870 
3871 	if (lmp_no_flush_capable(hdev))
3872 		events[7] |= 0x01; /* Enhanced Flush Complete */
3873 
3874 	if (lmp_lsto_capable(hdev))
3875 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3876 
3877 	if (lmp_ssp_capable(hdev)) {
3878 		events[6] |= 0x01;	/* IO Capability Request */
3879 		events[6] |= 0x02;	/* IO Capability Response */
3880 		events[6] |= 0x04;	/* User Confirmation Request */
3881 		events[6] |= 0x08;	/* User Passkey Request */
3882 		events[6] |= 0x10;	/* Remote OOB Data Request */
3883 		events[6] |= 0x20;	/* Simple Pairing Complete */
3884 		events[7] |= 0x04;	/* User Passkey Notification */
3885 		events[7] |= 0x08;	/* Keypress Notification */
3886 		events[7] |= 0x10;	/* Remote Host Supported
3887 					 * Features Notification
3888 					 */
3889 	}
3890 
3891 	if (lmp_le_capable(hdev))
3892 		events[7] |= 0x20;	/* LE Meta-Event */
3893 
3894 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3895 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3896 }
3897 
3898 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3899 {
3900 	struct hci_cp_read_stored_link_key cp;
3901 
3902 	if (!(hdev->commands[6] & 0x20) ||
3903 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3904 		return 0;
3905 
3906 	memset(&cp, 0, sizeof(cp));
3907 	bacpy(&cp.bdaddr, BDADDR_ANY);
3908 	cp.read_all = 0x01;
3909 
3910 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3911 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3912 }
3913 
3914 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3915 {
3916 	struct hci_cp_write_def_link_policy cp;
3917 	u16 link_policy = 0;
3918 
3919 	if (!(hdev->commands[5] & 0x10))
3920 		return 0;
3921 
3922 	memset(&cp, 0, sizeof(cp));
3923 
3924 	if (lmp_rswitch_capable(hdev))
3925 		link_policy |= HCI_LP_RSWITCH;
3926 	if (lmp_hold_capable(hdev))
3927 		link_policy |= HCI_LP_HOLD;
3928 	if (lmp_sniff_capable(hdev))
3929 		link_policy |= HCI_LP_SNIFF;
3930 	if (lmp_park_capable(hdev))
3931 		link_policy |= HCI_LP_PARK;
3932 
3933 	cp.policy = cpu_to_le16(link_policy);
3934 
3935 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3936 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3937 }
3938 
3939 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3940 {
3941 	if (!(hdev->commands[8] & 0x01))
3942 		return 0;
3943 
3944 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3945 				     0, NULL, HCI_CMD_TIMEOUT);
3946 }
3947 
3948 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3949 {
3950 	if (!(hdev->commands[18] & 0x04) ||
3951 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3952 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3953 		return 0;
3954 
3955 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3956 				     0, NULL, HCI_CMD_TIMEOUT);
3957 }
3958 
3959 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3960 {
3961 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3962 	 * support the Read Page Scan Type command. Check support for
3963 	 * this command in the bit mask of supported commands.
3964 	 */
3965 	if (!(hdev->commands[13] & 0x01))
3966 		return 0;
3967 
3968 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3969 				     0, NULL, HCI_CMD_TIMEOUT);
3970 }
3971 
3972 /* Read features beyond page 1 if available */
3973 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3974 {
3975 	u8 page;
3976 	int err;
3977 
3978 	if (!lmp_ext_feat_capable(hdev))
3979 		return 0;
3980 
3981 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3982 	     page++) {
3983 		err = hci_read_local_ext_features_sync(hdev, page);
3984 		if (err)
3985 			return err;
3986 	}
3987 
3988 	return 0;
3989 }
3990 
3991 /* HCI Controller init stage 3 command sequence */
3992 static const struct hci_init_stage hci_init3[] = {
3993 	/* HCI_OP_SET_EVENT_MASK */
3994 	HCI_INIT(hci_set_event_mask_sync),
3995 	/* HCI_OP_READ_STORED_LINK_KEY */
3996 	HCI_INIT(hci_read_stored_link_key_sync),
3997 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3998 	HCI_INIT(hci_setup_link_policy_sync),
3999 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4000 	HCI_INIT(hci_read_page_scan_activity_sync),
4001 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4002 	HCI_INIT(hci_read_def_err_data_reporting_sync),
4003 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
4004 	HCI_INIT(hci_read_page_scan_type_sync),
4005 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4006 	HCI_INIT(hci_read_local_ext_features_all_sync),
4007 	{}
4008 };
4009 
4010 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4011 {
4012 	u8 events[8];
4013 
4014 	if (!lmp_le_capable(hdev))
4015 		return 0;
4016 
4017 	memset(events, 0, sizeof(events));
4018 
4019 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4020 		events[0] |= 0x10;	/* LE Long Term Key Request */
4021 
4022 	/* If controller supports the Connection Parameters Request
4023 	 * Link Layer Procedure, enable the corresponding event.
4024 	 */
4025 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4026 		/* LE Remote Connection Parameter Request */
4027 		events[0] |= 0x20;
4028 
4029 	/* If the controller supports the Data Length Extension
4030 	 * feature, enable the corresponding event.
4031 	 */
4032 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4033 		events[0] |= 0x40;	/* LE Data Length Change */
4034 
4035 	/* If the controller supports LL Privacy feature or LE Extended Adv,
4036 	 * enable the corresponding event.
4037 	 */
4038 	if (use_enhanced_conn_complete(hdev))
4039 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
4040 
4041 	/* If the controller supports Extended Scanner Filter
4042 	 * Policies, enable the corresponding event.
4043 	 */
4044 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4045 		events[1] |= 0x04;	/* LE Direct Advertising Report */
4046 
4047 	/* If the controller supports Channel Selection Algorithm #2
4048 	 * feature, enable the corresponding event.
4049 	 */
4050 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4051 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
4052 
4053 	/* If the controller supports the LE Set Scan Enable command,
4054 	 * enable the corresponding advertising report event.
4055 	 */
4056 	if (hdev->commands[26] & 0x08)
4057 		events[0] |= 0x02;	/* LE Advertising Report */
4058 
4059 	/* If the controller supports the LE Create Connection
4060 	 * command, enable the corresponding event.
4061 	 */
4062 	if (hdev->commands[26] & 0x10)
4063 		events[0] |= 0x01;	/* LE Connection Complete */
4064 
4065 	/* If the controller supports the LE Connection Update
4066 	 * command, enable the corresponding event.
4067 	 */
4068 	if (hdev->commands[27] & 0x04)
4069 		events[0] |= 0x04;	/* LE Connection Update Complete */
4070 
4071 	/* If the controller supports the LE Read Remote Used Features
4072 	 * command, enable the corresponding event.
4073 	 */
4074 	if (hdev->commands[27] & 0x20)
4075 		/* LE Read Remote Used Features Complete */
4076 		events[0] |= 0x08;
4077 
4078 	/* If the controller supports the LE Read Local P-256
4079 	 * Public Key command, enable the corresponding event.
4080 	 */
4081 	if (hdev->commands[34] & 0x02)
4082 		/* LE Read Local P-256 Public Key Complete */
4083 		events[0] |= 0x80;
4084 
4085 	/* If the controller supports the LE Generate DHKey
4086 	 * command, enable the corresponding event.
4087 	 */
4088 	if (hdev->commands[34] & 0x04)
4089 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4090 
4091 	/* If the controller supports the LE Set Default PHY or
4092 	 * LE Set PHY commands, enable the corresponding event.
4093 	 */
4094 	if (hdev->commands[35] & (0x20 | 0x40))
4095 		events[1] |= 0x08;        /* LE PHY Update Complete */
4096 
4097 	/* If the controller supports LE Set Extended Scan Parameters
4098 	 * and LE Set Extended Scan Enable commands, enable the
4099 	 * corresponding event.
4100 	 */
4101 	if (use_ext_scan(hdev))
4102 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4103 
4104 	/* If the controller supports the LE Extended Advertising
4105 	 * command, enable the corresponding event.
4106 	 */
4107 	if (ext_adv_capable(hdev))
4108 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4109 
4110 	if (cis_capable(hdev)) {
4111 		events[3] |= 0x01;	/* LE CIS Established */
4112 		if (cis_peripheral_capable(hdev))
4113 			events[3] |= 0x02; /* LE CIS Request */
4114 	}
4115 
4116 	if (bis_capable(hdev)) {
4117 		events[1] |= 0x20;	/* LE PA Report */
4118 		events[1] |= 0x40;	/* LE PA Sync Established */
4119 		events[3] |= 0x04;	/* LE Create BIG Complete */
4120 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4121 		events[3] |= 0x10;	/* LE BIG Sync Established */
4122 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4123 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
4124 	}
4125 
4126 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4127 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4128 }
4129 
4130 /* Read LE Advertising Channel TX Power */
4131 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4132 {
4133 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4134 		/* HCI TS spec forbids mixing of legacy and extended
4135 		 * advertising commands wherein READ_ADV_TX_POWER is
4136 		 * also included. So do not call it if extended adv
4137 		 * is supported otherwise controller will return
4138 		 * COMMAND_DISALLOWED for extended commands.
