1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 /* Free the request command so it is not used as response */ 36 kfree_skb(hdev->req_skb); 37 hdev->req_skb = NULL; 38 39 if (skb) { 40 struct sock *sk = hci_skb_sk(skb); 41 42 /* Drop sk reference if set */ 43 if (sk) 44 sock_put(sk); 45 46 hdev->req_rsp = skb_get(skb); 47 } 48 49 wake_up_interruptible(&hdev->req_wait_q); 50 } 51 52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 53 u32 plen, const void *param, 54 struct sock *sk) 55 { 56 int len = HCI_COMMAND_HDR_SIZE + plen; 57 struct hci_command_hdr *hdr; 58 struct sk_buff *skb; 59 60 skb = bt_skb_alloc(len, GFP_ATOMIC); 61 if (!skb) 62 return NULL; 63 64 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 65 hdr->opcode = cpu_to_le16(opcode); 66 hdr->plen = plen; 67 68 if (plen) 69 skb_put_data(skb, param, plen); 70 71 bt_dev_dbg(hdev, "skb len %d", skb->len); 72 73 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 74 hci_skb_opcode(skb) = opcode; 75 76 /* Grab a reference if command needs to be associated with a sock (e.g. 77 * likely mgmt socket that initiated the command). 78 */ 79 if (sk) { 80 hci_skb_sk(skb) = sk; 81 sock_hold(sk); 82 } 83 84 return skb; 85 } 86 87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 88 const void *param, u8 event, struct sock *sk) 89 { 90 struct hci_dev *hdev = req->hdev; 91 struct sk_buff *skb; 92 93 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 94 95 /* If an error occurred during request building, there is no point in 96 * queueing the HCI command. We can simply return. 97 */ 98 if (req->err) 99 return; 100 101 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 102 if (!skb) { 103 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 104 opcode); 105 req->err = -ENOMEM; 106 return; 107 } 108 109 if (skb_queue_empty(&req->cmd_q)) 110 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 111 112 hci_skb_event(skb) = event; 113 114 skb_queue_tail(&req->cmd_q, skb); 115 } 116 117 static int hci_req_sync_run(struct hci_request *req) 118 { 119 struct hci_dev *hdev = req->hdev; 120 struct sk_buff *skb; 121 unsigned long flags; 122 123 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 124 125 /* If an error occurred during request building, remove all HCI 126 * commands queued on the HCI request queue. 127 */ 128 if (req->err) { 129 skb_queue_purge(&req->cmd_q); 130 return req->err; 131 } 132 133 /* Do not allow empty requests */ 134 if (skb_queue_empty(&req->cmd_q)) 135 return -ENODATA; 136 137 skb = skb_peek_tail(&req->cmd_q); 138 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 139 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 140 141 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 142 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 143 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 144 145 queue_work(hdev->workqueue, &hdev->cmd_work); 146 147 return 0; 148 } 149 150 /* This function requires the caller holds hdev->req_lock. */ 151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 152 const void *param, u8 event, u32 timeout, 153 struct sock *sk) 154 { 155 struct hci_request req; 156 struct sk_buff *skb; 157 int err = 0; 158 159 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 160 161 hci_req_init(&req, hdev); 162 163 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 164 165 hdev->req_status = HCI_REQ_PEND; 166 167 err = hci_req_sync_run(&req); 168 if (err < 0) 169 return ERR_PTR(err); 170 171 err = wait_event_interruptible_timeout(hdev->req_wait_q, 172 hdev->req_status != HCI_REQ_PEND, 173 timeout); 174 175 if (err == -ERESTARTSYS) 176 return ERR_PTR(-EINTR); 177 178 switch (hdev->req_status) { 179 case HCI_REQ_DONE: 180 err = -bt_to_errno(hdev->req_result); 181 break; 182 183 case HCI_REQ_CANCELED: 184 err = -hdev->req_result; 185 break; 186 187 default: 188 err = -ETIMEDOUT; 189 break; 190 } 191 192 hdev->req_status = 0; 193 hdev->req_result = 0; 194 skb = hdev->req_rsp; 195 hdev->req_rsp = NULL; 196 197 bt_dev_dbg(hdev, "end: err %d", err); 198 199 if (err < 0) { 200 kfree_skb(skb); 201 return ERR_PTR(err); 202 } 203 204 return skb; 205 } 206 EXPORT_SYMBOL(__hci_cmd_sync_sk); 207 208 /* This function requires the caller holds hdev->req_lock. */ 209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 210 const void *param, u32 timeout) 211 { 212 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 213 } 214 EXPORT_SYMBOL(__hci_cmd_sync); 215 216 /* Send HCI command and wait for command complete event */ 217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 218 const void *param, u32 timeout) 219 { 220 struct sk_buff *skb; 221 222 if (!test_bit(HCI_UP, &hdev->flags)) 223 return ERR_PTR(-ENETDOWN); 224 225 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 226 227 hci_req_sync_lock(hdev); 228 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 229 hci_req_sync_unlock(hdev); 230 231 return skb; 232 } 233 EXPORT_SYMBOL(hci_cmd_sync); 234 235 /* This function requires the caller holds hdev->req_lock. */ 236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 237 const void *param, u8 event, u32 timeout) 238 { 239 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 240 NULL); 241 } 242 EXPORT_SYMBOL(__hci_cmd_sync_ev); 243 244 /* This function requires the caller holds hdev->req_lock. */ 245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 246 const void *param, u8 event, u32 timeout, 247 struct sock *sk) 248 { 249 struct sk_buff *skb; 250 u8 status; 251 252 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 253 if (IS_ERR(skb)) { 254 if (!event) 255 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 256 PTR_ERR(skb)); 257 return PTR_ERR(skb); 258 } 259 260 /* If command return a status event skb will be set to NULL as there are 261 * no parameters, in case of failure IS_ERR(skb) would have be set to 262 * the actual error would be found with PTR_ERR(skb). 263 */ 264 if (!skb) 265 return 0; 266 267 status = skb->data[0]; 268 269 kfree_skb(skb); 270 271 return status; 272 } 273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 274 275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 276 const void *param, u32 timeout) 277 { 278 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 279 NULL); 280 } 281 EXPORT_SYMBOL(__hci_cmd_sync_status); 282 283 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 284 const void *param, u32 timeout) 285 { 286 int err; 287 288 hci_req_sync_lock(hdev); 289 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 290 hci_req_sync_unlock(hdev); 291 292 return err; 293 } 294 EXPORT_SYMBOL(hci_cmd_sync_status); 295 296 static void hci_cmd_sync_work(struct work_struct *work) 297 { 298 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 299 300 bt_dev_dbg(hdev, ""); 301 302 /* Dequeue all entries and run them */ 303 while (1) { 304 struct hci_cmd_sync_work_entry *entry; 305 306 mutex_lock(&hdev->cmd_sync_work_lock); 307 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 308 struct hci_cmd_sync_work_entry, 309 list); 310 if (entry) 311 list_del(&entry->list); 312 mutex_unlock(&hdev->cmd_sync_work_lock); 313 314 if (!entry) 315 break; 316 317 bt_dev_dbg(hdev, "entry %p", entry); 318 319 if (entry->func) { 320 int err; 321 322 hci_req_sync_lock(hdev); 323 err = entry->func(hdev, entry->data); 324 if (entry->destroy) 325 entry->destroy(hdev, entry->data, err); 326 hci_req_sync_unlock(hdev); 327 } 328 329 kfree(entry); 330 } 331 } 332 333 static void hci_cmd_sync_cancel_work(struct work_struct *work) 334 { 335 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 336 337 cancel_delayed_work_sync(&hdev->cmd_timer); 338 cancel_delayed_work_sync(&hdev->ncmd_timer); 339 atomic_set(&hdev->cmd_cnt, 1); 340 341 wake_up_interruptible(&hdev->req_wait_q); 342 } 343 344 static int hci_scan_disable_sync(struct hci_dev *hdev); 345 static int scan_disable_sync(struct hci_dev *hdev, void *data) 346 { 347 return hci_scan_disable_sync(hdev); 348 } 349 350 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 351 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 352 { 353 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 354 } 355 356 static void le_scan_disable(struct work_struct *work) 357 { 358 struct hci_dev *hdev = container_of(work, struct hci_dev, 359 le_scan_disable.work); 360 int status; 361 362 bt_dev_dbg(hdev, ""); 363 hci_dev_lock(hdev); 364 365 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 366 goto _return; 367 368 cancel_delayed_work(&hdev->le_scan_restart); 369 370 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 371 if (status) { 372 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 373 goto _return; 374 } 375 376 hdev->discovery.scan_start = 0; 377 378 /* If we were running LE only scan, change discovery state. If 379 * we were running both LE and BR/EDR inquiry simultaneously, 380 * and BR/EDR inquiry is already finished, stop discovery, 381 * otherwise BR/EDR inquiry will stop discovery when finished. 382 * If we will resolve remote device name, do not change 383 * discovery state. 