1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 if (skb) { 35 struct sock *sk = hci_skb_sk(skb); 36 37 /* Drop sk reference if set */ 38 if (sk) 39 sock_put(sk); 40 41 hdev->req_skb = skb_get(skb); 42 } 43 44 wake_up_interruptible(&hdev->req_wait_q); 45 } 46 47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 48 u32 plen, const void *param, 49 struct sock *sk) 50 { 51 int len = HCI_COMMAND_HDR_SIZE + plen; 52 struct hci_command_hdr *hdr; 53 struct sk_buff *skb; 54 55 skb = bt_skb_alloc(len, GFP_ATOMIC); 56 if (!skb) 57 return NULL; 58 59 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 60 hdr->opcode = cpu_to_le16(opcode); 61 hdr->plen = plen; 62 63 if (plen) 64 skb_put_data(skb, param, plen); 65 66 bt_dev_dbg(hdev, "skb len %d", skb->len); 67 68 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 69 hci_skb_opcode(skb) = opcode; 70 71 /* Grab a reference if command needs to be associated with a sock (e.g. 72 * likely mgmt socket that initiated the command). 73 */ 74 if (sk) { 75 hci_skb_sk(skb) = sk; 76 sock_hold(sk); 77 } 78 79 return skb; 80 } 81 82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 83 const void *param, u8 event, struct sock *sk) 84 { 85 struct hci_dev *hdev = req->hdev; 86 struct sk_buff *skb; 87 88 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 89 90 /* If an error occurred during request building, there is no point in 91 * queueing the HCI command. We can simply return. 92 */ 93 if (req->err) 94 return; 95 96 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 97 if (!skb) { 98 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 99 opcode); 100 req->err = -ENOMEM; 101 return; 102 } 103 104 if (skb_queue_empty(&req->cmd_q)) 105 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 106 107 hci_skb_event(skb) = event; 108 109 skb_queue_tail(&req->cmd_q, skb); 110 } 111 112 static int hci_cmd_sync_run(struct hci_request *req) 113 { 114 struct hci_dev *hdev = req->hdev; 115 struct sk_buff *skb; 116 unsigned long flags; 117 118 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 119 120 /* If an error occurred during request building, remove all HCI 121 * commands queued on the HCI request queue. 122 */ 123 if (req->err) { 124 skb_queue_purge(&req->cmd_q); 125 return req->err; 126 } 127 128 /* Do not allow empty requests */ 129 if (skb_queue_empty(&req->cmd_q)) 130 return -ENODATA; 131 132 skb = skb_peek_tail(&req->cmd_q); 133 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 134 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 135 136 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 137 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 138 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 139 140 queue_work(hdev->workqueue, &hdev->cmd_work); 141 142 return 0; 143 } 144 145 /* This function requires the caller holds hdev->req_lock. */ 146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 147 const void *param, u8 event, u32 timeout, 148 struct sock *sk) 149 { 150 struct hci_request req; 151 struct sk_buff *skb; 152 int err = 0; 153 154 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 155 156 hci_req_init(&req, hdev); 157 158 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 159 160 hdev->req_status = HCI_REQ_PEND; 161 162 err = hci_cmd_sync_run(&req); 163 if (err < 0) 164 return ERR_PTR(err); 165 166 err = wait_event_interruptible_timeout(hdev->req_wait_q, 167 hdev->req_status != HCI_REQ_PEND, 168 timeout); 169 170 if (err == -ERESTARTSYS) 171 return ERR_PTR(-EINTR); 172 173 switch (hdev->req_status) { 174 case HCI_REQ_DONE: 175 err = -bt_to_errno(hdev->req_result); 176 break; 177 178 case HCI_REQ_CANCELED: 179 err = -hdev->req_result; 180 break; 181 182 default: 183 err = -ETIMEDOUT; 184 break; 185 } 186 187 hdev->req_status = 0; 188 hdev->req_result = 0; 189 skb = hdev->req_skb; 190 hdev->req_skb = NULL; 191 192 bt_dev_dbg(hdev, "end: err %d", err); 193 194 if (err < 0) { 195 kfree_skb(skb); 196 return ERR_PTR(err); 197 } 198 199 return skb; 200 } 201 EXPORT_SYMBOL(__hci_cmd_sync_sk); 202 203 /* This function requires the caller holds hdev->req_lock. */ 204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 205 const void *param, u32 timeout) 206 { 207 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 208 } 209 EXPORT_SYMBOL(__hci_cmd_sync); 210 211 /* Send HCI command and wait for command complete event */ 212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 213 const void *param, u32 timeout) 214 { 215 struct sk_buff *skb; 216 217 if (!test_bit(HCI_UP, &hdev->flags)) 218 return ERR_PTR(-ENETDOWN); 219 220 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 221 222 hci_req_sync_lock(hdev); 223 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 224 hci_req_sync_unlock(hdev); 225 226 return skb; 227 } 228 EXPORT_SYMBOL(hci_cmd_sync); 229 230 /* This function requires the caller holds hdev->req_lock. */ 231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 232 const void *param, u8 event, u32 timeout) 233 { 234 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 235 NULL); 236 } 237 EXPORT_SYMBOL(__hci_cmd_sync_ev); 238 239 /* This function requires the caller holds hdev->req_lock. */ 240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 241 const void *param, u8 event, u32 timeout, 242 struct sock *sk) 243 { 244 struct sk_buff *skb; 245 u8 status; 246 247 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 248 if (IS_ERR(skb)) { 249 if (!event) 250 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 251 PTR_ERR(skb)); 252 return PTR_ERR(skb); 253 } 254 255 /* If command return a status event skb will be set to NULL as there are 256 * no parameters, in case of failure IS_ERR(skb) would have be set to 257 * the actual error would be found with PTR_ERR(skb). 258 */ 259 if (!skb) 260 return 0; 261 262 status = skb->data[0]; 263 264 kfree_skb(skb); 265 266 return status; 267 } 268 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 269 270 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 271 const void *param, u32 timeout) 272 { 273 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 274 NULL); 275 } 276 EXPORT_SYMBOL(__hci_cmd_sync_status); 277 278 static void hci_cmd_sync_work(struct work_struct *work) 279 { 280 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 281 282 bt_dev_dbg(hdev, ""); 283 284 /* Dequeue all entries and run them */ 285 while (1) { 286 struct hci_cmd_sync_work_entry *entry; 287 288 mutex_lock(&hdev->cmd_sync_work_lock); 289 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 290 struct hci_cmd_sync_work_entry, 291 list); 292 if (entry) 293 list_del(&entry->list); 294 mutex_unlock(&hdev->cmd_sync_work_lock); 295 296 if (!entry) 297 break; 298 299 bt_dev_dbg(hdev, "entry %p", entry); 300 301 if (entry->func) { 302 int err; 303 304 hci_req_sync_lock(hdev); 305 err = entry->func(hdev, entry->data); 306 if (entry->destroy) 307 entry->destroy(hdev, entry->data, err); 308 hci_req_sync_unlock(hdev); 309 } 310 311 kfree(entry); 312 } 313 } 314 315 static void hci_cmd_sync_cancel_work(struct work_struct *work) 316 { 317 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 318 319 cancel_delayed_work_sync(&hdev->cmd_timer); 320 cancel_delayed_work_sync(&hdev->ncmd_timer); 321 atomic_set(&hdev->cmd_cnt, 1); 322 323 wake_up_interruptible(&hdev->req_wait_q); 324 } 325 326 static int hci_scan_disable_sync(struct hci_dev *hdev); 327 static int scan_disable_sync(struct hci_dev *hdev, void *data) 328 { 329 return hci_scan_disable_sync(hdev); 330 } 331 332 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 333 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 334 { 335 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 336 } 337 338 static void le_scan_disable(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, 341 le_scan_disable.work); 342 int status; 343 344 bt_dev_dbg(hdev, ""); 345 hci_dev_lock(hdev); 346 347 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 348 goto _return; 349 350 cancel_delayed_work(&hdev->le_scan_restart); 351 352 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 353 if (status) { 354 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 355 goto _return; 356 } 357 358 hdev->discovery.scan_start = 0; 359 360 /* If we were running LE only scan, change discovery state. If 361 * we were running both LE and BR/EDR inquiry simultaneously, 362 * and BR/EDR inquiry is already finished, stop discovery, 363 * otherwise BR/EDR inquiry will stop discovery when finished. 364 * If we will resolve remote device name, do not change 365 * discovery state. 366 */ 367 368 if (hdev->discovery.type == DISCOV_TYPE_LE) 369 goto discov_stopped; 370 371 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 372 goto _return; 373 374 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 375 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 376 hdev->discovery.state != DISCOVERY_RESOLVING) 377 goto discov_stopped; 378 379 goto _return; 380 } 381 382 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 383 if (status) { 384 bt_dev_err(hdev, "inquiry failed: status %d", status); 385 goto discov_stopped; 386 } 387 388 goto _return; 389 390 discov_stopped: 391 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 392 393 _return: 394 hci_dev_unlock(hdev); 395 } 396 397 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 398 u8 filter_dup); 399 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 400 { 401 /* If controller is not scanning we are done. */ 402 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 403 return 0; 404 405 if (hdev->scanning_paused) { 406 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 407 return 0; 408 } 409 410 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 411 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 412 LE_SCAN_FILTER_DUP_ENABLE); 413 } 414 415 static int le_scan_restart_sync(struct hci_dev *hdev, void *data) 416 { 417 return hci_le_scan_restart_sync(hdev); 418 } 419 420 static void le_scan_restart(struct work_struct *work) 421 { 422 struct hci_dev *hdev = container_of(work, struct hci_dev, 423 le_scan_restart.work); 424 unsigned long timeout, duration, scan_start, now; 425 int status; 426 427 bt_dev_dbg(hdev, ""); 428 429 hci_dev_lock(hdev); 430 431 status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL); 432 if (status) { 433 bt_dev_err(hdev, "failed to restart LE scan: status %d", 434 status); 435 goto unlock; 436 } 437 438 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 439 !hdev->discovery.scan_start) 440 goto unlock; 441 442 /* When the scan was started, hdev->le_scan_disable has been queued 443 * after duration from scan_start. During scan restart this job 444 * has been canceled, and we need to queue it again after proper 445 * timeout, to make sure that scan does not run indefinitely. 446 */ 447 duration = hdev->discovery.scan_duration; 448 scan_start = hdev->discovery.scan_start; 449 now = jiffies; 450 if (now - scan_start <= duration) { 451 int elapsed; 452 453 if (now >= scan_start) 454 elapsed = now - scan_start; 455 else 456 elapsed = ULONG_MAX - scan_start + now; 457 458 timeout = duration - elapsed; 459 } else { 460 timeout = 0; 461 } 462 463 queue_delayed_work(hdev->req_workqueue, 464 &hdev->le_scan_disable, timeout); 465 466 unlock: 467 hci_dev_unlock(hdev); 468 } 469 470 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 471 { 472 bt_dev_dbg(hdev, ""); 473 474 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 475 list_empty(&hdev->adv_instances)) 476 return 0; 477 478 if (hdev->cur_adv_instance) { 479 return hci_schedule_adv_instance_sync(hdev, 480 hdev->cur_adv_instance, 481 true); 482 } else { 483 if (ext_adv_capable(hdev)) { 484 hci_start_ext_adv_sync(hdev, 0x00); 485 } else { 486 hci_update_adv_data_sync(hdev, 0x00); 487 hci_update_scan_rsp_data_sync(hdev, 0x00); 488 hci_enable_advertising_sync(hdev); 489 } 490 } 491 492 return 0; 493 } 494 495 static void reenable_adv(struct work_struct *work) 496 { 497 struct hci_dev *hdev = container_of(work, struct hci_dev, 498 reenable_adv_work); 499 int status; 500 501 bt_dev_dbg(hdev, ""); 502 503 hci_dev_lock(hdev); 504 505 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 506 if (status) 507 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 508 509 hci_dev_unlock(hdev); 510 } 511 512 static void cancel_adv_timeout(struct hci_dev *hdev) 513 { 514 if (hdev->adv_instance_timeout) { 515 hdev->adv_instance_timeout = 0; 516 cancel_delayed_work(&hdev->adv_instance_expire); 517 } 518 } 519 520 /* For a single instance: 521 * - force == true: The instance will be removed even when its remaining 522 * lifetime is not zero. 523 * - force == false: the instance will be deactivated but kept stored unless 524 * the remaining lifetime is zero. 525 * 526 * For instance == 0x00: 527 * - force == true: All instances will be removed regardless of their timeout 528 * setting. 529 * - force == false: Only instances that have a timeout will be removed. 530 */ 531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 532 u8 instance, bool force) 533 { 534 struct adv_info *adv_instance, *n, *next_instance = NULL; 535 int err; 536 u8 rem_inst; 537 538 /* Cancel any timeout concerning the removed instance(s). */ 539 if (!instance || hdev->cur_adv_instance == instance) 540 cancel_adv_timeout(hdev); 541 542 /* Get the next instance to advertise BEFORE we remove 543 * the current one. This can be the same instance again 544 * if there is only one instance. 545 */ 546 if (instance && hdev->cur_adv_instance == instance) 547 next_instance = hci_get_next_instance(hdev, instance); 548 549 if (instance == 0x00) { 550 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 551 list) { 552 if (!(force || adv_instance->timeout)) 553 continue; 554 555 rem_inst = adv_instance->instance; 556 err = hci_remove_adv_instance(hdev, rem_inst); 557 if (!err) 558 mgmt_advertising_removed(sk, hdev, rem_inst); 559 } 560 } else { 561 adv_instance = hci_find_adv_instance(hdev, instance); 562 563 if (force || (adv_instance && adv_instance->timeout && 564 !adv_instance->remaining_time)) { 565 /* Don't advertise a removed instance. */ 566 if (next_instance && 567 next_instance->instance == instance) 568 next_instance = NULL; 569 570 err = hci_remove_adv_instance(hdev, instance); 571 if (!err) 572 mgmt_advertising_removed(sk, hdev, instance); 573 } 574 } 575 576 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 577 return 0; 578 579 if (next_instance && !ext_adv_capable(hdev)) 580 return hci_schedule_adv_instance_sync(hdev, 581 next_instance->instance, 582 false); 583 584 return 0; 585 } 586 587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 588 { 589 u8 instance = *(u8 *)data; 590 591 kfree(data); 592 593 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 594 595 if (list_empty(&hdev->adv_instances)) 596 return hci_disable_advertising_sync(hdev); 597 598 return 0; 599 } 600 601 static void adv_timeout_expire(struct work_struct *work) 602 { 603 u8 *inst_ptr; 604 struct hci_dev *hdev = container_of(work, struct hci_dev, 605 adv_instance_expire.work); 606 607 bt_dev_dbg(hdev, ""); 608 609 hci_dev_lock(hdev); 610 611 hdev->adv_instance_timeout = 0; 612 613 if (hdev->cur_adv_instance == 0x00) 614 goto unlock; 615 616 inst_ptr = kmalloc(1, GFP_KERNEL); 617 if (!inst_ptr) 618 goto unlock; 619 620 *inst_ptr = hdev->cur_adv_instance; 621 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 622 623 unlock: 624 hci_dev_unlock(hdev); 625 } 626 627 void hci_cmd_sync_init(struct hci_dev *hdev) 628 { 629 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 630 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 631 mutex_init(&hdev->cmd_sync_work_lock); 632 633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 636 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 637 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 638 } 639 640 void hci_cmd_sync_clear(struct hci_dev *hdev) 641 { 642 struct hci_cmd_sync_work_entry *entry, *tmp; 643 644 cancel_work_sync(&hdev->cmd_sync_work); 645 cancel_work_sync(&hdev->reenable_adv_work); 646 647 mutex_lock(&hdev->cmd_sync_work_lock); 648 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 649 if (entry->destroy) 650 entry->destroy(hdev, entry->data, -ECANCELED); 651 652 list_del(&entry->list); 653 kfree(entry); 654 } 655 mutex_unlock(&hdev->cmd_sync_work_lock); 656 } 657 658 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 659 { 660 bt_dev_dbg(hdev, "err 0x%2.2x", err); 661 662 if (hdev->req_status == HCI_REQ_PEND) { 663 hdev->req_result = err; 664 hdev->req_status = HCI_REQ_CANCELED; 665 666 cancel_delayed_work_sync(&hdev->cmd_timer); 667 cancel_delayed_work_sync(&hdev->ncmd_timer); 668 atomic_set(&hdev->cmd_cnt, 1); 669 670 wake_up_interruptible(&hdev->req_wait_q); 671 } 672 } 673 674 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 675 { 676 bt_dev_dbg(hdev, "err 0x%2.2x", err); 677 678 if (hdev->req_status == HCI_REQ_PEND) { 679 hdev->req_result = err; 680 hdev->req_status = HCI_REQ_CANCELED; 681 682 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 683 } 684 } 685 EXPORT_SYMBOL(hci_cmd_sync_cancel); 686 687 /* Submit HCI command to be run in as cmd_sync_work: 688 * 689 * - hdev must _not_ be unregistered 690 */ 691 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 692 void *data, hci_cmd_sync_work_destroy_t destroy) 693 { 694 struct hci_cmd_sync_work_entry *entry; 695 696 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 697 return -ENODEV; 698 699 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 700 if (!entry) 701 return -ENOMEM; 702 703 entry->func = func; 704 entry->data = data; 705 entry->destroy = destroy; 706 707 mutex_lock(&hdev->cmd_sync_work_lock); 708 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 709 mutex_unlock(&hdev->cmd_sync_work_lock); 710 711 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 712 713 return 0; 714 } 715 EXPORT_SYMBOL(hci_cmd_sync_submit); 716 717 /* Queue HCI command: 718 * 719 * - hdev must be running 720 */ 721 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 722 void *data, hci_cmd_sync_work_destroy_t destroy) 723 { 724 /* Only queue command if hdev is running which means it had been opened 725 * and is either on init phase or is already up. 726 */ 727 if (!test_bit(HCI_RUNNING, &hdev->flags)) 728 return -ENETDOWN; 729 730 return hci_cmd_sync_submit(hdev, func, data, destroy); 731 } 732 EXPORT_SYMBOL(hci_cmd_sync_queue); 733 734 int hci_update_eir_sync(struct hci_dev *hdev) 735 { 736 struct hci_cp_write_eir cp; 737 738 bt_dev_dbg(hdev, ""); 739 740 if (!hdev_is_powered(hdev)) 741 return 0; 742 743 if (!lmp_ext_inq_capable(hdev)) 744 return 0; 745 746 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 747 return 0; 748 749 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 750 return 0; 751 752 memset(&cp, 0, sizeof(cp)); 753 754 eir_create(hdev, cp.data); 755 756 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 757 return 0; 758 759 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 760 761 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 762 HCI_CMD_TIMEOUT); 763 } 764 765 static u8 get_service_classes(struct hci_dev *hdev) 766 { 767 struct bt_uuid *uuid; 768 u8 val = 0; 769 770 list_for_each_entry(uuid, &hdev->uuids, list) 771 val |= uuid->svc_hint; 772 773 return val; 774 } 775 776 int hci_update_class_sync(struct hci_dev *hdev) 777 { 778 u8 cod[3]; 779 780 bt_dev_dbg(hdev, ""); 781 782 if (!hdev_is_powered(hdev)) 783 return 0; 784 785 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 786 return 0; 787 788 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 789 return 0; 790 791 cod[0] = hdev->minor_class; 792 cod[1] = hdev->major_class; 793 cod[2] = get_service_classes(hdev); 794 795 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 796 cod[1] |= 0x20; 797 798 if (memcmp(cod, hdev->dev_class, 3) == 0) 799 return 0; 800 801 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 802 sizeof(cod), cod, HCI_CMD_TIMEOUT); 803 } 804 805 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 806 { 807 /* If there is no connection we are OK to advertise. */ 808 if (hci_conn_num(hdev, LE_LINK) == 0) 809 return true; 810 811 /* Check le_states if there is any connection in peripheral role. */ 812 if (hdev->conn_hash.le_num_peripheral > 0) { 813 /* Peripheral connection state and non connectable mode 814 * bit 20. 815 */ 816 if (!connectable && !(hdev->le_states[2] & 0x10)) 817 return false; 818 819 /* Peripheral connection state and connectable mode bit 38 820 * and scannable bit 21. 821 */ 822 if (connectable && (!(hdev->le_states[4] & 0x40) || 823 !(hdev->le_states[2] & 0x20))) 824 return false; 825 } 826 827 /* Check le_states if there is any connection in central role. */ 828 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 829 /* Central connection state and non connectable mode bit 18. */ 830 if (!connectable && !(hdev->le_states[2] & 0x02)) 831 return false; 832 833 /* Central connection state and connectable mode bit 35 and 834 * scannable 19. 835 */ 836 if (connectable && (!(hdev->le_states[4] & 0x08) || 837 !(hdev->le_states[2] & 0x08))) 838 return false; 839 } 840 841 return true; 842 } 843 844 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 845 { 846 /* If privacy is not enabled don't use RPA */ 847 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 848 return false; 849 850 /* If basic privacy mode is enabled use RPA */ 851 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 852 return true; 853 854 /* If limited privacy mode is enabled don't use RPA if we're 855 * both discoverable and bondable. 856 */ 857 if ((flags & MGMT_ADV_FLAG_DISCOV) && 858 hci_dev_test_flag(hdev, HCI_BONDABLE)) 859 return false; 860 861 /* We're neither bondable nor discoverable in the limited 862 * privacy mode, therefore use RPA. 863 */ 864 return true; 865 } 866 867 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 868 { 869 /* If we're advertising or initiating an LE connection we can't 870 * go ahead and change the random address at this time. This is 871 * because the eventual initiator address used for the 872 * subsequently created connection will be undefined (some 873 * controllers use the new address and others the one we had 874 * when the operation started). 875 * 876 * In this kind of scenario skip the update and let the random 877 * address be updated at the next cycle. 878 */ 879 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 880 hci_lookup_le_connect(hdev)) { 881 bt_dev_dbg(hdev, "Deferring random address update"); 882 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 883 return 0; 884 } 885 886 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 887 6, rpa, HCI_CMD_TIMEOUT); 888 } 889 890 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 891 bool rpa, u8 *own_addr_type) 892 { 893 int err; 894 895 /* If privacy is enabled use a resolvable private address. If 896 * current RPA has expired or there is something else than 897 * the current RPA in use, then generate a new one. 898 */ 899 if (rpa) { 900 /* If Controller supports LL Privacy use own address type is 901 * 0x03 902 */ 903 if (use_ll_privacy(hdev)) 904 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 905 else 906 *own_addr_type = ADDR_LE_DEV_RANDOM; 907 908 /* Check if RPA is valid */ 909 if (rpa_valid(hdev)) 910 return 0; 911 912 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 913 if (err < 0) { 914 bt_dev_err(hdev, "failed to generate new RPA"); 915 return err; 916 } 917 918 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 919 if (err) 920 return err; 921 922 return 0; 923 } 924 925 /* In case of required privacy without resolvable private address, 926 * use an non-resolvable private address. This is useful for active 927 * scanning and non-connectable advertising. 