1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 /* Free the request command so it is not used as response */ 36 kfree_skb(hdev->req_skb); 37 hdev->req_skb = NULL; 38 39 if (skb) { 40 struct sock *sk = hci_skb_sk(skb); 41 42 /* Drop sk reference if set */ 43 if (sk) 44 sock_put(sk); 45 46 hdev->req_rsp = skb_get(skb); 47 } 48 49 wake_up_interruptible(&hdev->req_wait_q); 50 } 51 52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 53 u32 plen, const void *param, 54 struct sock *sk) 55 { 56 int len = HCI_COMMAND_HDR_SIZE + plen; 57 struct hci_command_hdr *hdr; 58 struct sk_buff *skb; 59 60 skb = bt_skb_alloc(len, GFP_ATOMIC); 61 if (!skb) 62 return NULL; 63 64 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 65 hdr->opcode = cpu_to_le16(opcode); 66 hdr->plen = plen; 67 68 if (plen) 69 skb_put_data(skb, param, plen); 70 71 bt_dev_dbg(hdev, "skb len %d", skb->len); 72 73 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 74 hci_skb_opcode(skb) = opcode; 75 76 /* Grab a reference if command needs to be associated with a sock (e.g. 77 * likely mgmt socket that initiated the command). 78 */ 79 if (sk) { 80 hci_skb_sk(skb) = sk; 81 sock_hold(sk); 82 } 83 84 return skb; 85 } 86 87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 88 const void *param, u8 event, struct sock *sk) 89 { 90 struct hci_dev *hdev = req->hdev; 91 struct sk_buff *skb; 92 93 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 94 95 /* If an error occurred during request building, there is no point in 96 * queueing the HCI command. We can simply return. 97 */ 98 if (req->err) 99 return; 100 101 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 102 if (!skb) { 103 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 104 opcode); 105 req->err = -ENOMEM; 106 return; 107 } 108 109 if (skb_queue_empty(&req->cmd_q)) 110 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 111 112 hci_skb_event(skb) = event; 113 114 skb_queue_tail(&req->cmd_q, skb); 115 } 116 117 static int hci_cmd_sync_run(struct hci_request *req) 118 { 119 struct hci_dev *hdev = req->hdev; 120 struct sk_buff *skb; 121 unsigned long flags; 122 123 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 124 125 /* If an error occurred during request building, remove all HCI 126 * commands queued on the HCI request queue. 127 */ 128 if (req->err) { 129 skb_queue_purge(&req->cmd_q); 130 return req->err; 131 } 132 133 /* Do not allow empty requests */ 134 if (skb_queue_empty(&req->cmd_q)) 135 return -ENODATA; 136 137 skb = skb_peek_tail(&req->cmd_q); 138 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 139 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 140 141 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 142 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 143 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 144 145 queue_work(hdev->workqueue, &hdev->cmd_work); 146 147 return 0; 148 } 149 150 /* This function requires the caller holds hdev->req_lock. */ 151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 152 const void *param, u8 event, u32 timeout, 153 struct sock *sk) 154 { 155 struct hci_request req; 156 struct sk_buff *skb; 157 int err = 0; 158 159 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 160 161 hci_req_init(&req, hdev); 162 163 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 164 165 hdev->req_status = HCI_REQ_PEND; 166 167 err = hci_cmd_sync_run(&req); 168 if (err < 0) 169 return ERR_PTR(err); 170 171 err = wait_event_interruptible_timeout(hdev->req_wait_q, 172 hdev->req_status != HCI_REQ_PEND, 173 timeout); 174 175 if (err == -ERESTARTSYS) 176 return ERR_PTR(-EINTR); 177 178 switch (hdev->req_status) { 179 case HCI_REQ_DONE: 180 err = -bt_to_errno(hdev->req_result); 181 break; 182 183 case HCI_REQ_CANCELED: 184 err = -hdev->req_result; 185 break; 186 187 default: 188 err = -ETIMEDOUT; 189 break; 190 } 191 192 hdev->req_status = 0; 193 hdev->req_result = 0; 194 skb = hdev->req_rsp; 195 hdev->req_rsp = NULL; 196 197 bt_dev_dbg(hdev, "end: err %d", err); 198 199 if (err < 0) { 200 kfree_skb(skb); 201 return ERR_PTR(err); 202 } 203 204 return skb; 205 } 206 EXPORT_SYMBOL(__hci_cmd_sync_sk); 207 208 /* This function requires the caller holds hdev->req_lock. */ 209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 210 const void *param, u32 timeout) 211 { 212 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 213 } 214 EXPORT_SYMBOL(__hci_cmd_sync); 215 216 /* Send HCI command and wait for command complete event */ 217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 218 const void *param, u32 timeout) 219 { 220 struct sk_buff *skb; 221 222 if (!test_bit(HCI_UP, &hdev->flags)) 223 return ERR_PTR(-ENETDOWN); 224 225 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 226 227 hci_req_sync_lock(hdev); 228 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 229 hci_req_sync_unlock(hdev); 230 231 return skb; 232 } 233 EXPORT_SYMBOL(hci_cmd_sync); 234 235 /* This function requires the caller holds hdev->req_lock. */ 236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 237 const void *param, u8 event, u32 timeout) 238 { 239 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 240 NULL); 241 } 242 EXPORT_SYMBOL(__hci_cmd_sync_ev); 243 244 /* This function requires the caller holds hdev->req_lock. */ 245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 246 const void *param, u8 event, u32 timeout, 247 struct sock *sk) 248 { 249 struct sk_buff *skb; 250 u8 status; 251 252 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 253 if (IS_ERR(skb)) { 254 if (!event) 255 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 256 PTR_ERR(skb)); 257 return PTR_ERR(skb); 258 } 259 260 /* If command return a status event skb will be set to NULL as there are 261 * no parameters, in case of failure IS_ERR(skb) would have be set to 262 * the actual error would be found with PTR_ERR(skb). 263 */ 264 if (!skb) 265 return 0; 266 267 status = skb->data[0]; 268 269 kfree_skb(skb); 270 271 return status; 272 } 273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 274 275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 276 const void *param, u32 timeout) 277 { 278 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 279 NULL); 280 } 281 EXPORT_SYMBOL(__hci_cmd_sync_status); 282 283 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 284 const void *param, u32 timeout) 285 { 286 int err; 287 288 hci_req_sync_lock(hdev); 289 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 290 hci_req_sync_unlock(hdev); 291 292 return err; 293 } 294 EXPORT_SYMBOL(hci_cmd_sync_status); 295 296 static void hci_cmd_sync_work(struct work_struct *work) 297 { 298 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 299 300 bt_dev_dbg(hdev, ""); 301 302 /* Dequeue all entries and run them */ 303 while (1) { 304 struct hci_cmd_sync_work_entry *entry; 305 306 mutex_lock(&hdev->cmd_sync_work_lock); 307 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 308 struct hci_cmd_sync_work_entry, 309 list); 310 if (entry) 311 list_del(&entry->list); 312 mutex_unlock(&hdev->cmd_sync_work_lock); 313 314 if (!entry) 315 break; 316 317 bt_dev_dbg(hdev, "entry %p", entry); 318 319 if (entry->func) { 320 int err; 321 322 hci_req_sync_lock(hdev); 323 err = entry->func(hdev, entry->data); 324 if (entry->destroy) 325 entry->destroy(hdev, entry->data, err); 326 hci_req_sync_unlock(hdev); 327 } 328 329 kfree(entry); 330 } 331 } 332 333 static void hci_cmd_sync_cancel_work(struct work_struct *work) 334 { 335 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 336 337 cancel_delayed_work_sync(&hdev->cmd_timer); 338 cancel_delayed_work_sync(&hdev->ncmd_timer); 339 atomic_set(&hdev->cmd_cnt, 1); 340 341 wake_up_interruptible(&hdev->req_wait_q); 342 } 343 344 static int hci_scan_disable_sync(struct hci_dev *hdev); 345 static int scan_disable_sync(struct hci_dev *hdev, void *data) 346 { 347 return hci_scan_disable_sync(hdev); 348 } 349 350 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 351 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 352 { 353 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 354 } 355 356 static void le_scan_disable(struct work_struct *work) 357 { 358 struct hci_dev *hdev = container_of(work, struct hci_dev, 359 le_scan_disable.work); 360 int status; 361 362 bt_dev_dbg(hdev, ""); 363 hci_dev_lock(hdev); 364 365 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 366 goto _return; 367 368 cancel_delayed_work(&hdev->le_scan_restart); 369 370 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 371 if (status) { 372 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 373 goto _return; 374 } 375 376 hdev->discovery.scan_start = 0; 377 378 /* If we were running LE only scan, change discovery state. If 379 * we were running both LE and BR/EDR inquiry simultaneously, 380 * and BR/EDR inquiry is already finished, stop discovery, 381 * otherwise BR/EDR inquiry will stop discovery when finished. 382 * If we will resolve remote device name, do not change 383 * discovery state. 384 */ 385 386 if (hdev->discovery.type == DISCOV_TYPE_LE) 387 goto discov_stopped; 388 389 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 390 goto _return; 391 392 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 393 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 394 hdev->discovery.state != DISCOVERY_RESOLVING) 395 goto discov_stopped; 396 397 goto _return; 398 } 399 400 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 401 if (status) { 402 bt_dev_err(hdev, "inquiry failed: status %d", status); 403 goto discov_stopped; 404 } 405 406 goto _return; 407 408 discov_stopped: 409 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 410 411 _return: 412 hci_dev_unlock(hdev); 413 } 414 415 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 416 u8 filter_dup); 417 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 418 { 419 /* If controller is not scanning we are done. */ 420 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 421 return 0; 422 423 if (hdev->scanning_paused) { 424 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 425 return 0; 426 } 427 428 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 429 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 430 LE_SCAN_FILTER_DUP_ENABLE); 431 } 432 433 static void le_scan_restart(struct work_struct *work) 434 { 435 struct hci_dev *hdev = container_of(work, struct hci_dev, 436 le_scan_restart.work); 437 unsigned long timeout, duration, scan_start, now; 438 int status; 439 440 bt_dev_dbg(hdev, ""); 441 442 status = hci_le_scan_restart_sync(hdev); 443 if (status) { 444 bt_dev_err(hdev, "failed to restart LE scan: status %d", 445 status); 446 return; 447 } 448 449 hci_dev_lock(hdev); 450 451 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 452 !hdev->discovery.scan_start) 453 goto unlock; 454 455 /* When the scan was started, hdev->le_scan_disable has been queued 456 * after duration from scan_start. During scan restart this job 457 * has been canceled, and we need to queue it again after proper 458 * timeout, to make sure that scan does not run indefinitely. 459 */ 460 duration = hdev->discovery.scan_duration; 461 scan_start = hdev->discovery.scan_start; 462 now = jiffies; 463 if (now - scan_start <= duration) { 464 int elapsed; 465 466 if (now >= scan_start) 467 elapsed = now - scan_start; 468 else 469 elapsed = ULONG_MAX - scan_start + now; 470 471 timeout = duration - elapsed; 472 } else { 473 timeout = 0; 474 } 475 476 queue_delayed_work(hdev->req_workqueue, 477 &hdev->le_scan_disable, timeout); 478 479 unlock: 480 hci_dev_unlock(hdev); 481 } 482 483 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 484 { 485 bt_dev_dbg(hdev, ""); 486 487 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 488 list_empty(&hdev->adv_instances)) 489 return 0; 490 491 if (hdev->cur_adv_instance) { 492 return hci_schedule_adv_instance_sync(hdev, 493 hdev->cur_adv_instance, 494 true); 495 } else { 496 if (ext_adv_capable(hdev)) { 497 hci_start_ext_adv_sync(hdev, 0x00); 498 } else { 499 hci_update_adv_data_sync(hdev, 0x00); 500 hci_update_scan_rsp_data_sync(hdev, 0x00); 501 hci_enable_advertising_sync(hdev); 502 } 503 } 504 505 return 0; 506 } 507 508 static void reenable_adv(struct work_struct *work) 509 { 510 struct hci_dev *hdev = container_of(work, struct hci_dev, 511 reenable_adv_work); 512 int status; 513 514 bt_dev_dbg(hdev, ""); 515 516 hci_dev_lock(hdev); 517 518 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 519 if (status) 520 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 521 522 hci_dev_unlock(hdev); 523 } 524 525 static void cancel_adv_timeout(struct hci_dev *hdev) 526 { 527 if (hdev->adv_instance_timeout) { 528 hdev->adv_instance_timeout = 0; 529 cancel_delayed_work(&hdev->adv_instance_expire); 530 } 531 } 532 533 /* For a single instance: 534 * - force == true: The instance will be removed even when its remaining 535 * lifetime is not zero. 536 * - force == false: the instance will be deactivated but kept stored unless 537 * the remaining lifetime is zero. 538 * 539 * For instance == 0x00: 540 * - force == true: All instances will be removed regardless of their timeout 541 * setting. 542 * - force == false: Only instances that have a timeout will be removed. 543 */ 544 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 545 u8 instance, bool force) 546 { 547 struct adv_info *adv_instance, *n, *next_instance = NULL; 548 int err; 549 u8 rem_inst; 550 551 /* Cancel any timeout concerning the removed instance(s). */ 552 if (!instance || hdev->cur_adv_instance == instance) 553 cancel_adv_timeout(hdev); 554 555 /* Get the next instance to advertise BEFORE we remove 556 * the current one. This can be the same instance again 557 * if there is only one instance. 558 */ 559 if (instance && hdev->cur_adv_instance == instance) 560 next_instance = hci_get_next_instance(hdev, instance); 561 562 if (instance == 0x00) { 563 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 564 list) { 565 if (!(force || adv_instance->timeout)) 566 continue; 567 568 rem_inst = adv_instance->instance; 569 err = hci_remove_adv_instance(hdev, rem_inst); 570 if (!err) 571 mgmt_advertising_removed(sk, hdev, rem_inst); 572 } 573 } else { 574 adv_instance = hci_find_adv_instance(hdev, instance); 575 576 if (force || (adv_instance && adv_instance->timeout && 577 !adv_instance->remaining_time)) { 578 /* Don't advertise a removed instance. */ 579 if (next_instance && 580 next_instance->instance == instance) 581 next_instance = NULL; 582 583 err = hci_remove_adv_instance(hdev, instance); 584 if (!err) 585 mgmt_advertising_removed(sk, hdev, instance); 586 } 587 } 588 589 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 590 return 0; 591 592 if (next_instance && !ext_adv_capable(hdev)) 593 return hci_schedule_adv_instance_sync(hdev, 594 next_instance->instance, 595 false); 596 597 return 0; 598 } 599 600 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 601 { 602 u8 instance = *(u8 *)data; 603 604 kfree(data); 605 606 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 607 608 if (list_empty(&hdev->adv_instances)) 609 return hci_disable_advertising_sync(hdev); 610 611 return 0; 612 } 613 614 static void adv_timeout_expire(struct work_struct *work) 615 { 616 u8 *inst_ptr; 617 struct hci_dev *hdev = container_of(work, struct hci_dev, 618 adv_instance_expire.work); 619 620 bt_dev_dbg(hdev, ""); 621 622 hci_dev_lock(hdev); 623 624 hdev->adv_instance_timeout = 0; 625 626 if (hdev->cur_adv_instance == 0x00) 627 goto unlock; 628 629 inst_ptr = kmalloc(1, GFP_KERNEL); 630 if (!inst_ptr) 631 goto unlock; 632 633 *inst_ptr = hdev->cur_adv_instance; 634 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 635 636 unlock: 637 hci_dev_unlock(hdev); 638 } 639 640 void hci_cmd_sync_init(struct hci_dev *hdev) 641 { 642 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 643 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 644 mutex_init(&hdev->cmd_sync_work_lock); 645 mutex_init(&hdev->unregister_lock); 646 647 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 648 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 649 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 650 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 651 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 652 } 653 654 void hci_cmd_sync_clear(struct hci_dev *hdev) 655 { 656 struct hci_cmd_sync_work_entry *entry, *tmp; 657 658 cancel_work_sync(&hdev->cmd_sync_work); 659 cancel_work_sync(&hdev->reenable_adv_work); 660 661 mutex_lock(&hdev->cmd_sync_work_lock); 662 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 663 if (entry->destroy) 664 entry->destroy(hdev, entry->data, -ECANCELED); 665 666 list_del(&entry->list); 667 kfree(entry); 668 } 669 mutex_unlock(&hdev->cmd_sync_work_lock); 670 } 671 672 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 673 { 674 bt_dev_dbg(hdev, "err 0x%2.2x", err); 675 676 if (hdev->req_status == HCI_REQ_PEND) { 677 hdev->req_result = err; 678 hdev->req_status = HCI_REQ_CANCELED; 679 680 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 681 } 682 } 683 EXPORT_SYMBOL(hci_cmd_sync_cancel); 684 685 /* Cancel ongoing command request synchronously: 686 * 687 * - Set result and mark status to HCI_REQ_CANCELED 688 * - Wakeup command sync thread 689 */ 690 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 691 { 692 bt_dev_dbg(hdev, "err 0x%2.2x", err); 693 694 if (hdev->req_status == HCI_REQ_PEND) { 695 /* req_result is __u32 so error must be positive to be properly 696 * propagated. 697 */ 698 hdev->req_result = err < 0 ? -err : err; 699 hdev->req_status = HCI_REQ_CANCELED; 700 701 wake_up_interruptible(&hdev->req_wait_q); 702 } 703 } 704 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 705 706 /* Submit HCI command to be run in as cmd_sync_work: 707 * 708 * - hdev must _not_ be unregistered 709 */ 710 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 711 void *data, hci_cmd_sync_work_destroy_t destroy) 712 { 713 struct hci_cmd_sync_work_entry *entry; 714 int err = 0; 715 716 mutex_lock(&hdev->unregister_lock); 717 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 718 err = -ENODEV; 719 goto unlock; 720 } 721 722 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 723 if (!entry) { 724 err = -ENOMEM; 725 goto unlock; 726 } 727 entry->func = func; 728 entry->data = data; 729 entry->destroy = destroy; 730 731 mutex_lock(&hdev->cmd_sync_work_lock); 732 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 733 mutex_unlock(&hdev->cmd_sync_work_lock); 734 735 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 736 737 unlock: 738 mutex_unlock(&hdev->unregister_lock); 739 return err; 740 } 741 EXPORT_SYMBOL(hci_cmd_sync_submit); 742 743 /* Queue HCI command: 744 * 745 * - hdev must be running 746 */ 747 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 748 void *data, hci_cmd_sync_work_destroy_t destroy) 749 { 750 /* Only queue command if hdev is running which means it had been opened 751 * and is either on init phase or is already up. 752 */ 753 if (!test_bit(HCI_RUNNING, &hdev->flags)) 754 return -ENETDOWN; 755 756 return hci_cmd_sync_submit(hdev, func, data, destroy); 757 } 758 EXPORT_SYMBOL(hci_cmd_sync_queue); 759 760 int hci_update_eir_sync(struct hci_dev *hdev) 761 { 762 struct hci_cp_write_eir cp; 763 764 bt_dev_dbg(hdev, ""); 765 766 if (!hdev_is_powered(hdev)) 767 return 0; 768 769 if (!lmp_ext_inq_capable(hdev)) 770 return 0; 771 772 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 773 return 0; 774 775 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 776 return 0; 777 778 memset(&cp, 0, sizeof(cp)); 779 780 eir_create(hdev, cp.data); 781 782 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 783 return 0; 784 785 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 786 787 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 788 HCI_CMD_TIMEOUT); 789 } 790 791 static u8 get_service_classes(struct hci_dev *hdev) 792 { 793 struct bt_uuid *uuid; 794 u8 val = 0; 795 796 list_for_each_entry(uuid, &hdev->uuids, list) 797 val |= uuid->svc_hint; 798 799 return val; 800 } 801 802 int hci_update_class_sync(struct hci_dev *hdev) 803 { 804 u8 cod[3]; 805 806 bt_dev_dbg(hdev, ""); 807 808 if (!hdev_is_powered(hdev)) 809 return 0; 810 811 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 812 return 0; 813 814 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 815 return 0; 816 817 cod[0] = hdev->minor_class; 818 cod[1] = hdev->major_class; 819 cod[2] = get_service_classes(hdev); 820 821 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 822 cod[1] |= 0x20; 823 824 if (memcmp(cod, hdev->dev_class, 3) == 0) 825 return 0; 826 827 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 828 sizeof(cod), cod, HCI_CMD_TIMEOUT); 829 } 830 831 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 832 { 833 /* If there is no connection we are OK to advertise. */ 834 if (hci_conn_num(hdev, LE_LINK) == 0) 835 return true; 836 837 /* Check le_states if there is any connection in peripheral role. */ 838 if (hdev->conn_hash.le_num_peripheral > 0) { 839 /* Peripheral connection state and non connectable mode 840 * bit 20. 841 */ 842 if (!connectable && !(hdev->le_states[2] & 0x10)) 843 return false; 844 845 /* Peripheral connection state and connectable mode bit 38 846 * and scannable bit 21. 847 */ 848 if (connectable && (!(hdev->le_states[4] & 0x40) || 849 !(hdev->le_states[2] & 0x20))) 850 return false; 851 } 852 853 /* Check le_states if there is any connection in central role. */ 854 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 855 /* Central connection state and non connectable mode bit 18. */ 856 if (!connectable && !(hdev->le_states[2] & 0x02)) 857 return false; 858 859 /* Central connection state and connectable mode bit 35 and 860 * scannable 19. 861 */ 862 if (connectable && (!(hdev->le_states[4] & 0x08) || 863 !(hdev->le_states[2] & 0x08))) 864 return false; 865 } 866 867 return true; 868 } 869 870 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 871 { 872 /* If privacy is not enabled don't use RPA */ 873 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 874 return false; 875 876 /* If basic privacy mode is enabled use RPA */ 877 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 878 return true; 879 880 /* If limited privacy mode is enabled don't use RPA if we're 881 * both discoverable and bondable. 882 */ 883 if ((flags & MGMT_ADV_FLAG_DISCOV) && 884 hci_dev_test_flag(hdev, HCI_BONDABLE)) 885 return false; 886 887 /* We're neither bondable nor discoverable in the limited 888 * privacy mode, therefore use RPA. 889 */ 890 return true; 891 } 892 893 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 894 { 895 /* If we're advertising or initiating an LE connection we can't 896 * go ahead and change the random address at this time. This is 897 * because the eventual initiator address used for the 898 * subsequently created connection will be undefined (some 899 * controllers use the new address and others the one we had 900 * when the operation started). 901 * 902 * In this kind of scenario skip the update and let the random 903 * address be updated at the next cycle. 904 */ 905 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 906 hci_lookup_le_connect(hdev)) { 907 bt_dev_dbg(hdev, "Deferring random address update"); 908 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 909 return 0; 910 } 911 912 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 913 6, rpa, HCI_CMD_TIMEOUT); 914 } 915 916 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 917 bool rpa, u8 *own_addr_type) 918 { 919 int err; 920 921 /* If privacy is enabled use a resolvable private address. If 922 * current RPA has expired or there is something else than 923 * the current RPA in use, then generate a new one. 924 */ 925 if (rpa) { 926 /* If Controller supports LL Privacy use own address type is 927 * 0x03 928 */ 929 if (use_ll_privacy(hdev)) 930 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 931 else 932 *own_addr_type = ADDR_LE_DEV_RANDOM; 933 934 /* Check if RPA is valid */ 935 if (rpa_valid(hdev)) 936 return 0; 937 938 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 939 if (err < 0) { 940 bt_dev_err(hdev, "failed to generate new RPA"); 941 return err; 942 } 943 944 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 945 if (err) 946 return err; 947 948 return 0; 949 } 950 951 /* In case of required privacy without resolvable private address, 952 * use an non-resolvable private address. This is useful for active 953 * scanning and non-connectable advertising. 