xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 997a5310)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  * Copyright 2023 NXP
7  */
8 
9 #include <linux/property.h>
10 
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14 
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23 
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 				  struct sk_buff *skb)
26 {
27 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
28 
29 	if (hdev->req_status != HCI_REQ_PEND)
30 		return;
31 
32 	hdev->req_result = result;
33 	hdev->req_status = HCI_REQ_DONE;
34 
35 	/* Free the request command so it is not used as response */
36 	kfree_skb(hdev->req_skb);
37 	hdev->req_skb = NULL;
38 
39 	if (skb) {
40 		struct sock *sk = hci_skb_sk(skb);
41 
42 		/* Drop sk reference if set */
43 		if (sk)
44 			sock_put(sk);
45 
46 		hdev->req_rsp = skb_get(skb);
47 	}
48 
49 	wake_up_interruptible(&hdev->req_wait_q);
50 }
51 
52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
53 					  u32 plen, const void *param,
54 					  struct sock *sk)
55 {
56 	int len = HCI_COMMAND_HDR_SIZE + plen;
57 	struct hci_command_hdr *hdr;
58 	struct sk_buff *skb;
59 
60 	skb = bt_skb_alloc(len, GFP_ATOMIC);
61 	if (!skb)
62 		return NULL;
63 
64 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
65 	hdr->opcode = cpu_to_le16(opcode);
66 	hdr->plen   = plen;
67 
68 	if (plen)
69 		skb_put_data(skb, param, plen);
70 
71 	bt_dev_dbg(hdev, "skb len %d", skb->len);
72 
73 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
74 	hci_skb_opcode(skb) = opcode;
75 
76 	/* Grab a reference if command needs to be associated with a sock (e.g.
77 	 * likely mgmt socket that initiated the command).
78 	 */
79 	if (sk) {
80 		hci_skb_sk(skb) = sk;
81 		sock_hold(sk);
82 	}
83 
84 	return skb;
85 }
86 
87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
88 			     const void *param, u8 event, struct sock *sk)
89 {
90 	struct hci_dev *hdev = req->hdev;
91 	struct sk_buff *skb;
92 
93 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
94 
95 	/* If an error occurred during request building, there is no point in
96 	 * queueing the HCI command. We can simply return.
97 	 */
98 	if (req->err)
99 		return;
100 
101 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
102 	if (!skb) {
103 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
104 			   opcode);
105 		req->err = -ENOMEM;
106 		return;
107 	}
108 
109 	if (skb_queue_empty(&req->cmd_q))
110 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
111 
112 	hci_skb_event(skb) = event;
113 
114 	skb_queue_tail(&req->cmd_q, skb);
115 }
116 
117 static int hci_cmd_sync_run(struct hci_request *req)
118 {
119 	struct hci_dev *hdev = req->hdev;
120 	struct sk_buff *skb;
121 	unsigned long flags;
122 
123 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
124 
125 	/* If an error occurred during request building, remove all HCI
126 	 * commands queued on the HCI request queue.
127 	 */
128 	if (req->err) {
129 		skb_queue_purge(&req->cmd_q);
130 		return req->err;
131 	}
132 
133 	/* Do not allow empty requests */
134 	if (skb_queue_empty(&req->cmd_q))
135 		return -ENODATA;
136 
137 	skb = skb_peek_tail(&req->cmd_q);
138 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
139 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
140 
141 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
142 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
143 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
144 
145 	queue_work(hdev->workqueue, &hdev->cmd_work);
146 
147 	return 0;
148 }
149 
150 /* This function requires the caller holds hdev->req_lock. */
151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
152 				  const void *param, u8 event, u32 timeout,
153 				  struct sock *sk)
154 {
155 	struct hci_request req;
156 	struct sk_buff *skb;
157 	int err = 0;
158 
159 	bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
160 
161 	hci_req_init(&req, hdev);
162 
163 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
164 
165 	hdev->req_status = HCI_REQ_PEND;
166 
167 	err = hci_cmd_sync_run(&req);
168 	if (err < 0)
169 		return ERR_PTR(err);
170 
171 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
172 					       hdev->req_status != HCI_REQ_PEND,
173 					       timeout);
174 
175 	if (err == -ERESTARTSYS)
176 		return ERR_PTR(-EINTR);
177 
178 	switch (hdev->req_status) {
179 	case HCI_REQ_DONE:
180 		err = -bt_to_errno(hdev->req_result);
181 		break;
182 
183 	case HCI_REQ_CANCELED:
184 		err = -hdev->req_result;
185 		break;
186 
187 	default:
188 		err = -ETIMEDOUT;
189 		break;
190 	}
191 
192 	hdev->req_status = 0;
193 	hdev->req_result = 0;
194 	skb = hdev->req_rsp;
195 	hdev->req_rsp = NULL;
196 
197 	bt_dev_dbg(hdev, "end: err %d", err);
198 
199 	if (err < 0) {
200 		kfree_skb(skb);
201 		return ERR_PTR(err);
202 	}
203 
204 	return skb;
205 }
206 EXPORT_SYMBOL(__hci_cmd_sync_sk);
207 
208 /* This function requires the caller holds hdev->req_lock. */
209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
210 			       const void *param, u32 timeout)
211 {
212 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
213 }
214 EXPORT_SYMBOL(__hci_cmd_sync);
215 
216 /* Send HCI command and wait for command complete event */
217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
218 			     const void *param, u32 timeout)
219 {
220 	struct sk_buff *skb;
221 
222 	if (!test_bit(HCI_UP, &hdev->flags))
223 		return ERR_PTR(-ENETDOWN);
224 
225 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
226 
227 	hci_req_sync_lock(hdev);
228 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
229 	hci_req_sync_unlock(hdev);
230 
231 	return skb;
232 }
233 EXPORT_SYMBOL(hci_cmd_sync);
234 
235 /* This function requires the caller holds hdev->req_lock. */
236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
237 				  const void *param, u8 event, u32 timeout)
238 {
239 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
240 				 NULL);
241 }
242 EXPORT_SYMBOL(__hci_cmd_sync_ev);
243 
244 /* This function requires the caller holds hdev->req_lock. */
245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
246 			     const void *param, u8 event, u32 timeout,
247 			     struct sock *sk)
248 {
249 	struct sk_buff *skb;
250 	u8 status;
251 
252 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
253 	if (IS_ERR(skb)) {
254 		if (!event)
255 			bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
256 				   PTR_ERR(skb));
257 		return PTR_ERR(skb);
258 	}
259 
260 	/* If command return a status event skb will be set to NULL as there are
261 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
262 	 * the actual error would be found with PTR_ERR(skb).
263 	 */
264 	if (!skb)
265 		return 0;
266 
267 	status = skb->data[0];
268 
269 	kfree_skb(skb);
270 
271 	return status;
272 }
273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
274 
275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
276 			  const void *param, u32 timeout)
277 {
278 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
279 					NULL);
280 }
281 EXPORT_SYMBOL(__hci_cmd_sync_status);
282 
283 static void hci_cmd_sync_work(struct work_struct *work)
284 {
285 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
286 
287 	bt_dev_dbg(hdev, "");
288 
289 	/* Dequeue all entries and run them */
290 	while (1) {
291 		struct hci_cmd_sync_work_entry *entry;
292 
293 		mutex_lock(&hdev->cmd_sync_work_lock);
294 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
295 						 struct hci_cmd_sync_work_entry,
296 						 list);
297 		if (entry)
298 			list_del(&entry->list);
299 		mutex_unlock(&hdev->cmd_sync_work_lock);
300 
301 		if (!entry)
302 			break;
303 
304 		bt_dev_dbg(hdev, "entry %p", entry);
305 
306 		if (entry->func) {
307 			int err;
308 
309 			hci_req_sync_lock(hdev);
310 			err = entry->func(hdev, entry->data);
311 			if (entry->destroy)
312 				entry->destroy(hdev, entry->data, err);
313 			hci_req_sync_unlock(hdev);
314 		}
315 
316 		kfree(entry);
317 	}
318 }
319 
320 static void hci_cmd_sync_cancel_work(struct work_struct *work)
321 {
322 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
323 
324 	cancel_delayed_work_sync(&hdev->cmd_timer);
325 	cancel_delayed_work_sync(&hdev->ncmd_timer);
326 	atomic_set(&hdev->cmd_cnt, 1);
327 
328 	wake_up_interruptible(&hdev->req_wait_q);
329 }
330 
331 static int hci_scan_disable_sync(struct hci_dev *hdev);
332 static int scan_disable_sync(struct hci_dev *hdev, void *data)
333 {
334 	return hci_scan_disable_sync(hdev);
335 }
336 
337 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
338 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
339 {
340 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
341 }
342 
343 static void le_scan_disable(struct work_struct *work)
344 {
345 	struct hci_dev *hdev = container_of(work, struct hci_dev,
346 					    le_scan_disable.work);
347 	int status;
348 
349 	bt_dev_dbg(hdev, "");
350 	hci_dev_lock(hdev);
351 
352 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
353 		goto _return;
354 
355 	cancel_delayed_work(&hdev->le_scan_restart);
356 
357 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
358 	if (status) {
359 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
360 		goto _return;
361 	}
362 
363 	hdev->discovery.scan_start = 0;
364 
365 	/* If we were running LE only scan, change discovery state. If
366 	 * we were running both LE and BR/EDR inquiry simultaneously,
367 	 * and BR/EDR inquiry is already finished, stop discovery,
368 	 * otherwise BR/EDR inquiry will stop discovery when finished.
369 	 * If we will resolve remote device name, do not change
370 	 * discovery state.
371 	 */
372 
373 	if (hdev->discovery.type == DISCOV_TYPE_LE)
374 		goto discov_stopped;
375 
376 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
377 		goto _return;
378 
379 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
380 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
381 		    hdev->discovery.state != DISCOVERY_RESOLVING)
382 			goto discov_stopped;
383 
384 		goto _return;
385 	}
386 
387 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
388 	if (status) {
389 		bt_dev_err(hdev, "inquiry failed: status %d", status);
390 		goto discov_stopped;
391 	}
392 
393 	goto _return;
394 
395 discov_stopped:
396 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
397 
398 _return:
399 	hci_dev_unlock(hdev);
400 }
401 
402 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
403 				       u8 filter_dup);
404 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
405 {
406 	/* If controller is not scanning we are done. */
407 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
408 		return 0;
409 
410 	if (hdev->scanning_paused) {
411 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
412 		return 0;
413 	}
414 
415 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
416 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
417 					   LE_SCAN_FILTER_DUP_ENABLE);
418 }
419 
420 static void le_scan_restart(struct work_struct *work)
421 {
422 	struct hci_dev *hdev = container_of(work, struct hci_dev,
423 					    le_scan_restart.work);
424 	unsigned long timeout, duration, scan_start, now;
425 	int status;
426 
427 	bt_dev_dbg(hdev, "");
428 
429 	status = hci_le_scan_restart_sync(hdev);
430 	if (status) {
431 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
432 			   status);
433 		return;
434 	}
435 
436 	hci_dev_lock(hdev);
437 
438 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
439 	    !hdev->discovery.scan_start)
440 		goto unlock;
441 
442 	/* When the scan was started, hdev->le_scan_disable has been queued
443 	 * after duration from scan_start. During scan restart this job
444 	 * has been canceled, and we need to queue it again after proper
445 	 * timeout, to make sure that scan does not run indefinitely.
446 	 */
447 	duration = hdev->discovery.scan_duration;
448 	scan_start = hdev->discovery.scan_start;
449 	now = jiffies;
450 	if (now - scan_start <= duration) {
451 		int elapsed;
452 
453 		if (now >= scan_start)
454 			elapsed = now - scan_start;
455 		else
456 			elapsed = ULONG_MAX - scan_start + now;
457 
458 		timeout = duration - elapsed;
459 	} else {
460 		timeout = 0;
461 	}
462 
463 	queue_delayed_work(hdev->req_workqueue,
464 			   &hdev->le_scan_disable, timeout);
465 
466 unlock:
467 	hci_dev_unlock(hdev);
468 }
469 
470 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
471 {
472 	bt_dev_dbg(hdev, "");
473 
474 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
475 	    list_empty(&hdev->adv_instances))
476 		return 0;
477 
478 	if (hdev->cur_adv_instance) {
479 		return hci_schedule_adv_instance_sync(hdev,
480 						      hdev->cur_adv_instance,
481 						      true);
482 	} else {
483 		if (ext_adv_capable(hdev)) {
484 			hci_start_ext_adv_sync(hdev, 0x00);
485 		} else {
486 			hci_update_adv_data_sync(hdev, 0x00);
487 			hci_update_scan_rsp_data_sync(hdev, 0x00);
488 			hci_enable_advertising_sync(hdev);
489 		}
490 	}
491 
492 	return 0;
493 }
494 
495 static void reenable_adv(struct work_struct *work)
496 {
497 	struct hci_dev *hdev = container_of(work, struct hci_dev,
498 					    reenable_adv_work);
499 	int status;
500 
501 	bt_dev_dbg(hdev, "");
502 
503 	hci_dev_lock(hdev);
504 
505 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
506 	if (status)
507 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
508 
509 	hci_dev_unlock(hdev);
510 }
511 
512 static void cancel_adv_timeout(struct hci_dev *hdev)
513 {
514 	if (hdev->adv_instance_timeout) {
515 		hdev->adv_instance_timeout = 0;
516 		cancel_delayed_work(&hdev->adv_instance_expire);
517 	}
518 }
519 
520 /* For a single instance:
521  * - force == true: The instance will be removed even when its remaining
522  *   lifetime is not zero.
523  * - force == false: the instance will be deactivated but kept stored unless
524  *   the remaining lifetime is zero.
525  *
526  * For instance == 0x00:
527  * - force == true: All instances will be removed regardless of their timeout
528  *   setting.
529  * - force == false: Only instances that have a timeout will be removed.
530  */
531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
532 				u8 instance, bool force)
533 {
534 	struct adv_info *adv_instance, *n, *next_instance = NULL;
535 	int err;
536 	u8 rem_inst;
537 
538 	/* Cancel any timeout concerning the removed instance(s). */
539 	if (!instance || hdev->cur_adv_instance == instance)
540 		cancel_adv_timeout(hdev);
541 
542 	/* Get the next instance to advertise BEFORE we remove
543 	 * the current one. This can be the same instance again
544 	 * if there is only one instance.
545 	 */
546 	if (instance && hdev->cur_adv_instance == instance)
547 		next_instance = hci_get_next_instance(hdev, instance);
548 
549 	if (instance == 0x00) {
550 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
551 					 list) {
552 			if (!(force || adv_instance->timeout))
553 				continue;
554 
555 			rem_inst = adv_instance->instance;
556 			err = hci_remove_adv_instance(hdev, rem_inst);
557 			if (!err)
558 				mgmt_advertising_removed(sk, hdev, rem_inst);
559 		}
560 	} else {
561 		adv_instance = hci_find_adv_instance(hdev, instance);
562 
563 		if (force || (adv_instance && adv_instance->timeout &&
564 			      !adv_instance->remaining_time)) {
565 			/* Don't advertise a removed instance. */
566 			if (next_instance &&
567 			    next_instance->instance == instance)
568 				next_instance = NULL;
569 
570 			err = hci_remove_adv_instance(hdev, instance);
571 			if (!err)
572 				mgmt_advertising_removed(sk, hdev, instance);
573 		}
574 	}
575 
576 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
577 		return 0;
578 
579 	if (next_instance && !ext_adv_capable(hdev))
580 		return hci_schedule_adv_instance_sync(hdev,
581 						      next_instance->instance,
582 						      false);
583 
584 	return 0;
585 }
586 
587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
588 {
589 	u8 instance = *(u8 *)data;
590 
591 	kfree(data);
592 
593 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
594 
595 	if (list_empty(&hdev->adv_instances))
596 		return hci_disable_advertising_sync(hdev);
597 
598 	return 0;
599 }
600 
601 static void adv_timeout_expire(struct work_struct *work)
602 {
603 	u8 *inst_ptr;
604 	struct hci_dev *hdev = container_of(work, struct hci_dev,
605 					    adv_instance_expire.work);
606 
607 	bt_dev_dbg(hdev, "");
608 
609 	hci_dev_lock(hdev);
610 
611 	hdev->adv_instance_timeout = 0;
612 
613 	if (hdev->cur_adv_instance == 0x00)
614 		goto unlock;
615 
616 	inst_ptr = kmalloc(1, GFP_KERNEL);
617 	if (!inst_ptr)
618 		goto unlock;
619 
620 	*inst_ptr = hdev->cur_adv_instance;
621 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
622 
623 unlock:
624 	hci_dev_unlock(hdev);
625 }
626 
627 void hci_cmd_sync_init(struct hci_dev *hdev)
628 {
629 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
630 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
631 	mutex_init(&hdev->cmd_sync_work_lock);
632 	mutex_init(&hdev->unregister_lock);
633 
634 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
635 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
636 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
637 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
638 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
639 }
640 
641 void hci_cmd_sync_clear(struct hci_dev *hdev)
642 {
643 	struct hci_cmd_sync_work_entry *entry, *tmp;
644 
645 	cancel_work_sync(&hdev->cmd_sync_work);
646 	cancel_work_sync(&hdev->reenable_adv_work);
647 
648 	mutex_lock(&hdev->cmd_sync_work_lock);
649 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
650 		if (entry->destroy)
651 			entry->destroy(hdev, entry->data, -ECANCELED);
652 
653 		list_del(&entry->list);
654 		kfree(entry);
655 	}
656 	mutex_unlock(&hdev->cmd_sync_work_lock);
657 }
658 
659 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
660 {
661 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
662 
663 	if (hdev->req_status == HCI_REQ_PEND) {
664 		hdev->req_result = err;
665 		hdev->req_status = HCI_REQ_CANCELED;
666 
667 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
668 	}
669 }
670 EXPORT_SYMBOL(hci_cmd_sync_cancel);
671 
672 /* Cancel ongoing command request synchronously:
673  *
674  * - Set result and mark status to HCI_REQ_CANCELED
675  * - Wakeup command sync thread
676  */
677 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
678 {
679 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
680 
681 	if (hdev->req_status == HCI_REQ_PEND) {
682 		/* req_result is __u32 so error must be positive to be properly
683 		 * propagated.
684 		 */
685 		hdev->req_result = err < 0 ? -err : err;
686 		hdev->req_status = HCI_REQ_CANCELED;
687 
688 		wake_up_interruptible(&hdev->req_wait_q);
689 	}
690 }
691 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
692 
693 /* Submit HCI command to be run in as cmd_sync_work:
694  *
695  * - hdev must _not_ be unregistered
696  */
697 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
698 			void *data, hci_cmd_sync_work_destroy_t destroy)
699 {
700 	struct hci_cmd_sync_work_entry *entry;
701 	int err = 0;
702 
703 	mutex_lock(&hdev->unregister_lock);
704 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
705 		err = -ENODEV;
706 		goto unlock;
707 	}
708 
709 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
710 	if (!entry) {
711 		err = -ENOMEM;
712 		goto unlock;
713 	}
714 	entry->func = func;
715 	entry->data = data;
716 	entry->destroy = destroy;
717 
718 	mutex_lock(&hdev->cmd_sync_work_lock);
719 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
720 	mutex_unlock(&hdev->cmd_sync_work_lock);
721 
722 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
723 
724 unlock:
725 	mutex_unlock(&hdev->unregister_lock);
726 	return err;
727 }
728 EXPORT_SYMBOL(hci_cmd_sync_submit);
729 
730 /* Queue HCI command:
731  *
732  * - hdev must be running
733  */
734 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
735 		       void *data, hci_cmd_sync_work_destroy_t destroy)
736 {
737 	/* Only queue command if hdev is running which means it had been opened
738 	 * and is either on init phase or is already up.
739 	 */
740 	if (!test_bit(HCI_RUNNING, &hdev->flags))
741 		return -ENETDOWN;
742 
743 	return hci_cmd_sync_submit(hdev, func, data, destroy);
744 }
745 EXPORT_SYMBOL(hci_cmd_sync_queue);
746 
747 int hci_update_eir_sync(struct hci_dev *hdev)
748 {
749 	struct hci_cp_write_eir cp;
750 
751 	bt_dev_dbg(hdev, "");
752 
753 	if (!hdev_is_powered(hdev))
754 		return 0;
755 
756 	if (!lmp_ext_inq_capable(hdev))
757 		return 0;
758 
759 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
760 		return 0;
761 
762 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
763 		return 0;
764 
765 	memset(&cp, 0, sizeof(cp));
766 
767 	eir_create(hdev, cp.data);
768 
769 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
770 		return 0;
771 
772 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
773 
774 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
775 				     HCI_CMD_TIMEOUT);
776 }
777 
778 static u8 get_service_classes(struct hci_dev *hdev)
779 {
780 	struct bt_uuid *uuid;
781 	u8 val = 0;
782 
783 	list_for_each_entry(uuid, &hdev->uuids, list)
784 		val |= uuid->svc_hint;
785 
786 	return val;
787 }
788 
789 int hci_update_class_sync(struct hci_dev *hdev)
790 {
791 	u8 cod[3];
792 
793 	bt_dev_dbg(hdev, "");
794 
795 	if (!hdev_is_powered(hdev))
796 		return 0;
797 
798 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
799 		return 0;
800 
801 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
802 		return 0;
803 
804 	cod[0] = hdev->minor_class;
805 	cod[1] = hdev->major_class;
806 	cod[2] = get_service_classes(hdev);
807 
808 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
809 		cod[1] |= 0x20;
810 
811 	if (memcmp(cod, hdev->dev_class, 3) == 0)
812 		return 0;
813 
814 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
815 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
816 }
817 
818 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
819 {
820 	/* If there is no connection we are OK to advertise. */
821 	if (hci_conn_num(hdev, LE_LINK) == 0)
822 		return true;
823 
824 	/* Check le_states if there is any connection in peripheral role. */
825 	if (hdev->conn_hash.le_num_peripheral > 0) {
826 		/* Peripheral connection state and non connectable mode
827 		 * bit 20.
828 		 */
829 		if (!connectable && !(hdev->le_states[2] & 0x10))
830 			return false;
831 
832 		/* Peripheral connection state and connectable mode bit 38
833 		 * and scannable bit 21.
834 		 */
835 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
836 				    !(hdev->le_states[2] & 0x20)))
837 			return false;
838 	}
839 
840 	/* Check le_states if there is any connection in central role. */
841 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
842 		/* Central connection state and non connectable mode bit 18. */
843 		if (!connectable && !(hdev->le_states[2] & 0x02))
844 			return false;
845 
846 		/* Central connection state and connectable mode bit 35 and
847 		 * scannable 19.
848 		 */
849 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
850 				    !(hdev->le_states[2] & 0x08)))
851 			return false;
852 	}
853 
854 	return true;
855 }
856 
857 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
858 {
859 	/* If privacy is not enabled don't use RPA */
860 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
861 		return false;
862 
863 	/* If basic privacy mode is enabled use RPA */
864 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
865 		return true;
866 
867 	/* If limited privacy mode is enabled don't use RPA if we're
868 	 * both discoverable and bondable.
869 	 */
870 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
871 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
872 		return false;
873 
874 	/* We're neither bondable nor discoverable in the limited
875 	 * privacy mode, therefore use RPA.
876 	 */
877 	return true;
878 }
879 
880 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
881 {
882 	/* If we're advertising or initiating an LE connection we can't
883 	 * go ahead and change the random address at this time. This is
884 	 * because the eventual initiator address used for the
885 	 * subsequently created connection will be undefined (some
886 	 * controllers use the new address and others the one we had
887 	 * when the operation started).