928 */ 929 if (require_privacy) { 930 bdaddr_t nrpa; 931 932 while (true) { 933 /* The non-resolvable private address is generated 934 * from random six bytes with the two most significant 935 * bits cleared. 936 */ 937 get_random_bytes(&nrpa, 6); 938 nrpa.b[5] &= 0x3f; 939 940 /* The non-resolvable private address shall not be 941 * equal to the public address. 942 */ 943 if (bacmp(&hdev->bdaddr, &nrpa)) 944 break; 945 } 946 947 *own_addr_type = ADDR_LE_DEV_RANDOM; 948 949 return hci_set_random_addr_sync(hdev, &nrpa); 950 } 951 952 /* If forcing static address is in use or there is no public 953 * address use the static address as random address (but skip 954 * the HCI command if the current random address is already the 955 * static one. 956 * 957 * In case BR/EDR has been disabled on a dual-mode controller 958 * and a static address has been configured, then use that 959 * address instead of the public BR/EDR address. 960 */ 961 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 962 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 963 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 964 bacmp(&hdev->static_addr, BDADDR_ANY))) { 965 *own_addr_type = ADDR_LE_DEV_RANDOM; 966 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 967 return hci_set_random_addr_sync(hdev, 968 &hdev->static_addr); 969 return 0; 970 } 971 972 /* Neither privacy nor static address is being used so use a 973 * public address. 974 */ 975 *own_addr_type = ADDR_LE_DEV_PUBLIC; 976 977 return 0; 978 } 979 980 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 981 { 982 struct hci_cp_le_set_ext_adv_enable *cp; 983 struct hci_cp_ext_adv_set *set; 984 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 985 u8 size; 986 987 /* If request specifies an instance that doesn't exist, fail */ 988 if (instance > 0) { 989 struct adv_info *adv; 990 991 adv = hci_find_adv_instance(hdev, instance); 992 if (!adv) 993 return -EINVAL; 994 995 /* If not enabled there is nothing to do */ 996 if (!adv->enabled) 997 return 0; 998 } 999 1000 memset(data, 0, sizeof(data)); 1001 1002 cp = (void *)data; 1003 set = (void *)cp->data; 1004 1005 /* Instance 0x00 indicates all advertising instances will be disabled */ 1006 cp->num_of_sets = !!instance; 1007 cp->enable = 0x00; 1008 1009 set->handle = instance; 1010 1011 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1012 1013 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1014 size, data, HCI_CMD_TIMEOUT); 1015 } 1016 1017 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1018 bdaddr_t *random_addr) 1019 { 1020 struct hci_cp_le_set_adv_set_rand_addr cp; 1021 int err; 1022 1023 if (!instance) { 1024 /* Instance 0x00 doesn't have an adv_info, instead it uses 1025 * hdev->random_addr to track its address so whenever it needs 1026 * to be updated this also set the random address since 1027 * hdev->random_addr is shared with scan state machine. 1028 */ 1029 err = hci_set_random_addr_sync(hdev, random_addr); 1030 if (err) 1031 return err; 1032 } 1033 1034 memset(&cp, 0, sizeof(cp)); 1035 1036 cp.handle = instance; 1037 bacpy(&cp.bdaddr, random_addr); 1038 1039 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1040 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1041 } 1042 1043 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1044 { 1045 struct hci_cp_le_set_ext_adv_params cp; 1046 bool connectable; 1047 u32 flags; 1048 bdaddr_t random_addr; 1049 u8 own_addr_type; 1050 int err; 1051 struct adv_info *adv; 1052 bool secondary_adv; 1053 1054 if (instance > 0) { 1055 adv = hci_find_adv_instance(hdev, instance); 1056 if (!adv) 1057 return -EINVAL; 1058 } else { 1059 adv = NULL; 1060 } 1061 1062 /* Updating parameters of an active instance will return a 1063 * Command Disallowed error, so we must first disable the 1064 * instance if it is active. 1065 */ 1066 if (adv && !adv->pending) { 1067 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1068 if (err) 1069 return err; 1070 } 1071 1072 flags = hci_adv_instance_flags(hdev, instance); 1073 1074 /* If the "connectable" instance flag was not set, then choose between 1075 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1076 */ 1077 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1078 mgmt_get_connectable(hdev); 1079 1080 if (!is_advertising_allowed(hdev, connectable)) 1081 return -EPERM; 1082 1083 /* Set require_privacy to true only when non-connectable 1084 * advertising is used. In that case it is fine to use a 1085 * non-resolvable private address. 1086 */ 1087 err = hci_get_random_address(hdev, !connectable, 1088 adv_use_rpa(hdev, flags), adv, 1089 &own_addr_type, &random_addr); 1090 if (err < 0) 1091 return err; 1092 1093 memset(&cp, 0, sizeof(cp)); 1094 1095 if (adv) { 1096 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1097 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1098 cp.tx_power = adv->tx_power; 1099 } else { 1100 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1101 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1102 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1103 } 1104 1105 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1106 1107 if (connectable) { 1108 if (secondary_adv) 1109 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1110 else 1111 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1112 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1113 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1114 if (secondary_adv) 1115 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1116 else 1117 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1118 } else { 1119 if (secondary_adv) 1120 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1121 else 1122 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1123 } 1124 1125 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1126 * contains the peer’s Identity Address and the Peer_Address_Type 1127 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1128 * These parameters are used to locate the corresponding local IRK in 1129 * the resolving list; this IRK is used to generate their own address 1130 * used in the advertisement. 1131 */ 1132 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1133 hci_copy_identity_address(hdev, &cp.peer_addr, 1134 &cp.peer_addr_type); 1135 1136 cp.own_addr_type = own_addr_type; 1137 cp.channel_map = hdev->le_adv_channel_map; 1138 cp.handle = instance; 1139 1140 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1141 cp.primary_phy = HCI_ADV_PHY_1M; 1142 cp.secondary_phy = HCI_ADV_PHY_2M; 1143 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1144 cp.primary_phy = HCI_ADV_PHY_CODED; 1145 cp.secondary_phy = HCI_ADV_PHY_CODED; 1146 } else { 1147 /* In all other cases use 1M */ 1148 cp.primary_phy = HCI_ADV_PHY_1M; 1149 cp.secondary_phy = HCI_ADV_PHY_1M; 1150 } 1151 1152 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1153 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1154 if (err) 1155 return err; 1156 1157 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1158 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1159 bacmp(&random_addr, BDADDR_ANY)) { 1160 /* Check if random address need to be updated */ 1161 if (adv) { 1162 if (!bacmp(&random_addr, &adv->random_addr)) 1163 return 0; 1164 } else { 1165 if (!bacmp(&random_addr, &hdev->random_addr)) 1166 return 0; 1167 } 1168 1169 return hci_set_adv_set_random_addr_sync(hdev, instance, 1170 &random_addr); 1171 } 1172 1173 return 0; 1174 } 1175 1176 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1177 { 1178 struct { 1179 struct hci_cp_le_set_ext_scan_rsp_data cp; 1180 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1181 } pdu; 1182 u8 len; 1183 struct adv_info *adv = NULL; 1184 int err; 1185 1186 memset(&pdu, 0, sizeof(pdu)); 1187 1188 if (instance) { 1189 adv = hci_find_adv_instance(hdev, instance); 1190 if (!adv || !adv->scan_rsp_changed) 1191 return 0; 1192 } 1193 1194 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1195 1196 pdu.cp.handle = instance; 1197 pdu.cp.length = len; 1198 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1199 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1200 1201 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1202 sizeof(pdu.cp) + len, &pdu.cp, 1203 HCI_CMD_TIMEOUT); 1204 if (err) 1205 return err; 1206 1207 if (adv) { 1208 adv->scan_rsp_changed = false; 1209 } else { 1210 memcpy(hdev->scan_rsp_data, pdu.data, len); 1211 hdev->scan_rsp_data_len = len; 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1218 { 1219 struct hci_cp_le_set_scan_rsp_data cp; 1220 u8 len; 1221 1222 memset(&cp, 0, sizeof(cp)); 1223 1224 len = eir_create_scan_rsp(hdev, instance, cp.data); 1225 1226 if (hdev->scan_rsp_data_len == len && 1227 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1228 return 0; 1229 1230 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1231 hdev->scan_rsp_data_len = len; 1232 1233 cp.length = len; 1234 1235 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1236 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1237 } 1238 1239 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1240 { 1241 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1242 return 0; 1243 1244 if (ext_adv_capable(hdev)) 1245 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1246 1247 return __hci_set_scan_rsp_data_sync(hdev, instance); 1248 } 1249 1250 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1251 { 1252 struct hci_cp_le_set_ext_adv_enable *cp; 1253 struct hci_cp_ext_adv_set *set; 1254 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1255 struct adv_info *adv; 1256 1257 if (instance > 0) { 1258 adv = hci_find_adv_instance(hdev, instance); 1259 if (!adv) 1260 return -EINVAL; 1261 /* If already enabled there is nothing to do */ 1262 if (adv->enabled) 1263 return 0; 1264 } else { 1265 adv = NULL; 1266 } 1267 1268 cp = (void *)data; 1269 set = (void *)cp->data; 1270 1271 memset(cp, 0, sizeof(*cp)); 1272 1273 cp->enable = 0x01; 1274 cp->num_of_sets = 0x01; 1275 1276 memset(set, 0, sizeof(*set)); 1277 1278 set->handle = instance; 1279 1280 /* Set duration per instance since controller is responsible for 1281 * scheduling it. 1282 */ 1283 if (adv && adv->timeout) { 1284 u16 duration = adv->timeout * MSEC_PER_SEC; 1285 1286 /* Time = N * 10 ms */ 1287 set->duration = cpu_to_le16(duration / 10); 1288 } 1289 1290 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1291 sizeof(*cp) + 1292 sizeof(*set) * cp->num_of_sets, 1293 data, HCI_CMD_TIMEOUT); 1294 } 1295 1296 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1297 { 1298 int err; 1299 1300 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1301 if (err) 1302 return err; 1303 1304 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1305 if (err) 1306 return err; 1307 1308 return hci_enable_ext_advertising_sync(hdev, instance); 1309 } 1310 1311 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1312 { 1313 struct hci_cp_le_set_per_adv_enable cp; 1314 1315 /* If periodic advertising already disabled there is nothing to do. */ 1316 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1317 return 0; 1318 1319 memset(&cp, 0, sizeof(cp)); 1320 1321 cp.enable = 0x00; 1322 cp.handle = instance; 1323 1324 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1325 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1326 } 1327 1328 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1329 u16 min_interval, u16 max_interval) 1330 { 1331 struct hci_cp_le_set_per_adv_params cp; 1332 1333 memset(&cp, 0, sizeof(cp)); 1334 1335 if (!min_interval) 1336 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1337 1338 if (!max_interval) 1339 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1340 1341 cp.handle = instance; 1342 cp.min_interval = cpu_to_le16(min_interval); 1343 cp.max_interval = cpu_to_le16(max_interval); 1344 cp.periodic_properties = 0x0000; 1345 1346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1347 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1348 } 1349 1350 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1351 { 1352 struct { 1353 struct hci_cp_le_set_per_adv_data cp; 1354 u8 data[HCI_MAX_PER_AD_LENGTH]; 1355 } pdu; 1356 u8 len; 1357 1358 memset(&pdu, 0, sizeof(pdu)); 1359 1360 if (instance) { 1361 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1362 1363 if (!adv || !adv->periodic) 1364 return 0; 1365 } 1366 1367 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1368 1369 pdu.cp.length = len; 1370 pdu.cp.handle = instance; 1371 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1372 1373 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1374 sizeof(pdu.cp) + len, &pdu, 1375 HCI_CMD_TIMEOUT); 1376 } 1377 1378 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1379 { 1380 struct hci_cp_le_set_per_adv_enable cp; 1381 1382 /* If periodic advertising already enabled there is nothing to do. */ 1383 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1384 return 0; 1385 1386 memset(&cp, 0, sizeof(cp)); 1387 1388 cp.enable = 0x01; 1389 cp.handle = instance; 1390 1391 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1392 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1393 } 1394 1395 /* Checks if periodic advertising data contains a Basic Announcement and if it 1396 * does generates a Broadcast ID and add Broadcast Announcement. 1397 */ 1398 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1399 { 1400 u8 bid[3]; 1401 u8 ad[4 + 3]; 1402 1403 /* Skip if NULL adv as instance 0x00 is used for general purpose 1404 * advertising so it cannot used for the likes of Broadcast Announcement 1405 * as it can be overwritten at any point. 1406 */ 1407 if (!adv) 1408 return 0; 1409 1410 /* Check if PA data doesn't contains a Basic Audio Announcement then 1411 * there is nothing to do. 1412 */ 1413 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1414 0x1851, NULL)) 1415 return 0; 1416 1417 /* Check if advertising data already has a Broadcast Announcement since 1418 * the process may want to control the Broadcast ID directly and in that 1419 * case the kernel shall no interfere. 1420 */ 1421 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1422 NULL)) 1423 return 0; 1424 1425 /* Generate Broadcast ID */ 1426 get_random_bytes(bid, sizeof(bid)); 1427 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1428 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1429 1430 return hci_update_adv_data_sync(hdev, adv->instance); 1431 } 1432 1433 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1434 u8 *data, u32 flags, u16 min_interval, 1435 u16 max_interval, u16 sync_interval) 1436 { 1437 struct adv_info *adv = NULL; 1438 int err; 1439 bool added = false; 1440 1441 hci_disable_per_advertising_sync(hdev, instance); 1442 1443 if (instance) { 1444 adv = hci_find_adv_instance(hdev, instance); 1445 /* Create an instance if that could not be found */ 1446 if (!adv) { 1447 adv = hci_add_per_instance(hdev, instance, flags, 1448 data_len, data, 1449 sync_interval, 1450 sync_interval); 1451 if (IS_ERR(adv)) 1452 return PTR_ERR(adv); 1453 added = true; 1454 } 1455 } 1456 1457 /* Only start advertising if instance 0 or if a dedicated instance has 1458 * been added. 1459 */ 1460 if (!adv || added) { 1461 err = hci_start_ext_adv_sync(hdev, instance); 1462 if (err < 0) 1463 goto fail; 1464 1465 err = hci_adv_bcast_annoucement(hdev, adv); 1466 if (err < 0) 1467 goto fail; 1468 } 1469 1470 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1471 max_interval); 1472 if (err < 0) 1473 goto fail; 1474 1475 err = hci_set_per_adv_data_sync(hdev, instance); 1476 if (err < 0) 1477 goto fail; 1478 1479 err = hci_enable_per_advertising_sync(hdev, instance); 1480 if (err < 0) 1481 goto fail; 1482 1483 return 0; 1484 1485 fail: 1486 if (added) 1487 hci_remove_adv_instance(hdev, instance); 1488 1489 return err; 1490 } 1491 1492 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1493 { 1494 int err; 1495 1496 if (ext_adv_capable(hdev)) 1497 return hci_start_ext_adv_sync(hdev, instance); 1498 1499 err = hci_update_adv_data_sync(hdev, instance); 1500 if (err) 1501 return err; 1502 1503 err = hci_update_scan_rsp_data_sync(hdev, instance); 1504 if (err) 1505 return err; 1506 1507 return hci_enable_advertising_sync(hdev); 1508 } 1509 1510 int hci_enable_advertising_sync(struct hci_dev *hdev) 1511 { 1512 struct adv_info *adv_instance; 1513 struct hci_cp_le_set_adv_param cp; 1514 u8 own_addr_type, enable = 0x01; 1515 bool connectable; 1516 u16 adv_min_interval, adv_max_interval; 1517 u32 flags; 1518 u8 status; 1519 1520 if (ext_adv_capable(hdev)) 1521 return hci_enable_ext_advertising_sync(hdev, 1522 hdev->cur_adv_instance); 1523 1524 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1525 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1526 1527 /* If the "connectable" instance flag was not set, then choose between 1528 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1529 */ 1530 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1531 mgmt_get_connectable(hdev); 1532 1533 if (!is_advertising_allowed(hdev, connectable)) 1534 return -EINVAL; 1535 1536 status = hci_disable_advertising_sync(hdev); 1537 if (status) 1538 return status; 1539 1540 /* Clear the HCI_LE_ADV bit temporarily so that the 1541 * hci_update_random_address knows that it's safe to go ahead 1542 * and write a new random address. The flag will be set back on 1543 * as soon as the SET_ADV_ENABLE HCI command completes. 1544 */ 1545 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1546 1547 /* Set require_privacy to true only when non-connectable 1548 * advertising is used. In that case it is fine to use a 1549 * non-resolvable private address. 1550 */ 1551 status = hci_update_random_address_sync(hdev, !connectable, 1552 adv_use_rpa(hdev, flags), 1553 &own_addr_type); 1554 if (status) 1555 return status; 1556 1557 memset(&cp, 0, sizeof(cp)); 1558 1559 if (adv_instance) { 1560 adv_min_interval = adv_instance->min_interval; 1561 adv_max_interval = adv_instance->max_interval; 1562 } else { 1563 adv_min_interval = hdev->le_adv_min_interval; 1564 adv_max_interval = hdev->le_adv_max_interval; 1565 } 1566 1567 if (connectable) { 1568 cp.type = LE_ADV_IND; 1569 } else { 1570 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1571 cp.type = LE_ADV_SCAN_IND; 1572 else 1573 cp.type = LE_ADV_NONCONN_IND; 1574 1575 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1576 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1577 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1578 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1579 } 1580 } 1581 1582 cp.min_interval = cpu_to_le16(adv_min_interval); 1583 cp.max_interval = cpu_to_le16(adv_max_interval); 1584 cp.own_address_type = own_addr_type; 1585 cp.channel_map = hdev->le_adv_channel_map; 1586 1587 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1588 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1589 if (status) 1590 return status; 1591 1592 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1593 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1594 } 1595 1596 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1597 { 1598 return hci_enable_advertising_sync(hdev); 1599 } 1600 1601 int hci_enable_advertising(struct hci_dev *hdev) 1602 { 1603 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1604 list_empty(&hdev->adv_instances)) 1605 return 0; 1606 1607 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1608 } 1609 1610 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1611 struct sock *sk) 1612 { 1613 int err; 1614 1615 if (!ext_adv_capable(hdev)) 1616 return 0; 1617 1618 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1619 if (err) 1620 return err; 1621 1622 /* If request specifies an instance that doesn't exist, fail */ 1623 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1624 return -EINVAL; 1625 1626 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1627 sizeof(instance), &instance, 0, 1628 HCI_CMD_TIMEOUT, sk); 1629 } 1630 1631 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1632 { 1633 struct adv_info *adv = data; 1634 u8 instance = 0; 1635 1636 if (adv) 1637 instance = adv->instance; 1638 1639 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1640 } 1641 1642 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1643 { 1644 struct adv_info *adv = NULL; 1645 1646 if (instance) { 1647 adv = hci_find_adv_instance(hdev, instance); 1648 if (!adv) 1649 return -EINVAL; 1650 } 1651 1652 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1653 } 1654 1655 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1656 { 1657 struct hci_cp_le_term_big cp; 1658 1659 memset(&cp, 0, sizeof(cp)); 1660 cp.handle = handle; 1661 cp.reason = reason; 1662 1663 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1664 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1665 } 1666 1667 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1668 { 1669 struct { 1670 struct hci_cp_le_set_ext_adv_data cp; 1671 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1672 } pdu; 1673 u8 len; 1674 struct adv_info *adv = NULL; 1675 int err; 1676 1677 memset(&pdu, 0, sizeof(pdu)); 1678 1679 if (instance) { 1680 adv = hci_find_adv_instance(hdev, instance); 1681 if (!adv || !adv->adv_data_changed) 1682 return 0; 1683 } 1684 1685 len = eir_create_adv_data(hdev, instance, pdu.data); 1686 1687 pdu.cp.length = len; 1688 pdu.cp.handle = instance; 1689 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1690 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1691 1692 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1693 sizeof(pdu.cp) + len, &pdu.cp, 1694 HCI_CMD_TIMEOUT); 1695 if (err) 1696 return err; 1697 1698 /* Update data if the command succeed */ 1699 if (adv) { 1700 adv->adv_data_changed = false; 1701 } else { 1702 memcpy(hdev->adv_data, pdu.data, len); 1703 hdev->adv_data_len = len; 1704 } 1705 1706 return 0; 1707 } 1708 1709 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1710 { 1711 struct hci_cp_le_set_adv_data cp; 1712 u8 len; 1713 1714 memset(&cp, 0, sizeof(cp)); 1715 1716 len = eir_create_adv_data(hdev, instance, cp.data); 1717 1718 /* There's nothing to do if the data hasn't changed */ 1719 if (hdev->adv_data_len == len && 1720 memcmp(cp.data, hdev->adv_data, len) == 0) 1721 return 0; 1722 1723 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1724 hdev->adv_data_len = len; 1725 1726 cp.length = len; 1727 1728 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1729 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1730 } 1731 1732 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1733 { 1734 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1735 return 0; 1736 1737 if (ext_adv_capable(hdev)) 1738 return hci_set_ext_adv_data_sync(hdev, instance); 1739 1740 return hci_set_adv_data_sync(hdev, instance); 1741 } 1742 1743 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1744 bool force) 1745 { 1746 struct adv_info *adv = NULL; 1747 u16 timeout; 1748 1749 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1750 return -EPERM; 1751 1752 if (hdev->adv_instance_timeout) 1753 return -EBUSY; 1754 1755 adv = hci_find_adv_instance(hdev, instance); 1756 if (!adv) 1757 return -ENOENT; 1758 1759 /* A zero timeout means unlimited advertising. As long as there is 1760 * only one instance, duration should be ignored. We still set a timeout 1761 * in case further instances are being added later on. 1762 * 1763 * If the remaining lifetime of the instance is more than the duration 1764 * then the timeout corresponds to the duration, otherwise it will be 1765 * reduced to the remaining instance lifetime. 