954 */ 955 if (require_privacy) { 956 bdaddr_t nrpa; 957 958 while (true) { 959 /* The non-resolvable private address is generated 960 * from random six bytes with the two most significant 961 * bits cleared. 962 */ 963 get_random_bytes(&nrpa, 6); 964 nrpa.b[5] &= 0x3f; 965 966 /* The non-resolvable private address shall not be 967 * equal to the public address. 968 */ 969 if (bacmp(&hdev->bdaddr, &nrpa)) 970 break; 971 } 972 973 *own_addr_type = ADDR_LE_DEV_RANDOM; 974 975 return hci_set_random_addr_sync(hdev, &nrpa); 976 } 977 978 /* If forcing static address is in use or there is no public 979 * address use the static address as random address (but skip 980 * the HCI command if the current random address is already the 981 * static one. 982 * 983 * In case BR/EDR has been disabled on a dual-mode controller 984 * and a static address has been configured, then use that 985 * address instead of the public BR/EDR address. 986 */ 987 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 988 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 989 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 990 bacmp(&hdev->static_addr, BDADDR_ANY))) { 991 *own_addr_type = ADDR_LE_DEV_RANDOM; 992 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 993 return hci_set_random_addr_sync(hdev, 994 &hdev->static_addr); 995 return 0; 996 } 997 998 /* Neither privacy nor static address is being used so use a 999 * public address. 1000 */ 1001 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1002 1003 return 0; 1004 } 1005 1006 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1007 { 1008 struct hci_cp_le_set_ext_adv_enable *cp; 1009 struct hci_cp_ext_adv_set *set; 1010 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1011 u8 size; 1012 1013 /* If request specifies an instance that doesn't exist, fail */ 1014 if (instance > 0) { 1015 struct adv_info *adv; 1016 1017 adv = hci_find_adv_instance(hdev, instance); 1018 if (!adv) 1019 return -EINVAL; 1020 1021 /* If not enabled there is nothing to do */ 1022 if (!adv->enabled) 1023 return 0; 1024 } 1025 1026 memset(data, 0, sizeof(data)); 1027 1028 cp = (void *)data; 1029 set = (void *)cp->data; 1030 1031 /* Instance 0x00 indicates all advertising instances will be disabled */ 1032 cp->num_of_sets = !!instance; 1033 cp->enable = 0x00; 1034 1035 set->handle = instance; 1036 1037 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1038 1039 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1040 size, data, HCI_CMD_TIMEOUT); 1041 } 1042 1043 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1044 bdaddr_t *random_addr) 1045 { 1046 struct hci_cp_le_set_adv_set_rand_addr cp; 1047 int err; 1048 1049 if (!instance) { 1050 /* Instance 0x00 doesn't have an adv_info, instead it uses 1051 * hdev->random_addr to track its address so whenever it needs 1052 * to be updated this also set the random address since 1053 * hdev->random_addr is shared with scan state machine. 1054 */ 1055 err = hci_set_random_addr_sync(hdev, random_addr); 1056 if (err) 1057 return err; 1058 } 1059 1060 memset(&cp, 0, sizeof(cp)); 1061 1062 cp.handle = instance; 1063 bacpy(&cp.bdaddr, random_addr); 1064 1065 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1066 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1067 } 1068 1069 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1070 { 1071 struct hci_cp_le_set_ext_adv_params cp; 1072 bool connectable; 1073 u32 flags; 1074 bdaddr_t random_addr; 1075 u8 own_addr_type; 1076 int err; 1077 struct adv_info *adv; 1078 bool secondary_adv; 1079 1080 if (instance > 0) { 1081 adv = hci_find_adv_instance(hdev, instance); 1082 if (!adv) 1083 return -EINVAL; 1084 } else { 1085 adv = NULL; 1086 } 1087 1088 /* Updating parameters of an active instance will return a 1089 * Command Disallowed error, so we must first disable the 1090 * instance if it is active. 1091 */ 1092 if (adv && !adv->pending) { 1093 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1094 if (err) 1095 return err; 1096 } 1097 1098 flags = hci_adv_instance_flags(hdev, instance); 1099 1100 /* If the "connectable" instance flag was not set, then choose between 1101 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1102 */ 1103 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1104 mgmt_get_connectable(hdev); 1105 1106 if (!is_advertising_allowed(hdev, connectable)) 1107 return -EPERM; 1108 1109 /* Set require_privacy to true only when non-connectable 1110 * advertising is used. In that case it is fine to use a 1111 * non-resolvable private address. 1112 */ 1113 err = hci_get_random_address(hdev, !connectable, 1114 adv_use_rpa(hdev, flags), adv, 1115 &own_addr_type, &random_addr); 1116 if (err < 0) 1117 return err; 1118 1119 memset(&cp, 0, sizeof(cp)); 1120 1121 if (adv) { 1122 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1123 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1124 cp.tx_power = adv->tx_power; 1125 } else { 1126 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1127 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1128 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1129 } 1130 1131 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1132 1133 if (connectable) { 1134 if (secondary_adv) 1135 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1136 else 1137 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1138 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1139 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1140 if (secondary_adv) 1141 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1142 else 1143 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1144 } else { 1145 if (secondary_adv) 1146 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1147 else 1148 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1149 } 1150 1151 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1152 * contains the peer’s Identity Address and the Peer_Address_Type 1153 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1154 * These parameters are used to locate the corresponding local IRK in 1155 * the resolving list; this IRK is used to generate their own address 1156 * used in the advertisement. 1157 */ 1158 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1159 hci_copy_identity_address(hdev, &cp.peer_addr, 1160 &cp.peer_addr_type); 1161 1162 cp.own_addr_type = own_addr_type; 1163 cp.channel_map = hdev->le_adv_channel_map; 1164 cp.handle = instance; 1165 1166 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1167 cp.primary_phy = HCI_ADV_PHY_1M; 1168 cp.secondary_phy = HCI_ADV_PHY_2M; 1169 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1170 cp.primary_phy = HCI_ADV_PHY_CODED; 1171 cp.secondary_phy = HCI_ADV_PHY_CODED; 1172 } else { 1173 /* In all other cases use 1M */ 1174 cp.primary_phy = HCI_ADV_PHY_1M; 1175 cp.secondary_phy = HCI_ADV_PHY_1M; 1176 } 1177 1178 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1179 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1180 if (err) 1181 return err; 1182 1183 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1184 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1185 bacmp(&random_addr, BDADDR_ANY)) { 1186 /* Check if random address need to be updated */ 1187 if (adv) { 1188 if (!bacmp(&random_addr, &adv->random_addr)) 1189 return 0; 1190 } else { 1191 if (!bacmp(&random_addr, &hdev->random_addr)) 1192 return 0; 1193 } 1194 1195 return hci_set_adv_set_random_addr_sync(hdev, instance, 1196 &random_addr); 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1203 { 1204 struct { 1205 struct hci_cp_le_set_ext_scan_rsp_data cp; 1206 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1207 } pdu; 1208 u8 len; 1209 struct adv_info *adv = NULL; 1210 int err; 1211 1212 memset(&pdu, 0, sizeof(pdu)); 1213 1214 if (instance) { 1215 adv = hci_find_adv_instance(hdev, instance); 1216 if (!adv || !adv->scan_rsp_changed) 1217 return 0; 1218 } 1219 1220 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1221 1222 pdu.cp.handle = instance; 1223 pdu.cp.length = len; 1224 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1225 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1226 1227 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1228 sizeof(pdu.cp) + len, &pdu.cp, 1229 HCI_CMD_TIMEOUT); 1230 if (err) 1231 return err; 1232 1233 if (adv) { 1234 adv->scan_rsp_changed = false; 1235 } else { 1236 memcpy(hdev->scan_rsp_data, pdu.data, len); 1237 hdev->scan_rsp_data_len = len; 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1244 { 1245 struct hci_cp_le_set_scan_rsp_data cp; 1246 u8 len; 1247 1248 memset(&cp, 0, sizeof(cp)); 1249 1250 len = eir_create_scan_rsp(hdev, instance, cp.data); 1251 1252 if (hdev->scan_rsp_data_len == len && 1253 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1254 return 0; 1255 1256 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1257 hdev->scan_rsp_data_len = len; 1258 1259 cp.length = len; 1260 1261 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1262 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1263 } 1264 1265 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1266 { 1267 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1268 return 0; 1269 1270 if (ext_adv_capable(hdev)) 1271 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1272 1273 return __hci_set_scan_rsp_data_sync(hdev, instance); 1274 } 1275 1276 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1277 { 1278 struct hci_cp_le_set_ext_adv_enable *cp; 1279 struct hci_cp_ext_adv_set *set; 1280 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1281 struct adv_info *adv; 1282 1283 if (instance > 0) { 1284 adv = hci_find_adv_instance(hdev, instance); 1285 if (!adv) 1286 return -EINVAL; 1287 /* If already enabled there is nothing to do */ 1288 if (adv->enabled) 1289 return 0; 1290 } else { 1291 adv = NULL; 1292 } 1293 1294 cp = (void *)data; 1295 set = (void *)cp->data; 1296 1297 memset(cp, 0, sizeof(*cp)); 1298 1299 cp->enable = 0x01; 1300 cp->num_of_sets = 0x01; 1301 1302 memset(set, 0, sizeof(*set)); 1303 1304 set->handle = instance; 1305 1306 /* Set duration per instance since controller is responsible for 1307 * scheduling it. 1308 */ 1309 if (adv && adv->timeout) { 1310 u16 duration = adv->timeout * MSEC_PER_SEC; 1311 1312 /* Time = N * 10 ms */ 1313 set->duration = cpu_to_le16(duration / 10); 1314 } 1315 1316 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1317 sizeof(*cp) + 1318 sizeof(*set) * cp->num_of_sets, 1319 data, HCI_CMD_TIMEOUT); 1320 } 1321 1322 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1323 { 1324 int err; 1325 1326 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1327 if (err) 1328 return err; 1329 1330 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1331 if (err) 1332 return err; 1333 1334 return hci_enable_ext_advertising_sync(hdev, instance); 1335 } 1336 1337 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1338 { 1339 struct hci_cp_le_set_per_adv_enable cp; 1340 struct adv_info *adv = NULL; 1341 1342 /* If periodic advertising already disabled there is nothing to do. */ 1343 adv = hci_find_adv_instance(hdev, instance); 1344 if (!adv || !adv->periodic || !adv->enabled) 1345 return 0; 1346 1347 memset(&cp, 0, sizeof(cp)); 1348 1349 cp.enable = 0x00; 1350 cp.handle = instance; 1351 1352 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1353 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1354 } 1355 1356 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1357 u16 min_interval, u16 max_interval) 1358 { 1359 struct hci_cp_le_set_per_adv_params cp; 1360 1361 memset(&cp, 0, sizeof(cp)); 1362 1363 if (!min_interval) 1364 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1365 1366 if (!max_interval) 1367 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1368 1369 cp.handle = instance; 1370 cp.min_interval = cpu_to_le16(min_interval); 1371 cp.max_interval = cpu_to_le16(max_interval); 1372 cp.periodic_properties = 0x0000; 1373 1374 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1375 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1376 } 1377 1378 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1379 { 1380 struct { 1381 struct hci_cp_le_set_per_adv_data cp; 1382 u8 data[HCI_MAX_PER_AD_LENGTH]; 1383 } pdu; 1384 u8 len; 1385 1386 memset(&pdu, 0, sizeof(pdu)); 1387 1388 if (instance) { 1389 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1390 1391 if (!adv || !adv->periodic) 1392 return 0; 1393 } 1394 1395 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1396 1397 pdu.cp.length = len; 1398 pdu.cp.handle = instance; 1399 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1400 1401 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1402 sizeof(pdu.cp) + len, &pdu, 1403 HCI_CMD_TIMEOUT); 1404 } 1405 1406 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1407 { 1408 struct hci_cp_le_set_per_adv_enable cp; 1409 struct adv_info *adv = NULL; 1410 1411 /* If periodic advertising already enabled there is nothing to do. */ 1412 adv = hci_find_adv_instance(hdev, instance); 1413 if (adv && adv->periodic && adv->enabled) 1414 return 0; 1415 1416 memset(&cp, 0, sizeof(cp)); 1417 1418 cp.enable = 0x01; 1419 cp.handle = instance; 1420 1421 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1422 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1423 } 1424 1425 /* Checks if periodic advertising data contains a Basic Announcement and if it 1426 * does generates a Broadcast ID and add Broadcast Announcement. 1427 */ 1428 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1429 { 1430 u8 bid[3]; 1431 u8 ad[4 + 3]; 1432 1433 /* Skip if NULL adv as instance 0x00 is used for general purpose 1434 * advertising so it cannot used for the likes of Broadcast Announcement 1435 * as it can be overwritten at any point. 1436 */ 1437 if (!adv) 1438 return 0; 1439 1440 /* Check if PA data doesn't contains a Basic Audio Announcement then 1441 * there is nothing to do. 1442 */ 1443 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1444 0x1851, NULL)) 1445 return 0; 1446 1447 /* Check if advertising data already has a Broadcast Announcement since 1448 * the process may want to control the Broadcast ID directly and in that 1449 * case the kernel shall no interfere. 1450 */ 1451 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1452 NULL)) 1453 return 0; 1454 1455 /* Generate Broadcast ID */ 1456 get_random_bytes(bid, sizeof(bid)); 1457 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1458 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1459 1460 return hci_update_adv_data_sync(hdev, adv->instance); 1461 } 1462 1463 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1464 u8 *data, u32 flags, u16 min_interval, 1465 u16 max_interval, u16 sync_interval) 1466 { 1467 struct adv_info *adv = NULL; 1468 int err; 1469 bool added = false; 1470 1471 hci_disable_per_advertising_sync(hdev, instance); 1472 1473 if (instance) { 1474 adv = hci_find_adv_instance(hdev, instance); 1475 /* Create an instance if that could not be found */ 1476 if (!adv) { 1477 adv = hci_add_per_instance(hdev, instance, flags, 1478 data_len, data, 1479 sync_interval, 1480 sync_interval); 1481 if (IS_ERR(adv)) 1482 return PTR_ERR(adv); 1483 adv->pending = false; 1484 added = true; 1485 } 1486 } 1487 1488 /* Start advertising */ 1489 err = hci_start_ext_adv_sync(hdev, instance); 1490 if (err < 0) 1491 goto fail; 1492 1493 err = hci_adv_bcast_annoucement(hdev, adv); 1494 if (err < 0) 1495 goto fail; 1496 1497 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1498 max_interval); 1499 if (err < 0) 1500 goto fail; 1501 1502 err = hci_set_per_adv_data_sync(hdev, instance); 1503 if (err < 0) 1504 goto fail; 1505 1506 err = hci_enable_per_advertising_sync(hdev, instance); 1507 if (err < 0) 1508 goto fail; 1509 1510 return 0; 1511 1512 fail: 1513 if (added) 1514 hci_remove_adv_instance(hdev, instance); 1515 1516 return err; 1517 } 1518 1519 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1520 { 1521 int err; 1522 1523 if (ext_adv_capable(hdev)) 1524 return hci_start_ext_adv_sync(hdev, instance); 1525 1526 err = hci_update_adv_data_sync(hdev, instance); 1527 if (err) 1528 return err; 1529 1530 err = hci_update_scan_rsp_data_sync(hdev, instance); 1531 if (err) 1532 return err; 1533 1534 return hci_enable_advertising_sync(hdev); 1535 } 1536 1537 int hci_enable_advertising_sync(struct hci_dev *hdev) 1538 { 1539 struct adv_info *adv_instance; 1540 struct hci_cp_le_set_adv_param cp; 1541 u8 own_addr_type, enable = 0x01; 1542 bool connectable; 1543 u16 adv_min_interval, adv_max_interval; 1544 u32 flags; 1545 u8 status; 1546 1547 if (ext_adv_capable(hdev)) 1548 return hci_enable_ext_advertising_sync(hdev, 1549 hdev->cur_adv_instance); 1550 1551 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1552 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1553 1554 /* If the "connectable" instance flag was not set, then choose between 1555 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1556 */ 1557 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1558 mgmt_get_connectable(hdev); 1559 1560 if (!is_advertising_allowed(hdev, connectable)) 1561 return -EINVAL; 1562 1563 status = hci_disable_advertising_sync(hdev); 1564 if (status) 1565 return status; 1566 1567 /* Clear the HCI_LE_ADV bit temporarily so that the 1568 * hci_update_random_address knows that it's safe to go ahead 1569 * and write a new random address. The flag will be set back on 1570 * as soon as the SET_ADV_ENABLE HCI command completes. 1571 */ 1572 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1573 1574 /* Set require_privacy to true only when non-connectable 1575 * advertising is used. In that case it is fine to use a 1576 * non-resolvable private address. 1577 */ 1578 status = hci_update_random_address_sync(hdev, !connectable, 1579 adv_use_rpa(hdev, flags), 1580 &own_addr_type); 1581 if (status) 1582 return status; 1583 1584 memset(&cp, 0, sizeof(cp)); 1585 1586 if (adv_instance) { 1587 adv_min_interval = adv_instance->min_interval; 1588 adv_max_interval = adv_instance->max_interval; 1589 } else { 1590 adv_min_interval = hdev->le_adv_min_interval; 1591 adv_max_interval = hdev->le_adv_max_interval; 1592 } 1593 1594 if (connectable) { 1595 cp.type = LE_ADV_IND; 1596 } else { 1597 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1598 cp.type = LE_ADV_SCAN_IND; 1599 else 1600 cp.type = LE_ADV_NONCONN_IND; 1601 1602 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1603 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1604 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1605 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1606 } 1607 } 1608 1609 cp.min_interval = cpu_to_le16(adv_min_interval); 1610 cp.max_interval = cpu_to_le16(adv_max_interval); 1611 cp.own_address_type = own_addr_type; 1612 cp.channel_map = hdev->le_adv_channel_map; 1613 1614 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1615 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1616 if (status) 1617 return status; 1618 1619 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1620 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1621 } 1622 1623 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1624 { 1625 return hci_enable_advertising_sync(hdev); 1626 } 1627 1628 int hci_enable_advertising(struct hci_dev *hdev) 1629 { 1630 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1631 list_empty(&hdev->adv_instances)) 1632 return 0; 1633 1634 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1635 } 1636 1637 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1638 struct sock *sk) 1639 { 1640 int err; 1641 1642 if (!ext_adv_capable(hdev)) 1643 return 0; 1644 1645 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1646 if (err) 1647 return err; 1648 1649 /* If request specifies an instance that doesn't exist, fail */ 1650 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1651 return -EINVAL; 1652 1653 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1654 sizeof(instance), &instance, 0, 1655 HCI_CMD_TIMEOUT, sk); 1656 } 1657 1658 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1659 { 1660 struct adv_info *adv = data; 1661 u8 instance = 0; 1662 1663 if (adv) 1664 instance = adv->instance; 1665 1666 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1667 } 1668 1669 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1670 { 1671 struct adv_info *adv = NULL; 1672 1673 if (instance) { 1674 adv = hci_find_adv_instance(hdev, instance); 1675 if (!adv) 1676 return -EINVAL; 1677 } 1678 1679 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1680 } 1681 1682 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1683 { 1684 struct hci_cp_le_term_big cp; 1685 1686 memset(&cp, 0, sizeof(cp)); 1687 cp.handle = handle; 1688 cp.reason = reason; 1689 1690 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1691 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1692 } 1693 1694 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1695 { 1696 struct { 1697 struct hci_cp_le_set_ext_adv_data cp; 1698 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1699 } pdu; 1700 u8 len; 1701 struct adv_info *adv = NULL; 1702 int err; 1703 1704 memset(&pdu, 0, sizeof(pdu)); 1705 1706 if (instance) { 1707 adv = hci_find_adv_instance(hdev, instance); 1708 if (!adv || !adv->adv_data_changed) 1709 return 0; 1710 } 1711 1712 len = eir_create_adv_data(hdev, instance, pdu.data); 1713 1714 pdu.cp.length = len; 1715 pdu.cp.handle = instance; 1716 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1717 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1718 1719 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1720 sizeof(pdu.cp) + len, &pdu.cp, 1721 HCI_CMD_TIMEOUT); 1722 if (err) 1723 return err; 1724 1725 /* Update data if the command succeed */ 1726 if (adv) { 1727 adv->adv_data_changed = false; 1728 } else { 1729 memcpy(hdev->adv_data, pdu.data, len); 1730 hdev->adv_data_len = len; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1737 { 1738 struct hci_cp_le_set_adv_data cp; 1739 u8 len; 1740 1741 memset(&cp, 0, sizeof(cp)); 1742 1743 len = eir_create_adv_data(hdev, instance, cp.data); 1744 1745 /* There's nothing to do if the data hasn't changed */ 1746 if (hdev->adv_data_len == len && 1747 memcmp(cp.data, hdev->adv_data, len) == 0) 1748 return 0; 1749 1750 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1751 hdev->adv_data_len = len; 1752 1753 cp.length = len; 1754 1755 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1756 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1757 } 1758 1759 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1760 { 1761 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1762 return 0; 1763 1764 if (ext_adv_capable(hdev)) 1765 return hci_set_ext_adv_data_sync(hdev, instance); 1766 1767 return hci_set_adv_data_sync(hdev, instance); 1768 } 1769 1770 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1771 bool force) 1772 { 1773 struct adv_info *adv = NULL; 1774 u16 timeout; 1775 1776 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1777 return -EPERM; 1778 1779 if (hdev->adv_instance_timeout) 1780 return -EBUSY; 1781 1782 adv = hci_find_adv_instance(hdev, instance); 1783 if (!adv) 1784 return -ENOENT; 1785 1786 /* A zero timeout means unlimited advertising. As long as there is 1787 * only one instance, duration should be ignored. We still set a timeout 1788 * in case further instances are being added later on. 1789 * 1790 * If the remaining lifetime of the instance is more than the duration 1791 * then the timeout corresponds to the duration, otherwise it will be 1792 * reduced to the remaining instance lifetime. 