888 	 *
889 	 * In this kind of scenario skip the update and let the random
890 	 * address be updated at the next cycle.
891 	 */
892 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
893 	    hci_lookup_le_connect(hdev)) {
894 		bt_dev_dbg(hdev, "Deferring random address update");
895 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
896 		return 0;
897 	}
898 
899 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
900 				     6, rpa, HCI_CMD_TIMEOUT);
901 }
902 
903 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
904 				   bool rpa, u8 *own_addr_type)
905 {
906 	int err;
907 
908 	/* If privacy is enabled use a resolvable private address. If
909 	 * current RPA has expired or there is something else than
910 	 * the current RPA in use, then generate a new one.
911 	 */
912 	if (rpa) {
913 		/* If Controller supports LL Privacy use own address type is
914 		 * 0x03
915 		 */
916 		if (use_ll_privacy(hdev))
917 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
918 		else
919 			*own_addr_type = ADDR_LE_DEV_RANDOM;
920 
921 		/* Check if RPA is valid */
922 		if (rpa_valid(hdev))
923 			return 0;
924 
925 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
926 		if (err < 0) {
927 			bt_dev_err(hdev, "failed to generate new RPA");
928 			return err;
929 		}
930 
931 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
932 		if (err)
933 			return err;
934 
935 		return 0;
936 	}
937 
938 	/* In case of required privacy without resolvable private address,
939 	 * use an non-resolvable private address. This is useful for active
940 	 * scanning and non-connectable advertising.
941 	 */
942 	if (require_privacy) {
943 		bdaddr_t nrpa;
944 
945 		while (true) {
946 			/* The non-resolvable private address is generated
947 			 * from random six bytes with the two most significant
948 			 * bits cleared.
949 			 */
950 			get_random_bytes(&nrpa, 6);
951 			nrpa.b[5] &= 0x3f;
952 
953 			/* The non-resolvable private address shall not be
954 			 * equal to the public address.
955 			 */
956 			if (bacmp(&hdev->bdaddr, &nrpa))
957 				break;
958 		}
959 
960 		*own_addr_type = ADDR_LE_DEV_RANDOM;
961 
962 		return hci_set_random_addr_sync(hdev, &nrpa);
963 	}
964 
965 	/* If forcing static address is in use or there is no public
966 	 * address use the static address as random address (but skip
967 	 * the HCI command if the current random address is already the
968 	 * static one.
969 	 *
970 	 * In case BR/EDR has been disabled on a dual-mode controller
971 	 * and a static address has been configured, then use that
972 	 * address instead of the public BR/EDR address.
973 	 */
974 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
975 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
976 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
977 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
978 		*own_addr_type = ADDR_LE_DEV_RANDOM;
979 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
980 			return hci_set_random_addr_sync(hdev,
981 							&hdev->static_addr);
982 		return 0;
983 	}
984 
985 	/* Neither privacy nor static address is being used so use a
986 	 * public address.
987 	 */
988 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
989 
990 	return 0;
991 }
992 
993 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
994 {
995 	struct hci_cp_le_set_ext_adv_enable *cp;
996 	struct hci_cp_ext_adv_set *set;
997 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
998 	u8 size;
999 
1000 	/* If request specifies an instance that doesn't exist, fail */
1001 	if (instance > 0) {
1002 		struct adv_info *adv;
1003 
1004 		adv = hci_find_adv_instance(hdev, instance);
1005 		if (!adv)
1006 			return -EINVAL;
1007 
1008 		/* If not enabled there is nothing to do */
1009 		if (!adv->enabled)
1010 			return 0;
1011 	}
1012 
1013 	memset(data, 0, sizeof(data));
1014 
1015 	cp = (void *)data;
1016 	set = (void *)cp->data;
1017 
1018 	/* Instance 0x00 indicates all advertising instances will be disabled */
1019 	cp->num_of_sets = !!instance;
1020 	cp->enable = 0x00;
1021 
1022 	set->handle = instance;
1023 
1024 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1025 
1026 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1027 				     size, data, HCI_CMD_TIMEOUT);
1028 }
1029 
1030 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1031 					    bdaddr_t *random_addr)
1032 {
1033 	struct hci_cp_le_set_adv_set_rand_addr cp;
1034 	int err;
1035 
1036 	if (!instance) {
1037 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1038 		 * hdev->random_addr to track its address so whenever it needs
1039 		 * to be updated this also set the random address since
1040 		 * hdev->random_addr is shared with scan state machine.
1041 		 */
1042 		err = hci_set_random_addr_sync(hdev, random_addr);
1043 		if (err)
1044 			return err;
1045 	}
1046 
1047 	memset(&cp, 0, sizeof(cp));
1048 
1049 	cp.handle = instance;
1050 	bacpy(&cp.bdaddr, random_addr);
1051 
1052 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1053 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1054 }
1055 
1056 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1057 {
1058 	struct hci_cp_le_set_ext_adv_params cp;
1059 	bool connectable;
1060 	u32 flags;
1061 	bdaddr_t random_addr;
1062 	u8 own_addr_type;
1063 	int err;
1064 	struct adv_info *adv;
1065 	bool secondary_adv;
1066 
1067 	if (instance > 0) {
1068 		adv = hci_find_adv_instance(hdev, instance);
1069 		if (!adv)
1070 			return -EINVAL;
1071 	} else {
1072 		adv = NULL;
1073 	}
1074 
1075 	/* Updating parameters of an active instance will return a
1076 	 * Command Disallowed error, so we must first disable the
1077 	 * instance if it is active.
1078 	 */
1079 	if (adv && !adv->pending) {
1080 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1081 		if (err)
1082 			return err;
1083 	}
1084 
1085 	flags = hci_adv_instance_flags(hdev, instance);
1086 
1087 	/* If the "connectable" instance flag was not set, then choose between
1088 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1089 	 */
1090 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1091 		      mgmt_get_connectable(hdev);
1092 
1093 	if (!is_advertising_allowed(hdev, connectable))
1094 		return -EPERM;
1095 
1096 	/* Set require_privacy to true only when non-connectable
1097 	 * advertising is used. In that case it is fine to use a
1098 	 * non-resolvable private address.
1099 	 */
1100 	err = hci_get_random_address(hdev, !connectable,
1101 				     adv_use_rpa(hdev, flags), adv,
1102 				     &own_addr_type, &random_addr);
1103 	if (err < 0)
1104 		return err;
1105 
1106 	memset(&cp, 0, sizeof(cp));
1107 
1108 	if (adv) {
1109 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1110 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1111 		cp.tx_power = adv->tx_power;
1112 	} else {
1113 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1114 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1115 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1116 	}
1117 
1118 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1119 
1120 	if (connectable) {
1121 		if (secondary_adv)
1122 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1123 		else
1124 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1125 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1126 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1127 		if (secondary_adv)
1128 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1129 		else
1130 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1131 	} else {
1132 		if (secondary_adv)
1133 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1134 		else
1135 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1136 	}
1137 
1138 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1139 	 * contains the peer’s Identity Address and the Peer_Address_Type
1140 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1141 	 * These parameters are used to locate the corresponding local IRK in
1142 	 * the resolving list; this IRK is used to generate their own address
1143 	 * used in the advertisement.
1144 	 */
1145 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1146 		hci_copy_identity_address(hdev, &cp.peer_addr,
1147 					  &cp.peer_addr_type);
1148 
1149 	cp.own_addr_type = own_addr_type;
1150 	cp.channel_map = hdev->le_adv_channel_map;
1151 	cp.handle = instance;
1152 
1153 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1154 		cp.primary_phy = HCI_ADV_PHY_1M;
1155 		cp.secondary_phy = HCI_ADV_PHY_2M;
1156 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1157 		cp.primary_phy = HCI_ADV_PHY_CODED;
1158 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1159 	} else {
1160 		/* In all other cases use 1M */
1161 		cp.primary_phy = HCI_ADV_PHY_1M;
1162 		cp.secondary_phy = HCI_ADV_PHY_1M;
1163 	}
1164 
1165 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1166 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1167 	if (err)
1168 		return err;
1169 
1170 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1171 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1172 	    bacmp(&random_addr, BDADDR_ANY)) {
1173 		/* Check if random address need to be updated */
1174 		if (adv) {
1175 			if (!bacmp(&random_addr, &adv->random_addr))
1176 				return 0;
1177 		} else {
1178 			if (!bacmp(&random_addr, &hdev->random_addr))
1179 				return 0;
1180 		}
1181 
1182 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1183 							&random_addr);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1190 {
1191 	struct {
1192 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1193 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1194 	} pdu;
1195 	u8 len;
1196 	struct adv_info *adv = NULL;
1197 	int err;
1198 
1199 	memset(&pdu, 0, sizeof(pdu));
1200 
1201 	if (instance) {
1202 		adv = hci_find_adv_instance(hdev, instance);
1203 		if (!adv || !adv->scan_rsp_changed)
1204 			return 0;
1205 	}
1206 
1207 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1208 
1209 	pdu.cp.handle = instance;
1210 	pdu.cp.length = len;
1211 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1212 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1213 
1214 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1215 				    sizeof(pdu.cp) + len, &pdu.cp,
1216 				    HCI_CMD_TIMEOUT);
1217 	if (err)
1218 		return err;
1219 
1220 	if (adv) {
1221 		adv->scan_rsp_changed = false;
1222 	} else {
1223 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1224 		hdev->scan_rsp_data_len = len;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1231 {
1232 	struct hci_cp_le_set_scan_rsp_data cp;
1233 	u8 len;
1234 
1235 	memset(&cp, 0, sizeof(cp));
1236 
1237 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1238 
1239 	if (hdev->scan_rsp_data_len == len &&
1240 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1241 		return 0;
1242 
1243 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1244 	hdev->scan_rsp_data_len = len;
1245 
1246 	cp.length = len;
1247 
1248 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1249 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1250 }
1251 
1252 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1253 {
1254 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1255 		return 0;
1256 
1257 	if (ext_adv_capable(hdev))
1258 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1259 
1260 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1261 }
1262 
1263 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1264 {
1265 	struct hci_cp_le_set_ext_adv_enable *cp;
1266 	struct hci_cp_ext_adv_set *set;
1267 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1268 	struct adv_info *adv;
1269 
1270 	if (instance > 0) {
1271 		adv = hci_find_adv_instance(hdev, instance);
1272 		if (!adv)
1273 			return -EINVAL;
1274 		/* If already enabled there is nothing to do */
1275 		if (adv->enabled)
1276 			return 0;
1277 	} else {
1278 		adv = NULL;
1279 	}
1280 
1281 	cp = (void *)data;
1282 	set = (void *)cp->data;
1283 
1284 	memset(cp, 0, sizeof(*cp));
1285 
1286 	cp->enable = 0x01;
1287 	cp->num_of_sets = 0x01;
1288 
1289 	memset(set, 0, sizeof(*set));
1290 
1291 	set->handle = instance;
1292 
1293 	/* Set duration per instance since controller is responsible for
1294 	 * scheduling it.
1295 	 */
1296 	if (adv && adv->timeout) {
1297 		u16 duration = adv->timeout * MSEC_PER_SEC;
1298 
1299 		/* Time = N * 10 ms */
1300 		set->duration = cpu_to_le16(duration / 10);
1301 	}
1302 
1303 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1304 				     sizeof(*cp) +
1305 				     sizeof(*set) * cp->num_of_sets,
1306 				     data, HCI_CMD_TIMEOUT);
1307 }
1308 
1309 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1310 {
1311 	int err;
1312 
1313 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1314 	if (err)
1315 		return err;
1316 
1317 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1318 	if (err)
1319 		return err;
1320 
1321 	return hci_enable_ext_advertising_sync(hdev, instance);
1322 }
1323 
1324 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1325 {
1326 	struct hci_cp_le_set_per_adv_enable cp;
1327 	struct adv_info *adv = NULL;
1328 
1329 	/* If periodic advertising already disabled there is nothing to do. */
1330 	adv = hci_find_adv_instance(hdev, instance);
1331 	if (!adv || !adv->periodic || !adv->enabled)
1332 		return 0;
1333 
1334 	memset(&cp, 0, sizeof(cp));
1335 
1336 	cp.enable = 0x00;
1337 	cp.handle = instance;
1338 
1339 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1340 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1341 }
1342 
1343 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1344 				       u16 min_interval, u16 max_interval)
1345 {
1346 	struct hci_cp_le_set_per_adv_params cp;
1347 
1348 	memset(&cp, 0, sizeof(cp));
1349 
1350 	if (!min_interval)
1351 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1352 
1353 	if (!max_interval)
1354 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1355 
1356 	cp.handle = instance;
1357 	cp.min_interval = cpu_to_le16(min_interval);
1358 	cp.max_interval = cpu_to_le16(max_interval);
1359 	cp.periodic_properties = 0x0000;
1360 
1361 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1362 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1363 }
1364 
1365 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1366 {
1367 	struct {
1368 		struct hci_cp_le_set_per_adv_data cp;
1369 		u8 data[HCI_MAX_PER_AD_LENGTH];
1370 	} pdu;
1371 	u8 len;
1372 
1373 	memset(&pdu, 0, sizeof(pdu));
1374 
1375 	if (instance) {
1376 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1377 
1378 		if (!adv || !adv->periodic)
1379 			return 0;
1380 	}
1381 
1382 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1383 
1384 	pdu.cp.length = len;
1385 	pdu.cp.handle = instance;
1386 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1387 
1388 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1389 				     sizeof(pdu.cp) + len, &pdu,
1390 				     HCI_CMD_TIMEOUT);
1391 }
1392 
1393 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1394 {
1395 	struct hci_cp_le_set_per_adv_enable cp;
1396 	struct adv_info *adv = NULL;
1397 
1398 	/* If periodic advertising already enabled there is nothing to do. */
1399 	adv = hci_find_adv_instance(hdev, instance);
1400 	if (adv && adv->periodic && adv->enabled)
1401 		return 0;
1402 
1403 	memset(&cp, 0, sizeof(cp));
1404 
1405 	cp.enable = 0x01;
1406 	cp.handle = instance;
1407 
1408 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1409 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1410 }
1411 
1412 /* Checks if periodic advertising data contains a Basic Announcement and if it
1413  * does generates a Broadcast ID and add Broadcast Announcement.
1414  */
1415 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1416 {
1417 	u8 bid[3];
1418 	u8 ad[4 + 3];
1419 
1420 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1421 	 * advertising so it cannot used for the likes of Broadcast Announcement
1422 	 * as it can be overwritten at any point.
1423 	 */
1424 	if (!adv)
1425 		return 0;
1426 
1427 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1428 	 * there is nothing to do.
1429 	 */
1430 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1431 				  0x1851, NULL))
1432 		return 0;
1433 
1434 	/* Check if advertising data already has a Broadcast Announcement since
1435 	 * the process may want to control the Broadcast ID directly and in that
1436 	 * case the kernel shall no interfere.
1437 	 */
1438 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1439 				 NULL))
1440 		return 0;
1441 
1442 	/* Generate Broadcast ID */
1443 	get_random_bytes(bid, sizeof(bid));
1444 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1445 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1446 
1447 	return hci_update_adv_data_sync(hdev, adv->instance);
1448 }
1449 
1450 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1451 			   u8 *data, u32 flags, u16 min_interval,
1452 			   u16 max_interval, u16 sync_interval)
1453 {
1454 	struct adv_info *adv = NULL;
1455 	int err;
1456 	bool added = false;
1457 
1458 	hci_disable_per_advertising_sync(hdev, instance);
1459 
1460 	if (instance) {
1461 		adv = hci_find_adv_instance(hdev, instance);
1462 		/* Create an instance if that could not be found */
1463 		if (!adv) {
1464 			adv = hci_add_per_instance(hdev, instance, flags,
1465 						   data_len, data,
1466 						   sync_interval,
1467 						   sync_interval);
1468 			if (IS_ERR(adv))
1469 				return PTR_ERR(adv);
1470 			adv->pending = false;
1471 			added = true;
1472 		}
1473 	}
1474 
1475 	/* Start advertising */
1476 	err = hci_start_ext_adv_sync(hdev, instance);
1477 	if (err < 0)
1478 		goto fail;
1479 
1480 	err = hci_adv_bcast_annoucement(hdev, adv);
1481 	if (err < 0)
1482 		goto fail;
1483 
1484 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1485 					  max_interval);
1486 	if (err < 0)
1487 		goto fail;
1488 
1489 	err = hci_set_per_adv_data_sync(hdev, instance);
1490 	if (err < 0)
1491 		goto fail;
1492 
1493 	err = hci_enable_per_advertising_sync(hdev, instance);
1494 	if (err < 0)
1495 		goto fail;
1496 
1497 	return 0;
1498 
1499 fail:
1500 	if (added)
1501 		hci_remove_adv_instance(hdev, instance);
1502 
1503 	return err;
1504 }
1505 
1506 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1507 {
1508 	int err;
1509 
1510 	if (ext_adv_capable(hdev))
1511 		return hci_start_ext_adv_sync(hdev, instance);
1512 
1513 	err = hci_update_adv_data_sync(hdev, instance);
1514 	if (err)
1515 		return err;
1516 
1517 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1518 	if (err)
1519 		return err;
1520 
1521 	return hci_enable_advertising_sync(hdev);
1522 }
1523 
1524 int hci_enable_advertising_sync(struct hci_dev *hdev)
1525 {
1526 	struct adv_info *adv_instance;
1527 	struct hci_cp_le_set_adv_param cp;
1528 	u8 own_addr_type, enable = 0x01;
1529 	bool connectable;
1530 	u16 adv_min_interval, adv_max_interval;
1531 	u32 flags;
1532 	u8 status;
1533 
1534 	if (ext_adv_capable(hdev))
1535 		return hci_enable_ext_advertising_sync(hdev,
1536 						       hdev->cur_adv_instance);
1537 
1538 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1539 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1540 
1541 	/* If the "connectable" instance flag was not set, then choose between
1542 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1543 	 */
1544 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1545 		      mgmt_get_connectable(hdev);
1546 
1547 	if (!is_advertising_allowed(hdev, connectable))
1548 		return -EINVAL;
1549 
1550 	status = hci_disable_advertising_sync(hdev);
1551 	if (status)
1552 		return status;
1553 
1554 	/* Clear the HCI_LE_ADV bit temporarily so that the
1555 	 * hci_update_random_address knows that it's safe to go ahead
1556 	 * and write a new random address. The flag will be set back on
1557 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1558 	 */
1559 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1560 
1561 	/* Set require_privacy to true only when non-connectable
1562 	 * advertising is used. In that case it is fine to use a
1563 	 * non-resolvable private address.
1564 	 */
1565 	status = hci_update_random_address_sync(hdev, !connectable,
1566 						adv_use_rpa(hdev, flags),
1567 						&own_addr_type);
1568 	if (status)
1569 		return status;
1570 
1571 	memset(&cp, 0, sizeof(cp));
1572 
1573 	if (adv_instance) {
1574 		adv_min_interval = adv_instance->min_interval;
1575 		adv_max_interval = adv_instance->max_interval;
1576 	} else {
1577 		adv_min_interval = hdev->le_adv_min_interval;
1578 		adv_max_interval = hdev->le_adv_max_interval;
1579 	}
1580 
1581 	if (connectable) {
1582 		cp.type = LE_ADV_IND;
1583 	} else {
1584 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1585 			cp.type = LE_ADV_SCAN_IND;
1586 		else
1587 			cp.type = LE_ADV_NONCONN_IND;
1588 
1589 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1590 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1591 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1592 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1593 		}
1594 	}
1595 
1596 	cp.min_interval = cpu_to_le16(adv_min_interval);
1597 	cp.max_interval = cpu_to_le16(adv_max_interval);
1598 	cp.own_address_type = own_addr_type;
1599 	cp.channel_map = hdev->le_adv_channel_map;
1600 
1601 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1602 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1603 	if (status)
1604 		return status;
1605 
1606 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1607 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1608 }
1609 
1610 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1611 {
1612 	return hci_enable_advertising_sync(hdev);
1613 }
1614 
1615 int hci_enable_advertising(struct hci_dev *hdev)
1616 {
1617 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1618 	    list_empty(&hdev->adv_instances))
1619 		return 0;
1620 
1621 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1622 }
1623 
1624 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1625 				     struct sock *sk)
1626 {
1627 	int err;
1628 
1629 	if (!ext_adv_capable(hdev))
1630 		return 0;
1631 
1632 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1633 	if (err)
1634 		return err;
1635 
1636 	/* If request specifies an instance that doesn't exist, fail */
1637 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1638 		return -EINVAL;
1639 
1640 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1641 					sizeof(instance), &instance, 0,
1642 					HCI_CMD_TIMEOUT, sk);
1643 }
1644 
1645 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1646 {
1647 	struct adv_info *adv = data;
1648 	u8 instance = 0;
1649 
1650 	if (adv)
1651 		instance = adv->instance;
1652 
1653 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1654 }
1655 
1656 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1657 {
1658 	struct adv_info *adv = NULL;
1659 
1660 	if (instance) {
1661 		adv = hci_find_adv_instance(hdev, instance);
1662 		if (!adv)
1663 			return -EINVAL;
1664 	}
1665 
1666 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1667 }
1668 
1669 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1670 {
1671 	struct hci_cp_le_term_big cp;
1672 
1673 	memset(&cp, 0, sizeof(cp));
1674 	cp.handle = handle;
1675 	cp.reason = reason;
1676 
1677 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1678 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1679 }
1680 
1681 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1682 {
1683 	struct {
1684 		struct hci_cp_le_set_ext_adv_data cp;
1685 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1686 	} pdu;
1687 	u8 len;
1688 	struct adv_info *adv = NULL;
1689 	int err;
1690 
1691 	memset(&pdu, 0, sizeof(pdu));
1692 
1693 	if (instance) {
1694 		adv = hci_find_adv_instance(hdev, instance);
1695 		if (!adv || !adv->adv_data_changed)
1696 			return 0;
1697 	}
1698 
1699 	len = eir_create_adv_data(hdev, instance, pdu.data);
1700 
1701 	pdu.cp.length = len;
1702 	pdu.cp.handle = instance;
1703 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1704 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1705 
1706 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1707 				    sizeof(pdu.cp) + len, &pdu.cp,
1708 				    HCI_CMD_TIMEOUT);
1709 	if (err)
1710 		return err;
1711 
1712 	/* Update data if the command succeed */
1713 	if (adv) {
1714 		adv->adv_data_changed = false;
1715 	} else {
1716 		memcpy(hdev->adv_data, pdu.data, len);
1717 		hdev->adv_data_len = len;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1724 {
1725 	struct hci_cp_le_set_adv_data cp;
1726 	u8 len;
1727 
1728 	memset(&cp, 0, sizeof(cp));
1729 
1730 	len = eir_create_adv_data(hdev, instance, cp.data);
1731 
1732 	/* There's nothing to do if the data hasn't changed */
1733 	if (hdev->adv_data_len == len &&
1734 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1735 		return 0;
1736 
1737 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1738 	hdev->adv_data_len = len;
1739 
1740 	cp.length = len;
1741 
1742 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1743 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1744 }
1745 
1746 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1747 {
1748 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1749 		return 0;
1750 
1751 	if (ext_adv_capable(hdev))
1752 		return hci_set_ext_adv_data_sync(hdev, instance);
1753 
1754 	return hci_set_adv_data_sync(hdev, instance);
1755 }
1756 
1757 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1758 				   bool force)
1759 {
1760 	struct adv_info *adv = NULL;
1761 	u16 timeout;
1762 
1763 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1764 		return -EPERM;
1765 
1766 	if (hdev->adv_instance_timeout)
1767 		return -EBUSY;
1768 
1769 	adv = hci_find_adv_instance(hdev, instance);
1770 	if (!adv)
1771 		return -ENOENT;
1772 
1773 	/* A zero timeout means unlimited advertising. As long as there is
1774 	 * only one instance, duration should be ignored. We still set a timeout
1775 	 * in case further instances are being added later on.