1766 */ 1767 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1768 timeout = adv->duration; 1769 else 1770 timeout = adv->remaining_time; 1771 1772 /* The remaining time is being reduced unless the instance is being 1773 * advertised without time limit. 1774 */ 1775 if (adv->timeout) 1776 adv->remaining_time = adv->remaining_time - timeout; 1777 1778 /* Only use work for scheduling instances with legacy advertising */ 1779 if (!ext_adv_capable(hdev)) { 1780 hdev->adv_instance_timeout = timeout; 1781 queue_delayed_work(hdev->req_workqueue, 1782 &hdev->adv_instance_expire, 1783 msecs_to_jiffies(timeout * 1000)); 1784 } 1785 1786 /* If we're just re-scheduling the same instance again then do not 1787 * execute any HCI commands. This happens when a single instance is 1788 * being advertised. 1789 */ 1790 if (!force && hdev->cur_adv_instance == instance && 1791 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1792 return 0; 1793 1794 hdev->cur_adv_instance = instance; 1795 1796 return hci_start_adv_sync(hdev, instance); 1797 } 1798 1799 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1800 { 1801 int err; 1802 1803 if (!ext_adv_capable(hdev)) 1804 return 0; 1805 1806 /* Disable instance 0x00 to disable all instances */ 1807 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1808 if (err) 1809 return err; 1810 1811 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1812 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1813 } 1814 1815 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1816 { 1817 struct adv_info *adv, *n; 1818 int err = 0; 1819 1820 if (ext_adv_capable(hdev)) 1821 /* Remove all existing sets */ 1822 err = hci_clear_adv_sets_sync(hdev, sk); 1823 if (ext_adv_capable(hdev)) 1824 return err; 1825 1826 /* This is safe as long as there is no command send while the lock is 1827 * held. 1828 */ 1829 hci_dev_lock(hdev); 1830 1831 /* Cleanup non-ext instances */ 1832 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1833 u8 instance = adv->instance; 1834 int err; 1835 1836 if (!(force || adv->timeout)) 1837 continue; 1838 1839 err = hci_remove_adv_instance(hdev, instance); 1840 if (!err) 1841 mgmt_advertising_removed(sk, hdev, instance); 1842 } 1843 1844 hci_dev_unlock(hdev); 1845 1846 return 0; 1847 } 1848 1849 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1850 struct sock *sk) 1851 { 1852 int err = 0; 1853 1854 /* If we use extended advertising, instance has to be removed first. */ 1855 if (ext_adv_capable(hdev)) 1856 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1857 if (ext_adv_capable(hdev)) 1858 return err; 1859 1860 /* This is safe as long as there is no command send while the lock is 1861 * held. 1862 */ 1863 hci_dev_lock(hdev); 1864 1865 err = hci_remove_adv_instance(hdev, instance); 1866 if (!err) 1867 mgmt_advertising_removed(sk, hdev, instance); 1868 1869 hci_dev_unlock(hdev); 1870 1871 return err; 1872 } 1873 1874 /* For a single instance: 1875 * - force == true: The instance will be removed even when its remaining 1876 * lifetime is not zero. 1877 * - force == false: the instance will be deactivated but kept stored unless 1878 * the remaining lifetime is zero. 1879 * 1880 * For instance == 0x00: 1881 * - force == true: All instances will be removed regardless of their timeout 1882 * setting. 1883 * - force == false: Only instances that have a timeout will be removed. 1884 */ 1885 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1886 u8 instance, bool force) 1887 { 1888 struct adv_info *next = NULL; 1889 int err; 1890 1891 /* Cancel any timeout concerning the removed instance(s). */ 1892 if (!instance || hdev->cur_adv_instance == instance) 1893 cancel_adv_timeout(hdev); 1894 1895 /* Get the next instance to advertise BEFORE we remove 1896 * the current one. This can be the same instance again 1897 * if there is only one instance. 1898 */ 1899 if (hdev->cur_adv_instance == instance) 1900 next = hci_get_next_instance(hdev, instance); 1901 1902 if (!instance) { 1903 err = hci_clear_adv_sync(hdev, sk, force); 1904 if (err) 1905 return err; 1906 } else { 1907 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1908 1909 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1910 /* Don't advertise a removed instance. */ 1911 if (next && next->instance == instance) 1912 next = NULL; 1913 1914 err = hci_remove_adv_sync(hdev, instance, sk); 1915 if (err) 1916 return err; 1917 } 1918 } 1919 1920 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1921 return 0; 1922 1923 if (next && !ext_adv_capable(hdev)) 1924 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1925 1926 return 0; 1927 } 1928 1929 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1930 { 1931 struct hci_cp_read_rssi cp; 1932 1933 cp.handle = handle; 1934 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1935 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1936 } 1937 1938 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1939 { 1940 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1941 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1942 } 1943 1944 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1945 { 1946 struct hci_cp_read_tx_power cp; 1947 1948 cp.handle = handle; 1949 cp.type = type; 1950 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1951 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1952 } 1953 1954 int hci_disable_advertising_sync(struct hci_dev *hdev) 1955 { 1956 u8 enable = 0x00; 1957 int err = 0; 1958 1959 /* If controller is not advertising we are done. */ 1960 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1961 return 0; 1962 1963 if (ext_adv_capable(hdev)) 1964 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1965 if (ext_adv_capable(hdev)) 1966 return err; 1967 1968 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1969 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1970 } 1971 1972 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1973 u8 filter_dup) 1974 { 1975 struct hci_cp_le_set_ext_scan_enable cp; 1976 1977 memset(&cp, 0, sizeof(cp)); 1978 cp.enable = val; 1979 1980 if (hci_dev_test_flag(hdev, HCI_MESH)) 1981 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1982 else 1983 cp.filter_dup = filter_dup; 1984 1985 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1986 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1987 } 1988 1989 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1990 u8 filter_dup) 1991 { 1992 struct hci_cp_le_set_scan_enable cp; 1993 1994 if (use_ext_scan(hdev)) 1995 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1996 1997 memset(&cp, 0, sizeof(cp)); 1998 cp.enable = val; 1999 2000 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2001 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2002 else 2003 cp.filter_dup = filter_dup; 2004 2005 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2006 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2007 } 2008 2009 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2010 { 2011 if (!use_ll_privacy(hdev)) 2012 return 0; 2013 2014 /* If controller is not/already resolving we are done. */ 2015 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2016 return 0; 2017 2018 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2019 sizeof(val), &val, HCI_CMD_TIMEOUT); 2020 } 2021 2022 static int hci_scan_disable_sync(struct hci_dev *hdev) 2023 { 2024 int err; 2025 2026 /* If controller is not scanning we are done. */ 2027 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2028 return 0; 2029 2030 if (hdev->scanning_paused) { 2031 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2032 return 0; 2033 } 2034 2035 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2036 if (err) { 2037 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2038 return err; 2039 } 2040 2041 return err; 2042 } 2043 2044 static bool scan_use_rpa(struct hci_dev *hdev) 2045 { 2046 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2047 } 2048 2049 static void hci_start_interleave_scan(struct hci_dev *hdev) 2050 { 2051 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2052 queue_delayed_work(hdev->req_workqueue, 2053 &hdev->interleave_scan, 0); 2054 } 2055 2056 static bool is_interleave_scanning(struct hci_dev *hdev) 2057 { 2058 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2059 } 2060 2061 static void cancel_interleave_scan(struct hci_dev *hdev) 2062 { 2063 bt_dev_dbg(hdev, "cancelling interleave scan"); 2064 2065 cancel_delayed_work_sync(&hdev->interleave_scan); 2066 2067 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2068 } 2069 2070 /* Return true if interleave_scan wasn't started until exiting this function, 2071 * otherwise, return false 2072 */ 2073 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2074 { 2075 /* Do interleaved scan only if all of the following are true: 2076 * - There is at least one ADV monitor 2077 * - At least one pending LE connection or one device to be scanned for 2078 * - Monitor offloading is not supported 2079 * If so, we should alternate between allowlist scan and one without 2080 * any filters to save power. 2081 */ 2082 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2083 !(list_empty(&hdev->pend_le_conns) && 2084 list_empty(&hdev->pend_le_reports)) && 2085 hci_get_adv_monitor_offload_ext(hdev) == 2086 HCI_ADV_MONITOR_EXT_NONE; 2087 bool is_interleaving = is_interleave_scanning(hdev); 2088 2089 if (use_interleaving && !is_interleaving) { 2090 hci_start_interleave_scan(hdev); 2091 bt_dev_dbg(hdev, "starting interleave scan"); 2092 return true; 2093 } 2094 2095 if (!use_interleaving && is_interleaving) 2096 cancel_interleave_scan(hdev); 2097 2098 return false; 2099 } 2100 2101 /* Removes connection to resolve list if needed.*/ 2102 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2103 bdaddr_t *bdaddr, u8 bdaddr_type) 2104 { 2105 struct hci_cp_le_del_from_resolv_list cp; 2106 struct bdaddr_list_with_irk *entry; 2107 2108 if (!use_ll_privacy(hdev)) 2109 return 0; 2110 2111 /* Check if the IRK has been programmed */ 2112 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2113 bdaddr_type); 2114 if (!entry) 2115 return 0; 2116 2117 cp.bdaddr_type = bdaddr_type; 2118 bacpy(&cp.bdaddr, bdaddr); 2119 2120 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2121 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2122 } 2123 2124 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2125 bdaddr_t *bdaddr, u8 bdaddr_type) 2126 { 2127 struct hci_cp_le_del_from_accept_list cp; 2128 int err; 2129 2130 /* Check if device is on accept list before removing it */ 2131 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2132 return 0; 2133 2134 cp.bdaddr_type = bdaddr_type; 2135 bacpy(&cp.bdaddr, bdaddr); 2136 2137 /* Ignore errors when removing from resolving list as that is likely 2138 * that the device was never added. 2139 */ 2140 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2141 2142 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2143 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2144 if (err) { 2145 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2146 return err; 2147 } 2148 2149 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2150 cp.bdaddr_type); 2151 2152 return 0; 2153 } 2154 2155 /* Adds connection to resolve list if needed. 2156 * Setting params to NULL programs local hdev->irk 2157 */ 2158 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2159 struct hci_conn_params *params) 2160 { 2161 struct hci_cp_le_add_to_resolv_list cp; 2162 struct smp_irk *irk; 2163 struct bdaddr_list_with_irk *entry; 2164 2165 if (!use_ll_privacy(hdev)) 2166 return 0; 2167 2168 /* Attempt to program local identity address, type and irk if params is 2169 * NULL. 2170 */ 2171 if (!params) { 2172 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2173 return 0; 2174 2175 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2176 memcpy(cp.peer_irk, hdev->irk, 16); 2177 goto done; 2178 } 2179 2180 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2181 if (!irk) 2182 return 0; 2183 2184 /* Check if the IK has _not_ been programmed yet. */ 2185 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2186 ¶ms->addr, 2187 params->addr_type); 2188 if (entry) 2189 return 0; 2190 2191 cp.bdaddr_type = params->addr_type; 2192 bacpy(&cp.bdaddr, ¶ms->addr); 2193 memcpy(cp.peer_irk, irk->val, 16); 2194 2195 /* Default privacy mode is always Network */ 2196 params->privacy_mode = HCI_NETWORK_PRIVACY; 2197 2198 done: 2199 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2200 memcpy(cp.local_irk, hdev->irk, 16); 2201 else 2202 memset(cp.local_irk, 0, 16); 2203 2204 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2205 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2206 } 2207 2208 /* Set Device Privacy Mode. */ 2209 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2210 struct hci_conn_params *params) 2211 { 2212 struct hci_cp_le_set_privacy_mode cp; 2213 struct smp_irk *irk; 2214 2215 /* If device privacy mode has already been set there is nothing to do */ 2216 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2217 return 0; 2218 2219 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2220 * indicates that LL Privacy has been enabled and 2221 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2222 */ 2223 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2224 return 0; 2225 2226 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2227 if (!irk) 2228 return 0; 2229 2230 memset(&cp, 0, sizeof(cp)); 2231 cp.bdaddr_type = irk->addr_type; 2232 bacpy(&cp.bdaddr, &irk->bdaddr); 2233 cp.mode = HCI_DEVICE_PRIVACY; 2234 2235 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2236 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2237 } 2238 2239 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2240 * this attempts to program the device in the resolving list as well and 2241 * properly set the privacy mode. 2242 */ 2243 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2244 struct hci_conn_params *params, 2245 u8 *num_entries) 2246 { 2247 struct hci_cp_le_add_to_accept_list cp; 2248 int err; 2249 2250 /* During suspend, only wakeable devices can be in acceptlist */ 2251 if (hdev->suspended && 2252 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2253 return 0; 2254 2255 /* Select filter policy to accept all advertising */ 2256 if (*num_entries >= hdev->le_accept_list_size) 2257 return -ENOSPC; 2258 2259 /* Accept list can not be used with RPAs */ 2260 if (!use_ll_privacy(hdev) && 2261 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2262 return -EINVAL; 2263 2264 /* Attempt to program the device in the resolving list first to avoid 2265 * having to rollback in case it fails since the resolving list is 2266 * dynamic it can probably be smaller than the accept list. 2267 */ 2268 err = hci_le_add_resolve_list_sync(hdev, params); 2269 if (err) { 2270 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2271 return err; 2272 } 2273 2274 /* Set Privacy Mode */ 2275 err = hci_le_set_privacy_mode_sync(hdev, params); 2276 if (err) { 2277 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2278 return err; 2279 } 2280 2281 /* Check if already in accept list */ 2282 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2283 params->addr_type)) 2284 return 0; 2285 2286 *num_entries += 1; 2287 cp.bdaddr_type = params->addr_type; 2288 bacpy(&cp.bdaddr, ¶ms->addr); 2289 2290 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2291 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2292 if (err) { 2293 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2294 /* Rollback the device from the resolving list */ 2295 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2296 return err; 2297 } 2298 2299 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2300 cp.bdaddr_type); 2301 2302 return 0; 2303 } 2304 2305 /* This function disables/pause all advertising instances */ 2306 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2307 { 2308 int err; 2309 int old_state; 2310 2311 /* If already been paused there is nothing to do. */ 2312 if (hdev->advertising_paused) 2313 return 0; 2314 2315 bt_dev_dbg(hdev, "Pausing directed advertising"); 2316 2317 /* Stop directed advertising */ 2318 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2319 if (old_state) { 2320 /* When discoverable timeout triggers, then just make sure 2321 * the limited discoverable flag is cleared. Even in the case 2322 * of a timeout triggered from general discoverable, it is 2323 * safe to unconditionally clear the flag. 2324 */ 2325 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2326 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2327 hdev->discov_timeout = 0; 2328 } 2329 2330 bt_dev_dbg(hdev, "Pausing advertising instances"); 2331 2332 /* Call to disable any advertisements active on the controller. 2333 * This will succeed even if no advertisements are configured. 2334 */ 2335 err = hci_disable_advertising_sync(hdev); 2336 if (err) 2337 return err; 2338 2339 /* If we are using software rotation, pause the loop */ 2340 if (!ext_adv_capable(hdev)) 2341 cancel_adv_timeout(hdev); 2342 2343 hdev->advertising_paused = true; 2344 hdev->advertising_old_state = old_state; 2345 2346 return 0; 2347 } 2348 2349 /* This function enables all user advertising instances */ 2350 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2351 { 2352 struct adv_info *adv, *tmp; 2353 int err; 2354 2355 /* If advertising has not been paused there is nothing to do. */ 2356 if (!hdev->advertising_paused) 2357 return 0; 2358 2359 /* Resume directed advertising */ 2360 hdev->advertising_paused = false; 2361 if (hdev->advertising_old_state) { 2362 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2363 hdev->advertising_old_state = 0; 2364 } 2365 2366 bt_dev_dbg(hdev, "Resuming advertising instances"); 2367 2368 if (ext_adv_capable(hdev)) { 2369 /* Call for each tracked instance to be re-enabled */ 2370 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2371 err = hci_enable_ext_advertising_sync(hdev, 2372 adv->instance); 2373 if (!err) 2374 continue; 2375 2376 /* If the instance cannot be resumed remove it */ 2377 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2378 NULL); 2379 } 2380 } else { 2381 /* Schedule for most recent instance to be restarted and begin 2382 * the software rotation loop 2383 */ 2384 err = hci_schedule_adv_instance_sync(hdev, 2385 hdev->cur_adv_instance, 2386 true); 2387 } 2388 2389 hdev->advertising_paused = false; 2390 2391 return err; 2392 } 2393 2394 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2395 { 2396 int err; 2397 2398 if (!use_ll_privacy(hdev)) 2399 return 0; 2400 2401 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2402 return 0; 2403 2404 /* Cannot disable addr resolution if scanning is enabled or 2405 * when initiating an LE connection. 2406 */ 2407 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2408 hci_lookup_le_connect(hdev)) { 2409 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2410 return -EPERM; 2411 } 2412 2413 /* Cannot disable addr resolution if advertising is enabled. */ 2414 err = hci_pause_advertising_sync(hdev); 2415 if (err) { 2416 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2417 return err; 2418 } 2419 2420 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2421 if (err) 2422 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2423 err); 2424 2425 /* Return if address resolution is disabled and RPA is not used. */ 2426 if (!err && scan_use_rpa(hdev)) 2427 return 0; 2428 2429 hci_resume_advertising_sync(hdev); 2430 return err; 2431 } 2432 2433 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2434 bool extended, struct sock *sk) 2435 { 2436 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2437 HCI_OP_READ_LOCAL_OOB_DATA; 2438 2439 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2440 } 2441 2442 /* Device must not be scanning when updating the accept list. 2443 * 2444 * Update is done using the following sequence: 2445 * 2446 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2447 * Remove Devices From Accept List -> 2448 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2449 * Add Devices to Accept List -> 2450 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2451 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2452 * Enable Scanning 2453 * 2454 * In case of failure advertising shall be restored to its original state and 2455 * return would disable accept list since either accept or resolving list could 2456 * not be programmed. 2457 * 2458 */ 2459 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2460 { 2461 struct hci_conn_params *params; 2462 struct bdaddr_list *b, *t; 2463 u8 num_entries = 0; 2464 bool pend_conn, pend_report; 2465 u8 filter_policy; 2466 int err; 2467 2468 /* Pause advertising if resolving list can be used as controllers 2469 * cannot accept resolving list modifications while advertising. 2470 */ 2471 if (use_ll_privacy(hdev)) { 2472 err = hci_pause_advertising_sync(hdev); 2473 if (err) { 2474 bt_dev_err(hdev, "pause advertising failed: %d", err); 2475 return 0x00; 2476 } 2477 } 2478 2479 /* Disable address resolution while reprogramming accept list since 2480 * devices that do have an IRK will be programmed in the resolving list 2481 * when LL Privacy is enabled. 2482 */ 2483 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2484 if (err) { 2485 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2486 goto done; 2487 } 2488 2489 /* Go through the current accept list programmed into the 2490 * controller one by one and check if that address is connected or is 2491 * still in the list of pending connections or list of devices to 2492 * report. If not present in either list, then remove it from 2493 * the controller. 2494 */ 2495 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2496 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2497 continue; 2498 2499 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2500 &b->bdaddr, 2501 b->bdaddr_type); 2502 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2503 &b->bdaddr, 2504 b->bdaddr_type); 2505 2506 /* If the device is not likely to connect or report, 2507 * remove it from the acceptlist. 