1793 */ 1794 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1795 timeout = adv->duration; 1796 else 1797 timeout = adv->remaining_time; 1798 1799 /* The remaining time is being reduced unless the instance is being 1800 * advertised without time limit. 1801 */ 1802 if (adv->timeout) 1803 adv->remaining_time = adv->remaining_time - timeout; 1804 1805 /* Only use work for scheduling instances with legacy advertising */ 1806 if (!ext_adv_capable(hdev)) { 1807 hdev->adv_instance_timeout = timeout; 1808 queue_delayed_work(hdev->req_workqueue, 1809 &hdev->adv_instance_expire, 1810 msecs_to_jiffies(timeout * 1000)); 1811 } 1812 1813 /* If we're just re-scheduling the same instance again then do not 1814 * execute any HCI commands. This happens when a single instance is 1815 * being advertised. 1816 */ 1817 if (!force && hdev->cur_adv_instance == instance && 1818 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1819 return 0; 1820 1821 hdev->cur_adv_instance = instance; 1822 1823 return hci_start_adv_sync(hdev, instance); 1824 } 1825 1826 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1827 { 1828 int err; 1829 1830 if (!ext_adv_capable(hdev)) 1831 return 0; 1832 1833 /* Disable instance 0x00 to disable all instances */ 1834 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1835 if (err) 1836 return err; 1837 1838 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1839 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1840 } 1841 1842 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1843 { 1844 struct adv_info *adv, *n; 1845 int err = 0; 1846 1847 if (ext_adv_capable(hdev)) 1848 /* Remove all existing sets */ 1849 err = hci_clear_adv_sets_sync(hdev, sk); 1850 if (ext_adv_capable(hdev)) 1851 return err; 1852 1853 /* This is safe as long as there is no command send while the lock is 1854 * held. 1855 */ 1856 hci_dev_lock(hdev); 1857 1858 /* Cleanup non-ext instances */ 1859 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1860 u8 instance = adv->instance; 1861 int err; 1862 1863 if (!(force || adv->timeout)) 1864 continue; 1865 1866 err = hci_remove_adv_instance(hdev, instance); 1867 if (!err) 1868 mgmt_advertising_removed(sk, hdev, instance); 1869 } 1870 1871 hci_dev_unlock(hdev); 1872 1873 return 0; 1874 } 1875 1876 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1877 struct sock *sk) 1878 { 1879 int err = 0; 1880 1881 /* If we use extended advertising, instance has to be removed first. */ 1882 if (ext_adv_capable(hdev)) 1883 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1884 if (ext_adv_capable(hdev)) 1885 return err; 1886 1887 /* This is safe as long as there is no command send while the lock is 1888 * held. 1889 */ 1890 hci_dev_lock(hdev); 1891 1892 err = hci_remove_adv_instance(hdev, instance); 1893 if (!err) 1894 mgmt_advertising_removed(sk, hdev, instance); 1895 1896 hci_dev_unlock(hdev); 1897 1898 return err; 1899 } 1900 1901 /* For a single instance: 1902 * - force == true: The instance will be removed even when its remaining 1903 * lifetime is not zero. 1904 * - force == false: the instance will be deactivated but kept stored unless 1905 * the remaining lifetime is zero. 1906 * 1907 * For instance == 0x00: 1908 * - force == true: All instances will be removed regardless of their timeout 1909 * setting. 1910 * - force == false: Only instances that have a timeout will be removed. 1911 */ 1912 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1913 u8 instance, bool force) 1914 { 1915 struct adv_info *next = NULL; 1916 int err; 1917 1918 /* Cancel any timeout concerning the removed instance(s). */ 1919 if (!instance || hdev->cur_adv_instance == instance) 1920 cancel_adv_timeout(hdev); 1921 1922 /* Get the next instance to advertise BEFORE we remove 1923 * the current one. This can be the same instance again 1924 * if there is only one instance. 1925 */ 1926 if (hdev->cur_adv_instance == instance) 1927 next = hci_get_next_instance(hdev, instance); 1928 1929 if (!instance) { 1930 err = hci_clear_adv_sync(hdev, sk, force); 1931 if (err) 1932 return err; 1933 } else { 1934 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1935 1936 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1937 /* Don't advertise a removed instance. */ 1938 if (next && next->instance == instance) 1939 next = NULL; 1940 1941 err = hci_remove_adv_sync(hdev, instance, sk); 1942 if (err) 1943 return err; 1944 } 1945 } 1946 1947 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1948 return 0; 1949 1950 if (next && !ext_adv_capable(hdev)) 1951 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1952 1953 return 0; 1954 } 1955 1956 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1957 { 1958 struct hci_cp_read_rssi cp; 1959 1960 cp.handle = handle; 1961 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1962 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1963 } 1964 1965 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1966 { 1967 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1968 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1969 } 1970 1971 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1972 { 1973 struct hci_cp_read_tx_power cp; 1974 1975 cp.handle = handle; 1976 cp.type = type; 1977 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1978 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1979 } 1980 1981 int hci_disable_advertising_sync(struct hci_dev *hdev) 1982 { 1983 u8 enable = 0x00; 1984 int err = 0; 1985 1986 /* If controller is not advertising we are done. */ 1987 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1988 return 0; 1989 1990 if (ext_adv_capable(hdev)) 1991 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1992 if (ext_adv_capable(hdev)) 1993 return err; 1994 1995 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1996 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1997 } 1998 1999 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2000 u8 filter_dup) 2001 { 2002 struct hci_cp_le_set_ext_scan_enable cp; 2003 2004 memset(&cp, 0, sizeof(cp)); 2005 cp.enable = val; 2006 2007 if (hci_dev_test_flag(hdev, HCI_MESH)) 2008 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2009 else 2010 cp.filter_dup = filter_dup; 2011 2012 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2013 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2014 } 2015 2016 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2017 u8 filter_dup) 2018 { 2019 struct hci_cp_le_set_scan_enable cp; 2020 2021 if (use_ext_scan(hdev)) 2022 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2023 2024 memset(&cp, 0, sizeof(cp)); 2025 cp.enable = val; 2026 2027 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2028 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2029 else 2030 cp.filter_dup = filter_dup; 2031 2032 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2033 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2034 } 2035 2036 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2037 { 2038 if (!use_ll_privacy(hdev)) 2039 return 0; 2040 2041 /* If controller is not/already resolving we are done. */ 2042 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2043 return 0; 2044 2045 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2046 sizeof(val), &val, HCI_CMD_TIMEOUT); 2047 } 2048 2049 static int hci_scan_disable_sync(struct hci_dev *hdev) 2050 { 2051 int err; 2052 2053 /* If controller is not scanning we are done. */ 2054 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2055 return 0; 2056 2057 if (hdev->scanning_paused) { 2058 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2059 return 0; 2060 } 2061 2062 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2063 if (err) { 2064 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2065 return err; 2066 } 2067 2068 return err; 2069 } 2070 2071 static bool scan_use_rpa(struct hci_dev *hdev) 2072 { 2073 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2074 } 2075 2076 static void hci_start_interleave_scan(struct hci_dev *hdev) 2077 { 2078 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2079 queue_delayed_work(hdev->req_workqueue, 2080 &hdev->interleave_scan, 0); 2081 } 2082 2083 static bool is_interleave_scanning(struct hci_dev *hdev) 2084 { 2085 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2086 } 2087 2088 static void cancel_interleave_scan(struct hci_dev *hdev) 2089 { 2090 bt_dev_dbg(hdev, "cancelling interleave scan"); 2091 2092 cancel_delayed_work_sync(&hdev->interleave_scan); 2093 2094 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2095 } 2096 2097 /* Return true if interleave_scan wasn't started until exiting this function, 2098 * otherwise, return false 2099 */ 2100 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2101 { 2102 /* Do interleaved scan only if all of the following are true: 2103 * - There is at least one ADV monitor 2104 * - At least one pending LE connection or one device to be scanned for 2105 * - Monitor offloading is not supported 2106 * If so, we should alternate between allowlist scan and one without 2107 * any filters to save power. 2108 */ 2109 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2110 !(list_empty(&hdev->pend_le_conns) && 2111 list_empty(&hdev->pend_le_reports)) && 2112 hci_get_adv_monitor_offload_ext(hdev) == 2113 HCI_ADV_MONITOR_EXT_NONE; 2114 bool is_interleaving = is_interleave_scanning(hdev); 2115 2116 if (use_interleaving && !is_interleaving) { 2117 hci_start_interleave_scan(hdev); 2118 bt_dev_dbg(hdev, "starting interleave scan"); 2119 return true; 2120 } 2121 2122 if (!use_interleaving && is_interleaving) 2123 cancel_interleave_scan(hdev); 2124 2125 return false; 2126 } 2127 2128 /* Removes connection to resolve list if needed.*/ 2129 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2130 bdaddr_t *bdaddr, u8 bdaddr_type) 2131 { 2132 struct hci_cp_le_del_from_resolv_list cp; 2133 struct bdaddr_list_with_irk *entry; 2134 2135 if (!use_ll_privacy(hdev)) 2136 return 0; 2137 2138 /* Check if the IRK has been programmed */ 2139 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2140 bdaddr_type); 2141 if (!entry) 2142 return 0; 2143 2144 cp.bdaddr_type = bdaddr_type; 2145 bacpy(&cp.bdaddr, bdaddr); 2146 2147 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2148 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2149 } 2150 2151 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2152 bdaddr_t *bdaddr, u8 bdaddr_type) 2153 { 2154 struct hci_cp_le_del_from_accept_list cp; 2155 int err; 2156 2157 /* Check if device is on accept list before removing it */ 2158 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2159 return 0; 2160 2161 cp.bdaddr_type = bdaddr_type; 2162 bacpy(&cp.bdaddr, bdaddr); 2163 2164 /* Ignore errors when removing from resolving list as that is likely 2165 * that the device was never added. 2166 */ 2167 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2168 2169 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2170 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2171 if (err) { 2172 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2173 return err; 2174 } 2175 2176 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2177 cp.bdaddr_type); 2178 2179 return 0; 2180 } 2181 2182 struct conn_params { 2183 bdaddr_t addr; 2184 u8 addr_type; 2185 hci_conn_flags_t flags; 2186 u8 privacy_mode; 2187 }; 2188 2189 /* Adds connection to resolve list if needed. 2190 * Setting params to NULL programs local hdev->irk 2191 */ 2192 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2193 struct conn_params *params) 2194 { 2195 struct hci_cp_le_add_to_resolv_list cp; 2196 struct smp_irk *irk; 2197 struct bdaddr_list_with_irk *entry; 2198 struct hci_conn_params *p; 2199 2200 if (!use_ll_privacy(hdev)) 2201 return 0; 2202 2203 /* Attempt to program local identity address, type and irk if params is 2204 * NULL. 2205 */ 2206 if (!params) { 2207 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2208 return 0; 2209 2210 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2211 memcpy(cp.peer_irk, hdev->irk, 16); 2212 goto done; 2213 } 2214 2215 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2216 if (!irk) 2217 return 0; 2218 2219 /* Check if the IK has _not_ been programmed yet. */ 2220 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2221 ¶ms->addr, 2222 params->addr_type); 2223 if (entry) 2224 return 0; 2225 2226 cp.bdaddr_type = params->addr_type; 2227 bacpy(&cp.bdaddr, ¶ms->addr); 2228 memcpy(cp.peer_irk, irk->val, 16); 2229 2230 /* Default privacy mode is always Network */ 2231 params->privacy_mode = HCI_NETWORK_PRIVACY; 2232 2233 rcu_read_lock(); 2234 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2235 ¶ms->addr, params->addr_type); 2236 if (!p) 2237 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2238 ¶ms->addr, params->addr_type); 2239 if (p) 2240 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2241 rcu_read_unlock(); 2242 2243 done: 2244 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2245 memcpy(cp.local_irk, hdev->irk, 16); 2246 else 2247 memset(cp.local_irk, 0, 16); 2248 2249 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2250 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2251 } 2252 2253 /* Set Device Privacy Mode. */ 2254 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2255 struct conn_params *params) 2256 { 2257 struct hci_cp_le_set_privacy_mode cp; 2258 struct smp_irk *irk; 2259 2260 /* If device privacy mode has already been set there is nothing to do */ 2261 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2262 return 0; 2263 2264 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2265 * indicates that LL Privacy has been enabled and 2266 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2267 */ 2268 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2269 return 0; 2270 2271 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2272 if (!irk) 2273 return 0; 2274 2275 memset(&cp, 0, sizeof(cp)); 2276 cp.bdaddr_type = irk->addr_type; 2277 bacpy(&cp.bdaddr, &irk->bdaddr); 2278 cp.mode = HCI_DEVICE_PRIVACY; 2279 2280 /* Note: params->privacy_mode is not updated since it is a copy */ 2281 2282 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2283 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2284 } 2285 2286 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2287 * this attempts to program the device in the resolving list as well and 2288 * properly set the privacy mode. 2289 */ 2290 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2291 struct conn_params *params, 2292 u8 *num_entries) 2293 { 2294 struct hci_cp_le_add_to_accept_list cp; 2295 int err; 2296 2297 /* During suspend, only wakeable devices can be in acceptlist */ 2298 if (hdev->suspended && 2299 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2300 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2301 params->addr_type); 2302 return 0; 2303 } 2304 2305 /* Select filter policy to accept all advertising */ 2306 if (*num_entries >= hdev->le_accept_list_size) 2307 return -ENOSPC; 2308 2309 /* Accept list can not be used with RPAs */ 2310 if (!use_ll_privacy(hdev) && 2311 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2312 return -EINVAL; 2313 2314 /* Attempt to program the device in the resolving list first to avoid 2315 * having to rollback in case it fails since the resolving list is 2316 * dynamic it can probably be smaller than the accept list. 2317 */ 2318 err = hci_le_add_resolve_list_sync(hdev, params); 2319 if (err) { 2320 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2321 return err; 2322 } 2323 2324 /* Set Privacy Mode */ 2325 err = hci_le_set_privacy_mode_sync(hdev, params); 2326 if (err) { 2327 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2328 return err; 2329 } 2330 2331 /* Check if already in accept list */ 2332 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2333 params->addr_type)) 2334 return 0; 2335 2336 *num_entries += 1; 2337 cp.bdaddr_type = params->addr_type; 2338 bacpy(&cp.bdaddr, ¶ms->addr); 2339 2340 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2341 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2342 if (err) { 2343 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2344 /* Rollback the device from the resolving list */ 2345 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2346 return err; 2347 } 2348 2349 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2350 cp.bdaddr_type); 2351 2352 return 0; 2353 } 2354 2355 /* This function disables/pause all advertising instances */ 2356 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2357 { 2358 int err; 2359 int old_state; 2360 2361 /* If already been paused there is nothing to do. */ 2362 if (hdev->advertising_paused) 2363 return 0; 2364 2365 bt_dev_dbg(hdev, "Pausing directed advertising"); 2366 2367 /* Stop directed advertising */ 2368 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2369 if (old_state) { 2370 /* When discoverable timeout triggers, then just make sure 2371 * the limited discoverable flag is cleared. Even in the case 2372 * of a timeout triggered from general discoverable, it is 2373 * safe to unconditionally clear the flag. 2374 */ 2375 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2376 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2377 hdev->discov_timeout = 0; 2378 } 2379 2380 bt_dev_dbg(hdev, "Pausing advertising instances"); 2381 2382 /* Call to disable any advertisements active on the controller. 2383 * This will succeed even if no advertisements are configured. 2384 */ 2385 err = hci_disable_advertising_sync(hdev); 2386 if (err) 2387 return err; 2388 2389 /* If we are using software rotation, pause the loop */ 2390 if (!ext_adv_capable(hdev)) 2391 cancel_adv_timeout(hdev); 2392 2393 hdev->advertising_paused = true; 2394 hdev->advertising_old_state = old_state; 2395 2396 return 0; 2397 } 2398 2399 /* This function enables all user advertising instances */ 2400 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2401 { 2402 struct adv_info *adv, *tmp; 2403 int err; 2404 2405 /* If advertising has not been paused there is nothing to do. */ 2406 if (!hdev->advertising_paused) 2407 return 0; 2408 2409 /* Resume directed advertising */ 2410 hdev->advertising_paused = false; 2411 if (hdev->advertising_old_state) { 2412 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2413 hdev->advertising_old_state = 0; 2414 } 2415 2416 bt_dev_dbg(hdev, "Resuming advertising instances"); 2417 2418 if (ext_adv_capable(hdev)) { 2419 /* Call for each tracked instance to be re-enabled */ 2420 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2421 err = hci_enable_ext_advertising_sync(hdev, 2422 adv->instance); 2423 if (!err) 2424 continue; 2425 2426 /* If the instance cannot be resumed remove it */ 2427 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2428 NULL); 2429 } 2430 } else { 2431 /* Schedule for most recent instance to be restarted and begin 2432 * the software rotation loop 2433 */ 2434 err = hci_schedule_adv_instance_sync(hdev, 2435 hdev->cur_adv_instance, 2436 true); 2437 } 2438 2439 hdev->advertising_paused = false; 2440 2441 return err; 2442 } 2443 2444 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2445 { 2446 int err; 2447 2448 if (!use_ll_privacy(hdev)) 2449 return 0; 2450 2451 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2452 return 0; 2453 2454 /* Cannot disable addr resolution if scanning is enabled or 2455 * when initiating an LE connection. 2456 */ 2457 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2458 hci_lookup_le_connect(hdev)) { 2459 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2460 return -EPERM; 2461 } 2462 2463 /* Cannot disable addr resolution if advertising is enabled. */ 2464 err = hci_pause_advertising_sync(hdev); 2465 if (err) { 2466 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2467 return err; 2468 } 2469 2470 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2471 if (err) 2472 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2473 err); 2474 2475 /* Return if address resolution is disabled and RPA is not used. */ 2476 if (!err && scan_use_rpa(hdev)) 2477 return 0; 2478 2479 hci_resume_advertising_sync(hdev); 2480 return err; 2481 } 2482 2483 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2484 bool extended, struct sock *sk) 2485 { 2486 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2487 HCI_OP_READ_LOCAL_OOB_DATA; 2488 2489 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2490 } 2491 2492 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2493 { 2494 struct hci_conn_params *params; 2495 struct conn_params *p; 2496 size_t i; 2497 2498 rcu_read_lock(); 2499 2500 i = 0; 2501 list_for_each_entry_rcu(params, list, action) 2502 ++i; 2503 *n = i; 2504 2505 rcu_read_unlock(); 2506 2507 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2508 if (!p) 2509 return NULL; 2510 2511 rcu_read_lock(); 2512 2513 i = 0; 2514 list_for_each_entry_rcu(params, list, action) { 2515 /* Racing adds are handled in next scan update */ 2516 if (i >= *n) 2517 break; 2518 2519 /* No hdev->lock, but: addr, addr_type are immutable. 2520 * privacy_mode is only written by us or in 2521 * hci_cc_le_set_privacy_mode that we wait for. 2522 * We should be idempotent so MGMT updating flags 2523 * while we are processing is OK. 2524 */ 2525 bacpy(&p[i].addr, ¶ms->addr); 2526 p[i].addr_type = params->addr_type; 2527 p[i].flags = READ_ONCE(params->flags); 2528 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2529 ++i; 2530 } 2531 2532 rcu_read_unlock(); 2533 2534 *n = i; 2535 return p; 2536 } 2537 2538 /* Device must not be scanning when updating the accept list. 2539 * 2540 * Update is done using the following sequence: 2541 * 2542 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2543 * Remove Devices From Accept List -> 2544 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2545 * Add Devices to Accept List -> 2546 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2547 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2548 * Enable Scanning 2549 * 2550 * In case of failure advertising shall be restored to its original state and 2551 * return would disable accept list since either accept or resolving list could 2552 * not be programmed. 2553 * 2554 */ 2555 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2556 { 2557 struct conn_params *params; 2558 struct bdaddr_list *b, *t; 2559 u8 num_entries = 0; 2560 bool pend_conn, pend_report; 2561 u8 filter_policy; 2562 size_t i, n; 2563 int err; 2564 2565 /* Pause advertising if resolving list can be used as controllers 2566 * cannot accept resolving list modifications while advertising. 2567 */ 2568 if (use_ll_privacy(hdev)) { 2569 err = hci_pause_advertising_sync(hdev); 2570 if (err) { 2571 bt_dev_err(hdev, "pause advertising failed: %d", err); 2572 return 0x00; 2573 } 2574 } 2575 2576 /* Disable address resolution while reprogramming accept list since 2577 * devices that do have an IRK will be programmed in the resolving list 2578 * when LL Privacy is enabled. 2579 */ 2580 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2581 if (err) { 2582 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2583 goto done; 2584 } 2585 2586 /* Go through the current accept list programmed into the 2587 * controller one by one and check if that address is connected or is 2588 * still in the list of pending connections or list of devices to 2589 * report. If not present in either list, then remove it from 2590 * the controller. 2591 */ 2592 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2593 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2594 continue; 2595 2596 /* Pointers not dereferenced, no locks needed */ 2597 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2598 &b->bdaddr, 2599 b->bdaddr_type); 2600 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2601 &b->bdaddr, 2602 b->bdaddr_type); 2603 2604 /* If the device is not likely to connect or report, 2605 * remove it from the acceptlist. 