1776 	 *
1777 	 * If the remaining lifetime of the instance is more than the duration
1778 	 * then the timeout corresponds to the duration, otherwise it will be
1779 	 * reduced to the remaining instance lifetime.
1780 	 */
1781 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1782 		timeout = adv->duration;
1783 	else
1784 		timeout = adv->remaining_time;
1785 
1786 	/* The remaining time is being reduced unless the instance is being
1787 	 * advertised without time limit.
1788 	 */
1789 	if (adv->timeout)
1790 		adv->remaining_time = adv->remaining_time - timeout;
1791 
1792 	/* Only use work for scheduling instances with legacy advertising */
1793 	if (!ext_adv_capable(hdev)) {
1794 		hdev->adv_instance_timeout = timeout;
1795 		queue_delayed_work(hdev->req_workqueue,
1796 				   &hdev->adv_instance_expire,
1797 				   msecs_to_jiffies(timeout * 1000));
1798 	}
1799 
1800 	/* If we're just re-scheduling the same instance again then do not
1801 	 * execute any HCI commands. This happens when a single instance is
1802 	 * being advertised.
1803 	 */
1804 	if (!force && hdev->cur_adv_instance == instance &&
1805 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1806 		return 0;
1807 
1808 	hdev->cur_adv_instance = instance;
1809 
1810 	return hci_start_adv_sync(hdev, instance);
1811 }
1812 
1813 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1814 {
1815 	int err;
1816 
1817 	if (!ext_adv_capable(hdev))
1818 		return 0;
1819 
1820 	/* Disable instance 0x00 to disable all instances */
1821 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1822 	if (err)
1823 		return err;
1824 
1825 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1826 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1827 }
1828 
1829 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1830 {
1831 	struct adv_info *adv, *n;
1832 	int err = 0;
1833 
1834 	if (ext_adv_capable(hdev))
1835 		/* Remove all existing sets */
1836 		err = hci_clear_adv_sets_sync(hdev, sk);
1837 	if (ext_adv_capable(hdev))
1838 		return err;
1839 
1840 	/* This is safe as long as there is no command send while the lock is
1841 	 * held.
1842 	 */
1843 	hci_dev_lock(hdev);
1844 
1845 	/* Cleanup non-ext instances */
1846 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1847 		u8 instance = adv->instance;
1848 		int err;
1849 
1850 		if (!(force || adv->timeout))
1851 			continue;
1852 
1853 		err = hci_remove_adv_instance(hdev, instance);
1854 		if (!err)
1855 			mgmt_advertising_removed(sk, hdev, instance);
1856 	}
1857 
1858 	hci_dev_unlock(hdev);
1859 
1860 	return 0;
1861 }
1862 
1863 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1864 			       struct sock *sk)
1865 {
1866 	int err = 0;
1867 
1868 	/* If we use extended advertising, instance has to be removed first. */
1869 	if (ext_adv_capable(hdev))
1870 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1871 	if (ext_adv_capable(hdev))
1872 		return err;
1873 
1874 	/* This is safe as long as there is no command send while the lock is
1875 	 * held.
1876 	 */
1877 	hci_dev_lock(hdev);
1878 
1879 	err = hci_remove_adv_instance(hdev, instance);
1880 	if (!err)
1881 		mgmt_advertising_removed(sk, hdev, instance);
1882 
1883 	hci_dev_unlock(hdev);
1884 
1885 	return err;
1886 }
1887 
1888 /* For a single instance:
1889  * - force == true: The instance will be removed even when its remaining
1890  *   lifetime is not zero.
1891  * - force == false: the instance will be deactivated but kept stored unless
1892  *   the remaining lifetime is zero.
1893  *
1894  * For instance == 0x00:
1895  * - force == true: All instances will be removed regardless of their timeout
1896  *   setting.
1897  * - force == false: Only instances that have a timeout will be removed.
1898  */
1899 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1900 				u8 instance, bool force)
1901 {
1902 	struct adv_info *next = NULL;
1903 	int err;
1904 
1905 	/* Cancel any timeout concerning the removed instance(s). */
1906 	if (!instance || hdev->cur_adv_instance == instance)
1907 		cancel_adv_timeout(hdev);
1908 
1909 	/* Get the next instance to advertise BEFORE we remove
1910 	 * the current one. This can be the same instance again
1911 	 * if there is only one instance.
1912 	 */
1913 	if (hdev->cur_adv_instance == instance)
1914 		next = hci_get_next_instance(hdev, instance);
1915 
1916 	if (!instance) {
1917 		err = hci_clear_adv_sync(hdev, sk, force);
1918 		if (err)
1919 			return err;
1920 	} else {
1921 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1922 
1923 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1924 			/* Don't advertise a removed instance. */
1925 			if (next && next->instance == instance)
1926 				next = NULL;
1927 
1928 			err = hci_remove_adv_sync(hdev, instance, sk);
1929 			if (err)
1930 				return err;
1931 		}
1932 	}
1933 
1934 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1935 		return 0;
1936 
1937 	if (next && !ext_adv_capable(hdev))
1938 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1939 
1940 	return 0;
1941 }
1942 
1943 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1944 {
1945 	struct hci_cp_read_rssi cp;
1946 
1947 	cp.handle = handle;
1948 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1949 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1950 }
1951 
1952 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1953 {
1954 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1955 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1956 }
1957 
1958 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1959 {
1960 	struct hci_cp_read_tx_power cp;
1961 
1962 	cp.handle = handle;
1963 	cp.type = type;
1964 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1965 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1966 }
1967 
1968 int hci_disable_advertising_sync(struct hci_dev *hdev)
1969 {
1970 	u8 enable = 0x00;
1971 	int err = 0;
1972 
1973 	/* If controller is not advertising we are done. */
1974 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1975 		return 0;
1976 
1977 	if (ext_adv_capable(hdev))
1978 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1979 	if (ext_adv_capable(hdev))
1980 		return err;
1981 
1982 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1983 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1984 }
1985 
1986 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1987 					   u8 filter_dup)
1988 {
1989 	struct hci_cp_le_set_ext_scan_enable cp;
1990 
1991 	memset(&cp, 0, sizeof(cp));
1992 	cp.enable = val;
1993 
1994 	if (hci_dev_test_flag(hdev, HCI_MESH))
1995 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1996 	else
1997 		cp.filter_dup = filter_dup;
1998 
1999 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2000 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2001 }
2002 
2003 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2004 				       u8 filter_dup)
2005 {
2006 	struct hci_cp_le_set_scan_enable cp;
2007 
2008 	if (use_ext_scan(hdev))
2009 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2010 
2011 	memset(&cp, 0, sizeof(cp));
2012 	cp.enable = val;
2013 
2014 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2015 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2016 	else
2017 		cp.filter_dup = filter_dup;
2018 
2019 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2020 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2021 }
2022 
2023 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2024 {
2025 	if (!use_ll_privacy(hdev))
2026 		return 0;
2027 
2028 	/* If controller is not/already resolving we are done. */
2029 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2030 		return 0;
2031 
2032 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2033 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2034 }
2035 
2036 static int hci_scan_disable_sync(struct hci_dev *hdev)
2037 {
2038 	int err;
2039 
2040 	/* If controller is not scanning we are done. */
2041 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2042 		return 0;
2043 
2044 	if (hdev->scanning_paused) {
2045 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2046 		return 0;
2047 	}
2048 
2049 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2050 	if (err) {
2051 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2052 		return err;
2053 	}
2054 
2055 	return err;
2056 }
2057 
2058 static bool scan_use_rpa(struct hci_dev *hdev)
2059 {
2060 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2061 }
2062 
2063 static void hci_start_interleave_scan(struct hci_dev *hdev)
2064 {
2065 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2066 	queue_delayed_work(hdev->req_workqueue,
2067 			   &hdev->interleave_scan, 0);
2068 }
2069 
2070 static bool is_interleave_scanning(struct hci_dev *hdev)
2071 {
2072 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2073 }
2074 
2075 static void cancel_interleave_scan(struct hci_dev *hdev)
2076 {
2077 	bt_dev_dbg(hdev, "cancelling interleave scan");
2078 
2079 	cancel_delayed_work_sync(&hdev->interleave_scan);
2080 
2081 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2082 }
2083 
2084 /* Return true if interleave_scan wasn't started until exiting this function,
2085  * otherwise, return false
2086  */
2087 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2088 {
2089 	/* Do interleaved scan only if all of the following are true:
2090 	 * - There is at least one ADV monitor
2091 	 * - At least one pending LE connection or one device to be scanned for
2092 	 * - Monitor offloading is not supported
2093 	 * If so, we should alternate between allowlist scan and one without
2094 	 * any filters to save power.
2095 	 */
2096 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2097 				!(list_empty(&hdev->pend_le_conns) &&
2098 				  list_empty(&hdev->pend_le_reports)) &&
2099 				hci_get_adv_monitor_offload_ext(hdev) ==
2100 				    HCI_ADV_MONITOR_EXT_NONE;
2101 	bool is_interleaving = is_interleave_scanning(hdev);
2102 
2103 	if (use_interleaving && !is_interleaving) {
2104 		hci_start_interleave_scan(hdev);
2105 		bt_dev_dbg(hdev, "starting interleave scan");
2106 		return true;
2107 	}
2108 
2109 	if (!use_interleaving && is_interleaving)
2110 		cancel_interleave_scan(hdev);
2111 
2112 	return false;
2113 }
2114 
2115 /* Removes connection to resolve list if needed.*/
2116 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2117 					bdaddr_t *bdaddr, u8 bdaddr_type)
2118 {
2119 	struct hci_cp_le_del_from_resolv_list cp;
2120 	struct bdaddr_list_with_irk *entry;
2121 
2122 	if (!use_ll_privacy(hdev))
2123 		return 0;
2124 
2125 	/* Check if the IRK has been programmed */
2126 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2127 						bdaddr_type);
2128 	if (!entry)
2129 		return 0;
2130 
2131 	cp.bdaddr_type = bdaddr_type;
2132 	bacpy(&cp.bdaddr, bdaddr);
2133 
2134 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2135 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2136 }
2137 
2138 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2139 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2140 {
2141 	struct hci_cp_le_del_from_accept_list cp;
2142 	int err;
2143 
2144 	/* Check if device is on accept list before removing it */
2145 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2146 		return 0;
2147 
2148 	cp.bdaddr_type = bdaddr_type;
2149 	bacpy(&cp.bdaddr, bdaddr);
2150 
2151 	/* Ignore errors when removing from resolving list as that is likely
2152 	 * that the device was never added.
2153 	 */
2154 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2155 
2156 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2157 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2158 	if (err) {
2159 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2160 		return err;
2161 	}
2162 
2163 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2164 		   cp.bdaddr_type);
2165 
2166 	return 0;
2167 }
2168 
2169 struct conn_params {
2170 	bdaddr_t addr;
2171 	u8 addr_type;
2172 	hci_conn_flags_t flags;
2173 	u8 privacy_mode;
2174 };
2175 
2176 /* Adds connection to resolve list if needed.
2177  * Setting params to NULL programs local hdev->irk
2178  */
2179 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2180 					struct conn_params *params)
2181 {
2182 	struct hci_cp_le_add_to_resolv_list cp;
2183 	struct smp_irk *irk;
2184 	struct bdaddr_list_with_irk *entry;
2185 	struct hci_conn_params *p;
2186 
2187 	if (!use_ll_privacy(hdev))
2188 		return 0;
2189 
2190 	/* Attempt to program local identity address, type and irk if params is
2191 	 * NULL.
2192 	 */
2193 	if (!params) {
2194 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2195 			return 0;
2196 
2197 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2198 		memcpy(cp.peer_irk, hdev->irk, 16);
2199 		goto done;
2200 	}
2201 
2202 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2203 	if (!irk)
2204 		return 0;
2205 
2206 	/* Check if the IK has _not_ been programmed yet. */
2207 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2208 						&params->addr,
2209 						params->addr_type);
2210 	if (entry)
2211 		return 0;
2212 
2213 	cp.bdaddr_type = params->addr_type;
2214 	bacpy(&cp.bdaddr, &params->addr);
2215 	memcpy(cp.peer_irk, irk->val, 16);
2216 
2217 	/* Default privacy mode is always Network */
2218 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2219 
2220 	rcu_read_lock();
2221 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2222 				      &params->addr, params->addr_type);
2223 	if (!p)
2224 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2225 					      &params->addr, params->addr_type);
2226 	if (p)
2227 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2228 	rcu_read_unlock();
2229 
2230 done:
2231 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2232 		memcpy(cp.local_irk, hdev->irk, 16);
2233 	else
2234 		memset(cp.local_irk, 0, 16);
2235 
2236 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2237 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2238 }
2239 
2240 /* Set Device Privacy Mode. */
2241 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2242 					struct conn_params *params)
2243 {
2244 	struct hci_cp_le_set_privacy_mode cp;
2245 	struct smp_irk *irk;
2246 
2247 	/* If device privacy mode has already been set there is nothing to do */
2248 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2249 		return 0;
2250 
2251 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2252 	 * indicates that LL Privacy has been enabled and
2253 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2254 	 */
2255 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2256 		return 0;
2257 
2258 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2259 	if (!irk)
2260 		return 0;
2261 
2262 	memset(&cp, 0, sizeof(cp));
2263 	cp.bdaddr_type = irk->addr_type;
2264 	bacpy(&cp.bdaddr, &irk->bdaddr);
2265 	cp.mode = HCI_DEVICE_PRIVACY;
2266 
2267 	/* Note: params->privacy_mode is not updated since it is a copy */
2268 
2269 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2270 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2271 }
2272 
2273 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2274  * this attempts to program the device in the resolving list as well and
2275  * properly set the privacy mode.
2276  */
2277 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2278 				       struct conn_params *params,
2279 				       u8 *num_entries)
2280 {
2281 	struct hci_cp_le_add_to_accept_list cp;
2282 	int err;
2283 
2284 	/* During suspend, only wakeable devices can be in acceptlist */
2285 	if (hdev->suspended &&
2286 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2287 		hci_le_del_accept_list_sync(hdev, &params->addr,
2288 					    params->addr_type);
2289 		return 0;
2290 	}
2291 
2292 	/* Select filter policy to accept all advertising */
2293 	if (*num_entries >= hdev->le_accept_list_size)
2294 		return -ENOSPC;
2295 
2296 	/* Accept list can not be used with RPAs */
2297 	if (!use_ll_privacy(hdev) &&
2298 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2299 		return -EINVAL;
2300 
2301 	/* Attempt to program the device in the resolving list first to avoid
2302 	 * having to rollback in case it fails since the resolving list is
2303 	 * dynamic it can probably be smaller than the accept list.
2304 	 */
2305 	err = hci_le_add_resolve_list_sync(hdev, params);
2306 	if (err) {
2307 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2308 		return err;
2309 	}
2310 
2311 	/* Set Privacy Mode */
2312 	err = hci_le_set_privacy_mode_sync(hdev, params);
2313 	if (err) {
2314 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2315 		return err;
2316 	}
2317 
2318 	/* Check if already in accept list */
2319 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2320 				   params->addr_type))
2321 		return 0;
2322 
2323 	*num_entries += 1;
2324 	cp.bdaddr_type = params->addr_type;
2325 	bacpy(&cp.bdaddr, &params->addr);
2326 
2327 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2328 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2329 	if (err) {
2330 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2331 		/* Rollback the device from the resolving list */
2332 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2333 		return err;
2334 	}
2335 
2336 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2337 		   cp.bdaddr_type);
2338 
2339 	return 0;
2340 }
2341 
2342 /* This function disables/pause all advertising instances */
2343 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2344 {
2345 	int err;
2346 	int old_state;
2347 
2348 	/* If already been paused there is nothing to do. */
2349 	if (hdev->advertising_paused)
2350 		return 0;
2351 
2352 	bt_dev_dbg(hdev, "Pausing directed advertising");
2353 
2354 	/* Stop directed advertising */
2355 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2356 	if (old_state) {
2357 		/* When discoverable timeout triggers, then just make sure
2358 		 * the limited discoverable flag is cleared. Even in the case
2359 		 * of a timeout triggered from general discoverable, it is
2360 		 * safe to unconditionally clear the flag.
2361 		 */
2362 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2363 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2364 		hdev->discov_timeout = 0;
2365 	}
2366 
2367 	bt_dev_dbg(hdev, "Pausing advertising instances");
2368 
2369 	/* Call to disable any advertisements active on the controller.
2370 	 * This will succeed even if no advertisements are configured.
2371 	 */
2372 	err = hci_disable_advertising_sync(hdev);
2373 	if (err)
2374 		return err;
2375 
2376 	/* If we are using software rotation, pause the loop */
2377 	if (!ext_adv_capable(hdev))
2378 		cancel_adv_timeout(hdev);
2379 
2380 	hdev->advertising_paused = true;
2381 	hdev->advertising_old_state = old_state;
2382 
2383 	return 0;
2384 }
2385 
2386 /* This function enables all user advertising instances */
2387 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2388 {
2389 	struct adv_info *adv, *tmp;
2390 	int err;
2391 
2392 	/* If advertising has not been paused there is nothing  to do. */
2393 	if (!hdev->advertising_paused)
2394 		return 0;
2395 
2396 	/* Resume directed advertising */
2397 	hdev->advertising_paused = false;
2398 	if (hdev->advertising_old_state) {
2399 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2400 		hdev->advertising_old_state = 0;
2401 	}
2402 
2403 	bt_dev_dbg(hdev, "Resuming advertising instances");
2404 
2405 	if (ext_adv_capable(hdev)) {
2406 		/* Call for each tracked instance to be re-enabled */
2407 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2408 			err = hci_enable_ext_advertising_sync(hdev,
2409 							      adv->instance);
2410 			if (!err)
2411 				continue;
2412 
2413 			/* If the instance cannot be resumed remove it */
2414 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2415 							 NULL);
2416 		}
2417 	} else {
2418 		/* Schedule for most recent instance to be restarted and begin
2419 		 * the software rotation loop
2420 		 */
2421 		err = hci_schedule_adv_instance_sync(hdev,
2422 						     hdev->cur_adv_instance,
2423 						     true);
2424 	}
2425 
2426 	hdev->advertising_paused = false;
2427 
2428 	return err;
2429 }
2430 
2431 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2432 {
2433 	int err;
2434 
2435 	if (!use_ll_privacy(hdev))
2436 		return 0;
2437 
2438 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2439 		return 0;
2440 
2441 	/* Cannot disable addr resolution if scanning is enabled or
2442 	 * when initiating an LE connection.
2443 	 */
2444 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2445 	    hci_lookup_le_connect(hdev)) {
2446 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2447 		return -EPERM;
2448 	}
2449 
2450 	/* Cannot disable addr resolution if advertising is enabled. */
2451 	err = hci_pause_advertising_sync(hdev);
2452 	if (err) {
2453 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2454 		return err;
2455 	}
2456 
2457 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2458 	if (err)
2459 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2460 			   err);
2461 
2462 	/* Return if address resolution is disabled and RPA is not used. */
2463 	if (!err && scan_use_rpa(hdev))
2464 		return 0;
2465 
2466 	hci_resume_advertising_sync(hdev);
2467 	return err;
2468 }
2469 
2470 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2471 					     bool extended, struct sock *sk)
2472 {
2473 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2474 					HCI_OP_READ_LOCAL_OOB_DATA;
2475 
2476 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2477 }
2478 
2479 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2480 {
2481 	struct hci_conn_params *params;
2482 	struct conn_params *p;
2483 	size_t i;
2484 
2485 	rcu_read_lock();
2486 
2487 	i = 0;
2488 	list_for_each_entry_rcu(params, list, action)
2489 		++i;
2490 	*n = i;
2491 
2492 	rcu_read_unlock();
2493 
2494 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2495 	if (!p)
2496 		return NULL;
2497 
2498 	rcu_read_lock();
2499 
2500 	i = 0;
2501 	list_for_each_entry_rcu(params, list, action) {
2502 		/* Racing adds are handled in next scan update */
2503 		if (i >= *n)
2504 			break;
2505 
2506 		/* No hdev->lock, but: addr, addr_type are immutable.
2507 		 * privacy_mode is only written by us or in
2508 		 * hci_cc_le_set_privacy_mode that we wait for.
2509 		 * We should be idempotent so MGMT updating flags
2510 		 * while we are processing is OK.
2511 		 */
2512 		bacpy(&p[i].addr, &params->addr);
2513 		p[i].addr_type = params->addr_type;
2514 		p[i].flags = READ_ONCE(params->flags);
2515 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2516 		++i;
2517 	}
2518 
2519 	rcu_read_unlock();
2520 
2521 	*n = i;
2522 	return p;
2523 }
2524 
2525 /* Device must not be scanning when updating the accept list.
2526  *
2527  * Update is done using the following sequence:
2528  *
2529  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2530  * Remove Devices From Accept List ->
2531  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2532  * Add Devices to Accept List ->
2533  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2534  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2535  * Enable Scanning
2536  *
2537  * In case of failure advertising shall be restored to its original state and
2538  * return would disable accept list since either accept or resolving list could
2539  * not be programmed.
2540  *
2541  */
2542 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2543 {
2544 	struct conn_params *params;
2545 	struct bdaddr_list *b, *t;
2546 	u8 num_entries = 0;
2547 	bool pend_conn, pend_report;
2548 	u8 filter_policy;
2549 	size_t i, n;
2550 	int err;
2551 
2552 	/* Pause advertising if resolving list can be used as controllers
2553 	 * cannot accept resolving list modifications while advertising.
2554 	 */
2555 	if (use_ll_privacy(hdev)) {
2556 		err = hci_pause_advertising_sync(hdev);
2557 		if (err) {
2558 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2559 			return 0x00;
2560 		}
2561 	}
2562 
2563 	/* Disable address resolution while reprogramming accept list since
2564 	 * devices that do have an IRK will be programmed in the resolving list
2565 	 * when LL Privacy is enabled.
2566 	 */
2567 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2568 	if (err) {
2569 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2570 		goto done;
2571 	}
2572 
2573 	/* Go through the current accept list programmed into the
2574 	 * controller one by one and check if that address is connected or is
2575 	 * still in the list of pending connections or list of devices to
2576 	 * report. If not present in either list, then remove it from
2577 	 * the controller.
2578 	 */
2579 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2580 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2581 			continue;
2582 
2583 		/* Pointers not dereferenced, no locks needed */
2584 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2585 						      &b->bdaddr,
2586 						      b->bdaddr_type);
2587 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2588 							&b->bdaddr,
2589 							b->bdaddr_type);
2590 
2591 		/* If the device is not likely to connect or report,
2592 		 * remove it from the acceptlist.
2593 		 */
2594 		if (!pend_conn && !pend_report) {
2595 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2596 						    b->bdaddr_type);
2597 			continue;
2598 		}
2599 
2600 		num_entries++;
2601 	}
2602 
2603 	/* Since all no longer valid accept list entries have been
2604 	 * removed, walk through the list of pending connections
2605 	 * and ensure that any new device gets programmed into
2606 	 * the controller.
2607 	 *
2608 	 * If the list of the devices is larger than the list of
2609 	 * available accept list entries in the controller, then
2610 	 * just abort and return filer policy value to not use the
2611 	 * accept list.
2612 	 *
2613 	 * The list and params may be mutated while we wait for events,
2614 	 * so make a copy and iterate it.
