1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 if (skb) { 36 struct sock *sk = hci_skb_sk(skb); 37 38 /* Drop sk reference if set */ 39 if (sk) 40 sock_put(sk); 41 42 hdev->req_skb = skb_get(skb); 43 } 44 45 wake_up_interruptible(&hdev->req_wait_q); 46 } 47 48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 49 u32 plen, const void *param, 50 struct sock *sk) 51 { 52 int len = HCI_COMMAND_HDR_SIZE + plen; 53 struct hci_command_hdr *hdr; 54 struct sk_buff *skb; 55 56 skb = bt_skb_alloc(len, GFP_ATOMIC); 57 if (!skb) 58 return NULL; 59 60 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 61 hdr->opcode = cpu_to_le16(opcode); 62 hdr->plen = plen; 63 64 if (plen) 65 skb_put_data(skb, param, plen); 66 67 bt_dev_dbg(hdev, "skb len %d", skb->len); 68 69 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 70 hci_skb_opcode(skb) = opcode; 71 72 /* Grab a reference if command needs to be associated with a sock (e.g. 73 * likely mgmt socket that initiated the command). 74 */ 75 if (sk) { 76 hci_skb_sk(skb) = sk; 77 sock_hold(sk); 78 } 79 80 return skb; 81 } 82 83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 84 const void *param, u8 event, struct sock *sk) 85 { 86 struct hci_dev *hdev = req->hdev; 87 struct sk_buff *skb; 88 89 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 90 91 /* If an error occurred during request building, there is no point in 92 * queueing the HCI command. We can simply return. 93 */ 94 if (req->err) 95 return; 96 97 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 98 if (!skb) { 99 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 100 opcode); 101 req->err = -ENOMEM; 102 return; 103 } 104 105 if (skb_queue_empty(&req->cmd_q)) 106 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 107 108 hci_skb_event(skb) = event; 109 110 skb_queue_tail(&req->cmd_q, skb); 111 } 112 113 static int hci_cmd_sync_run(struct hci_request *req) 114 { 115 struct hci_dev *hdev = req->hdev; 116 struct sk_buff *skb; 117 unsigned long flags; 118 119 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 120 121 /* If an error occurred during request building, remove all HCI 122 * commands queued on the HCI request queue. 123 */ 124 if (req->err) { 125 skb_queue_purge(&req->cmd_q); 126 return req->err; 127 } 128 129 /* Do not allow empty requests */ 130 if (skb_queue_empty(&req->cmd_q)) 131 return -ENODATA; 132 133 skb = skb_peek_tail(&req->cmd_q); 134 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 135 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 136 137 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 138 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 139 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 140 141 queue_work(hdev->workqueue, &hdev->cmd_work); 142 143 return 0; 144 } 145 146 /* This function requires the caller holds hdev->req_lock. */ 147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 148 const void *param, u8 event, u32 timeout, 149 struct sock *sk) 150 { 151 struct hci_request req; 152 struct sk_buff *skb; 153 int err = 0; 154 155 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 156 157 hci_req_init(&req, hdev); 158 159 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 160 161 hdev->req_status = HCI_REQ_PEND; 162 163 err = hci_cmd_sync_run(&req); 164 if (err < 0) 165 return ERR_PTR(err); 166 167 err = wait_event_interruptible_timeout(hdev->req_wait_q, 168 hdev->req_status != HCI_REQ_PEND, 169 timeout); 170 171 if (err == -ERESTARTSYS) 172 return ERR_PTR(-EINTR); 173 174 switch (hdev->req_status) { 175 case HCI_REQ_DONE: 176 err = -bt_to_errno(hdev->req_result); 177 break; 178 179 case HCI_REQ_CANCELED: 180 err = -hdev->req_result; 181 break; 182 183 default: 184 err = -ETIMEDOUT; 185 break; 186 } 187 188 hdev->req_status = 0; 189 hdev->req_result = 0; 190 skb = hdev->req_skb; 191 hdev->req_skb = NULL; 192 193 bt_dev_dbg(hdev, "end: err %d", err); 194 195 if (err < 0) { 196 kfree_skb(skb); 197 return ERR_PTR(err); 198 } 199 200 return skb; 201 } 202 EXPORT_SYMBOL(__hci_cmd_sync_sk); 203 204 /* This function requires the caller holds hdev->req_lock. */ 205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 206 const void *param, u32 timeout) 207 { 208 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 209 } 210 EXPORT_SYMBOL(__hci_cmd_sync); 211 212 /* Send HCI command and wait for command complete event */ 213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 214 const void *param, u32 timeout) 215 { 216 struct sk_buff *skb; 217 218 if (!test_bit(HCI_UP, &hdev->flags)) 219 return ERR_PTR(-ENETDOWN); 220 221 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 222 223 hci_req_sync_lock(hdev); 224 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 225 hci_req_sync_unlock(hdev); 226 227 return skb; 228 } 229 EXPORT_SYMBOL(hci_cmd_sync); 230 231 /* This function requires the caller holds hdev->req_lock. */ 232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 233 const void *param, u8 event, u32 timeout) 234 { 235 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 236 NULL); 237 } 238 EXPORT_SYMBOL(__hci_cmd_sync_ev); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout, 243 struct sock *sk) 244 { 245 struct sk_buff *skb; 246 u8 status; 247 248 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 249 if (IS_ERR(skb)) { 250 if (!event) 251 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 252 PTR_ERR(skb)); 253 return PTR_ERR(skb); 254 } 255 256 /* If command return a status event skb will be set to NULL as there are 257 * no parameters, in case of failure IS_ERR(skb) would have be set to 258 * the actual error would be found with PTR_ERR(skb). 259 */ 260 if (!skb) 261 return 0; 262 263 status = skb->data[0]; 264 265 kfree_skb(skb); 266 267 return status; 268 } 269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 270 271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 272 const void *param, u32 timeout) 273 { 274 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 275 NULL); 276 } 277 EXPORT_SYMBOL(__hci_cmd_sync_status); 278 279 static void hci_cmd_sync_work(struct work_struct *work) 280 { 281 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 282 283 bt_dev_dbg(hdev, ""); 284 285 /* Dequeue all entries and run them */ 286 while (1) { 287 struct hci_cmd_sync_work_entry *entry; 288 289 mutex_lock(&hdev->cmd_sync_work_lock); 290 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 291 struct hci_cmd_sync_work_entry, 292 list); 293 if (entry) 294 list_del(&entry->list); 295 mutex_unlock(&hdev->cmd_sync_work_lock); 296 297 if (!entry) 298 break; 299 300 bt_dev_dbg(hdev, "entry %p", entry); 301 302 if (entry->func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 err = entry->func(hdev, entry->data); 307 if (entry->destroy) 308 entry->destroy(hdev, entry->data, err); 309 hci_req_sync_unlock(hdev); 310 } 311 312 kfree(entry); 313 } 314 } 315 316 static void hci_cmd_sync_cancel_work(struct work_struct *work) 317 { 318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 319 320 cancel_delayed_work_sync(&hdev->cmd_timer); 321 cancel_delayed_work_sync(&hdev->ncmd_timer); 322 atomic_set(&hdev->cmd_cnt, 1); 323 324 wake_up_interruptible(&hdev->req_wait_q); 325 } 326 327 static int hci_scan_disable_sync(struct hci_dev *hdev); 328 static int scan_disable_sync(struct hci_dev *hdev, void *data) 329 { 330 return hci_scan_disable_sync(hdev); 331 } 332 333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 335 { 336 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 337 } 338 339 static void le_scan_disable(struct work_struct *work) 340 { 341 struct hci_dev *hdev = container_of(work, struct hci_dev, 342 le_scan_disable.work); 343 int status; 344 345 bt_dev_dbg(hdev, ""); 346 hci_dev_lock(hdev); 347 348 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 349 goto _return; 350 351 cancel_delayed_work(&hdev->le_scan_restart); 352 353 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 354 if (status) { 355 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 356 goto _return; 357 } 358 359 hdev->discovery.scan_start = 0; 360 361 /* If we were running LE only scan, change discovery state. If 362 * we were running both LE and BR/EDR inquiry simultaneously, 363 * and BR/EDR inquiry is already finished, stop discovery, 364 * otherwise BR/EDR inquiry will stop discovery when finished. 365 * If we will resolve remote device name, do not change 366 * discovery state. 367 */ 368 369 if (hdev->discovery.type == DISCOV_TYPE_LE) 370 goto discov_stopped; 371 372 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 373 goto _return; 374 375 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 376 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 377 hdev->discovery.state != DISCOVERY_RESOLVING) 378 goto discov_stopped; 379 380 goto _return; 381 } 382 383 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 384 if (status) { 385 bt_dev_err(hdev, "inquiry failed: status %d", status); 386 goto discov_stopped; 387 } 388 389 goto _return; 390 391 discov_stopped: 392 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 393 394 _return: 395 hci_dev_unlock(hdev); 396 } 397 398 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 399 u8 filter_dup); 400 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 401 { 402 /* If controller is not scanning we are done. */ 403 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 404 return 0; 405 406 if (hdev->scanning_paused) { 407 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 408 return 0; 409 } 410 411 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 412 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 413 LE_SCAN_FILTER_DUP_ENABLE); 414 } 415 416 static void le_scan_restart(struct work_struct *work) 417 { 418 struct hci_dev *hdev = container_of(work, struct hci_dev, 419 le_scan_restart.work); 420 unsigned long timeout, duration, scan_start, now; 421 int status; 422 423 bt_dev_dbg(hdev, ""); 424 425 status = hci_le_scan_restart_sync(hdev); 426 if (status) { 427 bt_dev_err(hdev, "failed to restart LE scan: status %d", 428 status); 429 return; 430 } 431 432 hci_dev_lock(hdev); 433 434 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 435 !hdev->discovery.scan_start) 436 goto unlock; 437 438 /* When the scan was started, hdev->le_scan_disable has been queued 439 * after duration from scan_start. During scan restart this job 440 * has been canceled, and we need to queue it again after proper 441 * timeout, to make sure that scan does not run indefinitely. 442 */ 443 duration = hdev->discovery.scan_duration; 444 scan_start = hdev->discovery.scan_start; 445 now = jiffies; 446 if (now - scan_start <= duration) { 447 int elapsed; 448 449 if (now >= scan_start) 450 elapsed = now - scan_start; 451 else 452 elapsed = ULONG_MAX - scan_start + now; 453 454 timeout = duration - elapsed; 455 } else { 456 timeout = 0; 457 } 458 459 queue_delayed_work(hdev->req_workqueue, 460 &hdev->le_scan_disable, timeout); 461 462 unlock: 463 hci_dev_unlock(hdev); 464 } 465 466 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 467 { 468 bt_dev_dbg(hdev, ""); 469 470 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 471 list_empty(&hdev->adv_instances)) 472 return 0; 473 474 if (hdev->cur_adv_instance) { 475 return hci_schedule_adv_instance_sync(hdev, 476 hdev->cur_adv_instance, 477 true); 478 } else { 479 if (ext_adv_capable(hdev)) { 480 hci_start_ext_adv_sync(hdev, 0x00); 481 } else { 482 hci_update_adv_data_sync(hdev, 0x00); 483 hci_update_scan_rsp_data_sync(hdev, 0x00); 484 hci_enable_advertising_sync(hdev); 485 } 486 } 487 488 return 0; 489 } 490 491 static void reenable_adv(struct work_struct *work) 492 { 493 struct hci_dev *hdev = container_of(work, struct hci_dev, 494 reenable_adv_work); 495 int status; 496 497 bt_dev_dbg(hdev, ""); 498 499 hci_dev_lock(hdev); 500 501 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 502 if (status) 503 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 504 505 hci_dev_unlock(hdev); 506 } 507 508 static void cancel_adv_timeout(struct hci_dev *hdev) 509 { 510 if (hdev->adv_instance_timeout) { 511 hdev->adv_instance_timeout = 0; 512 cancel_delayed_work(&hdev->adv_instance_expire); 513 } 514 } 515 516 /* For a single instance: 517 * - force == true: The instance will be removed even when its remaining 518 * lifetime is not zero. 519 * - force == false: the instance will be deactivated but kept stored unless 520 * the remaining lifetime is zero. 521 * 522 * For instance == 0x00: 523 * - force == true: All instances will be removed regardless of their timeout 524 * setting. 525 * - force == false: Only instances that have a timeout will be removed. 526 */ 527 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 528 u8 instance, bool force) 529 { 530 struct adv_info *adv_instance, *n, *next_instance = NULL; 531 int err; 532 u8 rem_inst; 533 534 /* Cancel any timeout concerning the removed instance(s). */ 535 if (!instance || hdev->cur_adv_instance == instance) 536 cancel_adv_timeout(hdev); 537 538 /* Get the next instance to advertise BEFORE we remove 539 * the current one. This can be the same instance again 540 * if there is only one instance. 541 */ 542 if (instance && hdev->cur_adv_instance == instance) 543 next_instance = hci_get_next_instance(hdev, instance); 544 545 if (instance == 0x00) { 546 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 547 list) { 548 if (!(force || adv_instance->timeout)) 549 continue; 550 551 rem_inst = adv_instance->instance; 552 err = hci_remove_adv_instance(hdev, rem_inst); 553 if (!err) 554 mgmt_advertising_removed(sk, hdev, rem_inst); 555 } 556 } else { 557 adv_instance = hci_find_adv_instance(hdev, instance); 558 559 if (force || (adv_instance && adv_instance->timeout && 560 !adv_instance->remaining_time)) { 561 /* Don't advertise a removed instance. */ 562 if (next_instance && 563 next_instance->instance == instance) 564 next_instance = NULL; 565 566 err = hci_remove_adv_instance(hdev, instance); 567 if (!err) 568 mgmt_advertising_removed(sk, hdev, instance); 569 } 570 } 571 572 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 573 return 0; 574 575 if (next_instance && !ext_adv_capable(hdev)) 576 return hci_schedule_adv_instance_sync(hdev, 577 next_instance->instance, 578 false); 579 580 return 0; 581 } 582 583 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 584 { 585 u8 instance = *(u8 *)data; 586 587 kfree(data); 588 589 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 590 591 if (list_empty(&hdev->adv_instances)) 592 return hci_disable_advertising_sync(hdev); 593 594 return 0; 595 } 596 597 static void adv_timeout_expire(struct work_struct *work) 598 { 599 u8 *inst_ptr; 600 struct hci_dev *hdev = container_of(work, struct hci_dev, 601 adv_instance_expire.work); 602 603 bt_dev_dbg(hdev, ""); 604 605 hci_dev_lock(hdev); 606 607 hdev->adv_instance_timeout = 0; 608 609 if (hdev->cur_adv_instance == 0x00) 610 goto unlock; 611 612 inst_ptr = kmalloc(1, GFP_KERNEL); 613 if (!inst_ptr) 614 goto unlock; 615 616 *inst_ptr = hdev->cur_adv_instance; 617 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 618 619 unlock: 620 hci_dev_unlock(hdev); 621 } 622 623 void hci_cmd_sync_init(struct hci_dev *hdev) 624 { 625 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 626 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 627 mutex_init(&hdev->cmd_sync_work_lock); 628 mutex_init(&hdev->unregister_lock); 629 630 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 631 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 632 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 633 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 634 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 635 } 636 637 void hci_cmd_sync_clear(struct hci_dev *hdev) 638 { 639 struct hci_cmd_sync_work_entry *entry, *tmp; 640 641 cancel_work_sync(&hdev->cmd_sync_work); 642 cancel_work_sync(&hdev->reenable_adv_work); 643 644 mutex_lock(&hdev->cmd_sync_work_lock); 645 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 646 if (entry->destroy) 647 entry->destroy(hdev, entry->data, -ECANCELED); 648 649 list_del(&entry->list); 650 kfree(entry); 651 } 652 mutex_unlock(&hdev->cmd_sync_work_lock); 653 } 654 655 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 656 { 657 bt_dev_dbg(hdev, "err 0x%2.2x", err); 658 659 if (hdev->req_status == HCI_REQ_PEND) { 660 hdev->req_result = err; 661 hdev->req_status = HCI_REQ_CANCELED; 662 663 cancel_delayed_work_sync(&hdev->cmd_timer); 664 cancel_delayed_work_sync(&hdev->ncmd_timer); 665 atomic_set(&hdev->cmd_cnt, 1); 666 667 wake_up_interruptible(&hdev->req_wait_q); 668 } 669 } 670 671 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 672 { 673 bt_dev_dbg(hdev, "err 0x%2.2x", err); 674 675 if (hdev->req_status == HCI_REQ_PEND) { 676 hdev->req_result = err; 677 hdev->req_status = HCI_REQ_CANCELED; 678 679 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 680 } 681 } 682 EXPORT_SYMBOL(hci_cmd_sync_cancel); 683 684 /* Submit HCI command to be run in as cmd_sync_work: 685 * 686 * - hdev must _not_ be unregistered 687 */ 688 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 689 void *data, hci_cmd_sync_work_destroy_t destroy) 690 { 691 struct hci_cmd_sync_work_entry *entry; 692 int err = 0; 693 694 mutex_lock(&hdev->unregister_lock); 695 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 696 err = -ENODEV; 697 goto unlock; 698 } 699 700 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 701 if (!entry) { 702 err = -ENOMEM; 703 goto unlock; 704 } 705 entry->func = func; 706 entry->data = data; 707 entry->destroy = destroy; 708 709 mutex_lock(&hdev->cmd_sync_work_lock); 710 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 711 mutex_unlock(&hdev->cmd_sync_work_lock); 712 713 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 714 715 unlock: 716 mutex_unlock(&hdev->unregister_lock); 717 return err; 718 } 719 EXPORT_SYMBOL(hci_cmd_sync_submit); 720 721 /* Queue HCI command: 722 * 723 * - hdev must be running 724 */ 725 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 726 void *data, hci_cmd_sync_work_destroy_t destroy) 727 { 728 /* Only queue command if hdev is running which means it had been opened 729 * and is either on init phase or is already up. 730 */ 731 if (!test_bit(HCI_RUNNING, &hdev->flags)) 732 return -ENETDOWN; 733 734 return hci_cmd_sync_submit(hdev, func, data, destroy); 735 } 736 EXPORT_SYMBOL(hci_cmd_sync_queue); 737 738 int hci_update_eir_sync(struct hci_dev *hdev) 739 { 740 struct hci_cp_write_eir cp; 741 742 bt_dev_dbg(hdev, ""); 743 744 if (!hdev_is_powered(hdev)) 745 return 0; 746 747 if (!lmp_ext_inq_capable(hdev)) 748 return 0; 749 750 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 751 return 0; 752 753 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 754 return 0; 755 756 memset(&cp, 0, sizeof(cp)); 757 758 eir_create(hdev, cp.data); 759 760 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 761 return 0; 762 763 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 764 765 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 766 HCI_CMD_TIMEOUT); 767 } 768 769 static u8 get_service_classes(struct hci_dev *hdev) 770 { 771 struct bt_uuid *uuid; 772 u8 val = 0; 773 774 list_for_each_entry(uuid, &hdev->uuids, list) 775 val |= uuid->svc_hint; 776 777 return val; 778 } 779 780 int hci_update_class_sync(struct hci_dev *hdev) 781 { 782 u8 cod[3]; 783 784 bt_dev_dbg(hdev, ""); 785 786 if (!hdev_is_powered(hdev)) 787 return 0; 788 789 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 790 return 0; 791 792 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 793 return 0; 794 795 cod[0] = hdev->minor_class; 796 cod[1] = hdev->major_class; 797 cod[2] = get_service_classes(hdev); 798 799 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 800 cod[1] |= 0x20; 801 802 if (memcmp(cod, hdev->dev_class, 3) == 0) 803 return 0; 804 805 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 806 sizeof(cod), cod, HCI_CMD_TIMEOUT); 807 } 808 809 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 810 { 811 /* If there is no connection we are OK to advertise. */ 812 if (hci_conn_num(hdev, LE_LINK) == 0) 813 return true; 814 815 /* Check le_states if there is any connection in peripheral role. */ 816 if (hdev->conn_hash.le_num_peripheral > 0) { 817 /* Peripheral connection state and non connectable mode 818 * bit 20. 819 */ 820 if (!connectable && !(hdev->le_states[2] & 0x10)) 821 return false; 822 823 /* Peripheral connection state and connectable mode bit 38 824 * and scannable bit 21. 825 */ 826 if (connectable && (!(hdev->le_states[4] & 0x40) || 827 !(hdev->le_states[2] & 0x20))) 828 return false; 829 } 830 831 /* Check le_states if there is any connection in central role. */ 832 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 833 /* Central connection state and non connectable mode bit 18. */ 834 if (!connectable && !(hdev->le_states[2] & 0x02)) 835 return false; 836 837 /* Central connection state and connectable mode bit 35 and 838 * scannable 19. 839 */ 840 if (connectable && (!(hdev->le_states[4] & 0x08) || 841 !(hdev->le_states[2] & 0x08))) 842 return false; 843 } 844 845 return true; 846 } 847 848 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 849 { 850 /* If privacy is not enabled don't use RPA */ 851 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 852 return false; 853 854 /* If basic privacy mode is enabled use RPA */ 855 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 856 return true; 857 858 /* If limited privacy mode is enabled don't use RPA if we're 859 * both discoverable and bondable. 860 */ 861 if ((flags & MGMT_ADV_FLAG_DISCOV) && 862 hci_dev_test_flag(hdev, HCI_BONDABLE)) 863 return false; 864 865 /* We're neither bondable nor discoverable in the limited 866 * privacy mode, therefore use RPA. 867 */ 868 return true; 869 } 870 871 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 872 { 873 /* If we're advertising or initiating an LE connection we can't 874 * go ahead and change the random address at this time. This is 875 * because the eventual initiator address used for the 876 * subsequently created connection will be undefined (some 877 * controllers use the new address and others the one we had 878 * when the operation started). 879 * 880 * In this kind of scenario skip the update and let the random 881 * address be updated at the next cycle. 882 */ 883 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 884 hci_lookup_le_connect(hdev)) { 885 bt_dev_dbg(hdev, "Deferring random address update"); 886 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 887 return 0; 888 } 889 890 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 891 6, rpa, HCI_CMD_TIMEOUT); 892 } 893 894 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 895 bool rpa, u8 *own_addr_type) 896 { 897 int err; 898 899 /* If privacy is enabled use a resolvable private address. If 900 * current RPA has expired or there is something else than 901 * the current RPA in use, then generate a new one. 902 */ 903 if (rpa) { 904 /* If Controller supports LL Privacy use own address type is 905 * 0x03 906 */ 907 if (use_ll_privacy(hdev)) 908 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 909 else 910 *own_addr_type = ADDR_LE_DEV_RANDOM; 911 912 /* Check if RPA is valid */ 913 if (rpa_valid(hdev)) 914 return 0; 915 916 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 917 if (err < 0) { 918 bt_dev_err(hdev, "failed to generate new RPA"); 919 return err; 920 } 921 922 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 923 if (err) 924 return err; 925 926 return 0; 927 } 928 929 /* In case of required privacy without resolvable private address, 930 * use an non-resolvable private address. This is useful for active 931 * scanning and non-connectable advertising. 932 */ 933 if (require_privacy) { 934 bdaddr_t nrpa; 935 936 while (true) { 937 /* The non-resolvable private address is generated 938 * from random six bytes with the two most significant 939 * bits cleared. 