2606 */ 2607 if (!pend_conn && !pend_report) { 2608 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2609 b->bdaddr_type); 2610 continue; 2611 } 2612 2613 num_entries++; 2614 } 2615 2616 /* Since all no longer valid accept list entries have been 2617 * removed, walk through the list of pending connections 2618 * and ensure that any new device gets programmed into 2619 * the controller. 2620 * 2621 * If the list of the devices is larger than the list of 2622 * available accept list entries in the controller, then 2623 * just abort and return filer policy value to not use the 2624 * accept list. 2625 * 2626 * The list and params may be mutated while we wait for events, 2627 * so make a copy and iterate it. 2628 */ 2629 2630 params = conn_params_copy(&hdev->pend_le_conns, &n); 2631 if (!params) { 2632 err = -ENOMEM; 2633 goto done; 2634 } 2635 2636 for (i = 0; i < n; ++i) { 2637 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2638 &num_entries); 2639 if (err) { 2640 kvfree(params); 2641 goto done; 2642 } 2643 } 2644 2645 kvfree(params); 2646 2647 /* After adding all new pending connections, walk through 2648 * the list of pending reports and also add these to the 2649 * accept list if there is still space. Abort if space runs out. 2650 */ 2651 2652 params = conn_params_copy(&hdev->pend_le_reports, &n); 2653 if (!params) { 2654 err = -ENOMEM; 2655 goto done; 2656 } 2657 2658 for (i = 0; i < n; ++i) { 2659 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2660 &num_entries); 2661 if (err) { 2662 kvfree(params); 2663 goto done; 2664 } 2665 } 2666 2667 kvfree(params); 2668 2669 /* Use the allowlist unless the following conditions are all true: 2670 * - We are not currently suspending 2671 * - There are 1 or more ADV monitors registered and it's not offloaded 2672 * - Interleaved scanning is not currently using the allowlist 2673 */ 2674 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2675 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2676 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2677 err = -EINVAL; 2678 2679 done: 2680 filter_policy = err ? 0x00 : 0x01; 2681 2682 /* Enable address resolution when LL Privacy is enabled. */ 2683 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2684 if (err) 2685 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2686 2687 /* Resume advertising if it was paused */ 2688 if (use_ll_privacy(hdev)) 2689 hci_resume_advertising_sync(hdev); 2690 2691 /* Select filter policy to use accept list */ 2692 return filter_policy; 2693 } 2694 2695 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2696 u8 type, u16 interval, u16 window) 2697 { 2698 cp->type = type; 2699 cp->interval = cpu_to_le16(interval); 2700 cp->window = cpu_to_le16(window); 2701 } 2702 2703 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2704 u16 interval, u16 window, 2705 u8 own_addr_type, u8 filter_policy) 2706 { 2707 struct hci_cp_le_set_ext_scan_params *cp; 2708 struct hci_cp_le_scan_phy_params *phy; 2709 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2710 u8 num_phy = 0x00; 2711 2712 cp = (void *)data; 2713 phy = (void *)cp->data; 2714 2715 memset(data, 0, sizeof(data)); 2716 2717 cp->own_addr_type = own_addr_type; 2718 cp->filter_policy = filter_policy; 2719 2720 /* Check if PA Sync is in progress then select the PHY based on the 2721 * hci_conn.iso_qos. 2722 */ 2723 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2724 struct hci_cp_le_add_to_accept_list *sent; 2725 2726 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2727 if (sent) { 2728 struct hci_conn *conn; 2729 2730 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2731 &sent->bdaddr); 2732 if (conn) { 2733 struct bt_iso_qos *qos = &conn->iso_qos; 2734 2735 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2736 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2737 cp->scanning_phys |= LE_SCAN_PHY_1M; 2738 hci_le_scan_phy_params(phy, type, 2739 interval, 2740 window); 2741 num_phy++; 2742 phy++; 2743 } 2744 2745 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2746 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2747 hci_le_scan_phy_params(phy, type, 2748 interval * 3, 2749 window * 3); 2750 num_phy++; 2751 phy++; 2752 } 2753 2754 if (num_phy) 2755 goto done; 2756 } 2757 } 2758 } 2759 2760 if (scan_1m(hdev) || scan_2m(hdev)) { 2761 cp->scanning_phys |= LE_SCAN_PHY_1M; 2762 hci_le_scan_phy_params(phy, type, interval, window); 2763 num_phy++; 2764 phy++; 2765 } 2766 2767 if (scan_coded(hdev)) { 2768 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2769 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2770 num_phy++; 2771 phy++; 2772 } 2773 2774 done: 2775 if (!num_phy) 2776 return -EINVAL; 2777 2778 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2779 sizeof(*cp) + sizeof(*phy) * num_phy, 2780 data, HCI_CMD_TIMEOUT); 2781 } 2782 2783 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2784 u16 interval, u16 window, 2785 u8 own_addr_type, u8 filter_policy) 2786 { 2787 struct hci_cp_le_set_scan_param cp; 2788 2789 if (use_ext_scan(hdev)) 2790 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2791 window, own_addr_type, 2792 filter_policy); 2793 2794 memset(&cp, 0, sizeof(cp)); 2795 cp.type = type; 2796 cp.interval = cpu_to_le16(interval); 2797 cp.window = cpu_to_le16(window); 2798 cp.own_address_type = own_addr_type; 2799 cp.filter_policy = filter_policy; 2800 2801 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2802 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2803 } 2804 2805 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2806 u16 window, u8 own_addr_type, u8 filter_policy, 2807 u8 filter_dup) 2808 { 2809 int err; 2810 2811 if (hdev->scanning_paused) { 2812 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2813 return 0; 2814 } 2815 2816 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2817 own_addr_type, filter_policy); 2818 if (err) 2819 return err; 2820 2821 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2822 } 2823 2824 static int hci_passive_scan_sync(struct hci_dev *hdev) 2825 { 2826 u8 own_addr_type; 2827 u8 filter_policy; 2828 u16 window, interval; 2829 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2830 int err; 2831 2832 if (hdev->scanning_paused) { 2833 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2834 return 0; 2835 } 2836 2837 err = hci_scan_disable_sync(hdev); 2838 if (err) { 2839 bt_dev_err(hdev, "disable scanning failed: %d", err); 2840 return err; 2841 } 2842 2843 /* Set require_privacy to false since no SCAN_REQ are send 2844 * during passive scanning. Not using an non-resolvable address 2845 * here is important so that peer devices using direct 2846 * advertising with our address will be correctly reported 2847 * by the controller. 2848 */ 2849 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2850 &own_addr_type)) 2851 return 0; 2852 2853 if (hdev->enable_advmon_interleave_scan && 2854 hci_update_interleaved_scan_sync(hdev)) 2855 return 0; 2856 2857 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2858 2859 /* Adding or removing entries from the accept list must 2860 * happen before enabling scanning. The controller does 2861 * not allow accept list modification while scanning. 2862 */ 2863 filter_policy = hci_update_accept_list_sync(hdev); 2864 2865 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 2866 * passive scanning cannot be started since that would require the host 2867 * to be woken up to process the reports. 2868 */ 2869 if (hdev->suspended && !filter_policy) { 2870 /* Check if accept list is empty then there is no need to scan 2871 * while suspended. 2872 */ 2873 if (list_empty(&hdev->le_accept_list)) 2874 return 0; 2875 2876 /* If there are devices is the accept_list that means some 2877 * devices could not be programmed which in non-suspended case 2878 * means filter_policy needs to be set to 0x00 so the host needs 2879 * to filter, but since this is treating suspended case we 2880 * can ignore device needing host to filter to allow devices in 2881 * the acceptlist to be able to wakeup the system. 2882 */ 2883 filter_policy = 0x01; 2884 } 2885 2886 /* When the controller is using random resolvable addresses and 2887 * with that having LE privacy enabled, then controllers with 2888 * Extended Scanner Filter Policies support can now enable support 2889 * for handling directed advertising. 2890 * 2891 * So instead of using filter polices 0x00 (no acceptlist) 2892 * and 0x01 (acceptlist enabled) use the new filter policies 2893 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2894 */ 2895 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2896 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2897 filter_policy |= 0x02; 2898 2899 if (hdev->suspended) { 2900 window = hdev->le_scan_window_suspend; 2901 interval = hdev->le_scan_int_suspend; 2902 } else if (hci_is_le_conn_scanning(hdev)) { 2903 window = hdev->le_scan_window_connect; 2904 interval = hdev->le_scan_int_connect; 2905 } else if (hci_is_adv_monitoring(hdev)) { 2906 window = hdev->le_scan_window_adv_monitor; 2907 interval = hdev->le_scan_int_adv_monitor; 2908 2909 /* Disable duplicates filter when scanning for advertisement 2910 * monitor for the following reasons. 2911 * 2912 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 2913 * controllers ignore RSSI_Sampling_Period when the duplicates 2914 * filter is enabled. 2915 * 2916 * For SW pattern filtering, when we're not doing interleaved 2917 * scanning, it is necessary to disable duplicates filter, 2918 * otherwise hosts can only receive one advertisement and it's 2919 * impossible to know if a peer is still in range. 2920 */ 2921 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2922 } else { 2923 window = hdev->le_scan_window; 2924 interval = hdev->le_scan_interval; 2925 } 2926 2927 /* Disable all filtering for Mesh */ 2928 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2929 filter_policy = 0; 2930 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2931 } 2932 2933 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2934 2935 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2936 own_addr_type, filter_policy, filter_dups); 2937 } 2938 2939 /* This function controls the passive scanning based on hdev->pend_le_conns 2940 * list. If there are pending LE connection we start the background scanning, 2941 * otherwise we stop it in the following sequence: 2942 * 2943 * If there are devices to scan: 2944 * 2945 * Disable Scanning -> Update Accept List -> 2946 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2947 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2948 * Enable Scanning 2949 * 2950 * Otherwise: 2951 * 2952 * Disable Scanning 2953 */ 2954 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2955 { 2956 int err; 2957 2958 if (!test_bit(HCI_UP, &hdev->flags) || 2959 test_bit(HCI_INIT, &hdev->flags) || 2960 hci_dev_test_flag(hdev, HCI_SETUP) || 2961 hci_dev_test_flag(hdev, HCI_CONFIG) || 2962 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2963 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2964 return 0; 2965 2966 /* No point in doing scanning if LE support hasn't been enabled */ 2967 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2968 return 0; 2969 2970 /* If discovery is active don't interfere with it */ 2971 if (hdev->discovery.state != DISCOVERY_STOPPED) 2972 return 0; 2973 2974 /* Reset RSSI and UUID filters when starting background scanning 2975 * since these filters are meant for service discovery only. 2976 * 2977 * The Start Discovery and Start Service Discovery operations 2978 * ensure to set proper values for RSSI threshold and UUID 2979 * filter list. So it is safe to just reset them here. 2980 */ 2981 hci_discovery_filter_clear(hdev); 2982 2983 bt_dev_dbg(hdev, "ADV monitoring is %s", 2984 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2985 2986 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2987 list_empty(&hdev->pend_le_conns) && 2988 list_empty(&hdev->pend_le_reports) && 2989 !hci_is_adv_monitoring(hdev) && 2990 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2991 /* If there is no pending LE connections or devices 2992 * to be scanned for or no ADV monitors, we should stop the 2993 * background scanning. 2994 */ 2995 2996 bt_dev_dbg(hdev, "stopping background scanning"); 2997 2998 err = hci_scan_disable_sync(hdev); 2999 if (err) 3000 bt_dev_err(hdev, "stop background scanning failed: %d", 3001 err); 3002 } else { 3003 /* If there is at least one pending LE connection, we should 3004 * keep the background scan running. 3005 */ 3006 3007 /* If controller is connecting, we should not start scanning 3008 * since some controllers are not able to scan and connect at 3009 * the same time. 3010 */ 3011 if (hci_lookup_le_connect(hdev)) 3012 return 0; 3013 3014 bt_dev_dbg(hdev, "start background scanning"); 3015 3016 err = hci_passive_scan_sync(hdev); 3017 if (err) 3018 bt_dev_err(hdev, "start background scanning failed: %d", 3019 err); 3020 } 3021 3022 return err; 3023 } 3024 3025 static int update_scan_sync(struct hci_dev *hdev, void *data) 3026 { 3027 return hci_update_scan_sync(hdev); 3028 } 3029 3030 int hci_update_scan(struct hci_dev *hdev) 3031 { 3032 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3033 } 3034 3035 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3036 { 3037 return hci_update_passive_scan_sync(hdev); 3038 } 3039 3040 int hci_update_passive_scan(struct hci_dev *hdev) 3041 { 3042 /* Only queue if it would have any effect */ 3043 if (!test_bit(HCI_UP, &hdev->flags) || 3044 test_bit(HCI_INIT, &hdev->flags) || 3045 hci_dev_test_flag(hdev, HCI_SETUP) || 3046 hci_dev_test_flag(hdev, HCI_CONFIG) || 3047 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3048 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3049 return 0; 3050 3051 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 3052 } 3053 3054 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3055 { 3056 int err; 3057 3058 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3059 return 0; 3060 3061 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3062 sizeof(val), &val, HCI_CMD_TIMEOUT); 3063 3064 if (!err) { 3065 if (val) { 3066 hdev->features[1][0] |= LMP_HOST_SC; 3067 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3068 } else { 3069 hdev->features[1][0] &= ~LMP_HOST_SC; 3070 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3071 } 3072 } 3073 3074 return err; 3075 } 3076 3077 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3078 { 3079 int err; 3080 3081 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3082 lmp_host_ssp_capable(hdev)) 3083 return 0; 3084 3085 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3086 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3087 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3088 } 3089 3090 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3091 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3092 if (err) 3093 return err; 3094 3095 return hci_write_sc_support_sync(hdev, 0x01); 3096 } 3097 3098 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3099 { 3100 struct hci_cp_write_le_host_supported cp; 3101 3102 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3103 !lmp_bredr_capable(hdev)) 3104 return 0; 3105 3106 /* Check first if we already have the right host state 3107 * (host features set) 3108 */ 3109 if (le == lmp_host_le_capable(hdev) && 3110 simul == lmp_host_le_br_capable(hdev)) 3111 return 0; 3112 3113 memset(&cp, 0, sizeof(cp)); 3114 3115 cp.le = le; 3116 cp.simul = simul; 3117 3118 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3119 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3120 } 3121 3122 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3123 { 3124 struct adv_info *adv, *tmp; 3125 int err; 3126 3127 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3128 return 0; 3129 3130 /* If RPA Resolution has not been enable yet it means the 3131 * resolving list is empty and we should attempt to program the 3132 * local IRK in order to support using own_addr_type 3133 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3134 */ 3135 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3136 hci_le_add_resolve_list_sync(hdev, NULL); 3137 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3138 } 3139 3140 /* Make sure the controller has a good default for 3141 * advertising data. This also applies to the case 3142 * where BR/EDR was toggled during the AUTO_OFF phase. 3143 */ 3144 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3145 list_empty(&hdev->adv_instances)) { 3146 if (ext_adv_capable(hdev)) { 3147 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3148 if (!err) 3149 hci_update_scan_rsp_data_sync(hdev, 0x00); 3150 } else { 3151 err = hci_update_adv_data_sync(hdev, 0x00); 3152 if (!err) 3153 hci_update_scan_rsp_data_sync(hdev, 0x00); 3154 } 3155 3156 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3157 hci_enable_advertising_sync(hdev); 3158 } 3159 3160 /* Call for each tracked instance to be scheduled */ 3161 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3162 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3163 3164 return 0; 3165 } 3166 3167 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3168 { 3169 u8 link_sec; 3170 3171 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3172 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3173 return 0; 3174 3175 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3176 sizeof(link_sec), &link_sec, 3177 HCI_CMD_TIMEOUT); 3178 } 3179 3180 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3181 { 3182 struct hci_cp_write_page_scan_activity cp; 3183 u8 type; 3184 int err = 0; 3185 3186 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3187 return 0; 3188 3189 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3190 return 0; 3191 3192 memset(&cp, 0, sizeof(cp)); 3193 3194 if (enable) { 3195 type = PAGE_SCAN_TYPE_INTERLACED; 3196 3197 /* 160 msec page scan interval */ 3198 cp.interval = cpu_to_le16(0x0100); 3199 } else { 3200 type = hdev->def_page_scan_type; 3201 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3202 } 3203 3204 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3205 3206 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3207 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3208 err = __hci_cmd_sync_status(hdev, 3209 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3210 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3211 if (err) 3212 return err; 3213 } 3214 3215 if (hdev->page_scan_type != type) 3216 err = __hci_cmd_sync_status(hdev, 3217 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3218 sizeof(type), &type, 3219 HCI_CMD_TIMEOUT); 3220 3221 return err; 3222 } 3223 3224 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3225 { 3226 struct bdaddr_list *b; 3227 3228 list_for_each_entry(b, &hdev->accept_list, list) { 3229 struct hci_conn *conn; 3230 3231 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3232 if (!conn) 3233 return true; 3234 3235 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3236 return true; 3237 } 3238 3239 return false; 3240 } 3241 3242 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3243 { 3244 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3245 sizeof(val), &val, 3246 HCI_CMD_TIMEOUT); 3247 } 3248 3249 int hci_update_scan_sync(struct hci_dev *hdev) 3250 { 3251 u8 scan; 3252 3253 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3254 return 0; 3255 3256 if (!hdev_is_powered(hdev)) 3257 return 0; 3258 3259 if (mgmt_powering_down(hdev)) 3260 return 0; 3261 3262 if (hdev->scanning_paused) 3263 return 0; 3264 3265 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3266 disconnected_accept_list_entries(hdev)) 3267 scan = SCAN_PAGE; 3268 else 3269 scan = SCAN_DISABLED; 3270 3271 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3272 scan |= SCAN_INQUIRY; 3273 3274 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3275 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3276 return 0; 3277 3278 return hci_write_scan_enable_sync(hdev, scan); 3279 } 3280 3281 int hci_update_name_sync(struct hci_dev *hdev) 3282 { 3283 struct hci_cp_write_local_name cp; 3284 3285 memset(&cp, 0, sizeof(cp)); 3286 3287 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3288 3289 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3290 sizeof(cp), &cp, 3291 HCI_CMD_TIMEOUT); 3292 } 3293 3294 /* This function perform powered update HCI command sequence after the HCI init 3295 * sequence which end up resetting all states, the sequence is as follows: 3296 * 3297 * HCI_SSP_ENABLED(Enable SSP) 3298 * HCI_LE_ENABLED(Enable LE) 3299 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3300 * Update adv data) 3301 * Enable Authentication 3302 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3303 * Set Name -> Set EIR) 3304 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3305 */ 3306 int hci_powered_update_sync(struct hci_dev *hdev) 3307 { 3308 int err; 3309 3310 /* Register the available SMP channels (BR/EDR and LE) only when 3311 * successfully powering on the controller. This late 3312 * registration is required so that LE SMP can clearly decide if 3313 * the public address or static address is used. 3314 */ 3315 smp_register(hdev); 3316 3317 err = hci_write_ssp_mode_sync(hdev, 0x01); 3318 if (err) 3319 return err; 3320 3321 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3322 if (err) 3323 return err; 3324 3325 err = hci_powered_update_adv_sync(hdev); 3326 if (err) 3327 return err; 3328 3329 err = hci_write_auth_enable_sync(hdev); 3330 if (err) 3331 return err; 3332 3333 if (lmp_bredr_capable(hdev)) { 3334 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3335 hci_write_fast_connectable_sync(hdev, true); 3336 else 3337 hci_write_fast_connectable_sync(hdev, false); 3338 hci_update_scan_sync(hdev); 3339 hci_update_class_sync(hdev); 3340 hci_update_name_sync(hdev); 3341 hci_update_eir_sync(hdev); 3342 } 3343 3344 /* If forcing static address is in use or there is no public 3345 * address use the static address as random address (but skip 3346 * the HCI command if the current random address is already the 3347 * static one. 3348 * 3349 * In case BR/EDR has been disabled on a dual-mode controller 3350 * and a static address has been configured, then use that 3351 * address instead of the public BR/EDR address. 3352 */ 3353 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3354 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3355 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3356 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3357 return hci_set_random_addr_sync(hdev, 3358 &hdev->static_addr); 3359 } 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3366 * (BD_ADDR) for a HCI device from 3367 * a firmware node property. 3368 * @hdev: The HCI device 3369 * 3370 * Search the firmware node for 'local-bd-address'. 