2508 */ 2509 if (!pend_conn && !pend_report) { 2510 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2511 b->bdaddr_type); 2512 continue; 2513 } 2514 2515 num_entries++; 2516 } 2517 2518 /* Since all no longer valid accept list entries have been 2519 * removed, walk through the list of pending connections 2520 * and ensure that any new device gets programmed into 2521 * the controller. 2522 * 2523 * If the list of the devices is larger than the list of 2524 * available accept list entries in the controller, then 2525 * just abort and return filer policy value to not use the 2526 * accept list. 2527 */ 2528 list_for_each_entry(params, &hdev->pend_le_conns, action) { 2529 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2530 if (err) 2531 goto done; 2532 } 2533 2534 /* After adding all new pending connections, walk through 2535 * the list of pending reports and also add these to the 2536 * accept list if there is still space. Abort if space runs out. 2537 */ 2538 list_for_each_entry(params, &hdev->pend_le_reports, action) { 2539 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2540 if (err) 2541 goto done; 2542 } 2543 2544 /* Use the allowlist unless the following conditions are all true: 2545 * - We are not currently suspending 2546 * - There are 1 or more ADV monitors registered and it's not offloaded 2547 * - Interleaved scanning is not currently using the allowlist 2548 */ 2549 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2550 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2551 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2552 err = -EINVAL; 2553 2554 done: 2555 filter_policy = err ? 0x00 : 0x01; 2556 2557 /* Enable address resolution when LL Privacy is enabled. */ 2558 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2559 if (err) 2560 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2561 2562 /* Resume advertising if it was paused */ 2563 if (use_ll_privacy(hdev)) 2564 hci_resume_advertising_sync(hdev); 2565 2566 /* Select filter policy to use accept list */ 2567 return filter_policy; 2568 } 2569 2570 /* Returns true if an le connection is in the scanning state */ 2571 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2572 { 2573 struct hci_conn_hash *h = &hdev->conn_hash; 2574 struct hci_conn *c; 2575 2576 rcu_read_lock(); 2577 2578 list_for_each_entry_rcu(c, &h->list, list) { 2579 if (c->type == LE_LINK && c->state == BT_CONNECT && 2580 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2581 rcu_read_unlock(); 2582 return true; 2583 } 2584 } 2585 2586 rcu_read_unlock(); 2587 2588 return false; 2589 } 2590 2591 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2592 u16 interval, u16 window, 2593 u8 own_addr_type, u8 filter_policy) 2594 { 2595 struct hci_cp_le_set_ext_scan_params *cp; 2596 struct hci_cp_le_scan_phy_params *phy; 2597 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2598 u8 num_phy = 0; 2599 2600 cp = (void *)data; 2601 phy = (void *)cp->data; 2602 2603 memset(data, 0, sizeof(data)); 2604 2605 cp->own_addr_type = own_addr_type; 2606 cp->filter_policy = filter_policy; 2607 2608 if (scan_1m(hdev) || scan_2m(hdev)) { 2609 cp->scanning_phys |= LE_SCAN_PHY_1M; 2610 2611 phy->type = type; 2612 phy->interval = cpu_to_le16(interval); 2613 phy->window = cpu_to_le16(window); 2614 2615 num_phy++; 2616 phy++; 2617 } 2618 2619 if (scan_coded(hdev)) { 2620 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2621 2622 phy->type = type; 2623 phy->interval = cpu_to_le16(interval); 2624 phy->window = cpu_to_le16(window); 2625 2626 num_phy++; 2627 phy++; 2628 } 2629 2630 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2631 sizeof(*cp) + sizeof(*phy) * num_phy, 2632 data, HCI_CMD_TIMEOUT); 2633 } 2634 2635 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2636 u16 interval, u16 window, 2637 u8 own_addr_type, u8 filter_policy) 2638 { 2639 struct hci_cp_le_set_scan_param cp; 2640 2641 if (use_ext_scan(hdev)) 2642 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2643 window, own_addr_type, 2644 filter_policy); 2645 2646 memset(&cp, 0, sizeof(cp)); 2647 cp.type = type; 2648 cp.interval = cpu_to_le16(interval); 2649 cp.window = cpu_to_le16(window); 2650 cp.own_address_type = own_addr_type; 2651 cp.filter_policy = filter_policy; 2652 2653 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2654 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2655 } 2656 2657 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2658 u16 window, u8 own_addr_type, u8 filter_policy, 2659 u8 filter_dup) 2660 { 2661 int err; 2662 2663 if (hdev->scanning_paused) { 2664 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2665 return 0; 2666 } 2667 2668 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2669 own_addr_type, filter_policy); 2670 if (err) 2671 return err; 2672 2673 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2674 } 2675 2676 static int hci_passive_scan_sync(struct hci_dev *hdev) 2677 { 2678 u8 own_addr_type; 2679 u8 filter_policy; 2680 u16 window, interval; 2681 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2682 int err; 2683 2684 if (hdev->scanning_paused) { 2685 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2686 return 0; 2687 } 2688 2689 err = hci_scan_disable_sync(hdev); 2690 if (err) { 2691 bt_dev_err(hdev, "disable scanning failed: %d", err); 2692 return err; 2693 } 2694 2695 /* Set require_privacy to false since no SCAN_REQ are send 2696 * during passive scanning. Not using an non-resolvable address 2697 * here is important so that peer devices using direct 2698 * advertising with our address will be correctly reported 2699 * by the controller. 2700 */ 2701 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2702 &own_addr_type)) 2703 return 0; 2704 2705 if (hdev->enable_advmon_interleave_scan && 2706 hci_update_interleaved_scan_sync(hdev)) 2707 return 0; 2708 2709 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2710 2711 /* Adding or removing entries from the accept list must 2712 * happen before enabling scanning. The controller does 2713 * not allow accept list modification while scanning. 2714 */ 2715 filter_policy = hci_update_accept_list_sync(hdev); 2716 2717 /* When the controller is using random resolvable addresses and 2718 * with that having LE privacy enabled, then controllers with 2719 * Extended Scanner Filter Policies support can now enable support 2720 * for handling directed advertising. 2721 * 2722 * So instead of using filter polices 0x00 (no acceptlist) 2723 * and 0x01 (acceptlist enabled) use the new filter policies 2724 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2725 */ 2726 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2727 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2728 filter_policy |= 0x02; 2729 2730 if (hdev->suspended) { 2731 window = hdev->le_scan_window_suspend; 2732 interval = hdev->le_scan_int_suspend; 2733 } else if (hci_is_le_conn_scanning(hdev)) { 2734 window = hdev->le_scan_window_connect; 2735 interval = hdev->le_scan_int_connect; 2736 } else if (hci_is_adv_monitoring(hdev)) { 2737 window = hdev->le_scan_window_adv_monitor; 2738 interval = hdev->le_scan_int_adv_monitor; 2739 } else { 2740 window = hdev->le_scan_window; 2741 interval = hdev->le_scan_interval; 2742 } 2743 2744 /* Disable all filtering for Mesh */ 2745 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2746 filter_policy = 0; 2747 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2748 } 2749 2750 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2751 2752 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2753 own_addr_type, filter_policy, filter_dups); 2754 } 2755 2756 /* This function controls the passive scanning based on hdev->pend_le_conns 2757 * list. If there are pending LE connection we start the background scanning, 2758 * otherwise we stop it in the following sequence: 2759 * 2760 * If there are devices to scan: 2761 * 2762 * Disable Scanning -> Update Accept List -> 2763 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2764 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2765 * Enable Scanning 2766 * 2767 * Otherwise: 2768 * 2769 * Disable Scanning 2770 */ 2771 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2772 { 2773 int err; 2774 2775 if (!test_bit(HCI_UP, &hdev->flags) || 2776 test_bit(HCI_INIT, &hdev->flags) || 2777 hci_dev_test_flag(hdev, HCI_SETUP) || 2778 hci_dev_test_flag(hdev, HCI_CONFIG) || 2779 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2780 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2781 return 0; 2782 2783 /* No point in doing scanning if LE support hasn't been enabled */ 2784 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2785 return 0; 2786 2787 /* If discovery is active don't interfere with it */ 2788 if (hdev->discovery.state != DISCOVERY_STOPPED) 2789 return 0; 2790 2791 /* Reset RSSI and UUID filters when starting background scanning 2792 * since these filters are meant for service discovery only. 2793 * 2794 * The Start Discovery and Start Service Discovery operations 2795 * ensure to set proper values for RSSI threshold and UUID 2796 * filter list. So it is safe to just reset them here. 2797 */ 2798 hci_discovery_filter_clear(hdev); 2799 2800 bt_dev_dbg(hdev, "ADV monitoring is %s", 2801 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2802 2803 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2804 list_empty(&hdev->pend_le_conns) && 2805 list_empty(&hdev->pend_le_reports) && 2806 !hci_is_adv_monitoring(hdev) && 2807 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2808 /* If there is no pending LE connections or devices 2809 * to be scanned for or no ADV monitors, we should stop the 2810 * background scanning. 2811 */ 2812 2813 bt_dev_dbg(hdev, "stopping background scanning"); 2814 2815 err = hci_scan_disable_sync(hdev); 2816 if (err) 2817 bt_dev_err(hdev, "stop background scanning failed: %d", 2818 err); 2819 } else { 2820 /* If there is at least one pending LE connection, we should 2821 * keep the background scan running. 2822 */ 2823 2824 /* If controller is connecting, we should not start scanning 2825 * since some controllers are not able to scan and connect at 2826 * the same time. 2827 */ 2828 if (hci_lookup_le_connect(hdev)) 2829 return 0; 2830 2831 bt_dev_dbg(hdev, "start background scanning"); 2832 2833 err = hci_passive_scan_sync(hdev); 2834 if (err) 2835 bt_dev_err(hdev, "start background scanning failed: %d", 2836 err); 2837 } 2838 2839 return err; 2840 } 2841 2842 static int update_scan_sync(struct hci_dev *hdev, void *data) 2843 { 2844 return hci_update_scan_sync(hdev); 2845 } 2846 2847 int hci_update_scan(struct hci_dev *hdev) 2848 { 2849 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2850 } 2851 2852 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2853 { 2854 return hci_update_passive_scan_sync(hdev); 2855 } 2856 2857 int hci_update_passive_scan(struct hci_dev *hdev) 2858 { 2859 /* Only queue if it would have any effect */ 2860 if (!test_bit(HCI_UP, &hdev->flags) || 2861 test_bit(HCI_INIT, &hdev->flags) || 2862 hci_dev_test_flag(hdev, HCI_SETUP) || 2863 hci_dev_test_flag(hdev, HCI_CONFIG) || 2864 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2865 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2866 return 0; 2867 2868 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2869 } 2870 2871 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2872 { 2873 int err; 2874 2875 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2876 return 0; 2877 2878 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2879 sizeof(val), &val, HCI_CMD_TIMEOUT); 2880 2881 if (!err) { 2882 if (val) { 2883 hdev->features[1][0] |= LMP_HOST_SC; 2884 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2885 } else { 2886 hdev->features[1][0] &= ~LMP_HOST_SC; 2887 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2888 } 2889 } 2890 2891 return err; 2892 } 2893 2894 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2895 { 2896 int err; 2897 2898 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2899 lmp_host_ssp_capable(hdev)) 2900 return 0; 2901 2902 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2903 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2904 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2905 } 2906 2907 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2908 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2909 if (err) 2910 return err; 2911 2912 return hci_write_sc_support_sync(hdev, 0x01); 2913 } 2914 2915 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2916 { 2917 struct hci_cp_write_le_host_supported cp; 2918 2919 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2920 !lmp_bredr_capable(hdev)) 2921 return 0; 2922 2923 /* Check first if we already have the right host state 2924 * (host features set) 2925 */ 2926 if (le == lmp_host_le_capable(hdev) && 2927 simul == lmp_host_le_br_capable(hdev)) 2928 return 0; 2929 2930 memset(&cp, 0, sizeof(cp)); 2931 2932 cp.le = le; 2933 cp.simul = simul; 2934 2935 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2936 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2937 } 2938 2939 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2940 { 2941 struct adv_info *adv, *tmp; 2942 int err; 2943 2944 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2945 return 0; 2946 2947 /* If RPA Resolution has not been enable yet it means the 2948 * resolving list is empty and we should attempt to program the 2949 * local IRK in order to support using own_addr_type 2950 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2951 */ 2952 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2953 hci_le_add_resolve_list_sync(hdev, NULL); 2954 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2955 } 2956 2957 /* Make sure the controller has a good default for 2958 * advertising data. This also applies to the case 2959 * where BR/EDR was toggled during the AUTO_OFF phase. 2960 */ 2961 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2962 list_empty(&hdev->adv_instances)) { 2963 if (ext_adv_capable(hdev)) { 2964 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2965 if (!err) 2966 hci_update_scan_rsp_data_sync(hdev, 0x00); 2967 } else { 2968 err = hci_update_adv_data_sync(hdev, 0x00); 2969 if (!err) 2970 hci_update_scan_rsp_data_sync(hdev, 0x00); 2971 } 2972 2973 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2974 hci_enable_advertising_sync(hdev); 2975 } 2976 2977 /* Call for each tracked instance to be scheduled */ 2978 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2979 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2980 2981 return 0; 2982 } 2983 2984 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2985 { 2986 u8 link_sec; 2987 2988 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2989 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2990 return 0; 2991 2992 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2993 sizeof(link_sec), &link_sec, 2994 HCI_CMD_TIMEOUT); 2995 } 2996 2997 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2998 { 2999 struct hci_cp_write_page_scan_activity cp; 3000 u8 type; 3001 int err = 0; 3002 3003 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3004 return 0; 3005 3006 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3007 return 0; 3008 3009 memset(&cp, 0, sizeof(cp)); 3010 3011 if (enable) { 3012 type = PAGE_SCAN_TYPE_INTERLACED; 3013 3014 /* 160 msec page scan interval */ 3015 cp.interval = cpu_to_le16(0x0100); 3016 } else { 3017 type = hdev->def_page_scan_type; 3018 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3019 } 3020 3021 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3022 3023 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3024 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3025 err = __hci_cmd_sync_status(hdev, 3026 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3027 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3028 if (err) 3029 return err; 3030 } 3031 3032 if (hdev->page_scan_type != type) 3033 err = __hci_cmd_sync_status(hdev, 3034 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3035 sizeof(type), &type, 3036 HCI_CMD_TIMEOUT); 3037 3038 return err; 3039 } 3040 3041 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3042 { 3043 struct bdaddr_list *b; 3044 3045 list_for_each_entry(b, &hdev->accept_list, list) { 3046 struct hci_conn *conn; 3047 3048 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3049 if (!conn) 3050 return true; 3051 3052 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3053 return true; 3054 } 3055 3056 return false; 3057 } 3058 3059 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3060 { 3061 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3062 sizeof(val), &val, 3063 HCI_CMD_TIMEOUT); 3064 } 3065 3066 int hci_update_scan_sync(struct hci_dev *hdev) 3067 { 3068 u8 scan; 3069 3070 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3071 return 0; 3072 3073 if (!hdev_is_powered(hdev)) 3074 return 0; 3075 3076 if (mgmt_powering_down(hdev)) 3077 return 0; 3078 3079 if (hdev->scanning_paused) 3080 return 0; 3081 3082 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3083 disconnected_accept_list_entries(hdev)) 3084 scan = SCAN_PAGE; 3085 else 3086 scan = SCAN_DISABLED; 3087 3088 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3089 scan |= SCAN_INQUIRY; 3090 3091 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3092 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3093 return 0; 3094 3095 return hci_write_scan_enable_sync(hdev, scan); 3096 } 3097 3098 int hci_update_name_sync(struct hci_dev *hdev) 3099 { 3100 struct hci_cp_write_local_name cp; 3101 3102 memset(&cp, 0, sizeof(cp)); 3103 3104 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3105 3106 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3107 sizeof(cp), &cp, 3108 HCI_CMD_TIMEOUT); 3109 } 3110 3111 /* This function perform powered update HCI command sequence after the HCI init 3112 * sequence which end up resetting all states, the sequence is as follows: 3113 * 3114 * HCI_SSP_ENABLED(Enable SSP) 3115 * HCI_LE_ENABLED(Enable LE) 3116 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3117 * Update adv data) 3118 * Enable Authentication 3119 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3120 * Set Name -> Set EIR) 3121 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3122 */ 3123 int hci_powered_update_sync(struct hci_dev *hdev) 3124 { 3125 int err; 3126 3127 /* Register the available SMP channels (BR/EDR and LE) only when 3128 * successfully powering on the controller. This late 3129 * registration is required so that LE SMP can clearly decide if 3130 * the public address or static address is used. 3131 */ 3132 smp_register(hdev); 3133 3134 err = hci_write_ssp_mode_sync(hdev, 0x01); 3135 if (err) 3136 return err; 3137 3138 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3139 if (err) 3140 return err; 3141 3142 err = hci_powered_update_adv_sync(hdev); 3143 if (err) 3144 return err; 3145 3146 err = hci_write_auth_enable_sync(hdev); 3147 if (err) 3148 return err; 3149 3150 if (lmp_bredr_capable(hdev)) { 3151 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3152 hci_write_fast_connectable_sync(hdev, true); 3153 else 3154 hci_write_fast_connectable_sync(hdev, false); 3155 hci_update_scan_sync(hdev); 3156 hci_update_class_sync(hdev); 3157 hci_update_name_sync(hdev); 3158 hci_update_eir_sync(hdev); 3159 } 3160 3161 /* If forcing static address is in use or there is no public 3162 * address use the static address as random address (but skip 3163 * the HCI command if the current random address is already the 3164 * static one. 3165 * 3166 * In case BR/EDR has been disabled on a dual-mode controller 3167 * and a static address has been configured, then use that 3168 * address instead of the public BR/EDR address. 3169 */ 3170 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3171 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3172 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3173 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3174 return hci_set_random_addr_sync(hdev, 3175 &hdev->static_addr); 3176 } 3177 3178 return 0; 3179 } 3180 3181 /** 3182 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3183 * (BD_ADDR) for a HCI device from 3184 * a firmware node property. 3185 * @hdev: The HCI device 3186 * 3187 * Search the firmware node for 'local-bd-address'. 3188 * 3189 * All-zero BD addresses are rejected, because those could be properties 3190 * that exist in the firmware tables, but were not updated by the firmware. For 3191 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3192 */ 3193 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3194 { 3195 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3196 bdaddr_t ba; 3197 int ret; 3198 3199 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3200 (u8 *)&ba, sizeof(ba)); 3201 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3202 return; 3203 3204 bacpy(&hdev->public_addr, &ba); 3205 } 3206 3207 struct hci_init_stage { 3208 int (*func)(struct hci_dev *hdev); 3209 }; 3210 3211 /* Run init stage NULL terminated function table */ 3212 static int hci_init_stage_sync(struct hci_dev *hdev, 3213 const struct hci_init_stage *stage) 3214 { 3215 size_t i; 3216 3217 for (i = 0; stage[i].func; i++) { 3218 int err; 3219 3220 err = stage[i].func(hdev); 3221 if (err) 3222 return err; 3223 } 3224 3225 return 0; 3226 } 3227 3228 /* Read Local Version */ 3229 static int hci_read_local_version_sync(struct hci_dev *hdev) 3230 { 3231 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3232 0, NULL, HCI_CMD_TIMEOUT); 3233 } 3234 3235 /* Read BD Address */ 3236 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3237 { 3238 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3239 0, NULL, HCI_CMD_TIMEOUT); 3240 } 3241 3242 #define HCI_INIT(_func) \ 3243 { \ 3244 .func = _func, \ 3245 } 3246 3247 static const struct hci_init_stage hci_init0[] = { 3248 /* HCI_OP_READ_LOCAL_VERSION */ 3249 HCI_INIT(hci_read_local_version_sync), 3250 /* HCI_OP_READ_BD_ADDR */ 3251 HCI_INIT(hci_read_bd_addr_sync), 3252 {} 3253 }; 3254 3255 int hci_reset_sync(struct hci_dev *hdev) 3256 { 3257 int err; 3258 3259 set_bit(HCI_RESET, &hdev->flags); 3260 3261 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3262 HCI_CMD_TIMEOUT); 3263 if (err) 3264 return err; 3265 3266 return 0; 3267 } 3268 3269 static int hci_init0_sync(struct hci_dev *hdev) 3270 { 3271 int err; 3272 3273 bt_dev_dbg(hdev, ""); 3274 3275 /* Reset */ 3276 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3277 err = hci_reset_sync(hdev); 3278 if (err) 3279 return err; 3280 } 3281 3282 return hci_init_stage_sync(hdev, hci_init0); 3283 } 3284 3285 static int hci_unconf_init_sync(struct hci_dev *hdev) 3286 { 3287 int err; 3288 3289 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3290 return 0; 3291 3292 err = hci_init0_sync(hdev); 3293 if (err < 0) 3294 return err; 3295 3296 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3297 hci_debugfs_create_basic(hdev); 3298 3299 return 0; 3300 } 3301 3302 /* Read Local Supported Features. */ 3303 static int hci_read_local_features_sync(struct hci_dev *hdev) 3304 { 3305 /* Not all AMP controllers support this command */ 3306 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3307 return 0; 3308 3309 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3310 0, NULL, HCI_CMD_TIMEOUT); 3311 } 3312 3313 /* BR Controller init stage 1 command sequence */ 3314 static const struct hci_init_stage br_init1[] = { 3315 /* HCI_OP_READ_LOCAL_FEATURES */ 3316 HCI_INIT(hci_read_local_features_sync), 3317 /* HCI_OP_READ_LOCAL_VERSION */ 3318 HCI_INIT(hci_read_local_version_sync), 3319 /* HCI_OP_READ_BD_ADDR */ 3320 HCI_INIT(hci_read_bd_addr_sync), 3321 {} 3322 }; 3323 3324 /* Read Local Commands */ 3325 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3326 { 3327 /* All Bluetooth 1.2 and later controllers should support the 3328 * HCI command for reading the local supported commands. 