940 */ 941 get_random_bytes(&nrpa, 6); 942 nrpa.b[5] &= 0x3f; 943 944 /* The non-resolvable private address shall not be 945 * equal to the public address. 946 */ 947 if (bacmp(&hdev->bdaddr, &nrpa)) 948 break; 949 } 950 951 *own_addr_type = ADDR_LE_DEV_RANDOM; 952 953 return hci_set_random_addr_sync(hdev, &nrpa); 954 } 955 956 /* If forcing static address is in use or there is no public 957 * address use the static address as random address (but skip 958 * the HCI command if the current random address is already the 959 * static one. 960 * 961 * In case BR/EDR has been disabled on a dual-mode controller 962 * and a static address has been configured, then use that 963 * address instead of the public BR/EDR address. 964 */ 965 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 966 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 967 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 968 bacmp(&hdev->static_addr, BDADDR_ANY))) { 969 *own_addr_type = ADDR_LE_DEV_RANDOM; 970 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 971 return hci_set_random_addr_sync(hdev, 972 &hdev->static_addr); 973 return 0; 974 } 975 976 /* Neither privacy nor static address is being used so use a 977 * public address. 978 */ 979 *own_addr_type = ADDR_LE_DEV_PUBLIC; 980 981 return 0; 982 } 983 984 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 985 { 986 struct hci_cp_le_set_ext_adv_enable *cp; 987 struct hci_cp_ext_adv_set *set; 988 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 989 u8 size; 990 991 /* If request specifies an instance that doesn't exist, fail */ 992 if (instance > 0) { 993 struct adv_info *adv; 994 995 adv = hci_find_adv_instance(hdev, instance); 996 if (!adv) 997 return -EINVAL; 998 999 /* If not enabled there is nothing to do */ 1000 if (!adv->enabled) 1001 return 0; 1002 } 1003 1004 memset(data, 0, sizeof(data)); 1005 1006 cp = (void *)data; 1007 set = (void *)cp->data; 1008 1009 /* Instance 0x00 indicates all advertising instances will be disabled */ 1010 cp->num_of_sets = !!instance; 1011 cp->enable = 0x00; 1012 1013 set->handle = instance; 1014 1015 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1016 1017 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1018 size, data, HCI_CMD_TIMEOUT); 1019 } 1020 1021 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1022 bdaddr_t *random_addr) 1023 { 1024 struct hci_cp_le_set_adv_set_rand_addr cp; 1025 int err; 1026 1027 if (!instance) { 1028 /* Instance 0x00 doesn't have an adv_info, instead it uses 1029 * hdev->random_addr to track its address so whenever it needs 1030 * to be updated this also set the random address since 1031 * hdev->random_addr is shared with scan state machine. 1032 */ 1033 err = hci_set_random_addr_sync(hdev, random_addr); 1034 if (err) 1035 return err; 1036 } 1037 1038 memset(&cp, 0, sizeof(cp)); 1039 1040 cp.handle = instance; 1041 bacpy(&cp.bdaddr, random_addr); 1042 1043 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1044 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1045 } 1046 1047 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1048 { 1049 struct hci_cp_le_set_ext_adv_params cp; 1050 bool connectable; 1051 u32 flags; 1052 bdaddr_t random_addr; 1053 u8 own_addr_type; 1054 int err; 1055 struct adv_info *adv; 1056 bool secondary_adv; 1057 1058 if (instance > 0) { 1059 adv = hci_find_adv_instance(hdev, instance); 1060 if (!adv) 1061 return -EINVAL; 1062 } else { 1063 adv = NULL; 1064 } 1065 1066 /* Updating parameters of an active instance will return a 1067 * Command Disallowed error, so we must first disable the 1068 * instance if it is active. 1069 */ 1070 if (adv && !adv->pending) { 1071 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1072 if (err) 1073 return err; 1074 } 1075 1076 flags = hci_adv_instance_flags(hdev, instance); 1077 1078 /* If the "connectable" instance flag was not set, then choose between 1079 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1080 */ 1081 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1082 mgmt_get_connectable(hdev); 1083 1084 if (!is_advertising_allowed(hdev, connectable)) 1085 return -EPERM; 1086 1087 /* Set require_privacy to true only when non-connectable 1088 * advertising is used. In that case it is fine to use a 1089 * non-resolvable private address. 1090 */ 1091 err = hci_get_random_address(hdev, !connectable, 1092 adv_use_rpa(hdev, flags), adv, 1093 &own_addr_type, &random_addr); 1094 if (err < 0) 1095 return err; 1096 1097 memset(&cp, 0, sizeof(cp)); 1098 1099 if (adv) { 1100 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1101 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1102 cp.tx_power = adv->tx_power; 1103 } else { 1104 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1105 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1106 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1107 } 1108 1109 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1110 1111 if (connectable) { 1112 if (secondary_adv) 1113 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1114 else 1115 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1116 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1117 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1118 if (secondary_adv) 1119 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1120 else 1121 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1122 } else { 1123 if (secondary_adv) 1124 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1125 else 1126 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1127 } 1128 1129 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1130 * contains the peer’s Identity Address and the Peer_Address_Type 1131 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1132 * These parameters are used to locate the corresponding local IRK in 1133 * the resolving list; this IRK is used to generate their own address 1134 * used in the advertisement. 1135 */ 1136 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1137 hci_copy_identity_address(hdev, &cp.peer_addr, 1138 &cp.peer_addr_type); 1139 1140 cp.own_addr_type = own_addr_type; 1141 cp.channel_map = hdev->le_adv_channel_map; 1142 cp.handle = instance; 1143 1144 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1145 cp.primary_phy = HCI_ADV_PHY_1M; 1146 cp.secondary_phy = HCI_ADV_PHY_2M; 1147 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1148 cp.primary_phy = HCI_ADV_PHY_CODED; 1149 cp.secondary_phy = HCI_ADV_PHY_CODED; 1150 } else { 1151 /* In all other cases use 1M */ 1152 cp.primary_phy = HCI_ADV_PHY_1M; 1153 cp.secondary_phy = HCI_ADV_PHY_1M; 1154 } 1155 1156 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1157 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1158 if (err) 1159 return err; 1160 1161 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1162 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1163 bacmp(&random_addr, BDADDR_ANY)) { 1164 /* Check if random address need to be updated */ 1165 if (adv) { 1166 if (!bacmp(&random_addr, &adv->random_addr)) 1167 return 0; 1168 } else { 1169 if (!bacmp(&random_addr, &hdev->random_addr)) 1170 return 0; 1171 } 1172 1173 return hci_set_adv_set_random_addr_sync(hdev, instance, 1174 &random_addr); 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1181 { 1182 struct { 1183 struct hci_cp_le_set_ext_scan_rsp_data cp; 1184 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1185 } pdu; 1186 u8 len; 1187 struct adv_info *adv = NULL; 1188 int err; 1189 1190 memset(&pdu, 0, sizeof(pdu)); 1191 1192 if (instance) { 1193 adv = hci_find_adv_instance(hdev, instance); 1194 if (!adv || !adv->scan_rsp_changed) 1195 return 0; 1196 } 1197 1198 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1199 1200 pdu.cp.handle = instance; 1201 pdu.cp.length = len; 1202 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1203 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1204 1205 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1206 sizeof(pdu.cp) + len, &pdu.cp, 1207 HCI_CMD_TIMEOUT); 1208 if (err) 1209 return err; 1210 1211 if (adv) { 1212 adv->scan_rsp_changed = false; 1213 } else { 1214 memcpy(hdev->scan_rsp_data, pdu.data, len); 1215 hdev->scan_rsp_data_len = len; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1222 { 1223 struct hci_cp_le_set_scan_rsp_data cp; 1224 u8 len; 1225 1226 memset(&cp, 0, sizeof(cp)); 1227 1228 len = eir_create_scan_rsp(hdev, instance, cp.data); 1229 1230 if (hdev->scan_rsp_data_len == len && 1231 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1232 return 0; 1233 1234 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1235 hdev->scan_rsp_data_len = len; 1236 1237 cp.length = len; 1238 1239 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1240 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1241 } 1242 1243 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1244 { 1245 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1246 return 0; 1247 1248 if (ext_adv_capable(hdev)) 1249 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1250 1251 return __hci_set_scan_rsp_data_sync(hdev, instance); 1252 } 1253 1254 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1255 { 1256 struct hci_cp_le_set_ext_adv_enable *cp; 1257 struct hci_cp_ext_adv_set *set; 1258 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1259 struct adv_info *adv; 1260 1261 if (instance > 0) { 1262 adv = hci_find_adv_instance(hdev, instance); 1263 if (!adv) 1264 return -EINVAL; 1265 /* If already enabled there is nothing to do */ 1266 if (adv->enabled) 1267 return 0; 1268 } else { 1269 adv = NULL; 1270 } 1271 1272 cp = (void *)data; 1273 set = (void *)cp->data; 1274 1275 memset(cp, 0, sizeof(*cp)); 1276 1277 cp->enable = 0x01; 1278 cp->num_of_sets = 0x01; 1279 1280 memset(set, 0, sizeof(*set)); 1281 1282 set->handle = instance; 1283 1284 /* Set duration per instance since controller is responsible for 1285 * scheduling it. 1286 */ 1287 if (adv && adv->timeout) { 1288 u16 duration = adv->timeout * MSEC_PER_SEC; 1289 1290 /* Time = N * 10 ms */ 1291 set->duration = cpu_to_le16(duration / 10); 1292 } 1293 1294 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1295 sizeof(*cp) + 1296 sizeof(*set) * cp->num_of_sets, 1297 data, HCI_CMD_TIMEOUT); 1298 } 1299 1300 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1301 { 1302 int err; 1303 1304 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1305 if (err) 1306 return err; 1307 1308 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1309 if (err) 1310 return err; 1311 1312 return hci_enable_ext_advertising_sync(hdev, instance); 1313 } 1314 1315 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1316 { 1317 struct hci_cp_le_set_per_adv_enable cp; 1318 struct adv_info *adv = NULL; 1319 1320 /* If periodic advertising already disabled there is nothing to do. */ 1321 adv = hci_find_adv_instance(hdev, instance); 1322 if (!adv || !adv->periodic || !adv->enabled) 1323 return 0; 1324 1325 memset(&cp, 0, sizeof(cp)); 1326 1327 cp.enable = 0x00; 1328 cp.handle = instance; 1329 1330 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1331 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1332 } 1333 1334 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1335 u16 min_interval, u16 max_interval) 1336 { 1337 struct hci_cp_le_set_per_adv_params cp; 1338 1339 memset(&cp, 0, sizeof(cp)); 1340 1341 if (!min_interval) 1342 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1343 1344 if (!max_interval) 1345 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1346 1347 cp.handle = instance; 1348 cp.min_interval = cpu_to_le16(min_interval); 1349 cp.max_interval = cpu_to_le16(max_interval); 1350 cp.periodic_properties = 0x0000; 1351 1352 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1353 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1354 } 1355 1356 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1357 { 1358 struct { 1359 struct hci_cp_le_set_per_adv_data cp; 1360 u8 data[HCI_MAX_PER_AD_LENGTH]; 1361 } pdu; 1362 u8 len; 1363 1364 memset(&pdu, 0, sizeof(pdu)); 1365 1366 if (instance) { 1367 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1368 1369 if (!adv || !adv->periodic) 1370 return 0; 1371 } 1372 1373 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1374 1375 pdu.cp.length = len; 1376 pdu.cp.handle = instance; 1377 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1378 1379 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1380 sizeof(pdu.cp) + len, &pdu, 1381 HCI_CMD_TIMEOUT); 1382 } 1383 1384 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1385 { 1386 struct hci_cp_le_set_per_adv_enable cp; 1387 struct adv_info *adv = NULL; 1388 1389 /* If periodic advertising already enabled there is nothing to do. */ 1390 adv = hci_find_adv_instance(hdev, instance); 1391 if (adv && adv->periodic && adv->enabled) 1392 return 0; 1393 1394 memset(&cp, 0, sizeof(cp)); 1395 1396 cp.enable = 0x01; 1397 cp.handle = instance; 1398 1399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1400 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1401 } 1402 1403 /* Checks if periodic advertising data contains a Basic Announcement and if it 1404 * does generates a Broadcast ID and add Broadcast Announcement. 1405 */ 1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1407 { 1408 u8 bid[3]; 1409 u8 ad[4 + 3]; 1410 1411 /* Skip if NULL adv as instance 0x00 is used for general purpose 1412 * advertising so it cannot used for the likes of Broadcast Announcement 1413 * as it can be overwritten at any point. 1414 */ 1415 if (!adv) 1416 return 0; 1417 1418 /* Check if PA data doesn't contains a Basic Audio Announcement then 1419 * there is nothing to do. 1420 */ 1421 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1422 0x1851, NULL)) 1423 return 0; 1424 1425 /* Check if advertising data already has a Broadcast Announcement since 1426 * the process may want to control the Broadcast ID directly and in that 1427 * case the kernel shall no interfere. 1428 */ 1429 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1430 NULL)) 1431 return 0; 1432 1433 /* Generate Broadcast ID */ 1434 get_random_bytes(bid, sizeof(bid)); 1435 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1436 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1437 1438 return hci_update_adv_data_sync(hdev, adv->instance); 1439 } 1440 1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1442 u8 *data, u32 flags, u16 min_interval, 1443 u16 max_interval, u16 sync_interval) 1444 { 1445 struct adv_info *adv = NULL; 1446 int err; 1447 bool added = false; 1448 1449 hci_disable_per_advertising_sync(hdev, instance); 1450 1451 if (instance) { 1452 adv = hci_find_adv_instance(hdev, instance); 1453 /* Create an instance if that could not be found */ 1454 if (!adv) { 1455 adv = hci_add_per_instance(hdev, instance, flags, 1456 data_len, data, 1457 sync_interval, 1458 sync_interval); 1459 if (IS_ERR(adv)) 1460 return PTR_ERR(adv); 1461 adv->pending = false; 1462 added = true; 1463 } 1464 } 1465 1466 /* Start advertising */ 1467 err = hci_start_ext_adv_sync(hdev, instance); 1468 if (err < 0) 1469 goto fail; 1470 1471 err = hci_adv_bcast_annoucement(hdev, adv); 1472 if (err < 0) 1473 goto fail; 1474 1475 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1476 max_interval); 1477 if (err < 0) 1478 goto fail; 1479 1480 err = hci_set_per_adv_data_sync(hdev, instance); 1481 if (err < 0) 1482 goto fail; 1483 1484 err = hci_enable_per_advertising_sync(hdev, instance); 1485 if (err < 0) 1486 goto fail; 1487 1488 return 0; 1489 1490 fail: 1491 if (added) 1492 hci_remove_adv_instance(hdev, instance); 1493 1494 return err; 1495 } 1496 1497 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1498 { 1499 int err; 1500 1501 if (ext_adv_capable(hdev)) 1502 return hci_start_ext_adv_sync(hdev, instance); 1503 1504 err = hci_update_adv_data_sync(hdev, instance); 1505 if (err) 1506 return err; 1507 1508 err = hci_update_scan_rsp_data_sync(hdev, instance); 1509 if (err) 1510 return err; 1511 1512 return hci_enable_advertising_sync(hdev); 1513 } 1514 1515 int hci_enable_advertising_sync(struct hci_dev *hdev) 1516 { 1517 struct adv_info *adv_instance; 1518 struct hci_cp_le_set_adv_param cp; 1519 u8 own_addr_type, enable = 0x01; 1520 bool connectable; 1521 u16 adv_min_interval, adv_max_interval; 1522 u32 flags; 1523 u8 status; 1524 1525 if (ext_adv_capable(hdev)) 1526 return hci_enable_ext_advertising_sync(hdev, 1527 hdev->cur_adv_instance); 1528 1529 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1530 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1531 1532 /* If the "connectable" instance flag was not set, then choose between 1533 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1534 */ 1535 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1536 mgmt_get_connectable(hdev); 1537 1538 if (!is_advertising_allowed(hdev, connectable)) 1539 return -EINVAL; 1540 1541 status = hci_disable_advertising_sync(hdev); 1542 if (status) 1543 return status; 1544 1545 /* Clear the HCI_LE_ADV bit temporarily so that the 1546 * hci_update_random_address knows that it's safe to go ahead 1547 * and write a new random address. The flag will be set back on 1548 * as soon as the SET_ADV_ENABLE HCI command completes. 1549 */ 1550 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1551 1552 /* Set require_privacy to true only when non-connectable 1553 * advertising is used. In that case it is fine to use a 1554 * non-resolvable private address. 1555 */ 1556 status = hci_update_random_address_sync(hdev, !connectable, 1557 adv_use_rpa(hdev, flags), 1558 &own_addr_type); 1559 if (status) 1560 return status; 1561 1562 memset(&cp, 0, sizeof(cp)); 1563 1564 if (adv_instance) { 1565 adv_min_interval = adv_instance->min_interval; 1566 adv_max_interval = adv_instance->max_interval; 1567 } else { 1568 adv_min_interval = hdev->le_adv_min_interval; 1569 adv_max_interval = hdev->le_adv_max_interval; 1570 } 1571 1572 if (connectable) { 1573 cp.type = LE_ADV_IND; 1574 } else { 1575 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1576 cp.type = LE_ADV_SCAN_IND; 1577 else 1578 cp.type = LE_ADV_NONCONN_IND; 1579 1580 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1581 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1582 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1583 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1584 } 1585 } 1586 1587 cp.min_interval = cpu_to_le16(adv_min_interval); 1588 cp.max_interval = cpu_to_le16(adv_max_interval); 1589 cp.own_address_type = own_addr_type; 1590 cp.channel_map = hdev->le_adv_channel_map; 1591 1592 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1593 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1594 if (status) 1595 return status; 1596 1597 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1598 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1599 } 1600 1601 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1602 { 1603 return hci_enable_advertising_sync(hdev); 1604 } 1605 1606 int hci_enable_advertising(struct hci_dev *hdev) 1607 { 1608 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1609 list_empty(&hdev->adv_instances)) 1610 return 0; 1611 1612 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1613 } 1614 1615 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1616 struct sock *sk) 1617 { 1618 int err; 1619 1620 if (!ext_adv_capable(hdev)) 1621 return 0; 1622 1623 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1624 if (err) 1625 return err; 1626 1627 /* If request specifies an instance that doesn't exist, fail */ 1628 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1629 return -EINVAL; 1630 1631 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1632 sizeof(instance), &instance, 0, 1633 HCI_CMD_TIMEOUT, sk); 1634 } 1635 1636 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1637 { 1638 struct adv_info *adv = data; 1639 u8 instance = 0; 1640 1641 if (adv) 1642 instance = adv->instance; 1643 1644 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1645 } 1646 1647 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1648 { 1649 struct adv_info *adv = NULL; 1650 1651 if (instance) { 1652 adv = hci_find_adv_instance(hdev, instance); 1653 if (!adv) 1654 return -EINVAL; 1655 } 1656 1657 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1658 } 1659 1660 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1661 { 1662 struct hci_cp_le_term_big cp; 1663 1664 memset(&cp, 0, sizeof(cp)); 1665 cp.handle = handle; 1666 cp.reason = reason; 1667 1668 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1669 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1670 } 1671 1672 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1673 { 1674 struct { 1675 struct hci_cp_le_set_ext_adv_data cp; 1676 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1677 } pdu; 1678 u8 len; 1679 struct adv_info *adv = NULL; 1680 int err; 1681 1682 memset(&pdu, 0, sizeof(pdu)); 1683 1684 if (instance) { 1685 adv = hci_find_adv_instance(hdev, instance); 1686 if (!adv || !adv->adv_data_changed) 1687 return 0; 1688 } 1689 1690 len = eir_create_adv_data(hdev, instance, pdu.data); 1691 1692 pdu.cp.length = len; 1693 pdu.cp.handle = instance; 1694 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1695 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1696 1697 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1698 sizeof(pdu.cp) + len, &pdu.cp, 1699 HCI_CMD_TIMEOUT); 1700 if (err) 1701 return err; 1702 1703 /* Update data if the command succeed */ 1704 if (adv) { 1705 adv->adv_data_changed = false; 1706 } else { 1707 memcpy(hdev->adv_data, pdu.data, len); 1708 hdev->adv_data_len = len; 1709 } 1710 1711 return 0; 1712 } 1713 1714 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1715 { 1716 struct hci_cp_le_set_adv_data cp; 1717 u8 len; 1718 1719 memset(&cp, 0, sizeof(cp)); 1720 1721 len = eir_create_adv_data(hdev, instance, cp.data); 1722 1723 /* There's nothing to do if the data hasn't changed */ 1724 if (hdev->adv_data_len == len && 1725 memcmp(cp.data, hdev->adv_data, len) == 0) 1726 return 0; 1727 1728 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1729 hdev->adv_data_len = len; 1730 1731 cp.length = len; 1732 1733 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1734 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1735 } 1736 1737 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1738 { 1739 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1740 return 0; 1741 1742 if (ext_adv_capable(hdev)) 1743 return hci_set_ext_adv_data_sync(hdev, instance); 1744 1745 return hci_set_adv_data_sync(hdev, instance); 1746 } 1747 1748 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1749 bool force) 1750 { 1751 struct adv_info *adv = NULL; 1752 u16 timeout; 1753 1754 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1755 return -EPERM; 1756 1757 if (hdev->adv_instance_timeout) 1758 return -EBUSY; 1759 1760 adv = hci_find_adv_instance(hdev, instance); 1761 if (!adv) 1762 return -ENOENT; 1763 1764 /* A zero timeout means unlimited advertising. As long as there is 1765 * only one instance, duration should be ignored. We still set a timeout 1766 * in case further instances are being added later on. 1767 * 1768 * If the remaining lifetime of the instance is more than the duration 1769 * then the timeout corresponds to the duration, otherwise it will be 1770 * reduced to the remaining instance lifetime. 1771 */ 1772 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1773 timeout = adv->duration; 1774 else 1775 timeout = adv->remaining_time; 1776 1777 /* The remaining time is being reduced unless the instance is being 1778 * advertised without time limit. 