4139 		 */
4140 		return __hci_cmd_sync_status(hdev,
4141 					       HCI_OP_LE_READ_ADV_TX_POWER,
4142 					       0, NULL, HCI_CMD_TIMEOUT);
4143 	}
4144 
4145 	return 0;
4146 }
4147 
4148 /* Read LE Min/Max Tx Power*/
4149 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4150 {
4151 	if (!(hdev->commands[38] & 0x80) ||
4152 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4153 		return 0;
4154 
4155 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4156 				     0, NULL, HCI_CMD_TIMEOUT);
4157 }
4158 
4159 /* Read LE Accept List Size */
4160 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4161 {
4162 	if (!(hdev->commands[26] & 0x40))
4163 		return 0;
4164 
4165 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4166 				     0, NULL, HCI_CMD_TIMEOUT);
4167 }
4168 
4169 /* Clear LE Accept List */
4170 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4171 {
4172 	if (!(hdev->commands[26] & 0x80))
4173 		return 0;
4174 
4175 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4176 				     HCI_CMD_TIMEOUT);
4177 }
4178 
4179 /* Read LE Resolving List Size */
4180 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4181 {
4182 	if (!(hdev->commands[34] & 0x40))
4183 		return 0;
4184 
4185 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4186 				     0, NULL, HCI_CMD_TIMEOUT);
4187 }
4188 
4189 /* Clear LE Resolving List */
4190 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4191 {
4192 	if (!(hdev->commands[34] & 0x20))
4193 		return 0;
4194 
4195 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4196 				     HCI_CMD_TIMEOUT);
4197 }
4198 
4199 /* Set RPA timeout */
4200 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4201 {
4202 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4203 
4204 	if (!(hdev->commands[35] & 0x04) ||
4205 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4206 		return 0;
4207 
4208 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4209 				     sizeof(timeout), &timeout,
4210 				     HCI_CMD_TIMEOUT);
4211 }
4212 
4213 /* Read LE Maximum Data Length */
4214 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4215 {
4216 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4217 		return 0;
4218 
4219 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4220 				     HCI_CMD_TIMEOUT);
4221 }
4222 
4223 /* Read LE Suggested Default Data Length */
4224 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4225 {
4226 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4227 		return 0;
4228 
4229 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4230 				     HCI_CMD_TIMEOUT);
4231 }
4232 
4233 /* Read LE Number of Supported Advertising Sets */
4234 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4235 {
4236 	if (!ext_adv_capable(hdev))
4237 		return 0;
4238 
4239 	return __hci_cmd_sync_status(hdev,
4240 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4241 				     0, NULL, HCI_CMD_TIMEOUT);
4242 }
4243 
4244 /* Write LE Host Supported */
4245 static int hci_set_le_support_sync(struct hci_dev *hdev)
4246 {
4247 	struct hci_cp_write_le_host_supported cp;
4248 
4249 	/* LE-only devices do not support explicit enablement */
4250 	if (!lmp_bredr_capable(hdev))
4251 		return 0;
4252 
4253 	memset(&cp, 0, sizeof(cp));
4254 
4255 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4256 		cp.le = 0x01;
4257 		cp.simul = 0x00;
4258 	}
4259 
4260 	if (cp.le == lmp_host_le_capable(hdev))
4261 		return 0;
4262 
4263 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4264 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4265 }
4266 
4267 /* LE Set Host Feature */
4268 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4269 {
4270 	struct hci_cp_le_set_host_feature cp;
4271 
4272 	if (!iso_capable(hdev))
4273 		return 0;
4274 
4275 	memset(&cp, 0, sizeof(cp));
4276 
4277 	/* Isochronous Channels (Host Support) */
4278 	cp.bit_number = 32;
4279 	cp.bit_value = 1;
4280 
4281 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4282 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4283 }
4284 
4285 /* LE Controller init stage 3 command sequence */
4286 static const struct hci_init_stage le_init3[] = {
4287 	/* HCI_OP_LE_SET_EVENT_MASK */
4288 	HCI_INIT(hci_le_set_event_mask_sync),
4289 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4290 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4291 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4292 	HCI_INIT(hci_le_read_tx_power_sync),
4293 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4294 	HCI_INIT(hci_le_read_accept_list_size_sync),
4295 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4296 	HCI_INIT(hci_le_clear_accept_list_sync),
4297 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4298 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4299 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4300 	HCI_INIT(hci_le_clear_resolv_list_sync),
4301 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4302 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4303 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4304 	HCI_INIT(hci_le_read_max_data_len_sync),
4305 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4306 	HCI_INIT(hci_le_read_def_data_len_sync),
4307 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4308 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4309 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4310 	HCI_INIT(hci_set_le_support_sync),
4311 	/* HCI_OP_LE_SET_HOST_FEATURE */
4312 	HCI_INIT(hci_le_set_host_feature_sync),
4313 	{}
4314 };
4315 
4316 static int hci_init3_sync(struct hci_dev *hdev)
4317 {
4318 	int err;
4319 
4320 	bt_dev_dbg(hdev, "");
4321 
4322 	err = hci_init_stage_sync(hdev, hci_init3);
4323 	if (err)
4324 		return err;
4325 
4326 	if (lmp_le_capable(hdev))
4327 		return hci_init_stage_sync(hdev, le_init3);
4328 
4329 	return 0;
4330 }
4331 
4332 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4333 {
4334 	struct hci_cp_delete_stored_link_key cp;
4335 
4336 	/* Some Broadcom based Bluetooth controllers do not support the
4337 	 * Delete Stored Link Key command. They are clearly indicating its
4338 	 * absence in the bit mask of supported commands.
4339 	 *
4340 	 * Check the supported commands and only if the command is marked
4341 	 * as supported send it. If not supported assume that the controller
4342 	 * does not have actual support for stored link keys which makes this
4343 	 * command redundant anyway.
4344 	 *
4345 	 * Some controllers indicate that they support handling deleting
4346 	 * stored link keys, but they don't. The quirk lets a driver
4347 	 * just disable this command.
4348 	 */
4349 	if (!(hdev->commands[6] & 0x80) ||
4350 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4351 		return 0;
4352 
4353 	memset(&cp, 0, sizeof(cp));
4354 	bacpy(&cp.bdaddr, BDADDR_ANY);
4355 	cp.delete_all = 0x01;
4356 
4357 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4358 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4359 }
4360 
4361 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4362 {
4363 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4364 	bool changed = false;
4365 
4366 	/* Set event mask page 2 if the HCI command for it is supported */
4367 	if (!(hdev->commands[22] & 0x04))
4368 		return 0;
4369 
4370 	/* If Connectionless Peripheral Broadcast central role is supported
4371 	 * enable all necessary events for it.
4372 	 */
4373 	if (lmp_cpb_central_capable(hdev)) {
4374 		events[1] |= 0x40;	/* Triggered Clock Capture */
4375 		events[1] |= 0x80;	/* Synchronization Train Complete */
4376 		events[2] |= 0x08;	/* Truncated Page Complete */
4377 		events[2] |= 0x20;	/* CPB Channel Map Change */
4378 		changed = true;
4379 	}
4380 
4381 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4382 	 * enable all necessary events for it.
4383 	 */
4384 	if (lmp_cpb_peripheral_capable(hdev)) {
4385 		events[2] |= 0x01;	/* Synchronization Train Received */
4386 		events[2] |= 0x02;	/* CPB Receive */
4387 		events[2] |= 0x04;	/* CPB Timeout */
4388 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4389 		changed = true;
4390 	}
4391 
4392 	/* Enable Authenticated Payload Timeout Expired event if supported */
4393 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4394 		events[2] |= 0x80;
4395 		changed = true;
4396 	}
4397 
4398 	/* Some Broadcom based controllers indicate support for Set Event
4399 	 * Mask Page 2 command, but then actually do not support it. Since
4400 	 * the default value is all bits set to zero, the command is only
4401 	 * required if the event mask has to be changed. In case no change
4402 	 * to the event mask is needed, skip this command.
4403 	 */
4404 	if (!changed)
4405 		return 0;
4406 
4407 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4408 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4409 }
4410 
4411 /* Read local codec list if the HCI command is supported */
4412 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4413 {
4414 	if (hdev->commands[45] & 0x04)
4415 		hci_read_supported_codecs_v2(hdev);
4416 	else if (hdev->commands[29] & 0x20)
4417 		hci_read_supported_codecs(hdev);
4418 
4419 	return 0;
4420 }
4421 
4422 /* Read local pairing options if the HCI command is supported */
4423 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4424 {
4425 	if (!(hdev->commands[41] & 0x08))
4426 		return 0;
4427 
4428 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4429 				     0, NULL, HCI_CMD_TIMEOUT);
4430 }
4431 
4432 /* Get MWS transport configuration if the HCI command is supported */
4433 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4434 {
4435 	if (!mws_transport_config_capable(hdev))
4436 		return 0;
4437 
4438 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4439 				     0, NULL, HCI_CMD_TIMEOUT);
4440 }
4441 
4442 /* Check for Synchronization Train support */
4443 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4444 {
4445 	if (!lmp_sync_train_capable(hdev))
4446 		return 0;
4447 
4448 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4449 				     0, NULL, HCI_CMD_TIMEOUT);
4450 }
4451 
4452 /* Enable Secure Connections if supported and configured */
4453 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4454 {
4455 	u8 support = 0x01;
4456 
4457 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4458 	    !bredr_sc_enabled(hdev))
4459 		return 0;
4460 
4461 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4462 				     sizeof(support), &support,
4463 				     HCI_CMD_TIMEOUT);
4464 }
4465 
4466 /* Set erroneous data reporting if supported to the wideband speech
4467  * setting value
4468  */
4469 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4470 {
4471 	struct hci_cp_write_def_err_data_reporting cp;
4472 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4473 
4474 	if (!(hdev->commands[18] & 0x08) ||
4475 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4476 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4477 		return 0;
4478 
4479 	if (enabled == hdev->err_data_reporting)
4480 		return 0;
4481 
4482 	memset(&cp, 0, sizeof(cp));
4483 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4484 				ERR_DATA_REPORTING_DISABLED;
4485 
4486 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4487 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4488 }
4489 
4490 static const struct hci_init_stage hci_init4[] = {
4491 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4492 	HCI_INIT(hci_delete_stored_link_key_sync),
4493 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4494 	HCI_INIT(hci_set_event_mask_page_2_sync),
4495 	/* HCI_OP_READ_LOCAL_CODECS */
4496 	HCI_INIT(hci_read_local_codecs_sync),
4497 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4498 	HCI_INIT(hci_read_local_pairing_opts_sync),
4499 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4500 	HCI_INIT(hci_get_mws_transport_config_sync),
4501 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4502 	HCI_INIT(hci_read_sync_train_params_sync),
4503 	/* HCI_OP_WRITE_SC_SUPPORT */
4504 	HCI_INIT(hci_write_sc_support_1_sync),
4505 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4506 	HCI_INIT(hci_set_err_data_report_sync),
4507 	{}
4508 };
4509 
4510 /* Set Suggested Default Data Length to maximum if supported */
4511 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4512 {
4513 	struct hci_cp_le_write_def_data_len cp;
4514 
4515 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4516 		return 0;
4517 
4518 	memset(&cp, 0, sizeof(cp));
4519 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4520 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4521 
4522 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4523 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4524 }
4525 
4526 /* Set Default PHY parameters if command is supported, enables all supported
4527  * PHYs according to the LE Features bits.