3329 * 3330 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3331 * but do not have support for this command. If that is the case, 3332 * the driver can quirk the behavior and skip reading the local 3333 * supported commands. 3334 */ 3335 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3336 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3337 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3338 0, NULL, HCI_CMD_TIMEOUT); 3339 3340 return 0; 3341 } 3342 3343 /* Read Local AMP Info */ 3344 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3345 { 3346 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3347 0, NULL, HCI_CMD_TIMEOUT); 3348 } 3349 3350 /* Read Data Blk size */ 3351 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3352 { 3353 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3354 0, NULL, HCI_CMD_TIMEOUT); 3355 } 3356 3357 /* Read Flow Control Mode */ 3358 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3359 { 3360 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3361 0, NULL, HCI_CMD_TIMEOUT); 3362 } 3363 3364 /* Read Location Data */ 3365 static int hci_read_location_data_sync(struct hci_dev *hdev) 3366 { 3367 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3368 0, NULL, HCI_CMD_TIMEOUT); 3369 } 3370 3371 /* AMP Controller init stage 1 command sequence */ 3372 static const struct hci_init_stage amp_init1[] = { 3373 /* HCI_OP_READ_LOCAL_VERSION */ 3374 HCI_INIT(hci_read_local_version_sync), 3375 /* HCI_OP_READ_LOCAL_COMMANDS */ 3376 HCI_INIT(hci_read_local_cmds_sync), 3377 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3378 HCI_INIT(hci_read_local_amp_info_sync), 3379 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3380 HCI_INIT(hci_read_data_block_size_sync), 3381 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3382 HCI_INIT(hci_read_flow_control_mode_sync), 3383 /* HCI_OP_READ_LOCATION_DATA */ 3384 HCI_INIT(hci_read_location_data_sync), 3385 {} 3386 }; 3387 3388 static int hci_init1_sync(struct hci_dev *hdev) 3389 { 3390 int err; 3391 3392 bt_dev_dbg(hdev, ""); 3393 3394 /* Reset */ 3395 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3396 err = hci_reset_sync(hdev); 3397 if (err) 3398 return err; 3399 } 3400 3401 switch (hdev->dev_type) { 3402 case HCI_PRIMARY: 3403 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3404 return hci_init_stage_sync(hdev, br_init1); 3405 case HCI_AMP: 3406 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3407 return hci_init_stage_sync(hdev, amp_init1); 3408 default: 3409 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3410 break; 3411 } 3412 3413 return 0; 3414 } 3415 3416 /* AMP Controller init stage 2 command sequence */ 3417 static const struct hci_init_stage amp_init2[] = { 3418 /* HCI_OP_READ_LOCAL_FEATURES */ 3419 HCI_INIT(hci_read_local_features_sync), 3420 {} 3421 }; 3422 3423 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3424 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3425 { 3426 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3427 0, NULL, HCI_CMD_TIMEOUT); 3428 } 3429 3430 /* Read Class of Device */ 3431 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3432 { 3433 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3434 0, NULL, HCI_CMD_TIMEOUT); 3435 } 3436 3437 /* Read Local Name */ 3438 static int hci_read_local_name_sync(struct hci_dev *hdev) 3439 { 3440 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3441 0, NULL, HCI_CMD_TIMEOUT); 3442 } 3443 3444 /* Read Voice Setting */ 3445 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3446 { 3447 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3448 0, NULL, HCI_CMD_TIMEOUT); 3449 } 3450 3451 /* Read Number of Supported IAC */ 3452 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3453 { 3454 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3455 0, NULL, HCI_CMD_TIMEOUT); 3456 } 3457 3458 /* Read Current IAC LAP */ 3459 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3460 { 3461 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3462 0, NULL, HCI_CMD_TIMEOUT); 3463 } 3464 3465 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3466 u8 cond_type, bdaddr_t *bdaddr, 3467 u8 auto_accept) 3468 { 3469 struct hci_cp_set_event_filter cp; 3470 3471 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3472 return 0; 3473 3474 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3475 return 0; 3476 3477 memset(&cp, 0, sizeof(cp)); 3478 cp.flt_type = flt_type; 3479 3480 if (flt_type != HCI_FLT_CLEAR_ALL) { 3481 cp.cond_type = cond_type; 3482 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3483 cp.addr_conn_flt.auto_accept = auto_accept; 3484 } 3485 3486 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3487 flt_type == HCI_FLT_CLEAR_ALL ? 3488 sizeof(cp.flt_type) : sizeof(cp), &cp, 3489 HCI_CMD_TIMEOUT); 3490 } 3491 3492 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3493 { 3494 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3495 return 0; 3496 3497 /* In theory the state machine should not reach here unless 3498 * a hci_set_event_filter_sync() call succeeds, but we do 3499 * the check both for parity and as a future reminder. 3500 */ 3501 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3502 return 0; 3503 3504 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3505 BDADDR_ANY, 0x00); 3506 } 3507 3508 /* Connection accept timeout ~20 secs */ 3509 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3510 { 3511 __le16 param = cpu_to_le16(0x7d00); 3512 3513 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3514 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3515 } 3516 3517 /* BR Controller init stage 2 command sequence */ 3518 static const struct hci_init_stage br_init2[] = { 3519 /* HCI_OP_READ_BUFFER_SIZE */ 3520 HCI_INIT(hci_read_buffer_size_sync), 3521 /* HCI_OP_READ_CLASS_OF_DEV */ 3522 HCI_INIT(hci_read_dev_class_sync), 3523 /* HCI_OP_READ_LOCAL_NAME */ 3524 HCI_INIT(hci_read_local_name_sync), 3525 /* HCI_OP_READ_VOICE_SETTING */ 3526 HCI_INIT(hci_read_voice_setting_sync), 3527 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3528 HCI_INIT(hci_read_num_supported_iac_sync), 3529 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3530 HCI_INIT(hci_read_current_iac_lap_sync), 3531 /* HCI_OP_SET_EVENT_FLT */ 3532 HCI_INIT(hci_clear_event_filter_sync), 3533 /* HCI_OP_WRITE_CA_TIMEOUT */ 3534 HCI_INIT(hci_write_ca_timeout_sync), 3535 {} 3536 }; 3537 3538 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3539 { 3540 u8 mode = 0x01; 3541 3542 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3543 return 0; 3544 3545 /* When SSP is available, then the host features page 3546 * should also be available as well. However some 3547 * controllers list the max_page as 0 as long as SSP 3548 * has not been enabled. To achieve proper debugging 3549 * output, force the minimum max_page to 1 at least. 3550 */ 3551 hdev->max_page = 0x01; 3552 3553 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3554 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3555 } 3556 3557 static int hci_write_eir_sync(struct hci_dev *hdev) 3558 { 3559 struct hci_cp_write_eir cp; 3560 3561 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3562 return 0; 3563 3564 memset(hdev->eir, 0, sizeof(hdev->eir)); 3565 memset(&cp, 0, sizeof(cp)); 3566 3567 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3568 HCI_CMD_TIMEOUT); 3569 } 3570 3571 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3572 { 3573 u8 mode; 3574 3575 if (!lmp_inq_rssi_capable(hdev) && 3576 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3577 return 0; 3578 3579 /* If Extended Inquiry Result events are supported, then 3580 * they are clearly preferred over Inquiry Result with RSSI 3581 * events. 3582 */ 3583 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3584 3585 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3586 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3587 } 3588 3589 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3590 { 3591 if (!lmp_inq_tx_pwr_capable(hdev)) 3592 return 0; 3593 3594 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3595 0, NULL, HCI_CMD_TIMEOUT); 3596 } 3597 3598 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3599 { 3600 struct hci_cp_read_local_ext_features cp; 3601 3602 if (!lmp_ext_feat_capable(hdev)) 3603 return 0; 3604 3605 memset(&cp, 0, sizeof(cp)); 3606 cp.page = page; 3607 3608 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3609 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3610 } 3611 3612 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3613 { 3614 return hci_read_local_ext_features_sync(hdev, 0x01); 3615 } 3616 3617 /* HCI Controller init stage 2 command sequence */ 3618 static const struct hci_init_stage hci_init2[] = { 3619 /* HCI_OP_READ_LOCAL_COMMANDS */ 3620 HCI_INIT(hci_read_local_cmds_sync), 3621 /* HCI_OP_WRITE_SSP_MODE */ 3622 HCI_INIT(hci_write_ssp_mode_1_sync), 3623 /* HCI_OP_WRITE_EIR */ 3624 HCI_INIT(hci_write_eir_sync), 3625 /* HCI_OP_WRITE_INQUIRY_MODE */ 3626 HCI_INIT(hci_write_inquiry_mode_sync), 3627 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3628 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3629 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3630 HCI_INIT(hci_read_local_ext_features_1_sync), 3631 /* HCI_OP_WRITE_AUTH_ENABLE */ 3632 HCI_INIT(hci_write_auth_enable_sync), 3633 {} 3634 }; 3635 3636 /* Read LE Buffer Size */ 3637 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3638 { 3639 /* Use Read LE Buffer Size V2 if supported */ 3640 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3641 return __hci_cmd_sync_status(hdev, 3642 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3643 0, NULL, HCI_CMD_TIMEOUT); 3644 3645 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3646 0, NULL, HCI_CMD_TIMEOUT); 3647 } 3648 3649 /* Read LE Local Supported Features */ 3650 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3651 { 3652 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3653 0, NULL, HCI_CMD_TIMEOUT); 3654 } 3655 3656 /* Read LE Supported States */ 3657 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3658 { 3659 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3660 0, NULL, HCI_CMD_TIMEOUT); 3661 } 3662 3663 /* LE Controller init stage 2 command sequence */ 3664 static const struct hci_init_stage le_init2[] = { 3665 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3666 HCI_INIT(hci_le_read_local_features_sync), 3667 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3668 HCI_INIT(hci_le_read_buffer_size_sync), 3669 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3670 HCI_INIT(hci_le_read_supported_states_sync), 3671 {} 3672 }; 3673 3674 static int hci_init2_sync(struct hci_dev *hdev) 3675 { 3676 int err; 3677 3678 bt_dev_dbg(hdev, ""); 3679 3680 if (hdev->dev_type == HCI_AMP) 3681 return hci_init_stage_sync(hdev, amp_init2); 3682 3683 err = hci_init_stage_sync(hdev, hci_init2); 3684 if (err) 3685 return err; 3686 3687 if (lmp_bredr_capable(hdev)) { 3688 err = hci_init_stage_sync(hdev, br_init2); 3689 if (err) 3690 return err; 3691 } else { 3692 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3693 } 3694 3695 if (lmp_le_capable(hdev)) { 3696 err = hci_init_stage_sync(hdev, le_init2); 3697 if (err) 3698 return err; 3699 /* LE-only controllers have LE implicitly enabled */ 3700 if (!lmp_bredr_capable(hdev)) 3701 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3702 } 3703 3704 return 0; 3705 } 3706 3707 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3708 { 3709 /* The second byte is 0xff instead of 0x9f (two reserved bits 3710 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3711 * command otherwise. 3712 */ 3713 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3714 3715 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3716 * any event mask for pre 1.2 devices. 3717 */ 3718 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3719 return 0; 3720 3721 if (lmp_bredr_capable(hdev)) { 3722 events[4] |= 0x01; /* Flow Specification Complete */ 3723 3724 /* Don't set Disconnect Complete when suspended as that 3725 * would wakeup the host when disconnecting due to 3726 * suspend. 3727 */ 3728 if (hdev->suspended) 3729 events[0] &= 0xef; 3730 } else { 3731 /* Use a different default for LE-only devices */ 3732 memset(events, 0, sizeof(events)); 3733 events[1] |= 0x20; /* Command Complete */ 3734 events[1] |= 0x40; /* Command Status */ 3735 events[1] |= 0x80; /* Hardware Error */ 3736 3737 /* If the controller supports the Disconnect command, enable 3738 * the corresponding event. In addition enable packet flow 3739 * control related events. 3740 */ 3741 if (hdev->commands[0] & 0x20) { 3742 /* Don't set Disconnect Complete when suspended as that 3743 * would wakeup the host when disconnecting due to 3744 * suspend. 3745 */ 3746 if (!hdev->suspended) 3747 events[0] |= 0x10; /* Disconnection Complete */ 3748 events[2] |= 0x04; /* Number of Completed Packets */ 3749 events[3] |= 0x02; /* Data Buffer Overflow */ 3750 } 3751 3752 /* If the controller supports the Read Remote Version 3753 * Information command, enable the corresponding event. 3754 */ 3755 if (hdev->commands[2] & 0x80) 3756 events[1] |= 0x08; /* Read Remote Version Information 3757 * Complete 3758 */ 3759 3760 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3761 events[0] |= 0x80; /* Encryption Change */ 3762 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3763 } 3764 } 3765 3766 if (lmp_inq_rssi_capable(hdev) || 3767 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3768 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3769 3770 if (lmp_ext_feat_capable(hdev)) 3771 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3772 3773 if (lmp_esco_capable(hdev)) { 3774 events[5] |= 0x08; /* Synchronous Connection Complete */ 3775 events[5] |= 0x10; /* Synchronous Connection Changed */ 3776 } 3777 3778 if (lmp_sniffsubr_capable(hdev)) 3779 events[5] |= 0x20; /* Sniff Subrating */ 3780 3781 if (lmp_pause_enc_capable(hdev)) 3782 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3783 3784 if (lmp_ext_inq_capable(hdev)) 3785 events[5] |= 0x40; /* Extended Inquiry Result */ 3786 3787 if (lmp_no_flush_capable(hdev)) 3788 events[7] |= 0x01; /* Enhanced Flush Complete */ 3789 3790 if (lmp_lsto_capable(hdev)) 3791 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3792 3793 if (lmp_ssp_capable(hdev)) { 3794 events[6] |= 0x01; /* IO Capability Request */ 3795 events[6] |= 0x02; /* IO Capability Response */ 3796 events[6] |= 0x04; /* User Confirmation Request */ 3797 events[6] |= 0x08; /* User Passkey Request */ 3798 events[6] |= 0x10; /* Remote OOB Data Request */ 3799 events[6] |= 0x20; /* Simple Pairing Complete */ 3800 events[7] |= 0x04; /* User Passkey Notification */ 3801 events[7] |= 0x08; /* Keypress Notification */ 3802 events[7] |= 0x10; /* Remote Host Supported 3803 * Features Notification 3804 */ 3805 } 3806 3807 if (lmp_le_capable(hdev)) 3808 events[7] |= 0x20; /* LE Meta-Event */ 3809 3810 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3811 sizeof(events), events, HCI_CMD_TIMEOUT); 3812 } 3813 3814 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3815 { 3816 struct hci_cp_read_stored_link_key cp; 3817 3818 if (!(hdev->commands[6] & 0x20) || 3819 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3820 return 0; 3821 3822 memset(&cp, 0, sizeof(cp)); 3823 bacpy(&cp.bdaddr, BDADDR_ANY); 3824 cp.read_all = 0x01; 3825 3826 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3827 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3828 } 3829 3830 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3831 { 3832 struct hci_cp_write_def_link_policy cp; 3833 u16 link_policy = 0; 3834 3835 if (!(hdev->commands[5] & 0x10)) 3836 return 0; 3837 3838 memset(&cp, 0, sizeof(cp)); 3839 3840 if (lmp_rswitch_capable(hdev)) 3841 link_policy |= HCI_LP_RSWITCH; 3842 if (lmp_hold_capable(hdev)) 3843 link_policy |= HCI_LP_HOLD; 3844 if (lmp_sniff_capable(hdev)) 3845 link_policy |= HCI_LP_SNIFF; 3846 if (lmp_park_capable(hdev)) 3847 link_policy |= HCI_LP_PARK; 3848 3849 cp.policy = cpu_to_le16(link_policy); 3850 3851 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3852 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3853 } 3854 3855 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3856 { 3857 if (!(hdev->commands[8] & 0x01)) 3858 return 0; 3859 3860 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3861 0, NULL, HCI_CMD_TIMEOUT); 3862 } 3863 3864 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3865 { 3866 if (!(hdev->commands[18] & 0x04) || 3867 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3868 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3869 return 0; 3870 3871 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3872 0, NULL, HCI_CMD_TIMEOUT); 3873 } 3874 3875 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3876 { 3877 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3878 * support the Read Page Scan Type command. Check support for 3879 * this command in the bit mask of supported commands. 3880 */ 3881 if (!(hdev->commands[13] & 0x01)) 3882 return 0; 3883 3884 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3885 0, NULL, HCI_CMD_TIMEOUT); 3886 } 3887 3888 /* Read features beyond page 1 if available */ 3889 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3890 { 3891 u8 page; 3892 int err; 3893 3894 if (!lmp_ext_feat_capable(hdev)) 3895 return 0; 3896 3897 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3898 page++) { 3899 err = hci_read_local_ext_features_sync(hdev, page); 3900 if (err) 3901 return err; 3902 } 3903 3904 return 0; 3905 } 3906 3907 /* HCI Controller init stage 3 command sequence */ 3908 static const struct hci_init_stage hci_init3[] = { 3909 /* HCI_OP_SET_EVENT_MASK */ 3910 HCI_INIT(hci_set_event_mask_sync), 3911 /* HCI_OP_READ_STORED_LINK_KEY */ 3912 HCI_INIT(hci_read_stored_link_key_sync), 3913 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3914 HCI_INIT(hci_setup_link_policy_sync), 3915 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3916 HCI_INIT(hci_read_page_scan_activity_sync), 3917 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3918 HCI_INIT(hci_read_def_err_data_reporting_sync), 3919 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3920 HCI_INIT(hci_read_page_scan_type_sync), 3921 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3922 HCI_INIT(hci_read_local_ext_features_all_sync), 3923 {} 3924 }; 3925 3926 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3927 { 3928 u8 events[8]; 3929 3930 if (!lmp_le_capable(hdev)) 3931 return 0; 3932 3933 memset(events, 0, sizeof(events)); 3934 3935 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3936 events[0] |= 0x10; /* LE Long Term Key Request */ 3937 3938 /* If controller supports the Connection Parameters Request 3939 * Link Layer Procedure, enable the corresponding event. 3940 */ 3941 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3942 /* LE Remote Connection Parameter Request */ 3943 events[0] |= 0x20; 3944 3945 /* If the controller supports the Data Length Extension 3946 * feature, enable the corresponding event. 3947 */ 3948 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3949 events[0] |= 0x40; /* LE Data Length Change */ 3950 3951 /* If the controller supports LL Privacy feature or LE Extended Adv, 3952 * enable the corresponding event. 3953 */ 3954 if (use_enhanced_conn_complete(hdev)) 3955 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3956 3957 /* If the controller supports Extended Scanner Filter 3958 * Policies, enable the corresponding event. 3959 */ 3960 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3961 events[1] |= 0x04; /* LE Direct Advertising Report */ 3962 3963 /* If the controller supports Channel Selection Algorithm #2 3964 * feature, enable the corresponding event. 3965 */ 3966 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3967 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3968 3969 /* If the controller supports the LE Set Scan Enable command, 3970 * enable the corresponding advertising report event. 3971 */ 3972 if (hdev->commands[26] & 0x08) 3973 events[0] |= 0x02; /* LE Advertising Report */ 3974 3975 /* If the controller supports the LE Create Connection 3976 * command, enable the corresponding event. 3977 */ 3978 if (hdev->commands[26] & 0x10) 3979 events[0] |= 0x01; /* LE Connection Complete */ 3980 3981 /* If the controller supports the LE Connection Update 3982 * command, enable the corresponding event. 3983 */ 3984 if (hdev->commands[27] & 0x04) 3985 events[0] |= 0x04; /* LE Connection Update Complete */ 3986 3987 /* If the controller supports the LE Read Remote Used Features 3988 * command, enable the corresponding event. 3989 */ 3990 if (hdev->commands[27] & 0x20) 3991 /* LE Read Remote Used Features Complete */ 3992 events[0] |= 0x08; 3993 3994 /* If the controller supports the LE Read Local P-256 3995 * Public Key command, enable the corresponding event. 3996 */ 3997 if (hdev->commands[34] & 0x02) 3998 /* LE Read Local P-256 Public Key Complete */ 3999 events[0] |= 0x80; 4000 4001 /* If the controller supports the LE Generate DHKey 4002 * command, enable the corresponding event. 4003 */ 4004 if (hdev->commands[34] & 0x04) 4005 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4006 4007 /* If the controller supports the LE Set Default PHY or 4008 * LE Set PHY commands, enable the corresponding event. 4009 */ 4010 if (hdev->commands[35] & (0x20 | 0x40)) 4011 events[1] |= 0x08; /* LE PHY Update Complete */ 4012 4013 /* If the controller supports LE Set Extended Scan Parameters 4014 * and LE Set Extended Scan Enable commands, enable the 4015 * corresponding event. 4016 */ 4017 if (use_ext_scan(hdev)) 4018 events[1] |= 0x10; /* LE Extended Advertising Report */ 4019 4020 /* If the controller supports the LE Extended Advertising 4021 * command, enable the corresponding event. 