1779 */ 1780 if (adv->timeout) 1781 adv->remaining_time = adv->remaining_time - timeout; 1782 1783 /* Only use work for scheduling instances with legacy advertising */ 1784 if (!ext_adv_capable(hdev)) { 1785 hdev->adv_instance_timeout = timeout; 1786 queue_delayed_work(hdev->req_workqueue, 1787 &hdev->adv_instance_expire, 1788 msecs_to_jiffies(timeout * 1000)); 1789 } 1790 1791 /* If we're just re-scheduling the same instance again then do not 1792 * execute any HCI commands. This happens when a single instance is 1793 * being advertised. 1794 */ 1795 if (!force && hdev->cur_adv_instance == instance && 1796 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1797 return 0; 1798 1799 hdev->cur_adv_instance = instance; 1800 1801 return hci_start_adv_sync(hdev, instance); 1802 } 1803 1804 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1805 { 1806 int err; 1807 1808 if (!ext_adv_capable(hdev)) 1809 return 0; 1810 1811 /* Disable instance 0x00 to disable all instances */ 1812 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1813 if (err) 1814 return err; 1815 1816 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1817 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1818 } 1819 1820 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1821 { 1822 struct adv_info *adv, *n; 1823 int err = 0; 1824 1825 if (ext_adv_capable(hdev)) 1826 /* Remove all existing sets */ 1827 err = hci_clear_adv_sets_sync(hdev, sk); 1828 if (ext_adv_capable(hdev)) 1829 return err; 1830 1831 /* This is safe as long as there is no command send while the lock is 1832 * held. 1833 */ 1834 hci_dev_lock(hdev); 1835 1836 /* Cleanup non-ext instances */ 1837 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1838 u8 instance = adv->instance; 1839 int err; 1840 1841 if (!(force || adv->timeout)) 1842 continue; 1843 1844 err = hci_remove_adv_instance(hdev, instance); 1845 if (!err) 1846 mgmt_advertising_removed(sk, hdev, instance); 1847 } 1848 1849 hci_dev_unlock(hdev); 1850 1851 return 0; 1852 } 1853 1854 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1855 struct sock *sk) 1856 { 1857 int err = 0; 1858 1859 /* If we use extended advertising, instance has to be removed first. */ 1860 if (ext_adv_capable(hdev)) 1861 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1862 if (ext_adv_capable(hdev)) 1863 return err; 1864 1865 /* This is safe as long as there is no command send while the lock is 1866 * held. 1867 */ 1868 hci_dev_lock(hdev); 1869 1870 err = hci_remove_adv_instance(hdev, instance); 1871 if (!err) 1872 mgmt_advertising_removed(sk, hdev, instance); 1873 1874 hci_dev_unlock(hdev); 1875 1876 return err; 1877 } 1878 1879 /* For a single instance: 1880 * - force == true: The instance will be removed even when its remaining 1881 * lifetime is not zero. 1882 * - force == false: the instance will be deactivated but kept stored unless 1883 * the remaining lifetime is zero. 1884 * 1885 * For instance == 0x00: 1886 * - force == true: All instances will be removed regardless of their timeout 1887 * setting. 1888 * - force == false: Only instances that have a timeout will be removed. 1889 */ 1890 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1891 u8 instance, bool force) 1892 { 1893 struct adv_info *next = NULL; 1894 int err; 1895 1896 /* Cancel any timeout concerning the removed instance(s). */ 1897 if (!instance || hdev->cur_adv_instance == instance) 1898 cancel_adv_timeout(hdev); 1899 1900 /* Get the next instance to advertise BEFORE we remove 1901 * the current one. This can be the same instance again 1902 * if there is only one instance. 1903 */ 1904 if (hdev->cur_adv_instance == instance) 1905 next = hci_get_next_instance(hdev, instance); 1906 1907 if (!instance) { 1908 err = hci_clear_adv_sync(hdev, sk, force); 1909 if (err) 1910 return err; 1911 } else { 1912 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1913 1914 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1915 /* Don't advertise a removed instance. */ 1916 if (next && next->instance == instance) 1917 next = NULL; 1918 1919 err = hci_remove_adv_sync(hdev, instance, sk); 1920 if (err) 1921 return err; 1922 } 1923 } 1924 1925 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1926 return 0; 1927 1928 if (next && !ext_adv_capable(hdev)) 1929 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1930 1931 return 0; 1932 } 1933 1934 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1935 { 1936 struct hci_cp_read_rssi cp; 1937 1938 cp.handle = handle; 1939 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1940 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1941 } 1942 1943 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1944 { 1945 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1946 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1947 } 1948 1949 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1950 { 1951 struct hci_cp_read_tx_power cp; 1952 1953 cp.handle = handle; 1954 cp.type = type; 1955 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1956 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1957 } 1958 1959 int hci_disable_advertising_sync(struct hci_dev *hdev) 1960 { 1961 u8 enable = 0x00; 1962 int err = 0; 1963 1964 /* If controller is not advertising we are done. */ 1965 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1966 return 0; 1967 1968 if (ext_adv_capable(hdev)) 1969 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1970 if (ext_adv_capable(hdev)) 1971 return err; 1972 1973 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1974 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1975 } 1976 1977 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1978 u8 filter_dup) 1979 { 1980 struct hci_cp_le_set_ext_scan_enable cp; 1981 1982 memset(&cp, 0, sizeof(cp)); 1983 cp.enable = val; 1984 1985 if (hci_dev_test_flag(hdev, HCI_MESH)) 1986 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1987 else 1988 cp.filter_dup = filter_dup; 1989 1990 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1991 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1992 } 1993 1994 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1995 u8 filter_dup) 1996 { 1997 struct hci_cp_le_set_scan_enable cp; 1998 1999 if (use_ext_scan(hdev)) 2000 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2001 2002 memset(&cp, 0, sizeof(cp)); 2003 cp.enable = val; 2004 2005 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2006 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2007 else 2008 cp.filter_dup = filter_dup; 2009 2010 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2011 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2012 } 2013 2014 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2015 { 2016 if (!use_ll_privacy(hdev)) 2017 return 0; 2018 2019 /* If controller is not/already resolving we are done. */ 2020 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2021 return 0; 2022 2023 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2024 sizeof(val), &val, HCI_CMD_TIMEOUT); 2025 } 2026 2027 static int hci_scan_disable_sync(struct hci_dev *hdev) 2028 { 2029 int err; 2030 2031 /* If controller is not scanning we are done. */ 2032 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2033 return 0; 2034 2035 if (hdev->scanning_paused) { 2036 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2037 return 0; 2038 } 2039 2040 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2041 if (err) { 2042 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2043 return err; 2044 } 2045 2046 return err; 2047 } 2048 2049 static bool scan_use_rpa(struct hci_dev *hdev) 2050 { 2051 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2052 } 2053 2054 static void hci_start_interleave_scan(struct hci_dev *hdev) 2055 { 2056 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2057 queue_delayed_work(hdev->req_workqueue, 2058 &hdev->interleave_scan, 0); 2059 } 2060 2061 static bool is_interleave_scanning(struct hci_dev *hdev) 2062 { 2063 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2064 } 2065 2066 static void cancel_interleave_scan(struct hci_dev *hdev) 2067 { 2068 bt_dev_dbg(hdev, "cancelling interleave scan"); 2069 2070 cancel_delayed_work_sync(&hdev->interleave_scan); 2071 2072 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2073 } 2074 2075 /* Return true if interleave_scan wasn't started until exiting this function, 2076 * otherwise, return false 2077 */ 2078 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2079 { 2080 /* Do interleaved scan only if all of the following are true: 2081 * - There is at least one ADV monitor 2082 * - At least one pending LE connection or one device to be scanned for 2083 * - Monitor offloading is not supported 2084 * If so, we should alternate between allowlist scan and one without 2085 * any filters to save power. 2086 */ 2087 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2088 !(list_empty(&hdev->pend_le_conns) && 2089 list_empty(&hdev->pend_le_reports)) && 2090 hci_get_adv_monitor_offload_ext(hdev) == 2091 HCI_ADV_MONITOR_EXT_NONE; 2092 bool is_interleaving = is_interleave_scanning(hdev); 2093 2094 if (use_interleaving && !is_interleaving) { 2095 hci_start_interleave_scan(hdev); 2096 bt_dev_dbg(hdev, "starting interleave scan"); 2097 return true; 2098 } 2099 2100 if (!use_interleaving && is_interleaving) 2101 cancel_interleave_scan(hdev); 2102 2103 return false; 2104 } 2105 2106 /* Removes connection to resolve list if needed.*/ 2107 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2108 bdaddr_t *bdaddr, u8 bdaddr_type) 2109 { 2110 struct hci_cp_le_del_from_resolv_list cp; 2111 struct bdaddr_list_with_irk *entry; 2112 2113 if (!use_ll_privacy(hdev)) 2114 return 0; 2115 2116 /* Check if the IRK has been programmed */ 2117 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2118 bdaddr_type); 2119 if (!entry) 2120 return 0; 2121 2122 cp.bdaddr_type = bdaddr_type; 2123 bacpy(&cp.bdaddr, bdaddr); 2124 2125 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2126 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2127 } 2128 2129 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2130 bdaddr_t *bdaddr, u8 bdaddr_type) 2131 { 2132 struct hci_cp_le_del_from_accept_list cp; 2133 int err; 2134 2135 /* Check if device is on accept list before removing it */ 2136 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2137 return 0; 2138 2139 cp.bdaddr_type = bdaddr_type; 2140 bacpy(&cp.bdaddr, bdaddr); 2141 2142 /* Ignore errors when removing from resolving list as that is likely 2143 * that the device was never added. 2144 */ 2145 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2146 2147 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2148 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2149 if (err) { 2150 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2151 return err; 2152 } 2153 2154 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2155 cp.bdaddr_type); 2156 2157 return 0; 2158 } 2159 2160 struct conn_params { 2161 bdaddr_t addr; 2162 u8 addr_type; 2163 hci_conn_flags_t flags; 2164 u8 privacy_mode; 2165 }; 2166 2167 /* Adds connection to resolve list if needed. 2168 * Setting params to NULL programs local hdev->irk 2169 */ 2170 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2171 struct conn_params *params) 2172 { 2173 struct hci_cp_le_add_to_resolv_list cp; 2174 struct smp_irk *irk; 2175 struct bdaddr_list_with_irk *entry; 2176 struct hci_conn_params *p; 2177 2178 if (!use_ll_privacy(hdev)) 2179 return 0; 2180 2181 /* Attempt to program local identity address, type and irk if params is 2182 * NULL. 2183 */ 2184 if (!params) { 2185 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2186 return 0; 2187 2188 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2189 memcpy(cp.peer_irk, hdev->irk, 16); 2190 goto done; 2191 } 2192 2193 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2194 if (!irk) 2195 return 0; 2196 2197 /* Check if the IK has _not_ been programmed yet. */ 2198 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2199 ¶ms->addr, 2200 params->addr_type); 2201 if (entry) 2202 return 0; 2203 2204 cp.bdaddr_type = params->addr_type; 2205 bacpy(&cp.bdaddr, ¶ms->addr); 2206 memcpy(cp.peer_irk, irk->val, 16); 2207 2208 /* Default privacy mode is always Network */ 2209 params->privacy_mode = HCI_NETWORK_PRIVACY; 2210 2211 rcu_read_lock(); 2212 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2213 ¶ms->addr, params->addr_type); 2214 if (!p) 2215 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2216 ¶ms->addr, params->addr_type); 2217 if (p) 2218 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2219 rcu_read_unlock(); 2220 2221 done: 2222 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2223 memcpy(cp.local_irk, hdev->irk, 16); 2224 else 2225 memset(cp.local_irk, 0, 16); 2226 2227 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2228 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2229 } 2230 2231 /* Set Device Privacy Mode. */ 2232 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2233 struct conn_params *params) 2234 { 2235 struct hci_cp_le_set_privacy_mode cp; 2236 struct smp_irk *irk; 2237 2238 /* If device privacy mode has already been set there is nothing to do */ 2239 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2240 return 0; 2241 2242 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2243 * indicates that LL Privacy has been enabled and 2244 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2245 */ 2246 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2247 return 0; 2248 2249 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2250 if (!irk) 2251 return 0; 2252 2253 memset(&cp, 0, sizeof(cp)); 2254 cp.bdaddr_type = irk->addr_type; 2255 bacpy(&cp.bdaddr, &irk->bdaddr); 2256 cp.mode = HCI_DEVICE_PRIVACY; 2257 2258 /* Note: params->privacy_mode is not updated since it is a copy */ 2259 2260 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2261 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2262 } 2263 2264 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2265 * this attempts to program the device in the resolving list as well and 2266 * properly set the privacy mode. 2267 */ 2268 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2269 struct conn_params *params, 2270 u8 *num_entries) 2271 { 2272 struct hci_cp_le_add_to_accept_list cp; 2273 int err; 2274 2275 /* During suspend, only wakeable devices can be in acceptlist */ 2276 if (hdev->suspended && 2277 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2278 return 0; 2279 2280 /* Select filter policy to accept all advertising */ 2281 if (*num_entries >= hdev->le_accept_list_size) 2282 return -ENOSPC; 2283 2284 /* Accept list can not be used with RPAs */ 2285 if (!use_ll_privacy(hdev) && 2286 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2287 return -EINVAL; 2288 2289 /* Attempt to program the device in the resolving list first to avoid 2290 * having to rollback in case it fails since the resolving list is 2291 * dynamic it can probably be smaller than the accept list. 2292 */ 2293 err = hci_le_add_resolve_list_sync(hdev, params); 2294 if (err) { 2295 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2296 return err; 2297 } 2298 2299 /* Set Privacy Mode */ 2300 err = hci_le_set_privacy_mode_sync(hdev, params); 2301 if (err) { 2302 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2303 return err; 2304 } 2305 2306 /* Check if already in accept list */ 2307 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2308 params->addr_type)) 2309 return 0; 2310 2311 *num_entries += 1; 2312 cp.bdaddr_type = params->addr_type; 2313 bacpy(&cp.bdaddr, ¶ms->addr); 2314 2315 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2316 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2317 if (err) { 2318 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2319 /* Rollback the device from the resolving list */ 2320 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2321 return err; 2322 } 2323 2324 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2325 cp.bdaddr_type); 2326 2327 return 0; 2328 } 2329 2330 /* This function disables/pause all advertising instances */ 2331 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2332 { 2333 int err; 2334 int old_state; 2335 2336 /* If already been paused there is nothing to do. */ 2337 if (hdev->advertising_paused) 2338 return 0; 2339 2340 bt_dev_dbg(hdev, "Pausing directed advertising"); 2341 2342 /* Stop directed advertising */ 2343 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2344 if (old_state) { 2345 /* When discoverable timeout triggers, then just make sure 2346 * the limited discoverable flag is cleared. Even in the case 2347 * of a timeout triggered from general discoverable, it is 2348 * safe to unconditionally clear the flag. 2349 */ 2350 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2351 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2352 hdev->discov_timeout = 0; 2353 } 2354 2355 bt_dev_dbg(hdev, "Pausing advertising instances"); 2356 2357 /* Call to disable any advertisements active on the controller. 2358 * This will succeed even if no advertisements are configured. 2359 */ 2360 err = hci_disable_advertising_sync(hdev); 2361 if (err) 2362 return err; 2363 2364 /* If we are using software rotation, pause the loop */ 2365 if (!ext_adv_capable(hdev)) 2366 cancel_adv_timeout(hdev); 2367 2368 hdev->advertising_paused = true; 2369 hdev->advertising_old_state = old_state; 2370 2371 return 0; 2372 } 2373 2374 /* This function enables all user advertising instances */ 2375 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2376 { 2377 struct adv_info *adv, *tmp; 2378 int err; 2379 2380 /* If advertising has not been paused there is nothing to do. */ 2381 if (!hdev->advertising_paused) 2382 return 0; 2383 2384 /* Resume directed advertising */ 2385 hdev->advertising_paused = false; 2386 if (hdev->advertising_old_state) { 2387 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2388 hdev->advertising_old_state = 0; 2389 } 2390 2391 bt_dev_dbg(hdev, "Resuming advertising instances"); 2392 2393 if (ext_adv_capable(hdev)) { 2394 /* Call for each tracked instance to be re-enabled */ 2395 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2396 err = hci_enable_ext_advertising_sync(hdev, 2397 adv->instance); 2398 if (!err) 2399 continue; 2400 2401 /* If the instance cannot be resumed remove it */ 2402 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2403 NULL); 2404 } 2405 } else { 2406 /* Schedule for most recent instance to be restarted and begin 2407 * the software rotation loop 2408 */ 2409 err = hci_schedule_adv_instance_sync(hdev, 2410 hdev->cur_adv_instance, 2411 true); 2412 } 2413 2414 hdev->advertising_paused = false; 2415 2416 return err; 2417 } 2418 2419 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2420 { 2421 int err; 2422 2423 if (!use_ll_privacy(hdev)) 2424 return 0; 2425 2426 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2427 return 0; 2428 2429 /* Cannot disable addr resolution if scanning is enabled or 2430 * when initiating an LE connection. 2431 */ 2432 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2433 hci_lookup_le_connect(hdev)) { 2434 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2435 return -EPERM; 2436 } 2437 2438 /* Cannot disable addr resolution if advertising is enabled. */ 2439 err = hci_pause_advertising_sync(hdev); 2440 if (err) { 2441 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2442 return err; 2443 } 2444 2445 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2446 if (err) 2447 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2448 err); 2449 2450 /* Return if address resolution is disabled and RPA is not used. */ 2451 if (!err && scan_use_rpa(hdev)) 2452 return 0; 2453 2454 hci_resume_advertising_sync(hdev); 2455 return err; 2456 } 2457 2458 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2459 bool extended, struct sock *sk) 2460 { 2461 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2462 HCI_OP_READ_LOCAL_OOB_DATA; 2463 2464 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2465 } 2466 2467 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2468 { 2469 struct hci_conn_params *params; 2470 struct conn_params *p; 2471 size_t i; 2472 2473 rcu_read_lock(); 2474 2475 i = 0; 2476 list_for_each_entry_rcu(params, list, action) 2477 ++i; 2478 *n = i; 2479 2480 rcu_read_unlock(); 2481 2482 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2483 if (!p) 2484 return NULL; 2485 2486 rcu_read_lock(); 2487 2488 i = 0; 2489 list_for_each_entry_rcu(params, list, action) { 2490 /* Racing adds are handled in next scan update */ 2491 if (i >= *n) 2492 break; 2493 2494 /* No hdev->lock, but: addr, addr_type are immutable. 2495 * privacy_mode is only written by us or in 2496 * hci_cc_le_set_privacy_mode that we wait for. 2497 * We should be idempotent so MGMT updating flags 2498 * while we are processing is OK. 2499 */ 2500 bacpy(&p[i].addr, ¶ms->addr); 2501 p[i].addr_type = params->addr_type; 2502 p[i].flags = READ_ONCE(params->flags); 2503 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2504 ++i; 2505 } 2506 2507 rcu_read_unlock(); 2508 2509 *n = i; 2510 return p; 2511 } 2512 2513 /* Device must not be scanning when updating the accept list. 2514 * 2515 * Update is done using the following sequence: 2516 * 2517 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2518 * Remove Devices From Accept List -> 2519 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2520 * Add Devices to Accept List -> 2521 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2522 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2523 * Enable Scanning 2524 * 2525 * In case of failure advertising shall be restored to its original state and 2526 * return would disable accept list since either accept or resolving list could 2527 * not be programmed. 2528 * 2529 */ 2530 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2531 { 2532 struct conn_params *params; 2533 struct bdaddr_list *b, *t; 2534 u8 num_entries = 0; 2535 bool pend_conn, pend_report; 2536 u8 filter_policy; 2537 size_t i, n; 2538 int err; 2539 2540 /* Pause advertising if resolving list can be used as controllers 2541 * cannot accept resolving list modifications while advertising. 2542 */ 2543 if (use_ll_privacy(hdev)) { 2544 err = hci_pause_advertising_sync(hdev); 2545 if (err) { 2546 bt_dev_err(hdev, "pause advertising failed: %d", err); 2547 return 0x00; 2548 } 2549 } 2550 2551 /* Disable address resolution while reprogramming accept list since 2552 * devices that do have an IRK will be programmed in the resolving list 2553 * when LL Privacy is enabled. 2554 */ 2555 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2556 if (err) { 2557 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2558 goto done; 2559 } 2560 2561 /* Go through the current accept list programmed into the 2562 * controller one by one and check if that address is connected or is 2563 * still in the list of pending connections or list of devices to 2564 * report. If not present in either list, then remove it from 2565 * the controller. 2566 */ 2567 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2568 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2569 continue; 2570 2571 /* Pointers not dereferenced, no locks needed */ 2572 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2573 &b->bdaddr, 2574 b->bdaddr_type); 2575 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2576 &b->bdaddr, 2577 b->bdaddr_type); 2578 2579 /* If the device is not likely to connect or report, 2580 * remove it from the acceptlist. 2581 */ 2582 if (!pend_conn && !pend_report) { 2583 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2584 b->bdaddr_type); 2585 continue; 2586 } 2587 2588 num_entries++; 2589 } 2590 2591 /* Since all no longer valid accept list entries have been 2592 * removed, walk through the list of pending connections 2593 * and ensure that any new device gets programmed into 2594 * the controller. 