2615 	 */
2616 
2617 	params = conn_params_copy(&hdev->pend_le_conns, &n);
2618 	if (!params) {
2619 		err = -ENOMEM;
2620 		goto done;
2621 	}
2622 
2623 	for (i = 0; i < n; ++i) {
2624 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2625 						  &num_entries);
2626 		if (err) {
2627 			kvfree(params);
2628 			goto done;
2629 		}
2630 	}
2631 
2632 	kvfree(params);
2633 
2634 	/* After adding all new pending connections, walk through
2635 	 * the list of pending reports and also add these to the
2636 	 * accept list if there is still space. Abort if space runs out.
2637 	 */
2638 
2639 	params = conn_params_copy(&hdev->pend_le_reports, &n);
2640 	if (!params) {
2641 		err = -ENOMEM;
2642 		goto done;
2643 	}
2644 
2645 	for (i = 0; i < n; ++i) {
2646 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2647 						  &num_entries);
2648 		if (err) {
2649 			kvfree(params);
2650 			goto done;
2651 		}
2652 	}
2653 
2654 	kvfree(params);
2655 
2656 	/* Use the allowlist unless the following conditions are all true:
2657 	 * - We are not currently suspending
2658 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2659 	 * - Interleaved scanning is not currently using the allowlist
2660 	 */
2661 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2662 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2663 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2664 		err = -EINVAL;
2665 
2666 done:
2667 	filter_policy = err ? 0x00 : 0x01;
2668 
2669 	/* Enable address resolution when LL Privacy is enabled. */
2670 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2671 	if (err)
2672 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2673 
2674 	/* Resume advertising if it was paused */
2675 	if (use_ll_privacy(hdev))
2676 		hci_resume_advertising_sync(hdev);
2677 
2678 	/* Select filter policy to use accept list */
2679 	return filter_policy;
2680 }
2681 
2682 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp,
2683 				   u8 type, u16 interval, u16 window)
2684 {
2685 	cp->type = type;
2686 	cp->interval = cpu_to_le16(interval);
2687 	cp->window = cpu_to_le16(window);
2688 }
2689 
2690 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2691 					  u16 interval, u16 window,
2692 					  u8 own_addr_type, u8 filter_policy)
2693 {
2694 	struct hci_cp_le_set_ext_scan_params *cp;
2695 	struct hci_cp_le_scan_phy_params *phy;
2696 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2697 	u8 num_phy = 0x00;
2698 
2699 	cp = (void *)data;
2700 	phy = (void *)cp->data;
2701 
2702 	memset(data, 0, sizeof(data));
2703 
2704 	cp->own_addr_type = own_addr_type;
2705 	cp->filter_policy = filter_policy;
2706 
2707 	/* Check if PA Sync is in progress then select the PHY based on the
2708 	 * hci_conn.iso_qos.
2709 	 */
2710 	if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2711 		struct hci_cp_le_add_to_accept_list *sent;
2712 
2713 		sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST);
2714 		if (sent) {
2715 			struct hci_conn *conn;
2716 
2717 			conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK,
2718 						       &sent->bdaddr);
2719 			if (conn) {
2720 				struct bt_iso_qos *qos = &conn->iso_qos;
2721 
2722 				if (qos->bcast.in.phy & BT_ISO_PHY_1M ||
2723 				    qos->bcast.in.phy & BT_ISO_PHY_2M) {
2724 					cp->scanning_phys |= LE_SCAN_PHY_1M;
2725 					hci_le_scan_phy_params(phy, type,
2726 							       interval,
2727 							       window);
2728 					num_phy++;
2729 					phy++;
2730 				}
2731 
2732 				if (qos->bcast.in.phy & BT_ISO_PHY_CODED) {
2733 					cp->scanning_phys |= LE_SCAN_PHY_CODED;
2734 					hci_le_scan_phy_params(phy, type,
2735 							       interval * 3,
2736 							       window * 3);
2737 					num_phy++;
2738 					phy++;
2739 				}
2740 
2741 				if (num_phy)
2742 					goto done;
2743 			}
2744 		}
2745 	}
2746 
2747 	if (scan_1m(hdev) || scan_2m(hdev)) {
2748 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2749 		hci_le_scan_phy_params(phy, type, interval, window);
2750 		num_phy++;
2751 		phy++;
2752 	}
2753 
2754 	if (scan_coded(hdev)) {
2755 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2756 		hci_le_scan_phy_params(phy, type, interval * 3, window * 3);
2757 		num_phy++;
2758 		phy++;
2759 	}
2760 
2761 done:
2762 	if (!num_phy)
2763 		return -EINVAL;
2764 
2765 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2766 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2767 				     data, HCI_CMD_TIMEOUT);
2768 }
2769 
2770 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2771 				      u16 interval, u16 window,
2772 				      u8 own_addr_type, u8 filter_policy)
2773 {
2774 	struct hci_cp_le_set_scan_param cp;
2775 
2776 	if (use_ext_scan(hdev))
2777 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2778 						      window, own_addr_type,
2779 						      filter_policy);
2780 
2781 	memset(&cp, 0, sizeof(cp));
2782 	cp.type = type;
2783 	cp.interval = cpu_to_le16(interval);
2784 	cp.window = cpu_to_le16(window);
2785 	cp.own_address_type = own_addr_type;
2786 	cp.filter_policy = filter_policy;
2787 
2788 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2789 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2790 }
2791 
2792 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2793 			       u16 window, u8 own_addr_type, u8 filter_policy,
2794 			       u8 filter_dup)
2795 {
2796 	int err;
2797 
2798 	if (hdev->scanning_paused) {
2799 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2800 		return 0;
2801 	}
2802 
2803 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2804 					 own_addr_type, filter_policy);
2805 	if (err)
2806 		return err;
2807 
2808 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2809 }
2810 
2811 static int hci_passive_scan_sync(struct hci_dev *hdev)
2812 {
2813 	u8 own_addr_type;
2814 	u8 filter_policy;
2815 	u16 window, interval;
2816 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2817 	int err;
2818 
2819 	if (hdev->scanning_paused) {
2820 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2821 		return 0;
2822 	}
2823 
2824 	err = hci_scan_disable_sync(hdev);
2825 	if (err) {
2826 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2827 		return err;
2828 	}
2829 
2830 	/* Set require_privacy to false since no SCAN_REQ are send
2831 	 * during passive scanning. Not using an non-resolvable address
2832 	 * here is important so that peer devices using direct
2833 	 * advertising with our address will be correctly reported
2834 	 * by the controller.
2835 	 */
2836 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2837 					   &own_addr_type))
2838 		return 0;
2839 
2840 	if (hdev->enable_advmon_interleave_scan &&
2841 	    hci_update_interleaved_scan_sync(hdev))
2842 		return 0;
2843 
2844 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2845 
2846 	/* Adding or removing entries from the accept list must
2847 	 * happen before enabling scanning. The controller does
2848 	 * not allow accept list modification while scanning.
2849 	 */
2850 	filter_policy = hci_update_accept_list_sync(hdev);
2851 
2852 	/* When the controller is using random resolvable addresses and
2853 	 * with that having LE privacy enabled, then controllers with
2854 	 * Extended Scanner Filter Policies support can now enable support
2855 	 * for handling directed advertising.
2856 	 *
2857 	 * So instead of using filter polices 0x00 (no acceptlist)
2858 	 * and 0x01 (acceptlist enabled) use the new filter policies
2859 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2860 	 */
2861 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2862 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2863 		filter_policy |= 0x02;
2864 
2865 	if (hdev->suspended) {
2866 		window = hdev->le_scan_window_suspend;
2867 		interval = hdev->le_scan_int_suspend;
2868 	} else if (hci_is_le_conn_scanning(hdev)) {
2869 		window = hdev->le_scan_window_connect;
2870 		interval = hdev->le_scan_int_connect;
2871 	} else if (hci_is_adv_monitoring(hdev)) {
2872 		window = hdev->le_scan_window_adv_monitor;
2873 		interval = hdev->le_scan_int_adv_monitor;
2874 	} else {
2875 		window = hdev->le_scan_window;
2876 		interval = hdev->le_scan_interval;
2877 	}
2878 
2879 	/* Disable all filtering for Mesh */
2880 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2881 		filter_policy = 0;
2882 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2883 	}
2884 
2885 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2886 
2887 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2888 				   own_addr_type, filter_policy, filter_dups);
2889 }
2890 
2891 /* This function controls the passive scanning based on hdev->pend_le_conns
2892  * list. If there are pending LE connection we start the background scanning,
2893  * otherwise we stop it in the following sequence:
2894  *
2895  * If there are devices to scan:
2896  *
2897  * Disable Scanning -> Update Accept List ->
2898  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2899  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2900  * Enable Scanning
2901  *
2902  * Otherwise:
2903  *
2904  * Disable Scanning
2905  */
2906 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2907 {
2908 	int err;
2909 
2910 	if (!test_bit(HCI_UP, &hdev->flags) ||
2911 	    test_bit(HCI_INIT, &hdev->flags) ||
2912 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2913 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2914 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2915 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2916 		return 0;
2917 
2918 	/* No point in doing scanning if LE support hasn't been enabled */
2919 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2920 		return 0;
2921 
2922 	/* If discovery is active don't interfere with it */
2923 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2924 		return 0;
2925 
2926 	/* Reset RSSI and UUID filters when starting background scanning
2927 	 * since these filters are meant for service discovery only.
2928 	 *
2929 	 * The Start Discovery and Start Service Discovery operations
2930 	 * ensure to set proper values for RSSI threshold and UUID
2931 	 * filter list. So it is safe to just reset them here.
2932 	 */
2933 	hci_discovery_filter_clear(hdev);
2934 
2935 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2936 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2937 
2938 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2939 	    list_empty(&hdev->pend_le_conns) &&
2940 	    list_empty(&hdev->pend_le_reports) &&
2941 	    !hci_is_adv_monitoring(hdev) &&
2942 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2943 		/* If there is no pending LE connections or devices
2944 		 * to be scanned for or no ADV monitors, we should stop the
2945 		 * background scanning.
2946 		 */
2947 
2948 		bt_dev_dbg(hdev, "stopping background scanning");
2949 
2950 		err = hci_scan_disable_sync(hdev);
2951 		if (err)
2952 			bt_dev_err(hdev, "stop background scanning failed: %d",
2953 				   err);
2954 	} else {
2955 		/* If there is at least one pending LE connection, we should
2956 		 * keep the background scan running.
2957 		 */
2958 
2959 		/* If controller is connecting, we should not start scanning
2960 		 * since some controllers are not able to scan and connect at
2961 		 * the same time.
2962 		 */
2963 		if (hci_lookup_le_connect(hdev))
2964 			return 0;
2965 
2966 		bt_dev_dbg(hdev, "start background scanning");
2967 
2968 		err = hci_passive_scan_sync(hdev);
2969 		if (err)
2970 			bt_dev_err(hdev, "start background scanning failed: %d",
2971 				   err);
2972 	}
2973 
2974 	return err;
2975 }
2976 
2977 static int update_scan_sync(struct hci_dev *hdev, void *data)
2978 {
2979 	return hci_update_scan_sync(hdev);
2980 }
2981 
2982 int hci_update_scan(struct hci_dev *hdev)
2983 {
2984 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2985 }
2986 
2987 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2988 {
2989 	return hci_update_passive_scan_sync(hdev);
2990 }
2991 
2992 int hci_update_passive_scan(struct hci_dev *hdev)
2993 {
2994 	/* Only queue if it would have any effect */
2995 	if (!test_bit(HCI_UP, &hdev->flags) ||
2996 	    test_bit(HCI_INIT, &hdev->flags) ||
2997 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2998 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2999 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3000 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3001 		return 0;
3002 
3003 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
3004 }
3005 
3006 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
3007 {
3008 	int err;
3009 
3010 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
3011 		return 0;
3012 
3013 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3014 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
3015 
3016 	if (!err) {
3017 		if (val) {
3018 			hdev->features[1][0] |= LMP_HOST_SC;
3019 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
3020 		} else {
3021 			hdev->features[1][0] &= ~LMP_HOST_SC;
3022 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
3023 		}
3024 	}
3025 
3026 	return err;
3027 }
3028 
3029 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
3030 {
3031 	int err;
3032 
3033 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3034 	    lmp_host_ssp_capable(hdev))
3035 		return 0;
3036 
3037 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
3038 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
3039 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3040 	}
3041 
3042 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3043 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3044 	if (err)
3045 		return err;
3046 
3047 	return hci_write_sc_support_sync(hdev, 0x01);
3048 }
3049 
3050 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3051 {
3052 	struct hci_cp_write_le_host_supported cp;
3053 
3054 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3055 	    !lmp_bredr_capable(hdev))
3056 		return 0;
3057 
3058 	/* Check first if we already have the right host state
3059 	 * (host features set)
3060 	 */
3061 	if (le == lmp_host_le_capable(hdev) &&
3062 	    simul == lmp_host_le_br_capable(hdev))
3063 		return 0;
3064 
3065 	memset(&cp, 0, sizeof(cp));
3066 
3067 	cp.le = le;
3068 	cp.simul = simul;
3069 
3070 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3071 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3072 }
3073 
3074 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3075 {
3076 	struct adv_info *adv, *tmp;
3077 	int err;
3078 
3079 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3080 		return 0;
3081 
3082 	/* If RPA Resolution has not been enable yet it means the
3083 	 * resolving list is empty and we should attempt to program the
3084 	 * local IRK in order to support using own_addr_type
3085 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3086 	 */
3087 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3088 		hci_le_add_resolve_list_sync(hdev, NULL);
3089 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3090 	}
3091 
3092 	/* Make sure the controller has a good default for
3093 	 * advertising data. This also applies to the case
3094 	 * where BR/EDR was toggled during the AUTO_OFF phase.
3095 	 */
3096 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3097 	    list_empty(&hdev->adv_instances)) {
3098 		if (ext_adv_capable(hdev)) {
3099 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3100 			if (!err)
3101 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3102 		} else {
3103 			err = hci_update_adv_data_sync(hdev, 0x00);
3104 			if (!err)
3105 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3106 		}
3107 
3108 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3109 			hci_enable_advertising_sync(hdev);
3110 	}
3111 
3112 	/* Call for each tracked instance to be scheduled */
3113 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3114 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3115 
3116 	return 0;
3117 }
3118 
3119 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3120 {
3121 	u8 link_sec;
3122 
3123 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3124 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3125 		return 0;
3126 
3127 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3128 				     sizeof(link_sec), &link_sec,
3129 				     HCI_CMD_TIMEOUT);
3130 }
3131 
3132 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3133 {
3134 	struct hci_cp_write_page_scan_activity cp;
3135 	u8 type;
3136 	int err = 0;
3137 
3138 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3139 		return 0;
3140 
3141 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3142 		return 0;
3143 
3144 	memset(&cp, 0, sizeof(cp));
3145 
3146 	if (enable) {
3147 		type = PAGE_SCAN_TYPE_INTERLACED;
3148 
3149 		/* 160 msec page scan interval */
3150 		cp.interval = cpu_to_le16(0x0100);
3151 	} else {
3152 		type = hdev->def_page_scan_type;
3153 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3154 	}
3155 
3156 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3157 
3158 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3159 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3160 		err = __hci_cmd_sync_status(hdev,
3161 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3162 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3163 		if (err)
3164 			return err;
3165 	}
3166 
3167 	if (hdev->page_scan_type != type)
3168 		err = __hci_cmd_sync_status(hdev,
3169 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3170 					    sizeof(type), &type,
3171 					    HCI_CMD_TIMEOUT);
3172 
3173 	return err;
3174 }
3175 
3176 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3177 {
3178 	struct bdaddr_list *b;
3179 
3180 	list_for_each_entry(b, &hdev->accept_list, list) {
3181 		struct hci_conn *conn;
3182 
3183 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3184 		if (!conn)
3185 			return true;
3186 
3187 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3188 			return true;
3189 	}
3190 
3191 	return false;
3192 }
3193 
3194 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3195 {
3196 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3197 					    sizeof(val), &val,
3198 					    HCI_CMD_TIMEOUT);
3199 }
3200 
3201 int hci_update_scan_sync(struct hci_dev *hdev)
3202 {
3203 	u8 scan;
3204 
3205 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3206 		return 0;
3207 
3208 	if (!hdev_is_powered(hdev))
3209 		return 0;
3210 
3211 	if (mgmt_powering_down(hdev))
3212 		return 0;
3213 
3214 	if (hdev->scanning_paused)
3215 		return 0;
3216 
3217 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3218 	    disconnected_accept_list_entries(hdev))
3219 		scan = SCAN_PAGE;
3220 	else
3221 		scan = SCAN_DISABLED;
3222 
3223 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3224 		scan |= SCAN_INQUIRY;
3225 
3226 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3227 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3228 		return 0;
3229 
3230 	return hci_write_scan_enable_sync(hdev, scan);
3231 }
3232 
3233 int hci_update_name_sync(struct hci_dev *hdev)
3234 {
3235 	struct hci_cp_write_local_name cp;
3236 
3237 	memset(&cp, 0, sizeof(cp));
3238 
3239 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3240 
3241 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3242 					    sizeof(cp), &cp,
3243 					    HCI_CMD_TIMEOUT);
3244 }
3245 
3246 /* This function perform powered update HCI command sequence after the HCI init
3247  * sequence which end up resetting all states, the sequence is as follows:
3248  *
3249  * HCI_SSP_ENABLED(Enable SSP)
3250  * HCI_LE_ENABLED(Enable LE)
3251  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3252  * Update adv data)
3253  * Enable Authentication
3254  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3255  * Set Name -> Set EIR)
3256  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3257  */
3258 int hci_powered_update_sync(struct hci_dev *hdev)
3259 {
3260 	int err;
3261 
3262 	/* Register the available SMP channels (BR/EDR and LE) only when
3263 	 * successfully powering on the controller. This late
3264 	 * registration is required so that LE SMP can clearly decide if
3265 	 * the public address or static address is used.
3266 	 */
3267 	smp_register(hdev);
3268 
3269 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3270 	if (err)
3271 		return err;
3272 
3273 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3274 	if (err)
3275 		return err;
3276 
3277 	err = hci_powered_update_adv_sync(hdev);
3278 	if (err)
3279 		return err;
3280 
3281 	err = hci_write_auth_enable_sync(hdev);
3282 	if (err)
3283 		return err;
3284 
3285 	if (lmp_bredr_capable(hdev)) {
3286 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3287 			hci_write_fast_connectable_sync(hdev, true);
3288 		else
3289 			hci_write_fast_connectable_sync(hdev, false);
3290 		hci_update_scan_sync(hdev);
3291 		hci_update_class_sync(hdev);
3292 		hci_update_name_sync(hdev);
3293 		hci_update_eir_sync(hdev);
3294 	}
3295 
3296 	/* If forcing static address is in use or there is no public
3297 	 * address use the static address as random address (but skip
3298 	 * the HCI command if the current random address is already the
3299 	 * static one.
3300 	 *
3301 	 * In case BR/EDR has been disabled on a dual-mode controller
3302 	 * and a static address has been configured, then use that
3303 	 * address instead of the public BR/EDR address.
3304 	 */
3305 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3306 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3307 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3308 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3309 			return hci_set_random_addr_sync(hdev,
3310 							&hdev->static_addr);
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 /**
3317  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3318  *				       (BD_ADDR) for a HCI device from
3319  *				       a firmware node property.
3320  * @hdev:	The HCI device
3321  *
3322  * Search the firmware node for 'local-bd-address'.
3323  *
3324  * All-zero BD addresses are rejected, because those could be properties
3325  * that exist in the firmware tables, but were not updated by the firmware. For
3326  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3327  */
3328 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3329 {
3330 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3331 	bdaddr_t ba;
3332 	int ret;
3333 
3334 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3335 					    (u8 *)&ba, sizeof(ba));
3336 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3337 		return;
3338 
3339 	if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks))
3340 		baswap(&hdev->public_addr, &ba);
3341 	else
3342 		bacpy(&hdev->public_addr, &ba);
3343 }
3344 
3345 struct hci_init_stage {
3346 	int (*func)(struct hci_dev *hdev);
3347 };
3348 
3349 /* Run init stage NULL terminated function table */
3350 static int hci_init_stage_sync(struct hci_dev *hdev,
3351 			       const struct hci_init_stage *stage)
3352 {
3353 	size_t i;
3354 
3355 	for (i = 0; stage[i].func; i++) {
3356 		int err;
3357 
3358 		err = stage[i].func(hdev);
3359 		if (err)
3360 			return err;
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 /* Read Local Version */
3367 static int hci_read_local_version_sync(struct hci_dev *hdev)
3368 {
3369 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3370 				     0, NULL, HCI_CMD_TIMEOUT);
3371 }
3372 
3373 /* Read BD Address */
3374 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3375 {
3376 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3377 				     0, NULL, HCI_CMD_TIMEOUT);
3378 }
3379 
3380 #define HCI_INIT(_func) \
3381 { \
3382 	.func = _func, \
3383 }
3384 
3385 static const struct hci_init_stage hci_init0[] = {
3386 	/* HCI_OP_READ_LOCAL_VERSION */
3387 	HCI_INIT(hci_read_local_version_sync),
3388 	/* HCI_OP_READ_BD_ADDR */
3389 	HCI_INIT(hci_read_bd_addr_sync),
3390 	{}
3391 };
3392 
3393 int hci_reset_sync(struct hci_dev *hdev)
3394 {
3395 	int err;
3396 
3397 	set_bit(HCI_RESET, &hdev->flags);
3398 
3399 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3400 				    HCI_CMD_TIMEOUT);
3401 	if (err)
3402 		return err;
3403 
3404 	return 0;
3405 }
3406 
3407 static int hci_init0_sync(struct hci_dev *hdev)
3408 {
3409 	int err;
3410 
3411 	bt_dev_dbg(hdev, "");
3412 
3413 	/* Reset */
3414 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3415 		err = hci_reset_sync(hdev);
3416 		if (err)
3417 			return err;
3418 	}
3419 
3420 	return hci_init_stage_sync(hdev, hci_init0);
3421 }
3422 
3423 static int hci_unconf_init_sync(struct hci_dev *hdev)
3424 {
3425 	int err;
3426 
3427 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3428 		return 0;
3429 
3430 	err = hci_init0_sync(hdev);
3431 	if (err < 0)
3432 		return err;
3433 
3434 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3435 		hci_debugfs_create_basic(hdev);
3436 
3437 	return 0;
3438 }
3439 
3440 /* Read Local Supported Features. */
3441 static int hci_read_local_features_sync(struct hci_dev *hdev)
3442 {
3443 	 /* Not all AMP controllers support this command */
3444 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3445 		return 0;
3446 
3447 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3448 				     0, NULL, HCI_CMD_TIMEOUT);
3449 }
3450 
3451 /* BR Controller init stage 1 command sequence */
3452 static const struct hci_init_stage br_init1[] = {
3453 	/* HCI_OP_READ_LOCAL_FEATURES */
3454 	HCI_INIT(hci_read_local_features_sync),
3455 	/* HCI_OP_READ_LOCAL_VERSION */
3456 	HCI_INIT(hci_read_local_version_sync),
3457 	/* HCI_OP_READ_BD_ADDR */
3458 	HCI_INIT(hci_read_bd_addr_sync),
3459 	{}
3460 };
3461 
3462 /* Read Local Commands */
3463 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3464 {
3465 	/* All Bluetooth 1.2 and later controllers should support the
3466 	 * HCI command for reading the local supported commands.
3467 	 *
3468 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3469 	 * but do not have support for this command. If that is the case,
3470 	 * the driver can quirk the behavior and skip reading the local
3471 	 * supported commands.