4528  */
4529 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4530 {
4531 	struct hci_cp_le_set_default_phy cp;
4532 
4533 	if (!(hdev->commands[35] & 0x20)) {
4534 		/* If the command is not supported it means only 1M PHY is
4535 		 * supported.
4536 		 */
4537 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4538 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4539 		return 0;
4540 	}
4541 
4542 	memset(&cp, 0, sizeof(cp));
4543 	cp.all_phys = 0x00;
4544 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4545 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4546 
4547 	/* Enables 2M PHY if supported */
4548 	if (le_2m_capable(hdev)) {
4549 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4550 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4551 	}
4552 
4553 	/* Enables Coded PHY if supported */
4554 	if (le_coded_capable(hdev)) {
4555 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4556 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4557 	}
4558 
4559 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4560 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4561 }
4562 
4563 static const struct hci_init_stage le_init4[] = {
4564 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4565 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4566 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4567 	HCI_INIT(hci_le_set_default_phy_sync),
4568 	{}
4569 };
4570 
4571 static int hci_init4_sync(struct hci_dev *hdev)
4572 {
4573 	int err;
4574 
4575 	bt_dev_dbg(hdev, "");
4576 
4577 	err = hci_init_stage_sync(hdev, hci_init4);
4578 	if (err)
4579 		return err;
4580 
4581 	if (lmp_le_capable(hdev))
4582 		return hci_init_stage_sync(hdev, le_init4);
4583 
4584 	return 0;
4585 }
4586 
4587 static int hci_init_sync(struct hci_dev *hdev)
4588 {
4589 	int err;
4590 
4591 	err = hci_init1_sync(hdev);
4592 	if (err < 0)
4593 		return err;
4594 
4595 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4596 		hci_debugfs_create_basic(hdev);
4597 
4598 	err = hci_init2_sync(hdev);
4599 	if (err < 0)
4600 		return err;
4601 
4602 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4603 	 * BR/EDR/LE type controllers. AMP controllers only need the
4604 	 * first two stages of init.
4605 	 */
4606 	if (hdev->dev_type != HCI_PRIMARY)
4607 		return 0;
4608 
4609 	err = hci_init3_sync(hdev);
4610 	if (err < 0)
4611 		return err;
4612 
4613 	err = hci_init4_sync(hdev);
4614 	if (err < 0)
4615 		return err;
4616 
4617 	/* This function is only called when the controller is actually in
4618 	 * configured state. When the controller is marked as unconfigured,
4619 	 * this initialization procedure is not run.
4620 	 *
4621 	 * It means that it is possible that a controller runs through its
4622 	 * setup phase and then discovers missing settings. If that is the
4623 	 * case, then this function will not be called. It then will only
4624 	 * be called during the config phase.
4625 	 *
4626 	 * So only when in setup phase or config phase, create the debugfs
4627 	 * entries and register the SMP channels.
4628 	 */
4629 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4630 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4631 		return 0;
4632 
4633 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4634 		return 0;
4635 
4636 	hci_debugfs_create_common(hdev);
4637 
4638 	if (lmp_bredr_capable(hdev))
4639 		hci_debugfs_create_bredr(hdev);
4640 
4641 	if (lmp_le_capable(hdev))
4642 		hci_debugfs_create_le(hdev);
4643 
4644 	return 0;
4645 }
4646 
4647 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4648 
4649 static const struct {
4650 	unsigned long quirk;
4651 	const char *desc;
4652 } hci_broken_table[] = {
4653 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4654 			 "HCI Read Local Supported Commands not supported"),
4655 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4656 			 "HCI Delete Stored Link Key command is advertised, "
4657 			 "but not supported."),
4658 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4659 			 "HCI Read Default Erroneous Data Reporting command is "
4660 			 "advertised, but not supported."),
4661 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4662 			 "HCI Read Transmit Power Level command is advertised, "
4663 			 "but not supported."),
4664 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4665 			 "HCI Set Event Filter command not supported."),
4666 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4667 			 "HCI Enhanced Setup Synchronous Connection command is "
4668 			 "advertised, but not supported."),
4669 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4670 			 "HCI LE Set Random Private Address Timeout command is "
4671 			 "advertised, but not supported."),
4672 	HCI_QUIRK_BROKEN(LE_CODED,
4673 			 "HCI LE Coded PHY feature bit is set, "
4674 			 "but its usage is not supported.")
4675 };
4676 
4677 /* This function handles hdev setup stage:
4678  *
4679  * Calls hdev->setup
4680  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4681  */
4682 static int hci_dev_setup_sync(struct hci_dev *hdev)
4683 {
4684 	int ret = 0;
4685 	bool invalid_bdaddr;
4686 	size_t i;
4687 
4688 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4689 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4690 		return 0;
4691 
4692 	bt_dev_dbg(hdev, "");
4693 
4694 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4695 
4696 	if (hdev->setup)
4697 		ret = hdev->setup(hdev);
4698 
4699 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4700 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4701 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4702 	}
4703 
4704 	/* The transport driver can set the quirk to mark the
4705 	 * BD_ADDR invalid before creating the HCI device or in
4706 	 * its setup callback.
4707 	 */
4708 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4709 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4710 	if (!ret) {
4711 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4712 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
4713 			hci_dev_get_bd_addr_from_property(hdev);
4714 
4715 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4716 		    hdev->set_bdaddr) {
4717 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4718 			if (!ret)
4719 				invalid_bdaddr = false;
4720 		}
4721 	}
4722 
4723 	/* The transport driver can set these quirks before
4724 	 * creating the HCI device or in its setup callback.
4725 	 *
4726 	 * For the invalid BD_ADDR quirk it is possible that
4727 	 * it becomes a valid address if the bootloader does
4728 	 * provide it (see above).
4729 	 *
4730 	 * In case any of them is set, the controller has to
4731 	 * start up as unconfigured.
4732 	 */
4733 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4734 	    invalid_bdaddr)
4735 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4736 
4737 	/* For an unconfigured controller it is required to
4738 	 * read at least the version information provided by
4739 	 * the Read Local Version Information command.
4740 	 *
4741 	 * If the set_bdaddr driver callback is provided, then
4742 	 * also the original Bluetooth public device address
4743 	 * will be read using the Read BD Address command.
4744 	 */
4745 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4746 		return hci_unconf_init_sync(hdev);
4747 
4748 	return ret;
4749 }
4750 
4751 /* This function handles hdev init stage:
4752  *
4753  * Calls hci_dev_setup_sync to perform setup stage
4754  * Calls hci_init_sync to perform HCI command init sequence
4755  */
4756 static int hci_dev_init_sync(struct hci_dev *hdev)
4757 {
4758 	int ret;
4759 
4760 	bt_dev_dbg(hdev, "");
4761 
4762 	atomic_set(&hdev->cmd_cnt, 1);
4763 	set_bit(HCI_INIT, &hdev->flags);
4764 
4765 	ret = hci_dev_setup_sync(hdev);
4766 
4767 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4768 		/* If public address change is configured, ensure that
4769 		 * the address gets programmed. If the driver does not
4770 		 * support changing the public address, fail the power
4771 		 * on procedure.
4772 		 */
4773 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4774 		    hdev->set_bdaddr)
4775 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4776 		else
4777 			ret = -EADDRNOTAVAIL;
4778 	}
4779 
4780 	if (!ret) {
4781 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4782 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4783 			ret = hci_init_sync(hdev);
4784 			if (!ret && hdev->post_init)
4785 				ret = hdev->post_init(hdev);
4786 		}
4787 	}
4788 
4789 	/* If the HCI Reset command is clearing all diagnostic settings,
4790 	 * then they need to be reprogrammed after the init procedure
4791 	 * completed.
4792 	 */
4793 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4794 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4795 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4796 		ret = hdev->set_diag(hdev, true);
4797 
4798 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4799 		msft_do_open(hdev);
4800 		aosp_do_open(hdev);
4801 	}
4802 
4803 	clear_bit(HCI_INIT, &hdev->flags);
4804 
4805 	return ret;
4806 }
4807 
4808 int hci_dev_open_sync(struct hci_dev *hdev)
4809 {
4810 	int ret;
4811 
4812 	bt_dev_dbg(hdev, "");
4813 
4814 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4815 		ret = -ENODEV;
4816 		goto done;
4817 	}
4818 
4819 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4820 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4821 		/* Check for rfkill but allow the HCI setup stage to
4822 		 * proceed (which in itself doesn't cause any RF activity).
4823 		 */
4824 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4825 			ret = -ERFKILL;
4826 			goto done;
4827 		}
4828 
4829 		/* Check for valid public address or a configured static
4830 		 * random address, but let the HCI setup proceed to
4831 		 * be able to determine if there is a public address
4832 		 * or not.
4833 		 *
4834 		 * In case of user channel usage, it is not important
4835 		 * if a public address or static random address is
4836 		 * available.
4837 		 *
4838 		 * This check is only valid for BR/EDR controllers
4839 		 * since AMP controllers do not have an address.