2595 * 2596 * If the list of the devices is larger than the list of 2597 * available accept list entries in the controller, then 2598 * just abort and return filer policy value to not use the 2599 * accept list. 2600 * 2601 * The list and params may be mutated while we wait for events, 2602 * so make a copy and iterate it. 2603 */ 2604 2605 params = conn_params_copy(&hdev->pend_le_conns, &n); 2606 if (!params) { 2607 err = -ENOMEM; 2608 goto done; 2609 } 2610 2611 for (i = 0; i < n; ++i) { 2612 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2613 &num_entries); 2614 if (err) { 2615 kvfree(params); 2616 goto done; 2617 } 2618 } 2619 2620 kvfree(params); 2621 2622 /* After adding all new pending connections, walk through 2623 * the list of pending reports and also add these to the 2624 * accept list if there is still space. Abort if space runs out. 2625 */ 2626 2627 params = conn_params_copy(&hdev->pend_le_reports, &n); 2628 if (!params) { 2629 err = -ENOMEM; 2630 goto done; 2631 } 2632 2633 for (i = 0; i < n; ++i) { 2634 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2635 &num_entries); 2636 if (err) { 2637 kvfree(params); 2638 goto done; 2639 } 2640 } 2641 2642 kvfree(params); 2643 2644 /* Use the allowlist unless the following conditions are all true: 2645 * - We are not currently suspending 2646 * - There are 1 or more ADV monitors registered and it's not offloaded 2647 * - Interleaved scanning is not currently using the allowlist 2648 */ 2649 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2650 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2651 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2652 err = -EINVAL; 2653 2654 done: 2655 filter_policy = err ? 0x00 : 0x01; 2656 2657 /* Enable address resolution when LL Privacy is enabled. */ 2658 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2659 if (err) 2660 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2661 2662 /* Resume advertising if it was paused */ 2663 if (use_ll_privacy(hdev)) 2664 hci_resume_advertising_sync(hdev); 2665 2666 /* Select filter policy to use accept list */ 2667 return filter_policy; 2668 } 2669 2670 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2671 u16 interval, u16 window, 2672 u8 own_addr_type, u8 filter_policy) 2673 { 2674 struct hci_cp_le_set_ext_scan_params *cp; 2675 struct hci_cp_le_scan_phy_params *phy; 2676 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2677 u8 num_phy = 0; 2678 2679 cp = (void *)data; 2680 phy = (void *)cp->data; 2681 2682 memset(data, 0, sizeof(data)); 2683 2684 cp->own_addr_type = own_addr_type; 2685 cp->filter_policy = filter_policy; 2686 2687 if (scan_1m(hdev) || scan_2m(hdev)) { 2688 cp->scanning_phys |= LE_SCAN_PHY_1M; 2689 2690 phy->type = type; 2691 phy->interval = cpu_to_le16(interval); 2692 phy->window = cpu_to_le16(window); 2693 2694 num_phy++; 2695 phy++; 2696 } 2697 2698 if (scan_coded(hdev)) { 2699 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2700 2701 phy->type = type; 2702 phy->interval = cpu_to_le16(interval); 2703 phy->window = cpu_to_le16(window); 2704 2705 num_phy++; 2706 phy++; 2707 } 2708 2709 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2710 sizeof(*cp) + sizeof(*phy) * num_phy, 2711 data, HCI_CMD_TIMEOUT); 2712 } 2713 2714 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2715 u16 interval, u16 window, 2716 u8 own_addr_type, u8 filter_policy) 2717 { 2718 struct hci_cp_le_set_scan_param cp; 2719 2720 if (use_ext_scan(hdev)) 2721 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2722 window, own_addr_type, 2723 filter_policy); 2724 2725 memset(&cp, 0, sizeof(cp)); 2726 cp.type = type; 2727 cp.interval = cpu_to_le16(interval); 2728 cp.window = cpu_to_le16(window); 2729 cp.own_address_type = own_addr_type; 2730 cp.filter_policy = filter_policy; 2731 2732 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2733 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2734 } 2735 2736 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2737 u16 window, u8 own_addr_type, u8 filter_policy, 2738 u8 filter_dup) 2739 { 2740 int err; 2741 2742 if (hdev->scanning_paused) { 2743 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2744 return 0; 2745 } 2746 2747 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2748 own_addr_type, filter_policy); 2749 if (err) 2750 return err; 2751 2752 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2753 } 2754 2755 static int hci_passive_scan_sync(struct hci_dev *hdev) 2756 { 2757 u8 own_addr_type; 2758 u8 filter_policy; 2759 u16 window, interval; 2760 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2761 int err; 2762 2763 if (hdev->scanning_paused) { 2764 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2765 return 0; 2766 } 2767 2768 err = hci_scan_disable_sync(hdev); 2769 if (err) { 2770 bt_dev_err(hdev, "disable scanning failed: %d", err); 2771 return err; 2772 } 2773 2774 /* Set require_privacy to false since no SCAN_REQ are send 2775 * during passive scanning. Not using an non-resolvable address 2776 * here is important so that peer devices using direct 2777 * advertising with our address will be correctly reported 2778 * by the controller. 2779 */ 2780 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2781 &own_addr_type)) 2782 return 0; 2783 2784 if (hdev->enable_advmon_interleave_scan && 2785 hci_update_interleaved_scan_sync(hdev)) 2786 return 0; 2787 2788 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2789 2790 /* Adding or removing entries from the accept list must 2791 * happen before enabling scanning. The controller does 2792 * not allow accept list modification while scanning. 2793 */ 2794 filter_policy = hci_update_accept_list_sync(hdev); 2795 2796 /* When the controller is using random resolvable addresses and 2797 * with that having LE privacy enabled, then controllers with 2798 * Extended Scanner Filter Policies support can now enable support 2799 * for handling directed advertising. 2800 * 2801 * So instead of using filter polices 0x00 (no acceptlist) 2802 * and 0x01 (acceptlist enabled) use the new filter policies 2803 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2804 */ 2805 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2806 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2807 filter_policy |= 0x02; 2808 2809 if (hdev->suspended) { 2810 window = hdev->le_scan_window_suspend; 2811 interval = hdev->le_scan_int_suspend; 2812 } else if (hci_is_le_conn_scanning(hdev)) { 2813 window = hdev->le_scan_window_connect; 2814 interval = hdev->le_scan_int_connect; 2815 } else if (hci_is_adv_monitoring(hdev)) { 2816 window = hdev->le_scan_window_adv_monitor; 2817 interval = hdev->le_scan_int_adv_monitor; 2818 } else { 2819 window = hdev->le_scan_window; 2820 interval = hdev->le_scan_interval; 2821 } 2822 2823 /* Disable all filtering for Mesh */ 2824 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2825 filter_policy = 0; 2826 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2827 } 2828 2829 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2830 2831 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2832 own_addr_type, filter_policy, filter_dups); 2833 } 2834 2835 /* This function controls the passive scanning based on hdev->pend_le_conns 2836 * list. If there are pending LE connection we start the background scanning, 2837 * otherwise we stop it in the following sequence: 2838 * 2839 * If there are devices to scan: 2840 * 2841 * Disable Scanning -> Update Accept List -> 2842 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2843 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2844 * Enable Scanning 2845 * 2846 * Otherwise: 2847 * 2848 * Disable Scanning 2849 */ 2850 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2851 { 2852 int err; 2853 2854 if (!test_bit(HCI_UP, &hdev->flags) || 2855 test_bit(HCI_INIT, &hdev->flags) || 2856 hci_dev_test_flag(hdev, HCI_SETUP) || 2857 hci_dev_test_flag(hdev, HCI_CONFIG) || 2858 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2859 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2860 return 0; 2861 2862 /* No point in doing scanning if LE support hasn't been enabled */ 2863 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2864 return 0; 2865 2866 /* If discovery is active don't interfere with it */ 2867 if (hdev->discovery.state != DISCOVERY_STOPPED) 2868 return 0; 2869 2870 /* Reset RSSI and UUID filters when starting background scanning 2871 * since these filters are meant for service discovery only. 2872 * 2873 * The Start Discovery and Start Service Discovery operations 2874 * ensure to set proper values for RSSI threshold and UUID 2875 * filter list. So it is safe to just reset them here. 2876 */ 2877 hci_discovery_filter_clear(hdev); 2878 2879 bt_dev_dbg(hdev, "ADV monitoring is %s", 2880 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2881 2882 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2883 list_empty(&hdev->pend_le_conns) && 2884 list_empty(&hdev->pend_le_reports) && 2885 !hci_is_adv_monitoring(hdev) && 2886 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2887 /* If there is no pending LE connections or devices 2888 * to be scanned for or no ADV monitors, we should stop the 2889 * background scanning. 2890 */ 2891 2892 bt_dev_dbg(hdev, "stopping background scanning"); 2893 2894 err = hci_scan_disable_sync(hdev); 2895 if (err) 2896 bt_dev_err(hdev, "stop background scanning failed: %d", 2897 err); 2898 } else { 2899 /* If there is at least one pending LE connection, we should 2900 * keep the background scan running. 2901 */ 2902 2903 /* If controller is connecting, we should not start scanning 2904 * since some controllers are not able to scan and connect at 2905 * the same time. 2906 */ 2907 if (hci_lookup_le_connect(hdev)) 2908 return 0; 2909 2910 bt_dev_dbg(hdev, "start background scanning"); 2911 2912 err = hci_passive_scan_sync(hdev); 2913 if (err) 2914 bt_dev_err(hdev, "start background scanning failed: %d", 2915 err); 2916 } 2917 2918 return err; 2919 } 2920 2921 static int update_scan_sync(struct hci_dev *hdev, void *data) 2922 { 2923 return hci_update_scan_sync(hdev); 2924 } 2925 2926 int hci_update_scan(struct hci_dev *hdev) 2927 { 2928 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2929 } 2930 2931 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2932 { 2933 return hci_update_passive_scan_sync(hdev); 2934 } 2935 2936 int hci_update_passive_scan(struct hci_dev *hdev) 2937 { 2938 /* Only queue if it would have any effect */ 2939 if (!test_bit(HCI_UP, &hdev->flags) || 2940 test_bit(HCI_INIT, &hdev->flags) || 2941 hci_dev_test_flag(hdev, HCI_SETUP) || 2942 hci_dev_test_flag(hdev, HCI_CONFIG) || 2943 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2944 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2945 return 0; 2946 2947 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2948 } 2949 2950 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2951 { 2952 int err; 2953 2954 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2955 return 0; 2956 2957 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2958 sizeof(val), &val, HCI_CMD_TIMEOUT); 2959 2960 if (!err) { 2961 if (val) { 2962 hdev->features[1][0] |= LMP_HOST_SC; 2963 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2964 } else { 2965 hdev->features[1][0] &= ~LMP_HOST_SC; 2966 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2967 } 2968 } 2969 2970 return err; 2971 } 2972 2973 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2974 { 2975 int err; 2976 2977 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2978 lmp_host_ssp_capable(hdev)) 2979 return 0; 2980 2981 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2982 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2983 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2984 } 2985 2986 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2987 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2988 if (err) 2989 return err; 2990 2991 return hci_write_sc_support_sync(hdev, 0x01); 2992 } 2993 2994 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2995 { 2996 struct hci_cp_write_le_host_supported cp; 2997 2998 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2999 !lmp_bredr_capable(hdev)) 3000 return 0; 3001 3002 /* Check first if we already have the right host state 3003 * (host features set) 3004 */ 3005 if (le == lmp_host_le_capable(hdev) && 3006 simul == lmp_host_le_br_capable(hdev)) 3007 return 0; 3008 3009 memset(&cp, 0, sizeof(cp)); 3010 3011 cp.le = le; 3012 cp.simul = simul; 3013 3014 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3015 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3016 } 3017 3018 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3019 { 3020 struct adv_info *adv, *tmp; 3021 int err; 3022 3023 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3024 return 0; 3025 3026 /* If RPA Resolution has not been enable yet it means the 3027 * resolving list is empty and we should attempt to program the 3028 * local IRK in order to support using own_addr_type 3029 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3030 */ 3031 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3032 hci_le_add_resolve_list_sync(hdev, NULL); 3033 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3034 } 3035 3036 /* Make sure the controller has a good default for 3037 * advertising data. This also applies to the case 3038 * where BR/EDR was toggled during the AUTO_OFF phase. 3039 */ 3040 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3041 list_empty(&hdev->adv_instances)) { 3042 if (ext_adv_capable(hdev)) { 3043 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3044 if (!err) 3045 hci_update_scan_rsp_data_sync(hdev, 0x00); 3046 } else { 3047 err = hci_update_adv_data_sync(hdev, 0x00); 3048 if (!err) 3049 hci_update_scan_rsp_data_sync(hdev, 0x00); 3050 } 3051 3052 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3053 hci_enable_advertising_sync(hdev); 3054 } 3055 3056 /* Call for each tracked instance to be scheduled */ 3057 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3058 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3059 3060 return 0; 3061 } 3062 3063 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3064 { 3065 u8 link_sec; 3066 3067 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3068 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3069 return 0; 3070 3071 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3072 sizeof(link_sec), &link_sec, 3073 HCI_CMD_TIMEOUT); 3074 } 3075 3076 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3077 { 3078 struct hci_cp_write_page_scan_activity cp; 3079 u8 type; 3080 int err = 0; 3081 3082 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3083 return 0; 3084 3085 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3086 return 0; 3087 3088 memset(&cp, 0, sizeof(cp)); 3089 3090 if (enable) { 3091 type = PAGE_SCAN_TYPE_INTERLACED; 3092 3093 /* 160 msec page scan interval */ 3094 cp.interval = cpu_to_le16(0x0100); 3095 } else { 3096 type = hdev->def_page_scan_type; 3097 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3098 } 3099 3100 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3101 3102 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3103 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3104 err = __hci_cmd_sync_status(hdev, 3105 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3106 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3107 if (err) 3108 return err; 3109 } 3110 3111 if (hdev->page_scan_type != type) 3112 err = __hci_cmd_sync_status(hdev, 3113 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3114 sizeof(type), &type, 3115 HCI_CMD_TIMEOUT); 3116 3117 return err; 3118 } 3119 3120 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3121 { 3122 struct bdaddr_list *b; 3123 3124 list_for_each_entry(b, &hdev->accept_list, list) { 3125 struct hci_conn *conn; 3126 3127 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3128 if (!conn) 3129 return true; 3130 3131 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3132 return true; 3133 } 3134 3135 return false; 3136 } 3137 3138 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3139 { 3140 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3141 sizeof(val), &val, 3142 HCI_CMD_TIMEOUT); 3143 } 3144 3145 int hci_update_scan_sync(struct hci_dev *hdev) 3146 { 3147 u8 scan; 3148 3149 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3150 return 0; 3151 3152 if (!hdev_is_powered(hdev)) 3153 return 0; 3154 3155 if (mgmt_powering_down(hdev)) 3156 return 0; 3157 3158 if (hdev->scanning_paused) 3159 return 0; 3160 3161 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3162 disconnected_accept_list_entries(hdev)) 3163 scan = SCAN_PAGE; 3164 else 3165 scan = SCAN_DISABLED; 3166 3167 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3168 scan |= SCAN_INQUIRY; 3169 3170 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3171 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3172 return 0; 3173 3174 return hci_write_scan_enable_sync(hdev, scan); 3175 } 3176 3177 int hci_update_name_sync(struct hci_dev *hdev) 3178 { 3179 struct hci_cp_write_local_name cp; 3180 3181 memset(&cp, 0, sizeof(cp)); 3182 3183 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3184 3185 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3186 sizeof(cp), &cp, 3187 HCI_CMD_TIMEOUT); 3188 } 3189 3190 /* This function perform powered update HCI command sequence after the HCI init 3191 * sequence which end up resetting all states, the sequence is as follows: 3192 * 3193 * HCI_SSP_ENABLED(Enable SSP) 3194 * HCI_LE_ENABLED(Enable LE) 3195 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3196 * Update adv data) 3197 * Enable Authentication 3198 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3199 * Set Name -> Set EIR) 3200 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3201 */ 3202 int hci_powered_update_sync(struct hci_dev *hdev) 3203 { 3204 int err; 3205 3206 /* Register the available SMP channels (BR/EDR and LE) only when 3207 * successfully powering on the controller. This late 3208 * registration is required so that LE SMP can clearly decide if 3209 * the public address or static address is used. 3210 */ 3211 smp_register(hdev); 3212 3213 err = hci_write_ssp_mode_sync(hdev, 0x01); 3214 if (err) 3215 return err; 3216 3217 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3218 if (err) 3219 return err; 3220 3221 err = hci_powered_update_adv_sync(hdev); 3222 if (err) 3223 return err; 3224 3225 err = hci_write_auth_enable_sync(hdev); 3226 if (err) 3227 return err; 3228 3229 if (lmp_bredr_capable(hdev)) { 3230 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3231 hci_write_fast_connectable_sync(hdev, true); 3232 else 3233 hci_write_fast_connectable_sync(hdev, false); 3234 hci_update_scan_sync(hdev); 3235 hci_update_class_sync(hdev); 3236 hci_update_name_sync(hdev); 3237 hci_update_eir_sync(hdev); 3238 } 3239 3240 /* If forcing static address is in use or there is no public 3241 * address use the static address as random address (but skip 3242 * the HCI command if the current random address is already the 3243 * static one. 3244 * 3245 * In case BR/EDR has been disabled on a dual-mode controller 3246 * and a static address has been configured, then use that 3247 * address instead of the public BR/EDR address. 3248 */ 3249 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3250 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3251 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3252 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3253 return hci_set_random_addr_sync(hdev, 3254 &hdev->static_addr); 3255 } 3256 3257 return 0; 3258 } 3259 3260 /** 3261 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3262 * (BD_ADDR) for a HCI device from 3263 * a firmware node property. 3264 * @hdev: The HCI device 3265 * 3266 * Search the firmware node for 'local-bd-address'. 3267 * 3268 * All-zero BD addresses are rejected, because those could be properties 3269 * that exist in the firmware tables, but were not updated by the firmware. For 3270 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3271 */ 3272 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3273 { 3274 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3275 bdaddr_t ba; 3276 int ret; 3277 3278 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3279 (u8 *)&ba, sizeof(ba)); 3280 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3281 return; 3282 3283 bacpy(&hdev->public_addr, &ba); 3284 } 3285 3286 struct hci_init_stage { 3287 int (*func)(struct hci_dev *hdev); 3288 }; 3289 3290 /* Run init stage NULL terminated function table */ 3291 static int hci_init_stage_sync(struct hci_dev *hdev, 3292 const struct hci_init_stage *stage) 3293 { 3294 size_t i; 3295 3296 for (i = 0; stage[i].func; i++) { 3297 int err; 3298 3299 err = stage[i].func(hdev); 3300 if (err) 3301 return err; 3302 } 3303 3304 return 0; 3305 } 3306 3307 /* Read Local Version */ 3308 static int hci_read_local_version_sync(struct hci_dev *hdev) 3309 { 3310 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3311 0, NULL, HCI_CMD_TIMEOUT); 3312 } 3313 3314 /* Read BD Address */ 3315 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3316 { 3317 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3318 0, NULL, HCI_CMD_TIMEOUT); 3319 } 3320 3321 #define HCI_INIT(_func) \ 3322 { \ 3323 .func = _func, \ 3324 } 3325 3326 static const struct hci_init_stage hci_init0[] = { 3327 /* HCI_OP_READ_LOCAL_VERSION */ 3328 HCI_INIT(hci_read_local_version_sync), 3329 /* HCI_OP_READ_BD_ADDR */ 3330 HCI_INIT(hci_read_bd_addr_sync), 3331 {} 3332 }; 3333 3334 int hci_reset_sync(struct hci_dev *hdev) 3335 { 3336 int err; 3337 3338 set_bit(HCI_RESET, &hdev->flags); 3339 3340 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3341 HCI_CMD_TIMEOUT); 3342 if (err) 3343 return err; 3344 3345 return 0; 3346 } 3347 3348 static int hci_init0_sync(struct hci_dev *hdev) 3349 { 3350 int err; 3351 3352 bt_dev_dbg(hdev, ""); 3353 3354 /* Reset */ 3355 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3356 err = hci_reset_sync(hdev); 3357 if (err) 3358 return err; 3359 } 3360 3361 return hci_init_stage_sync(hdev, hci_init0); 3362 } 3363 3364 static int hci_unconf_init_sync(struct hci_dev *hdev) 3365 { 3366 int err; 3367 3368 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3369 return 0; 3370 3371 err = hci_init0_sync(hdev); 3372 if (err < 0) 3373 return err; 3374 3375 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3376 hci_debugfs_create_basic(hdev); 3377 3378 return 0; 3379 } 3380 3381 /* Read Local Supported Features. */ 3382 static int hci_read_local_features_sync(struct hci_dev *hdev) 3383 { 3384 /* Not all AMP controllers support this command */ 3385 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3386 return 0; 3387 3388 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3389 0, NULL, HCI_CMD_TIMEOUT); 3390 } 3391 3392 /* BR Controller init stage 1 command sequence */ 3393 static const struct hci_init_stage br_init1[] = { 3394 /* HCI_OP_READ_LOCAL_FEATURES */ 3395 HCI_INIT(hci_read_local_features_sync), 3396 /* HCI_OP_READ_LOCAL_VERSION */ 3397 HCI_INIT(hci_read_local_version_sync), 3398 /* HCI_OP_READ_BD_ADDR */ 3399 HCI_INIT(hci_read_bd_addr_sync), 3400 {} 3401 }; 3402 3403 /* Read Local Commands */ 3404 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3405 { 3406 /* All Bluetooth 1.2 and later controllers should support the 3407 * HCI command for reading the local supported commands. 3408 * 3409 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3410 * but do not have support for this command. If that is the case, 3411 * the driver can quirk the behavior and skip reading the local 3412 * supported commands. 