3472 	 */
3473 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3474 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3475 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3476 					     0, NULL, HCI_CMD_TIMEOUT);
3477 
3478 	return 0;
3479 }
3480 
3481 /* Read Local AMP Info */
3482 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3483 {
3484 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3485 				     0, NULL, HCI_CMD_TIMEOUT);
3486 }
3487 
3488 /* Read Data Blk size */
3489 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3490 {
3491 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3492 				     0, NULL, HCI_CMD_TIMEOUT);
3493 }
3494 
3495 /* Read Flow Control Mode */
3496 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3497 {
3498 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3499 				     0, NULL, HCI_CMD_TIMEOUT);
3500 }
3501 
3502 /* Read Location Data */
3503 static int hci_read_location_data_sync(struct hci_dev *hdev)
3504 {
3505 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3506 				     0, NULL, HCI_CMD_TIMEOUT);
3507 }
3508 
3509 /* AMP Controller init stage 1 command sequence */
3510 static const struct hci_init_stage amp_init1[] = {
3511 	/* HCI_OP_READ_LOCAL_VERSION */
3512 	HCI_INIT(hci_read_local_version_sync),
3513 	/* HCI_OP_READ_LOCAL_COMMANDS */
3514 	HCI_INIT(hci_read_local_cmds_sync),
3515 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3516 	HCI_INIT(hci_read_local_amp_info_sync),
3517 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3518 	HCI_INIT(hci_read_data_block_size_sync),
3519 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3520 	HCI_INIT(hci_read_flow_control_mode_sync),
3521 	/* HCI_OP_READ_LOCATION_DATA */
3522 	HCI_INIT(hci_read_location_data_sync),
3523 	{}
3524 };
3525 
3526 static int hci_init1_sync(struct hci_dev *hdev)
3527 {
3528 	int err;
3529 
3530 	bt_dev_dbg(hdev, "");
3531 
3532 	/* Reset */
3533 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3534 		err = hci_reset_sync(hdev);
3535 		if (err)
3536 			return err;
3537 	}
3538 
3539 	switch (hdev->dev_type) {
3540 	case HCI_PRIMARY:
3541 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3542 		return hci_init_stage_sync(hdev, br_init1);
3543 	case HCI_AMP:
3544 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3545 		return hci_init_stage_sync(hdev, amp_init1);
3546 	default:
3547 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3548 		break;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 /* AMP Controller init stage 2 command sequence */
3555 static const struct hci_init_stage amp_init2[] = {
3556 	/* HCI_OP_READ_LOCAL_FEATURES */
3557 	HCI_INIT(hci_read_local_features_sync),
3558 	{}
3559 };
3560 
3561 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3562 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3563 {
3564 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3565 				     0, NULL, HCI_CMD_TIMEOUT);
3566 }
3567 
3568 /* Read Class of Device */
3569 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3570 {
3571 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3572 				     0, NULL, HCI_CMD_TIMEOUT);
3573 }
3574 
3575 /* Read Local Name */
3576 static int hci_read_local_name_sync(struct hci_dev *hdev)
3577 {
3578 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3579 				     0, NULL, HCI_CMD_TIMEOUT);
3580 }
3581 
3582 /* Read Voice Setting */
3583 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3584 {
3585 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3586 				     0, NULL, HCI_CMD_TIMEOUT);
3587 }
3588 
3589 /* Read Number of Supported IAC */
3590 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3591 {
3592 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3593 				     0, NULL, HCI_CMD_TIMEOUT);
3594 }
3595 
3596 /* Read Current IAC LAP */
3597 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3598 {
3599 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3600 				     0, NULL, HCI_CMD_TIMEOUT);
3601 }
3602 
3603 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3604 				     u8 cond_type, bdaddr_t *bdaddr,
3605 				     u8 auto_accept)
3606 {
3607 	struct hci_cp_set_event_filter cp;
3608 
3609 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3610 		return 0;
3611 
3612 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3613 		return 0;
3614 
3615 	memset(&cp, 0, sizeof(cp));
3616 	cp.flt_type = flt_type;
3617 
3618 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3619 		cp.cond_type = cond_type;
3620 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3621 		cp.addr_conn_flt.auto_accept = auto_accept;
3622 	}
3623 
3624 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3625 				     flt_type == HCI_FLT_CLEAR_ALL ?
3626 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3627 				     HCI_CMD_TIMEOUT);
3628 }
3629 
3630 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3631 {
3632 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3633 		return 0;
3634 
3635 	/* In theory the state machine should not reach here unless
3636 	 * a hci_set_event_filter_sync() call succeeds, but we do
3637 	 * the check both for parity and as a future reminder.
3638 	 */
3639 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3640 		return 0;
3641 
3642 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3643 					 BDADDR_ANY, 0x00);
3644 }
3645 
3646 /* Connection accept timeout ~20 secs */
3647 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3648 {
3649 	__le16 param = cpu_to_le16(0x7d00);
3650 
3651 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3652 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3653 }
3654 
3655 /* BR Controller init stage 2 command sequence */
3656 static const struct hci_init_stage br_init2[] = {
3657 	/* HCI_OP_READ_BUFFER_SIZE */
3658 	HCI_INIT(hci_read_buffer_size_sync),
3659 	/* HCI_OP_READ_CLASS_OF_DEV */
3660 	HCI_INIT(hci_read_dev_class_sync),
3661 	/* HCI_OP_READ_LOCAL_NAME */
3662 	HCI_INIT(hci_read_local_name_sync),
3663 	/* HCI_OP_READ_VOICE_SETTING */
3664 	HCI_INIT(hci_read_voice_setting_sync),
3665 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3666 	HCI_INIT(hci_read_num_supported_iac_sync),
3667 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3668 	HCI_INIT(hci_read_current_iac_lap_sync),
3669 	/* HCI_OP_SET_EVENT_FLT */
3670 	HCI_INIT(hci_clear_event_filter_sync),
3671 	/* HCI_OP_WRITE_CA_TIMEOUT */
3672 	HCI_INIT(hci_write_ca_timeout_sync),
3673 	{}
3674 };
3675 
3676 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3677 {
3678 	u8 mode = 0x01;
3679 
3680 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3681 		return 0;
3682 
3683 	/* When SSP is available, then the host features page
3684 	 * should also be available as well. However some
3685 	 * controllers list the max_page as 0 as long as SSP
3686 	 * has not been enabled. To achieve proper debugging
3687 	 * output, force the minimum max_page to 1 at least.
3688 	 */
3689 	hdev->max_page = 0x01;
3690 
3691 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3692 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3693 }
3694 
3695 static int hci_write_eir_sync(struct hci_dev *hdev)
3696 {
3697 	struct hci_cp_write_eir cp;
3698 
3699 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3700 		return 0;
3701 
3702 	memset(hdev->eir, 0, sizeof(hdev->eir));
3703 	memset(&cp, 0, sizeof(cp));
3704 
3705 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3706 				     HCI_CMD_TIMEOUT);
3707 }
3708 
3709 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3710 {
3711 	u8 mode;
3712 
3713 	if (!lmp_inq_rssi_capable(hdev) &&
3714 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3715 		return 0;
3716 
3717 	/* If Extended Inquiry Result events are supported, then
3718 	 * they are clearly preferred over Inquiry Result with RSSI
3719 	 * events.
3720 	 */
3721 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3722 
3723 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3724 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3725 }
3726 
3727 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3728 {
3729 	if (!lmp_inq_tx_pwr_capable(hdev))
3730 		return 0;
3731 
3732 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3733 				     0, NULL, HCI_CMD_TIMEOUT);
3734 }
3735 
3736 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3737 {
3738 	struct hci_cp_read_local_ext_features cp;
3739 
3740 	if (!lmp_ext_feat_capable(hdev))
3741 		return 0;
3742 
3743 	memset(&cp, 0, sizeof(cp));
3744 	cp.page = page;
3745 
3746 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3747 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3748 }
3749 
3750 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3751 {
3752 	return hci_read_local_ext_features_sync(hdev, 0x01);
3753 }
3754 
3755 /* HCI Controller init stage 2 command sequence */
3756 static const struct hci_init_stage hci_init2[] = {
3757 	/* HCI_OP_READ_LOCAL_COMMANDS */
3758 	HCI_INIT(hci_read_local_cmds_sync),
3759 	/* HCI_OP_WRITE_SSP_MODE */
3760 	HCI_INIT(hci_write_ssp_mode_1_sync),
3761 	/* HCI_OP_WRITE_EIR */
3762 	HCI_INIT(hci_write_eir_sync),
3763 	/* HCI_OP_WRITE_INQUIRY_MODE */
3764 	HCI_INIT(hci_write_inquiry_mode_sync),
3765 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3766 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3767 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3768 	HCI_INIT(hci_read_local_ext_features_1_sync),
3769 	/* HCI_OP_WRITE_AUTH_ENABLE */
3770 	HCI_INIT(hci_write_auth_enable_sync),
3771 	{}
3772 };
3773 
3774 /* Read LE Buffer Size */
3775 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3776 {
3777 	/* Use Read LE Buffer Size V2 if supported */
3778 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3779 		return __hci_cmd_sync_status(hdev,
3780 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3781 					     0, NULL, HCI_CMD_TIMEOUT);
3782 
3783 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3784 				     0, NULL, HCI_CMD_TIMEOUT);
3785 }
3786 
3787 /* Read LE Local Supported Features */
3788 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3789 {
3790 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3791 				     0, NULL, HCI_CMD_TIMEOUT);
3792 }
3793 
3794 /* Read LE Supported States */
3795 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3796 {
3797 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3798 				     0, NULL, HCI_CMD_TIMEOUT);
3799 }
3800 
3801 /* LE Controller init stage 2 command sequence */
3802 static const struct hci_init_stage le_init2[] = {
3803 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3804 	HCI_INIT(hci_le_read_local_features_sync),
3805 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3806 	HCI_INIT(hci_le_read_buffer_size_sync),
3807 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3808 	HCI_INIT(hci_le_read_supported_states_sync),
3809 	{}
3810 };
3811 
3812 static int hci_init2_sync(struct hci_dev *hdev)
3813 {
3814 	int err;
3815 
3816 	bt_dev_dbg(hdev, "");
3817 
3818 	if (hdev->dev_type == HCI_AMP)
3819 		return hci_init_stage_sync(hdev, amp_init2);
3820 
3821 	err = hci_init_stage_sync(hdev, hci_init2);
3822 	if (err)
3823 		return err;
3824 
3825 	if (lmp_bredr_capable(hdev)) {
3826 		err = hci_init_stage_sync(hdev, br_init2);
3827 		if (err)
3828 			return err;
3829 	} else {
3830 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3831 	}
3832 
3833 	if (lmp_le_capable(hdev)) {
3834 		err = hci_init_stage_sync(hdev, le_init2);
3835 		if (err)
3836 			return err;
3837 		/* LE-only controllers have LE implicitly enabled */
3838 		if (!lmp_bredr_capable(hdev))
3839 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3846 {
3847 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3848 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3849 	 * command otherwise.
3850 	 */
3851 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3852 
3853 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3854 	 * any event mask for pre 1.2 devices.
3855 	 */
3856 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3857 		return 0;
3858 
3859 	if (lmp_bredr_capable(hdev)) {
3860 		events[4] |= 0x01; /* Flow Specification Complete */
3861 
3862 		/* Don't set Disconnect Complete and mode change when
3863 		 * suspended as that would wakeup the host when disconnecting
3864 		 * due to suspend.
3865 		 */
3866 		if (hdev->suspended) {
3867 			events[0] &= 0xef;
3868 			events[2] &= 0xf7;
3869 		}
3870 	} else {
3871 		/* Use a different default for LE-only devices */
3872 		memset(events, 0, sizeof(events));
3873 		events[1] |= 0x20; /* Command Complete */
3874 		events[1] |= 0x40; /* Command Status */
3875 		events[1] |= 0x80; /* Hardware Error */
3876 
3877 		/* If the controller supports the Disconnect command, enable
3878 		 * the corresponding event. In addition enable packet flow
3879 		 * control related events.
3880 		 */
3881 		if (hdev->commands[0] & 0x20) {
3882 			/* Don't set Disconnect Complete when suspended as that
3883 			 * would wakeup the host when disconnecting due to
3884 			 * suspend.
3885 			 */
3886 			if (!hdev->suspended)
3887 				events[0] |= 0x10; /* Disconnection Complete */
3888 			events[2] |= 0x04; /* Number of Completed Packets */
3889 			events[3] |= 0x02; /* Data Buffer Overflow */
3890 		}
3891 
3892 		/* If the controller supports the Read Remote Version
3893 		 * Information command, enable the corresponding event.
3894 		 */
3895 		if (hdev->commands[2] & 0x80)
3896 			events[1] |= 0x08; /* Read Remote Version Information
3897 					    * Complete
3898 					    */
3899 
3900 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3901 			events[0] |= 0x80; /* Encryption Change */
3902 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3903 		}
3904 	}
3905 
3906 	if (lmp_inq_rssi_capable(hdev) ||
3907 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3908 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3909 
3910 	if (lmp_ext_feat_capable(hdev))
3911 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3912 
3913 	if (lmp_esco_capable(hdev)) {
3914 		events[5] |= 0x08; /* Synchronous Connection Complete */
3915 		events[5] |= 0x10; /* Synchronous Connection Changed */
3916 	}
3917 
3918 	if (lmp_sniffsubr_capable(hdev))
3919 		events[5] |= 0x20; /* Sniff Subrating */
3920 
3921 	if (lmp_pause_enc_capable(hdev))
3922 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3923 
3924 	if (lmp_ext_inq_capable(hdev))
3925 		events[5] |= 0x40; /* Extended Inquiry Result */
3926 
3927 	if (lmp_no_flush_capable(hdev))
3928 		events[7] |= 0x01; /* Enhanced Flush Complete */
3929 
3930 	if (lmp_lsto_capable(hdev))
3931 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3932 
3933 	if (lmp_ssp_capable(hdev)) {
3934 		events[6] |= 0x01;	/* IO Capability Request */
3935 		events[6] |= 0x02;	/* IO Capability Response */
3936 		events[6] |= 0x04;	/* User Confirmation Request */
3937 		events[6] |= 0x08;	/* User Passkey Request */
3938 		events[6] |= 0x10;	/* Remote OOB Data Request */
3939 		events[6] |= 0x20;	/* Simple Pairing Complete */
3940 		events[7] |= 0x04;	/* User Passkey Notification */
3941 		events[7] |= 0x08;	/* Keypress Notification */
3942 		events[7] |= 0x10;	/* Remote Host Supported
3943 					 * Features Notification
3944 					 */
3945 	}
3946 
3947 	if (lmp_le_capable(hdev))
3948 		events[7] |= 0x20;	/* LE Meta-Event */
3949 
3950 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3951 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3952 }
3953 
3954 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3955 {
3956 	struct hci_cp_read_stored_link_key cp;
3957 
3958 	if (!(hdev->commands[6] & 0x20) ||
3959 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3960 		return 0;
3961 
3962 	memset(&cp, 0, sizeof(cp));
3963 	bacpy(&cp.bdaddr, BDADDR_ANY);
3964 	cp.read_all = 0x01;
3965 
3966 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3967 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3968 }
3969 
3970 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3971 {
3972 	struct hci_cp_write_def_link_policy cp;
3973 	u16 link_policy = 0;
3974 
3975 	if (!(hdev->commands[5] & 0x10))
3976 		return 0;
3977 
3978 	memset(&cp, 0, sizeof(cp));
3979 
3980 	if (lmp_rswitch_capable(hdev))
3981 		link_policy |= HCI_LP_RSWITCH;
3982 	if (lmp_hold_capable(hdev))
3983 		link_policy |= HCI_LP_HOLD;
3984 	if (lmp_sniff_capable(hdev))
3985 		link_policy |= HCI_LP_SNIFF;
3986 	if (lmp_park_capable(hdev))
3987 		link_policy |= HCI_LP_PARK;
3988 
3989 	cp.policy = cpu_to_le16(link_policy);
3990 
3991 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3992 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3993 }
3994 
3995 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3996 {
3997 	if (!(hdev->commands[8] & 0x01))
3998 		return 0;
3999 
4000 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
4001 				     0, NULL, HCI_CMD_TIMEOUT);
4002 }
4003 
4004 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
4005 {
4006 	if (!(hdev->commands[18] & 0x04) ||
4007 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4008 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4009 		return 0;
4010 
4011 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
4012 				     0, NULL, HCI_CMD_TIMEOUT);
4013 }
4014 
4015 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
4016 {
4017 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
4018 	 * support the Read Page Scan Type command. Check support for
4019 	 * this command in the bit mask of supported commands.
4020 	 */
4021 	if (!(hdev->commands[13] & 0x01))
4022 		return 0;
4023 
4024 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
4025 				     0, NULL, HCI_CMD_TIMEOUT);
4026 }
4027 
4028 /* Read features beyond page 1 if available */
4029 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
4030 {
4031 	u8 page;
4032 	int err;
4033 
4034 	if (!lmp_ext_feat_capable(hdev))
4035 		return 0;
4036 
4037 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
4038 	     page++) {
4039 		err = hci_read_local_ext_features_sync(hdev, page);
4040 		if (err)
4041 			return err;
4042 	}
4043 
4044 	return 0;
4045 }
4046 
4047 /* HCI Controller init stage 3 command sequence */
4048 static const struct hci_init_stage hci_init3[] = {
4049 	/* HCI_OP_SET_EVENT_MASK */
4050 	HCI_INIT(hci_set_event_mask_sync),
4051 	/* HCI_OP_READ_STORED_LINK_KEY */
4052 	HCI_INIT(hci_read_stored_link_key_sync),
4053 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
4054 	HCI_INIT(hci_setup_link_policy_sync),
4055 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4056 	HCI_INIT(hci_read_page_scan_activity_sync),
4057 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4058 	HCI_INIT(hci_read_def_err_data_reporting_sync),
4059 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
4060 	HCI_INIT(hci_read_page_scan_type_sync),
4061 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4062 	HCI_INIT(hci_read_local_ext_features_all_sync),
4063 	{}
4064 };
4065 
4066 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4067 {
4068 	u8 events[8];
4069 
4070 	if (!lmp_le_capable(hdev))
4071 		return 0;
4072 
4073 	memset(events, 0, sizeof(events));
4074 
4075 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4076 		events[0] |= 0x10;	/* LE Long Term Key Request */
4077 
4078 	/* If controller supports the Connection Parameters Request
4079 	 * Link Layer Procedure, enable the corresponding event.
4080 	 */
4081 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4082 		/* LE Remote Connection Parameter Request */
4083 		events[0] |= 0x20;
4084 
4085 	/* If the controller supports the Data Length Extension
4086 	 * feature, enable the corresponding event.
4087 	 */
4088 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4089 		events[0] |= 0x40;	/* LE Data Length Change */
4090 
4091 	/* If the controller supports LL Privacy feature or LE Extended Adv,
4092 	 * enable the corresponding event.
4093 	 */
4094 	if (use_enhanced_conn_complete(hdev))
4095 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
4096 
4097 	/* If the controller supports Extended Scanner Filter
4098 	 * Policies, enable the corresponding event.
4099 	 */
4100 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4101 		events[1] |= 0x04;	/* LE Direct Advertising Report */
4102 
4103 	/* If the controller supports Channel Selection Algorithm #2
4104 	 * feature, enable the corresponding event.
4105 	 */
4106 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4107 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
4108 
4109 	/* If the controller supports the LE Set Scan Enable command,
4110 	 * enable the corresponding advertising report event.
4111 	 */
4112 	if (hdev->commands[26] & 0x08)
4113 		events[0] |= 0x02;	/* LE Advertising Report */
4114 
4115 	/* If the controller supports the LE Create Connection
4116 	 * command, enable the corresponding event.
4117 	 */
4118 	if (hdev->commands[26] & 0x10)
4119 		events[0] |= 0x01;	/* LE Connection Complete */
4120 
4121 	/* If the controller supports the LE Connection Update
4122 	 * command, enable the corresponding event.
4123 	 */
4124 	if (hdev->commands[27] & 0x04)
4125 		events[0] |= 0x04;	/* LE Connection Update Complete */
4126 
4127 	/* If the controller supports the LE Read Remote Used Features
4128 	 * command, enable the corresponding event.
4129 	 */
4130 	if (hdev->commands[27] & 0x20)
4131 		/* LE Read Remote Used Features Complete */
4132 		events[0] |= 0x08;
4133 
4134 	/* If the controller supports the LE Read Local P-256
4135 	 * Public Key command, enable the corresponding event.
4136 	 */
4137 	if (hdev->commands[34] & 0x02)
4138 		/* LE Read Local P-256 Public Key Complete */
4139 		events[0] |= 0x80;
4140 
4141 	/* If the controller supports the LE Generate DHKey
4142 	 * command, enable the corresponding event.
4143 	 */
4144 	if (hdev->commands[34] & 0x04)
4145 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4146 
4147 	/* If the controller supports the LE Set Default PHY or
4148 	 * LE Set PHY commands, enable the corresponding event.
4149 	 */
4150 	if (hdev->commands[35] & (0x20 | 0x40))
4151 		events[1] |= 0x08;        /* LE PHY Update Complete */
4152 
4153 	/* If the controller supports LE Set Extended Scan Parameters
4154 	 * and LE Set Extended Scan Enable commands, enable the
4155 	 * corresponding event.
4156 	 */
4157 	if (use_ext_scan(hdev))
4158 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4159 
4160 	/* If the controller supports the LE Extended Advertising
4161 	 * command, enable the corresponding event.
4162 	 */
4163 	if (ext_adv_capable(hdev))
4164 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4165 
4166 	if (cis_capable(hdev)) {
4167 		events[3] |= 0x01;	/* LE CIS Established */
4168 		if (cis_peripheral_capable(hdev))
4169 			events[3] |= 0x02; /* LE CIS Request */
4170 	}
4171 
4172 	if (bis_capable(hdev)) {
4173 		events[1] |= 0x20;	/* LE PA Report */
4174 		events[1] |= 0x40;	/* LE PA Sync Established */
4175 		events[3] |= 0x04;	/* LE Create BIG Complete */
4176 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4177 		events[3] |= 0x10;	/* LE BIG Sync Established */
4178 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4179 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
4180 	}
4181 
4182 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4183 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4184 }
4185 
4186 /* Read LE Advertising Channel TX Power */
4187 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4188 {
4189 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4190 		/* HCI TS spec forbids mixing of legacy and extended
4191 		 * advertising commands wherein READ_ADV_TX_POWER is
4192 		 * also included. So do not call it if extended adv
4193 		 * is supported otherwise controller will return
4194 		 * COMMAND_DISALLOWED for extended commands.