384 */ 385 386 if (hdev->discovery.type == DISCOV_TYPE_LE) 387 goto discov_stopped; 388 389 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 390 goto _return; 391 392 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 393 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 394 hdev->discovery.state != DISCOVERY_RESOLVING) 395 goto discov_stopped; 396 397 goto _return; 398 } 399 400 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 401 if (status) { 402 bt_dev_err(hdev, "inquiry failed: status %d", status); 403 goto discov_stopped; 404 } 405 406 goto _return; 407 408 discov_stopped: 409 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 410 411 _return: 412 hci_dev_unlock(hdev); 413 } 414 415 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 416 u8 filter_dup); 417 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 418 { 419 /* If controller is not scanning we are done. */ 420 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 421 return 0; 422 423 if (hdev->scanning_paused) { 424 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 425 return 0; 426 } 427 428 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 429 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 430 LE_SCAN_FILTER_DUP_ENABLE); 431 } 432 433 static void le_scan_restart(struct work_struct *work) 434 { 435 struct hci_dev *hdev = container_of(work, struct hci_dev, 436 le_scan_restart.work); 437 unsigned long timeout, duration, scan_start, now; 438 int status; 439 440 bt_dev_dbg(hdev, ""); 441 442 status = hci_le_scan_restart_sync(hdev); 443 if (status) { 444 bt_dev_err(hdev, "failed to restart LE scan: status %d", 445 status); 446 return; 447 } 448 449 hci_dev_lock(hdev); 450 451 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 452 !hdev->discovery.scan_start) 453 goto unlock; 454 455 /* When the scan was started, hdev->le_scan_disable has been queued 456 * after duration from scan_start. During scan restart this job 457 * has been canceled, and we need to queue it again after proper 458 * timeout, to make sure that scan does not run indefinitely. 459 */ 460 duration = hdev->discovery.scan_duration; 461 scan_start = hdev->discovery.scan_start; 462 now = jiffies; 463 if (now - scan_start <= duration) { 464 int elapsed; 465 466 if (now >= scan_start) 467 elapsed = now - scan_start; 468 else 469 elapsed = ULONG_MAX - scan_start + now; 470 471 timeout = duration - elapsed; 472 } else { 473 timeout = 0; 474 } 475 476 queue_delayed_work(hdev->req_workqueue, 477 &hdev->le_scan_disable, timeout); 478 479 unlock: 480 hci_dev_unlock(hdev); 481 } 482 483 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 484 { 485 bt_dev_dbg(hdev, ""); 486 487 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 488 list_empty(&hdev->adv_instances)) 489 return 0; 490 491 if (hdev->cur_adv_instance) { 492 return hci_schedule_adv_instance_sync(hdev, 493 hdev->cur_adv_instance, 494 true); 495 } else { 496 if (ext_adv_capable(hdev)) { 497 hci_start_ext_adv_sync(hdev, 0x00); 498 } else { 499 hci_update_adv_data_sync(hdev, 0x00); 500 hci_update_scan_rsp_data_sync(hdev, 0x00); 501 hci_enable_advertising_sync(hdev); 502 } 503 } 504 505 return 0; 506 } 507 508 static void reenable_adv(struct work_struct *work) 509 { 510 struct hci_dev *hdev = container_of(work, struct hci_dev, 511 reenable_adv_work); 512 int status; 513 514 bt_dev_dbg(hdev, ""); 515 516 hci_dev_lock(hdev); 517 518 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 519 if (status) 520 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 521 522 hci_dev_unlock(hdev); 523 } 524 525 static void cancel_adv_timeout(struct hci_dev *hdev) 526 { 527 if (hdev->adv_instance_timeout) { 528 hdev->adv_instance_timeout = 0; 529 cancel_delayed_work(&hdev->adv_instance_expire); 530 } 531 } 532 533 /* For a single instance: 534 * - force == true: The instance will be removed even when its remaining 535 * lifetime is not zero. 536 * - force == false: the instance will be deactivated but kept stored unless 537 * the remaining lifetime is zero. 538 * 539 * For instance == 0x00: 540 * - force == true: All instances will be removed regardless of their timeout 541 * setting. 542 * - force == false: Only instances that have a timeout will be removed. 