3371 * 3372 * All-zero BD addresses are rejected, because those could be properties 3373 * that exist in the firmware tables, but were not updated by the firmware. For 3374 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3375 */ 3376 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3377 { 3378 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3379 bdaddr_t ba; 3380 int ret; 3381 3382 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3383 (u8 *)&ba, sizeof(ba)); 3384 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3385 return; 3386 3387 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3388 baswap(&hdev->public_addr, &ba); 3389 else 3390 bacpy(&hdev->public_addr, &ba); 3391 } 3392 3393 struct hci_init_stage { 3394 int (*func)(struct hci_dev *hdev); 3395 }; 3396 3397 /* Run init stage NULL terminated function table */ 3398 static int hci_init_stage_sync(struct hci_dev *hdev, 3399 const struct hci_init_stage *stage) 3400 { 3401 size_t i; 3402 3403 for (i = 0; stage[i].func; i++) { 3404 int err; 3405 3406 err = stage[i].func(hdev); 3407 if (err) 3408 return err; 3409 } 3410 3411 return 0; 3412 } 3413 3414 /* Read Local Version */ 3415 static int hci_read_local_version_sync(struct hci_dev *hdev) 3416 { 3417 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3418 0, NULL, HCI_CMD_TIMEOUT); 3419 } 3420 3421 /* Read BD Address */ 3422 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3423 { 3424 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3425 0, NULL, HCI_CMD_TIMEOUT); 3426 } 3427 3428 #define HCI_INIT(_func) \ 3429 { \ 3430 .func = _func, \ 3431 } 3432 3433 static const struct hci_init_stage hci_init0[] = { 3434 /* HCI_OP_READ_LOCAL_VERSION */ 3435 HCI_INIT(hci_read_local_version_sync), 3436 /* HCI_OP_READ_BD_ADDR */ 3437 HCI_INIT(hci_read_bd_addr_sync), 3438 {} 3439 }; 3440 3441 int hci_reset_sync(struct hci_dev *hdev) 3442 { 3443 int err; 3444 3445 set_bit(HCI_RESET, &hdev->flags); 3446 3447 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3448 HCI_CMD_TIMEOUT); 3449 if (err) 3450 return err; 3451 3452 return 0; 3453 } 3454 3455 static int hci_init0_sync(struct hci_dev *hdev) 3456 { 3457 int err; 3458 3459 bt_dev_dbg(hdev, ""); 3460 3461 /* Reset */ 3462 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3463 err = hci_reset_sync(hdev); 3464 if (err) 3465 return err; 3466 } 3467 3468 return hci_init_stage_sync(hdev, hci_init0); 3469 } 3470 3471 static int hci_unconf_init_sync(struct hci_dev *hdev) 3472 { 3473 int err; 3474 3475 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3476 return 0; 3477 3478 err = hci_init0_sync(hdev); 3479 if (err < 0) 3480 return err; 3481 3482 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3483 hci_debugfs_create_basic(hdev); 3484 3485 return 0; 3486 } 3487 3488 /* Read Local Supported Features. */ 3489 static int hci_read_local_features_sync(struct hci_dev *hdev) 3490 { 3491 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3492 0, NULL, HCI_CMD_TIMEOUT); 3493 } 3494 3495 /* BR Controller init stage 1 command sequence */ 3496 static const struct hci_init_stage br_init1[] = { 3497 /* HCI_OP_READ_LOCAL_FEATURES */ 3498 HCI_INIT(hci_read_local_features_sync), 3499 /* HCI_OP_READ_LOCAL_VERSION */ 3500 HCI_INIT(hci_read_local_version_sync), 3501 /* HCI_OP_READ_BD_ADDR */ 3502 HCI_INIT(hci_read_bd_addr_sync), 3503 {} 3504 }; 3505 3506 /* Read Local Commands */ 3507 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3508 { 3509 /* All Bluetooth 1.2 and later controllers should support the 3510 * HCI command for reading the local supported commands. 3511 * 3512 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3513 * but do not have support for this command. If that is the case, 3514 * the driver can quirk the behavior and skip reading the local 3515 * supported commands. 3516 */ 3517 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3518 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3519 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3520 0, NULL, HCI_CMD_TIMEOUT); 3521 3522 return 0; 3523 } 3524 3525 static int hci_init1_sync(struct hci_dev *hdev) 3526 { 3527 int err; 3528 3529 bt_dev_dbg(hdev, ""); 3530 3531 /* Reset */ 3532 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3533 err = hci_reset_sync(hdev); 3534 if (err) 3535 return err; 3536 } 3537 3538 return hci_init_stage_sync(hdev, br_init1); 3539 } 3540 3541 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3542 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3543 { 3544 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3545 0, NULL, HCI_CMD_TIMEOUT); 3546 } 3547 3548 /* Read Class of Device */ 3549 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3550 { 3551 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3552 0, NULL, HCI_CMD_TIMEOUT); 3553 } 3554 3555 /* Read Local Name */ 3556 static int hci_read_local_name_sync(struct hci_dev *hdev) 3557 { 3558 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3559 0, NULL, HCI_CMD_TIMEOUT); 3560 } 3561 3562 /* Read Voice Setting */ 3563 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3564 { 3565 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3566 0, NULL, HCI_CMD_TIMEOUT); 3567 } 3568 3569 /* Read Number of Supported IAC */ 3570 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3571 { 3572 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3573 0, NULL, HCI_CMD_TIMEOUT); 3574 } 3575 3576 /* Read Current IAC LAP */ 3577 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3578 { 3579 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3580 0, NULL, HCI_CMD_TIMEOUT); 3581 } 3582 3583 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3584 u8 cond_type, bdaddr_t *bdaddr, 3585 u8 auto_accept) 3586 { 3587 struct hci_cp_set_event_filter cp; 3588 3589 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3590 return 0; 3591 3592 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3593 return 0; 3594 3595 memset(&cp, 0, sizeof(cp)); 3596 cp.flt_type = flt_type; 3597 3598 if (flt_type != HCI_FLT_CLEAR_ALL) { 3599 cp.cond_type = cond_type; 3600 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3601 cp.addr_conn_flt.auto_accept = auto_accept; 3602 } 3603 3604 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3605 flt_type == HCI_FLT_CLEAR_ALL ? 3606 sizeof(cp.flt_type) : sizeof(cp), &cp, 3607 HCI_CMD_TIMEOUT); 3608 } 3609 3610 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3611 { 3612 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3613 return 0; 3614 3615 /* In theory the state machine should not reach here unless 3616 * a hci_set_event_filter_sync() call succeeds, but we do 3617 * the check both for parity and as a future reminder. 3618 */ 3619 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3620 return 0; 3621 3622 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3623 BDADDR_ANY, 0x00); 3624 } 3625 3626 /* Connection accept timeout ~20 secs */ 3627 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3628 { 3629 __le16 param = cpu_to_le16(0x7d00); 3630 3631 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3632 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3633 } 3634 3635 /* BR Controller init stage 2 command sequence */ 3636 static const struct hci_init_stage br_init2[] = { 3637 /* HCI_OP_READ_BUFFER_SIZE */ 3638 HCI_INIT(hci_read_buffer_size_sync), 3639 /* HCI_OP_READ_CLASS_OF_DEV */ 3640 HCI_INIT(hci_read_dev_class_sync), 3641 /* HCI_OP_READ_LOCAL_NAME */ 3642 HCI_INIT(hci_read_local_name_sync), 3643 /* HCI_OP_READ_VOICE_SETTING */ 3644 HCI_INIT(hci_read_voice_setting_sync), 3645 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3646 HCI_INIT(hci_read_num_supported_iac_sync), 3647 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3648 HCI_INIT(hci_read_current_iac_lap_sync), 3649 /* HCI_OP_SET_EVENT_FLT */ 3650 HCI_INIT(hci_clear_event_filter_sync), 3651 /* HCI_OP_WRITE_CA_TIMEOUT */ 3652 HCI_INIT(hci_write_ca_timeout_sync), 3653 {} 3654 }; 3655 3656 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3657 { 3658 u8 mode = 0x01; 3659 3660 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3661 return 0; 3662 3663 /* When SSP is available, then the host features page 3664 * should also be available as well. However some 3665 * controllers list the max_page as 0 as long as SSP 3666 * has not been enabled. To achieve proper debugging 3667 * output, force the minimum max_page to 1 at least. 3668 */ 3669 hdev->max_page = 0x01; 3670 3671 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3672 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3673 } 3674 3675 static int hci_write_eir_sync(struct hci_dev *hdev) 3676 { 3677 struct hci_cp_write_eir cp; 3678 3679 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3680 return 0; 3681 3682 memset(hdev->eir, 0, sizeof(hdev->eir)); 3683 memset(&cp, 0, sizeof(cp)); 3684 3685 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3686 HCI_CMD_TIMEOUT); 3687 } 3688 3689 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3690 { 3691 u8 mode; 3692 3693 if (!lmp_inq_rssi_capable(hdev) && 3694 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3695 return 0; 3696 3697 /* If Extended Inquiry Result events are supported, then 3698 * they are clearly preferred over Inquiry Result with RSSI 3699 * events. 3700 */ 3701 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3702 3703 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3704 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3705 } 3706 3707 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3708 { 3709 if (!lmp_inq_tx_pwr_capable(hdev)) 3710 return 0; 3711 3712 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3713 0, NULL, HCI_CMD_TIMEOUT); 3714 } 3715 3716 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3717 { 3718 struct hci_cp_read_local_ext_features cp; 3719 3720 if (!lmp_ext_feat_capable(hdev)) 3721 return 0; 3722 3723 memset(&cp, 0, sizeof(cp)); 3724 cp.page = page; 3725 3726 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3727 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3728 } 3729 3730 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3731 { 3732 return hci_read_local_ext_features_sync(hdev, 0x01); 3733 } 3734 3735 /* HCI Controller init stage 2 command sequence */ 3736 static const struct hci_init_stage hci_init2[] = { 3737 /* HCI_OP_READ_LOCAL_COMMANDS */ 3738 HCI_INIT(hci_read_local_cmds_sync), 3739 /* HCI_OP_WRITE_SSP_MODE */ 3740 HCI_INIT(hci_write_ssp_mode_1_sync), 3741 /* HCI_OP_WRITE_EIR */ 3742 HCI_INIT(hci_write_eir_sync), 3743 /* HCI_OP_WRITE_INQUIRY_MODE */ 3744 HCI_INIT(hci_write_inquiry_mode_sync), 3745 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3746 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3747 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3748 HCI_INIT(hci_read_local_ext_features_1_sync), 3749 /* HCI_OP_WRITE_AUTH_ENABLE */ 3750 HCI_INIT(hci_write_auth_enable_sync), 3751 {} 3752 }; 3753 3754 /* Read LE Buffer Size */ 3755 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3756 { 3757 /* Use Read LE Buffer Size V2 if supported */ 3758 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3759 return __hci_cmd_sync_status(hdev, 3760 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3761 0, NULL, HCI_CMD_TIMEOUT); 3762 3763 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3764 0, NULL, HCI_CMD_TIMEOUT); 3765 } 3766 3767 /* Read LE Local Supported Features */ 3768 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3769 { 3770 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3771 0, NULL, HCI_CMD_TIMEOUT); 3772 } 3773 3774 /* Read LE Supported States */ 3775 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3776 { 3777 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3778 0, NULL, HCI_CMD_TIMEOUT); 3779 } 3780 3781 /* LE Controller init stage 2 command sequence */ 3782 static const struct hci_init_stage le_init2[] = { 3783 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3784 HCI_INIT(hci_le_read_local_features_sync), 3785 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3786 HCI_INIT(hci_le_read_buffer_size_sync), 3787 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3788 HCI_INIT(hci_le_read_supported_states_sync), 3789 {} 3790 }; 3791 3792 static int hci_init2_sync(struct hci_dev *hdev) 3793 { 3794 int err; 3795 3796 bt_dev_dbg(hdev, ""); 3797 3798 err = hci_init_stage_sync(hdev, hci_init2); 3799 if (err) 3800 return err; 3801 3802 if (lmp_bredr_capable(hdev)) { 3803 err = hci_init_stage_sync(hdev, br_init2); 3804 if (err) 3805 return err; 3806 } else { 3807 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3808 } 3809 3810 if (lmp_le_capable(hdev)) { 3811 err = hci_init_stage_sync(hdev, le_init2); 3812 if (err) 3813 return err; 3814 /* LE-only controllers have LE implicitly enabled */ 3815 if (!lmp_bredr_capable(hdev)) 3816 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3817 } 3818 3819 return 0; 3820 } 3821 3822 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3823 { 3824 /* The second byte is 0xff instead of 0x9f (two reserved bits 3825 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3826 * command otherwise. 3827 */ 3828 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3829 3830 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3831 * any event mask for pre 1.2 devices. 3832 */ 3833 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3834 return 0; 3835 3836 if (lmp_bredr_capable(hdev)) { 3837 events[4] |= 0x01; /* Flow Specification Complete */ 3838 3839 /* Don't set Disconnect Complete and mode change when 3840 * suspended as that would wakeup the host when disconnecting 3841 * due to suspend. 3842 */ 3843 if (hdev->suspended) { 3844 events[0] &= 0xef; 3845 events[2] &= 0xf7; 3846 } 3847 } else { 3848 /* Use a different default for LE-only devices */ 3849 memset(events, 0, sizeof(events)); 3850 events[1] |= 0x20; /* Command Complete */ 3851 events[1] |= 0x40; /* Command Status */ 3852 events[1] |= 0x80; /* Hardware Error */ 3853 3854 /* If the controller supports the Disconnect command, enable 3855 * the corresponding event. In addition enable packet flow 3856 * control related events. 3857 */ 3858 if (hdev->commands[0] & 0x20) { 3859 /* Don't set Disconnect Complete when suspended as that 3860 * would wakeup the host when disconnecting due to 3861 * suspend. 3862 */ 3863 if (!hdev->suspended) 3864 events[0] |= 0x10; /* Disconnection Complete */ 3865 events[2] |= 0x04; /* Number of Completed Packets */ 3866 events[3] |= 0x02; /* Data Buffer Overflow */ 3867 } 3868 3869 /* If the controller supports the Read Remote Version 3870 * Information command, enable the corresponding event. 3871 */ 3872 if (hdev->commands[2] & 0x80) 3873 events[1] |= 0x08; /* Read Remote Version Information 3874 * Complete 3875 */ 3876 3877 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3878 events[0] |= 0x80; /* Encryption Change */ 3879 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3880 } 3881 } 3882 3883 if (lmp_inq_rssi_capable(hdev) || 3884 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3885 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3886 3887 if (lmp_ext_feat_capable(hdev)) 3888 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3889 3890 if (lmp_esco_capable(hdev)) { 3891 events[5] |= 0x08; /* Synchronous Connection Complete */ 3892 events[5] |= 0x10; /* Synchronous Connection Changed */ 3893 } 3894 3895 if (lmp_sniffsubr_capable(hdev)) 3896 events[5] |= 0x20; /* Sniff Subrating */ 3897 3898 if (lmp_pause_enc_capable(hdev)) 3899 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3900 3901 if (lmp_ext_inq_capable(hdev)) 3902 events[5] |= 0x40; /* Extended Inquiry Result */ 3903 3904 if (lmp_no_flush_capable(hdev)) 3905 events[7] |= 0x01; /* Enhanced Flush Complete */ 3906 3907 if (lmp_lsto_capable(hdev)) 3908 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3909 3910 if (lmp_ssp_capable(hdev)) { 3911 events[6] |= 0x01; /* IO Capability Request */ 3912 events[6] |= 0x02; /* IO Capability Response */ 3913 events[6] |= 0x04; /* User Confirmation Request */ 3914 events[6] |= 0x08; /* User Passkey Request */ 3915 events[6] |= 0x10; /* Remote OOB Data Request */ 3916 events[6] |= 0x20; /* Simple Pairing Complete */ 3917 events[7] |= 0x04; /* User Passkey Notification */ 3918 events[7] |= 0x08; /* Keypress Notification */ 3919 events[7] |= 0x10; /* Remote Host Supported 3920 * Features Notification 3921 */ 3922 } 3923 3924 if (lmp_le_capable(hdev)) 3925 events[7] |= 0x20; /* LE Meta-Event */ 3926 3927 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3928 sizeof(events), events, HCI_CMD_TIMEOUT); 3929 } 3930 3931 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3932 { 3933 struct hci_cp_read_stored_link_key cp; 3934 3935 if (!(hdev->commands[6] & 0x20) || 3936 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3937 return 0; 3938 3939 memset(&cp, 0, sizeof(cp)); 3940 bacpy(&cp.bdaddr, BDADDR_ANY); 3941 cp.read_all = 0x01; 3942 3943 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3944 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3945 } 3946 3947 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3948 { 3949 struct hci_cp_write_def_link_policy cp; 3950 u16 link_policy = 0; 3951 3952 if (!(hdev->commands[5] & 0x10)) 3953 return 0; 3954 3955 memset(&cp, 0, sizeof(cp)); 3956 3957 if (lmp_rswitch_capable(hdev)) 3958 link_policy |= HCI_LP_RSWITCH; 3959 if (lmp_hold_capable(hdev)) 3960 link_policy |= HCI_LP_HOLD; 3961 if (lmp_sniff_capable(hdev)) 3962 link_policy |= HCI_LP_SNIFF; 3963 if (lmp_park_capable(hdev)) 3964 link_policy |= HCI_LP_PARK; 3965 3966 cp.policy = cpu_to_le16(link_policy); 3967 3968 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3969 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3970 } 3971 3972 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3973 { 3974 if (!(hdev->commands[8] & 0x01)) 3975 return 0; 3976 3977 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3978 0, NULL, HCI_CMD_TIMEOUT); 3979 } 3980 3981 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3982 { 3983 if (!(hdev->commands[18] & 0x04) || 3984 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3985 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3986 return 0; 3987 3988 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3989 0, NULL, HCI_CMD_TIMEOUT); 3990 } 3991 3992 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3993 { 3994 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3995 * support the Read Page Scan Type command. Check support for 3996 * this command in the bit mask of supported commands. 3997 */ 3998 if (!(hdev->commands[13] & 0x01)) 3999 return 0; 4000 4001 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4002 0, NULL, HCI_CMD_TIMEOUT); 4003 } 4004 4005 /* Read features beyond page 1 if available */ 4006 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4007 { 4008 u8 page; 4009 int err; 4010 4011 if (!lmp_ext_feat_capable(hdev)) 4012 return 0; 4013 4014 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4015 page++) { 4016 err = hci_read_local_ext_features_sync(hdev, page); 4017 if (err) 4018 return err; 4019 } 4020 4021 return 0; 4022 } 4023 4024 /* HCI Controller init stage 3 command sequence */ 4025 static const struct hci_init_stage hci_init3[] = { 4026 /* HCI_OP_SET_EVENT_MASK */ 4027 HCI_INIT(hci_set_event_mask_sync), 4028 /* HCI_OP_READ_STORED_LINK_KEY */ 4029 HCI_INIT(hci_read_stored_link_key_sync), 4030 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4031 HCI_INIT(hci_setup_link_policy_sync), 4032 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4033 HCI_INIT(hci_read_page_scan_activity_sync), 4034 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4035 HCI_INIT(hci_read_def_err_data_reporting_sync), 4036 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4037 HCI_INIT(hci_read_page_scan_type_sync), 4038 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4039 HCI_INIT(hci_read_local_ext_features_all_sync), 4040 {} 4041 }; 4042 4043 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4044 { 4045 u8 events[8]; 4046 4047 if (!lmp_le_capable(hdev)) 4048 return 0; 4049 4050 memset(events, 0, sizeof(events)); 4051 4052 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4053 events[0] |= 0x10; /* LE Long Term Key Request */ 4054 4055 /* If controller supports the Connection Parameters Request 4056 * Link Layer Procedure, enable the corresponding event. 4057 */ 4058 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4059 /* LE Remote Connection Parameter Request */ 4060 events[0] |= 0x20; 4061 4062 /* If the controller supports the Data Length Extension 4063 * feature, enable the corresponding event. 4064 */ 4065 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4066 events[0] |= 0x40; /* LE Data Length Change */ 4067 4068 /* If the controller supports LL Privacy feature or LE Extended Adv, 4069 * enable the corresponding event. 4070 */ 4071 if (use_enhanced_conn_complete(hdev)) 4072 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4073 4074 /* If the controller supports Extended Scanner Filter 4075 * Policies, enable the corresponding event. 4076 */ 4077 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4078 events[1] |= 0x04; /* LE Direct Advertising Report */ 4079 4080 /* If the controller supports Channel Selection Algorithm #2 4081 * feature, enable the corresponding event. 4082 */ 4083 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4084 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4085 4086 /* If the controller supports the LE Set Scan Enable command, 4087 * enable the corresponding advertising report event. 4088 */ 4089 if (hdev->commands[26] & 0x08) 4090 events[0] |= 0x02; /* LE Advertising Report */ 4091 4092 /* If the controller supports the LE Create Connection 4093 * command, enable the corresponding event. 4094 */ 4095 if (hdev->commands[26] & 0x10) 4096 events[0] |= 0x01; /* LE Connection Complete */ 4097 4098 /* If the controller supports the LE Connection Update 4099 * command, enable the corresponding event. 4100 */ 4101 if (hdev->commands[27] & 0x04) 4102 events[0] |= 0x04; /* LE Connection Update Complete */ 4103 4104 /* If the controller supports the LE Read Remote Used Features 4105 * command, enable the corresponding event. 4106 */ 4107 if (hdev->commands[27] & 0x20) 4108 /* LE Read Remote Used Features Complete */ 4109 events[0] |= 0x08; 4110 4111 /* If the controller supports the LE Read Local P-256 4112 * Public Key command, enable the corresponding event. 4113 */ 4114 if (hdev->commands[34] & 0x02) 4115 /* LE Read Local P-256 Public Key Complete */ 4116 events[0] |= 0x80; 4117 4118 /* If the controller supports the LE Generate DHKey 4119 * command, enable the corresponding event. 4120 */ 4121 if (hdev->commands[34] & 0x04) 4122 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4123 4124 /* If the controller supports the LE Set Default PHY or 4125 * LE Set PHY commands, enable the corresponding event. 4126 */ 4127 if (hdev->commands[35] & (0x20 | 0x40)) 4128 events[1] |= 0x08; /* LE PHY Update Complete */ 4129 4130 /* If the controller supports LE Set Extended Scan Parameters 4131 * and LE Set Extended Scan Enable commands, enable the 4132 * corresponding event. 4133 */ 4134 if (use_ext_scan(hdev)) 4135 events[1] |= 0x10; /* LE Extended Advertising Report */ 4136 4137 /* If the controller supports the LE Extended Advertising 4138 * command, enable the corresponding event. 4139 */ 4140 if (ext_adv_capable(hdev)) 4141 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4142 4143 if (cis_capable(hdev)) { 4144 events[3] |= 0x01; /* LE CIS Established */ 4145 if (cis_peripheral_capable(hdev)) 4146 events[3] |= 0x02; /* LE CIS Request */ 4147 } 4148 4149 if (bis_capable(hdev)) { 4150 events[1] |= 0x20; /* LE PA Report */ 4151 events[1] |= 0x40; /* LE PA Sync Established */ 4152 events[3] |= 0x04; /* LE Create BIG Complete */ 4153 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4154 events[3] |= 0x10; /* LE BIG Sync Established */ 4155 events[3] |= 0x20; /* LE BIG Sync Loss */ 4156 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4157 } 4158 4159 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4160 sizeof(events), events, HCI_CMD_TIMEOUT); 4161 } 4162 4163 /* Read LE Advertising Channel TX Power */ 4164 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4165 { 4166 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4167 /* HCI TS spec forbids mixing of legacy and extended 4168 * advertising commands wherein READ_ADV_TX_POWER is 4169 * also included. So do not call it if extended adv 4170 * is supported otherwise controller will return 4171 * COMMAND_DISALLOWED for extended commands. 4172 */ 4173 return __hci_cmd_sync_status(hdev, 4174 HCI_OP_LE_READ_ADV_TX_POWER, 4175 0, NULL, HCI_CMD_TIMEOUT); 4176 } 4177 4178 return 0; 4179 } 4180 4181 /* Read LE Min/Max Tx Power*/ 4182 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4183 { 4184 if (!