4840 		 */
4841 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4842 		    hdev->dev_type == HCI_PRIMARY &&
4843 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4844 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4845 			ret = -EADDRNOTAVAIL;
4846 			goto done;
4847 		}
4848 	}
4849 
4850 	if (test_bit(HCI_UP, &hdev->flags)) {
4851 		ret = -EALREADY;
4852 		goto done;
4853 	}
4854 
4855 	if (hdev->open(hdev)) {
4856 		ret = -EIO;
4857 		goto done;
4858 	}
4859 
4860 	hci_devcd_reset(hdev);
4861 
4862 	set_bit(HCI_RUNNING, &hdev->flags);
4863 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4864 
4865 	ret = hci_dev_init_sync(hdev);
4866 	if (!ret) {
4867 		hci_dev_hold(hdev);
4868 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4869 		hci_adv_instances_set_rpa_expired(hdev, true);
4870 		set_bit(HCI_UP, &hdev->flags);
4871 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4872 		hci_leds_update_powered(hdev, true);
4873 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4874 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4875 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4876 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4877 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4878 		    hdev->dev_type == HCI_PRIMARY) {
4879 			ret = hci_powered_update_sync(hdev);
4880 			mgmt_power_on(hdev, ret);
4881 		}
4882 	} else {
4883 		/* Init failed, cleanup */
4884 		flush_work(&hdev->tx_work);
4885 
4886 		/* Since hci_rx_work() is possible to awake new cmd_work
4887 		 * it should be flushed first to avoid unexpected call of
4888 		 * hci_cmd_work()
4889 		 */
4890 		flush_work(&hdev->rx_work);
4891 		flush_work(&hdev->cmd_work);
4892 
4893 		skb_queue_purge(&hdev->cmd_q);
4894 		skb_queue_purge(&hdev->rx_q);
4895 
4896 		if (hdev->flush)
4897 			hdev->flush(hdev);
4898 
4899 		if (hdev->sent_cmd) {
4900 			cancel_delayed_work_sync(&hdev->cmd_timer);
4901 			kfree_skb(hdev->sent_cmd);
4902 			hdev->sent_cmd = NULL;
4903 		}
4904 
4905 		clear_bit(HCI_RUNNING, &hdev->flags);
4906 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4907 
4908 		hdev->close(hdev);
4909 		hdev->flags &= BIT(HCI_RAW);
4910 	}
4911 
4912 done:
4913 	return ret;
4914 }
4915 
4916 /* This function requires the caller holds hdev->lock */
4917 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4918 {
4919 	struct hci_conn_params *p;
4920 
4921 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4922 		hci_pend_le_list_del_init(p);
4923 		if (p->conn) {
4924 			hci_conn_drop(p->conn);
4925 			hci_conn_put(p->conn);
4926 			p->conn = NULL;
4927 		}
4928 	}
4929 
4930 	BT_DBG("All LE pending actions cleared");
4931 }
4932 
4933 static int hci_dev_shutdown(struct hci_dev *hdev)
4934 {
4935 	int err = 0;
4936 	/* Similar to how we first do setup and then set the exclusive access
4937 	 * bit for userspace, we must first unset userchannel and then clean up.
4938 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4939 	 * the controller (some shutdown routines require sending additional
4940 	 * commands to the controller for example).
4941 	 */
4942 	bool was_userchannel =
4943 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4944 
4945 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4946 	    test_bit(HCI_UP, &hdev->flags)) {
4947 		/* Execute vendor specific shutdown routine */
4948 		if (hdev->shutdown)
4949 			err = hdev->shutdown(hdev);
4950 	}
4951 
4952 	if (was_userchannel)
4953 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4954 
4955 	return err;
4956 }
4957 
4958 int hci_dev_close_sync(struct hci_dev *hdev)
4959 {
4960 	bool auto_off;
4961 	int err = 0;
4962 
4963 	bt_dev_dbg(hdev, "");
4964 
4965 	cancel_delayed_work(&hdev->power_off);
4966 	cancel_delayed_work(&hdev->ncmd_timer);
4967 	cancel_delayed_work(&hdev->le_scan_disable);
4968 	cancel_delayed_work(&hdev->le_scan_restart);
4969 
4970 	hci_request_cancel_all(hdev);
4971 
4972 	if (hdev->adv_instance_timeout) {
4973 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4974 		hdev->adv_instance_timeout = 0;
4975 	}
4976 
4977 	err = hci_dev_shutdown(hdev);
4978 
4979 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4980 		cancel_delayed_work_sync(&hdev->cmd_timer);
4981 		return err;
4982 	}
4983 
4984 	hci_leds_update_powered(hdev, false);
4985 
4986 	/* Flush RX and TX works */
4987 	flush_work(&hdev->tx_work);
4988 	flush_work(&hdev->rx_work);
4989 
4990 	if (hdev->discov_timeout > 0) {
4991 		hdev->discov_timeout = 0;
4992 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4993 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4994 	}
4995 
4996 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4997 		cancel_delayed_work(&hdev->service_cache);
4998 
4999 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5000 		struct adv_info *adv_instance;
5001 
5002 		cancel_delayed_work_sync(&hdev->rpa_expired);
5003 
5004 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5005 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5006 	}
5007 
5008 	/* Avoid potential lockdep warnings from the *_flush() calls by
5009 	 * ensuring the workqueue is empty up front.
5010 	 */
5011 	drain_workqueue(hdev->workqueue);
5012 
5013 	hci_dev_lock(hdev);
5014 
5015 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5016 
5017 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5018 
5019 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
5020 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5021 	    hci_dev_test_flag(hdev, HCI_MGMT))
5022 		__mgmt_power_off(hdev);
5023 
5024 	hci_inquiry_cache_flush(hdev);
5025 	hci_pend_le_actions_clear(hdev);
5026 	hci_conn_hash_flush(hdev);
5027 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5028 	smp_unregister(hdev);
5029 	hci_dev_unlock(hdev);
5030 
5031 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5032 
5033 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5034 		aosp_do_close(hdev);
5035 		msft_do_close(hdev);
5036 	}
5037 
5038 	if (hdev->flush)
5039 		hdev->flush(hdev);
5040 
5041 	/* Reset device */
5042 	skb_queue_purge(&hdev->cmd_q);
5043 	atomic_set(&hdev->cmd_cnt, 1);
5044 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5045 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5046 		set_bit(HCI_INIT, &hdev->flags);
5047 		hci_reset_sync(hdev);
5048 		clear_bit(HCI_INIT, &hdev->flags);
5049 	}
5050 
5051 	/* flush cmd  work */
5052 	flush_work(&hdev->cmd_work);
5053 
5054 	/* Drop queues */
5055 	skb_queue_purge(&hdev->rx_q);
5056 	skb_queue_purge(&hdev->cmd_q);
5057 	skb_queue_purge(&hdev->raw_q);
5058 
5059 	/* Drop last sent command */
5060 	if (hdev->sent_cmd) {
5061 		cancel_delayed_work_sync(&hdev->cmd_timer);
5062 		kfree_skb(hdev->sent_cmd);
5063 		hdev->sent_cmd = NULL;
5064 	}
5065 
5066 	clear_bit(HCI_RUNNING, &hdev->flags);
5067 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5068 
5069 	/* After this point our queues are empty and no tasks are scheduled. */
5070 	hdev->close(hdev);
5071 
5072 	/* Clear flags */
5073 	hdev->flags &= BIT(HCI_RAW);
5074 	hci_dev_clear_volatile_flags(hdev);
5075 
5076 	/* Controller radio is available but is currently powered down */
5077 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5078 
5079 	memset(hdev->eir, 0, sizeof(hdev->eir));
5080 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5081 	bacpy(&hdev->random_addr, BDADDR_ANY);
5082 	hci_codec_list_clear(&hdev->local_codecs);
5083 
5084 	hci_dev_put(hdev);
5085 	return err;
5086 }
5087 
5088 /* This function perform power on HCI command sequence as follows:
5089  *
5090  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5091  * sequence otherwise run hci_dev_open_sync which will follow with
5092  * hci_powered_update_sync after the init sequence is completed.
5093  */
5094 static int hci_power_on_sync(struct hci_dev *hdev)
5095 {
5096 	int err;
5097 
5098 	if (test_bit(HCI_UP, &hdev->flags) &&
5099 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5100 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5101 		cancel_delayed_work(&hdev->power_off);
5102 		return hci_powered_update_sync(hdev);
5103 	}
5104 
5105 	err = hci_dev_open_sync(hdev);
5106 	if (err < 0)
5107 		return err;
5108 
5109 	/* During the HCI setup phase, a few error conditions are
5110 	 * ignored and they need to be checked now. If they are still
5111 	 * valid, it is important to return the device back off.
5112 	 */
5113 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5114 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5115 	    (hdev->dev_type == HCI_PRIMARY &&
5116 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5117 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5118 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5119 		hci_dev_close_sync(hdev);
5120 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5121 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5122 				   HCI_AUTO_OFF_TIMEOUT);
5123 	}
5124 
5125 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5126 		/* For unconfigured devices, set the HCI_RAW flag
5127 		 * so that userspace can easily identify them.
5128 		 */
5129 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5130 			set_bit(HCI_RAW, &hdev->flags);
5131 
5132 		/* For fully configured devices, this will send
5133 		 * the Index Added event. For unconfigured devices,
5134 		 * it will send Unconfigued Index Added event.
5135 		 *
5136 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5137 		 * and no event will be send.
5138 		 */
5139 		mgmt_index_added(hdev);
5140 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5141 		/* When the controller is now configured, then it
5142 		 * is important to clear the HCI_RAW flag.
5143 		 */
5144 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5145 			clear_bit(HCI_RAW, &hdev->flags);
5146 
5147 		/* Powering on the controller with HCI_CONFIG set only
5148 		 * happens with the transition from unconfigured to
5149 		 * configured. This will send the Index Added event.
5150 		 */
5151 		mgmt_index_added(hdev);
5152 	}
5153 
5154 	return 0;
5155 }
5156 
5157 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5158 {
5159 	struct hci_cp_remote_name_req_cancel cp;
5160 
5161 	memset(&cp, 0, sizeof(cp));
5162 	bacpy(&cp.bdaddr, addr);
5163 
5164 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5165 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5166 }
5167 
5168 int hci_stop_discovery_sync(struct hci_dev *hdev)
5169 {
5170 	struct discovery_state *d = &hdev->discovery;
5171 	struct inquiry_entry *e;
5172 	int err;
5173 
5174 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5175 
5176 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5177 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5178 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5179 						    0, NULL, HCI_CMD_TIMEOUT);
5180 			if (err)
5181 				return err;
5182 		}
5183 
5184 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5185 			cancel_delayed_work(&hdev->le_scan_disable);
5186 			cancel_delayed_work(&hdev->le_scan_restart);
5187 
5188 			err = hci_scan_disable_sync(hdev);
5189 			if (err)
5190 				return err;
5191 		}
5192 
5193 	} else {
5194 		err = hci_scan_disable_sync(hdev);
5195 		if (err)
5196 			return err;
5197 	}
5198 
5199 	/* Resume advertising if it was paused */
5200 	if (use_ll_privacy(hdev))
5201 		hci_resume_advertising_sync(hdev);
5202 
5203 	/* No further actions needed for LE-only discovery */
5204 	if (d->type == DISCOV_TYPE_LE)
5205 		return 0;
5206 
5207 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5208 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5209 						     NAME_PENDING);
5210 		if (!e)
5211 			return 0;
5212 
5213 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5214 	}
5215 
5216 	return 0;
5217 }
5218 
5219 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5220 					u8 reason)
5221 {
5222 	struct hci_cp_disconn_phy_link cp;
5223 
5224 	memset(&cp, 0, sizeof(cp));
5225 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5226 	cp.reason = reason;
5227 
5228 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5229 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5230 }
5231 
5232 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5233 			       u8 reason)
5234 {
5235 	struct hci_cp_disconnect cp;
5236 
5237 	if (conn->type == AMP_LINK)
5238 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5239 
5240 	memset(&cp, 0, sizeof(cp));
5241 	cp.handle = cpu_to_le16(conn->handle);
5242 	cp.reason = reason;
5243 
5244 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5245 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5246 	 * used when suspending or powering off, where we don't want to wait
5247 	 * for the peer's response.