543 */ 544 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 545 u8 instance, bool force) 546 { 547 struct adv_info *adv_instance, *n, *next_instance = NULL; 548 int err; 549 u8 rem_inst; 550 551 /* Cancel any timeout concerning the removed instance(s). */ 552 if (!instance || hdev->cur_adv_instance == instance) 553 cancel_adv_timeout(hdev); 554 555 /* Get the next instance to advertise BEFORE we remove 556 * the current one. This can be the same instance again 557 * if there is only one instance. 558 */ 559 if (instance && hdev->cur_adv_instance == instance) 560 next_instance = hci_get_next_instance(hdev, instance); 561 562 if (instance == 0x00) { 563 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 564 list) { 565 if (!(force || adv_instance->timeout)) 566 continue; 567 568 rem_inst = adv_instance->instance; 569 err = hci_remove_adv_instance(hdev, rem_inst); 570 if (!err) 571 mgmt_advertising_removed(sk, hdev, rem_inst); 572 } 573 } else { 574 adv_instance = hci_find_adv_instance(hdev, instance); 575 576 if (force || (adv_instance && adv_instance->timeout && 577 !adv_instance->remaining_time)) { 578 /* Don't advertise a removed instance. */ 579 if (next_instance && 580 next_instance->instance == instance) 581 next_instance = NULL; 582 583 err = hci_remove_adv_instance(hdev, instance); 584 if (!err) 585 mgmt_advertising_removed(sk, hdev, instance); 586 } 587 } 588 589 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 590 return 0; 591 592 if (next_instance && !ext_adv_capable(hdev)) 593 return hci_schedule_adv_instance_sync(hdev, 594 next_instance->instance, 595 false); 596 597 return 0; 598 } 599 600 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 601 { 602 u8 instance = *(u8 *)data; 603 604 kfree(data); 605 606 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 607 608 if (list_empty(&hdev->adv_instances)) 609 return hci_disable_advertising_sync(hdev); 610 611 return 0; 612 } 613 614 static void adv_timeout_expire(struct work_struct *work) 615 { 616 u8 *inst_ptr; 617 struct hci_dev *hdev = container_of(work, struct hci_dev, 618 adv_instance_expire.work); 619 620 bt_dev_dbg(hdev, ""); 621 622 hci_dev_lock(hdev); 623 624 hdev->adv_instance_timeout = 0; 625 626 if (hdev->cur_adv_instance == 0x00) 627 goto unlock; 628 629 inst_ptr = kmalloc(1, GFP_KERNEL); 630 if (!inst_ptr) 631 goto unlock; 632 633 *inst_ptr = hdev->cur_adv_instance; 634 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 635 636 unlock: 637 hci_dev_unlock(hdev); 638 } 639 640 void hci_cmd_sync_init(struct hci_dev *hdev) 641 { 642 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 643 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 644 mutex_init(&hdev->cmd_sync_work_lock); 645 mutex_init(&hdev->unregister_lock); 646 647 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 648 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 649 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 650 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 651 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 652 } 653 654 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 655 struct hci_cmd_sync_work_entry *entry, 656 int err) 657 { 658 if (entry->destroy) 659 entry->destroy(hdev, entry->data, err); 660 661 list_del(&entry->list); 662 kfree(entry); 663 } 664 665 void hci_cmd_sync_clear(struct hci_dev *hdev) 666 { 667 struct hci_cmd_sync_work_entry *entry, *tmp; 668 669 cancel_work_sync(&hdev->cmd_sync_work); 670 cancel_work_sync(&hdev->reenable_adv_work); 671 672 mutex_lock(&hdev->cmd_sync_work_lock); 673 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 674 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 675 mutex_unlock(&hdev->cmd_sync_work_lock); 676 } 677 678 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 679 { 680 bt_dev_dbg(hdev, "err 0x%2.2x", err); 681 682 if (hdev->req_status == HCI_REQ_PEND) { 683 hdev->req_result = err; 684 hdev->req_status = HCI_REQ_CANCELED; 685 686 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 687 } 688 } 689 EXPORT_SYMBOL(hci_cmd_sync_cancel); 690 691 /* Cancel ongoing command request synchronously: 692 * 693 * - Set result and mark status to HCI_REQ_CANCELED 694 * - Wakeup command sync thread 695 */ 696 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 697 { 698 bt_dev_dbg(hdev, "err 0x%2.2x", err); 699 700 if (hdev->req_status == HCI_REQ_PEND) { 701 /* req_result is __u32 so error must be positive to be properly 702 * propagated. 