(hdev->commands[38] & 0x80) || 4185 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4186 return 0; 4187 4188 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4189 0, NULL, HCI_CMD_TIMEOUT); 4190 } 4191 4192 /* Read LE Accept List Size */ 4193 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4194 { 4195 if (!(hdev->commands[26] & 0x40)) 4196 return 0; 4197 4198 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4199 0, NULL, HCI_CMD_TIMEOUT); 4200 } 4201 4202 /* Clear LE Accept List */ 4203 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4204 { 4205 if (!(hdev->commands[26] & 0x80)) 4206 return 0; 4207 4208 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4209 HCI_CMD_TIMEOUT); 4210 } 4211 4212 /* Read LE Resolving List Size */ 4213 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4214 { 4215 if (!(hdev->commands[34] & 0x40)) 4216 return 0; 4217 4218 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4219 0, NULL, HCI_CMD_TIMEOUT); 4220 } 4221 4222 /* Clear LE Resolving List */ 4223 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4224 { 4225 if (!(hdev->commands[34] & 0x20)) 4226 return 0; 4227 4228 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4229 HCI_CMD_TIMEOUT); 4230 } 4231 4232 /* Set RPA timeout */ 4233 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4234 { 4235 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4236 4237 if (!(hdev->commands[35] & 0x04) || 4238 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4239 return 0; 4240 4241 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4242 sizeof(timeout), &timeout, 4243 HCI_CMD_TIMEOUT); 4244 } 4245 4246 /* Read LE Maximum Data Length */ 4247 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4248 { 4249 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4250 return 0; 4251 4252 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4253 HCI_CMD_TIMEOUT); 4254 } 4255 4256 /* Read LE Suggested Default Data Length */ 4257 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4258 { 4259 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4260 return 0; 4261 4262 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4263 HCI_CMD_TIMEOUT); 4264 } 4265 4266 /* Read LE Number of Supported Advertising Sets */ 4267 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4268 { 4269 if (!ext_adv_capable(hdev)) 4270 return 0; 4271 4272 return __hci_cmd_sync_status(hdev, 4273 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4274 0, NULL, HCI_CMD_TIMEOUT); 4275 } 4276 4277 /* Write LE Host Supported */ 4278 static int hci_set_le_support_sync(struct hci_dev *hdev) 4279 { 4280 struct hci_cp_write_le_host_supported cp; 4281 4282 /* LE-only devices do not support explicit enablement */ 4283 if (!lmp_bredr_capable(hdev)) 4284 return 0; 4285 4286 memset(&cp, 0, sizeof(cp)); 4287 4288 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4289 cp.le = 0x01; 4290 cp.simul = 0x00; 4291 } 4292 4293 if (cp.le == lmp_host_le_capable(hdev)) 4294 return 0; 4295 4296 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4297 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4298 } 4299 4300 /* LE Set Host Feature */ 4301 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4302 { 4303 struct hci_cp_le_set_host_feature cp; 4304 4305 if (!iso_capable(hdev)) 4306 return 0; 4307 4308 memset(&cp, 0, sizeof(cp)); 4309 4310 /* Isochronous Channels (Host Support) */ 4311 cp.bit_number = 32; 4312 cp.bit_value = 1; 4313 4314 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4315 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4316 } 4317 4318 /* LE Controller init stage 3 command sequence */ 4319 static const struct hci_init_stage le_init3[] = { 4320 /* HCI_OP_LE_SET_EVENT_MASK */ 4321 HCI_INIT(hci_le_set_event_mask_sync), 4322 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4323 HCI_INIT(hci_le_read_adv_tx_power_sync), 4324 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4325 HCI_INIT(hci_le_read_tx_power_sync), 4326 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4327 HCI_INIT(hci_le_read_accept_list_size_sync), 4328 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4329 HCI_INIT(hci_le_clear_accept_list_sync), 4330 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4331 HCI_INIT(hci_le_read_resolv_list_size_sync), 4332 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4333 HCI_INIT(hci_le_clear_resolv_list_sync), 4334 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4335 HCI_INIT(hci_le_set_rpa_timeout_sync), 4336 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4337 HCI_INIT(hci_le_read_max_data_len_sync), 4338 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4339 HCI_INIT(hci_le_read_def_data_len_sync), 4340 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4341 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4342 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4343 HCI_INIT(hci_set_le_support_sync), 4344 /* HCI_OP_LE_SET_HOST_FEATURE */ 4345 HCI_INIT(hci_le_set_host_feature_sync), 4346 {} 4347 }; 4348 4349 static int hci_init3_sync(struct hci_dev *hdev) 4350 { 4351 int err; 4352 4353 bt_dev_dbg(hdev, ""); 4354 4355 err = hci_init_stage_sync(hdev, hci_init3); 4356 if (err) 4357 return err; 4358 4359 if (lmp_le_capable(hdev)) 4360 return hci_init_stage_sync(hdev, le_init3); 4361 4362 return 0; 4363 } 4364 4365 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4366 { 4367 struct hci_cp_delete_stored_link_key cp; 4368 4369 /* Some Broadcom based Bluetooth controllers do not support the 4370 * Delete Stored Link Key command. They are clearly indicating its 4371 * absence in the bit mask of supported commands. 4372 * 4373 * Check the supported commands and only if the command is marked 4374 * as supported send it. If not supported assume that the controller 4375 * does not have actual support for stored link keys which makes this 4376 * command redundant anyway. 4377 * 4378 * Some controllers indicate that they support handling deleting 4379 * stored link keys, but they don't. The quirk lets a driver 4380 * just disable this command. 4381 */ 4382 if (!(hdev->commands[6] & 0x80) || 4383 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4384 return 0; 4385 4386 memset(&cp, 0, sizeof(cp)); 4387 bacpy(&cp.bdaddr, BDADDR_ANY); 4388 cp.delete_all = 0x01; 4389 4390 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4391 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4392 } 4393 4394 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4395 { 4396 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4397 bool changed = false; 4398 4399 /* Set event mask page 2 if the HCI command for it is supported */ 4400 if (!(hdev->commands[22] & 0x04)) 4401 return 0; 4402 4403 /* If Connectionless Peripheral Broadcast central role is supported 4404 * enable all necessary events for it. 4405 */ 4406 if (lmp_cpb_central_capable(hdev)) { 4407 events[1] |= 0x40; /* Triggered Clock Capture */ 4408 events[1] |= 0x80; /* Synchronization Train Complete */ 4409 events[2] |= 0x08; /* Truncated Page Complete */ 4410 events[2] |= 0x20; /* CPB Channel Map Change */ 4411 changed = true; 4412 } 4413 4414 /* If Connectionless Peripheral Broadcast peripheral role is supported 4415 * enable all necessary events for it. 4416 */ 4417 if (lmp_cpb_peripheral_capable(hdev)) { 4418 events[2] |= 0x01; /* Synchronization Train Received */ 4419 events[2] |= 0x02; /* CPB Receive */ 4420 events[2] |= 0x04; /* CPB Timeout */ 4421 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4422 changed = true; 4423 } 4424 4425 /* Enable Authenticated Payload Timeout Expired event if supported */ 4426 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4427 events[2] |= 0x80; 4428 changed = true; 4429 } 4430 4431 /* Some Broadcom based controllers indicate support for Set Event 4432 * Mask Page 2 command, but then actually do not support it. Since 4433 * the default value is all bits set to zero, the command is only 4434 * required if the event mask has to be changed. In case no change 4435 * to the event mask is needed, skip this command. 4436 */ 4437 if (!changed) 4438 return 0; 4439 4440 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4441 sizeof(events), events, HCI_CMD_TIMEOUT); 4442 } 4443 4444 /* Read local codec list if the HCI command is supported */ 4445 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4446 { 4447 if (hdev->commands[45] & 0x04) 4448 hci_read_supported_codecs_v2(hdev); 4449 else if (hdev->commands[29] & 0x20) 4450 hci_read_supported_codecs(hdev); 4451 4452 return 0; 4453 } 4454 4455 /* Read local pairing options if the HCI command is supported */ 4456 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4457 { 4458 if (!(hdev->commands[41] & 0x08)) 4459 return 0; 4460 4461 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4462 0, NULL, HCI_CMD_TIMEOUT); 4463 } 4464 4465 /* Get MWS transport configuration if the HCI command is supported */ 4466 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4467 { 4468 if (!mws_transport_config_capable(hdev)) 4469 return 0; 4470 4471 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4472 0, NULL, HCI_CMD_TIMEOUT); 4473 } 4474 4475 /* Check for Synchronization Train support */ 4476 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4477 { 4478 if (!lmp_sync_train_capable(hdev)) 4479 return 0; 4480 4481 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4482 0, NULL, HCI_CMD_TIMEOUT); 4483 } 4484 4485 /* Enable Secure Connections if supported and configured */ 4486 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4487 { 4488 u8 support = 0x01; 4489 4490 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4491 !bredr_sc_enabled(hdev)) 4492 return 0; 4493 4494 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4495 sizeof(support), &support, 4496 HCI_CMD_TIMEOUT); 4497 } 4498 4499 /* Set erroneous data reporting if supported to the wideband speech 4500 * setting value 4501 */ 4502 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4503 { 4504 struct hci_cp_write_def_err_data_reporting cp; 4505 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4506 4507 if (!(hdev->commands[18] & 0x08) || 4508 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4509 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4510 return 0; 4511 4512 if (enabled == hdev->err_data_reporting) 4513 return 0; 4514 4515 memset(&cp, 0, sizeof(cp)); 4516 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4517 ERR_DATA_REPORTING_DISABLED; 4518 4519 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4520 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4521 } 4522 4523 static const struct hci_init_stage hci_init4[] = { 4524 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4525 HCI_INIT(hci_delete_stored_link_key_sync), 4526 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4527 HCI_INIT(hci_set_event_mask_page_2_sync), 4528 /* HCI_OP_READ_LOCAL_CODECS */ 4529 HCI_INIT(hci_read_local_codecs_sync), 4530 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4531 HCI_INIT(hci_read_local_pairing_opts_sync), 4532 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4533 HCI_INIT(hci_get_mws_transport_config_sync), 4534 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4535 HCI_INIT(hci_read_sync_train_params_sync), 4536 /* HCI_OP_WRITE_SC_SUPPORT */ 4537 HCI_INIT(hci_write_sc_support_1_sync), 4538 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4539 HCI_INIT(hci_set_err_data_report_sync), 4540 {} 4541 }; 4542 4543 /* Set Suggested Default Data Length to maximum if supported */ 4544 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4545 { 4546 struct hci_cp_le_write_def_data_len cp; 4547 4548 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4549 return 0; 4550 4551 memset(&cp, 0, sizeof(cp)); 4552 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4553 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4554 4555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4556 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4557 } 4558 4559 /* Set Default PHY parameters if command is supported, enables all supported 4560 * PHYs according to the LE Features bits. 4561 */ 4562 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4563 { 4564 struct hci_cp_le_set_default_phy cp; 4565 4566 if (!(hdev->commands[35] & 0x20)) { 4567 /* If the command is not supported it means only 1M PHY is 4568 * supported. 4569 */ 4570 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4571 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4572 return 0; 4573 } 4574 4575 memset(&cp, 0, sizeof(cp)); 4576 cp.all_phys = 0x00; 4577 cp.tx_phys = HCI_LE_SET_PHY_1M; 4578 cp.rx_phys = HCI_LE_SET_PHY_1M; 4579 4580 /* Enables 2M PHY if supported */ 4581 if (le_2m_capable(hdev)) { 4582 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4583 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4584 } 4585 4586 /* Enables Coded PHY if supported */ 4587 if (le_coded_capable(hdev)) { 4588 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4589 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4590 } 4591 4592 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4593 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4594 } 4595 4596 static const struct hci_init_stage le_init4[] = { 4597 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4598 HCI_INIT(hci_le_set_write_def_data_len_sync), 4599 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4600 HCI_INIT(hci_le_set_default_phy_sync), 4601 {} 4602 }; 4603 4604 static int hci_init4_sync(struct hci_dev *hdev) 4605 { 4606 int err; 4607 4608 bt_dev_dbg(hdev, ""); 4609 4610 err = hci_init_stage_sync(hdev, hci_init4); 4611 if (err) 4612 return err; 4613 4614 if (lmp_le_capable(hdev)) 4615 return hci_init_stage_sync(hdev, le_init4); 4616 4617 return 0; 4618 } 4619 4620 static int hci_init_sync(struct hci_dev *hdev) 4621 { 4622 int err; 4623 4624 err = hci_init1_sync(hdev); 4625 if (err < 0) 4626 return err; 4627 4628 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4629 hci_debugfs_create_basic(hdev); 4630 4631 err = hci_init2_sync(hdev); 4632 if (err < 0) 4633 return err; 4634 4635 err = hci_init3_sync(hdev); 4636 if (err < 0) 4637 return err; 4638 4639 err = hci_init4_sync(hdev); 4640 if (err < 0) 4641 return err; 4642 4643 /* This function is only called when the controller is actually in 4644 * configured state. When the controller is marked as unconfigured, 4645 * this initialization procedure is not run. 4646 * 4647 * It means that it is possible that a controller runs through its 4648 * setup phase and then discovers missing settings. If that is the 4649 * case, then this function will not be called. It then will only 4650 * be called during the config phase. 4651 * 4652 * So only when in setup phase or config phase, create the debugfs 4653 * entries and register the SMP channels. 4654 */ 4655 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4656 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4657 return 0; 4658 4659 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4660 return 0; 4661 4662 hci_debugfs_create_common(hdev); 4663 4664 if (lmp_bredr_capable(hdev)) 4665 hci_debugfs_create_bredr(hdev); 4666 4667 if (lmp_le_capable(hdev)) 4668 hci_debugfs_create_le(hdev); 4669 4670 return 0; 4671 } 4672 4673 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4674 4675 static const struct { 4676 unsigned long quirk; 4677 const char *desc; 4678 } hci_broken_table[] = { 4679 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4680 "HCI Read Local Supported Commands not supported"), 4681 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4682 "HCI Delete Stored Link Key command is advertised, " 4683 "but not supported."), 4684 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4685 "HCI Read Default Erroneous Data Reporting command is " 4686 "advertised, but not supported."), 4687 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4688 "HCI Read Transmit Power Level command is advertised, " 4689 "but not supported."), 4690 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4691 "HCI Set Event Filter command not supported."), 4692 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4693 "HCI Enhanced Setup Synchronous Connection command is " 4694 "advertised, but not supported."), 4695 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4696 "HCI LE Set Random Private Address Timeout command is " 4697 "advertised, but not supported."), 4698 HCI_QUIRK_BROKEN(LE_CODED, 4699 "HCI LE Coded PHY feature bit is set, " 4700 "but its usage is not supported.") 4701 }; 4702 4703 /* This function handles hdev setup stage: 4704 * 4705 * Calls hdev->setup 4706 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4707 */ 4708 static int hci_dev_setup_sync(struct hci_dev *hdev) 4709 { 4710 int ret = 0; 4711 bool invalid_bdaddr; 4712 size_t i; 4713 4714 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4715 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4716 return 0; 4717 4718 bt_dev_dbg(hdev, ""); 4719 4720 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4721 4722 if (hdev->setup) 4723 ret = hdev->setup(hdev); 4724 4725 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4726 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4727 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4728 } 4729 4730 /* The transport driver can set the quirk to mark the 4731 * BD_ADDR invalid before creating the HCI device or in 4732 * its setup callback. 4733 */ 4734 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4735 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4736 if (!ret) { 4737 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4738 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4739 hci_dev_get_bd_addr_from_property(hdev); 4740 4741 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4742 hdev->set_bdaddr) { 4743 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4744 if (!ret) 4745 invalid_bdaddr = false; 4746 } 4747 } 4748 4749 /* The transport driver can set these quirks before 4750 * creating the HCI device or in its setup callback. 4751 * 4752 * For the invalid BD_ADDR quirk it is possible that 4753 * it becomes a valid address if the bootloader does 4754 * provide it (see above). 4755 * 4756 * In case any of them is set, the controller has to 4757 * start up as unconfigured. 4758 */ 4759 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4760 invalid_bdaddr) 4761 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4762 4763 /* For an unconfigured controller it is required to 4764 * read at least the version information provided by 4765 * the Read Local Version Information command. 4766 * 4767 * If the set_bdaddr driver callback is provided, then 4768 * also the original Bluetooth public device address 4769 * will be read using the Read BD Address command. 4770 */ 4771 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4772 return hci_unconf_init_sync(hdev); 4773 4774 return ret; 4775 } 4776 4777 /* This function handles hdev init stage: 4778 * 4779 * Calls hci_dev_setup_sync to perform setup stage 4780 * Calls hci_init_sync to perform HCI command init sequence 4781 */ 4782 static int hci_dev_init_sync(struct hci_dev *hdev) 4783 { 4784 int ret; 4785 4786 bt_dev_dbg(hdev, ""); 4787 4788 atomic_set(&hdev->cmd_cnt, 1); 4789 set_bit(HCI_INIT, &hdev->flags); 4790 4791 ret = hci_dev_setup_sync(hdev); 4792 4793 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4794 /* If public address change is configured, ensure that 4795 * the address gets programmed. If the driver does not 4796 * support changing the public address, fail the power 4797 * on procedure. 4798 */ 4799 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4800 hdev->set_bdaddr) 4801 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4802 else 4803 ret = -EADDRNOTAVAIL; 4804 } 4805 4806 if (!ret) { 4807 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4808 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4809 ret = hci_init_sync(hdev); 4810 if (!ret && hdev->post_init) 4811 ret = hdev->post_init(hdev); 4812 } 4813 } 4814 4815 /* If the HCI Reset command is clearing all diagnostic settings, 4816 * then they need to be reprogrammed after the init procedure 4817 * completed. 4818 */ 4819 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4820 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4821 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4822 ret = hdev->set_diag(hdev, true); 4823 4824 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4825 msft_do_open(hdev); 4826 aosp_do_open(hdev); 4827 } 4828 4829 clear_bit(HCI_INIT, &hdev->flags); 4830 4831 return ret; 4832 } 4833 4834 int hci_dev_open_sync(struct hci_dev *hdev) 4835 { 4836 int ret; 4837 4838 bt_dev_dbg(hdev, ""); 4839 4840 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4841 ret = -ENODEV; 4842 goto done; 4843 } 4844 4845 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4846 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4847 /* Check for rfkill but allow the HCI setup stage to 4848 * proceed (which in itself doesn't cause any RF activity). 4849 */ 4850 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4851 ret = -ERFKILL; 4852 goto done; 4853 } 4854 4855 /* Check for valid public address or a configured static 4856 * random address, but let the HCI setup proceed to 4857 * be able to determine if there is a public address 4858 * or not. 4859 * 4860 * In case of user channel usage, it is not important 4861 * if a public address or static random address is 4862 * available. 4863 */ 4864 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4865 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4866 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4867 ret = -EADDRNOTAVAIL; 4868 goto done; 4869 } 4870 } 4871 4872 if (test_bit(HCI_UP, &hdev->flags)) { 4873 ret = -EALREADY; 4874 goto done; 4875 } 4876 4877 if (hdev->open(hdev)) { 4878 ret = -EIO; 4879 goto done; 4880 } 4881 4882 hci_devcd_reset(hdev); 4883 4884 set_bit(HCI_RUNNING, &hdev->flags); 4885 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4886 4887 ret = hci_dev_init_sync(hdev); 4888 if (!ret) { 4889 hci_dev_hold(hdev); 4890 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4891 hci_adv_instances_set_rpa_expired(hdev, true); 4892 set_bit(HCI_UP, &hdev->flags); 4893 hci_sock_dev_event(hdev, HCI_DEV_UP); 4894 hci_leds_update_powered(hdev, true); 4895 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4896 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4897 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4898 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4899 hci_dev_test_flag(hdev, HCI_MGMT)) { 4900 ret = hci_powered_update_sync(hdev); 4901 mgmt_power_on(hdev, ret); 4902 } 4903 } else { 4904 /* Init failed, cleanup */ 4905 flush_work(&hdev->tx_work); 4906 4907 /* Since hci_rx_work() is possible to awake new cmd_work 4908 * it should be flushed first to avoid unexpected call of 4909 * hci_cmd_work() 4910 */ 4911 flush_work(&hdev->rx_work); 4912 flush_work(&hdev->cmd_work); 4913 4914 skb_queue_purge(&hdev->cmd_q); 4915 skb_queue_purge(&hdev->rx_q); 4916 4917 if (hdev->flush) 4918 hdev->flush(hdev); 4919 4920 if (hdev->sent_cmd) { 4921 cancel_delayed_work_sync(&hdev->cmd_timer); 4922 kfree_skb(hdev->sent_cmd); 4923 hdev->sent_cmd = NULL; 4924 } 4925 4926 if (hdev->req_skb) { 4927 kfree_skb(hdev->req_skb); 4928 hdev->req_skb = NULL; 4929 } 4930 4931 clear_bit(HCI_RUNNING, &hdev->flags); 4932 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4933 4934 hdev->close(hdev); 4935 hdev->flags &= BIT(HCI_RAW); 4936 } 4937 4938 done: 4939 return ret; 4940 } 4941 4942 /* This function requires the caller holds hdev->lock */ 4943 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4944 { 4945 struct hci_conn_params *p; 4946 4947 list_for_each_entry(p, &hdev->le_conn_params, list) { 4948 hci_pend_le_list_del_init(p); 4949 if (p->conn) { 4950 hci_conn_drop(p->conn); 4951 hci_conn_put(p->conn); 4952 p->conn = NULL; 4953 } 4954 } 4955 4956 BT_DBG("All LE pending actions cleared"); 4957 } 4958 4959 static int hci_dev_shutdown(struct hci_dev *hdev) 4960 { 4961 int err = 0; 4962 /* Similar to how we first do setup and then set the exclusive access 4963 * bit for userspace, we must first unset userchannel and then clean up. 4964 * Otherwise, the kernel can't properly use the hci channel to clean up 4965 * the controller (some shutdown routines require sending additional 4966 * commands to the controller for example). 