5248 	 */
5249 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5250 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5251 						sizeof(cp), &cp,
5252 						HCI_EV_DISCONN_COMPLETE,
5253 						HCI_CMD_TIMEOUT, NULL);
5254 
5255 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5256 				     HCI_CMD_TIMEOUT);
5257 }
5258 
5259 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5260 				      struct hci_conn *conn, u8 reason)
5261 {
5262 	/* Return reason if scanning since the connection shall probably be
5263 	 * cleanup directly.
5264 	 */
5265 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5266 		return reason;
5267 
5268 	if (conn->role == HCI_ROLE_SLAVE ||
5269 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5270 		return 0;
5271 
5272 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5273 				     0, NULL, HCI_CMD_TIMEOUT);
5274 }
5275 
5276 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5277 				   u8 reason)
5278 {
5279 	if (conn->type == LE_LINK)
5280 		return hci_le_connect_cancel_sync(hdev, conn, reason);
5281 
5282 	if (conn->type == ISO_LINK) {
5283 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5284 		 * page 1857:
5285 		 *
5286 		 * If this command is issued for a CIS on the Central and the
5287 		 * CIS is successfully terminated before being established,
5288 		 * then an HCI_LE_CIS_Established event shall also be sent for
5289 		 * this CIS with the Status Operation Cancelled by Host (0x44).
5290 		 */
5291 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5292 			return hci_disconnect_sync(hdev, conn, reason);
5293 
5294 		/* CIS with no Create CIS sent have nothing to cancel */
5295 		if (bacmp(&conn->dst, BDADDR_ANY))
5296 			return HCI_ERROR_LOCAL_HOST_TERM;
5297 
5298 		/* There is no way to cancel a BIS without terminating the BIG
5299 		 * which is done later on connection cleanup.
5300 		 */
5301 		return 0;
5302 	}
5303 
5304 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5305 		return 0;
5306 
5307 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5308 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5309 	 * used when suspending or powering off, where we don't want to wait
5310 	 * for the peer's response.
5311 	 */
5312 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5313 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5314 						6, &conn->dst,
5315 						HCI_EV_CONN_COMPLETE,
5316 						HCI_CMD_TIMEOUT, NULL);
5317 
5318 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5319 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5320 }
5321 
5322 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5323 			       u8 reason)
5324 {
5325 	struct hci_cp_reject_sync_conn_req cp;
5326 
5327 	memset(&cp, 0, sizeof(cp));
5328 	bacpy(&cp.bdaddr, &conn->dst);
5329 	cp.reason = reason;
5330 
5331 	/* SCO rejection has its own limited set of
5332 	 * allowed error values (0x0D-0x0F).
5333 	 */
5334 	if (reason < 0x0d || reason > 0x0f)
5335 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5336 
5337 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5338 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5339 }
5340 
5341 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5342 				  u8 reason)
5343 {
5344 	struct hci_cp_le_reject_cis cp;
5345 
5346 	memset(&cp, 0, sizeof(cp));
5347 	cp.handle = cpu_to_le16(conn->handle);
5348 	cp.reason = reason;
5349 
5350 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5351 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5352 }
5353 
5354 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5355 				u8 reason)
5356 {
5357 	struct hci_cp_reject_conn_req cp;
5358 
5359 	if (conn->type == ISO_LINK)
5360 		return hci_le_reject_cis_sync(hdev, conn, reason);
5361 
5362 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5363 		return hci_reject_sco_sync(hdev, conn, reason);
5364 
5365 	memset(&cp, 0, sizeof(cp));
5366 	bacpy(&cp.bdaddr, &conn->dst);
5367 	cp.reason = reason;
5368 
5369 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5370 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5371 }
5372 
5373 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5374 {
5375 	int err = 0;
5376 	u16 handle = conn->handle;
5377 	bool disconnect = false;
5378 	struct hci_conn *c;
5379 
5380 	switch (conn->state) {
5381 	case BT_CONNECTED:
5382 	case BT_CONFIG:
5383 		err = hci_disconnect_sync(hdev, conn, reason);
5384 		break;
5385 	case BT_CONNECT:
5386 		err = hci_connect_cancel_sync(hdev, conn, reason);
5387 		break;
5388 	case BT_CONNECT2:
5389 		err = hci_reject_conn_sync(hdev, conn, reason);
5390 		break;
5391 	case BT_OPEN:
5392 		hci_dev_lock(hdev);
5393 
5394 		/* Cleanup bis or pa sync connections */
5395 		if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) ||
5396 		    test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) {
5397 			hci_conn_failed(conn, reason);
5398 		} else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) ||
5399 			   test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
5400 			conn->state = BT_CLOSED;
5401 			hci_disconn_cfm(conn, reason);
5402 			hci_conn_del(conn);
5403 		}
5404 
5405 		hci_dev_unlock(hdev);
5406 		return 0;
5407 	case BT_BOUND:
5408 		break;
5409 	default:
5410 		disconnect = true;
5411 		break;
5412 	}
5413 
5414 	hci_dev_lock(hdev);
5415 
5416 	/* Check if the connection has been cleaned up concurrently */
5417 	c = hci_conn_hash_lookup_handle(hdev, handle);
5418 	if (!c || c != conn) {
5419 		err = 0;
5420 		goto unlock;
5421 	}
5422 
5423 	/* Cleanup hci_conn object if it cannot be cancelled as it
5424 	 * likelly means the controller and host stack are out of sync
5425 	 * or in case of LE it was still scanning so it can be cleanup
5426 	 * safely.
5427 	 */
5428 	if (disconnect) {
5429 		conn->state = BT_CLOSED;
5430 		hci_disconn_cfm(conn, reason);
5431 		hci_conn_del(conn);
5432 	} else {
5433 		hci_conn_failed(conn, reason);
5434 	}
5435 
5436 unlock:
5437 	hci_dev_unlock(hdev);
5438 	return err;
5439 }
5440 
5441 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5442 {
5443 	struct list_head *head = &hdev->conn_hash.list;
5444 	struct hci_conn *conn;
5445 
5446 	rcu_read_lock();
5447 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5448 		/* Make sure the connection is not freed while unlocking */
5449 		conn = hci_conn_get(conn);
5450 		rcu_read_unlock();
5451 		/* Disregard possible errors since hci_conn_del shall have been
5452 		 * called even in case of errors had occurred since it would
5453 		 * then cause hci_conn_failed to be called which calls
5454 		 * hci_conn_del internally.
5455 		 */
5456 		hci_abort_conn_sync(hdev, conn, reason);
5457 		hci_conn_put(conn);
5458 		rcu_read_lock();
5459 	}
5460 	rcu_read_unlock();
5461 
5462 	return 0;
5463 }
5464 
5465 /* This function perform power off HCI command sequence as follows:
5466  *
5467  * Clear Advertising
5468  * Stop Discovery
5469  * Disconnect all connections
5470  * hci_dev_close_sync
5471  */
5472 static int hci_power_off_sync(struct hci_dev *hdev)
5473 {
5474 	int err;
5475 
5476 	/* If controller is already down there is nothing to do */
5477 	if (!test_bit(HCI_UP, &hdev->flags))
5478 		return 0;
5479 
5480 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5481 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5482 		err = hci_write_scan_enable_sync(hdev, 0x00);
5483 		if (err)
5484 			return err;
5485 	}
5486 
5487 	err = hci_clear_adv_sync(hdev, NULL, false);
5488 	if (err)
5489 		return err;
5490 
5491 	err = hci_stop_discovery_sync(hdev);
5492 	if (err)
5493 		return err;
5494 
5495 	/* Terminated due to Power Off */
5496 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5497 	if (err)
5498 		return err;
5499 
5500 	return hci_dev_close_sync(hdev);
5501 }
5502 
5503 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5504 {
5505 	if (val)
5506 		return hci_power_on_sync(hdev);
5507 
5508 	return hci_power_off_sync(hdev);
5509 }
5510 
5511 static int hci_write_iac_sync(struct hci_dev *hdev)
5512 {
5513 	struct hci_cp_write_current_iac_lap cp;
5514 
5515 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5516 		return 0;
5517 
5518 	memset(&cp, 0, sizeof(cp));
5519 
5520 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5521 		/* Limited discoverable mode */
5522 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5523 		cp.iac_lap[0] = 0x00;	/* LIAC */
5524 		cp.iac_lap[1] = 0x8b;
5525 		cp.iac_lap[2] = 0x9e;
5526 		cp.iac_lap[3] = 0x33;	/* GIAC */
5527 		cp.iac_lap[4] = 0x8b;
5528 		cp.iac_lap[5] = 0x9e;
5529 	} else {
5530 		/* General discoverable mode */
5531 		cp.num_iac = 1;
5532 		cp.iac_lap[0] = 0x33;	/* GIAC */
5533 		cp.iac_lap[1] = 0x8b;
5534 		cp.iac_lap[2] = 0x9e;
5535 	}
5536 
5537 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5538 				     (cp.num_iac * 3) + 1, &cp,
5539 				     HCI_CMD_TIMEOUT);
5540 }
5541 
5542 int hci_update_discoverable_sync(struct hci_dev *hdev)
5543 {
5544 	int err = 0;
5545 
5546 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5547 		err = hci_write_iac_sync(hdev);
5548 		if (err)
5549 			return err;
5550 
5551 		err = hci_update_scan_sync(hdev);
5552 		if (err)
5553 			return err;
5554 
5555 		err = hci_update_class_sync(hdev);
5556 		if (err)
5557 			return err;
5558 	}
5559 
5560 	/* Advertising instances don't use the global discoverable setting, so
5561 	 * only update AD if advertising was enabled using Set Advertising.