4022 */ 4023 if (ext_adv_capable(hdev)) 4024 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4025 4026 if (cis_capable(hdev)) { 4027 events[3] |= 0x01; /* LE CIS Established */ 4028 if (cis_peripheral_capable(hdev)) 4029 events[3] |= 0x02; /* LE CIS Request */ 4030 } 4031 4032 if (bis_capable(hdev)) { 4033 events[3] |= 0x04; /* LE Create BIG Complete */ 4034 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4035 events[3] |= 0x10; /* LE BIG Sync Established */ 4036 events[3] |= 0x20; /* LE BIG Sync Loss */ 4037 } 4038 4039 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4040 sizeof(events), events, HCI_CMD_TIMEOUT); 4041 } 4042 4043 /* Read LE Advertising Channel TX Power */ 4044 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4045 { 4046 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4047 /* HCI TS spec forbids mixing of legacy and extended 4048 * advertising commands wherein READ_ADV_TX_POWER is 4049 * also included. So do not call it if extended adv 4050 * is supported otherwise controller will return 4051 * COMMAND_DISALLOWED for extended commands. 4052 */ 4053 return __hci_cmd_sync_status(hdev, 4054 HCI_OP_LE_READ_ADV_TX_POWER, 4055 0, NULL, HCI_CMD_TIMEOUT); 4056 } 4057 4058 return 0; 4059 } 4060 4061 /* Read LE Min/Max Tx Power*/ 4062 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4063 { 4064 if (!(hdev->commands[38] & 0x80) || 4065 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4066 return 0; 4067 4068 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4069 0, NULL, HCI_CMD_TIMEOUT); 4070 } 4071 4072 /* Read LE Accept List Size */ 4073 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4074 { 4075 if (!(hdev->commands[26] & 0x40)) 4076 return 0; 4077 4078 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4079 0, NULL, HCI_CMD_TIMEOUT); 4080 } 4081 4082 /* Clear LE Accept List */ 4083 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4084 { 4085 if (!(hdev->commands[26] & 0x80)) 4086 return 0; 4087 4088 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4089 HCI_CMD_TIMEOUT); 4090 } 4091 4092 /* Read LE Resolving List Size */ 4093 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4094 { 4095 if (!(hdev->commands[34] & 0x40)) 4096 return 0; 4097 4098 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4099 0, NULL, HCI_CMD_TIMEOUT); 4100 } 4101 4102 /* Clear LE Resolving List */ 4103 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4104 { 4105 if (!(hdev->commands[34] & 0x20)) 4106 return 0; 4107 4108 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4109 HCI_CMD_TIMEOUT); 4110 } 4111 4112 /* Set RPA timeout */ 4113 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4114 { 4115 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4116 4117 if (!(hdev->commands[35] & 0x04) || 4118 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4119 return 0; 4120 4121 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4122 sizeof(timeout), &timeout, 4123 HCI_CMD_TIMEOUT); 4124 } 4125 4126 /* Read LE Maximum Data Length */ 4127 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4128 { 4129 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4130 return 0; 4131 4132 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4133 HCI_CMD_TIMEOUT); 4134 } 4135 4136 /* Read LE Suggested Default Data Length */ 4137 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4138 { 4139 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4140 return 0; 4141 4142 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4143 HCI_CMD_TIMEOUT); 4144 } 4145 4146 /* Read LE Number of Supported Advertising Sets */ 4147 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4148 { 4149 if (!ext_adv_capable(hdev)) 4150 return 0; 4151 4152 return __hci_cmd_sync_status(hdev, 4153 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4154 0, NULL, HCI_CMD_TIMEOUT); 4155 } 4156 4157 /* Write LE Host Supported */ 4158 static int hci_set_le_support_sync(struct hci_dev *hdev) 4159 { 4160 struct hci_cp_write_le_host_supported cp; 4161 4162 /* LE-only devices do not support explicit enablement */ 4163 if (!lmp_bredr_capable(hdev)) 4164 return 0; 4165 4166 memset(&cp, 0, sizeof(cp)); 4167 4168 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4169 cp.le = 0x01; 4170 cp.simul = 0x00; 4171 } 4172 4173 if (cp.le == lmp_host_le_capable(hdev)) 4174 return 0; 4175 4176 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4177 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4178 } 4179 4180 /* LE Set Host Feature */ 4181 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4182 { 4183 struct hci_cp_le_set_host_feature cp; 4184 4185 if (!iso_capable(hdev)) 4186 return 0; 4187 4188 memset(&cp, 0, sizeof(cp)); 4189 4190 /* Isochronous Channels (Host Support) */ 4191 cp.bit_number = 32; 4192 cp.bit_value = 1; 4193 4194 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4195 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4196 } 4197 4198 /* LE Controller init stage 3 command sequence */ 4199 static const struct hci_init_stage le_init3[] = { 4200 /* HCI_OP_LE_SET_EVENT_MASK */ 4201 HCI_INIT(hci_le_set_event_mask_sync), 4202 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4203 HCI_INIT(hci_le_read_adv_tx_power_sync), 4204 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4205 HCI_INIT(hci_le_read_tx_power_sync), 4206 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4207 HCI_INIT(hci_le_read_accept_list_size_sync), 4208 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4209 HCI_INIT(hci_le_clear_accept_list_sync), 4210 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4211 HCI_INIT(hci_le_read_resolv_list_size_sync), 4212 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4213 HCI_INIT(hci_le_clear_resolv_list_sync), 4214 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4215 HCI_INIT(hci_le_set_rpa_timeout_sync), 4216 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4217 HCI_INIT(hci_le_read_max_data_len_sync), 4218 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4219 HCI_INIT(hci_le_read_def_data_len_sync), 4220 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4221 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4222 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4223 HCI_INIT(hci_set_le_support_sync), 4224 /* HCI_OP_LE_SET_HOST_FEATURE */ 4225 HCI_INIT(hci_le_set_host_feature_sync), 4226 {} 4227 }; 4228 4229 static int hci_init3_sync(struct hci_dev *hdev) 4230 { 4231 int err; 4232 4233 bt_dev_dbg(hdev, ""); 4234 4235 err = hci_init_stage_sync(hdev, hci_init3); 4236 if (err) 4237 return err; 4238 4239 if (lmp_le_capable(hdev)) 4240 return hci_init_stage_sync(hdev, le_init3); 4241 4242 return 0; 4243 } 4244 4245 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4246 { 4247 struct hci_cp_delete_stored_link_key cp; 4248 4249 /* Some Broadcom based Bluetooth controllers do not support the 4250 * Delete Stored Link Key command. They are clearly indicating its 4251 * absence in the bit mask of supported commands. 4252 * 4253 * Check the supported commands and only if the command is marked 4254 * as supported send it. If not supported assume that the controller 4255 * does not have actual support for stored link keys which makes this 4256 * command redundant anyway. 4257 * 4258 * Some controllers indicate that they support handling deleting 4259 * stored link keys, but they don't. The quirk lets a driver 4260 * just disable this command. 4261 */ 4262 if (!(hdev->commands[6] & 0x80) || 4263 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4264 return 0; 4265 4266 memset(&cp, 0, sizeof(cp)); 4267 bacpy(&cp.bdaddr, BDADDR_ANY); 4268 cp.delete_all = 0x01; 4269 4270 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4271 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4272 } 4273 4274 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4275 { 4276 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4277 bool changed = false; 4278 4279 /* Set event mask page 2 if the HCI command for it is supported */ 4280 if (!(hdev->commands[22] & 0x04)) 4281 return 0; 4282 4283 /* If Connectionless Peripheral Broadcast central role is supported 4284 * enable all necessary events for it. 4285 */ 4286 if (lmp_cpb_central_capable(hdev)) { 4287 events[1] |= 0x40; /* Triggered Clock Capture */ 4288 events[1] |= 0x80; /* Synchronization Train Complete */ 4289 events[2] |= 0x08; /* Truncated Page Complete */ 4290 events[2] |= 0x20; /* CPB Channel Map Change */ 4291 changed = true; 4292 } 4293 4294 /* If Connectionless Peripheral Broadcast peripheral role is supported 4295 * enable all necessary events for it. 4296 */ 4297 if (lmp_cpb_peripheral_capable(hdev)) { 4298 events[2] |= 0x01; /* Synchronization Train Received */ 4299 events[2] |= 0x02; /* CPB Receive */ 4300 events[2] |= 0x04; /* CPB Timeout */ 4301 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4302 changed = true; 4303 } 4304 4305 /* Enable Authenticated Payload Timeout Expired event if supported */ 4306 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4307 events[2] |= 0x80; 4308 changed = true; 4309 } 4310 4311 /* Some Broadcom based controllers indicate support for Set Event 4312 * Mask Page 2 command, but then actually do not support it. Since 4313 * the default value is all bits set to zero, the command is only 4314 * required if the event mask has to be changed. In case no change 4315 * to the event mask is needed, skip this command. 4316 */ 4317 if (!changed) 4318 return 0; 4319 4320 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4321 sizeof(events), events, HCI_CMD_TIMEOUT); 4322 } 4323 4324 /* Read local codec list if the HCI command is supported */ 4325 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4326 { 4327 if (hdev->commands[45] & 0x04) 4328 hci_read_supported_codecs_v2(hdev); 4329 else if (hdev->commands[29] & 0x20) 4330 hci_read_supported_codecs(hdev); 4331 4332 return 0; 4333 } 4334 4335 /* Read local pairing options if the HCI command is supported */ 4336 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4337 { 4338 if (!(hdev->commands[41] & 0x08)) 4339 return 0; 4340 4341 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4342 0, NULL, HCI_CMD_TIMEOUT); 4343 } 4344 4345 /* Get MWS transport configuration if the HCI command is supported */ 4346 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4347 { 4348 if (!mws_transport_config_capable(hdev)) 4349 return 0; 4350 4351 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4352 0, NULL, HCI_CMD_TIMEOUT); 4353 } 4354 4355 /* Check for Synchronization Train support */ 4356 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4357 { 4358 if (!lmp_sync_train_capable(hdev)) 4359 return 0; 4360 4361 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4362 0, NULL, HCI_CMD_TIMEOUT); 4363 } 4364 4365 /* Enable Secure Connections if supported and configured */ 4366 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4367 { 4368 u8 support = 0x01; 4369 4370 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4371 !bredr_sc_enabled(hdev)) 4372 return 0; 4373 4374 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4375 sizeof(support), &support, 4376 HCI_CMD_TIMEOUT); 4377 } 4378 4379 /* Set erroneous data reporting if supported to the wideband speech 4380 * setting value 4381 */ 4382 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4383 { 4384 struct hci_cp_write_def_err_data_reporting cp; 4385 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4386 4387 if (!(hdev->commands[18] & 0x08) || 4388 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4389 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4390 return 0; 4391 4392 if (enabled == hdev->err_data_reporting) 4393 return 0; 4394 4395 memset(&cp, 0, sizeof(cp)); 4396 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4397 ERR_DATA_REPORTING_DISABLED; 4398 4399 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4400 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4401 } 4402 4403 static const struct hci_init_stage hci_init4[] = { 4404 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4405 HCI_INIT(hci_delete_stored_link_key_sync), 4406 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4407 HCI_INIT(hci_set_event_mask_page_2_sync), 4408 /* HCI_OP_READ_LOCAL_CODECS */ 4409 HCI_INIT(hci_read_local_codecs_sync), 4410 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4411 HCI_INIT(hci_read_local_pairing_opts_sync), 4412 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4413 HCI_INIT(hci_get_mws_transport_config_sync), 4414 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4415 HCI_INIT(hci_read_sync_train_params_sync), 4416 /* HCI_OP_WRITE_SC_SUPPORT */ 4417 HCI_INIT(hci_write_sc_support_1_sync), 4418 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4419 HCI_INIT(hci_set_err_data_report_sync), 4420 {} 4421 }; 4422 4423 /* Set Suggested Default Data Length to maximum if supported */ 4424 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4425 { 4426 struct hci_cp_le_write_def_data_len cp; 4427 4428 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4429 return 0; 4430 4431 memset(&cp, 0, sizeof(cp)); 4432 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4433 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4434 4435 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4436 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4437 } 4438 4439 /* Set Default PHY parameters if command is supported, enables all supported 4440 * PHYs according to the LE Features bits. 4441 */ 4442 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4443 { 4444 struct hci_cp_le_set_default_phy cp; 4445 4446 if (!(hdev->commands[35] & 0x20)) { 4447 /* If the command is not supported it means only 1M PHY is 4448 * supported. 4449 */ 4450 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4451 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4452 return 0; 4453 } 4454 4455 memset(&cp, 0, sizeof(cp)); 4456 cp.all_phys = 0x00; 4457 cp.tx_phys = HCI_LE_SET_PHY_1M; 4458 cp.rx_phys = HCI_LE_SET_PHY_1M; 4459 4460 /* Enables 2M PHY if supported */ 4461 if (le_2m_capable(hdev)) { 4462 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4463 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4464 } 4465 4466 /* Enables Coded PHY if supported */ 4467 if (le_coded_capable(hdev)) { 4468 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4469 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4470 } 4471 4472 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4473 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4474 } 4475 4476 static const struct hci_init_stage le_init4[] = { 4477 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4478 HCI_INIT(hci_le_set_write_def_data_len_sync), 4479 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4480 HCI_INIT(hci_le_set_default_phy_sync), 4481 {} 4482 }; 4483 4484 static int hci_init4_sync(struct hci_dev *hdev) 4485 { 4486 int err; 4487 4488 bt_dev_dbg(hdev, ""); 4489 4490 err = hci_init_stage_sync(hdev, hci_init4); 4491 if (err) 4492 return err; 4493 4494 if (lmp_le_capable(hdev)) 4495 return hci_init_stage_sync(hdev, le_init4); 4496 4497 return 0; 4498 } 4499 4500 static int hci_init_sync(struct hci_dev *hdev) 4501 { 4502 int err; 4503 4504 err = hci_init1_sync(hdev); 4505 if (err < 0) 4506 return err; 4507 4508 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4509 hci_debugfs_create_basic(hdev); 4510 4511 err = hci_init2_sync(hdev); 4512 if (err < 0) 4513 return err; 4514 4515 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4516 * BR/EDR/LE type controllers. AMP controllers only need the 4517 * first two stages of init. 4518 */ 4519 if (hdev->dev_type != HCI_PRIMARY) 4520 return 0; 4521 4522 err = hci_init3_sync(hdev); 4523 if (err < 0) 4524 return err; 4525 4526 err = hci_init4_sync(hdev); 4527 if (err < 0) 4528 return err; 4529 4530 /* This function is only called when the controller is actually in 4531 * configured state. When the controller is marked as unconfigured, 4532 * this initialization procedure is not run. 4533 * 4534 * It means that it is possible that a controller runs through its 4535 * setup phase and then discovers missing settings. If that is the 4536 * case, then this function will not be called. It then will only 4537 * be called during the config phase. 4538 * 4539 * So only when in setup phase or config phase, create the debugfs 4540 * entries and register the SMP channels. 4541 */ 4542 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4543 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4544 return 0; 4545 4546 hci_debugfs_create_common(hdev); 4547 4548 if (lmp_bredr_capable(hdev)) 4549 hci_debugfs_create_bredr(hdev); 4550 4551 if (lmp_le_capable(hdev)) 4552 hci_debugfs_create_le(hdev); 4553 4554 return 0; 4555 } 4556 4557 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4558 4559 static const struct { 4560 unsigned long quirk; 4561 const char *desc; 4562 } hci_broken_table[] = { 4563 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4564 "HCI Read Local Supported Commands not supported"), 4565 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4566 "HCI Delete Stored Link Key command is advertised, " 4567 "but not supported."), 4568 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4569 "HCI Read Default Erroneous Data Reporting command is " 4570 "advertised, but not supported."), 4571 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4572 "HCI Read Transmit Power Level command is advertised, " 4573 "but not supported."), 4574 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4575 "HCI Set Event Filter command not supported."), 4576 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4577 "HCI Enhanced Setup Synchronous Connection command is " 4578 "advertised, but not supported."), 4579 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4580 "HCI LE Set Random Private Address Timeout command is " 4581 "advertised, but not supported.") 4582 }; 4583 4584 /* This function handles hdev setup stage: 4585 * 4586 * Calls hdev->setup 4587 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4588 */ 4589 static int hci_dev_setup_sync(struct hci_dev *hdev) 4590 { 4591 int ret = 0; 4592 bool invalid_bdaddr; 4593 size_t i; 4594 4595 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4596 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4597 return 0; 4598 4599 bt_dev_dbg(hdev, ""); 4600 4601 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4602 4603 if (hdev->setup) 4604 ret = hdev->setup(hdev); 4605 4606 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4607 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4608 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4609 } 4610 4611 /* The transport driver can set the quirk to mark the 4612 * BD_ADDR invalid before creating the HCI device or in 4613 * its setup callback. 4614 */ 4615 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 4616 4617 if (!ret) { 4618 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 4619 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 4620 hci_dev_get_bd_addr_from_property(hdev); 4621 4622 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4623 hdev->set_bdaddr) { 4624 ret = hdev->set_bdaddr(hdev, 4625 &hdev->public_addr); 4626 4627 /* If setting of the BD_ADDR from the device 4628 * property succeeds, then treat the address 4629 * as valid even if the invalid BD_ADDR 4630 * quirk indicates otherwise. 4631 */ 4632 if (!ret) 4633 invalid_bdaddr = false; 4634 } 4635 } 4636 } 4637 4638 /* The transport driver can set these quirks before 4639 * creating the HCI device or in its setup callback. 4640 * 4641 * For the invalid BD_ADDR quirk it is possible that 4642 * it becomes a valid address if the bootloader does 4643 * provide it (see above). 4644 * 4645 * In case any of them is set, the controller has to 4646 * start up as unconfigured. 4647 */ 4648 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4649 invalid_bdaddr) 4650 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4651 4652 /* For an unconfigured controller it is required to 4653 * read at least the version information provided by 4654 * the Read Local Version Information command. 4655 * 4656 * If the set_bdaddr driver callback is provided, then 4657 * also the original Bluetooth public device address 4658 * will be read using the Read BD Address command. 4659 */ 4660 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4661 return hci_unconf_init_sync(hdev); 4662 4663 return ret; 4664 } 4665 4666 /* This function handles hdev init stage: 4667 * 4668 * Calls hci_dev_setup_sync to perform setup stage 4669 * Calls hci_init_sync to perform HCI command init sequence 4670 */ 4671 static int hci_dev_init_sync(struct hci_dev *hdev) 4672 { 4673 int ret; 4674 4675 bt_dev_dbg(hdev, ""); 4676 4677 atomic_set(&hdev->cmd_cnt, 1); 4678 set_bit(HCI_INIT, &hdev->flags); 4679 4680 ret = hci_dev_setup_sync(hdev); 4681 4682 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4683 /* If public address change is configured, ensure that 4684 * the address gets programmed. If the driver does not 4685 * support changing the public address, fail the power 4686 * on procedure. 4687 */ 4688 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4689 hdev->set_bdaddr) 4690 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4691 else 4692 ret = -EADDRNOTAVAIL; 4693 } 4694 4695 if (!ret) { 4696 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4697 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4698 ret = hci_init_sync(hdev); 4699 if (!ret && hdev->post_init) 4700 ret = hdev->post_init(hdev); 4701 } 4702 } 4703 4704 /* If the HCI Reset command is clearing all diagnostic settings, 4705 * then they need to be reprogrammed after the init procedure 4706 * completed. 4707 */ 4708 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4709 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4710 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4711 ret = hdev->set_diag(hdev, true); 4712 4713 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4714 msft_do_open(hdev); 4715 aosp_do_open(hdev); 4716 } 4717 4718 clear_bit(HCI_INIT, &hdev->flags); 4719 4720 return ret; 4721 } 4722 4723 int hci_dev_open_sync(struct hci_dev *hdev) 4724 { 4725 int ret; 4726 4727 bt_dev_dbg(hdev, ""); 4728 4729 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4730 ret = -ENODEV; 4731 goto done; 4732 } 4733 4734 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4735 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4736 /* Check for rfkill but allow the HCI setup stage to 4737 * proceed (which in itself doesn't cause any RF activity). 4738 */ 4739 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4740 ret = -ERFKILL; 4741 goto done; 4742 } 4743 4744 /* Check for valid public address or a configured static 4745 * random address, but let the HCI setup proceed to 4746 * be able to determine if there is a public address 4747 * or not. 4748 * 4749 * In case of user channel usage, it is not important 4750 * if a public address or static random address is 4751 * available. 4752 * 4753 * This check is only valid for BR/EDR controllers 4754 * since AMP controllers do not have an address. 