4195 		 */
4196 		return __hci_cmd_sync_status(hdev,
4197 					       HCI_OP_LE_READ_ADV_TX_POWER,
4198 					       0, NULL, HCI_CMD_TIMEOUT);
4199 	}
4200 
4201 	return 0;
4202 }
4203 
4204 /* Read LE Min/Max Tx Power*/
4205 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4206 {
4207 	if (!(hdev->commands[38] & 0x80) ||
4208 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4209 		return 0;
4210 
4211 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4212 				     0, NULL, HCI_CMD_TIMEOUT);
4213 }
4214 
4215 /* Read LE Accept List Size */
4216 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4217 {
4218 	if (!(hdev->commands[26] & 0x40))
4219 		return 0;
4220 
4221 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4222 				     0, NULL, HCI_CMD_TIMEOUT);
4223 }
4224 
4225 /* Clear LE Accept List */
4226 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4227 {
4228 	if (!(hdev->commands[26] & 0x80))
4229 		return 0;
4230 
4231 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4232 				     HCI_CMD_TIMEOUT);
4233 }
4234 
4235 /* Read LE Resolving List Size */
4236 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4237 {
4238 	if (!(hdev->commands[34] & 0x40))
4239 		return 0;
4240 
4241 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4242 				     0, NULL, HCI_CMD_TIMEOUT);
4243 }
4244 
4245 /* Clear LE Resolving List */
4246 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4247 {
4248 	if (!(hdev->commands[34] & 0x20))
4249 		return 0;
4250 
4251 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4252 				     HCI_CMD_TIMEOUT);
4253 }
4254 
4255 /* Set RPA timeout */
4256 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4257 {
4258 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4259 
4260 	if (!(hdev->commands[35] & 0x04) ||
4261 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4262 		return 0;
4263 
4264 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4265 				     sizeof(timeout), &timeout,
4266 				     HCI_CMD_TIMEOUT);
4267 }
4268 
4269 /* Read LE Maximum Data Length */
4270 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4271 {
4272 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4273 		return 0;
4274 
4275 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4276 				     HCI_CMD_TIMEOUT);
4277 }
4278 
4279 /* Read LE Suggested Default Data Length */
4280 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4281 {
4282 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4283 		return 0;
4284 
4285 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4286 				     HCI_CMD_TIMEOUT);
4287 }
4288 
4289 /* Read LE Number of Supported Advertising Sets */
4290 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4291 {
4292 	if (!ext_adv_capable(hdev))
4293 		return 0;
4294 
4295 	return __hci_cmd_sync_status(hdev,
4296 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4297 				     0, NULL, HCI_CMD_TIMEOUT);
4298 }
4299 
4300 /* Write LE Host Supported */
4301 static int hci_set_le_support_sync(struct hci_dev *hdev)
4302 {
4303 	struct hci_cp_write_le_host_supported cp;
4304 
4305 	/* LE-only devices do not support explicit enablement */
4306 	if (!lmp_bredr_capable(hdev))
4307 		return 0;
4308 
4309 	memset(&cp, 0, sizeof(cp));
4310 
4311 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4312 		cp.le = 0x01;
4313 		cp.simul = 0x00;
4314 	}
4315 
4316 	if (cp.le == lmp_host_le_capable(hdev))
4317 		return 0;
4318 
4319 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4320 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4321 }
4322 
4323 /* LE Set Host Feature */
4324 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4325 {
4326 	struct hci_cp_le_set_host_feature cp;
4327 
4328 	if (!iso_capable(hdev))
4329 		return 0;
4330 
4331 	memset(&cp, 0, sizeof(cp));
4332 
4333 	/* Isochronous Channels (Host Support) */
4334 	cp.bit_number = 32;
4335 	cp.bit_value = 1;
4336 
4337 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4338 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4339 }
4340 
4341 /* LE Controller init stage 3 command sequence */
4342 static const struct hci_init_stage le_init3[] = {
4343 	/* HCI_OP_LE_SET_EVENT_MASK */
4344 	HCI_INIT(hci_le_set_event_mask_sync),
4345 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4346 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4347 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4348 	HCI_INIT(hci_le_read_tx_power_sync),
4349 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4350 	HCI_INIT(hci_le_read_accept_list_size_sync),
4351 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4352 	HCI_INIT(hci_le_clear_accept_list_sync),
4353 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4354 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4355 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4356 	HCI_INIT(hci_le_clear_resolv_list_sync),
4357 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4358 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4359 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4360 	HCI_INIT(hci_le_read_max_data_len_sync),
4361 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4362 	HCI_INIT(hci_le_read_def_data_len_sync),
4363 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4364 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4365 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4366 	HCI_INIT(hci_set_le_support_sync),
4367 	/* HCI_OP_LE_SET_HOST_FEATURE */
4368 	HCI_INIT(hci_le_set_host_feature_sync),
4369 	{}
4370 };
4371 
4372 static int hci_init3_sync(struct hci_dev *hdev)
4373 {
4374 	int err;
4375 
4376 	bt_dev_dbg(hdev, "");
4377 
4378 	err = hci_init_stage_sync(hdev, hci_init3);
4379 	if (err)
4380 		return err;
4381 
4382 	if (lmp_le_capable(hdev))
4383 		return hci_init_stage_sync(hdev, le_init3);
4384 
4385 	return 0;
4386 }
4387 
4388 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4389 {
4390 	struct hci_cp_delete_stored_link_key cp;
4391 
4392 	/* Some Broadcom based Bluetooth controllers do not support the
4393 	 * Delete Stored Link Key command. They are clearly indicating its
4394 	 * absence in the bit mask of supported commands.
4395 	 *
4396 	 * Check the supported commands and only if the command is marked
4397 	 * as supported send it. If not supported assume that the controller
4398 	 * does not have actual support for stored link keys which makes this
4399 	 * command redundant anyway.
4400 	 *
4401 	 * Some controllers indicate that they support handling deleting
4402 	 * stored link keys, but they don't. The quirk lets a driver
4403 	 * just disable this command.
4404 	 */
4405 	if (!(hdev->commands[6] & 0x80) ||
4406 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4407 		return 0;
4408 
4409 	memset(&cp, 0, sizeof(cp));
4410 	bacpy(&cp.bdaddr, BDADDR_ANY);
4411 	cp.delete_all = 0x01;
4412 
4413 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4414 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4415 }
4416 
4417 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4418 {
4419 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4420 	bool changed = false;
4421 
4422 	/* Set event mask page 2 if the HCI command for it is supported */
4423 	if (!(hdev->commands[22] & 0x04))
4424 		return 0;
4425 
4426 	/* If Connectionless Peripheral Broadcast central role is supported
4427 	 * enable all necessary events for it.
4428 	 */
4429 	if (lmp_cpb_central_capable(hdev)) {
4430 		events[1] |= 0x40;	/* Triggered Clock Capture */
4431 		events[1] |= 0x80;	/* Synchronization Train Complete */
4432 		events[2] |= 0x08;	/* Truncated Page Complete */
4433 		events[2] |= 0x20;	/* CPB Channel Map Change */
4434 		changed = true;
4435 	}
4436 
4437 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4438 	 * enable all necessary events for it.
4439 	 */
4440 	if (lmp_cpb_peripheral_capable(hdev)) {
4441 		events[2] |= 0x01;	/* Synchronization Train Received */
4442 		events[2] |= 0x02;	/* CPB Receive */
4443 		events[2] |= 0x04;	/* CPB Timeout */
4444 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4445 		changed = true;
4446 	}
4447 
4448 	/* Enable Authenticated Payload Timeout Expired event if supported */
4449 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4450 		events[2] |= 0x80;
4451 		changed = true;
4452 	}
4453 
4454 	/* Some Broadcom based controllers indicate support for Set Event
4455 	 * Mask Page 2 command, but then actually do not support it. Since
4456 	 * the default value is all bits set to zero, the command is only
4457 	 * required if the event mask has to be changed. In case no change
4458 	 * to the event mask is needed, skip this command.
4459 	 */
4460 	if (!changed)
4461 		return 0;
4462 
4463 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4464 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4465 }
4466 
4467 /* Read local codec list if the HCI command is supported */
4468 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4469 {
4470 	if (hdev->commands[45] & 0x04)
4471 		hci_read_supported_codecs_v2(hdev);
4472 	else if (hdev->commands[29] & 0x20)
4473 		hci_read_supported_codecs(hdev);
4474 
4475 	return 0;
4476 }
4477 
4478 /* Read local pairing options if the HCI command is supported */
4479 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4480 {
4481 	if (!(hdev->commands[41] & 0x08))
4482 		return 0;
4483 
4484 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4485 				     0, NULL, HCI_CMD_TIMEOUT);
4486 }
4487 
4488 /* Get MWS transport configuration if the HCI command is supported */
4489 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4490 {
4491 	if (!mws_transport_config_capable(hdev))
4492 		return 0;
4493 
4494 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4495 				     0, NULL, HCI_CMD_TIMEOUT);
4496 }
4497 
4498 /* Check for Synchronization Train support */
4499 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4500 {
4501 	if (!lmp_sync_train_capable(hdev))
4502 		return 0;
4503 
4504 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4505 				     0, NULL, HCI_CMD_TIMEOUT);
4506 }
4507 
4508 /* Enable Secure Connections if supported and configured */
4509 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4510 {
4511 	u8 support = 0x01;
4512 
4513 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4514 	    !bredr_sc_enabled(hdev))
4515 		return 0;
4516 
4517 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4518 				     sizeof(support), &support,
4519 				     HCI_CMD_TIMEOUT);
4520 }
4521 
4522 /* Set erroneous data reporting if supported to the wideband speech
4523  * setting value
4524  */
4525 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4526 {
4527 	struct hci_cp_write_def_err_data_reporting cp;
4528 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4529 
4530 	if (!(hdev->commands[18] & 0x08) ||
4531 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4532 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4533 		return 0;
4534 
4535 	if (enabled == hdev->err_data_reporting)
4536 		return 0;
4537 
4538 	memset(&cp, 0, sizeof(cp));
4539 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4540 				ERR_DATA_REPORTING_DISABLED;
4541 
4542 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4543 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4544 }
4545 
4546 static const struct hci_init_stage hci_init4[] = {
4547 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4548 	HCI_INIT(hci_delete_stored_link_key_sync),
4549 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4550 	HCI_INIT(hci_set_event_mask_page_2_sync),
4551 	/* HCI_OP_READ_LOCAL_CODECS */
4552 	HCI_INIT(hci_read_local_codecs_sync),
4553 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4554 	HCI_INIT(hci_read_local_pairing_opts_sync),
4555 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4556 	HCI_INIT(hci_get_mws_transport_config_sync),
4557 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4558 	HCI_INIT(hci_read_sync_train_params_sync),
4559 	/* HCI_OP_WRITE_SC_SUPPORT */
4560 	HCI_INIT(hci_write_sc_support_1_sync),
4561 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4562 	HCI_INIT(hci_set_err_data_report_sync),
4563 	{}
4564 };
4565 
4566 /* Set Suggested Default Data Length to maximum if supported */
4567 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4568 {
4569 	struct hci_cp_le_write_def_data_len cp;
4570 
4571 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4572 		return 0;
4573 
4574 	memset(&cp, 0, sizeof(cp));
4575 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4576 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4577 
4578 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4579 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4580 }
4581 
4582 /* Set Default PHY parameters if command is supported, enables all supported
4583  * PHYs according to the LE Features bits.
4584  */
4585 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4586 {
4587 	struct hci_cp_le_set_default_phy cp;
4588 
4589 	if (!(hdev->commands[35] & 0x20)) {
4590 		/* If the command is not supported it means only 1M PHY is
4591 		 * supported.
4592 		 */
4593 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4594 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4595 		return 0;
4596 	}
4597 
4598 	memset(&cp, 0, sizeof(cp));
4599 	cp.all_phys = 0x00;
4600 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4601 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4602 
4603 	/* Enables 2M PHY if supported */
4604 	if (le_2m_capable(hdev)) {
4605 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4606 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4607 	}
4608 
4609 	/* Enables Coded PHY if supported */
4610 	if (le_coded_capable(hdev)) {
4611 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4612 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4613 	}
4614 
4615 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4616 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4617 }
4618 
4619 static const struct hci_init_stage le_init4[] = {
4620 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4621 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4622 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4623 	HCI_INIT(hci_le_set_default_phy_sync),
4624 	{}
4625 };
4626 
4627 static int hci_init4_sync(struct hci_dev *hdev)
4628 {
4629 	int err;
4630 
4631 	bt_dev_dbg(hdev, "");
4632 
4633 	err = hci_init_stage_sync(hdev, hci_init4);
4634 	if (err)
4635 		return err;
4636 
4637 	if (lmp_le_capable(hdev))
4638 		return hci_init_stage_sync(hdev, le_init4);
4639 
4640 	return 0;
4641 }
4642 
4643 static int hci_init_sync(struct hci_dev *hdev)
4644 {
4645 	int err;
4646 
4647 	err = hci_init1_sync(hdev);
4648 	if (err < 0)
4649 		return err;
4650 
4651 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4652 		hci_debugfs_create_basic(hdev);
4653 
4654 	err = hci_init2_sync(hdev);
4655 	if (err < 0)
4656 		return err;
4657 
4658 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4659 	 * BR/EDR/LE type controllers. AMP controllers only need the
4660 	 * first two stages of init.
4661 	 */
4662 	if (hdev->dev_type != HCI_PRIMARY)
4663 		return 0;
4664 
4665 	err = hci_init3_sync(hdev);
4666 	if (err < 0)
4667 		return err;
4668 
4669 	err = hci_init4_sync(hdev);
4670 	if (err < 0)
4671 		return err;
4672 
4673 	/* This function is only called when the controller is actually in
4674 	 * configured state. When the controller is marked as unconfigured,
4675 	 * this initialization procedure is not run.
4676 	 *
4677 	 * It means that it is possible that a controller runs through its
4678 	 * setup phase and then discovers missing settings. If that is the
4679 	 * case, then this function will not be called. It then will only
4680 	 * be called during the config phase.
4681 	 *
4682 	 * So only when in setup phase or config phase, create the debugfs
4683 	 * entries and register the SMP channels.
4684 	 */
4685 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4686 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4687 		return 0;
4688 
4689 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4690 		return 0;
4691 
4692 	hci_debugfs_create_common(hdev);
4693 
4694 	if (lmp_bredr_capable(hdev))
4695 		hci_debugfs_create_bredr(hdev);
4696 
4697 	if (lmp_le_capable(hdev))
4698 		hci_debugfs_create_le(hdev);
4699 
4700 	return 0;
4701 }
4702 
4703 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4704 
4705 static const struct {
4706 	unsigned long quirk;
4707 	const char *desc;
4708 } hci_broken_table[] = {
4709 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4710 			 "HCI Read Local Supported Commands not supported"),
4711 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4712 			 "HCI Delete Stored Link Key command is advertised, "
4713 			 "but not supported."),
4714 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4715 			 "HCI Read Default Erroneous Data Reporting command is "
4716 			 "advertised, but not supported."),
4717 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4718 			 "HCI Read Transmit Power Level command is advertised, "
4719 			 "but not supported."),
4720 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4721 			 "HCI Set Event Filter command not supported."),
4722 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4723 			 "HCI Enhanced Setup Synchronous Connection command is "
4724 			 "advertised, but not supported."),
4725 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4726 			 "HCI LE Set Random Private Address Timeout command is "
4727 			 "advertised, but not supported."),
4728 	HCI_QUIRK_BROKEN(LE_CODED,
4729 			 "HCI LE Coded PHY feature bit is set, "
4730 			 "but its usage is not supported.")
4731 };
4732 
4733 /* This function handles hdev setup stage:
4734  *
4735  * Calls hdev->setup
4736  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4737  */
4738 static int hci_dev_setup_sync(struct hci_dev *hdev)
4739 {
4740 	int ret = 0;
4741 	bool invalid_bdaddr;
4742 	size_t i;
4743 
4744 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4745 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4746 		return 0;
4747 
4748 	bt_dev_dbg(hdev, "");
4749 
4750 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4751 
4752 	if (hdev->setup)
4753 		ret = hdev->setup(hdev);
4754 
4755 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4756 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4757 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4758 	}
4759 
4760 	/* The transport driver can set the quirk to mark the
4761 	 * BD_ADDR invalid before creating the HCI device or in
4762 	 * its setup callback.
4763 	 */
4764 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4765 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4766 	if (!ret) {
4767 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4768 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
4769 			hci_dev_get_bd_addr_from_property(hdev);
4770 
4771 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4772 		    hdev->set_bdaddr) {
4773 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4774 			if (!ret)
4775 				invalid_bdaddr = false;
4776 		}
4777 	}
4778 
4779 	/* The transport driver can set these quirks before
4780 	 * creating the HCI device or in its setup callback.
4781 	 *
4782 	 * For the invalid BD_ADDR quirk it is possible that
4783 	 * it becomes a valid address if the bootloader does
4784 	 * provide it (see above).
4785 	 *
4786 	 * In case any of them is set, the controller has to
4787 	 * start up as unconfigured.
4788 	 */
4789 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4790 	    invalid_bdaddr)
4791 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4792 
4793 	/* For an unconfigured controller it is required to
4794 	 * read at least the version information provided by
4795 	 * the Read Local Version Information command.
4796 	 *
4797 	 * If the set_bdaddr driver callback is provided, then
4798 	 * also the original Bluetooth public device address
4799 	 * will be read using the Read BD Address command.
4800 	 */
4801 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4802 		return hci_unconf_init_sync(hdev);
4803 
4804 	return ret;
4805 }
4806 
4807 /* This function handles hdev init stage:
4808  *
4809  * Calls hci_dev_setup_sync to perform setup stage
4810  * Calls hci_init_sync to perform HCI command init sequence
4811  */
4812 static int hci_dev_init_sync(struct hci_dev *hdev)
4813 {
4814 	int ret;
4815 
4816 	bt_dev_dbg(hdev, "");
4817 
4818 	atomic_set(&hdev->cmd_cnt, 1);
4819 	set_bit(HCI_INIT, &hdev->flags);
4820 
4821 	ret = hci_dev_setup_sync(hdev);
4822 
4823 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4824 		/* If public address change is configured, ensure that
4825 		 * the address gets programmed. If the driver does not
4826 		 * support changing the public address, fail the power
4827 		 * on procedure.
4828 		 */
4829 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4830 		    hdev->set_bdaddr)
4831 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4832 		else
4833 			ret = -EADDRNOTAVAIL;
4834 	}
4835 
4836 	if (!ret) {
4837 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4838 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4839 			ret = hci_init_sync(hdev);
4840 			if (!ret && hdev->post_init)
4841 				ret = hdev->post_init(hdev);
4842 		}
4843 	}
4844 
4845 	/* If the HCI Reset command is clearing all diagnostic settings,
4846 	 * then they need to be reprogrammed after the init procedure
4847 	 * completed.
4848 	 */
4849 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4850 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4851 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4852 		ret = hdev->set_diag(hdev, true);
4853 
4854 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4855 		msft_do_open(hdev);
4856 		aosp_do_open(hdev);
4857 	}
4858 
4859 	clear_bit(HCI_INIT, &hdev->flags);
4860 
4861 	return ret;
4862 }
4863 
4864 int hci_dev_open_sync(struct hci_dev *hdev)
4865 {
4866 	int ret;
4867 
4868 	bt_dev_dbg(hdev, "");
4869 
4870 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4871 		ret = -ENODEV;
4872 		goto done;
4873 	}
4874 
4875 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4876 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4877 		/* Check for rfkill but allow the HCI setup stage to
4878 		 * proceed (which in itself doesn't cause any RF activity).
4879 		 */
4880 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4881 			ret = -ERFKILL;
4882 			goto done;
4883 		}
4884 
4885 		/* Check for valid public address or a configured static
4886 		 * random address, but let the HCI setup proceed to
4887 		 * be able to determine if there is a public address
4888 		 * or not.
4889 		 *
4890 		 * In case of user channel usage, it is not important
4891 		 * if a public address or static random address is
4892 		 * available.
4893 		 *
4894 		 * This check is only valid for BR/EDR controllers
4895 		 * since AMP controllers do not have an address.
4896 		 */
4897 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4898 		    hdev->dev_type == HCI_PRIMARY &&
4899 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4900 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4901 			ret = -EADDRNOTAVAIL;
4902 			goto done;
4903 		}
4904 	}
4905 
4906 	if (test_bit(HCI_UP, &hdev->flags)) {
4907 		ret = -EALREADY;
4908 		goto done;
4909 	}
4910 
4911 	if (hdev->open(hdev)) {
4912 		ret = -EIO;
4913 		goto done;
4914 	}
4915 
4916 	hci_devcd_reset(hdev);
4917 
4918 	set_bit(HCI_RUNNING, &hdev->flags);
4919 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4920 
4921 	ret = hci_dev_init_sync(hdev);
4922 	if (!ret) {
4923 		hci_dev_hold(hdev);
4924 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4925 		hci_adv_instances_set_rpa_expired(hdev, true);
4926 		set_bit(HCI_UP, &hdev->flags);
4927 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4928 		hci_leds_update_powered(hdev, true);
4929 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4930 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4931 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4932 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4933 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4934 		    hdev->dev_type == HCI_PRIMARY) {
4935 			ret = hci_powered_update_sync(hdev);
4936 			mgmt_power_on(hdev, ret);
4937 		}
4938 	} else {
4939 		/* Init failed, cleanup */
4940 		flush_work(&hdev->tx_work);
4941 
4942 		/* Since hci_rx_work() is possible to awake new cmd_work
4943 		 * it should be flushed first to avoid unexpected call of
4944 		 * hci_cmd_work()
4945 		 */
4946 		flush_work(&hdev->rx_work);
4947 		flush_work(&hdev->cmd_work);
4948 
4949 		skb_queue_purge(&hdev->cmd_q);
4950 		skb_queue_purge(&hdev->rx_q);
4951 
4952 		if (hdev->flush)
4953 			hdev->flush(hdev);
4954 
4955 		if (hdev->sent_cmd) {
4956 			cancel_delayed_work_sync(&hdev->cmd_timer);
4957 			kfree_skb(hdev->sent_cmd);
4958 			hdev->sent_cmd = NULL;
4959 		}
4960 
4961 		if (hdev->req_skb) {
4962 			kfree_skb(hdev->req_skb);
4963 			hdev->req_skb = NULL;
4964 		}
4965 
4966 		clear_bit(HCI_RUNNING, &hdev->flags);
4967 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4968 
4969 		hdev->close(hdev);
4970 		hdev->flags &= BIT(HCI_RAW);
4971 	}
4972 
4973 done:
4974 	return ret;
4975 }
4976 
4977 /* This function requires the caller holds hdev->lock */
4978 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4979 {
4980 	struct hci_conn_params *p;
4981 
4982 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4983 		hci_pend_le_list_del_init(p);
4984 		if (p->conn) {
4985 			hci_conn_drop(p->conn);
4986 			hci_conn_put(p->conn);
4987 			p->conn = NULL;
4988 		}
4989 	}
4990 
4991 	BT_DBG("All LE pending actions cleared");
4992 }
4993 
4994 static int hci_dev_shutdown(struct hci_dev *hdev)
4995 {
4996 	int err = 0;
4997 	/* Similar to how we first do setup and then set the exclusive access
4998 	 * bit for userspace, we must first unset userchannel and then clean up.
4999 	 * Otherwise, the kernel can't properly use the hci channel to clean up
5000 	 * the controller (some shutdown routines require sending additional
5001 	 * commands to the controller for example).