4967 */ 4968 bool was_userchannel = 4969 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4970 4971 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4972 test_bit(HCI_UP, &hdev->flags)) { 4973 /* Execute vendor specific shutdown routine */ 4974 if (hdev->shutdown) 4975 err = hdev->shutdown(hdev); 4976 } 4977 4978 if (was_userchannel) 4979 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4980 4981 return err; 4982 } 4983 4984 int hci_dev_close_sync(struct hci_dev *hdev) 4985 { 4986 bool auto_off; 4987 int err = 0; 4988 4989 bt_dev_dbg(hdev, ""); 4990 4991 cancel_delayed_work(&hdev->power_off); 4992 cancel_delayed_work(&hdev->ncmd_timer); 4993 cancel_delayed_work(&hdev->le_scan_disable); 4994 cancel_delayed_work(&hdev->le_scan_restart); 4995 4996 hci_request_cancel_all(hdev); 4997 4998 if (hdev->adv_instance_timeout) { 4999 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5000 hdev->adv_instance_timeout = 0; 5001 } 5002 5003 err = hci_dev_shutdown(hdev); 5004 5005 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5006 cancel_delayed_work_sync(&hdev->cmd_timer); 5007 return err; 5008 } 5009 5010 hci_leds_update_powered(hdev, false); 5011 5012 /* Flush RX and TX works */ 5013 flush_work(&hdev->tx_work); 5014 flush_work(&hdev->rx_work); 5015 5016 if (hdev->discov_timeout > 0) { 5017 hdev->discov_timeout = 0; 5018 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5019 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5020 } 5021 5022 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5023 cancel_delayed_work(&hdev->service_cache); 5024 5025 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5026 struct adv_info *adv_instance; 5027 5028 cancel_delayed_work_sync(&hdev->rpa_expired); 5029 5030 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5031 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5032 } 5033 5034 /* Avoid potential lockdep warnings from the *_flush() calls by 5035 * ensuring the workqueue is empty up front. 5036 */ 5037 drain_workqueue(hdev->workqueue); 5038 5039 hci_dev_lock(hdev); 5040 5041 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5042 5043 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5044 5045 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5046 hci_dev_test_flag(hdev, HCI_MGMT)) 5047 __mgmt_power_off(hdev); 5048 5049 hci_inquiry_cache_flush(hdev); 5050 hci_pend_le_actions_clear(hdev); 5051 hci_conn_hash_flush(hdev); 5052 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5053 smp_unregister(hdev); 5054 hci_dev_unlock(hdev); 5055 5056 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5057 5058 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5059 aosp_do_close(hdev); 5060 msft_do_close(hdev); 5061 } 5062 5063 if (hdev->flush) 5064 hdev->flush(hdev); 5065 5066 /* Reset device */ 5067 skb_queue_purge(&hdev->cmd_q); 5068 atomic_set(&hdev->cmd_cnt, 1); 5069 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5070 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5071 set_bit(HCI_INIT, &hdev->flags); 5072 hci_reset_sync(hdev); 5073 clear_bit(HCI_INIT, &hdev->flags); 5074 } 5075 5076 /* flush cmd work */ 5077 flush_work(&hdev->cmd_work); 5078 5079 /* Drop queues */ 5080 skb_queue_purge(&hdev->rx_q); 5081 skb_queue_purge(&hdev->cmd_q); 5082 skb_queue_purge(&hdev->raw_q); 5083 5084 /* Drop last sent command */ 5085 if (hdev->sent_cmd) { 5086 cancel_delayed_work_sync(&hdev->cmd_timer); 5087 kfree_skb(hdev->sent_cmd); 5088 hdev->sent_cmd = NULL; 5089 } 5090 5091 /* Drop last request */ 5092 if (hdev->req_skb) { 5093 kfree_skb(hdev->req_skb); 5094 hdev->req_skb = NULL; 5095 } 5096 5097 clear_bit(HCI_RUNNING, &hdev->flags); 5098 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5099 5100 /* After this point our queues are empty and no tasks are scheduled. */ 5101 hdev->close(hdev); 5102 5103 /* Clear flags */ 5104 hdev->flags &= BIT(HCI_RAW); 5105 hci_dev_clear_volatile_flags(hdev); 5106 5107 memset(hdev->eir, 0, sizeof(hdev->eir)); 5108 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5109 bacpy(&hdev->random_addr, BDADDR_ANY); 5110 hci_codec_list_clear(&hdev->local_codecs); 5111 5112 hci_dev_put(hdev); 5113 return err; 5114 } 5115 5116 /* This function perform power on HCI command sequence as follows: 5117 * 5118 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5119 * sequence otherwise run hci_dev_open_sync which will follow with 5120 * hci_powered_update_sync after the init sequence is completed. 5121 */ 5122 static int hci_power_on_sync(struct hci_dev *hdev) 5123 { 5124 int err; 5125 5126 if (test_bit(HCI_UP, &hdev->flags) && 5127 hci_dev_test_flag(hdev, HCI_MGMT) && 5128 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5129 cancel_delayed_work(&hdev->power_off); 5130 return hci_powered_update_sync(hdev); 5131 } 5132 5133 err = hci_dev_open_sync(hdev); 5134 if (err < 0) 5135 return err; 5136 5137 /* During the HCI setup phase, a few error conditions are 5138 * ignored and they need to be checked now. If they are still 5139 * valid, it is important to return the device back off. 5140 */ 5141 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5142 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5143 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5144 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5145 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5146 hci_dev_close_sync(hdev); 5147 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5148 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5149 HCI_AUTO_OFF_TIMEOUT); 5150 } 5151 5152 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5153 /* For unconfigured devices, set the HCI_RAW flag 5154 * so that userspace can easily identify them. 5155 */ 5156 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5157 set_bit(HCI_RAW, &hdev->flags); 5158 5159 /* For fully configured devices, this will send 5160 * the Index Added event. For unconfigured devices, 5161 * it will send Unconfigued Index Added event. 5162 * 5163 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5164 * and no event will be send. 5165 */ 5166 mgmt_index_added(hdev); 5167 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5168 /* When the controller is now configured, then it 5169 * is important to clear the HCI_RAW flag. 5170 */ 5171 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5172 clear_bit(HCI_RAW, &hdev->flags); 5173 5174 /* Powering on the controller with HCI_CONFIG set only 5175 * happens with the transition from unconfigured to 5176 * configured. This will send the Index Added event. 5177 */ 5178 mgmt_index_added(hdev); 5179 } 5180 5181 return 0; 5182 } 5183 5184 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5185 { 5186 struct hci_cp_remote_name_req_cancel cp; 5187 5188 memset(&cp, 0, sizeof(cp)); 5189 bacpy(&cp.bdaddr, addr); 5190 5191 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5192 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5193 } 5194 5195 int hci_stop_discovery_sync(struct hci_dev *hdev) 5196 { 5197 struct discovery_state *d = &hdev->discovery; 5198 struct inquiry_entry *e; 5199 int err; 5200 5201 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5202 5203 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5204 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5205 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5206 0, NULL, HCI_CMD_TIMEOUT); 5207 if (err) 5208 return err; 5209 } 5210 5211 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5212 cancel_delayed_work(&hdev->le_scan_disable); 5213 cancel_delayed_work(&hdev->le_scan_restart); 5214 5215 err = hci_scan_disable_sync(hdev); 5216 if (err) 5217 return err; 5218 } 5219 5220 } else { 5221 err = hci_scan_disable_sync(hdev); 5222 if (err) 5223 return err; 5224 } 5225 5226 /* Resume advertising if it was paused */ 5227 if (use_ll_privacy(hdev)) 5228 hci_resume_advertising_sync(hdev); 5229 5230 /* No further actions needed for LE-only discovery */ 5231 if (d->type == DISCOV_TYPE_LE) 5232 return 0; 5233 5234 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5235 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5236 NAME_PENDING); 5237 if (!e) 5238 return 0; 5239 5240 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5241 } 5242 5243 return 0; 5244 } 5245 5246 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5247 u8 reason) 5248 { 5249 struct hci_cp_disconnect cp; 5250 5251 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5252 /* This is a BIS connection, hci_conn_del will 5253 * do the necessary cleanup. 5254 */ 5255 hci_dev_lock(hdev); 5256 hci_conn_failed(conn, reason); 5257 hci_dev_unlock(hdev); 5258 5259 return 0; 5260 } 5261 5262 memset(&cp, 0, sizeof(cp)); 5263 cp.handle = cpu_to_le16(conn->handle); 5264 cp.reason = reason; 5265 5266 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5267 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5268 * used when suspending or powering off, where we don't want to wait 5269 * for the peer's response. 5270 */ 5271 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5272 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5273 sizeof(cp), &cp, 5274 HCI_EV_DISCONN_COMPLETE, 5275 HCI_CMD_TIMEOUT, NULL); 5276 5277 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5278 HCI_CMD_TIMEOUT); 5279 } 5280 5281 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5282 struct hci_conn *conn, u8 reason) 5283 { 5284 /* Return reason if scanning since the connection shall probably be 5285 * cleanup directly. 5286 */ 5287 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5288 return reason; 5289 5290 if (conn->role == HCI_ROLE_SLAVE || 5291 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5292 return 0; 5293 5294 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5295 0, NULL, HCI_CMD_TIMEOUT); 5296 } 5297 5298 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5299 u8 reason) 5300 { 5301 if (conn->type == LE_LINK) 5302 return hci_le_connect_cancel_sync(hdev, conn, reason); 5303 5304 if (conn->type == ISO_LINK) { 5305 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5306 * page 1857: 5307 * 5308 * If this command is issued for a CIS on the Central and the 5309 * CIS is successfully terminated before being established, 5310 * then an HCI_LE_CIS_Established event shall also be sent for 5311 * this CIS with the Status Operation Cancelled by Host (0x44). 5312 */ 5313 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5314 return hci_disconnect_sync(hdev, conn, reason); 5315 5316 /* CIS with no Create CIS sent have nothing to cancel */ 5317 if (bacmp(&conn->dst, BDADDR_ANY)) 5318 return HCI_ERROR_LOCAL_HOST_TERM; 5319 5320 /* There is no way to cancel a BIS without terminating the BIG 5321 * which is done later on connection cleanup. 5322 */ 5323 return 0; 5324 } 5325 5326 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5327 return 0; 5328 5329 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5330 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5331 * used when suspending or powering off, where we don't want to wait 5332 * for the peer's response. 5333 */ 5334 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5335 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5336 6, &conn->dst, 5337 HCI_EV_CONN_COMPLETE, 5338 HCI_CMD_TIMEOUT, NULL); 5339 5340 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5341 6, &conn->dst, HCI_CMD_TIMEOUT); 5342 } 5343 5344 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5345 u8 reason) 5346 { 5347 struct hci_cp_reject_sync_conn_req cp; 5348 5349 memset(&cp, 0, sizeof(cp)); 5350 bacpy(&cp.bdaddr, &conn->dst); 5351 cp.reason = reason; 5352 5353 /* SCO rejection has its own limited set of 5354 * allowed error values (0x0D-0x0F). 5355 */ 5356 if (reason < 0x0d || reason > 0x0f) 5357 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5358 5359 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5360 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5361 } 5362 5363 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5364 u8 reason) 5365 { 5366 struct hci_cp_le_reject_cis cp; 5367 5368 memset(&cp, 0, sizeof(cp)); 5369 cp.handle = cpu_to_le16(conn->handle); 5370 cp.reason = reason; 5371 5372 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5373 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5374 } 5375 5376 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5377 u8 reason) 5378 { 5379 struct hci_cp_reject_conn_req cp; 5380 5381 if (conn->type == ISO_LINK) 5382 return hci_le_reject_cis_sync(hdev, conn, reason); 5383 5384 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5385 return hci_reject_sco_sync(hdev, conn, reason); 5386 5387 memset(&cp, 0, sizeof(cp)); 5388 bacpy(&cp.bdaddr, &conn->dst); 5389 cp.reason = reason; 5390 5391 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5392 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5393 } 5394 5395 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5396 { 5397 int err = 0; 5398 u16 handle = conn->handle; 5399 bool disconnect = false; 5400 struct hci_conn *c; 5401 5402 switch (conn->state) { 5403 case BT_CONNECTED: 5404 case BT_CONFIG: 5405 err = hci_disconnect_sync(hdev, conn, reason); 5406 break; 5407 case BT_CONNECT: 5408 err = hci_connect_cancel_sync(hdev, conn, reason); 5409 break; 5410 case BT_CONNECT2: 5411 err = hci_reject_conn_sync(hdev, conn, reason); 5412 break; 5413 case BT_OPEN: 5414 case BT_BOUND: 5415 break; 5416 default: 5417 disconnect = true; 5418 break; 5419 } 5420 5421 hci_dev_lock(hdev); 5422 5423 /* Check if the connection has been cleaned up concurrently */ 5424 c = hci_conn_hash_lookup_handle(hdev, handle); 5425 if (!c || c != conn) { 5426 err = 0; 5427 goto unlock; 5428 } 5429 5430 /* Cleanup hci_conn object if it cannot be cancelled as it 5431 * likelly means the controller and host stack are out of sync 5432 * or in case of LE it was still scanning so it can be cleanup 5433 * safely. 5434 */ 5435 if (disconnect) { 5436 conn->state = BT_CLOSED; 5437 hci_disconn_cfm(conn, reason); 5438 hci_conn_del(conn); 5439 } else { 5440 hci_conn_failed(conn, reason); 5441 } 5442 5443 unlock: 5444 hci_dev_unlock(hdev); 5445 return err; 5446 } 5447 5448 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5449 { 5450 struct list_head *head = &hdev->conn_hash.list; 5451 struct hci_conn *conn; 5452 5453 rcu_read_lock(); 5454 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5455 /* Make sure the connection is not freed while unlocking */ 5456 conn = hci_conn_get(conn); 5457 rcu_read_unlock(); 5458 /* Disregard possible errors since hci_conn_del shall have been 5459 * called even in case of errors had occurred since it would 5460 * then cause hci_conn_failed to be called which calls 5461 * hci_conn_del internally. 5462 */ 5463 hci_abort_conn_sync(hdev, conn, reason); 5464 hci_conn_put(conn); 5465 rcu_read_lock(); 5466 } 5467 rcu_read_unlock(); 5468 5469 return 0; 5470 } 5471 5472 /* This function perform power off HCI command sequence as follows: 5473 * 5474 * Clear Advertising 5475 * Stop Discovery 5476 * Disconnect all connections 5477 * hci_dev_close_sync 5478 */ 5479 static int hci_power_off_sync(struct hci_dev *hdev) 5480 { 5481 int err; 5482 5483 /* If controller is already down there is nothing to do */ 5484 if (!test_bit(HCI_UP, &hdev->flags)) 5485 return 0; 5486 5487 if (test_bit(HCI_ISCAN, &hdev->flags) || 5488 test_bit(HCI_PSCAN, &hdev->flags)) { 5489 err = hci_write_scan_enable_sync(hdev, 0x00); 5490 if (err) 5491 return err; 5492 } 5493 5494 err = hci_clear_adv_sync(hdev, NULL, false); 5495 if (err) 5496 return err; 5497 5498 err = hci_stop_discovery_sync(hdev); 5499 if (err) 5500 return err; 5501 5502 /* Terminated due to Power Off */ 5503 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5504 if (err) 5505 return err; 5506 5507 return hci_dev_close_sync(hdev); 5508 } 5509 5510 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5511 { 5512 if (val) 5513 return hci_power_on_sync(hdev); 5514 5515 return hci_power_off_sync(hdev); 5516 } 5517 5518 static int hci_write_iac_sync(struct hci_dev *hdev) 5519 { 5520 struct hci_cp_write_current_iac_lap cp; 5521 5522 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5523 return 0; 5524 5525 memset(&cp, 0, sizeof(cp)); 5526 5527 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5528 /* Limited discoverable mode */ 5529 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5530 cp.iac_lap[0] = 0x00; /* LIAC */ 5531 cp.iac_lap[1] = 0x8b; 5532 cp.iac_lap[2] = 0x9e; 5533 cp.iac_lap[3] = 0x33; /* GIAC */ 5534 cp.iac_lap[4] = 0x8b; 5535 cp.iac_lap[5] = 0x9e; 5536 } else { 5537 /* General discoverable mode */ 5538 cp.num_iac = 1; 5539 cp.iac_lap[0] = 0x33; /* GIAC */ 5540 cp.iac_lap[1] = 0x8b; 5541 cp.iac_lap[2] = 0x9e; 5542 } 5543 5544 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5545 (cp.num_iac * 3) + 1, &cp, 5546 HCI_CMD_TIMEOUT); 5547 } 5548 5549 int hci_update_discoverable_sync(struct hci_dev *hdev) 5550 { 5551 int err = 0; 5552 5553 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5554 err = hci_write_iac_sync(hdev); 5555 if (err) 5556 return err; 5557 5558 err = hci_update_scan_sync(hdev); 5559 if (err) 5560 return err; 5561 5562 err = hci_update_class_sync(hdev); 5563 if (err) 5564 return err; 5565 } 5566 5567 /* Advertising instances don't use the global discoverable setting, so 5568 * only update AD if advertising was enabled using Set Advertising. 5569 */ 5570 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5571 err = hci_update_adv_data_sync(hdev, 0x00); 5572 if (err) 5573 return err; 5574 5575 /* Discoverable mode affects the local advertising 5576 * address in limited privacy mode. 5577 */ 5578 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5579 if (ext_adv_capable(hdev)) 5580 err = hci_start_ext_adv_sync(hdev, 0x00); 5581 else 5582 err = hci_enable_advertising_sync(hdev); 5583 } 5584 } 5585 5586 return err; 5587 } 5588 5589 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5590 { 5591 return hci_update_discoverable_sync(hdev); 5592 } 5593 5594 int hci_update_discoverable(struct hci_dev *hdev) 5595 { 5596 /* Only queue if it would have any effect */ 5597 if (hdev_is_powered(hdev) && 5598 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5599 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5600 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5601 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5602 NULL); 5603 5604 return 0; 5605 } 5606 5607 int hci_update_connectable_sync(struct hci_dev *hdev) 5608 { 5609 int err; 5610 5611 err = hci_update_scan_sync(hdev); 5612 if (err) 5613 return err; 5614 5615 /* If BR/EDR is not enabled and we disable advertising as a 5616 * by-product of disabling connectable, we need to update the 5617 * advertising flags. 5618 */ 5619 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5620 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5621 5622 /* Update the advertising parameters if necessary */ 5623 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5624 !list_empty(&hdev->adv_instances)) { 5625 if (ext_adv_capable(hdev)) 5626 err = hci_start_ext_adv_sync(hdev, 5627 hdev->cur_adv_instance); 5628 else 5629 err = hci_enable_advertising_sync(hdev); 5630 5631 if (err) 5632 return err; 5633 } 5634 5635 return hci_update_passive_scan_sync(hdev); 5636 } 5637 5638 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5639 { 5640 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5641 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5642 struct hci_cp_inquiry cp; 5643 5644 bt_dev_dbg(hdev, ""); 5645 5646 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5647 return 0; 5648 5649 hci_dev_lock(hdev); 5650 hci_inquiry_cache_flush(hdev); 5651 hci_dev_unlock(hdev); 5652 5653 memset(&cp, 0, sizeof(cp)); 5654 5655 if (hdev->discovery.limited) 5656 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5657 else 5658 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5659 5660 cp.length = length; 5661 5662 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5663 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5664 } 5665 5666 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5667 { 5668 u8 own_addr_type; 5669 /* Accept list is not used for discovery */ 5670 u8 filter_policy = 0x00; 5671 /* Default is to enable duplicates filter */ 5672 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5673 int err; 5674 5675 bt_dev_dbg(hdev, ""); 5676 5677 /* If controller is scanning, it means the passive scanning is 5678 * running. Thus, we should temporarily stop it in order to set the 5679 * discovery scanning parameters. 5680 */ 5681 err = hci_scan_disable_sync(hdev); 5682 if (err) { 5683 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5684 return err; 5685 } 5686 5687 cancel_interleave_scan(hdev); 5688 5689 /* Pause address resolution for active scan and stop advertising if 5690 * privacy is enabled. 5691 */ 5692 err = hci_pause_addr_resolution(hdev); 5693 if (err) 5694 goto failed; 5695 5696 /* All active scans will be done with either a resolvable private 5697 * address (when privacy feature has been enabled) or non-resolvable 5698 * private address. 5699 */ 5700 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5701 &own_addr_type); 5702 if (err < 0) 5703 own_addr_type = ADDR_LE_DEV_PUBLIC; 5704 5705 if (hci_is_adv_monitoring(hdev)) { 5706 /* Duplicate filter should be disabled when some advertisement 5707 * monitor is activated, otherwise AdvMon can only receive one 5708 * advertisement for one peer(*) during active scanning, and 5709 * might report loss to these peers. 5710 * 5711 * Note that different controllers have different meanings of 5712 * |duplicate|. Some of them consider packets with the same 5713 * address as duplicate, and others consider packets with the 5714 * same address and the same RSSI as duplicate. Although in the 5715 * latter case we don't need to disable duplicate filter, but 5716 * it is common to have active scanning for a short period of 5717 * time, the power impact should be neglectable. 5718 */ 5719 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5720 } 5721 5722 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5723 hdev->le_scan_window_discovery, 5724 own_addr_type, filter_policy, filter_dup); 5725 if (!err) 5726 return err; 5727 5728 failed: 5729 /* Resume advertising if it was paused */ 5730 if (use_ll_privacy(hdev)) 5731 hci_resume_advertising_sync(hdev); 5732 5733 /* Resume passive scanning */ 5734 hci_update_passive_scan_sync(hdev); 5735 return err; 5736 } 5737 5738 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5739 { 5740 int err; 5741 5742 bt_dev_dbg(hdev, ""); 5743 5744 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5745 if (err) 5746 return err; 5747 5748 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5749 } 5750 5751 int hci_start_discovery_sync(struct hci_dev *hdev) 5752 { 5753 unsigned long timeout; 5754 int err; 5755 5756 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5757 5758 switch (hdev->discovery.type) { 5759 case DISCOV_TYPE_BREDR: 5760 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5761 case DISCOV_TYPE_INTERLEAVED: 5762 /* When running simultaneous discovery, the LE scanning time 5763 * should occupy the whole discovery time sine BR/EDR inquiry 5764 * and LE scanning are scheduled by the controller. 