5562 	 */
5563 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5564 		err = hci_update_adv_data_sync(hdev, 0x00);
5565 		if (err)
5566 			return err;
5567 
5568 		/* Discoverable mode affects the local advertising
5569 		 * address in limited privacy mode.
5570 		 */
5571 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5572 			if (ext_adv_capable(hdev))
5573 				err = hci_start_ext_adv_sync(hdev, 0x00);
5574 			else
5575 				err = hci_enable_advertising_sync(hdev);
5576 		}
5577 	}
5578 
5579 	return err;
5580 }
5581 
5582 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5583 {
5584 	return hci_update_discoverable_sync(hdev);
5585 }
5586 
5587 int hci_update_discoverable(struct hci_dev *hdev)
5588 {
5589 	/* Only queue if it would have any effect */
5590 	if (hdev_is_powered(hdev) &&
5591 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5592 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5593 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5594 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5595 					  NULL);
5596 
5597 	return 0;
5598 }
5599 
5600 int hci_update_connectable_sync(struct hci_dev *hdev)
5601 {
5602 	int err;
5603 
5604 	err = hci_update_scan_sync(hdev);
5605 	if (err)
5606 		return err;
5607 
5608 	/* If BR/EDR is not enabled and we disable advertising as a
5609 	 * by-product of disabling connectable, we need to update the
5610 	 * advertising flags.
5611 	 */
5612 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5613 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5614 
5615 	/* Update the advertising parameters if necessary */
5616 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5617 	    !list_empty(&hdev->adv_instances)) {
5618 		if (ext_adv_capable(hdev))
5619 			err = hci_start_ext_adv_sync(hdev,
5620 						     hdev->cur_adv_instance);
5621 		else
5622 			err = hci_enable_advertising_sync(hdev);
5623 
5624 		if (err)
5625 			return err;
5626 	}
5627 
5628 	return hci_update_passive_scan_sync(hdev);
5629 }
5630 
5631 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5632 {
5633 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5634 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5635 	struct hci_cp_inquiry cp;
5636 
5637 	bt_dev_dbg(hdev, "");
5638 
5639 	if (test_bit(HCI_INQUIRY, &hdev->flags))
5640 		return 0;
5641 
5642 	hci_dev_lock(hdev);
5643 	hci_inquiry_cache_flush(hdev);
5644 	hci_dev_unlock(hdev);
5645 
5646 	memset(&cp, 0, sizeof(cp));
5647 
5648 	if (hdev->discovery.limited)
5649 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5650 	else
5651 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5652 
5653 	cp.length = length;
5654 
5655 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5656 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5657 }
5658 
5659 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5660 {
5661 	u8 own_addr_type;
5662 	/* Accept list is not used for discovery */
5663 	u8 filter_policy = 0x00;
5664 	/* Default is to enable duplicates filter */
5665 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5666 	int err;
5667 
5668 	bt_dev_dbg(hdev, "");
5669 
5670 	/* If controller is scanning, it means the passive scanning is
5671 	 * running. Thus, we should temporarily stop it in order to set the
5672 	 * discovery scanning parameters.
5673 	 */
5674 	err = hci_scan_disable_sync(hdev);
5675 	if (err) {
5676 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5677 		return err;
5678 	}
5679 
5680 	cancel_interleave_scan(hdev);
5681 
5682 	/* Pause address resolution for active scan and stop advertising if
5683 	 * privacy is enabled.
5684 	 */
5685 	err = hci_pause_addr_resolution(hdev);
5686 	if (err)
5687 		goto failed;
5688 
5689 	/* All active scans will be done with either a resolvable private
5690 	 * address (when privacy feature has been enabled) or non-resolvable
5691 	 * private address.
5692 	 */
5693 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5694 					     &own_addr_type);
5695 	if (err < 0)
5696 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5697 
5698 	if (hci_is_adv_monitoring(hdev)) {
5699 		/* Duplicate filter should be disabled when some advertisement
5700 		 * monitor is activated, otherwise AdvMon can only receive one
5701 		 * advertisement for one peer(*) during active scanning, and
5702 		 * might report loss to these peers.
5703 		 *
5704 		 * Note that different controllers have different meanings of
5705 		 * |duplicate|. Some of them consider packets with the same
5706 		 * address as duplicate, and others consider packets with the
5707 		 * same address and the same RSSI as duplicate. Although in the
5708 		 * latter case we don't need to disable duplicate filter, but
5709 		 * it is common to have active scanning for a short period of
5710 		 * time, the power impact should be neglectable.
5711 		 */
5712 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5713 	}
5714 
5715 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5716 				  hdev->le_scan_window_discovery,
5717 				  own_addr_type, filter_policy, filter_dup);
5718 	if (!err)
5719 		return err;
5720 
5721 failed:
5722 	/* Resume advertising if it was paused */
5723 	if (use_ll_privacy(hdev))
5724 		hci_resume_advertising_sync(hdev);
5725 
5726 	/* Resume passive scanning */
5727 	hci_update_passive_scan_sync(hdev);
5728 	return err;
5729 }
5730 
5731 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5732 {
5733 	int err;
5734 
5735 	bt_dev_dbg(hdev, "");
5736 
5737 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5738 	if (err)
5739 		return err;
5740 
5741 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5742 }
5743 
5744 int hci_start_discovery_sync(struct hci_dev *hdev)
5745 {
5746 	unsigned long timeout;
5747 	int err;
5748 
5749 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5750 
5751 	switch (hdev->discovery.type) {
5752 	case DISCOV_TYPE_BREDR:
5753 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5754 	case DISCOV_TYPE_INTERLEAVED:
5755 		/* When running simultaneous discovery, the LE scanning time
5756 		 * should occupy the whole discovery time sine BR/EDR inquiry
5757 		 * and LE scanning are scheduled by the controller.
5758 		 *
5759 		 * For interleaving discovery in comparison, BR/EDR inquiry
5760 		 * and LE scanning are done sequentially with separate
5761 		 * timeouts.
5762 		 */
5763 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5764 			     &hdev->quirks)) {
5765 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5766 			/* During simultaneous discovery, we double LE scan
5767 			 * interval. We must leave some time for the controller
5768 			 * to do BR/EDR inquiry.
5769 			 */
5770 			err = hci_start_interleaved_discovery_sync(hdev);
5771 			break;
5772 		}
5773 
5774 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5775 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5776 		break;
5777 	case DISCOV_TYPE_LE:
5778 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5779 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5780 		break;
5781 	default:
5782 		return -EINVAL;
5783 	}
5784 
5785 	if (err)
5786 		return err;
5787 
5788 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5789 
5790 	/* When service discovery is used and the controller has a
5791 	 * strict duplicate filter, it is important to remember the
5792 	 * start and duration of the scan. This is required for
5793 	 * restarting scanning during the discovery phase.
5794 	 */
5795 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5796 	    hdev->discovery.result_filtering) {
5797 		hdev->discovery.scan_start = jiffies;
5798 		hdev->discovery.scan_duration = timeout;
5799 	}
5800 
5801 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5802 			   timeout);
5803 	return 0;
5804 }
5805 
5806 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5807 {
5808 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5809 	case HCI_ADV_MONITOR_EXT_MSFT:
5810 		msft_suspend_sync(hdev);
5811 		break;
5812 	default:
5813 		return;
5814 	}
5815 }
5816 
5817 /* This function disables discovery and mark it as paused */
5818 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5819 {
5820 	int old_state = hdev->discovery.state;
5821 	int err;
5822 
5823 	/* If discovery already stopped/stopping/paused there nothing to do */
5824 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5825 	    hdev->discovery_paused)
5826 		return 0;
5827 
5828 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5829 	err = hci_stop_discovery_sync(hdev);
5830 	if (err)
5831 		return err;
5832 
5833 	hdev->discovery_paused = true;
5834 	hdev->discovery_old_state = old_state;
5835 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5836 
5837 	return 0;
5838 }
5839 
5840 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5841 {
5842 	struct bdaddr_list_with_flags *b;
5843 	u8 scan = SCAN_DISABLED;
5844 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5845 	int err;
5846 
5847 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5848 		return 0;
5849 
5850 	/* Some fake CSR controllers lock up after setting this type of
5851 	 * filter, so avoid sending the request altogether.