3413 */ 3414 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3415 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3416 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3417 0, NULL, HCI_CMD_TIMEOUT); 3418 3419 return 0; 3420 } 3421 3422 /* Read Local AMP Info */ 3423 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3424 { 3425 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3426 0, NULL, HCI_CMD_TIMEOUT); 3427 } 3428 3429 /* Read Data Blk size */ 3430 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3431 { 3432 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3433 0, NULL, HCI_CMD_TIMEOUT); 3434 } 3435 3436 /* Read Flow Control Mode */ 3437 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3438 { 3439 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3440 0, NULL, HCI_CMD_TIMEOUT); 3441 } 3442 3443 /* Read Location Data */ 3444 static int hci_read_location_data_sync(struct hci_dev *hdev) 3445 { 3446 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3447 0, NULL, HCI_CMD_TIMEOUT); 3448 } 3449 3450 /* AMP Controller init stage 1 command sequence */ 3451 static const struct hci_init_stage amp_init1[] = { 3452 /* HCI_OP_READ_LOCAL_VERSION */ 3453 HCI_INIT(hci_read_local_version_sync), 3454 /* HCI_OP_READ_LOCAL_COMMANDS */ 3455 HCI_INIT(hci_read_local_cmds_sync), 3456 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3457 HCI_INIT(hci_read_local_amp_info_sync), 3458 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3459 HCI_INIT(hci_read_data_block_size_sync), 3460 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3461 HCI_INIT(hci_read_flow_control_mode_sync), 3462 /* HCI_OP_READ_LOCATION_DATA */ 3463 HCI_INIT(hci_read_location_data_sync), 3464 {} 3465 }; 3466 3467 static int hci_init1_sync(struct hci_dev *hdev) 3468 { 3469 int err; 3470 3471 bt_dev_dbg(hdev, ""); 3472 3473 /* Reset */ 3474 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3475 err = hci_reset_sync(hdev); 3476 if (err) 3477 return err; 3478 } 3479 3480 switch (hdev->dev_type) { 3481 case HCI_PRIMARY: 3482 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3483 return hci_init_stage_sync(hdev, br_init1); 3484 case HCI_AMP: 3485 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3486 return hci_init_stage_sync(hdev, amp_init1); 3487 default: 3488 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3489 break; 3490 } 3491 3492 return 0; 3493 } 3494 3495 /* AMP Controller init stage 2 command sequence */ 3496 static const struct hci_init_stage amp_init2[] = { 3497 /* HCI_OP_READ_LOCAL_FEATURES */ 3498 HCI_INIT(hci_read_local_features_sync), 3499 {} 3500 }; 3501 3502 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3503 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3504 { 3505 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3506 0, NULL, HCI_CMD_TIMEOUT); 3507 } 3508 3509 /* Read Class of Device */ 3510 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3511 { 3512 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3513 0, NULL, HCI_CMD_TIMEOUT); 3514 } 3515 3516 /* Read Local Name */ 3517 static int hci_read_local_name_sync(struct hci_dev *hdev) 3518 { 3519 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3520 0, NULL, HCI_CMD_TIMEOUT); 3521 } 3522 3523 /* Read Voice Setting */ 3524 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3525 { 3526 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3527 0, NULL, HCI_CMD_TIMEOUT); 3528 } 3529 3530 /* Read Number of Supported IAC */ 3531 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3532 { 3533 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3534 0, NULL, HCI_CMD_TIMEOUT); 3535 } 3536 3537 /* Read Current IAC LAP */ 3538 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3539 { 3540 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3541 0, NULL, HCI_CMD_TIMEOUT); 3542 } 3543 3544 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3545 u8 cond_type, bdaddr_t *bdaddr, 3546 u8 auto_accept) 3547 { 3548 struct hci_cp_set_event_filter cp; 3549 3550 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3551 return 0; 3552 3553 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3554 return 0; 3555 3556 memset(&cp, 0, sizeof(cp)); 3557 cp.flt_type = flt_type; 3558 3559 if (flt_type != HCI_FLT_CLEAR_ALL) { 3560 cp.cond_type = cond_type; 3561 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3562 cp.addr_conn_flt.auto_accept = auto_accept; 3563 } 3564 3565 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3566 flt_type == HCI_FLT_CLEAR_ALL ? 3567 sizeof(cp.flt_type) : sizeof(cp), &cp, 3568 HCI_CMD_TIMEOUT); 3569 } 3570 3571 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3572 { 3573 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3574 return 0; 3575 3576 /* In theory the state machine should not reach here unless 3577 * a hci_set_event_filter_sync() call succeeds, but we do 3578 * the check both for parity and as a future reminder. 3579 */ 3580 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3581 return 0; 3582 3583 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3584 BDADDR_ANY, 0x00); 3585 } 3586 3587 /* Connection accept timeout ~20 secs */ 3588 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3589 { 3590 __le16 param = cpu_to_le16(0x7d00); 3591 3592 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3593 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3594 } 3595 3596 /* BR Controller init stage 2 command sequence */ 3597 static const struct hci_init_stage br_init2[] = { 3598 /* HCI_OP_READ_BUFFER_SIZE */ 3599 HCI_INIT(hci_read_buffer_size_sync), 3600 /* HCI_OP_READ_CLASS_OF_DEV */ 3601 HCI_INIT(hci_read_dev_class_sync), 3602 /* HCI_OP_READ_LOCAL_NAME */ 3603 HCI_INIT(hci_read_local_name_sync), 3604 /* HCI_OP_READ_VOICE_SETTING */ 3605 HCI_INIT(hci_read_voice_setting_sync), 3606 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3607 HCI_INIT(hci_read_num_supported_iac_sync), 3608 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3609 HCI_INIT(hci_read_current_iac_lap_sync), 3610 /* HCI_OP_SET_EVENT_FLT */ 3611 HCI_INIT(hci_clear_event_filter_sync), 3612 /* HCI_OP_WRITE_CA_TIMEOUT */ 3613 HCI_INIT(hci_write_ca_timeout_sync), 3614 {} 3615 }; 3616 3617 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3618 { 3619 u8 mode = 0x01; 3620 3621 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3622 return 0; 3623 3624 /* When SSP is available, then the host features page 3625 * should also be available as well. However some 3626 * controllers list the max_page as 0 as long as SSP 3627 * has not been enabled. To achieve proper debugging 3628 * output, force the minimum max_page to 1 at least. 3629 */ 3630 hdev->max_page = 0x01; 3631 3632 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3633 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3634 } 3635 3636 static int hci_write_eir_sync(struct hci_dev *hdev) 3637 { 3638 struct hci_cp_write_eir cp; 3639 3640 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3641 return 0; 3642 3643 memset(hdev->eir, 0, sizeof(hdev->eir)); 3644 memset(&cp, 0, sizeof(cp)); 3645 3646 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3647 HCI_CMD_TIMEOUT); 3648 } 3649 3650 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3651 { 3652 u8 mode; 3653 3654 if (!lmp_inq_rssi_capable(hdev) && 3655 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3656 return 0; 3657 3658 /* If Extended Inquiry Result events are supported, then 3659 * they are clearly preferred over Inquiry Result with RSSI 3660 * events. 3661 */ 3662 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3663 3664 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3665 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3666 } 3667 3668 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3669 { 3670 if (!lmp_inq_tx_pwr_capable(hdev)) 3671 return 0; 3672 3673 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3674 0, NULL, HCI_CMD_TIMEOUT); 3675 } 3676 3677 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3678 { 3679 struct hci_cp_read_local_ext_features cp; 3680 3681 if (!lmp_ext_feat_capable(hdev)) 3682 return 0; 3683 3684 memset(&cp, 0, sizeof(cp)); 3685 cp.page = page; 3686 3687 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3688 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3689 } 3690 3691 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3692 { 3693 return hci_read_local_ext_features_sync(hdev, 0x01); 3694 } 3695 3696 /* HCI Controller init stage 2 command sequence */ 3697 static const struct hci_init_stage hci_init2[] = { 3698 /* HCI_OP_READ_LOCAL_COMMANDS */ 3699 HCI_INIT(hci_read_local_cmds_sync), 3700 /* HCI_OP_WRITE_SSP_MODE */ 3701 HCI_INIT(hci_write_ssp_mode_1_sync), 3702 /* HCI_OP_WRITE_EIR */ 3703 HCI_INIT(hci_write_eir_sync), 3704 /* HCI_OP_WRITE_INQUIRY_MODE */ 3705 HCI_INIT(hci_write_inquiry_mode_sync), 3706 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3707 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3708 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3709 HCI_INIT(hci_read_local_ext_features_1_sync), 3710 /* HCI_OP_WRITE_AUTH_ENABLE */ 3711 HCI_INIT(hci_write_auth_enable_sync), 3712 {} 3713 }; 3714 3715 /* Read LE Buffer Size */ 3716 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3717 { 3718 /* Use Read LE Buffer Size V2 if supported */ 3719 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3720 return __hci_cmd_sync_status(hdev, 3721 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3722 0, NULL, HCI_CMD_TIMEOUT); 3723 3724 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3725 0, NULL, HCI_CMD_TIMEOUT); 3726 } 3727 3728 /* Read LE Local Supported Features */ 3729 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3730 { 3731 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3732 0, NULL, HCI_CMD_TIMEOUT); 3733 } 3734 3735 /* Read LE Supported States */ 3736 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3737 { 3738 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3739 0, NULL, HCI_CMD_TIMEOUT); 3740 } 3741 3742 /* LE Controller init stage 2 command sequence */ 3743 static const struct hci_init_stage le_init2[] = { 3744 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3745 HCI_INIT(hci_le_read_local_features_sync), 3746 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3747 HCI_INIT(hci_le_read_buffer_size_sync), 3748 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3749 HCI_INIT(hci_le_read_supported_states_sync), 3750 {} 3751 }; 3752 3753 static int hci_init2_sync(struct hci_dev *hdev) 3754 { 3755 int err; 3756 3757 bt_dev_dbg(hdev, ""); 3758 3759 if (hdev->dev_type == HCI_AMP) 3760 return hci_init_stage_sync(hdev, amp_init2); 3761 3762 err = hci_init_stage_sync(hdev, hci_init2); 3763 if (err) 3764 return err; 3765 3766 if (lmp_bredr_capable(hdev)) { 3767 err = hci_init_stage_sync(hdev, br_init2); 3768 if (err) 3769 return err; 3770 } else { 3771 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3772 } 3773 3774 if (lmp_le_capable(hdev)) { 3775 err = hci_init_stage_sync(hdev, le_init2); 3776 if (err) 3777 return err; 3778 /* LE-only controllers have LE implicitly enabled */ 3779 if (!lmp_bredr_capable(hdev)) 3780 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3781 } 3782 3783 return 0; 3784 } 3785 3786 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3787 { 3788 /* The second byte is 0xff instead of 0x9f (two reserved bits 3789 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3790 * command otherwise. 3791 */ 3792 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3793 3794 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3795 * any event mask for pre 1.2 devices. 3796 */ 3797 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3798 return 0; 3799 3800 if (lmp_bredr_capable(hdev)) { 3801 events[4] |= 0x01; /* Flow Specification Complete */ 3802 3803 /* Don't set Disconnect Complete when suspended as that 3804 * would wakeup the host when disconnecting due to 3805 * suspend. 3806 */ 3807 if (hdev->suspended) 3808 events[0] &= 0xef; 3809 } else { 3810 /* Use a different default for LE-only devices */ 3811 memset(events, 0, sizeof(events)); 3812 events[1] |= 0x20; /* Command Complete */ 3813 events[1] |= 0x40; /* Command Status */ 3814 events[1] |= 0x80; /* Hardware Error */ 3815 3816 /* If the controller supports the Disconnect command, enable 3817 * the corresponding event. In addition enable packet flow 3818 * control related events. 3819 */ 3820 if (hdev->commands[0] & 0x20) { 3821 /* Don't set Disconnect Complete when suspended as that 3822 * would wakeup the host when disconnecting due to 3823 * suspend. 3824 */ 3825 if (!hdev->suspended) 3826 events[0] |= 0x10; /* Disconnection Complete */ 3827 events[2] |= 0x04; /* Number of Completed Packets */ 3828 events[3] |= 0x02; /* Data Buffer Overflow */ 3829 } 3830 3831 /* If the controller supports the Read Remote Version 3832 * Information command, enable the corresponding event. 3833 */ 3834 if (hdev->commands[2] & 0x80) 3835 events[1] |= 0x08; /* Read Remote Version Information 3836 * Complete 3837 */ 3838 3839 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3840 events[0] |= 0x80; /* Encryption Change */ 3841 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3842 } 3843 } 3844 3845 if (lmp_inq_rssi_capable(hdev) || 3846 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3847 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3848 3849 if (lmp_ext_feat_capable(hdev)) 3850 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3851 3852 if (lmp_esco_capable(hdev)) { 3853 events[5] |= 0x08; /* Synchronous Connection Complete */ 3854 events[5] |= 0x10; /* Synchronous Connection Changed */ 3855 } 3856 3857 if (lmp_sniffsubr_capable(hdev)) 3858 events[5] |= 0x20; /* Sniff Subrating */ 3859 3860 if (lmp_pause_enc_capable(hdev)) 3861 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3862 3863 if (lmp_ext_inq_capable(hdev)) 3864 events[5] |= 0x40; /* Extended Inquiry Result */ 3865 3866 if (lmp_no_flush_capable(hdev)) 3867 events[7] |= 0x01; /* Enhanced Flush Complete */ 3868 3869 if (lmp_lsto_capable(hdev)) 3870 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3871 3872 if (lmp_ssp_capable(hdev)) { 3873 events[6] |= 0x01; /* IO Capability Request */ 3874 events[6] |= 0x02; /* IO Capability Response */ 3875 events[6] |= 0x04; /* User Confirmation Request */ 3876 events[6] |= 0x08; /* User Passkey Request */ 3877 events[6] |= 0x10; /* Remote OOB Data Request */ 3878 events[6] |= 0x20; /* Simple Pairing Complete */ 3879 events[7] |= 0x04; /* User Passkey Notification */ 3880 events[7] |= 0x08; /* Keypress Notification */ 3881 events[7] |= 0x10; /* Remote Host Supported 3882 * Features Notification 3883 */ 3884 } 3885 3886 if (lmp_le_capable(hdev)) 3887 events[7] |= 0x20; /* LE Meta-Event */ 3888 3889 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3890 sizeof(events), events, HCI_CMD_TIMEOUT); 3891 } 3892 3893 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3894 { 3895 struct hci_cp_read_stored_link_key cp; 3896 3897 if (!(hdev->commands[6] & 0x20) || 3898 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3899 return 0; 3900 3901 memset(&cp, 0, sizeof(cp)); 3902 bacpy(&cp.bdaddr, BDADDR_ANY); 3903 cp.read_all = 0x01; 3904 3905 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3906 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3907 } 3908 3909 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3910 { 3911 struct hci_cp_write_def_link_policy cp; 3912 u16 link_policy = 0; 3913 3914 if (!(hdev->commands[5] & 0x10)) 3915 return 0; 3916 3917 memset(&cp, 0, sizeof(cp)); 3918 3919 if (lmp_rswitch_capable(hdev)) 3920 link_policy |= HCI_LP_RSWITCH; 3921 if (lmp_hold_capable(hdev)) 3922 link_policy |= HCI_LP_HOLD; 3923 if (lmp_sniff_capable(hdev)) 3924 link_policy |= HCI_LP_SNIFF; 3925 if (lmp_park_capable(hdev)) 3926 link_policy |= HCI_LP_PARK; 3927 3928 cp.policy = cpu_to_le16(link_policy); 3929 3930 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3931 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3932 } 3933 3934 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3935 { 3936 if (!(hdev->commands[8] & 0x01)) 3937 return 0; 3938 3939 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3940 0, NULL, HCI_CMD_TIMEOUT); 3941 } 3942 3943 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3944 { 3945 if (!(hdev->commands[18] & 0x04) || 3946 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3947 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3948 return 0; 3949 3950 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3951 0, NULL, HCI_CMD_TIMEOUT); 3952 } 3953 3954 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3955 { 3956 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3957 * support the Read Page Scan Type command. Check support for 3958 * this command in the bit mask of supported commands. 3959 */ 3960 if (!(hdev->commands[13] & 0x01)) 3961 return 0; 3962 3963 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3964 0, NULL, HCI_CMD_TIMEOUT); 3965 } 3966 3967 /* Read features beyond page 1 if available */ 3968 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3969 { 3970 u8 page; 3971 int err; 3972 3973 if (!lmp_ext_feat_capable(hdev)) 3974 return 0; 3975 3976 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3977 page++) { 3978 err = hci_read_local_ext_features_sync(hdev, page); 3979 if (err) 3980 return err; 3981 } 3982 3983 return 0; 3984 } 3985 3986 /* HCI Controller init stage 3 command sequence */ 3987 static const struct hci_init_stage hci_init3[] = { 3988 /* HCI_OP_SET_EVENT_MASK */ 3989 HCI_INIT(hci_set_event_mask_sync), 3990 /* HCI_OP_READ_STORED_LINK_KEY */ 3991 HCI_INIT(hci_read_stored_link_key_sync), 3992 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3993 HCI_INIT(hci_setup_link_policy_sync), 3994 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3995 HCI_INIT(hci_read_page_scan_activity_sync), 3996 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3997 HCI_INIT(hci_read_def_err_data_reporting_sync), 3998 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3999 HCI_INIT(hci_read_page_scan_type_sync), 4000 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4001 HCI_INIT(hci_read_local_ext_features_all_sync), 4002 {} 4003 }; 4004 4005 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4006 { 4007 u8 events[8]; 4008 4009 if (!lmp_le_capable(hdev)) 4010 return 0; 4011 4012 memset(events, 0, sizeof(events)); 4013 4014 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4015 events[0] |= 0x10; /* LE Long Term Key Request */ 4016 4017 /* If controller supports the Connection Parameters Request 4018 * Link Layer Procedure, enable the corresponding event. 4019 */ 4020 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4021 /* LE Remote Connection Parameter Request */ 4022 events[0] |= 0x20; 4023 4024 /* If the controller supports the Data Length Extension 4025 * feature, enable the corresponding event. 4026 */ 4027 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4028 events[0] |= 0x40; /* LE Data Length Change */ 4029 4030 /* If the controller supports LL Privacy feature or LE Extended Adv, 4031 * enable the corresponding event. 4032 */ 4033 if (use_enhanced_conn_complete(hdev)) 4034 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4035 4036 /* If the controller supports Extended Scanner Filter 4037 * Policies, enable the corresponding event. 4038 */ 4039 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4040 events[1] |= 0x04; /* LE Direct Advertising Report */ 4041 4042 /* If the controller supports Channel Selection Algorithm #2 4043 * feature, enable the corresponding event. 4044 */ 4045 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4046 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4047 4048 /* If the controller supports the LE Set Scan Enable command, 4049 * enable the corresponding advertising report event. 4050 */ 4051 if (hdev->commands[26] & 0x08) 4052 events[0] |= 0x02; /* LE Advertising Report */ 4053 4054 /* If the controller supports the LE Create Connection 4055 * command, enable the corresponding event. 4056 */ 4057 if (hdev->commands[26] & 0x10) 4058 events[0] |= 0x01; /* LE Connection Complete */ 4059 4060 /* If the controller supports the LE Connection Update 4061 * command, enable the corresponding event. 4062 */ 4063 if (hdev->commands[27] & 0x04) 4064 events[0] |= 0x04; /* LE Connection Update Complete */ 4065 4066 /* If the controller supports the LE Read Remote Used Features 4067 * command, enable the corresponding event. 4068 */ 4069 if (hdev->commands[27] & 0x20) 4070 /* LE Read Remote Used Features Complete */ 4071 events[0] |= 0x08; 4072 4073 /* If the controller supports the LE Read Local P-256 4074 * Public Key command, enable the corresponding event. 4075 */ 4076 if (hdev->commands[34] & 0x02) 4077 /* LE Read Local P-256 Public Key Complete */ 4078 events[0] |= 0x80; 4079 4080 /* If the controller supports the LE Generate DHKey 4081 * command, enable the corresponding event. 4082 */ 4083 if (hdev->commands[34] & 0x04) 4084 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4085 4086 /* If the controller supports the LE Set Default PHY or 4087 * LE Set PHY commands, enable the corresponding event. 4088 */ 4089 if (hdev->commands[35] & (0x20 | 0x40)) 4090 events[1] |= 0x08; /* LE PHY Update Complete */ 4091 4092 /* If the controller supports LE Set Extended Scan Parameters 4093 * and LE Set Extended Scan Enable commands, enable the 4094 * corresponding event. 4095 */ 4096 if (use_ext_scan(hdev)) 4097 events[1] |= 0x10; /* LE Extended Advertising Report */ 4098 4099 /* If the controller supports the LE Extended Advertising 4100 * command, enable the corresponding event. 4101 */ 4102 if (ext_adv_capable(hdev)) 4103 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4104 4105 if (cis_capable(hdev)) { 4106 events[3] |= 0x01; /* LE CIS Established */ 4107 if (cis_peripheral_capable(hdev)) 4108 events[3] |= 0x02; /* LE CIS Request */ 4109 } 4110 4111 if (bis_capable(hdev)) { 4112 events[1] |= 0x20; /* LE PA Report */ 4113 events[1] |= 0x40; /* LE PA Sync Established */ 4114 events[3] |= 0x04; /* LE Create BIG Complete */ 4115 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4116 events[3] |= 0x10; /* LE BIG Sync Established */ 4117 events[3] |= 0x20; /* LE BIG Sync Loss */ 4118 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4119 } 4120 4121 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4122 sizeof(events), events, HCI_CMD_TIMEOUT); 4123 } 4124 4125 /* Read LE Advertising Channel TX Power */ 4126 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4127 { 4128 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4129 /* HCI TS spec forbids mixing of legacy and extended 4130 * advertising commands wherein READ_ADV_TX_POWER is 4131 * also included. So do not call it if extended adv 4132 * is supported otherwise controller will return 4133 * COMMAND_DISALLOWED for extended commands. 4134 */ 4135 return __hci_cmd_sync_status(hdev, 4136 HCI_OP_LE_READ_ADV_TX_POWER, 4137 0, NULL, HCI_CMD_TIMEOUT); 4138 } 4139 4140 return 0; 4141 } 4142 4143 /* Read LE Min/Max Tx Power*/ 4144 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4145 { 4146 if (!(hdev->commands[38] & 0x80) || 4147 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4148 return 0; 4149 4150 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4151 0, NULL, HCI_CMD_TIMEOUT); 4152 } 4153 4154 /* Read LE Accept List Size */ 4155 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4156 { 4157 if (!(hdev->commands[26] & 0x40)) 4158 return 0; 4159 4160 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4161 0, NULL, HCI_CMD_TIMEOUT); 4162 } 4163 4164 /* Clear LE Accept List */ 4165 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4166 { 4167 if (!(hdev->commands[26] & 0x80)) 4168 return 0; 4169 4170 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4171 HCI_CMD_TIMEOUT); 4172 } 4173 4174 /* Read LE Resolving List Size */ 4175 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4176 { 4177 if (!(hdev->commands[34] & 0x40)) 4178 return 0; 4179 4180 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4181 0, NULL, HCI_CMD_TIMEOUT); 4182 } 4183 4184 /* Clear LE Resolving List */ 4185 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4186 { 4187 if (!