5765 * 5766 * For interleaving discovery in comparison, BR/EDR inquiry 5767 * and LE scanning are done sequentially with separate 5768 * timeouts. 5769 */ 5770 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5771 &hdev->quirks)) { 5772 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5773 /* During simultaneous discovery, we double LE scan 5774 * interval. We must leave some time for the controller 5775 * to do BR/EDR inquiry. 5776 */ 5777 err = hci_start_interleaved_discovery_sync(hdev); 5778 break; 5779 } 5780 5781 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5782 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5783 break; 5784 case DISCOV_TYPE_LE: 5785 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5786 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5787 break; 5788 default: 5789 return -EINVAL; 5790 } 5791 5792 if (err) 5793 return err; 5794 5795 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5796 5797 /* When service discovery is used and the controller has a 5798 * strict duplicate filter, it is important to remember the 5799 * start and duration of the scan. This is required for 5800 * restarting scanning during the discovery phase. 5801 */ 5802 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5803 hdev->discovery.result_filtering) { 5804 hdev->discovery.scan_start = jiffies; 5805 hdev->discovery.scan_duration = timeout; 5806 } 5807 5808 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5809 timeout); 5810 return 0; 5811 } 5812 5813 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5814 { 5815 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5816 case HCI_ADV_MONITOR_EXT_MSFT: 5817 msft_suspend_sync(hdev); 5818 break; 5819 default: 5820 return; 5821 } 5822 } 5823 5824 /* This function disables discovery and mark it as paused */ 5825 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5826 { 5827 int old_state = hdev->discovery.state; 5828 int err; 5829 5830 /* If discovery already stopped/stopping/paused there nothing to do */ 5831 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5832 hdev->discovery_paused) 5833 return 0; 5834 5835 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5836 err = hci_stop_discovery_sync(hdev); 5837 if (err) 5838 return err; 5839 5840 hdev->discovery_paused = true; 5841 hdev->discovery_old_state = old_state; 5842 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5843 5844 return 0; 5845 } 5846 5847 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5848 { 5849 struct bdaddr_list_with_flags *b; 5850 u8 scan = SCAN_DISABLED; 5851 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5852 int err; 5853 5854 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5855 return 0; 5856 5857 /* Some fake CSR controllers lock up after setting this type of 5858 * filter, so avoid sending the request altogether. 5859 */ 5860 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5861 return 0; 5862 5863 /* Always clear event filter when starting */ 5864 hci_clear_event_filter_sync(hdev); 5865 5866 list_for_each_entry(b, &hdev->accept_list, list) { 5867 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5868 continue; 5869 5870 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5871 5872 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5873 HCI_CONN_SETUP_ALLOW_BDADDR, 5874 &b->bdaddr, 5875 HCI_CONN_SETUP_AUTO_ON); 5876 if (err) 5877 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5878 &b->bdaddr); 5879 else 5880 scan = SCAN_PAGE; 5881 } 5882 5883 if (scan && !scanning) 5884 hci_write_scan_enable_sync(hdev, scan); 5885 else if (!scan && scanning) 5886 hci_write_scan_enable_sync(hdev, scan); 5887 5888 return 0; 5889 } 5890 5891 /* This function disables scan (BR and LE) and mark it as paused */ 5892 static int hci_pause_scan_sync(struct hci_dev *hdev) 5893 { 5894 if (hdev->scanning_paused) 5895 return 0; 5896 5897 /* Disable page scan if enabled */ 5898 if (test_bit(HCI_PSCAN, &hdev->flags)) 5899 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5900 5901 hci_scan_disable_sync(hdev); 5902 5903 hdev->scanning_paused = true; 5904 5905 return 0; 5906 } 5907 5908 /* This function performs the HCI suspend procedures in the follow order: 5909 * 5910 * Pause discovery (active scanning/inquiry) 5911 * Pause Directed Advertising/Advertising 5912 * Pause Scanning (passive scanning in case discovery was not active) 5913 * Disconnect all connections 5914 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5915 * otherwise: 5916 * Update event mask (only set events that are allowed to wake up the host) 5917 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5918 * Update passive scanning (lower duty cycle) 5919 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5920 */ 5921 int hci_suspend_sync(struct hci_dev *hdev) 5922 { 5923 int err; 5924 5925 /* If marked as suspended there nothing to do */ 5926 if (hdev->suspended) 5927 return 0; 5928 5929 /* Mark device as suspended */ 5930 hdev->suspended = true; 5931 5932 /* Pause discovery if not already stopped */ 5933 hci_pause_discovery_sync(hdev); 5934 5935 /* Pause other advertisements */ 5936 hci_pause_advertising_sync(hdev); 5937 5938 /* Suspend monitor filters */ 5939 hci_suspend_monitor_sync(hdev); 5940 5941 /* Prevent disconnects from causing scanning to be re-enabled */ 5942 hci_pause_scan_sync(hdev); 5943 5944 if (hci_conn_count(hdev)) { 5945 /* Soft disconnect everything (power off) */ 5946 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5947 if (err) { 5948 /* Set state to BT_RUNNING so resume doesn't notify */ 5949 hdev->suspend_state = BT_RUNNING; 5950 hci_resume_sync(hdev); 5951 return err; 5952 } 5953 5954 /* Update event mask so only the allowed event can wakeup the 5955 * host. 5956 */ 5957 hci_set_event_mask_sync(hdev); 5958 } 5959 5960 /* Only configure accept list if disconnect succeeded and wake 5961 * isn't being prevented. 5962 */ 5963 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5964 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5965 return 0; 5966 } 5967 5968 /* Unpause to take care of updating scanning params */ 5969 hdev->scanning_paused = false; 5970 5971 /* Enable event filter for paired devices */ 5972 hci_update_event_filter_sync(hdev); 5973 5974 /* Update LE passive scan if enabled */ 5975 hci_update_passive_scan_sync(hdev); 5976 5977 /* Pause scan changes again. */ 5978 hdev->scanning_paused = true; 5979 5980 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5981 5982 return 0; 5983 } 5984 5985 /* This function resumes discovery */ 5986 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5987 { 5988 int err; 5989 5990 /* If discovery not paused there nothing to do */ 5991 if (!hdev->discovery_paused) 5992 return 0; 5993 5994 hdev->discovery_paused = false; 5995 5996 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5997 5998 err = hci_start_discovery_sync(hdev); 5999 6000 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6001 DISCOVERY_FINDING); 6002 6003 return err; 6004 } 6005 6006 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6007 { 6008 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6009 case HCI_ADV_MONITOR_EXT_MSFT: 6010 msft_resume_sync(hdev); 6011 break; 6012 default: 6013 return; 6014 } 6015 } 6016 6017 /* This function resume scan and reset paused flag */ 6018 static int hci_resume_scan_sync(struct hci_dev *hdev) 6019 { 6020 if (!hdev->scanning_paused) 6021 return 0; 6022 6023 hdev->scanning_paused = false; 6024 6025 hci_update_scan_sync(hdev); 6026 6027 /* Reset passive scanning to normal */ 6028 hci_update_passive_scan_sync(hdev); 6029 6030 return 0; 6031 } 6032 6033 /* This function performs the HCI suspend procedures in the follow order: 6034 * 6035 * Restore event mask 6036 * Clear event filter 6037 * Update passive scanning (normal duty cycle) 6038 * Resume Directed Advertising/Advertising 6039 * Resume discovery (active scanning/inquiry) 6040 */ 6041 int hci_resume_sync(struct hci_dev *hdev) 6042 { 6043 /* If not marked as suspended there nothing to do */ 6044 if (!hdev->suspended) 6045 return 0; 6046 6047 hdev->suspended = false; 6048 6049 /* Restore event mask */ 6050 hci_set_event_mask_sync(hdev); 6051 6052 /* Clear any event filters and restore scan state */ 6053 hci_clear_event_filter_sync(hdev); 6054 6055 /* Resume scanning */ 6056 hci_resume_scan_sync(hdev); 6057 6058 /* Resume monitor filters */ 6059 hci_resume_monitor_sync(hdev); 6060 6061 /* Resume other advertisements */ 6062 hci_resume_advertising_sync(hdev); 6063 6064 /* Resume discovery */ 6065 hci_resume_discovery_sync(hdev); 6066 6067 return 0; 6068 } 6069 6070 static bool conn_use_rpa(struct hci_conn *conn) 6071 { 6072 struct hci_dev *hdev = conn->hdev; 6073 6074 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6075 } 6076 6077 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6078 struct hci_conn *conn) 6079 { 6080 struct hci_cp_le_set_ext_adv_params cp; 6081 int err; 6082 bdaddr_t random_addr; 6083 u8 own_addr_type; 6084 6085 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6086 &own_addr_type); 6087 if (err) 6088 return err; 6089 6090 /* Set require_privacy to false so that the remote device has a 6091 * chance of identifying us. 6092 */ 6093 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6094 &own_addr_type, &random_addr); 6095 if (err) 6096 return err; 6097 6098 memset(&cp, 0, sizeof(cp)); 6099 6100 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6101 cp.channel_map = hdev->le_adv_channel_map; 6102 cp.tx_power = HCI_TX_POWER_INVALID; 6103 cp.primary_phy = HCI_ADV_PHY_1M; 6104 cp.secondary_phy = HCI_ADV_PHY_1M; 6105 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6106 cp.own_addr_type = own_addr_type; 6107 cp.peer_addr_type = conn->dst_type; 6108 bacpy(&cp.peer_addr, &conn->dst); 6109 6110 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6111 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6112 * does not supports advertising data when the advertising set already 6113 * contains some, the controller shall return erroc code 'Invalid 6114 * HCI Command Parameters(0x12). 6115 * So it is required to remove adv set for handle 0x00. since we use 6116 * instance 0 for directed adv. 6117 */ 6118 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6119 if (err) 6120 return err; 6121 6122 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6123 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6124 if (err) 6125 return err; 6126 6127 /* Check if random address need to be updated */ 6128 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6129 bacmp(&random_addr, BDADDR_ANY) && 6130 bacmp(&random_addr, &hdev->random_addr)) { 6131 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6132 &random_addr); 6133 if (err) 6134 return err; 6135 } 6136 6137 return hci_enable_ext_advertising_sync(hdev, 0x00); 6138 } 6139 6140 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6141 struct hci_conn *conn) 6142 { 6143 struct hci_cp_le_set_adv_param cp; 6144 u8 status; 6145 u8 own_addr_type; 6146 u8 enable; 6147 6148 if (ext_adv_capable(hdev)) 6149 return hci_le_ext_directed_advertising_sync(hdev, conn); 6150 6151 /* Clear the HCI_LE_ADV bit temporarily so that the 6152 * hci_update_random_address knows that it's safe to go ahead 6153 * and write a new random address. The flag will be set back on 6154 * as soon as the SET_ADV_ENABLE HCI command completes. 6155 */ 6156 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6157 6158 /* Set require_privacy to false so that the remote device has a 6159 * chance of identifying us. 6160 */ 6161 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6162 &own_addr_type); 6163 if (status) 6164 return status; 6165 6166 memset(&cp, 0, sizeof(cp)); 6167 6168 /* Some controllers might reject command if intervals are not 6169 * within range for undirected advertising. 6170 * BCM20702A0 is known to be affected by this. 6171 */ 6172 cp.min_interval = cpu_to_le16(0x0020); 6173 cp.max_interval = cpu_to_le16(0x0020); 6174 6175 cp.type = LE_ADV_DIRECT_IND; 6176 cp.own_address_type = own_addr_type; 6177 cp.direct_addr_type = conn->dst_type; 6178 bacpy(&cp.direct_addr, &conn->dst); 6179 cp.channel_map = hdev->le_adv_channel_map; 6180 6181 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6182 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6183 if (status) 6184 return status; 6185 6186 enable = 0x01; 6187 6188 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6189 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6190 } 6191 6192 static void set_ext_conn_params(struct hci_conn *conn, 6193 struct hci_cp_le_ext_conn_param *p) 6194 { 6195 struct hci_dev *hdev = conn->hdev; 6196 6197 memset(p, 0, sizeof(*p)); 6198 6199 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6200 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6201 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6202 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6203 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6204 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6205 p->min_ce_len = cpu_to_le16(0x0000); 6206 p->max_ce_len = cpu_to_le16(0x0000); 6207 } 6208 6209 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6210 struct hci_conn *conn, u8 own_addr_type) 6211 { 6212 struct hci_cp_le_ext_create_conn *cp; 6213 struct hci_cp_le_ext_conn_param *p; 6214 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6215 u32 plen; 6216 6217 cp = (void *)data; 6218 p = (void *)cp->data; 6219 6220 memset(cp, 0, sizeof(*cp)); 6221 6222 bacpy(&cp->peer_addr, &conn->dst); 6223 cp->peer_addr_type = conn->dst_type; 6224 cp->own_addr_type = own_addr_type; 6225 6226 plen = sizeof(*cp); 6227 6228 if (scan_1m(hdev)) { 6229 cp->phys |= LE_SCAN_PHY_1M; 6230 set_ext_conn_params(conn, p); 6231 6232 p++; 6233 plen += sizeof(*p); 6234 } 6235 6236 if (scan_2m(hdev)) { 6237 cp->phys |= LE_SCAN_PHY_2M; 6238 set_ext_conn_params(conn, p); 6239 6240 p++; 6241 plen += sizeof(*p); 6242 } 6243 6244 if (scan_coded(hdev)) { 6245 cp->phys |= LE_SCAN_PHY_CODED; 6246 set_ext_conn_params(conn, p); 6247 6248 plen += sizeof(*p); 6249 } 6250 6251 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6252 plen, data, 6253 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6254 conn->conn_timeout, NULL); 6255 } 6256 6257 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6258 { 6259 struct hci_cp_le_create_conn cp; 6260 struct hci_conn_params *params; 6261 u8 own_addr_type; 6262 int err; 6263 6264 /* If requested to connect as peripheral use directed advertising */ 6265 if (conn->role == HCI_ROLE_SLAVE) { 6266 /* If we're active scanning and simultaneous roles is not 6267 * enabled simply reject the attempt. 6268 */ 6269 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6270 hdev->le_scan_type == LE_SCAN_ACTIVE && 6271 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6272 hci_conn_del(conn); 6273 return -EBUSY; 6274 } 6275 6276 /* Pause advertising while doing directed advertising. */ 6277 hci_pause_advertising_sync(hdev); 6278 6279 err = hci_le_directed_advertising_sync(hdev, conn); 6280 goto done; 6281 } 6282 6283 /* Disable advertising if simultaneous roles is not in use. */ 6284 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6285 hci_pause_advertising_sync(hdev); 6286 6287 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6288 if (params) { 6289 conn->le_conn_min_interval = params->conn_min_interval; 6290 conn->le_conn_max_interval = params->conn_max_interval; 6291 conn->le_conn_latency = params->conn_latency; 6292 conn->le_supv_timeout = params->supervision_timeout; 6293 } else { 6294 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6295 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6296 conn->le_conn_latency = hdev->le_conn_latency; 6297 conn->le_supv_timeout = hdev->le_supv_timeout; 6298 } 6299 6300 /* If controller is scanning, we stop it since some controllers are 6301 * not able to scan and connect at the same time. Also set the 6302 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6303 * handler for scan disabling knows to set the correct discovery 6304 * state. 6305 */ 6306 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6307 hci_scan_disable_sync(hdev); 6308 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6309 } 6310 6311 /* Update random address, but set require_privacy to false so 6312 * that we never connect with an non-resolvable address. 6313 */ 6314 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6315 &own_addr_type); 6316 if (err) 6317 goto done; 6318 6319 if (use_ext_conn(hdev)) { 6320 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6321 goto done; 6322 } 6323 6324 memset(&cp, 0, sizeof(cp)); 6325 6326 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6327 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6328 6329 bacpy(&cp.peer_addr, &conn->dst); 6330 cp.peer_addr_type = conn->dst_type; 6331 cp.own_address_type = own_addr_type; 6332 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6333 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6334 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6335 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6336 cp.min_ce_len = cpu_to_le16(0x0000); 6337 cp.max_ce_len = cpu_to_le16(0x0000); 6338 6339 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6340 * 6341 * If this event is unmasked and the HCI_LE_Connection_Complete event 6342 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6343 * sent when a new connection has been created. 6344 */ 6345 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6346 sizeof(cp), &cp, 6347 use_enhanced_conn_complete(hdev) ? 6348 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6349 HCI_EV_LE_CONN_COMPLETE, 6350 conn->conn_timeout, NULL); 6351 6352 done: 6353 if (err == -ETIMEDOUT) 6354 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6355 6356 /* Re-enable advertising after the connection attempt is finished. */ 6357 hci_resume_advertising_sync(hdev); 6358 return err; 6359 } 6360 6361 int hci_le_create_cis_sync(struct hci_dev *hdev) 6362 { 6363 struct { 6364 struct hci_cp_le_create_cis cp; 6365 struct hci_cis cis[0x1f]; 6366 } cmd; 6367 struct hci_conn *conn; 6368 u8 cig = BT_ISO_QOS_CIG_UNSET; 6369 6370 /* The spec allows only one pending LE Create CIS command at a time. If 6371 * the command is pending now, don't do anything. We check for pending 6372 * connections after each CIS Established event. 6373 * 6374 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6375 * page 2566: 6376 * 6377 * If the Host issues this command before all the 6378 * HCI_LE_CIS_Established events from the previous use of the 6379 * command have been generated, the Controller shall return the 6380 * error code Command Disallowed (0x0C). 6381 * 6382 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6383 * page 2567: 6384 * 6385 * When the Controller receives the HCI_LE_Create_CIS command, the 6386 * Controller sends the HCI_Command_Status event to the Host. An 6387 * HCI_LE_CIS_Established event will be generated for each CIS when it 6388 * is established or if it is disconnected or considered lost before 6389 * being established; until all the events are generated, the command 6390 * remains pending. 6391 */ 6392 6393 memset(&cmd, 0, sizeof(cmd)); 6394 6395 hci_dev_lock(hdev); 6396 6397 rcu_read_lock(); 6398 6399 /* Wait until previous Create CIS has completed */ 6400 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6401 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6402 goto done; 6403 } 6404 6405 /* Find CIG with all CIS ready */ 6406 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6407 struct hci_conn *link; 6408 6409 if (hci_conn_check_create_cis(conn)) 6410 continue; 6411 6412 cig = conn->iso_qos.ucast.cig; 6413 6414 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6415 if (hci_conn_check_create_cis(link) > 0 && 6416 link->iso_qos.ucast.cig == cig && 6417 link->state != BT_CONNECTED) { 6418 cig = BT_ISO_QOS_CIG_UNSET; 6419 break; 6420 } 6421 } 6422 6423 if (cig != BT_ISO_QOS_CIG_UNSET) 6424 break; 6425 } 6426 6427 if (cig == BT_ISO_QOS_CIG_UNSET) 6428 goto done; 6429 6430 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6431 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6432 6433 if (hci_conn_check_create_cis(conn) || 6434 conn->iso_qos.ucast.cig != cig) 6435 continue; 6436 6437 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6438 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6439 cis->cis_handle = cpu_to_le16(conn->handle); 6440 cmd.cp.num_cis++; 6441 6442 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6443 break; 6444 } 6445 6446 done: 6447 rcu_read_unlock(); 6448 6449 hci_dev_unlock(hdev); 6450 6451 if (!cmd.cp.num_cis) 6452 return 0; 6453 6454 /* Wait for HCI_LE_CIS_Established */ 6455 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6456 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6457 cmd.cp.num_cis, &cmd, 6458 HCI_EVT_LE_CIS_ESTABLISHED, 6459 conn->conn_timeout, NULL); 6460 } 6461 6462 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6463 { 6464 struct hci_cp_le_remove_cig cp; 6465 6466 memset(&cp, 0, sizeof(cp)); 6467 cp.cig_id = handle; 6468 6469 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6470 &cp, HCI_CMD_TIMEOUT); 6471 } 6472 6473 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6474 { 6475 struct hci_cp_le_big_term_sync cp; 6476 6477 memset(&cp, 0, sizeof(cp)); 6478 cp.handle = handle; 6479 6480 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6481 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6482 } 6483 6484 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6485 { 6486 struct hci_cp_le_pa_term_sync cp; 6487 6488 memset(&cp, 0, sizeof(cp)); 6489 cp.handle = cpu_to_le16(handle); 6490 6491 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6492 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6493 } 6494 6495 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6496 bool use_rpa, struct adv_info *adv_instance, 6497 u8 *own_addr_type, bdaddr_t *rand_addr) 6498 { 6499 int err; 6500 6501 bacpy(rand_addr, BDADDR_ANY); 6502 6503 /* If privacy is enabled use a resolvable private address. If 6504 * current RPA has expired then generate a new one. 6505 */ 6506 if (use_rpa) { 6507 /* If Controller supports LL Privacy use own address type is 6508 * 0x03 6509 */ 6510 if (use_ll_privacy(hdev)) 6511 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6512 else 6513 *own_addr_type = ADDR_LE_DEV_RANDOM; 6514 6515 if (adv_instance) { 6516 if (adv_rpa_valid(adv_instance)) 6517 return 0; 6518 } else { 6519 if (rpa_valid(hdev)) 6520 return 0; 6521 } 6522 6523 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6524 if (err < 0) { 6525 bt_dev_err(hdev, "failed to generate new RPA"); 6526 return err; 6527 } 6528 6529 bacpy(rand_addr, &hdev->rpa); 6530 6531 return 0; 6532 } 6533 6534 /* In case of required privacy without resolvable private address, 6535 * use an non-resolvable private address. This is useful for 6536 * non-connectable advertising. 6537 */ 6538 if (require_privacy) { 6539 bdaddr_t nrpa; 6540 6541 while (true) { 6542 /* The non-resolvable private address is generated 6543 * from random six bytes with the two most significant 6544 * bits cleared. 6545 */ 6546 get_random_bytes(&nrpa, 6); 6547 nrpa.b[5] &= 0x3f; 6548 6549 /* The non-resolvable private address shall not be 6550 * equal to the public address. 6551 */ 6552 if (bacmp(&hdev->bdaddr, &nrpa)) 6553 break; 6554 } 6555 6556 *own_addr_type = ADDR_LE_DEV_RANDOM; 6557 bacpy(rand_addr, &nrpa); 6558 6559 return 0; 6560 } 6561 6562 /* No privacy so use a public address. */ 6563 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6564 6565 return 0; 6566 } 6567 6568 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6569 { 6570 u8 instance = PTR_UINT(data); 6571 6572 return hci_update_adv_data_sync(hdev, instance); 6573 } 6574 6575 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6576 { 6577 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6578 UINT_PTR(instance), NULL); 6579 } 6580