4755 */ 4756 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4757 hdev->dev_type == HCI_PRIMARY && 4758 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4759 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4760 ret = -EADDRNOTAVAIL; 4761 goto done; 4762 } 4763 } 4764 4765 if (test_bit(HCI_UP, &hdev->flags)) { 4766 ret = -EALREADY; 4767 goto done; 4768 } 4769 4770 if (hdev->open(hdev)) { 4771 ret = -EIO; 4772 goto done; 4773 } 4774 4775 hci_devcd_reset(hdev); 4776 4777 set_bit(HCI_RUNNING, &hdev->flags); 4778 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4779 4780 ret = hci_dev_init_sync(hdev); 4781 if (!ret) { 4782 hci_dev_hold(hdev); 4783 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4784 hci_adv_instances_set_rpa_expired(hdev, true); 4785 set_bit(HCI_UP, &hdev->flags); 4786 hci_sock_dev_event(hdev, HCI_DEV_UP); 4787 hci_leds_update_powered(hdev, true); 4788 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4789 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4790 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4791 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4792 hci_dev_test_flag(hdev, HCI_MGMT) && 4793 hdev->dev_type == HCI_PRIMARY) { 4794 ret = hci_powered_update_sync(hdev); 4795 mgmt_power_on(hdev, ret); 4796 } 4797 } else { 4798 /* Init failed, cleanup */ 4799 flush_work(&hdev->tx_work); 4800 4801 /* Since hci_rx_work() is possible to awake new cmd_work 4802 * it should be flushed first to avoid unexpected call of 4803 * hci_cmd_work() 4804 */ 4805 flush_work(&hdev->rx_work); 4806 flush_work(&hdev->cmd_work); 4807 4808 skb_queue_purge(&hdev->cmd_q); 4809 skb_queue_purge(&hdev->rx_q); 4810 4811 if (hdev->flush) 4812 hdev->flush(hdev); 4813 4814 if (hdev->sent_cmd) { 4815 cancel_delayed_work_sync(&hdev->cmd_timer); 4816 kfree_skb(hdev->sent_cmd); 4817 hdev->sent_cmd = NULL; 4818 } 4819 4820 clear_bit(HCI_RUNNING, &hdev->flags); 4821 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4822 4823 hdev->close(hdev); 4824 hdev->flags &= BIT(HCI_RAW); 4825 } 4826 4827 done: 4828 return ret; 4829 } 4830 4831 /* This function requires the caller holds hdev->lock */ 4832 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4833 { 4834 struct hci_conn_params *p; 4835 4836 list_for_each_entry(p, &hdev->le_conn_params, list) { 4837 if (p->conn) { 4838 hci_conn_drop(p->conn); 4839 hci_conn_put(p->conn); 4840 p->conn = NULL; 4841 } 4842 list_del_init(&p->action); 4843 } 4844 4845 BT_DBG("All LE pending actions cleared"); 4846 } 4847 4848 static int hci_dev_shutdown(struct hci_dev *hdev) 4849 { 4850 int err = 0; 4851 /* Similar to how we first do setup and then set the exclusive access 4852 * bit for userspace, we must first unset userchannel and then clean up. 4853 * Otherwise, the kernel can't properly use the hci channel to clean up 4854 * the controller (some shutdown routines require sending additional 4855 * commands to the controller for example). 4856 */ 4857 bool was_userchannel = 4858 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4859 4860 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4861 test_bit(HCI_UP, &hdev->flags)) { 4862 /* Execute vendor specific shutdown routine */ 4863 if (hdev->shutdown) 4864 err = hdev->shutdown(hdev); 4865 } 4866 4867 if (was_userchannel) 4868 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4869 4870 return err; 4871 } 4872 4873 int hci_dev_close_sync(struct hci_dev *hdev) 4874 { 4875 bool auto_off; 4876 int err = 0; 4877 4878 bt_dev_dbg(hdev, ""); 4879 4880 cancel_delayed_work(&hdev->power_off); 4881 cancel_delayed_work(&hdev->ncmd_timer); 4882 cancel_delayed_work(&hdev->le_scan_disable); 4883 cancel_delayed_work(&hdev->le_scan_restart); 4884 4885 hci_request_cancel_all(hdev); 4886 4887 if (hdev->adv_instance_timeout) { 4888 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4889 hdev->adv_instance_timeout = 0; 4890 } 4891 4892 err = hci_dev_shutdown(hdev); 4893 4894 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4895 cancel_delayed_work_sync(&hdev->cmd_timer); 4896 return err; 4897 } 4898 4899 hci_leds_update_powered(hdev, false); 4900 4901 /* Flush RX and TX works */ 4902 flush_work(&hdev->tx_work); 4903 flush_work(&hdev->rx_work); 4904 4905 if (hdev->discov_timeout > 0) { 4906 hdev->discov_timeout = 0; 4907 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4908 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4909 } 4910 4911 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4912 cancel_delayed_work(&hdev->service_cache); 4913 4914 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4915 struct adv_info *adv_instance; 4916 4917 cancel_delayed_work_sync(&hdev->rpa_expired); 4918 4919 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4920 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4921 } 4922 4923 /* Avoid potential lockdep warnings from the *_flush() calls by 4924 * ensuring the workqueue is empty up front. 4925 */ 4926 drain_workqueue(hdev->workqueue); 4927 4928 hci_dev_lock(hdev); 4929 4930 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4931 4932 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4933 4934 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4935 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4936 hci_dev_test_flag(hdev, HCI_MGMT)) 4937 __mgmt_power_off(hdev); 4938 4939 hci_inquiry_cache_flush(hdev); 4940 hci_pend_le_actions_clear(hdev); 4941 hci_conn_hash_flush(hdev); 4942 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4943 smp_unregister(hdev); 4944 hci_dev_unlock(hdev); 4945 4946 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4947 4948 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4949 aosp_do_close(hdev); 4950 msft_do_close(hdev); 4951 } 4952 4953 if (hdev->flush) 4954 hdev->flush(hdev); 4955 4956 /* Reset device */ 4957 skb_queue_purge(&hdev->cmd_q); 4958 atomic_set(&hdev->cmd_cnt, 1); 4959 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4960 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4961 set_bit(HCI_INIT, &hdev->flags); 4962 hci_reset_sync(hdev); 4963 clear_bit(HCI_INIT, &hdev->flags); 4964 } 4965 4966 /* flush cmd work */ 4967 flush_work(&hdev->cmd_work); 4968 4969 /* Drop queues */ 4970 skb_queue_purge(&hdev->rx_q); 4971 skb_queue_purge(&hdev->cmd_q); 4972 skb_queue_purge(&hdev->raw_q); 4973 4974 /* Drop last sent command */ 4975 if (hdev->sent_cmd) { 4976 cancel_delayed_work_sync(&hdev->cmd_timer); 4977 kfree_skb(hdev->sent_cmd); 4978 hdev->sent_cmd = NULL; 4979 } 4980 4981 clear_bit(HCI_RUNNING, &hdev->flags); 4982 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4983 4984 /* After this point our queues are empty and no tasks are scheduled. */ 4985 hdev->close(hdev); 4986 4987 /* Clear flags */ 4988 hdev->flags &= BIT(HCI_RAW); 4989 hci_dev_clear_volatile_flags(hdev); 4990 4991 /* Controller radio is available but is currently powered down */ 4992 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4993 4994 memset(hdev->eir, 0, sizeof(hdev->eir)); 4995 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4996 bacpy(&hdev->random_addr, BDADDR_ANY); 4997 4998 hci_dev_put(hdev); 4999 return err; 5000 } 5001 5002 /* This function perform power on HCI command sequence as follows: 5003 * 5004 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5005 * sequence otherwise run hci_dev_open_sync which will follow with 5006 * hci_powered_update_sync after the init sequence is completed. 5007 */ 5008 static int hci_power_on_sync(struct hci_dev *hdev) 5009 { 5010 int err; 5011 5012 if (test_bit(HCI_UP, &hdev->flags) && 5013 hci_dev_test_flag(hdev, HCI_MGMT) && 5014 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5015 cancel_delayed_work(&hdev->power_off); 5016 return hci_powered_update_sync(hdev); 5017 } 5018 5019 err = hci_dev_open_sync(hdev); 5020 if (err < 0) 5021 return err; 5022 5023 /* During the HCI setup phase, a few error conditions are 5024 * ignored and they need to be checked now. If they are still 5025 * valid, it is important to return the device back off. 5026 */ 5027 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5028 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5029 (hdev->dev_type == HCI_PRIMARY && 5030 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5031 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5032 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5033 hci_dev_close_sync(hdev); 5034 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5035 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5036 HCI_AUTO_OFF_TIMEOUT); 5037 } 5038 5039 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5040 /* For unconfigured devices, set the HCI_RAW flag 5041 * so that userspace can easily identify them. 5042 */ 5043 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5044 set_bit(HCI_RAW, &hdev->flags); 5045 5046 /* For fully configured devices, this will send 5047 * the Index Added event. For unconfigured devices, 5048 * it will send Unconfigued Index Added event. 5049 * 5050 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5051 * and no event will be send. 5052 */ 5053 mgmt_index_added(hdev); 5054 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5055 /* When the controller is now configured, then it 5056 * is important to clear the HCI_RAW flag. 5057 */ 5058 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5059 clear_bit(HCI_RAW, &hdev->flags); 5060 5061 /* Powering on the controller with HCI_CONFIG set only 5062 * happens with the transition from unconfigured to 5063 * configured. This will send the Index Added event. 5064 */ 5065 mgmt_index_added(hdev); 5066 } 5067 5068 return 0; 5069 } 5070 5071 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5072 { 5073 struct hci_cp_remote_name_req_cancel cp; 5074 5075 memset(&cp, 0, sizeof(cp)); 5076 bacpy(&cp.bdaddr, addr); 5077 5078 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5079 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5080 } 5081 5082 int hci_stop_discovery_sync(struct hci_dev *hdev) 5083 { 5084 struct discovery_state *d = &hdev->discovery; 5085 struct inquiry_entry *e; 5086 int err; 5087 5088 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5089 5090 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5091 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5092 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5093 0, NULL, HCI_CMD_TIMEOUT); 5094 if (err) 5095 return err; 5096 } 5097 5098 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5099 cancel_delayed_work(&hdev->le_scan_disable); 5100 cancel_delayed_work(&hdev->le_scan_restart); 5101 5102 err = hci_scan_disable_sync(hdev); 5103 if (err) 5104 return err; 5105 } 5106 5107 } else { 5108 err = hci_scan_disable_sync(hdev); 5109 if (err) 5110 return err; 5111 } 5112 5113 /* Resume advertising if it was paused */ 5114 if (use_ll_privacy(hdev)) 5115 hci_resume_advertising_sync(hdev); 5116 5117 /* No further actions needed for LE-only discovery */ 5118 if (d->type == DISCOV_TYPE_LE) 5119 return 0; 5120 5121 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5122 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5123 NAME_PENDING); 5124 if (!e) 5125 return 0; 5126 5127 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5128 } 5129 5130 return 0; 5131 } 5132 5133 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5134 u8 reason) 5135 { 5136 struct hci_cp_disconn_phy_link cp; 5137 5138 memset(&cp, 0, sizeof(cp)); 5139 cp.phy_handle = HCI_PHY_HANDLE(handle); 5140 cp.reason = reason; 5141 5142 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5143 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5144 } 5145 5146 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5147 u8 reason) 5148 { 5149 struct hci_cp_disconnect cp; 5150 5151 if (conn->type == AMP_LINK) 5152 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5153 5154 memset(&cp, 0, sizeof(cp)); 5155 cp.handle = cpu_to_le16(conn->handle); 5156 cp.reason = reason; 5157 5158 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5159 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5160 * used when suspending or powering off, where we don't want to wait 5161 * for the peer's response. 5162 */ 5163 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5164 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5165 sizeof(cp), &cp, 5166 HCI_EV_DISCONN_COMPLETE, 5167 HCI_CMD_TIMEOUT, NULL); 5168 5169 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5170 HCI_CMD_TIMEOUT); 5171 } 5172 5173 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5174 struct hci_conn *conn) 5175 { 5176 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5177 return 0; 5178 5179 if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5180 return 0; 5181 5182 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5183 0, NULL, HCI_CMD_TIMEOUT); 5184 } 5185 5186 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 5187 { 5188 if (conn->type == LE_LINK) 5189 return hci_le_connect_cancel_sync(hdev, conn); 5190 5191 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5192 return 0; 5193 5194 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5195 6, &conn->dst, HCI_CMD_TIMEOUT); 5196 } 5197 5198 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5199 u8 reason) 5200 { 5201 struct hci_cp_reject_sync_conn_req cp; 5202 5203 memset(&cp, 0, sizeof(cp)); 5204 bacpy(&cp.bdaddr, &conn->dst); 5205 cp.reason = reason; 5206 5207 /* SCO rejection has its own limited set of 5208 * allowed error values (0x0D-0x0F). 5209 */ 5210 if (reason < 0x0d || reason > 0x0f) 5211 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5212 5213 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5214 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5215 } 5216 5217 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5218 u8 reason) 5219 { 5220 struct hci_cp_reject_conn_req cp; 5221 5222 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5223 return hci_reject_sco_sync(hdev, conn, reason); 5224 5225 memset(&cp, 0, sizeof(cp)); 5226 bacpy(&cp.bdaddr, &conn->dst); 5227 cp.reason = reason; 5228 5229 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5230 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5231 } 5232 5233 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5234 { 5235 int err; 5236 5237 switch (conn->state) { 5238 case BT_CONNECTED: 5239 case BT_CONFIG: 5240 return hci_disconnect_sync(hdev, conn, reason); 5241 case BT_CONNECT: 5242 err = hci_connect_cancel_sync(hdev, conn); 5243 /* Cleanup hci_conn object if it cannot be cancelled as it 5244 * likelly means the controller and host stack are out of sync. 5245 */ 5246 if (err) { 5247 hci_dev_lock(hdev); 5248 hci_conn_failed(conn, err); 5249 hci_dev_unlock(hdev); 5250 } 5251 return err; 5252 case BT_CONNECT2: 5253 return hci_reject_conn_sync(hdev, conn, reason); 5254 default: 5255 conn->state = BT_CLOSED; 5256 break; 5257 } 5258 5259 return 0; 5260 } 5261 5262 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5263 { 5264 struct hci_conn *conn, *tmp; 5265 int err; 5266 5267 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 5268 err = hci_abort_conn_sync(hdev, conn, reason); 5269 if (err) 5270 return err; 5271 } 5272 5273 return 0; 5274 } 5275 5276 /* This function perform power off HCI command sequence as follows: 5277 * 5278 * Clear Advertising 5279 * Stop Discovery 5280 * Disconnect all connections 5281 * hci_dev_close_sync 5282 */ 5283 static int hci_power_off_sync(struct hci_dev *hdev) 5284 { 5285 int err; 5286 5287 /* If controller is already down there is nothing to do */ 5288 if (!test_bit(HCI_UP, &hdev->flags)) 5289 return 0; 5290 5291 if (test_bit(HCI_ISCAN, &hdev->flags) || 5292 test_bit(HCI_PSCAN, &hdev->flags)) { 5293 err = hci_write_scan_enable_sync(hdev, 0x00); 5294 if (err) 5295 return err; 5296 } 5297 5298 err = hci_clear_adv_sync(hdev, NULL, false); 5299 if (err) 5300 return err; 5301 5302 err = hci_stop_discovery_sync(hdev); 5303 if (err) 5304 return err; 5305 5306 /* Terminated due to Power Off */ 5307 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5308 if (err) 5309 return err; 5310 5311 return hci_dev_close_sync(hdev); 5312 } 5313 5314 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5315 { 5316 if (val) 5317 return hci_power_on_sync(hdev); 5318 5319 return hci_power_off_sync(hdev); 5320 } 5321 5322 static int hci_write_iac_sync(struct hci_dev *hdev) 5323 { 5324 struct hci_cp_write_current_iac_lap cp; 5325 5326 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5327 return 0; 5328 5329 memset(&cp, 0, sizeof(cp)); 5330 5331 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5332 /* Limited discoverable mode */ 5333 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5334 cp.iac_lap[0] = 0x00; /* LIAC */ 5335 cp.iac_lap[1] = 0x8b; 5336 cp.iac_lap[2] = 0x9e; 5337 cp.iac_lap[3] = 0x33; /* GIAC */ 5338 cp.iac_lap[4] = 0x8b; 5339 cp.iac_lap[5] = 0x9e; 5340 } else { 5341 /* General discoverable mode */ 5342 cp.num_iac = 1; 5343 cp.iac_lap[0] = 0x33; /* GIAC */ 5344 cp.iac_lap[1] = 0x8b; 5345 cp.iac_lap[2] = 0x9e; 5346 } 5347 5348 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5349 (cp.num_iac * 3) + 1, &cp, 5350 HCI_CMD_TIMEOUT); 5351 } 5352 5353 int hci_update_discoverable_sync(struct hci_dev *hdev) 5354 { 5355 int err = 0; 5356 5357 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5358 err = hci_write_iac_sync(hdev); 5359 if (err) 5360 return err; 5361 5362 err = hci_update_scan_sync(hdev); 5363 if (err) 5364 return err; 5365 5366 err = hci_update_class_sync(hdev); 5367 if (err) 5368 return err; 5369 } 5370 5371 /* Advertising instances don't use the global discoverable setting, so 5372 * only update AD if advertising was enabled using Set Advertising. 5373 */ 5374 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5375 err = hci_update_adv_data_sync(hdev, 0x00); 5376 if (err) 5377 return err; 5378 5379 /* Discoverable mode affects the local advertising 5380 * address in limited privacy mode. 5381 */ 5382 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5383 if (ext_adv_capable(hdev)) 5384 err = hci_start_ext_adv_sync(hdev, 0x00); 5385 else 5386 err = hci_enable_advertising_sync(hdev); 5387 } 5388 } 5389 5390 return err; 5391 } 5392 5393 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5394 { 5395 return hci_update_discoverable_sync(hdev); 5396 } 5397 5398 int hci_update_discoverable(struct hci_dev *hdev) 5399 { 5400 /* Only queue if it would have any effect */ 5401 if (hdev_is_powered(hdev) && 5402 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5403 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5404 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5405 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5406 NULL); 5407 5408 return 0; 5409 } 5410 5411 int hci_update_connectable_sync(struct hci_dev *hdev) 5412 { 5413 int err; 5414 5415 err = hci_update_scan_sync(hdev); 5416 if (err) 5417 return err; 5418 5419 /* If BR/EDR is not enabled and we disable advertising as a 5420 * by-product of disabling connectable, we need to update the 5421 * advertising flags. 5422 */ 5423 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5424 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5425 5426 /* Update the advertising parameters if necessary */ 5427 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5428 !list_empty(&hdev->adv_instances)) { 5429 if (ext_adv_capable(hdev)) 5430 err = hci_start_ext_adv_sync(hdev, 5431 hdev->cur_adv_instance); 5432 else 5433 err = hci_enable_advertising_sync(hdev); 5434 5435 if (err) 5436 return err; 5437 } 5438 5439 return hci_update_passive_scan_sync(hdev); 5440 } 5441 5442 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5443 { 5444 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5445 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5446 struct hci_cp_inquiry cp; 5447 5448 bt_dev_dbg(hdev, ""); 5449 5450 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5451 return 0; 5452 5453 hci_dev_lock(hdev); 5454 hci_inquiry_cache_flush(hdev); 5455 hci_dev_unlock(hdev); 5456 5457 memset(&cp, 0, sizeof(cp)); 5458 5459 if (hdev->discovery.limited) 5460 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5461 else 5462 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5463 5464 cp.length = length; 5465 5466 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5467 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5468 } 5469 5470 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5471 { 5472 u8 own_addr_type; 5473 /* Accept list is not used for discovery */ 5474 u8 filter_policy = 0x00; 5475 /* Default is to enable duplicates filter */ 5476 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5477 int err; 5478 5479 bt_dev_dbg(hdev, ""); 5480 5481 /* If controller is scanning, it means the passive scanning is 5482 * running. Thus, we should temporarily stop it in order to set the 5483 * discovery scanning parameters. 5484 */ 5485 err = hci_scan_disable_sync(hdev); 5486 if (err) { 5487 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5488 return err; 5489 } 5490 5491 cancel_interleave_scan(hdev); 5492 5493 /* Pause address resolution for active scan and stop advertising if 5494 * privacy is enabled. 5495 */ 5496 err = hci_pause_addr_resolution(hdev); 5497 if (err) 5498 goto failed; 5499 5500 /* All active scans will be done with either a resolvable private 5501 * address (when privacy feature has been enabled) or non-resolvable 5502 * private address. 5503 */ 5504 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5505 &own_addr_type); 5506 if (err < 0) 5507 own_addr_type = ADDR_LE_DEV_PUBLIC; 5508 5509 if (hci_is_adv_monitoring(hdev)) { 5510 /* Duplicate filter should be disabled when some advertisement 5511 * monitor is activated, otherwise AdvMon can only receive one 5512 * advertisement for one peer(*) during active scanning, and 5513 * might report loss to these peers. 5514 * 5515 * Note that different controllers have different meanings of 5516 * |duplicate|. Some of them consider packets with the same 5517 * address as duplicate, and others consider packets with the 5518 * same address and the same RSSI as duplicate. Although in the 5519 * latter case we don't need to disable duplicate filter, but 5520 * it is common to have active scanning for a short period of 5521 * time, the power impact should be neglectable. 5522 */ 5523 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5524 } 5525 5526 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5527 hdev->le_scan_window_discovery, 5528 own_addr_type, filter_policy, filter_dup); 5529 if (!err) 5530 return err; 5531 5532 failed: 5533 /* Resume advertising if it was paused */ 5534 if (use_ll_privacy(hdev)) 5535 hci_resume_advertising_sync(hdev); 5536 5537 /* Resume passive scanning */ 5538 hci_update_passive_scan_sync(hdev); 5539 return err; 5540 } 5541 5542 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5543 { 5544 int err; 5545 5546 bt_dev_dbg(hdev, ""); 5547 5548 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5549 if (err) 5550 return err; 5551 5552 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5553 } 5554 5555 int hci_start_discovery_sync(struct hci_dev *hdev) 5556 { 5557 unsigned long timeout; 5558 int err; 5559 5560 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5561 5562 switch (hdev->discovery.type) { 5563 case DISCOV_TYPE_BREDR: 5564 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5565 case DISCOV_TYPE_INTERLEAVED: 5566 /* When running simultaneous discovery, the LE scanning time 5567 * should occupy the whole discovery time sine BR/EDR inquiry 5568 * and LE scanning are scheduled by the controller. 