(hdev->commands[34] & 0x20)) 4188 return 0; 4189 4190 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4191 HCI_CMD_TIMEOUT); 4192 } 4193 4194 /* Set RPA timeout */ 4195 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4196 { 4197 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4198 4199 if (!(hdev->commands[35] & 0x04) || 4200 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4201 return 0; 4202 4203 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4204 sizeof(timeout), &timeout, 4205 HCI_CMD_TIMEOUT); 4206 } 4207 4208 /* Read LE Maximum Data Length */ 4209 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4210 { 4211 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4212 return 0; 4213 4214 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4215 HCI_CMD_TIMEOUT); 4216 } 4217 4218 /* Read LE Suggested Default Data Length */ 4219 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4220 { 4221 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4222 return 0; 4223 4224 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4225 HCI_CMD_TIMEOUT); 4226 } 4227 4228 /* Read LE Number of Supported Advertising Sets */ 4229 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4230 { 4231 if (!ext_adv_capable(hdev)) 4232 return 0; 4233 4234 return __hci_cmd_sync_status(hdev, 4235 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4236 0, NULL, HCI_CMD_TIMEOUT); 4237 } 4238 4239 /* Write LE Host Supported */ 4240 static int hci_set_le_support_sync(struct hci_dev *hdev) 4241 { 4242 struct hci_cp_write_le_host_supported cp; 4243 4244 /* LE-only devices do not support explicit enablement */ 4245 if (!lmp_bredr_capable(hdev)) 4246 return 0; 4247 4248 memset(&cp, 0, sizeof(cp)); 4249 4250 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4251 cp.le = 0x01; 4252 cp.simul = 0x00; 4253 } 4254 4255 if (cp.le == lmp_host_le_capable(hdev)) 4256 return 0; 4257 4258 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4259 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4260 } 4261 4262 /* LE Set Host Feature */ 4263 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4264 { 4265 struct hci_cp_le_set_host_feature cp; 4266 4267 if (!iso_capable(hdev)) 4268 return 0; 4269 4270 memset(&cp, 0, sizeof(cp)); 4271 4272 /* Isochronous Channels (Host Support) */ 4273 cp.bit_number = 32; 4274 cp.bit_value = 1; 4275 4276 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4277 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4278 } 4279 4280 /* LE Controller init stage 3 command sequence */ 4281 static const struct hci_init_stage le_init3[] = { 4282 /* HCI_OP_LE_SET_EVENT_MASK */ 4283 HCI_INIT(hci_le_set_event_mask_sync), 4284 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4285 HCI_INIT(hci_le_read_adv_tx_power_sync), 4286 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4287 HCI_INIT(hci_le_read_tx_power_sync), 4288 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4289 HCI_INIT(hci_le_read_accept_list_size_sync), 4290 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4291 HCI_INIT(hci_le_clear_accept_list_sync), 4292 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4293 HCI_INIT(hci_le_read_resolv_list_size_sync), 4294 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4295 HCI_INIT(hci_le_clear_resolv_list_sync), 4296 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4297 HCI_INIT(hci_le_set_rpa_timeout_sync), 4298 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4299 HCI_INIT(hci_le_read_max_data_len_sync), 4300 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4301 HCI_INIT(hci_le_read_def_data_len_sync), 4302 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4303 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4304 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4305 HCI_INIT(hci_set_le_support_sync), 4306 /* HCI_OP_LE_SET_HOST_FEATURE */ 4307 HCI_INIT(hci_le_set_host_feature_sync), 4308 {} 4309 }; 4310 4311 static int hci_init3_sync(struct hci_dev *hdev) 4312 { 4313 int err; 4314 4315 bt_dev_dbg(hdev, ""); 4316 4317 err = hci_init_stage_sync(hdev, hci_init3); 4318 if (err) 4319 return err; 4320 4321 if (lmp_le_capable(hdev)) 4322 return hci_init_stage_sync(hdev, le_init3); 4323 4324 return 0; 4325 } 4326 4327 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4328 { 4329 struct hci_cp_delete_stored_link_key cp; 4330 4331 /* Some Broadcom based Bluetooth controllers do not support the 4332 * Delete Stored Link Key command. They are clearly indicating its 4333 * absence in the bit mask of supported commands. 4334 * 4335 * Check the supported commands and only if the command is marked 4336 * as supported send it. If not supported assume that the controller 4337 * does not have actual support for stored link keys which makes this 4338 * command redundant anyway. 4339 * 4340 * Some controllers indicate that they support handling deleting 4341 * stored link keys, but they don't. The quirk lets a driver 4342 * just disable this command. 4343 */ 4344 if (!(hdev->commands[6] & 0x80) || 4345 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4346 return 0; 4347 4348 memset(&cp, 0, sizeof(cp)); 4349 bacpy(&cp.bdaddr, BDADDR_ANY); 4350 cp.delete_all = 0x01; 4351 4352 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4353 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4354 } 4355 4356 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4357 { 4358 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4359 bool changed = false; 4360 4361 /* Set event mask page 2 if the HCI command for it is supported */ 4362 if (!(hdev->commands[22] & 0x04)) 4363 return 0; 4364 4365 /* If Connectionless Peripheral Broadcast central role is supported 4366 * enable all necessary events for it. 4367 */ 4368 if (lmp_cpb_central_capable(hdev)) { 4369 events[1] |= 0x40; /* Triggered Clock Capture */ 4370 events[1] |= 0x80; /* Synchronization Train Complete */ 4371 events[2] |= 0x08; /* Truncated Page Complete */ 4372 events[2] |= 0x20; /* CPB Channel Map Change */ 4373 changed = true; 4374 } 4375 4376 /* If Connectionless Peripheral Broadcast peripheral role is supported 4377 * enable all necessary events for it. 4378 */ 4379 if (lmp_cpb_peripheral_capable(hdev)) { 4380 events[2] |= 0x01; /* Synchronization Train Received */ 4381 events[2] |= 0x02; /* CPB Receive */ 4382 events[2] |= 0x04; /* CPB Timeout */ 4383 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4384 changed = true; 4385 } 4386 4387 /* Enable Authenticated Payload Timeout Expired event if supported */ 4388 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4389 events[2] |= 0x80; 4390 changed = true; 4391 } 4392 4393 /* Some Broadcom based controllers indicate support for Set Event 4394 * Mask Page 2 command, but then actually do not support it. Since 4395 * the default value is all bits set to zero, the command is only 4396 * required if the event mask has to be changed. In case no change 4397 * to the event mask is needed, skip this command. 4398 */ 4399 if (!changed) 4400 return 0; 4401 4402 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4403 sizeof(events), events, HCI_CMD_TIMEOUT); 4404 } 4405 4406 /* Read local codec list if the HCI command is supported */ 4407 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4408 { 4409 if (hdev->commands[45] & 0x04) 4410 hci_read_supported_codecs_v2(hdev); 4411 else if (hdev->commands[29] & 0x20) 4412 hci_read_supported_codecs(hdev); 4413 4414 return 0; 4415 } 4416 4417 /* Read local pairing options if the HCI command is supported */ 4418 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4419 { 4420 if (!(hdev->commands[41] & 0x08)) 4421 return 0; 4422 4423 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4424 0, NULL, HCI_CMD_TIMEOUT); 4425 } 4426 4427 /* Get MWS transport configuration if the HCI command is supported */ 4428 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4429 { 4430 if (!mws_transport_config_capable(hdev)) 4431 return 0; 4432 4433 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4434 0, NULL, HCI_CMD_TIMEOUT); 4435 } 4436 4437 /* Check for Synchronization Train support */ 4438 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4439 { 4440 if (!lmp_sync_train_capable(hdev)) 4441 return 0; 4442 4443 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4444 0, NULL, HCI_CMD_TIMEOUT); 4445 } 4446 4447 /* Enable Secure Connections if supported and configured */ 4448 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4449 { 4450 u8 support = 0x01; 4451 4452 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4453 !bredr_sc_enabled(hdev)) 4454 return 0; 4455 4456 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4457 sizeof(support), &support, 4458 HCI_CMD_TIMEOUT); 4459 } 4460 4461 /* Set erroneous data reporting if supported to the wideband speech 4462 * setting value 4463 */ 4464 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4465 { 4466 struct hci_cp_write_def_err_data_reporting cp; 4467 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4468 4469 if (!(hdev->commands[18] & 0x08) || 4470 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4471 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4472 return 0; 4473 4474 if (enabled == hdev->err_data_reporting) 4475 return 0; 4476 4477 memset(&cp, 0, sizeof(cp)); 4478 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4479 ERR_DATA_REPORTING_DISABLED; 4480 4481 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4482 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4483 } 4484 4485 static const struct hci_init_stage hci_init4[] = { 4486 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4487 HCI_INIT(hci_delete_stored_link_key_sync), 4488 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4489 HCI_INIT(hci_set_event_mask_page_2_sync), 4490 /* HCI_OP_READ_LOCAL_CODECS */ 4491 HCI_INIT(hci_read_local_codecs_sync), 4492 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4493 HCI_INIT(hci_read_local_pairing_opts_sync), 4494 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4495 HCI_INIT(hci_get_mws_transport_config_sync), 4496 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4497 HCI_INIT(hci_read_sync_train_params_sync), 4498 /* HCI_OP_WRITE_SC_SUPPORT */ 4499 HCI_INIT(hci_write_sc_support_1_sync), 4500 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4501 HCI_INIT(hci_set_err_data_report_sync), 4502 {} 4503 }; 4504 4505 /* Set Suggested Default Data Length to maximum if supported */ 4506 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4507 { 4508 struct hci_cp_le_write_def_data_len cp; 4509 4510 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4511 return 0; 4512 4513 memset(&cp, 0, sizeof(cp)); 4514 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4515 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4516 4517 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4518 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4519 } 4520 4521 /* Set Default PHY parameters if command is supported, enables all supported 4522 * PHYs according to the LE Features bits. 4523 */ 4524 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4525 { 4526 struct hci_cp_le_set_default_phy cp; 4527 4528 if (!(hdev->commands[35] & 0x20)) { 4529 /* If the command is not supported it means only 1M PHY is 4530 * supported. 4531 */ 4532 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4533 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4534 return 0; 4535 } 4536 4537 memset(&cp, 0, sizeof(cp)); 4538 cp.all_phys = 0x00; 4539 cp.tx_phys = HCI_LE_SET_PHY_1M; 4540 cp.rx_phys = HCI_LE_SET_PHY_1M; 4541 4542 /* Enables 2M PHY if supported */ 4543 if (le_2m_capable(hdev)) { 4544 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4545 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4546 } 4547 4548 /* Enables Coded PHY if supported */ 4549 if (le_coded_capable(hdev)) { 4550 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4551 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4552 } 4553 4554 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4555 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4556 } 4557 4558 static const struct hci_init_stage le_init4[] = { 4559 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4560 HCI_INIT(hci_le_set_write_def_data_len_sync), 4561 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4562 HCI_INIT(hci_le_set_default_phy_sync), 4563 {} 4564 }; 4565 4566 static int hci_init4_sync(struct hci_dev *hdev) 4567 { 4568 int err; 4569 4570 bt_dev_dbg(hdev, ""); 4571 4572 err = hci_init_stage_sync(hdev, hci_init4); 4573 if (err) 4574 return err; 4575 4576 if (lmp_le_capable(hdev)) 4577 return hci_init_stage_sync(hdev, le_init4); 4578 4579 return 0; 4580 } 4581 4582 static int hci_init_sync(struct hci_dev *hdev) 4583 { 4584 int err; 4585 4586 err = hci_init1_sync(hdev); 4587 if (err < 0) 4588 return err; 4589 4590 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4591 hci_debugfs_create_basic(hdev); 4592 4593 err = hci_init2_sync(hdev); 4594 if (err < 0) 4595 return err; 4596 4597 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4598 * BR/EDR/LE type controllers. AMP controllers only need the 4599 * first two stages of init. 4600 */ 4601 if (hdev->dev_type != HCI_PRIMARY) 4602 return 0; 4603 4604 err = hci_init3_sync(hdev); 4605 if (err < 0) 4606 return err; 4607 4608 err = hci_init4_sync(hdev); 4609 if (err < 0) 4610 return err; 4611 4612 /* This function is only called when the controller is actually in 4613 * configured state. When the controller is marked as unconfigured, 4614 * this initialization procedure is not run. 4615 * 4616 * It means that it is possible that a controller runs through its 4617 * setup phase and then discovers missing settings. If that is the 4618 * case, then this function will not be called. It then will only 4619 * be called during the config phase. 4620 * 4621 * So only when in setup phase or config phase, create the debugfs 4622 * entries and register the SMP channels. 4623 */ 4624 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4625 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4626 return 0; 4627 4628 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4629 return 0; 4630 4631 hci_debugfs_create_common(hdev); 4632 4633 if (lmp_bredr_capable(hdev)) 4634 hci_debugfs_create_bredr(hdev); 4635 4636 if (lmp_le_capable(hdev)) 4637 hci_debugfs_create_le(hdev); 4638 4639 return 0; 4640 } 4641 4642 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4643 4644 static const struct { 4645 unsigned long quirk; 4646 const char *desc; 4647 } hci_broken_table[] = { 4648 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4649 "HCI Read Local Supported Commands not supported"), 4650 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4651 "HCI Delete Stored Link Key command is advertised, " 4652 "but not supported."), 4653 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4654 "HCI Read Default Erroneous Data Reporting command is " 4655 "advertised, but not supported."), 4656 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4657 "HCI Read Transmit Power Level command is advertised, " 4658 "but not supported."), 4659 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4660 "HCI Set Event Filter command not supported."), 4661 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4662 "HCI Enhanced Setup Synchronous Connection command is " 4663 "advertised, but not supported."), 4664 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4665 "HCI LE Set Random Private Address Timeout command is " 4666 "advertised, but not supported."), 4667 HCI_QUIRK_BROKEN(LE_CODED, 4668 "HCI LE Coded PHY feature bit is set, " 4669 "but its usage is not supported.") 4670 }; 4671 4672 /* This function handles hdev setup stage: 4673 * 4674 * Calls hdev->setup 4675 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4676 */ 4677 static int hci_dev_setup_sync(struct hci_dev *hdev) 4678 { 4679 int ret = 0; 4680 bool invalid_bdaddr; 4681 size_t i; 4682 4683 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4684 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4685 return 0; 4686 4687 bt_dev_dbg(hdev, ""); 4688 4689 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4690 4691 if (hdev->setup) 4692 ret = hdev->setup(hdev); 4693 4694 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4695 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4696 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4697 } 4698 4699 /* The transport driver can set the quirk to mark the 4700 * BD_ADDR invalid before creating the HCI device or in 4701 * its setup callback. 4702 */ 4703 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4704 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4705 if (!ret) { 4706 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4707 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4708 hci_dev_get_bd_addr_from_property(hdev); 4709 4710 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4711 hdev->set_bdaddr) { 4712 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4713 if (!ret) 4714 invalid_bdaddr = false; 4715 } 4716 } 4717 4718 /* The transport driver can set these quirks before 4719 * creating the HCI device or in its setup callback. 4720 * 4721 * For the invalid BD_ADDR quirk it is possible that 4722 * it becomes a valid address if the bootloader does 4723 * provide it (see above). 4724 * 4725 * In case any of them is set, the controller has to 4726 * start up as unconfigured. 4727 */ 4728 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4729 invalid_bdaddr) 4730 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4731 4732 /* For an unconfigured controller it is required to 4733 * read at least the version information provided by 4734 * the Read Local Version Information command. 4735 * 4736 * If the set_bdaddr driver callback is provided, then 4737 * also the original Bluetooth public device address 4738 * will be read using the Read BD Address command. 4739 */ 4740 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4741 return hci_unconf_init_sync(hdev); 4742 4743 return ret; 4744 } 4745 4746 /* This function handles hdev init stage: 4747 * 4748 * Calls hci_dev_setup_sync to perform setup stage 4749 * Calls hci_init_sync to perform HCI command init sequence 4750 */ 4751 static int hci_dev_init_sync(struct hci_dev *hdev) 4752 { 4753 int ret; 4754 4755 bt_dev_dbg(hdev, ""); 4756 4757 atomic_set(&hdev->cmd_cnt, 1); 4758 set_bit(HCI_INIT, &hdev->flags); 4759 4760 ret = hci_dev_setup_sync(hdev); 4761 4762 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4763 /* If public address change is configured, ensure that 4764 * the address gets programmed. If the driver does not 4765 * support changing the public address, fail the power 4766 * on procedure. 4767 */ 4768 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4769 hdev->set_bdaddr) 4770 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4771 else 4772 ret = -EADDRNOTAVAIL; 4773 } 4774 4775 if (!ret) { 4776 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4777 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4778 ret = hci_init_sync(hdev); 4779 if (!ret && hdev->post_init) 4780 ret = hdev->post_init(hdev); 4781 } 4782 } 4783 4784 /* If the HCI Reset command is clearing all diagnostic settings, 4785 * then they need to be reprogrammed after the init procedure 4786 * completed. 4787 */ 4788 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4789 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4790 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4791 ret = hdev->set_diag(hdev, true); 4792 4793 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4794 msft_do_open(hdev); 4795 aosp_do_open(hdev); 4796 } 4797 4798 clear_bit(HCI_INIT, &hdev->flags); 4799 4800 return ret; 4801 } 4802 4803 int hci_dev_open_sync(struct hci_dev *hdev) 4804 { 4805 int ret; 4806 4807 bt_dev_dbg(hdev, ""); 4808 4809 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4810 ret = -ENODEV; 4811 goto done; 4812 } 4813 4814 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4815 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4816 /* Check for rfkill but allow the HCI setup stage to 4817 * proceed (which in itself doesn't cause any RF activity). 4818 */ 4819 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4820 ret = -ERFKILL; 4821 goto done; 4822 } 4823 4824 /* Check for valid public address or a configured static 4825 * random address, but let the HCI setup proceed to 4826 * be able to determine if there is a public address 4827 * or not. 4828 * 4829 * In case of user channel usage, it is not important 4830 * if a public address or static random address is 4831 * available. 4832 * 4833 * This check is only valid for BR/EDR controllers 4834 * since AMP controllers do not have an address. 4835 */ 4836 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4837 hdev->dev_type == HCI_PRIMARY && 4838 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4839 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4840 ret = -EADDRNOTAVAIL; 4841 goto done; 4842 } 4843 } 4844 4845 if (test_bit(HCI_UP, &hdev->flags)) { 4846 ret = -EALREADY; 4847 goto done; 4848 } 4849 4850 if (hdev->open(hdev)) { 4851 ret = -EIO; 4852 goto done; 4853 } 4854 4855 hci_devcd_reset(hdev); 4856 4857 set_bit(HCI_RUNNING, &hdev->flags); 4858 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4859 4860 ret = hci_dev_init_sync(hdev); 4861 if (!ret) { 4862 hci_dev_hold(hdev); 4863 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4864 hci_adv_instances_set_rpa_expired(hdev, true); 4865 set_bit(HCI_UP, &hdev->flags); 4866 hci_sock_dev_event(hdev, HCI_DEV_UP); 4867 hci_leds_update_powered(hdev, true); 4868 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4869 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4870 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4871 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4872 hci_dev_test_flag(hdev, HCI_MGMT) && 4873 hdev->dev_type == HCI_PRIMARY) { 4874 ret = hci_powered_update_sync(hdev); 4875 mgmt_power_on(hdev, ret); 4876 } 4877 } else { 4878 /* Init failed, cleanup */ 4879 flush_work(&hdev->tx_work); 4880 4881 /* Since hci_rx_work() is possible to awake new cmd_work 4882 * it should be flushed first to avoid unexpected call of 4883 * hci_cmd_work() 4884 */ 4885 flush_work(&hdev->rx_work); 4886 flush_work(&hdev->cmd_work); 4887 4888 skb_queue_purge(&hdev->cmd_q); 4889 skb_queue_purge(&hdev->rx_q); 4890 4891 if (hdev->flush) 4892 hdev->flush(hdev); 4893 4894 if (hdev->sent_cmd) { 4895 cancel_delayed_work_sync(&hdev->cmd_timer); 4896 kfree_skb(hdev->sent_cmd); 4897 hdev->sent_cmd = NULL; 4898 } 4899 4900 clear_bit(HCI_RUNNING, &hdev->flags); 4901 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4902 4903 hdev->close(hdev); 4904 hdev->flags &= BIT(HCI_RAW); 4905 } 4906 4907 done: 4908 return ret; 4909 } 4910 4911 /* This function requires the caller holds hdev->lock */ 4912 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4913 { 4914 struct hci_conn_params *p; 4915 4916 list_for_each_entry(p, &hdev->le_conn_params, list) { 4917 hci_pend_le_list_del_init(p); 4918 if (p->conn) { 4919 hci_conn_drop(p->conn); 4920 hci_conn_put(p->conn); 4921 p->conn = NULL; 4922 } 4923 } 4924 4925 BT_DBG("All LE pending actions cleared"); 4926 } 4927 4928 static int hci_dev_shutdown(struct hci_dev *hdev) 4929 { 4930 int err = 0; 4931 /* Similar to how we first do setup and then set the exclusive access 4932 * bit for userspace, we must first unset userchannel and then clean up. 4933 * Otherwise, the kernel can't properly use the hci channel to clean up 4934 * the controller (some shutdown routines require sending additional 4935 * commands to the controller for example). 