5002 	 */
5003 	bool was_userchannel =
5004 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
5005 
5006 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
5007 	    test_bit(HCI_UP, &hdev->flags)) {
5008 		/* Execute vendor specific shutdown routine */
5009 		if (hdev->shutdown)
5010 			err = hdev->shutdown(hdev);
5011 	}
5012 
5013 	if (was_userchannel)
5014 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
5015 
5016 	return err;
5017 }
5018 
5019 int hci_dev_close_sync(struct hci_dev *hdev)
5020 {
5021 	bool auto_off;
5022 	int err = 0;
5023 
5024 	bt_dev_dbg(hdev, "");
5025 
5026 	cancel_delayed_work(&hdev->power_off);
5027 	cancel_delayed_work(&hdev->ncmd_timer);
5028 	cancel_delayed_work(&hdev->le_scan_disable);
5029 	cancel_delayed_work(&hdev->le_scan_restart);
5030 
5031 	hci_request_cancel_all(hdev);
5032 
5033 	if (hdev->adv_instance_timeout) {
5034 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
5035 		hdev->adv_instance_timeout = 0;
5036 	}
5037 
5038 	err = hci_dev_shutdown(hdev);
5039 
5040 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
5041 		cancel_delayed_work_sync(&hdev->cmd_timer);
5042 		return err;
5043 	}
5044 
5045 	hci_leds_update_powered(hdev, false);
5046 
5047 	/* Flush RX and TX works */
5048 	flush_work(&hdev->tx_work);
5049 	flush_work(&hdev->rx_work);
5050 
5051 	if (hdev->discov_timeout > 0) {
5052 		hdev->discov_timeout = 0;
5053 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
5054 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
5055 	}
5056 
5057 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
5058 		cancel_delayed_work(&hdev->service_cache);
5059 
5060 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5061 		struct adv_info *adv_instance;
5062 
5063 		cancel_delayed_work_sync(&hdev->rpa_expired);
5064 
5065 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5066 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5067 	}
5068 
5069 	/* Avoid potential lockdep warnings from the *_flush() calls by
5070 	 * ensuring the workqueue is empty up front.
5071 	 */
5072 	drain_workqueue(hdev->workqueue);
5073 
5074 	hci_dev_lock(hdev);
5075 
5076 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5077 
5078 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5079 
5080 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
5081 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5082 	    hci_dev_test_flag(hdev, HCI_MGMT))
5083 		__mgmt_power_off(hdev);
5084 
5085 	hci_inquiry_cache_flush(hdev);
5086 	hci_pend_le_actions_clear(hdev);
5087 	hci_conn_hash_flush(hdev);
5088 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5089 	smp_unregister(hdev);
5090 	hci_dev_unlock(hdev);
5091 
5092 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5093 
5094 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5095 		aosp_do_close(hdev);
5096 		msft_do_close(hdev);
5097 	}
5098 
5099 	if (hdev->flush)
5100 		hdev->flush(hdev);
5101 
5102 	/* Reset device */
5103 	skb_queue_purge(&hdev->cmd_q);
5104 	atomic_set(&hdev->cmd_cnt, 1);
5105 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5106 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5107 		set_bit(HCI_INIT, &hdev->flags);
5108 		hci_reset_sync(hdev);
5109 		clear_bit(HCI_INIT, &hdev->flags);
5110 	}
5111 
5112 	/* flush cmd  work */
5113 	flush_work(&hdev->cmd_work);
5114 
5115 	/* Drop queues */
5116 	skb_queue_purge(&hdev->rx_q);
5117 	skb_queue_purge(&hdev->cmd_q);
5118 	skb_queue_purge(&hdev->raw_q);
5119 
5120 	/* Drop last sent command */
5121 	if (hdev->sent_cmd) {
5122 		cancel_delayed_work_sync(&hdev->cmd_timer);
5123 		kfree_skb(hdev->sent_cmd);
5124 		hdev->sent_cmd = NULL;
5125 	}
5126 
5127 	/* Drop last request */
5128 	if (hdev->req_skb) {
5129 		kfree_skb(hdev->req_skb);
5130 		hdev->req_skb = NULL;
5131 	}
5132 
5133 	clear_bit(HCI_RUNNING, &hdev->flags);
5134 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5135 
5136 	/* After this point our queues are empty and no tasks are scheduled. */
5137 	hdev->close(hdev);
5138 
5139 	/* Clear flags */
5140 	hdev->flags &= BIT(HCI_RAW);
5141 	hci_dev_clear_volatile_flags(hdev);
5142 
5143 	/* Controller radio is available but is currently powered down */
5144 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5145 
5146 	memset(hdev->eir, 0, sizeof(hdev->eir));
5147 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5148 	bacpy(&hdev->random_addr, BDADDR_ANY);
5149 	hci_codec_list_clear(&hdev->local_codecs);
5150 
5151 	hci_dev_put(hdev);
5152 	return err;
5153 }
5154 
5155 /* This function perform power on HCI command sequence as follows:
5156  *
5157  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5158  * sequence otherwise run hci_dev_open_sync which will follow with
5159  * hci_powered_update_sync after the init sequence is completed.
5160  */
5161 static int hci_power_on_sync(struct hci_dev *hdev)
5162 {
5163 	int err;
5164 
5165 	if (test_bit(HCI_UP, &hdev->flags) &&
5166 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5167 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5168 		cancel_delayed_work(&hdev->power_off);
5169 		return hci_powered_update_sync(hdev);
5170 	}
5171 
5172 	err = hci_dev_open_sync(hdev);
5173 	if (err < 0)
5174 		return err;
5175 
5176 	/* During the HCI setup phase, a few error conditions are
5177 	 * ignored and they need to be checked now. If they are still
5178 	 * valid, it is important to return the device back off.
5179 	 */
5180 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5181 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5182 	    (hdev->dev_type == HCI_PRIMARY &&
5183 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5184 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5185 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5186 		hci_dev_close_sync(hdev);
5187 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5188 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5189 				   HCI_AUTO_OFF_TIMEOUT);
5190 	}
5191 
5192 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5193 		/* For unconfigured devices, set the HCI_RAW flag
5194 		 * so that userspace can easily identify them.
5195 		 */
5196 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5197 			set_bit(HCI_RAW, &hdev->flags);
5198 
5199 		/* For fully configured devices, this will send
5200 		 * the Index Added event. For unconfigured devices,
5201 		 * it will send Unconfigued Index Added event.
5202 		 *
5203 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5204 		 * and no event will be send.
5205 		 */
5206 		mgmt_index_added(hdev);
5207 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5208 		/* When the controller is now configured, then it
5209 		 * is important to clear the HCI_RAW flag.
5210 		 */
5211 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5212 			clear_bit(HCI_RAW, &hdev->flags);
5213 
5214 		/* Powering on the controller with HCI_CONFIG set only
5215 		 * happens with the transition from unconfigured to
5216 		 * configured. This will send the Index Added event.
5217 		 */
5218 		mgmt_index_added(hdev);
5219 	}
5220 
5221 	return 0;
5222 }
5223 
5224 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5225 {
5226 	struct hci_cp_remote_name_req_cancel cp;
5227 
5228 	memset(&cp, 0, sizeof(cp));
5229 	bacpy(&cp.bdaddr, addr);
5230 
5231 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5232 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5233 }
5234 
5235 int hci_stop_discovery_sync(struct hci_dev *hdev)
5236 {
5237 	struct discovery_state *d = &hdev->discovery;
5238 	struct inquiry_entry *e;
5239 	int err;
5240 
5241 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5242 
5243 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5244 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5245 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5246 						    0, NULL, HCI_CMD_TIMEOUT);
5247 			if (err)
5248 				return err;
5249 		}
5250 
5251 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5252 			cancel_delayed_work(&hdev->le_scan_disable);
5253 			cancel_delayed_work(&hdev->le_scan_restart);
5254 
5255 			err = hci_scan_disable_sync(hdev);
5256 			if (err)
5257 				return err;
5258 		}
5259 
5260 	} else {
5261 		err = hci_scan_disable_sync(hdev);
5262 		if (err)
5263 			return err;
5264 	}
5265 
5266 	/* Resume advertising if it was paused */
5267 	if (use_ll_privacy(hdev))
5268 		hci_resume_advertising_sync(hdev);
5269 
5270 	/* No further actions needed for LE-only discovery */
5271 	if (d->type == DISCOV_TYPE_LE)
5272 		return 0;
5273 
5274 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5275 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5276 						     NAME_PENDING);
5277 		if (!e)
5278 			return 0;
5279 
5280 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5281 	}
5282 
5283 	return 0;
5284 }
5285 
5286 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5287 					u8 reason)
5288 {
5289 	struct hci_cp_disconn_phy_link cp;
5290 
5291 	memset(&cp, 0, sizeof(cp));
5292 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5293 	cp.reason = reason;
5294 
5295 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5296 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5297 }
5298 
5299 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5300 			       u8 reason)
5301 {
5302 	struct hci_cp_disconnect cp;
5303 
5304 	if (conn->type == AMP_LINK)
5305 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5306 
5307 	memset(&cp, 0, sizeof(cp));
5308 	cp.handle = cpu_to_le16(conn->handle);
5309 	cp.reason = reason;
5310 
5311 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5312 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5313 	 * used when suspending or powering off, where we don't want to wait
5314 	 * for the peer's response.
5315 	 */
5316 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5317 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5318 						sizeof(cp), &cp,
5319 						HCI_EV_DISCONN_COMPLETE,
5320 						HCI_CMD_TIMEOUT, NULL);
5321 
5322 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5323 				     HCI_CMD_TIMEOUT);
5324 }
5325 
5326 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5327 				      struct hci_conn *conn, u8 reason)
5328 {
5329 	/* Return reason if scanning since the connection shall probably be
5330 	 * cleanup directly.
5331 	 */
5332 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5333 		return reason;
5334 
5335 	if (conn->role == HCI_ROLE_SLAVE ||
5336 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5337 		return 0;
5338 
5339 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5340 				     0, NULL, HCI_CMD_TIMEOUT);
5341 }
5342 
5343 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5344 				   u8 reason)
5345 {
5346 	if (conn->type == LE_LINK)
5347 		return hci_le_connect_cancel_sync(hdev, conn, reason);
5348 
5349 	if (conn->type == ISO_LINK) {
5350 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5351 		 * page 1857:
5352 		 *
5353 		 * If this command is issued for a CIS on the Central and the
5354 		 * CIS is successfully terminated before being established,
5355 		 * then an HCI_LE_CIS_Established event shall also be sent for
5356 		 * this CIS with the Status Operation Cancelled by Host (0x44).
5357 		 */
5358 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5359 			return hci_disconnect_sync(hdev, conn, reason);
5360 
5361 		/* CIS with no Create CIS sent have nothing to cancel */
5362 		if (bacmp(&conn->dst, BDADDR_ANY))
5363 			return HCI_ERROR_LOCAL_HOST_TERM;
5364 
5365 		/* There is no way to cancel a BIS without terminating the BIG
5366 		 * which is done later on connection cleanup.
5367 		 */
5368 		return 0;
5369 	}
5370 
5371 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5372 		return 0;
5373 
5374 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5375 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5376 	 * used when suspending or powering off, where we don't want to wait
5377 	 * for the peer's response.
5378 	 */
5379 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5380 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5381 						6, &conn->dst,
5382 						HCI_EV_CONN_COMPLETE,
5383 						HCI_CMD_TIMEOUT, NULL);
5384 
5385 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5386 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5387 }
5388 
5389 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5390 			       u8 reason)
5391 {
5392 	struct hci_cp_reject_sync_conn_req cp;
5393 
5394 	memset(&cp, 0, sizeof(cp));
5395 	bacpy(&cp.bdaddr, &conn->dst);
5396 	cp.reason = reason;
5397 
5398 	/* SCO rejection has its own limited set of
5399 	 * allowed error values (0x0D-0x0F).
5400 	 */
5401 	if (reason < 0x0d || reason > 0x0f)
5402 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5403 
5404 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5405 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5406 }
5407 
5408 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5409 				  u8 reason)
5410 {
5411 	struct hci_cp_le_reject_cis cp;
5412 
5413 	memset(&cp, 0, sizeof(cp));
5414 	cp.handle = cpu_to_le16(conn->handle);
5415 	cp.reason = reason;
5416 
5417 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5418 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5419 }
5420 
5421 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5422 				u8 reason)
5423 {
5424 	struct hci_cp_reject_conn_req cp;
5425 
5426 	if (conn->type == ISO_LINK)
5427 		return hci_le_reject_cis_sync(hdev, conn, reason);
5428 
5429 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5430 		return hci_reject_sco_sync(hdev, conn, reason);
5431 
5432 	memset(&cp, 0, sizeof(cp));
5433 	bacpy(&cp.bdaddr, &conn->dst);
5434 	cp.reason = reason;
5435 
5436 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5437 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5438 }
5439 
5440 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5441 {
5442 	int err = 0;
5443 	u16 handle = conn->handle;
5444 	bool disconnect = false;
5445 	struct hci_conn *c;
5446 
5447 	switch (conn->state) {
5448 	case BT_CONNECTED:
5449 	case BT_CONFIG:
5450 		err = hci_disconnect_sync(hdev, conn, reason);
5451 		break;
5452 	case BT_CONNECT:
5453 		err = hci_connect_cancel_sync(hdev, conn, reason);
5454 		break;
5455 	case BT_CONNECT2:
5456 		err = hci_reject_conn_sync(hdev, conn, reason);
5457 		break;
5458 	case BT_OPEN:
5459 		hci_dev_lock(hdev);
5460 
5461 		/* Cleanup bis or pa sync connections */
5462 		if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) ||
5463 		    test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) {
5464 			hci_conn_failed(conn, reason);
5465 		} else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) ||
5466 			   test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
5467 			conn->state = BT_CLOSED;
5468 			hci_disconn_cfm(conn, reason);
5469 			hci_conn_del(conn);
5470 		}
5471 
5472 		hci_dev_unlock(hdev);
5473 		return 0;
5474 	case BT_BOUND:
5475 		break;
5476 	default:
5477 		disconnect = true;
5478 		break;
5479 	}
5480 
5481 	hci_dev_lock(hdev);
5482 
5483 	/* Check if the connection has been cleaned up concurrently */
5484 	c = hci_conn_hash_lookup_handle(hdev, handle);
5485 	if (!c || c != conn) {
5486 		err = 0;
5487 		goto unlock;
5488 	}
5489 
5490 	/* Cleanup hci_conn object if it cannot be cancelled as it
5491 	 * likelly means the controller and host stack are out of sync
5492 	 * or in case of LE it was still scanning so it can be cleanup
5493 	 * safely.
5494 	 */
5495 	if (disconnect) {
5496 		conn->state = BT_CLOSED;
5497 		hci_disconn_cfm(conn, reason);
5498 		hci_conn_del(conn);
5499 	} else {
5500 		hci_conn_failed(conn, reason);
5501 	}
5502 
5503 unlock:
5504 	hci_dev_unlock(hdev);
5505 	return err;
5506 }
5507 
5508 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5509 {
5510 	struct list_head *head = &hdev->conn_hash.list;
5511 	struct hci_conn *conn;
5512 
5513 	rcu_read_lock();
5514 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5515 		/* Make sure the connection is not freed while unlocking */
5516 		conn = hci_conn_get(conn);
5517 		rcu_read_unlock();
5518 		/* Disregard possible errors since hci_conn_del shall have been
5519 		 * called even in case of errors had occurred since it would
5520 		 * then cause hci_conn_failed to be called which calls
5521 		 * hci_conn_del internally.
5522 		 */
5523 		hci_abort_conn_sync(hdev, conn, reason);
5524 		hci_conn_put(conn);
5525 		rcu_read_lock();
5526 	}
5527 	rcu_read_unlock();
5528 
5529 	return 0;
5530 }
5531 
5532 /* This function perform power off HCI command sequence as follows:
5533  *
5534  * Clear Advertising
5535  * Stop Discovery
5536  * Disconnect all connections
5537  * hci_dev_close_sync
5538  */
5539 static int hci_power_off_sync(struct hci_dev *hdev)
5540 {
5541 	int err;
5542 
5543 	/* If controller is already down there is nothing to do */
5544 	if (!test_bit(HCI_UP, &hdev->flags))
5545 		return 0;
5546 
5547 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5548 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5549 		err = hci_write_scan_enable_sync(hdev, 0x00);
5550 		if (err)
5551 			return err;
5552 	}
5553 
5554 	err = hci_clear_adv_sync(hdev, NULL, false);
5555 	if (err)
5556 		return err;
5557 
5558 	err = hci_stop_discovery_sync(hdev);
5559 	if (err)
5560 		return err;
5561 
5562 	/* Terminated due to Power Off */
5563 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5564 	if (err)
5565 		return err;
5566 
5567 	return hci_dev_close_sync(hdev);
5568 }
5569 
5570 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5571 {
5572 	if (val)
5573 		return hci_power_on_sync(hdev);
5574 
5575 	return hci_power_off_sync(hdev);
5576 }
5577 
5578 static int hci_write_iac_sync(struct hci_dev *hdev)
5579 {
5580 	struct hci_cp_write_current_iac_lap cp;
5581 
5582 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5583 		return 0;
5584 
5585 	memset(&cp, 0, sizeof(cp));
5586 
5587 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5588 		/* Limited discoverable mode */
5589 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5590 		cp.iac_lap[0] = 0x00;	/* LIAC */
5591 		cp.iac_lap[1] = 0x8b;
5592 		cp.iac_lap[2] = 0x9e;
5593 		cp.iac_lap[3] = 0x33;	/* GIAC */
5594 		cp.iac_lap[4] = 0x8b;
5595 		cp.iac_lap[5] = 0x9e;
5596 	} else {
5597 		/* General discoverable mode */
5598 		cp.num_iac = 1;
5599 		cp.iac_lap[0] = 0x33;	/* GIAC */
5600 		cp.iac_lap[1] = 0x8b;
5601 		cp.iac_lap[2] = 0x9e;
5602 	}
5603 
5604 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5605 				     (cp.num_iac * 3) + 1, &cp,
5606 				     HCI_CMD_TIMEOUT);
5607 }
5608 
5609 int hci_update_discoverable_sync(struct hci_dev *hdev)
5610 {
5611 	int err = 0;
5612 
5613 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5614 		err = hci_write_iac_sync(hdev);
5615 		if (err)
5616 			return err;
5617 
5618 		err = hci_update_scan_sync(hdev);
5619 		if (err)
5620 			return err;
5621 
5622 		err = hci_update_class_sync(hdev);
5623 		if (err)
5624 			return err;
5625 	}
5626 
5627 	/* Advertising instances don't use the global discoverable setting, so
5628 	 * only update AD if advertising was enabled using Set Advertising.
5629 	 */
5630 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5631 		err = hci_update_adv_data_sync(hdev, 0x00);
5632 		if (err)
5633 			return err;
5634 
5635 		/* Discoverable mode affects the local advertising
5636 		 * address in limited privacy mode.
5637 		 */
5638 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5639 			if (ext_adv_capable(hdev))
5640 				err = hci_start_ext_adv_sync(hdev, 0x00);
5641 			else
5642 				err = hci_enable_advertising_sync(hdev);
5643 		}
5644 	}
5645 
5646 	return err;
5647 }
5648 
5649 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5650 {
5651 	return hci_update_discoverable_sync(hdev);
5652 }
5653 
5654 int hci_update_discoverable(struct hci_dev *hdev)
5655 {
5656 	/* Only queue if it would have any effect */
5657 	if (hdev_is_powered(hdev) &&
5658 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5659 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5660 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5661 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5662 					  NULL);
5663 
5664 	return 0;
5665 }
5666 
5667 int hci_update_connectable_sync(struct hci_dev *hdev)
5668 {
5669 	int err;
5670 
5671 	err = hci_update_scan_sync(hdev);
5672 	if (err)
5673 		return err;
5674 
5675 	/* If BR/EDR is not enabled and we disable advertising as a
5676 	 * by-product of disabling connectable, we need to update the
5677 	 * advertising flags.
5678 	 */
5679 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5680 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5681 
5682 	/* Update the advertising parameters if necessary */
5683 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5684 	    !list_empty(&hdev->adv_instances)) {
5685 		if (ext_adv_capable(hdev))
5686 			err = hci_start_ext_adv_sync(hdev,
5687 						     hdev->cur_adv_instance);
5688 		else
5689 			err = hci_enable_advertising_sync(hdev);
5690 
5691 		if (err)
5692 			return err;
5693 	}
5694 
5695 	return hci_update_passive_scan_sync(hdev);
5696 }
5697 
5698 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5699 {
5700 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5701 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5702 	struct hci_cp_inquiry cp;
5703 
5704 	bt_dev_dbg(hdev, "");
5705 
5706 	if (test_bit(HCI_INQUIRY, &hdev->flags))
5707 		return 0;
5708 
5709 	hci_dev_lock(hdev);
5710 	hci_inquiry_cache_flush(hdev);
5711 	hci_dev_unlock(hdev);
5712 
5713 	memset(&cp, 0, sizeof(cp));
5714 
5715 	if (hdev->discovery.limited)
5716 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5717 	else
5718 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5719 
5720 	cp.length = length;
5721 
5722 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5723 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5724 }
5725 
5726 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5727 {
5728 	u8 own_addr_type;
5729 	/* Accept list is not used for discovery */
5730 	u8 filter_policy = 0x00;
5731 	/* Default is to enable duplicates filter */
5732 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5733 	int err;
5734 
5735 	bt_dev_dbg(hdev, "");
5736 
5737 	/* If controller is scanning, it means the passive scanning is
5738 	 * running. Thus, we should temporarily stop it in order to set the
5739 	 * discovery scanning parameters.
5740 	 */
5741 	err = hci_scan_disable_sync(hdev);
5742 	if (err) {
5743 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5744 		return err;
5745 	}
5746 
5747 	cancel_interleave_scan(hdev);
5748 
5749 	/* Pause address resolution for active scan and stop advertising if
5750 	 * privacy is enabled.
5751 	 */
5752 	err = hci_pause_addr_resolution(hdev);
5753 	if (err)
5754 		goto failed;
5755 
5756 	/* All active scans will be done with either a resolvable private
5757 	 * address (when privacy feature has been enabled) or non-resolvable
5758 	 * private address.
5759 	 */
5760 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5761 					     &own_addr_type);
5762 	if (err < 0)
5763 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5764 
5765 	if (hci_is_adv_monitoring(hdev)) {
5766 		/* Duplicate filter should be disabled when some advertisement
5767 		 * monitor is activated, otherwise AdvMon can only receive one
5768 		 * advertisement for one peer(*) during active scanning, and
5769 		 * might report loss to these peers.
5770 		 *
5771 		 * Note that different controllers have different meanings of
5772 		 * |duplicate|. Some of them consider packets with the same
5773 		 * address as duplicate, and others consider packets with the
5774 		 * same address and the same RSSI as duplicate. Although in the
5775 		 * latter case we don't need to disable duplicate filter, but
5776 		 * it is common to have active scanning for a short period of
5777 		 * time, the power impact should be neglectable.
5778 		 */
5779 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5780 	}
5781 
5782 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5783 				  hdev->le_scan_window_discovery,
5784 				  own_addr_type, filter_policy, filter_dup);
5785 	if (!err)
5786 		return err;
5787 
5788 failed:
5789 	/* Resume advertising if it was paused */
5790 	if (use_ll_privacy(hdev))
5791 		hci_resume_advertising_sync(hdev);
5792 
5793 	/* Resume passive scanning */
5794 	hci_update_passive_scan_sync(hdev);
5795 	return err;
5796 }
5797 
5798 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5799 {
5800 	int err;
5801 
5802 	bt_dev_dbg(hdev, "");
5803 
5804 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5805 	if (err)
5806 		return err;
5807 
5808 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5809 }
5810 
5811 int hci_start_discovery_sync(struct hci_dev *hdev)
5812 {
5813 	unsigned long timeout;
5814 	int err;
5815 
5816 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5817 
5818 	switch (hdev->discovery.type) {
5819 	case DISCOV_TYPE_BREDR:
5820 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5821 	case DISCOV_TYPE_INTERLEAVED:
5822 		/* When running simultaneous discovery, the LE scanning time
5823 		 * should occupy the whole discovery time sine BR/EDR inquiry
5824 		 * and LE scanning are scheduled by the controller.
5825 		 *
5826 		 * For interleaving discovery in comparison, BR/EDR inquiry
5827 		 * and LE scanning are done sequentially with separate
5828 		 * timeouts.
5829 		 */
5830 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5831 			     &hdev->quirks)) {
5832 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5833 			/* During simultaneous discovery, we double LE scan
5834 			 * interval. We must leave some time for the controller
5835 			 * to do BR/EDR inquiry.