5569 * 5570 * For interleaving discovery in comparison, BR/EDR inquiry 5571 * and LE scanning are done sequentially with separate 5572 * timeouts. 5573 */ 5574 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5575 &hdev->quirks)) { 5576 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5577 /* During simultaneous discovery, we double LE scan 5578 * interval. We must leave some time for the controller 5579 * to do BR/EDR inquiry. 5580 */ 5581 err = hci_start_interleaved_discovery_sync(hdev); 5582 break; 5583 } 5584 5585 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5586 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5587 break; 5588 case DISCOV_TYPE_LE: 5589 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5590 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5591 break; 5592 default: 5593 return -EINVAL; 5594 } 5595 5596 if (err) 5597 return err; 5598 5599 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5600 5601 /* When service discovery is used and the controller has a 5602 * strict duplicate filter, it is important to remember the 5603 * start and duration of the scan. This is required for 5604 * restarting scanning during the discovery phase. 5605 */ 5606 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5607 hdev->discovery.result_filtering) { 5608 hdev->discovery.scan_start = jiffies; 5609 hdev->discovery.scan_duration = timeout; 5610 } 5611 5612 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5613 timeout); 5614 return 0; 5615 } 5616 5617 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5618 { 5619 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5620 case HCI_ADV_MONITOR_EXT_MSFT: 5621 msft_suspend_sync(hdev); 5622 break; 5623 default: 5624 return; 5625 } 5626 } 5627 5628 /* This function disables discovery and mark it as paused */ 5629 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5630 { 5631 int old_state = hdev->discovery.state; 5632 int err; 5633 5634 /* If discovery already stopped/stopping/paused there nothing to do */ 5635 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5636 hdev->discovery_paused) 5637 return 0; 5638 5639 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5640 err = hci_stop_discovery_sync(hdev); 5641 if (err) 5642 return err; 5643 5644 hdev->discovery_paused = true; 5645 hdev->discovery_old_state = old_state; 5646 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5647 5648 return 0; 5649 } 5650 5651 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5652 { 5653 struct bdaddr_list_with_flags *b; 5654 u8 scan = SCAN_DISABLED; 5655 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5656 int err; 5657 5658 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5659 return 0; 5660 5661 /* Some fake CSR controllers lock up after setting this type of 5662 * filter, so avoid sending the request altogether. 5663 */ 5664 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5665 return 0; 5666 5667 /* Always clear event filter when starting */ 5668 hci_clear_event_filter_sync(hdev); 5669 5670 list_for_each_entry(b, &hdev->accept_list, list) { 5671 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5672 continue; 5673 5674 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5675 5676 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5677 HCI_CONN_SETUP_ALLOW_BDADDR, 5678 &b->bdaddr, 5679 HCI_CONN_SETUP_AUTO_ON); 5680 if (err) 5681 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5682 &b->bdaddr); 5683 else 5684 scan = SCAN_PAGE; 5685 } 5686 5687 if (scan && !scanning) 5688 hci_write_scan_enable_sync(hdev, scan); 5689 else if (!scan && scanning) 5690 hci_write_scan_enable_sync(hdev, scan); 5691 5692 return 0; 5693 } 5694 5695 /* This function disables scan (BR and LE) and mark it as paused */ 5696 static int hci_pause_scan_sync(struct hci_dev *hdev) 5697 { 5698 if (hdev->scanning_paused) 5699 return 0; 5700 5701 /* Disable page scan if enabled */ 5702 if (test_bit(HCI_PSCAN, &hdev->flags)) 5703 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5704 5705 hci_scan_disable_sync(hdev); 5706 5707 hdev->scanning_paused = true; 5708 5709 return 0; 5710 } 5711 5712 /* This function performs the HCI suspend procedures in the follow order: 5713 * 5714 * Pause discovery (active scanning/inquiry) 5715 * Pause Directed Advertising/Advertising 5716 * Pause Scanning (passive scanning in case discovery was not active) 5717 * Disconnect all connections 5718 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5719 * otherwise: 5720 * Update event mask (only set events that are allowed to wake up the host) 5721 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5722 * Update passive scanning (lower duty cycle) 5723 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5724 */ 5725 int hci_suspend_sync(struct hci_dev *hdev) 5726 { 5727 int err; 5728 5729 /* If marked as suspended there nothing to do */ 5730 if (hdev->suspended) 5731 return 0; 5732 5733 /* Mark device as suspended */ 5734 hdev->suspended = true; 5735 5736 /* Pause discovery if not already stopped */ 5737 hci_pause_discovery_sync(hdev); 5738 5739 /* Pause other advertisements */ 5740 hci_pause_advertising_sync(hdev); 5741 5742 /* Suspend monitor filters */ 5743 hci_suspend_monitor_sync(hdev); 5744 5745 /* Prevent disconnects from causing scanning to be re-enabled */ 5746 hci_pause_scan_sync(hdev); 5747 5748 if (hci_conn_count(hdev)) { 5749 /* Soft disconnect everything (power off) */ 5750 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5751 if (err) { 5752 /* Set state to BT_RUNNING so resume doesn't notify */ 5753 hdev->suspend_state = BT_RUNNING; 5754 hci_resume_sync(hdev); 5755 return err; 5756 } 5757 5758 /* Update event mask so only the allowed event can wakeup the 5759 * host. 5760 */ 5761 hci_set_event_mask_sync(hdev); 5762 } 5763 5764 /* Only configure accept list if disconnect succeeded and wake 5765 * isn't being prevented. 5766 */ 5767 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5768 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5769 return 0; 5770 } 5771 5772 /* Unpause to take care of updating scanning params */ 5773 hdev->scanning_paused = false; 5774 5775 /* Enable event filter for paired devices */ 5776 hci_update_event_filter_sync(hdev); 5777 5778 /* Update LE passive scan if enabled */ 5779 hci_update_passive_scan_sync(hdev); 5780 5781 /* Pause scan changes again. */ 5782 hdev->scanning_paused = true; 5783 5784 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5785 5786 return 0; 5787 } 5788 5789 /* This function resumes discovery */ 5790 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5791 { 5792 int err; 5793 5794 /* If discovery not paused there nothing to do */ 5795 if (!hdev->discovery_paused) 5796 return 0; 5797 5798 hdev->discovery_paused = false; 5799 5800 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5801 5802 err = hci_start_discovery_sync(hdev); 5803 5804 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5805 DISCOVERY_FINDING); 5806 5807 return err; 5808 } 5809 5810 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5811 { 5812 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5813 case HCI_ADV_MONITOR_EXT_MSFT: 5814 msft_resume_sync(hdev); 5815 break; 5816 default: 5817 return; 5818 } 5819 } 5820 5821 /* This function resume scan and reset paused flag */ 5822 static int hci_resume_scan_sync(struct hci_dev *hdev) 5823 { 5824 if (!hdev->scanning_paused) 5825 return 0; 5826 5827 hdev->scanning_paused = false; 5828 5829 hci_update_scan_sync(hdev); 5830 5831 /* Reset passive scanning to normal */ 5832 hci_update_passive_scan_sync(hdev); 5833 5834 return 0; 5835 } 5836 5837 /* This function performs the HCI suspend procedures in the follow order: 5838 * 5839 * Restore event mask 5840 * Clear event filter 5841 * Update passive scanning (normal duty cycle) 5842 * Resume Directed Advertising/Advertising 5843 * Resume discovery (active scanning/inquiry) 5844 */ 5845 int hci_resume_sync(struct hci_dev *hdev) 5846 { 5847 /* If not marked as suspended there nothing to do */ 5848 if (!hdev->suspended) 5849 return 0; 5850 5851 hdev->suspended = false; 5852 5853 /* Restore event mask */ 5854 hci_set_event_mask_sync(hdev); 5855 5856 /* Clear any event filters and restore scan state */ 5857 hci_clear_event_filter_sync(hdev); 5858 5859 /* Resume scanning */ 5860 hci_resume_scan_sync(hdev); 5861 5862 /* Resume monitor filters */ 5863 hci_resume_monitor_sync(hdev); 5864 5865 /* Resume other advertisements */ 5866 hci_resume_advertising_sync(hdev); 5867 5868 /* Resume discovery */ 5869 hci_resume_discovery_sync(hdev); 5870 5871 return 0; 5872 } 5873 5874 static bool conn_use_rpa(struct hci_conn *conn) 5875 { 5876 struct hci_dev *hdev = conn->hdev; 5877 5878 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5879 } 5880 5881 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5882 struct hci_conn *conn) 5883 { 5884 struct hci_cp_le_set_ext_adv_params cp; 5885 int err; 5886 bdaddr_t random_addr; 5887 u8 own_addr_type; 5888 5889 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5890 &own_addr_type); 5891 if (err) 5892 return err; 5893 5894 /* Set require_privacy to false so that the remote device has a 5895 * chance of identifying us. 5896 */ 5897 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5898 &own_addr_type, &random_addr); 5899 if (err) 5900 return err; 5901 5902 memset(&cp, 0, sizeof(cp)); 5903 5904 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5905 cp.channel_map = hdev->le_adv_channel_map; 5906 cp.tx_power = HCI_TX_POWER_INVALID; 5907 cp.primary_phy = HCI_ADV_PHY_1M; 5908 cp.secondary_phy = HCI_ADV_PHY_1M; 5909 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5910 cp.own_addr_type = own_addr_type; 5911 cp.peer_addr_type = conn->dst_type; 5912 bacpy(&cp.peer_addr, &conn->dst); 5913 5914 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5915 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5916 * does not supports advertising data when the advertising set already 5917 * contains some, the controller shall return erroc code 'Invalid 5918 * HCI Command Parameters(0x12). 5919 * So it is required to remove adv set for handle 0x00. since we use 5920 * instance 0 for directed adv. 5921 */ 5922 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5923 if (err) 5924 return err; 5925 5926 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5927 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5928 if (err) 5929 return err; 5930 5931 /* Check if random address need to be updated */ 5932 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5933 bacmp(&random_addr, BDADDR_ANY) && 5934 bacmp(&random_addr, &hdev->random_addr)) { 5935 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5936 &random_addr); 5937 if (err) 5938 return err; 5939 } 5940 5941 return hci_enable_ext_advertising_sync(hdev, 0x00); 5942 } 5943 5944 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5945 struct hci_conn *conn) 5946 { 5947 struct hci_cp_le_set_adv_param cp; 5948 u8 status; 5949 u8 own_addr_type; 5950 u8 enable; 5951 5952 if (ext_adv_capable(hdev)) 5953 return hci_le_ext_directed_advertising_sync(hdev, conn); 5954 5955 /* Clear the HCI_LE_ADV bit temporarily so that the 5956 * hci_update_random_address knows that it's safe to go ahead 5957 * and write a new random address. The flag will be set back on 5958 * as soon as the SET_ADV_ENABLE HCI command completes. 5959 */ 5960 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5961 5962 /* Set require_privacy to false so that the remote device has a 5963 * chance of identifying us. 5964 */ 5965 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5966 &own_addr_type); 5967 if (status) 5968 return status; 5969 5970 memset(&cp, 0, sizeof(cp)); 5971 5972 /* Some controllers might reject command if intervals are not 5973 * within range for undirected advertising. 5974 * BCM20702A0 is known to be affected by this. 5975 */ 5976 cp.min_interval = cpu_to_le16(0x0020); 5977 cp.max_interval = cpu_to_le16(0x0020); 5978 5979 cp.type = LE_ADV_DIRECT_IND; 5980 cp.own_address_type = own_addr_type; 5981 cp.direct_addr_type = conn->dst_type; 5982 bacpy(&cp.direct_addr, &conn->dst); 5983 cp.channel_map = hdev->le_adv_channel_map; 5984 5985 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5986 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5987 if (status) 5988 return status; 5989 5990 enable = 0x01; 5991 5992 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5993 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5994 } 5995 5996 static void set_ext_conn_params(struct hci_conn *conn, 5997 struct hci_cp_le_ext_conn_param *p) 5998 { 5999 struct hci_dev *hdev = conn->hdev; 6000 6001 memset(p, 0, sizeof(*p)); 6002 6003 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6004 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6005 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6006 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6007 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6008 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6009 p->min_ce_len = cpu_to_le16(0x0000); 6010 p->max_ce_len = cpu_to_le16(0x0000); 6011 } 6012 6013 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6014 struct hci_conn *conn, u8 own_addr_type) 6015 { 6016 struct hci_cp_le_ext_create_conn *cp; 6017 struct hci_cp_le_ext_conn_param *p; 6018 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6019 u32 plen; 6020 6021 cp = (void *)data; 6022 p = (void *)cp->data; 6023 6024 memset(cp, 0, sizeof(*cp)); 6025 6026 bacpy(&cp->peer_addr, &conn->dst); 6027 cp->peer_addr_type = conn->dst_type; 6028 cp->own_addr_type = own_addr_type; 6029 6030 plen = sizeof(*cp); 6031 6032 if (scan_1m(hdev)) { 6033 cp->phys |= LE_SCAN_PHY_1M; 6034 set_ext_conn_params(conn, p); 6035 6036 p++; 6037 plen += sizeof(*p); 6038 } 6039 6040 if (scan_2m(hdev)) { 6041 cp->phys |= LE_SCAN_PHY_2M; 6042 set_ext_conn_params(conn, p); 6043 6044 p++; 6045 plen += sizeof(*p); 6046 } 6047 6048 if (scan_coded(hdev)) { 6049 cp->phys |= LE_SCAN_PHY_CODED; 6050 set_ext_conn_params(conn, p); 6051 6052 plen += sizeof(*p); 6053 } 6054 6055 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6056 plen, data, 6057 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6058 conn->conn_timeout, NULL); 6059 } 6060 6061 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6062 { 6063 struct hci_cp_le_create_conn cp; 6064 struct hci_conn_params *params; 6065 u8 own_addr_type; 6066 int err; 6067 6068 /* If requested to connect as peripheral use directed advertising */ 6069 if (conn->role == HCI_ROLE_SLAVE) { 6070 /* If we're active scanning and simultaneous roles is not 6071 * enabled simply reject the attempt. 6072 */ 6073 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6074 hdev->le_scan_type == LE_SCAN_ACTIVE && 6075 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6076 hci_conn_del(conn); 6077 return -EBUSY; 6078 } 6079 6080 /* Pause advertising while doing directed advertising. */ 6081 hci_pause_advertising_sync(hdev); 6082 6083 err = hci_le_directed_advertising_sync(hdev, conn); 6084 goto done; 6085 } 6086 6087 /* Disable advertising if simultaneous roles is not in use. */ 6088 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6089 hci_pause_advertising_sync(hdev); 6090 6091 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6092 if (params) { 6093 conn->le_conn_min_interval = params->conn_min_interval; 6094 conn->le_conn_max_interval = params->conn_max_interval; 6095 conn->le_conn_latency = params->conn_latency; 6096 conn->le_supv_timeout = params->supervision_timeout; 6097 } else { 6098 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6099 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6100 conn->le_conn_latency = hdev->le_conn_latency; 6101 conn->le_supv_timeout = hdev->le_supv_timeout; 6102 } 6103 6104 /* If controller is scanning, we stop it since some controllers are 6105 * not able to scan and connect at the same time. Also set the 6106 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6107 * handler for scan disabling knows to set the correct discovery 6108 * state. 6109 */ 6110 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6111 hci_scan_disable_sync(hdev); 6112 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6113 } 6114 6115 /* Update random address, but set require_privacy to false so 6116 * that we never connect with an non-resolvable address. 6117 */ 6118 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6119 &own_addr_type); 6120 if (err) 6121 goto done; 6122 6123 if (use_ext_conn(hdev)) { 6124 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6125 goto done; 6126 } 6127 6128 memset(&cp, 0, sizeof(cp)); 6129 6130 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6131 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6132 6133 bacpy(&cp.peer_addr, &conn->dst); 6134 cp.peer_addr_type = conn->dst_type; 6135 cp.own_address_type = own_addr_type; 6136 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6137 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6138 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6139 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6140 cp.min_ce_len = cpu_to_le16(0x0000); 6141 cp.max_ce_len = cpu_to_le16(0x0000); 6142 6143 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6144 * 6145 * If this event is unmasked and the HCI_LE_Connection_Complete event 6146 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6147 * sent when a new connection has been created. 6148 */ 6149 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6150 sizeof(cp), &cp, 6151 use_enhanced_conn_complete(hdev) ? 6152 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6153 HCI_EV_LE_CONN_COMPLETE, 6154 conn->conn_timeout, NULL); 6155 6156 done: 6157 if (err == -ETIMEDOUT) 6158 hci_le_connect_cancel_sync(hdev, conn); 6159 6160 /* Re-enable advertising after the connection attempt is finished. */ 6161 hci_resume_advertising_sync(hdev); 6162 return err; 6163 } 6164 6165 int hci_le_create_cis_sync(struct hci_dev *hdev, struct hci_conn *conn) 6166 { 6167 struct { 6168 struct hci_cp_le_create_cis cp; 6169 struct hci_cis cis[0x1f]; 6170 } cmd; 6171 u8 cig; 6172 struct hci_conn *hcon = conn; 6173 6174 memset(&cmd, 0, sizeof(cmd)); 6175 cmd.cis[0].acl_handle = cpu_to_le16(conn->parent->handle); 6176 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 6177 cmd.cp.num_cis++; 6178 cig = conn->iso_qos.ucast.cig; 6179 6180 hci_dev_lock(hdev); 6181 6182 rcu_read_lock(); 6183 6184 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6185 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6186 6187 if (conn == hcon || conn->type != ISO_LINK || 6188 conn->state == BT_CONNECTED || 6189 conn->iso_qos.ucast.cig != cig) 6190 continue; 6191 6192 /* Check if all CIS(s) belonging to a CIG are ready */ 6193 if (!conn->parent || conn->parent->state != BT_CONNECTED || 6194 conn->state != BT_CONNECT) { 6195 cmd.cp.num_cis = 0; 6196 break; 6197 } 6198 6199 /* Group all CIS with state BT_CONNECT since the spec don't 6200 * allow to send them individually: 6201 * 6202 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6203 * page 2566: 6204 * 6205 * If the Host issues this command before all the 6206 * HCI_LE_CIS_Established events from the previous use of the 6207 * command have been generated, the Controller shall return the 6208 * error code Command Disallowed (0x0C). 6209 */ 6210 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6211 cis->cis_handle = cpu_to_le16(conn->handle); 6212 cmd.cp.num_cis++; 6213 } 6214 6215 rcu_read_unlock(); 6216 6217 hci_dev_unlock(hdev); 6218 6219 if (!cmd.cp.num_cis) 6220 return 0; 6221 6222 /* Wait for HCI_LE_CIS_Established */ 6223 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6224 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6225 cmd.cp.num_cis, &cmd, 6226 HCI_EVT_LE_CIS_ESTABLISHED, 6227 conn->conn_timeout, NULL); 6228 } 6229 6230 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6231 { 6232 struct hci_cp_le_remove_cig cp; 6233 6234 memset(&cp, 0, sizeof(cp)); 6235 cp.cig_id = handle; 6236 6237 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6238 &cp, HCI_CMD_TIMEOUT); 6239 } 6240 6241 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6242 { 6243 struct hci_cp_le_big_term_sync cp; 6244 6245 memset(&cp, 0, sizeof(cp)); 6246 cp.handle = handle; 6247 6248 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6249 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6250 } 6251 6252 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6253 { 6254 struct hci_cp_le_pa_term_sync cp; 6255 6256 memset(&cp, 0, sizeof(cp)); 6257 cp.handle = cpu_to_le16(handle); 6258 6259 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6260 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6261 } 6262 6263 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6264 bool use_rpa, struct adv_info *adv_instance, 6265 u8 *own_addr_type, bdaddr_t *rand_addr) 6266 { 6267 int err; 6268 6269 bacpy(rand_addr, BDADDR_ANY); 6270 6271 /* If privacy is enabled use a resolvable private address. If 6272 * current RPA has expired then generate a new one. 6273 */ 6274 if (use_rpa) { 6275 /* If Controller supports LL Privacy use own address type is 6276 * 0x03 6277 */ 6278 if (use_ll_privacy(hdev)) 6279 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6280 else 6281 *own_addr_type = ADDR_LE_DEV_RANDOM; 6282 6283 if (adv_instance) { 6284 if (adv_rpa_valid(adv_instance)) 6285 return 0; 6286 } else { 6287 if (rpa_valid(hdev)) 6288 return 0; 6289 } 6290 6291 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6292 if (err < 0) { 6293 bt_dev_err(hdev, "failed to generate new RPA"); 6294 return err; 6295 } 6296 6297 bacpy(rand_addr, &hdev->rpa); 6298 6299 return 0; 6300 } 6301 6302 /* In case of required privacy without resolvable private address, 6303 * use an non-resolvable private address. This is useful for 6304 * non-connectable advertising. 6305 */ 6306 if (require_privacy) { 6307 bdaddr_t nrpa; 6308 6309 while (true) { 6310 /* The non-resolvable private address is generated 6311 * from random six bytes with the two most significant 6312 * bits cleared. 6313 */ 6314 get_random_bytes(&nrpa, 6); 6315 nrpa.b[5] &= 0x3f; 6316 6317 /* The non-resolvable private address shall not be 6318 * equal to the public address. 6319 */ 6320 if (bacmp(&hdev->bdaddr, &nrpa)) 6321 break; 6322 } 6323 6324 *own_addr_type = ADDR_LE_DEV_RANDOM; 6325 bacpy(rand_addr, &nrpa); 6326 6327 return 0; 6328 } 6329 6330 /* No privacy so use a public address. */ 6331 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6332 6333 return 0; 6334 } 6335 6336 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6337 { 6338 u8 instance = PTR_ERR(data); 6339 6340 return hci_update_adv_data_sync(hdev, instance); 6341 } 6342 6343 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6344 { 6345 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6346 ERR_PTR(instance), NULL); 6347 } 6348