4936 */ 4937 bool was_userchannel = 4938 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4939 4940 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4941 test_bit(HCI_UP, &hdev->flags)) { 4942 /* Execute vendor specific shutdown routine */ 4943 if (hdev->shutdown) 4944 err = hdev->shutdown(hdev); 4945 } 4946 4947 if (was_userchannel) 4948 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4949 4950 return err; 4951 } 4952 4953 int hci_dev_close_sync(struct hci_dev *hdev) 4954 { 4955 bool auto_off; 4956 int err = 0; 4957 4958 bt_dev_dbg(hdev, ""); 4959 4960 cancel_delayed_work(&hdev->power_off); 4961 cancel_delayed_work(&hdev->ncmd_timer); 4962 cancel_delayed_work(&hdev->le_scan_disable); 4963 cancel_delayed_work(&hdev->le_scan_restart); 4964 4965 hci_request_cancel_all(hdev); 4966 4967 if (hdev->adv_instance_timeout) { 4968 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4969 hdev->adv_instance_timeout = 0; 4970 } 4971 4972 err = hci_dev_shutdown(hdev); 4973 4974 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4975 cancel_delayed_work_sync(&hdev->cmd_timer); 4976 return err; 4977 } 4978 4979 hci_leds_update_powered(hdev, false); 4980 4981 /* Flush RX and TX works */ 4982 flush_work(&hdev->tx_work); 4983 flush_work(&hdev->rx_work); 4984 4985 if (hdev->discov_timeout > 0) { 4986 hdev->discov_timeout = 0; 4987 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4988 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4989 } 4990 4991 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4992 cancel_delayed_work(&hdev->service_cache); 4993 4994 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4995 struct adv_info *adv_instance; 4996 4997 cancel_delayed_work_sync(&hdev->rpa_expired); 4998 4999 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5000 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5001 } 5002 5003 /* Avoid potential lockdep warnings from the *_flush() calls by 5004 * ensuring the workqueue is empty up front. 5005 */ 5006 drain_workqueue(hdev->workqueue); 5007 5008 hci_dev_lock(hdev); 5009 5010 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5011 5012 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5013 5014 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 5015 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5016 hci_dev_test_flag(hdev, HCI_MGMT)) 5017 __mgmt_power_off(hdev); 5018 5019 hci_inquiry_cache_flush(hdev); 5020 hci_pend_le_actions_clear(hdev); 5021 hci_conn_hash_flush(hdev); 5022 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5023 smp_unregister(hdev); 5024 hci_dev_unlock(hdev); 5025 5026 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5027 5028 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5029 aosp_do_close(hdev); 5030 msft_do_close(hdev); 5031 } 5032 5033 if (hdev->flush) 5034 hdev->flush(hdev); 5035 5036 /* Reset device */ 5037 skb_queue_purge(&hdev->cmd_q); 5038 atomic_set(&hdev->cmd_cnt, 1); 5039 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5040 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5041 set_bit(HCI_INIT, &hdev->flags); 5042 hci_reset_sync(hdev); 5043 clear_bit(HCI_INIT, &hdev->flags); 5044 } 5045 5046 /* flush cmd work */ 5047 flush_work(&hdev->cmd_work); 5048 5049 /* Drop queues */ 5050 skb_queue_purge(&hdev->rx_q); 5051 skb_queue_purge(&hdev->cmd_q); 5052 skb_queue_purge(&hdev->raw_q); 5053 5054 /* Drop last sent command */ 5055 if (hdev->sent_cmd) { 5056 cancel_delayed_work_sync(&hdev->cmd_timer); 5057 kfree_skb(hdev->sent_cmd); 5058 hdev->sent_cmd = NULL; 5059 } 5060 5061 clear_bit(HCI_RUNNING, &hdev->flags); 5062 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5063 5064 /* After this point our queues are empty and no tasks are scheduled. */ 5065 hdev->close(hdev); 5066 5067 /* Clear flags */ 5068 hdev->flags &= BIT(HCI_RAW); 5069 hci_dev_clear_volatile_flags(hdev); 5070 5071 /* Controller radio is available but is currently powered down */ 5072 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5073 5074 memset(hdev->eir, 0, sizeof(hdev->eir)); 5075 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5076 bacpy(&hdev->random_addr, BDADDR_ANY); 5077 hci_codec_list_clear(&hdev->local_codecs); 5078 5079 hci_dev_put(hdev); 5080 return err; 5081 } 5082 5083 /* This function perform power on HCI command sequence as follows: 5084 * 5085 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5086 * sequence otherwise run hci_dev_open_sync which will follow with 5087 * hci_powered_update_sync after the init sequence is completed. 5088 */ 5089 static int hci_power_on_sync(struct hci_dev *hdev) 5090 { 5091 int err; 5092 5093 if (test_bit(HCI_UP, &hdev->flags) && 5094 hci_dev_test_flag(hdev, HCI_MGMT) && 5095 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5096 cancel_delayed_work(&hdev->power_off); 5097 return hci_powered_update_sync(hdev); 5098 } 5099 5100 err = hci_dev_open_sync(hdev); 5101 if (err < 0) 5102 return err; 5103 5104 /* During the HCI setup phase, a few error conditions are 5105 * ignored and they need to be checked now. If they are still 5106 * valid, it is important to return the device back off. 5107 */ 5108 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5109 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5110 (hdev->dev_type == HCI_PRIMARY && 5111 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5112 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5113 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5114 hci_dev_close_sync(hdev); 5115 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5116 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5117 HCI_AUTO_OFF_TIMEOUT); 5118 } 5119 5120 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5121 /* For unconfigured devices, set the HCI_RAW flag 5122 * so that userspace can easily identify them. 5123 */ 5124 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5125 set_bit(HCI_RAW, &hdev->flags); 5126 5127 /* For fully configured devices, this will send 5128 * the Index Added event. For unconfigured devices, 5129 * it will send Unconfigued Index Added event. 5130 * 5131 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5132 * and no event will be send. 5133 */ 5134 mgmt_index_added(hdev); 5135 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5136 /* When the controller is now configured, then it 5137 * is important to clear the HCI_RAW flag. 5138 */ 5139 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5140 clear_bit(HCI_RAW, &hdev->flags); 5141 5142 /* Powering on the controller with HCI_CONFIG set only 5143 * happens with the transition from unconfigured to 5144 * configured. This will send the Index Added event. 5145 */ 5146 mgmt_index_added(hdev); 5147 } 5148 5149 return 0; 5150 } 5151 5152 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5153 { 5154 struct hci_cp_remote_name_req_cancel cp; 5155 5156 memset(&cp, 0, sizeof(cp)); 5157 bacpy(&cp.bdaddr, addr); 5158 5159 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5160 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5161 } 5162 5163 int hci_stop_discovery_sync(struct hci_dev *hdev) 5164 { 5165 struct discovery_state *d = &hdev->discovery; 5166 struct inquiry_entry *e; 5167 int err; 5168 5169 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5170 5171 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5172 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5173 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5174 0, NULL, HCI_CMD_TIMEOUT); 5175 if (err) 5176 return err; 5177 } 5178 5179 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5180 cancel_delayed_work(&hdev->le_scan_disable); 5181 cancel_delayed_work(&hdev->le_scan_restart); 5182 5183 err = hci_scan_disable_sync(hdev); 5184 if (err) 5185 return err; 5186 } 5187 5188 } else { 5189 err = hci_scan_disable_sync(hdev); 5190 if (err) 5191 return err; 5192 } 5193 5194 /* Resume advertising if it was paused */ 5195 if (use_ll_privacy(hdev)) 5196 hci_resume_advertising_sync(hdev); 5197 5198 /* No further actions needed for LE-only discovery */ 5199 if (d->type == DISCOV_TYPE_LE) 5200 return 0; 5201 5202 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5203 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5204 NAME_PENDING); 5205 if (!e) 5206 return 0; 5207 5208 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5209 } 5210 5211 return 0; 5212 } 5213 5214 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5215 u8 reason) 5216 { 5217 struct hci_cp_disconn_phy_link cp; 5218 5219 memset(&cp, 0, sizeof(cp)); 5220 cp.phy_handle = HCI_PHY_HANDLE(handle); 5221 cp.reason = reason; 5222 5223 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5224 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5225 } 5226 5227 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5228 u8 reason) 5229 { 5230 struct hci_cp_disconnect cp; 5231 5232 if (conn->type == AMP_LINK) 5233 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5234 5235 memset(&cp, 0, sizeof(cp)); 5236 cp.handle = cpu_to_le16(conn->handle); 5237 cp.reason = reason; 5238 5239 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5240 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5241 * used when suspending or powering off, where we don't want to wait 5242 * for the peer's response. 5243 */ 5244 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5245 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5246 sizeof(cp), &cp, 5247 HCI_EV_DISCONN_COMPLETE, 5248 HCI_CMD_TIMEOUT, NULL); 5249 5250 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5251 HCI_CMD_TIMEOUT); 5252 } 5253 5254 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5255 struct hci_conn *conn, u8 reason) 5256 { 5257 /* Return reason if scanning since the connection shall probably be 5258 * cleanup directly. 5259 */ 5260 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5261 return reason; 5262 5263 if (conn->role == HCI_ROLE_SLAVE || 5264 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5265 return 0; 5266 5267 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5268 0, NULL, HCI_CMD_TIMEOUT); 5269 } 5270 5271 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5272 u8 reason) 5273 { 5274 if (conn->type == LE_LINK) 5275 return hci_le_connect_cancel_sync(hdev, conn, reason); 5276 5277 if (conn->type == ISO_LINK) { 5278 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5279 * page 1857: 5280 * 5281 * If this command is issued for a CIS on the Central and the 5282 * CIS is successfully terminated before being established, 5283 * then an HCI_LE_CIS_Established event shall also be sent for 5284 * this CIS with the Status Operation Cancelled by Host (0x44). 5285 */ 5286 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5287 return hci_disconnect_sync(hdev, conn, reason); 5288 5289 /* CIS with no Create CIS sent have nothing to cancel */ 5290 if (bacmp(&conn->dst, BDADDR_ANY)) 5291 return HCI_ERROR_LOCAL_HOST_TERM; 5292 5293 /* There is no way to cancel a BIS without terminating the BIG 5294 * which is done later on connection cleanup. 5295 */ 5296 return 0; 5297 } 5298 5299 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5300 return 0; 5301 5302 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5303 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5304 * used when suspending or powering off, where we don't want to wait 5305 * for the peer's response. 5306 */ 5307 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5308 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5309 6, &conn->dst, 5310 HCI_EV_CONN_COMPLETE, 5311 HCI_CMD_TIMEOUT, NULL); 5312 5313 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5314 6, &conn->dst, HCI_CMD_TIMEOUT); 5315 } 5316 5317 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5318 u8 reason) 5319 { 5320 struct hci_cp_reject_sync_conn_req cp; 5321 5322 memset(&cp, 0, sizeof(cp)); 5323 bacpy(&cp.bdaddr, &conn->dst); 5324 cp.reason = reason; 5325 5326 /* SCO rejection has its own limited set of 5327 * allowed error values (0x0D-0x0F). 5328 */ 5329 if (reason < 0x0d || reason > 0x0f) 5330 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5331 5332 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5333 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5334 } 5335 5336 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5337 u8 reason) 5338 { 5339 struct hci_cp_le_reject_cis cp; 5340 5341 memset(&cp, 0, sizeof(cp)); 5342 cp.handle = cpu_to_le16(conn->handle); 5343 cp.reason = reason; 5344 5345 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5346 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5347 } 5348 5349 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5350 u8 reason) 5351 { 5352 struct hci_cp_reject_conn_req cp; 5353 5354 if (conn->type == ISO_LINK) 5355 return hci_le_reject_cis_sync(hdev, conn, reason); 5356 5357 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5358 return hci_reject_sco_sync(hdev, conn, reason); 5359 5360 memset(&cp, 0, sizeof(cp)); 5361 bacpy(&cp.bdaddr, &conn->dst); 5362 cp.reason = reason; 5363 5364 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5365 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5366 } 5367 5368 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5369 { 5370 int err = 0; 5371 u16 handle = conn->handle; 5372 struct hci_conn *c; 5373 5374 switch (conn->state) { 5375 case BT_CONNECTED: 5376 case BT_CONFIG: 5377 err = hci_disconnect_sync(hdev, conn, reason); 5378 break; 5379 case BT_CONNECT: 5380 err = hci_connect_cancel_sync(hdev, conn, reason); 5381 break; 5382 case BT_CONNECT2: 5383 err = hci_reject_conn_sync(hdev, conn, reason); 5384 break; 5385 case BT_OPEN: 5386 hci_dev_lock(hdev); 5387 5388 /* Cleanup bis or pa sync connections */ 5389 if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) || 5390 test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) { 5391 hci_conn_failed(conn, reason); 5392 } else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) || 5393 test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) { 5394 conn->state = BT_CLOSED; 5395 hci_disconn_cfm(conn, reason); 5396 hci_conn_del(conn); 5397 } 5398 5399 hci_dev_unlock(hdev); 5400 return 0; 5401 case BT_BOUND: 5402 hci_dev_lock(hdev); 5403 hci_conn_failed(conn, reason); 5404 hci_dev_unlock(hdev); 5405 return 0; 5406 default: 5407 hci_dev_lock(hdev); 5408 conn->state = BT_CLOSED; 5409 hci_disconn_cfm(conn, reason); 5410 hci_conn_del(conn); 5411 hci_dev_unlock(hdev); 5412 return 0; 5413 } 5414 5415 hci_dev_lock(hdev); 5416 5417 /* Check if the connection hasn't been cleanup while waiting 5418 * commands to complete. 5419 */ 5420 c = hci_conn_hash_lookup_handle(hdev, handle); 5421 if (!c || c != conn) { 5422 err = 0; 5423 goto unlock; 5424 } 5425 5426 /* Cleanup hci_conn object if it cannot be cancelled as it 5427 * likelly means the controller and host stack are out of sync 5428 * or in case of LE it was still scanning so it can be cleanup 5429 * safely. 5430 */ 5431 hci_conn_failed(conn, reason); 5432 5433 unlock: 5434 hci_dev_unlock(hdev); 5435 return err; 5436 } 5437 5438 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5439 { 5440 struct list_head *head = &hdev->conn_hash.list; 5441 struct hci_conn *conn; 5442 5443 rcu_read_lock(); 5444 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5445 /* Make sure the connection is not freed while unlocking */ 5446 conn = hci_conn_get(conn); 5447 rcu_read_unlock(); 5448 /* Disregard possible errors since hci_conn_del shall have been 5449 * called even in case of errors had occurred since it would 5450 * then cause hci_conn_failed to be called which calls 5451 * hci_conn_del internally. 5452 */ 5453 hci_abort_conn_sync(hdev, conn, reason); 5454 hci_conn_put(conn); 5455 rcu_read_lock(); 5456 } 5457 rcu_read_unlock(); 5458 5459 return 0; 5460 } 5461 5462 /* This function perform power off HCI command sequence as follows: 5463 * 5464 * Clear Advertising 5465 * Stop Discovery 5466 * Disconnect all connections 5467 * hci_dev_close_sync 5468 */ 5469 static int hci_power_off_sync(struct hci_dev *hdev) 5470 { 5471 int err; 5472 5473 /* If controller is already down there is nothing to do */ 5474 if (!test_bit(HCI_UP, &hdev->flags)) 5475 return 0; 5476 5477 if (test_bit(HCI_ISCAN, &hdev->flags) || 5478 test_bit(HCI_PSCAN, &hdev->flags)) { 5479 err = hci_write_scan_enable_sync(hdev, 0x00); 5480 if (err) 5481 return err; 5482 } 5483 5484 err = hci_clear_adv_sync(hdev, NULL, false); 5485 if (err) 5486 return err; 5487 5488 err = hci_stop_discovery_sync(hdev); 5489 if (err) 5490 return err; 5491 5492 /* Terminated due to Power Off */ 5493 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5494 if (err) 5495 return err; 5496 5497 return hci_dev_close_sync(hdev); 5498 } 5499 5500 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5501 { 5502 if (val) 5503 return hci_power_on_sync(hdev); 5504 5505 return hci_power_off_sync(hdev); 5506 } 5507 5508 static int hci_write_iac_sync(struct hci_dev *hdev) 5509 { 5510 struct hci_cp_write_current_iac_lap cp; 5511 5512 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5513 return 0; 5514 5515 memset(&cp, 0, sizeof(cp)); 5516 5517 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5518 /* Limited discoverable mode */ 5519 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5520 cp.iac_lap[0] = 0x00; /* LIAC */ 5521 cp.iac_lap[1] = 0x8b; 5522 cp.iac_lap[2] = 0x9e; 5523 cp.iac_lap[3] = 0x33; /* GIAC */ 5524 cp.iac_lap[4] = 0x8b; 5525 cp.iac_lap[5] = 0x9e; 5526 } else { 5527 /* General discoverable mode */ 5528 cp.num_iac = 1; 5529 cp.iac_lap[0] = 0x33; /* GIAC */ 5530 cp.iac_lap[1] = 0x8b; 5531 cp.iac_lap[2] = 0x9e; 5532 } 5533 5534 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5535 (cp.num_iac * 3) + 1, &cp, 5536 HCI_CMD_TIMEOUT); 5537 } 5538 5539 int hci_update_discoverable_sync(struct hci_dev *hdev) 5540 { 5541 int err = 0; 5542 5543 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5544 err = hci_write_iac_sync(hdev); 5545 if (err) 5546 return err; 5547 5548 err = hci_update_scan_sync(hdev); 5549 if (err) 5550 return err; 5551 5552 err = hci_update_class_sync(hdev); 5553 if (err) 5554 return err; 5555 } 5556 5557 /* Advertising instances don't use the global discoverable setting, so 5558 * only update AD if advertising was enabled using Set Advertising. 5559 */ 5560 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5561 err = hci_update_adv_data_sync(hdev, 0x00); 5562 if (err) 5563 return err; 5564 5565 /* Discoverable mode affects the local advertising 5566 * address in limited privacy mode. 5567 */ 5568 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5569 if (ext_adv_capable(hdev)) 5570 err = hci_start_ext_adv_sync(hdev, 0x00); 5571 else 5572 err = hci_enable_advertising_sync(hdev); 5573 } 5574 } 5575 5576 return err; 5577 } 5578 5579 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5580 { 5581 return hci_update_discoverable_sync(hdev); 5582 } 5583 5584 int hci_update_discoverable(struct hci_dev *hdev) 5585 { 5586 /* Only queue if it would have any effect */ 5587 if (hdev_is_powered(hdev) && 5588 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5589 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5590 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5591 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5592 NULL); 5593 5594 return 0; 5595 } 5596 5597 int hci_update_connectable_sync(struct hci_dev *hdev) 5598 { 5599 int err; 5600 5601 err = hci_update_scan_sync(hdev); 5602 if (err) 5603 return err; 5604 5605 /* If BR/EDR is not enabled and we disable advertising as a 5606 * by-product of disabling connectable, we need to update the 5607 * advertising flags. 5608 */ 5609 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5610 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5611 5612 /* Update the advertising parameters if necessary */ 5613 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5614 !list_empty(&hdev->adv_instances)) { 5615 if (ext_adv_capable(hdev)) 5616 err = hci_start_ext_adv_sync(hdev, 5617 hdev->cur_adv_instance); 5618 else 5619 err = hci_enable_advertising_sync(hdev); 5620 5621 if (err) 5622 return err; 5623 } 5624 5625 return hci_update_passive_scan_sync(hdev); 5626 } 5627 5628 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5629 { 5630 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5631 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5632 struct hci_cp_inquiry cp; 5633 5634 bt_dev_dbg(hdev, ""); 5635 5636 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5637 return 0; 5638 5639 hci_dev_lock(hdev); 5640 hci_inquiry_cache_flush(hdev); 5641 hci_dev_unlock(hdev); 5642 5643 memset(&cp, 0, sizeof(cp)); 5644 5645 if (hdev->discovery.limited) 5646 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5647 else 5648 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5649 5650 cp.length = length; 5651 5652 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5653 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5654 } 5655 5656 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5657 { 5658 u8 own_addr_type; 5659 /* Accept list is not used for discovery */ 5660 u8 filter_policy = 0x00; 5661 /* Default is to enable duplicates filter */ 5662 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5663 int err; 5664 5665 bt_dev_dbg(hdev, ""); 5666 5667 /* If controller is scanning, it means the passive scanning is 5668 * running. Thus, we should temporarily stop it in order to set the 5669 * discovery scanning parameters. 5670 */ 5671 err = hci_scan_disable_sync(hdev); 5672 if (err) { 5673 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5674 return err; 5675 } 5676 5677 cancel_interleave_scan(hdev); 5678 5679 /* Pause address resolution for active scan and stop advertising if 5680 * privacy is enabled. 5681 */ 5682 err = hci_pause_addr_resolution(hdev); 5683 if (err) 5684 goto failed; 5685 5686 /* All active scans will be done with either a resolvable private 5687 * address (when privacy feature has been enabled) or non-resolvable 5688 * private address. 5689 */ 5690 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5691 &own_addr_type); 5692 if (err < 0) 5693 own_addr_type = ADDR_LE_DEV_PUBLIC; 5694 5695 if (hci_is_adv_monitoring(hdev)) { 5696 /* Duplicate filter should be disabled when some advertisement 5697 * monitor is activated, otherwise AdvMon can only receive one 5698 * advertisement for one peer(*) during active scanning, and 5699 * might report loss to these peers. 5700 * 5701 * Note that different controllers have different meanings of 5702 * |duplicate|. Some of them consider packets with the same 5703 * address as duplicate, and others consider packets with the 5704 * same address and the same RSSI as duplicate. Although in the 5705 * latter case we don't need to disable duplicate filter, but 5706 * it is common to have active scanning for a short period of 5707 * time, the power impact should be neglectable. 5708 */ 5709 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5710 } 5711 5712 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5713 hdev->le_scan_window_discovery, 5714 own_addr_type, filter_policy, filter_dup); 5715 if (!err) 5716 return err; 5717 5718 failed: 5719 /* Resume advertising if it was paused */ 5720 if (use_ll_privacy(hdev)) 5721 hci_resume_advertising_sync(hdev); 5722 5723 /* Resume passive scanning */ 5724 hci_update_passive_scan_sync(hdev); 5725 return err; 5726 } 5727 5728 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5729 { 5730 int err; 5731 5732 bt_dev_dbg(hdev, ""); 5733 5734 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5735 if (err) 5736 return err; 5737 5738 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5739 } 5740 5741 int hci_start_discovery_sync(struct hci_dev *hdev) 5742 { 5743 unsigned long timeout; 5744 int err; 5745 5746 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5747 5748 switch (hdev->discovery.type) { 5749 case DISCOV_TYPE_BREDR: 5750 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5751 case DISCOV_TYPE_INTERLEAVED: 5752 /* When running simultaneous discovery, the LE scanning time 5753 * should occupy the whole discovery time sine BR/EDR inquiry 5754 * and LE scanning are scheduled by the controller. 