5852 	 */
5853 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5854 		return 0;
5855 
5856 	/* Always clear event filter when starting */
5857 	hci_clear_event_filter_sync(hdev);
5858 
5859 	list_for_each_entry(b, &hdev->accept_list, list) {
5860 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5861 			continue;
5862 
5863 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5864 
5865 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5866 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5867 						 &b->bdaddr,
5868 						 HCI_CONN_SETUP_AUTO_ON);
5869 		if (err)
5870 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5871 				   &b->bdaddr);
5872 		else
5873 			scan = SCAN_PAGE;
5874 	}
5875 
5876 	if (scan && !scanning)
5877 		hci_write_scan_enable_sync(hdev, scan);
5878 	else if (!scan && scanning)
5879 		hci_write_scan_enable_sync(hdev, scan);
5880 
5881 	return 0;
5882 }
5883 
5884 /* This function disables scan (BR and LE) and mark it as paused */
5885 static int hci_pause_scan_sync(struct hci_dev *hdev)
5886 {
5887 	if (hdev->scanning_paused)
5888 		return 0;
5889 
5890 	/* Disable page scan if enabled */
5891 	if (test_bit(HCI_PSCAN, &hdev->flags))
5892 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5893 
5894 	hci_scan_disable_sync(hdev);
5895 
5896 	hdev->scanning_paused = true;
5897 
5898 	return 0;
5899 }
5900 
5901 /* This function performs the HCI suspend procedures in the follow order:
5902  *
5903  * Pause discovery (active scanning/inquiry)
5904  * Pause Directed Advertising/Advertising
5905  * Pause Scanning (passive scanning in case discovery was not active)
5906  * Disconnect all connections
5907  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5908  * otherwise:
5909  * Update event mask (only set events that are allowed to wake up the host)
5910  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5911  * Update passive scanning (lower duty cycle)
5912  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5913  */
5914 int hci_suspend_sync(struct hci_dev *hdev)
5915 {
5916 	int err;
5917 
5918 	/* If marked as suspended there nothing to do */
5919 	if (hdev->suspended)
5920 		return 0;
5921 
5922 	/* Mark device as suspended */
5923 	hdev->suspended = true;
5924 
5925 	/* Pause discovery if not already stopped */
5926 	hci_pause_discovery_sync(hdev);
5927 
5928 	/* Pause other advertisements */
5929 	hci_pause_advertising_sync(hdev);
5930 
5931 	/* Suspend monitor filters */
5932 	hci_suspend_monitor_sync(hdev);
5933 
5934 	/* Prevent disconnects from causing scanning to be re-enabled */
5935 	hci_pause_scan_sync(hdev);
5936 
5937 	if (hci_conn_count(hdev)) {
5938 		/* Soft disconnect everything (power off) */
5939 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5940 		if (err) {
5941 			/* Set state to BT_RUNNING so resume doesn't notify */
5942 			hdev->suspend_state = BT_RUNNING;
5943 			hci_resume_sync(hdev);
5944 			return err;
5945 		}
5946 
5947 		/* Update event mask so only the allowed event can wakeup the
5948 		 * host.
5949 		 */
5950 		hci_set_event_mask_sync(hdev);
5951 	}
5952 
5953 	/* Only configure accept list if disconnect succeeded and wake
5954 	 * isn't being prevented.
5955 	 */
5956 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5957 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5958 		return 0;
5959 	}
5960 
5961 	/* Unpause to take care of updating scanning params */
5962 	hdev->scanning_paused = false;
5963 
5964 	/* Enable event filter for paired devices */
5965 	hci_update_event_filter_sync(hdev);
5966 
5967 	/* Update LE passive scan if enabled */
5968 	hci_update_passive_scan_sync(hdev);
5969 
5970 	/* Pause scan changes again. */
5971 	hdev->scanning_paused = true;
5972 
5973 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5974 
5975 	return 0;
5976 }
5977 
5978 /* This function resumes discovery */
5979 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5980 {
5981 	int err;
5982 
5983 	/* If discovery not paused there nothing to do */
5984 	if (!hdev->discovery_paused)
5985 		return 0;
5986 
5987 	hdev->discovery_paused = false;
5988 
5989 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5990 
5991 	err = hci_start_discovery_sync(hdev);
5992 
5993 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5994 				DISCOVERY_FINDING);
5995 
5996 	return err;
5997 }
5998 
5999 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6000 {
6001 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
6002 	case HCI_ADV_MONITOR_EXT_MSFT:
6003 		msft_resume_sync(hdev);
6004 		break;
6005 	default:
6006 		return;
6007 	}
6008 }
6009 
6010 /* This function resume scan and reset paused flag */
6011 static int hci_resume_scan_sync(struct hci_dev *hdev)
6012 {
6013 	if (!hdev->scanning_paused)
6014 		return 0;
6015 
6016 	hdev->scanning_paused = false;
6017 
6018 	hci_update_scan_sync(hdev);
6019 
6020 	/* Reset passive scanning to normal */
6021 	hci_update_passive_scan_sync(hdev);
6022 
6023 	return 0;
6024 }
6025 
6026 /* This function performs the HCI suspend procedures in the follow order:
6027  *
6028  * Restore event mask
6029  * Clear event filter
6030  * Update passive scanning (normal duty cycle)
6031  * Resume Directed Advertising/Advertising
6032  * Resume discovery (active scanning/inquiry)
6033  */
6034 int hci_resume_sync(struct hci_dev *hdev)
6035 {
6036 	/* If not marked as suspended there nothing to do */
6037 	if (!hdev->suspended)
6038 		return 0;
6039 
6040 	hdev->suspended = false;
6041 
6042 	/* Restore event mask */
6043 	hci_set_event_mask_sync(hdev);
6044 
6045 	/* Clear any event filters and restore scan state */
6046 	hci_clear_event_filter_sync(hdev);
6047 
6048 	/* Resume scanning */
6049 	hci_resume_scan_sync(hdev);
6050 
6051 	/* Resume monitor filters */
6052 	hci_resume_monitor_sync(hdev);
6053 
6054 	/* Resume other advertisements */
6055 	hci_resume_advertising_sync(hdev);
6056 
6057 	/* Resume discovery */
6058 	hci_resume_discovery_sync(hdev);
6059 
6060 	return 0;
6061 }
6062 
6063 static bool conn_use_rpa(struct hci_conn *conn)
6064 {
6065 	struct hci_dev *hdev = conn->hdev;
6066 
6067 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
6068 }
6069 
6070 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6071 						struct hci_conn *conn)
6072 {
6073 	struct hci_cp_le_set_ext_adv_params cp;
6074 	int err;
6075 	bdaddr_t random_addr;
6076 	u8 own_addr_type;
6077 
6078 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6079 					     &own_addr_type);
6080 	if (err)
6081 		return err;
6082 
6083 	/* Set require_privacy to false so that the remote device has a
6084 	 * chance of identifying us.
6085 	 */
6086 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6087 				     &own_addr_type, &random_addr);
6088 	if (err)
6089 		return err;
6090 
6091 	memset(&cp, 0, sizeof(cp));
6092 
6093 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6094 	cp.channel_map = hdev->le_adv_channel_map;
6095 	cp.tx_power = HCI_TX_POWER_INVALID;
6096 	cp.primary_phy = HCI_ADV_PHY_1M;
6097 	cp.secondary_phy = HCI_ADV_PHY_1M;
6098 	cp.handle = 0x00; /* Use instance 0 for directed adv */
6099 	cp.own_addr_type = own_addr_type;
6100 	cp.peer_addr_type = conn->dst_type;
6101 	bacpy(&cp.peer_addr, &conn->dst);
6102 
6103 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6104 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6105 	 * does not supports advertising data when the advertising set already
6106 	 * contains some, the controller shall return erroc code 'Invalid
6107 	 * HCI Command Parameters(0x12).
6108 	 * So it is required to remove adv set for handle 0x00. since we use
6109 	 * instance 0 for directed adv.
6110 	 */
6111 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6112 	if (err)
6113 		return err;
6114 
6115 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6116 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6117 	if (err)
6118 		return err;
6119 
6120 	/* Check if random address need to be updated */
6121 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6122 	    bacmp(&random_addr, BDADDR_ANY) &&
6123 	    bacmp(&random_addr, &hdev->random_addr)) {
6124 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6125 						       &random_addr);
6126 		if (err)
6127 			return err;
6128 	}
6129 
6130 	return hci_enable_ext_advertising_sync(hdev, 0x00);
6131 }
6132 
6133 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6134 					    struct hci_conn *conn)
6135 {
6136 	struct hci_cp_le_set_adv_param cp;
6137 	u8 status;
6138 	u8 own_addr_type;
6139 	u8 enable;
6140 
6141 	if (ext_adv_capable(hdev))
6142 		return hci_le_ext_directed_advertising_sync(hdev, conn);
6143 
6144 	/* Clear the HCI_LE_ADV bit temporarily so that the
6145 	 * hci_update_random_address knows that it's safe to go ahead
6146 	 * and write a new random address. The flag will be set back on
6147 	 * as soon as the SET_ADV_ENABLE HCI command completes.
6148 	 */
6149 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
6150 
6151 	/* Set require_privacy to false so that the remote device has a
6152 	 * chance of identifying us.
6153 	 */
6154 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6155 						&own_addr_type);
6156 	if (status)
6157 		return status;
6158 
6159 	memset(&cp, 0, sizeof(cp));
6160 
6161 	/* Some controllers might reject command if intervals are not
6162 	 * within range for undirected advertising.
6163 	 * BCM20702A0 is known to be affected by this.
6164 	 */
6165 	cp.min_interval = cpu_to_le16(0x0020);
6166 	cp.max_interval = cpu_to_le16(0x0020);
6167 
6168 	cp.type = LE_ADV_DIRECT_IND;
6169 	cp.own_address_type = own_addr_type;
6170 	cp.direct_addr_type = conn->dst_type;
6171 	bacpy(&cp.direct_addr, &conn->dst);
6172 	cp.channel_map = hdev->le_adv_channel_map;
6173 
6174 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6175 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6176 	if (status)
6177 		return status;
6178 
6179 	enable = 0x01;
6180 
6181 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6182 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6183 }
6184 
6185 static void set_ext_conn_params(struct hci_conn *conn,
6186 				struct hci_cp_le_ext_conn_param *p)
6187 {
6188 	struct hci_dev *hdev = conn->hdev;
6189 
6190 	memset(p, 0, sizeof(*p));
6191 
6192 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6193 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6194 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6195 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6196 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6197 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6198 	p->min_ce_len = cpu_to_le16(0x0000);
6199 	p->max_ce_len = cpu_to_le16(0x0000);
6200 }
6201 
6202 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6203 				       struct hci_conn *conn, u8 own_addr_type)
6204 {
6205 	struct hci_cp_le_ext_create_conn *cp;
6206 	struct hci_cp_le_ext_conn_param *p;
6207 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6208 	u32 plen;
6209 
6210 	cp = (void *)data;
6211 	p = (void *)cp->data;
6212 
6213 	memset(cp, 0, sizeof(*cp));
6214 
6215 	bacpy(&cp->peer_addr, &conn->dst);
6216 	cp->peer_addr_type = conn->dst_type;
6217 	cp->own_addr_type = own_addr_type;
6218 
6219 	plen = sizeof(*cp);
6220 
6221 	if (scan_1m(hdev)) {
6222 		cp->phys |= LE_SCAN_PHY_1M;
6223 		set_ext_conn_params(conn, p);
6224 
6225 		p++;
6226 		plen += sizeof(*p);
6227 	}
6228 
6229 	if (scan_2m(hdev)) {
6230 		cp->phys |= LE_SCAN_PHY_2M;
6231 		set_ext_conn_params(conn, p);
6232 
6233 		p++;
6234 		plen += sizeof(*p);
6235 	}
6236 
6237 	if (scan_coded(hdev)) {
6238 		cp->phys |= LE_SCAN_PHY_CODED;
6239 		set_ext_conn_params(conn, p);
6240 
6241 		plen += sizeof(*p);
6242 	}
6243 
6244 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6245 					plen, data,
6246 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6247 					conn->conn_timeout, NULL);
6248 }
6249 
6250 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6251 {
6252 	struct hci_cp_le_create_conn cp;
6253 	struct hci_conn_params *params;
6254 	u8 own_addr_type;
6255 	int err;
6256 
6257 	/* If requested to connect as peripheral use directed advertising */
6258 	if (conn->role == HCI_ROLE_SLAVE) {
6259 		/* If we're active scanning and simultaneous roles is not
6260 		 * enabled simply reject the attempt.