5836 			 */
5837 			err = hci_start_interleaved_discovery_sync(hdev);
5838 			break;
5839 		}
5840 
5841 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5842 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5843 		break;
5844 	case DISCOV_TYPE_LE:
5845 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5846 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5847 		break;
5848 	default:
5849 		return -EINVAL;
5850 	}
5851 
5852 	if (err)
5853 		return err;
5854 
5855 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5856 
5857 	/* When service discovery is used and the controller has a
5858 	 * strict duplicate filter, it is important to remember the
5859 	 * start and duration of the scan. This is required for
5860 	 * restarting scanning during the discovery phase.
5861 	 */
5862 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5863 	    hdev->discovery.result_filtering) {
5864 		hdev->discovery.scan_start = jiffies;
5865 		hdev->discovery.scan_duration = timeout;
5866 	}
5867 
5868 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5869 			   timeout);
5870 	return 0;
5871 }
5872 
5873 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5874 {
5875 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5876 	case HCI_ADV_MONITOR_EXT_MSFT:
5877 		msft_suspend_sync(hdev);
5878 		break;
5879 	default:
5880 		return;
5881 	}
5882 }
5883 
5884 /* This function disables discovery and mark it as paused */
5885 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5886 {
5887 	int old_state = hdev->discovery.state;
5888 	int err;
5889 
5890 	/* If discovery already stopped/stopping/paused there nothing to do */
5891 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5892 	    hdev->discovery_paused)
5893 		return 0;
5894 
5895 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5896 	err = hci_stop_discovery_sync(hdev);
5897 	if (err)
5898 		return err;
5899 
5900 	hdev->discovery_paused = true;
5901 	hdev->discovery_old_state = old_state;
5902 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5903 
5904 	return 0;
5905 }
5906 
5907 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5908 {
5909 	struct bdaddr_list_with_flags *b;
5910 	u8 scan = SCAN_DISABLED;
5911 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5912 	int err;
5913 
5914 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5915 		return 0;
5916 
5917 	/* Some fake CSR controllers lock up after setting this type of
5918 	 * filter, so avoid sending the request altogether.
5919 	 */
5920 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5921 		return 0;
5922 
5923 	/* Always clear event filter when starting */
5924 	hci_clear_event_filter_sync(hdev);
5925 
5926 	list_for_each_entry(b, &hdev->accept_list, list) {
5927 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5928 			continue;
5929 
5930 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5931 
5932 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5933 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5934 						 &b->bdaddr,
5935 						 HCI_CONN_SETUP_AUTO_ON);
5936 		if (err)
5937 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5938 				   &b->bdaddr);
5939 		else
5940 			scan = SCAN_PAGE;
5941 	}
5942 
5943 	if (scan && !scanning)
5944 		hci_write_scan_enable_sync(hdev, scan);
5945 	else if (!scan && scanning)
5946 		hci_write_scan_enable_sync(hdev, scan);
5947 
5948 	return 0;
5949 }
5950 
5951 /* This function disables scan (BR and LE) and mark it as paused */
5952 static int hci_pause_scan_sync(struct hci_dev *hdev)
5953 {
5954 	if (hdev->scanning_paused)
5955 		return 0;
5956 
5957 	/* Disable page scan if enabled */
5958 	if (test_bit(HCI_PSCAN, &hdev->flags))
5959 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5960 
5961 	hci_scan_disable_sync(hdev);
5962 
5963 	hdev->scanning_paused = true;
5964 
5965 	return 0;
5966 }
5967 
5968 /* This function performs the HCI suspend procedures in the follow order:
5969  *
5970  * Pause discovery (active scanning/inquiry)
5971  * Pause Directed Advertising/Advertising
5972  * Pause Scanning (passive scanning in case discovery was not active)
5973  * Disconnect all connections
5974  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5975  * otherwise:
5976  * Update event mask (only set events that are allowed to wake up the host)
5977  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5978  * Update passive scanning (lower duty cycle)
5979  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5980  */
5981 int hci_suspend_sync(struct hci_dev *hdev)
5982 {
5983 	int err;
5984 
5985 	/* If marked as suspended there nothing to do */
5986 	if (hdev->suspended)
5987 		return 0;
5988 
5989 	/* Mark device as suspended */
5990 	hdev->suspended = true;
5991 
5992 	/* Pause discovery if not already stopped */
5993 	hci_pause_discovery_sync(hdev);
5994 
5995 	/* Pause other advertisements */
5996 	hci_pause_advertising_sync(hdev);
5997 
5998 	/* Suspend monitor filters */
5999 	hci_suspend_monitor_sync(hdev);
6000 
6001 	/* Prevent disconnects from causing scanning to be re-enabled */
6002 	hci_pause_scan_sync(hdev);
6003 
6004 	if (hci_conn_count(hdev)) {
6005 		/* Soft disconnect everything (power off) */
6006 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
6007 		if (err) {
6008 			/* Set state to BT_RUNNING so resume doesn't notify */
6009 			hdev->suspend_state = BT_RUNNING;
6010 			hci_resume_sync(hdev);
6011 			return err;
6012 		}
6013 
6014 		/* Update event mask so only the allowed event can wakeup the
6015 		 * host.
6016 		 */
6017 		hci_set_event_mask_sync(hdev);
6018 	}
6019 
6020 	/* Only configure accept list if disconnect succeeded and wake
6021 	 * isn't being prevented.
6022 	 */
6023 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
6024 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
6025 		return 0;
6026 	}
6027 
6028 	/* Unpause to take care of updating scanning params */
6029 	hdev->scanning_paused = false;
6030 
6031 	/* Enable event filter for paired devices */
6032 	hci_update_event_filter_sync(hdev);
6033 
6034 	/* Update LE passive scan if enabled */
6035 	hci_update_passive_scan_sync(hdev);
6036 
6037 	/* Pause scan changes again. */
6038 	hdev->scanning_paused = true;
6039 
6040 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
6041 
6042 	return 0;
6043 }
6044 
6045 /* This function resumes discovery */
6046 static int hci_resume_discovery_sync(struct hci_dev *hdev)
6047 {
6048 	int err;
6049 
6050 	/* If discovery not paused there nothing to do */
6051 	if (!hdev->discovery_paused)
6052 		return 0;
6053 
6054 	hdev->discovery_paused = false;
6055 
6056 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
6057 
6058 	err = hci_start_discovery_sync(hdev);
6059 
6060 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
6061 				DISCOVERY_FINDING);
6062 
6063 	return err;
6064 }
6065 
6066 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6067 {
6068 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
6069 	case HCI_ADV_MONITOR_EXT_MSFT:
6070 		msft_resume_sync(hdev);
6071 		break;
6072 	default:
6073 		return;
6074 	}
6075 }
6076 
6077 /* This function resume scan and reset paused flag */
6078 static int hci_resume_scan_sync(struct hci_dev *hdev)
6079 {
6080 	if (!hdev->scanning_paused)
6081 		return 0;
6082 
6083 	hdev->scanning_paused = false;
6084 
6085 	hci_update_scan_sync(hdev);
6086 
6087 	/* Reset passive scanning to normal */
6088 	hci_update_passive_scan_sync(hdev);
6089 
6090 	return 0;
6091 }
6092 
6093 /* This function performs the HCI suspend procedures in the follow order:
6094  *
6095  * Restore event mask
6096  * Clear event filter
6097  * Update passive scanning (normal duty cycle)
6098  * Resume Directed Advertising/Advertising
6099  * Resume discovery (active scanning/inquiry)
6100  */
6101 int hci_resume_sync(struct hci_dev *hdev)
6102 {
6103 	/* If not marked as suspended there nothing to do */
6104 	if (!hdev->suspended)
6105 		return 0;
6106 
6107 	hdev->suspended = false;
6108 
6109 	/* Restore event mask */
6110 	hci_set_event_mask_sync(hdev);
6111 
6112 	/* Clear any event filters and restore scan state */
6113 	hci_clear_event_filter_sync(hdev);
6114 
6115 	/* Resume scanning */
6116 	hci_resume_scan_sync(hdev);
6117 
6118 	/* Resume monitor filters */
6119 	hci_resume_monitor_sync(hdev);
6120 
6121 	/* Resume other advertisements */
6122 	hci_resume_advertising_sync(hdev);
6123 
6124 	/* Resume discovery */
6125 	hci_resume_discovery_sync(hdev);
6126 
6127 	return 0;
6128 }
6129 
6130 static bool conn_use_rpa(struct hci_conn *conn)
6131 {
6132 	struct hci_dev *hdev = conn->hdev;
6133 
6134 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
6135 }
6136 
6137 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6138 						struct hci_conn *conn)
6139 {
6140 	struct hci_cp_le_set_ext_adv_params cp;
6141 	int err;
6142 	bdaddr_t random_addr;
6143 	u8 own_addr_type;
6144 
6145 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6146 					     &own_addr_type);
6147 	if (err)
6148 		return err;
6149 
6150 	/* Set require_privacy to false so that the remote device has a
6151 	 * chance of identifying us.
6152 	 */
6153 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6154 				     &own_addr_type, &random_addr);
6155 	if (err)
6156 		return err;
6157 
6158 	memset(&cp, 0, sizeof(cp));
6159 
6160 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6161 	cp.channel_map = hdev->le_adv_channel_map;
6162 	cp.tx_power = HCI_TX_POWER_INVALID;
6163 	cp.primary_phy = HCI_ADV_PHY_1M;
6164 	cp.secondary_phy = HCI_ADV_PHY_1M;
6165 	cp.handle = 0x00; /* Use instance 0 for directed adv */
6166 	cp.own_addr_type = own_addr_type;
6167 	cp.peer_addr_type = conn->dst_type;
6168 	bacpy(&cp.peer_addr, &conn->dst);
6169 
6170 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6171 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6172 	 * does not supports advertising data when the advertising set already
6173 	 * contains some, the controller shall return erroc code 'Invalid
6174 	 * HCI Command Parameters(0x12).
6175 	 * So it is required to remove adv set for handle 0x00. since we use
6176 	 * instance 0 for directed adv.
6177 	 */
6178 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6179 	if (err)
6180 		return err;
6181 
6182 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6183 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6184 	if (err)
6185 		return err;
6186 
6187 	/* Check if random address need to be updated */
6188 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6189 	    bacmp(&random_addr, BDADDR_ANY) &&
6190 	    bacmp(&random_addr, &hdev->random_addr)) {
6191 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6192 						       &random_addr);
6193 		if (err)
6194 			return err;
6195 	}
6196 
6197 	return hci_enable_ext_advertising_sync(hdev, 0x00);
6198 }
6199 
6200 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6201 					    struct hci_conn *conn)
6202 {
6203 	struct hci_cp_le_set_adv_param cp;
6204 	u8 status;
6205 	u8 own_addr_type;
6206 	u8 enable;
6207 
6208 	if (ext_adv_capable(hdev))
6209 		return hci_le_ext_directed_advertising_sync(hdev, conn);
6210 
6211 	/* Clear the HCI_LE_ADV bit temporarily so that the
6212 	 * hci_update_random_address knows that it's safe to go ahead
6213 	 * and write a new random address. The flag will be set back on
6214 	 * as soon as the SET_ADV_ENABLE HCI command completes.
6215 	 */
6216 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
6217 
6218 	/* Set require_privacy to false so that the remote device has a
6219 	 * chance of identifying us.
6220 	 */
6221 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6222 						&own_addr_type);
6223 	if (status)
6224 		return status;
6225 
6226 	memset(&cp, 0, sizeof(cp));
6227 
6228 	/* Some controllers might reject command if intervals are not
6229 	 * within range for undirected advertising.
6230 	 * BCM20702A0 is known to be affected by this.
6231 	 */
6232 	cp.min_interval = cpu_to_le16(0x0020);
6233 	cp.max_interval = cpu_to_le16(0x0020);
6234 
6235 	cp.type = LE_ADV_DIRECT_IND;
6236 	cp.own_address_type = own_addr_type;
6237 	cp.direct_addr_type = conn->dst_type;
6238 	bacpy(&cp.direct_addr, &conn->dst);
6239 	cp.channel_map = hdev->le_adv_channel_map;
6240 
6241 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6242 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6243 	if (status)
6244 		return status;
6245 
6246 	enable = 0x01;
6247 
6248 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6249 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6250 }
6251 
6252 static void set_ext_conn_params(struct hci_conn *conn,
6253 				struct hci_cp_le_ext_conn_param *p)
6254 {
6255 	struct hci_dev *hdev = conn->hdev;
6256 
6257 	memset(p, 0, sizeof(*p));
6258 
6259 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6260 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6261 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6262 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6263 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6264 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6265 	p->min_ce_len = cpu_to_le16(0x0000);
6266 	p->max_ce_len = cpu_to_le16(0x0000);
6267 }
6268 
6269 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6270 				       struct hci_conn *conn, u8 own_addr_type)
6271 {
6272 	struct hci_cp_le_ext_create_conn *cp;
6273 	struct hci_cp_le_ext_conn_param *p;
6274 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6275 	u32 plen;
6276 
6277 	cp = (void *)data;
6278 	p = (void *)cp->data;
6279 
6280 	memset(cp, 0, sizeof(*cp));
6281 
6282 	bacpy(&cp->peer_addr, &conn->dst);
6283 	cp->peer_addr_type = conn->dst_type;
6284 	cp->own_addr_type = own_addr_type;
6285 
6286 	plen = sizeof(*cp);
6287 
6288 	if (scan_1m(hdev)) {
6289 		cp->phys |= LE_SCAN_PHY_1M;
6290 		set_ext_conn_params(conn, p);
6291 
6292 		p++;
6293 		plen += sizeof(*p);
6294 	}
6295 
6296 	if (scan_2m(hdev)) {
6297 		cp->phys |= LE_SCAN_PHY_2M;
6298 		set_ext_conn_params(conn, p);
6299 
6300 		p++;
6301 		plen += sizeof(*p);
6302 	}
6303 
6304 	if (scan_coded(hdev)) {
6305 		cp->phys |= LE_SCAN_PHY_CODED;
6306 		set_ext_conn_params(conn, p);
6307 
6308 		plen += sizeof(*p);
6309 	}
6310 
6311 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6312 					plen, data,
6313 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6314 					conn->conn_timeout, NULL);
6315 }
6316 
6317 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6318 {
6319 	struct hci_cp_le_create_conn cp;
6320 	struct hci_conn_params *params;
6321 	u8 own_addr_type;
6322 	int err;
6323 
6324 	/* If requested to connect as peripheral use directed advertising */
6325 	if (conn->role == HCI_ROLE_SLAVE) {
6326 		/* If we're active scanning and simultaneous roles is not
6327 		 * enabled simply reject the attempt.
6328 		 */
6329 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6330 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6331 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6332 			hci_conn_del(conn);
6333 			return -EBUSY;
6334 		}
6335 
6336 		/* Pause advertising while doing directed advertising. */
6337 		hci_pause_advertising_sync(hdev);
6338 
6339 		err = hci_le_directed_advertising_sync(hdev, conn);
6340 		goto done;
6341 	}
6342 
6343 	/* Disable advertising if simultaneous roles is not in use. */
6344 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6345 		hci_pause_advertising_sync(hdev);
6346 
6347 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6348 	if (params) {
6349 		conn->le_conn_min_interval = params->conn_min_interval;
6350 		conn->le_conn_max_interval = params->conn_max_interval;
6351 		conn->le_conn_latency = params->conn_latency;
6352 		conn->le_supv_timeout = params->supervision_timeout;
6353 	} else {
6354 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6355 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6356 		conn->le_conn_latency = hdev->le_conn_latency;
6357 		conn->le_supv_timeout = hdev->le_supv_timeout;
6358 	}
6359 
6360 	/* If controller is scanning, we stop it since some controllers are
6361 	 * not able to scan and connect at the same time. Also set the
6362 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6363 	 * handler for scan disabling knows to set the correct discovery
6364 	 * state.
6365 	 */
6366 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6367 		hci_scan_disable_sync(hdev);
6368 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6369 	}
6370 
6371 	/* Update random address, but set require_privacy to false so
6372 	 * that we never connect with an non-resolvable address.
6373 	 */
6374 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6375 					     &own_addr_type);
6376 	if (err)
6377 		goto done;
6378 
6379 	if (use_ext_conn(hdev)) {
6380 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6381 		goto done;
6382 	}
6383 
6384 	memset(&cp, 0, sizeof(cp));
6385 
6386 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6387 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6388 
6389 	bacpy(&cp.peer_addr, &conn->dst);
6390 	cp.peer_addr_type = conn->dst_type;
6391 	cp.own_address_type = own_addr_type;
6392 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6393 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6394 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6395 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6396 	cp.min_ce_len = cpu_to_le16(0x0000);
6397 	cp.max_ce_len = cpu_to_le16(0x0000);
6398 
6399 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6400 	 *
6401 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6402 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6403 	 * sent when a new connection has been created.
6404 	 */
6405 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6406 				       sizeof(cp), &cp,
6407 				       use_enhanced_conn_complete(hdev) ?
6408 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6409 				       HCI_EV_LE_CONN_COMPLETE,
6410 				       conn->conn_timeout, NULL);
6411 
6412 done:
6413 	if (err == -ETIMEDOUT)
6414 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
6415 
6416 	/* Re-enable advertising after the connection attempt is finished. */
6417 	hci_resume_advertising_sync(hdev);
6418 	return err;
6419 }
6420 
6421 int hci_le_create_cis_sync(struct hci_dev *hdev)
6422 {
6423 	struct {
6424 		struct hci_cp_le_create_cis cp;
6425 		struct hci_cis cis[0x1f];
6426 	} cmd;
6427 	struct hci_conn *conn;
6428 	u8 cig = BT_ISO_QOS_CIG_UNSET;
6429 
6430 	/* The spec allows only one pending LE Create CIS command at a time. If
6431 	 * the command is pending now, don't do anything. We check for pending
6432 	 * connections after each CIS Established event.
6433 	 *
6434 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6435 	 * page 2566:
6436 	 *
6437 	 * If the Host issues this command before all the
6438 	 * HCI_LE_CIS_Established events from the previous use of the
6439 	 * command have been generated, the Controller shall return the
6440 	 * error code Command Disallowed (0x0C).
6441 	 *
6442 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6443 	 * page 2567:
6444 	 *
6445 	 * When the Controller receives the HCI_LE_Create_CIS command, the
6446 	 * Controller sends the HCI_Command_Status event to the Host. An
6447 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
6448 	 * is established or if it is disconnected or considered lost before
6449 	 * being established; until all the events are generated, the command
6450 	 * remains pending.
6451 	 */
6452 
6453 	memset(&cmd, 0, sizeof(cmd));
6454 
6455 	hci_dev_lock(hdev);
6456 
6457 	rcu_read_lock();
6458 
6459 	/* Wait until previous Create CIS has completed */
6460 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6461 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6462 			goto done;
6463 	}
6464 
6465 	/* Find CIG with all CIS ready */
6466 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6467 		struct hci_conn *link;
6468 
6469 		if (hci_conn_check_create_cis(conn))
6470 			continue;
6471 
6472 		cig = conn->iso_qos.ucast.cig;
6473 
6474 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6475 			if (hci_conn_check_create_cis(link) > 0 &&
6476 			    link->iso_qos.ucast.cig == cig &&
6477 			    link->state != BT_CONNECTED) {
6478 				cig = BT_ISO_QOS_CIG_UNSET;
6479 				break;
6480 			}
6481 		}
6482 
6483 		if (cig != BT_ISO_QOS_CIG_UNSET)
6484 			break;
6485 	}
6486 
6487 	if (cig == BT_ISO_QOS_CIG_UNSET)
6488 		goto done;
6489 
6490 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6491 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6492 
6493 		if (hci_conn_check_create_cis(conn) ||
6494 		    conn->iso_qos.ucast.cig != cig)
6495 			continue;
6496 
6497 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6498 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6499 		cis->cis_handle = cpu_to_le16(conn->handle);
6500 		cmd.cp.num_cis++;
6501 
6502 		if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6503 			break;
6504 	}
6505 
6506 done:
6507 	rcu_read_unlock();
6508 
6509 	hci_dev_unlock(hdev);
6510 
6511 	if (!cmd.cp.num_cis)
6512 		return 0;
6513 
6514 	/* Wait for HCI_LE_CIS_Established */
6515 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6516 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6517 					cmd.cp.num_cis, &cmd,
6518 					HCI_EVT_LE_CIS_ESTABLISHED,
6519 					conn->conn_timeout, NULL);
6520 }
6521 
6522 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6523 {
6524 	struct hci_cp_le_remove_cig cp;
6525 
6526 	memset(&cp, 0, sizeof(cp));
6527 	cp.cig_id = handle;
6528 
6529 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6530 				     &cp, HCI_CMD_TIMEOUT);
6531 }
6532 
6533 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6534 {
6535 	struct hci_cp_le_big_term_sync cp;
6536 
6537 	memset(&cp, 0, sizeof(cp));
6538 	cp.handle = handle;
6539 
6540 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6541 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6542 }
6543 
6544 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6545 {
6546 	struct hci_cp_le_pa_term_sync cp;
6547 
6548 	memset(&cp, 0, sizeof(cp));
6549 	cp.handle = cpu_to_le16(handle);
6550 
6551 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6552 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6553 }
6554 
6555 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6556 			   bool use_rpa, struct adv_info *adv_instance,
6557 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6558 {
6559 	int err;
6560 
6561 	bacpy(rand_addr, BDADDR_ANY);
6562 
6563 	/* If privacy is enabled use a resolvable private address. If
6564 	 * current RPA has expired then generate a new one.
6565 	 */
6566 	if (use_rpa) {
6567 		/* If Controller supports LL Privacy use own address type is
6568 		 * 0x03
6569 		 */
6570 		if (use_ll_privacy(hdev))
6571 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6572 		else
6573 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6574 
6575 		if (adv_instance) {
6576 			if (adv_rpa_valid(adv_instance))
6577 				return 0;
6578 		} else {
6579 			if (rpa_valid(hdev))
6580 				return 0;
6581 		}
6582 
6583 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6584 		if (err < 0) {
6585 			bt_dev_err(hdev, "failed to generate new RPA");
6586 			return err;
6587 		}
6588 
6589 		bacpy(rand_addr, &hdev->rpa);
6590 
6591 		return 0;
6592 	}
6593 
6594 	/* In case of required privacy without resolvable private address,
6595 	 * use an non-resolvable private address. This is useful for
6596 	 * non-connectable advertising.
6597 	 */
6598 	if (require_privacy) {
6599 		bdaddr_t nrpa;
6600 
6601 		while (true) {
6602 			/* The non-resolvable private address is generated
6603 			 * from random six bytes with the two most significant
6604 			 * bits cleared.
6605 			 */
6606 			get_random_bytes(&nrpa, 6);
6607 			nrpa.b[5] &= 0x3f;
6608 
6609 			/* The non-resolvable private address shall not be
6610 			 * equal to the public address.
6611 			 */
6612 			if (bacmp(&hdev->bdaddr, &nrpa))
6613 				break;
6614 		}
6615 
6616 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6617 		bacpy(rand_addr, &nrpa);
6618 
6619 		return 0;
6620 	}
6621 
6622 	/* No privacy so use a public address. */
6623 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6624 
6625 	return 0;
6626 }
6627 
6628 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6629 {
6630 	u8 instance = PTR_UINT(data);
6631 
6632 	return hci_update_adv_data_sync(hdev, instance);
6633 }
6634 
6635 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6636 {
6637 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6638 				  UINT_PTR(instance), NULL);
6639 }
6640