5755 * 5756 * For interleaving discovery in comparison, BR/EDR inquiry 5757 * and LE scanning are done sequentially with separate 5758 * timeouts. 5759 */ 5760 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5761 &hdev->quirks)) { 5762 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5763 /* During simultaneous discovery, we double LE scan 5764 * interval. We must leave some time for the controller 5765 * to do BR/EDR inquiry. 5766 */ 5767 err = hci_start_interleaved_discovery_sync(hdev); 5768 break; 5769 } 5770 5771 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5772 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5773 break; 5774 case DISCOV_TYPE_LE: 5775 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5776 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5777 break; 5778 default: 5779 return -EINVAL; 5780 } 5781 5782 if (err) 5783 return err; 5784 5785 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5786 5787 /* When service discovery is used and the controller has a 5788 * strict duplicate filter, it is important to remember the 5789 * start and duration of the scan. This is required for 5790 * restarting scanning during the discovery phase. 5791 */ 5792 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5793 hdev->discovery.result_filtering) { 5794 hdev->discovery.scan_start = jiffies; 5795 hdev->discovery.scan_duration = timeout; 5796 } 5797 5798 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5799 timeout); 5800 return 0; 5801 } 5802 5803 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5804 { 5805 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5806 case HCI_ADV_MONITOR_EXT_MSFT: 5807 msft_suspend_sync(hdev); 5808 break; 5809 default: 5810 return; 5811 } 5812 } 5813 5814 /* This function disables discovery and mark it as paused */ 5815 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5816 { 5817 int old_state = hdev->discovery.state; 5818 int err; 5819 5820 /* If discovery already stopped/stopping/paused there nothing to do */ 5821 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5822 hdev->discovery_paused) 5823 return 0; 5824 5825 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5826 err = hci_stop_discovery_sync(hdev); 5827 if (err) 5828 return err; 5829 5830 hdev->discovery_paused = true; 5831 hdev->discovery_old_state = old_state; 5832 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5833 5834 return 0; 5835 } 5836 5837 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5838 { 5839 struct bdaddr_list_with_flags *b; 5840 u8 scan = SCAN_DISABLED; 5841 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5842 int err; 5843 5844 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5845 return 0; 5846 5847 /* Some fake CSR controllers lock up after setting this type of 5848 * filter, so avoid sending the request altogether. 5849 */ 5850 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5851 return 0; 5852 5853 /* Always clear event filter when starting */ 5854 hci_clear_event_filter_sync(hdev); 5855 5856 list_for_each_entry(b, &hdev->accept_list, list) { 5857 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5858 continue; 5859 5860 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5861 5862 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5863 HCI_CONN_SETUP_ALLOW_BDADDR, 5864 &b->bdaddr, 5865 HCI_CONN_SETUP_AUTO_ON); 5866 if (err) 5867 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5868 &b->bdaddr); 5869 else 5870 scan = SCAN_PAGE; 5871 } 5872 5873 if (scan && !scanning) 5874 hci_write_scan_enable_sync(hdev, scan); 5875 else if (!scan && scanning) 5876 hci_write_scan_enable_sync(hdev, scan); 5877 5878 return 0; 5879 } 5880 5881 /* This function disables scan (BR and LE) and mark it as paused */ 5882 static int hci_pause_scan_sync(struct hci_dev *hdev) 5883 { 5884 if (hdev->scanning_paused) 5885 return 0; 5886 5887 /* Disable page scan if enabled */ 5888 if (test_bit(HCI_PSCAN, &hdev->flags)) 5889 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5890 5891 hci_scan_disable_sync(hdev); 5892 5893 hdev->scanning_paused = true; 5894 5895 return 0; 5896 } 5897 5898 /* This function performs the HCI suspend procedures in the follow order: 5899 * 5900 * Pause discovery (active scanning/inquiry) 5901 * Pause Directed Advertising/Advertising 5902 * Pause Scanning (passive scanning in case discovery was not active) 5903 * Disconnect all connections 5904 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5905 * otherwise: 5906 * Update event mask (only set events that are allowed to wake up the host) 5907 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5908 * Update passive scanning (lower duty cycle) 5909 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5910 */ 5911 int hci_suspend_sync(struct hci_dev *hdev) 5912 { 5913 int err; 5914 5915 /* If marked as suspended there nothing to do */ 5916 if (hdev->suspended) 5917 return 0; 5918 5919 /* Mark device as suspended */ 5920 hdev->suspended = true; 5921 5922 /* Pause discovery if not already stopped */ 5923 hci_pause_discovery_sync(hdev); 5924 5925 /* Pause other advertisements */ 5926 hci_pause_advertising_sync(hdev); 5927 5928 /* Suspend monitor filters */ 5929 hci_suspend_monitor_sync(hdev); 5930 5931 /* Prevent disconnects from causing scanning to be re-enabled */ 5932 hci_pause_scan_sync(hdev); 5933 5934 if (hci_conn_count(hdev)) { 5935 /* Soft disconnect everything (power off) */ 5936 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5937 if (err) { 5938 /* Set state to BT_RUNNING so resume doesn't notify */ 5939 hdev->suspend_state = BT_RUNNING; 5940 hci_resume_sync(hdev); 5941 return err; 5942 } 5943 5944 /* Update event mask so only the allowed event can wakeup the 5945 * host. 5946 */ 5947 hci_set_event_mask_sync(hdev); 5948 } 5949 5950 /* Only configure accept list if disconnect succeeded and wake 5951 * isn't being prevented. 5952 */ 5953 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5954 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5955 return 0; 5956 } 5957 5958 /* Unpause to take care of updating scanning params */ 5959 hdev->scanning_paused = false; 5960 5961 /* Enable event filter for paired devices */ 5962 hci_update_event_filter_sync(hdev); 5963 5964 /* Update LE passive scan if enabled */ 5965 hci_update_passive_scan_sync(hdev); 5966 5967 /* Pause scan changes again. */ 5968 hdev->scanning_paused = true; 5969 5970 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5971 5972 return 0; 5973 } 5974 5975 /* This function resumes discovery */ 5976 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5977 { 5978 int err; 5979 5980 /* If discovery not paused there nothing to do */ 5981 if (!hdev->discovery_paused) 5982 return 0; 5983 5984 hdev->discovery_paused = false; 5985 5986 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5987 5988 err = hci_start_discovery_sync(hdev); 5989 5990 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5991 DISCOVERY_FINDING); 5992 5993 return err; 5994 } 5995 5996 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5997 { 5998 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5999 case HCI_ADV_MONITOR_EXT_MSFT: 6000 msft_resume_sync(hdev); 6001 break; 6002 default: 6003 return; 6004 } 6005 } 6006 6007 /* This function resume scan and reset paused flag */ 6008 static int hci_resume_scan_sync(struct hci_dev *hdev) 6009 { 6010 if (!hdev->scanning_paused) 6011 return 0; 6012 6013 hdev->scanning_paused = false; 6014 6015 hci_update_scan_sync(hdev); 6016 6017 /* Reset passive scanning to normal */ 6018 hci_update_passive_scan_sync(hdev); 6019 6020 return 0; 6021 } 6022 6023 /* This function performs the HCI suspend procedures in the follow order: 6024 * 6025 * Restore event mask 6026 * Clear event filter 6027 * Update passive scanning (normal duty cycle) 6028 * Resume Directed Advertising/Advertising 6029 * Resume discovery (active scanning/inquiry) 6030 */ 6031 int hci_resume_sync(struct hci_dev *hdev) 6032 { 6033 /* If not marked as suspended there nothing to do */ 6034 if (!hdev->suspended) 6035 return 0; 6036 6037 hdev->suspended = false; 6038 6039 /* Restore event mask */ 6040 hci_set_event_mask_sync(hdev); 6041 6042 /* Clear any event filters and restore scan state */ 6043 hci_clear_event_filter_sync(hdev); 6044 6045 /* Resume scanning */ 6046 hci_resume_scan_sync(hdev); 6047 6048 /* Resume monitor filters */ 6049 hci_resume_monitor_sync(hdev); 6050 6051 /* Resume other advertisements */ 6052 hci_resume_advertising_sync(hdev); 6053 6054 /* Resume discovery */ 6055 hci_resume_discovery_sync(hdev); 6056 6057 return 0; 6058 } 6059 6060 static bool conn_use_rpa(struct hci_conn *conn) 6061 { 6062 struct hci_dev *hdev = conn->hdev; 6063 6064 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6065 } 6066 6067 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6068 struct hci_conn *conn) 6069 { 6070 struct hci_cp_le_set_ext_adv_params cp; 6071 int err; 6072 bdaddr_t random_addr; 6073 u8 own_addr_type; 6074 6075 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6076 &own_addr_type); 6077 if (err) 6078 return err; 6079 6080 /* Set require_privacy to false so that the remote device has a 6081 * chance of identifying us. 6082 */ 6083 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6084 &own_addr_type, &random_addr); 6085 if (err) 6086 return err; 6087 6088 memset(&cp, 0, sizeof(cp)); 6089 6090 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6091 cp.channel_map = hdev->le_adv_channel_map; 6092 cp.tx_power = HCI_TX_POWER_INVALID; 6093 cp.primary_phy = HCI_ADV_PHY_1M; 6094 cp.secondary_phy = HCI_ADV_PHY_1M; 6095 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6096 cp.own_addr_type = own_addr_type; 6097 cp.peer_addr_type = conn->dst_type; 6098 bacpy(&cp.peer_addr, &conn->dst); 6099 6100 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6101 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6102 * does not supports advertising data when the advertising set already 6103 * contains some, the controller shall return erroc code 'Invalid 6104 * HCI Command Parameters(0x12). 6105 * So it is required to remove adv set for handle 0x00. since we use 6106 * instance 0 for directed adv. 6107 */ 6108 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6109 if (err) 6110 return err; 6111 6112 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6113 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6114 if (err) 6115 return err; 6116 6117 /* Check if random address need to be updated */ 6118 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6119 bacmp(&random_addr, BDADDR_ANY) && 6120 bacmp(&random_addr, &hdev->random_addr)) { 6121 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6122 &random_addr); 6123 if (err) 6124 return err; 6125 } 6126 6127 return hci_enable_ext_advertising_sync(hdev, 0x00); 6128 } 6129 6130 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6131 struct hci_conn *conn) 6132 { 6133 struct hci_cp_le_set_adv_param cp; 6134 u8 status; 6135 u8 own_addr_type; 6136 u8 enable; 6137 6138 if (ext_adv_capable(hdev)) 6139 return hci_le_ext_directed_advertising_sync(hdev, conn); 6140 6141 /* Clear the HCI_LE_ADV bit temporarily so that the 6142 * hci_update_random_address knows that it's safe to go ahead 6143 * and write a new random address. The flag will be set back on 6144 * as soon as the SET_ADV_ENABLE HCI command completes. 6145 */ 6146 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6147 6148 /* Set require_privacy to false so that the remote device has a 6149 * chance of identifying us. 6150 */ 6151 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6152 &own_addr_type); 6153 if (status) 6154 return status; 6155 6156 memset(&cp, 0, sizeof(cp)); 6157 6158 /* Some controllers might reject command if intervals are not 6159 * within range for undirected advertising. 6160 * BCM20702A0 is known to be affected by this. 6161 */ 6162 cp.min_interval = cpu_to_le16(0x0020); 6163 cp.max_interval = cpu_to_le16(0x0020); 6164 6165 cp.type = LE_ADV_DIRECT_IND; 6166 cp.own_address_type = own_addr_type; 6167 cp.direct_addr_type = conn->dst_type; 6168 bacpy(&cp.direct_addr, &conn->dst); 6169 cp.channel_map = hdev->le_adv_channel_map; 6170 6171 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6172 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6173 if (status) 6174 return status; 6175 6176 enable = 0x01; 6177 6178 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6179 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6180 } 6181 6182 static void set_ext_conn_params(struct hci_conn *conn, 6183 struct hci_cp_le_ext_conn_param *p) 6184 { 6185 struct hci_dev *hdev = conn->hdev; 6186 6187 memset(p, 0, sizeof(*p)); 6188 6189 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6190 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6191 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6192 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6193 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6194 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6195 p->min_ce_len = cpu_to_le16(0x0000); 6196 p->max_ce_len = cpu_to_le16(0x0000); 6197 } 6198 6199 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6200 struct hci_conn *conn, u8 own_addr_type) 6201 { 6202 struct hci_cp_le_ext_create_conn *cp; 6203 struct hci_cp_le_ext_conn_param *p; 6204 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6205 u32 plen; 6206 6207 cp = (void *)data; 6208 p = (void *)cp->data; 6209 6210 memset(cp, 0, sizeof(*cp)); 6211 6212 bacpy(&cp->peer_addr, &conn->dst); 6213 cp->peer_addr_type = conn->dst_type; 6214 cp->own_addr_type = own_addr_type; 6215 6216 plen = sizeof(*cp); 6217 6218 if (scan_1m(hdev)) { 6219 cp->phys |= LE_SCAN_PHY_1M; 6220 set_ext_conn_params(conn, p); 6221 6222 p++; 6223 plen += sizeof(*p); 6224 } 6225 6226 if (scan_2m(hdev)) { 6227 cp->phys |= LE_SCAN_PHY_2M; 6228 set_ext_conn_params(conn, p); 6229 6230 p++; 6231 plen += sizeof(*p); 6232 } 6233 6234 if (scan_coded(hdev)) { 6235 cp->phys |= LE_SCAN_PHY_CODED; 6236 set_ext_conn_params(conn, p); 6237 6238 plen += sizeof(*p); 6239 } 6240 6241 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6242 plen, data, 6243 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6244 conn->conn_timeout, NULL); 6245 } 6246 6247 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6248 { 6249 struct hci_cp_le_create_conn cp; 6250 struct hci_conn_params *params; 6251 u8 own_addr_type; 6252 int err; 6253 6254 /* If requested to connect as peripheral use directed advertising */ 6255 if (conn->role == HCI_ROLE_SLAVE) { 6256 /* If we're active scanning and simultaneous roles is not 6257 * enabled simply reject the attempt. 6258 */ 6259 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6260 hdev->le_scan_type == LE_SCAN_ACTIVE && 6261 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6262 hci_conn_del(conn); 6263 return -EBUSY; 6264 } 6265 6266 /* Pause advertising while doing directed advertising. */ 6267 hci_pause_advertising_sync(hdev); 6268 6269 err = hci_le_directed_advertising_sync(hdev, conn); 6270 goto done; 6271 } 6272 6273 /* Disable advertising if simultaneous roles is not in use. */ 6274 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6275 hci_pause_advertising_sync(hdev); 6276 6277 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6278 if (params) { 6279 conn->le_conn_min_interval = params->conn_min_interval; 6280 conn->le_conn_max_interval = params->conn_max_interval; 6281 conn->le_conn_latency = params->conn_latency; 6282 conn->le_supv_timeout = params->supervision_timeout; 6283 } else { 6284 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6285 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6286 conn->le_conn_latency = hdev->le_conn_latency; 6287 conn->le_supv_timeout = hdev->le_supv_timeout; 6288 } 6289 6290 /* If controller is scanning, we stop it since some controllers are 6291 * not able to scan and connect at the same time. Also set the 6292 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6293 * handler for scan disabling knows to set the correct discovery 6294 * state. 6295 */ 6296 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6297 hci_scan_disable_sync(hdev); 6298 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6299 } 6300 6301 /* Update random address, but set require_privacy to false so 6302 * that we never connect with an non-resolvable address. 6303 */ 6304 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6305 &own_addr_type); 6306 if (err) 6307 goto done; 6308 6309 if (use_ext_conn(hdev)) { 6310 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6311 goto done; 6312 } 6313 6314 memset(&cp, 0, sizeof(cp)); 6315 6316 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6317 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6318 6319 bacpy(&cp.peer_addr, &conn->dst); 6320 cp.peer_addr_type = conn->dst_type; 6321 cp.own_address_type = own_addr_type; 6322 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6323 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6324 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6325 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6326 cp.min_ce_len = cpu_to_le16(0x0000); 6327 cp.max_ce_len = cpu_to_le16(0x0000); 6328 6329 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6330 * 6331 * If this event is unmasked and the HCI_LE_Connection_Complete event 6332 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6333 * sent when a new connection has been created. 6334 */ 6335 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6336 sizeof(cp), &cp, 6337 use_enhanced_conn_complete(hdev) ? 6338 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6339 HCI_EV_LE_CONN_COMPLETE, 6340 conn->conn_timeout, NULL); 6341 6342 done: 6343 if (err == -ETIMEDOUT) 6344 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6345 6346 /* Re-enable advertising after the connection attempt is finished. */ 6347 hci_resume_advertising_sync(hdev); 6348 return err; 6349 } 6350 6351 int hci_le_create_cis_sync(struct hci_dev *hdev) 6352 { 6353 struct { 6354 struct hci_cp_le_create_cis cp; 6355 struct hci_cis cis[0x1f]; 6356 } cmd; 6357 struct hci_conn *conn; 6358 u8 cig = BT_ISO_QOS_CIG_UNSET; 6359 6360 /* The spec allows only one pending LE Create CIS command at a time. If 6361 * the command is pending now, don't do anything. We check for pending 6362 * connections after each CIS Established event. 6363 * 6364 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6365 * page 2566: 6366 * 6367 * If the Host issues this command before all the 6368 * HCI_LE_CIS_Established events from the previous use of the 6369 * command have been generated, the Controller shall return the 6370 * error code Command Disallowed (0x0C). 6371 * 6372 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6373 * page 2567: 6374 * 6375 * When the Controller receives the HCI_LE_Create_CIS command, the 6376 * Controller sends the HCI_Command_Status event to the Host. An 6377 * HCI_LE_CIS_Established event will be generated for each CIS when it 6378 * is established or if it is disconnected or considered lost before 6379 * being established; until all the events are generated, the command 6380 * remains pending. 6381 */ 6382 6383 memset(&cmd, 0, sizeof(cmd)); 6384 6385 hci_dev_lock(hdev); 6386 6387 rcu_read_lock(); 6388 6389 /* Wait until previous Create CIS has completed */ 6390 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6391 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6392 goto done; 6393 } 6394 6395 /* Find CIG with all CIS ready */ 6396 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6397 struct hci_conn *link; 6398 6399 if (hci_conn_check_create_cis(conn)) 6400 continue; 6401 6402 cig = conn->iso_qos.ucast.cig; 6403 6404 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6405 if (hci_conn_check_create_cis(link) > 0 && 6406 link->iso_qos.ucast.cig == cig && 6407 link->state != BT_CONNECTED) { 6408 cig = BT_ISO_QOS_CIG_UNSET; 6409 break; 6410 } 6411 } 6412 6413 if (cig != BT_ISO_QOS_CIG_UNSET) 6414 break; 6415 } 6416 6417 if (cig == BT_ISO_QOS_CIG_UNSET) 6418 goto done; 6419 6420 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6421 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6422 6423 if (hci_conn_check_create_cis(conn) || 6424 conn->iso_qos.ucast.cig != cig) 6425 continue; 6426 6427 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6428 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6429 cis->cis_handle = cpu_to_le16(conn->handle); 6430 cmd.cp.num_cis++; 6431 6432 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6433 break; 6434 } 6435 6436 done: 6437 rcu_read_unlock(); 6438 6439 hci_dev_unlock(hdev); 6440 6441 if (!cmd.cp.num_cis) 6442 return 0; 6443 6444 /* Wait for HCI_LE_CIS_Established */ 6445 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6446 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6447 cmd.cp.num_cis, &cmd, 6448 HCI_EVT_LE_CIS_ESTABLISHED, 6449 conn->conn_timeout, NULL); 6450 } 6451 6452 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6453 { 6454 struct hci_cp_le_remove_cig cp; 6455 6456 memset(&cp, 0, sizeof(cp)); 6457 cp.cig_id = handle; 6458 6459 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6460 &cp, HCI_CMD_TIMEOUT); 6461 } 6462 6463 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6464 { 6465 struct hci_cp_le_big_term_sync cp; 6466 6467 memset(&cp, 0, sizeof(cp)); 6468 cp.handle = handle; 6469 6470 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6471 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6472 } 6473 6474 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6475 { 6476 struct hci_cp_le_pa_term_sync cp; 6477 6478 memset(&cp, 0, sizeof(cp)); 6479 cp.handle = cpu_to_le16(handle); 6480 6481 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6482 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6483 } 6484 6485 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6486 bool use_rpa, struct adv_info *adv_instance, 6487 u8 *own_addr_type, bdaddr_t *rand_addr) 6488 { 6489 int err; 6490 6491 bacpy(rand_addr, BDADDR_ANY); 6492 6493 /* If privacy is enabled use a resolvable private address. If 6494 * current RPA has expired then generate a new one. 6495 */ 6496 if (use_rpa) { 6497 /* If Controller supports LL Privacy use own address type is 6498 * 0x03 6499 */ 6500 if (use_ll_privacy(hdev)) 6501 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6502 else 6503 *own_addr_type = ADDR_LE_DEV_RANDOM; 6504 6505 if (adv_instance) { 6506 if (adv_rpa_valid(adv_instance)) 6507 return 0; 6508 } else { 6509 if (rpa_valid(hdev)) 6510 return 0; 6511 } 6512 6513 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6514 if (err < 0) { 6515 bt_dev_err(hdev, "failed to generate new RPA"); 6516 return err; 6517 } 6518 6519 bacpy(rand_addr, &hdev->rpa); 6520 6521 return 0; 6522 } 6523 6524 /* In case of required privacy without resolvable private address, 6525 * use an non-resolvable private address. This is useful for 6526 * non-connectable advertising. 6527 */ 6528 if (require_privacy) { 6529 bdaddr_t nrpa; 6530 6531 while (true) { 6532 /* The non-resolvable private address is generated 6533 * from random six bytes with the two most significant 6534 * bits cleared. 6535 */ 6536 get_random_bytes(&nrpa, 6); 6537 nrpa.b[5] &= 0x3f; 6538 6539 /* The non-resolvable private address shall not be 6540 * equal to the public address. 6541 */ 6542 if (bacmp(&hdev->bdaddr, &nrpa)) 6543 break; 6544 } 6545 6546 *own_addr_type = ADDR_LE_DEV_RANDOM; 6547 bacpy(rand_addr, &nrpa); 6548 6549 return 0; 6550 } 6551 6552 /* No privacy so use a public address. */ 6553 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6554 6555 return 0; 6556 } 6557 6558 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6559 { 6560 u8 instance = PTR_UINT(data); 6561 6562 return hci_update_adv_data_sync(hdev, instance); 6563 } 6564 6565 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6566 { 6567 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6568 UINT_PTR(instance), NULL); 6569 } 6570