6261 		 */
6262 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6263 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6264 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6265 			hci_conn_del(conn);
6266 			return -EBUSY;
6267 		}
6268 
6269 		/* Pause advertising while doing directed advertising. */
6270 		hci_pause_advertising_sync(hdev);
6271 
6272 		err = hci_le_directed_advertising_sync(hdev, conn);
6273 		goto done;
6274 	}
6275 
6276 	/* Disable advertising if simultaneous roles is not in use. */
6277 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6278 		hci_pause_advertising_sync(hdev);
6279 
6280 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6281 	if (params) {
6282 		conn->le_conn_min_interval = params->conn_min_interval;
6283 		conn->le_conn_max_interval = params->conn_max_interval;
6284 		conn->le_conn_latency = params->conn_latency;
6285 		conn->le_supv_timeout = params->supervision_timeout;
6286 	} else {
6287 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6288 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6289 		conn->le_conn_latency = hdev->le_conn_latency;
6290 		conn->le_supv_timeout = hdev->le_supv_timeout;
6291 	}
6292 
6293 	/* If controller is scanning, we stop it since some controllers are
6294 	 * not able to scan and connect at the same time. Also set the
6295 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6296 	 * handler for scan disabling knows to set the correct discovery
6297 	 * state.
6298 	 */
6299 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6300 		hci_scan_disable_sync(hdev);
6301 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6302 	}
6303 
6304 	/* Update random address, but set require_privacy to false so
6305 	 * that we never connect with an non-resolvable address.
6306 	 */
6307 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6308 					     &own_addr_type);
6309 	if (err)
6310 		goto done;
6311 
6312 	if (use_ext_conn(hdev)) {
6313 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6314 		goto done;
6315 	}
6316 
6317 	memset(&cp, 0, sizeof(cp));
6318 
6319 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6320 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6321 
6322 	bacpy(&cp.peer_addr, &conn->dst);
6323 	cp.peer_addr_type = conn->dst_type;
6324 	cp.own_address_type = own_addr_type;
6325 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6326 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6327 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6328 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6329 	cp.min_ce_len = cpu_to_le16(0x0000);
6330 	cp.max_ce_len = cpu_to_le16(0x0000);
6331 
6332 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6333 	 *
6334 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6335 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6336 	 * sent when a new connection has been created.
6337 	 */
6338 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6339 				       sizeof(cp), &cp,
6340 				       use_enhanced_conn_complete(hdev) ?
6341 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6342 				       HCI_EV_LE_CONN_COMPLETE,
6343 				       conn->conn_timeout, NULL);
6344 
6345 done:
6346 	if (err == -ETIMEDOUT)
6347 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
6348 
6349 	/* Re-enable advertising after the connection attempt is finished. */
6350 	hci_resume_advertising_sync(hdev);
6351 	return err;
6352 }
6353 
6354 int hci_le_create_cis_sync(struct hci_dev *hdev)
6355 {
6356 	struct {
6357 		struct hci_cp_le_create_cis cp;
6358 		struct hci_cis cis[0x1f];
6359 	} cmd;
6360 	struct hci_conn *conn;
6361 	u8 cig = BT_ISO_QOS_CIG_UNSET;
6362 
6363 	/* The spec allows only one pending LE Create CIS command at a time. If
6364 	 * the command is pending now, don't do anything. We check for pending
6365 	 * connections after each CIS Established event.
6366 	 *
6367 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6368 	 * page 2566:
6369 	 *
6370 	 * If the Host issues this command before all the
6371 	 * HCI_LE_CIS_Established events from the previous use of the
6372 	 * command have been generated, the Controller shall return the
6373 	 * error code Command Disallowed (0x0C).
6374 	 *
6375 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6376 	 * page 2567:
6377 	 *
6378 	 * When the Controller receives the HCI_LE_Create_CIS command, the
6379 	 * Controller sends the HCI_Command_Status event to the Host. An
6380 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
6381 	 * is established or if it is disconnected or considered lost before
6382 	 * being established; until all the events are generated, the command
6383 	 * remains pending.
6384 	 */
6385 
6386 	memset(&cmd, 0, sizeof(cmd));
6387 
6388 	hci_dev_lock(hdev);
6389 
6390 	rcu_read_lock();
6391 
6392 	/* Wait until previous Create CIS has completed */
6393 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6394 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6395 			goto done;
6396 	}
6397 
6398 	/* Find CIG with all CIS ready */
6399 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6400 		struct hci_conn *link;
6401 
6402 		if (hci_conn_check_create_cis(conn))
6403 			continue;
6404 
6405 		cig = conn->iso_qos.ucast.cig;
6406 
6407 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6408 			if (hci_conn_check_create_cis(link) > 0 &&
6409 			    link->iso_qos.ucast.cig == cig &&
6410 			    link->state != BT_CONNECTED) {
6411 				cig = BT_ISO_QOS_CIG_UNSET;
6412 				break;
6413 			}
6414 		}
6415 
6416 		if (cig != BT_ISO_QOS_CIG_UNSET)
6417 			break;
6418 	}
6419 
6420 	if (cig == BT_ISO_QOS_CIG_UNSET)
6421 		goto done;
6422 
6423 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6424 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6425 
6426 		if (hci_conn_check_create_cis(conn) ||
6427 		    conn->iso_qos.ucast.cig != cig)
6428 			continue;
6429 
6430 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6431 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6432 		cis->cis_handle = cpu_to_le16(conn->handle);
6433 		cmd.cp.num_cis++;
6434 
6435 		if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6436 			break;
6437 	}
6438 
6439 done:
6440 	rcu_read_unlock();
6441 
6442 	hci_dev_unlock(hdev);
6443 
6444 	if (!cmd.cp.num_cis)
6445 		return 0;
6446 
6447 	/* Wait for HCI_LE_CIS_Established */
6448 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6449 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6450 					cmd.cp.num_cis, &cmd,
6451 					HCI_EVT_LE_CIS_ESTABLISHED,
6452 					conn->conn_timeout, NULL);
6453 }
6454 
6455 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6456 {
6457 	struct hci_cp_le_remove_cig cp;
6458 
6459 	memset(&cp, 0, sizeof(cp));
6460 	cp.cig_id = handle;
6461 
6462 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6463 				     &cp, HCI_CMD_TIMEOUT);
6464 }
6465 
6466 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6467 {
6468 	struct hci_cp_le_big_term_sync cp;
6469 
6470 	memset(&cp, 0, sizeof(cp));
6471 	cp.handle = handle;
6472 
6473 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6474 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6475 }
6476 
6477 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6478 {
6479 	struct hci_cp_le_pa_term_sync cp;
6480 
6481 	memset(&cp, 0, sizeof(cp));
6482 	cp.handle = cpu_to_le16(handle);
6483 
6484 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6485 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6486 }
6487 
6488 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6489 			   bool use_rpa, struct adv_info *adv_instance,
6490 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6491 {
6492 	int err;
6493 
6494 	bacpy(rand_addr, BDADDR_ANY);
6495 
6496 	/* If privacy is enabled use a resolvable private address. If
6497 	 * current RPA has expired then generate a new one.
6498 	 */
6499 	if (use_rpa) {
6500 		/* If Controller supports LL Privacy use own address type is
6501 		 * 0x03
6502 		 */
6503 		if (use_ll_privacy(hdev))
6504 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6505 		else
6506 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6507 
6508 		if (adv_instance) {
6509 			if (adv_rpa_valid(adv_instance))
6510 				return 0;
6511 		} else {
6512 			if (rpa_valid(hdev))
6513 				return 0;
6514 		}
6515 
6516 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6517 		if (err < 0) {
6518 			bt_dev_err(hdev, "failed to generate new RPA");
6519 			return err;
6520 		}
6521 
6522 		bacpy(rand_addr, &hdev->rpa);
6523 
6524 		return 0;
6525 	}
6526 
6527 	/* In case of required privacy without resolvable private address,
6528 	 * use an non-resolvable private address. This is useful for
6529 	 * non-connectable advertising.
6530 	 */
6531 	if (require_privacy) {
6532 		bdaddr_t nrpa;
6533 
6534 		while (true) {
6535 			/* The non-resolvable private address is generated
6536 			 * from random six bytes with the two most significant
6537 			 * bits cleared.
6538 			 */
6539 			get_random_bytes(&nrpa, 6);
6540 			nrpa.b[5] &= 0x3f;
6541 
6542 			/* The non-resolvable private address shall not be
6543 			 * equal to the public address.
6544 			 */
6545 			if (bacmp(&hdev->bdaddr, &nrpa))
6546 				break;
6547 		}
6548 
6549 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6550 		bacpy(rand_addr, &nrpa);
6551 
6552 		return 0;
6553 	}
6554 
6555 	/* No privacy so use a public address. */
6556 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6557 
6558 	return 0;
6559 }
6560 
6561 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6562 {
6563 	u8 instance = PTR_UINT(data);
6564 
6565 	return hci_update_adv_data_sync(hdev, instance);
6566 }
6567 
6568 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6569 {
6570 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6571 				  UINT_PTR(instance), NULL);
6572 }
6573