703 */ 704 hdev->req_result = err < 0 ? -err : err; 705 hdev->req_status = HCI_REQ_CANCELED; 706 707 wake_up_interruptible(&hdev->req_wait_q); 708 } 709 } 710 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 711 712 /* Submit HCI command to be run in as cmd_sync_work: 713 * 714 * - hdev must _not_ be unregistered 715 */ 716 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 717 void *data, hci_cmd_sync_work_destroy_t destroy) 718 { 719 struct hci_cmd_sync_work_entry *entry; 720 int err = 0; 721 722 mutex_lock(&hdev->unregister_lock); 723 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 724 err = -ENODEV; 725 goto unlock; 726 } 727 728 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 729 if (!entry) { 730 err = -ENOMEM; 731 goto unlock; 732 } 733 entry->func = func; 734 entry->data = data; 735 entry->destroy = destroy; 736 737 mutex_lock(&hdev->cmd_sync_work_lock); 738 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 739 mutex_unlock(&hdev->cmd_sync_work_lock); 740 741 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 742 743 unlock: 744 mutex_unlock(&hdev->unregister_lock); 745 return err; 746 } 747 EXPORT_SYMBOL(hci_cmd_sync_submit); 748 749 /* Queue HCI command: 750 * 751 * - hdev must be running 752 */ 753 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 754 void *data, hci_cmd_sync_work_destroy_t destroy) 755 { 756 /* Only queue command if hdev is running which means it had been opened 757 * and is either on init phase or is already up. 758 */ 759 if (!test_bit(HCI_RUNNING, &hdev->flags)) 760 return -ENETDOWN; 761 762 return hci_cmd_sync_submit(hdev, func, data, destroy); 763 } 764 EXPORT_SYMBOL(hci_cmd_sync_queue); 765 766 static struct hci_cmd_sync_work_entry * 767 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 768 void *data, hci_cmd_sync_work_destroy_t destroy) 769 { 770 struct hci_cmd_sync_work_entry *entry, *tmp; 771 772 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 773 if (func && entry->func != func) 774 continue; 775 776 if (data && entry->data != data) 777 continue; 778 779 if (destroy && entry->destroy != destroy) 780 continue; 781 782 return entry; 783 } 784 785 return NULL; 786 } 787 788 /* Queue HCI command entry once: 789 * 790 * - Lookup if an entry already exist and only if it doesn't creates a new entry 791 * and queue it. 792 */ 793 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 794 void *data, hci_cmd_sync_work_destroy_t destroy) 795 { 796 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 797 return 0; 798 799 return hci_cmd_sync_queue(hdev, func, data, destroy); 800 } 801 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 802 803 /* Run HCI command: 804 * 805 * - hdev must be running 806 * - if on cmd_sync_work then run immediately otherwise queue 807 */ 808 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 809 void *data, hci_cmd_sync_work_destroy_t destroy) 810 { 811 /* Only queue command if hdev is running which means it had been opened 812 * and is either on init phase or is already up. 813 */ 814 if (!test_bit(HCI_RUNNING, &hdev->flags)) 815 return -ENETDOWN; 816 817 /* If on cmd_sync_work then run immediately otherwise queue */ 818 if (current_work() == &hdev->cmd_sync_work) 819 return func(hdev, data); 820 821 return hci_cmd_sync_submit(hdev, func, data, destroy); 822 } 823 EXPORT_SYMBOL(hci_cmd_sync_run); 824 825 /* Run HCI command entry once: 826 * 827 * - Lookup if an entry already exist and only if it doesn't creates a new entry 828 * and run it. 829 * - if on cmd_sync_work then run immediately otherwise queue 830 */ 831 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 832 void *data, hci_cmd_sync_work_destroy_t destroy) 833 { 834 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 835 return 0; 836 837 return hci_cmd_sync_run(hdev, func, data, destroy); 838 } 839 EXPORT_SYMBOL(hci_cmd_sync_run_once); 840 841 /* Lookup HCI command entry: 842 * 843 * - Return first entry that matches by function callback or data or 844 * destroy callback. 845 */ 846 struct hci_cmd_sync_work_entry * 847 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 848 void *data, hci_cmd_sync_work_destroy_t destroy) 849 { 850 struct hci_cmd_sync_work_entry *entry; 851 852 mutex_lock(&hdev->cmd_sync_work_lock); 853 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 854 mutex_unlock(&hdev->cmd_sync_work_lock); 855 856 return entry; 857 } 858 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 859 860 /* Cancel HCI command entry */ 861 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 862 struct hci_cmd_sync_work_entry *entry) 863 { 864 mutex_lock(&hdev->cmd_sync_work_lock); 865 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 866 mutex_unlock(&hdev->cmd_sync_work_lock); 867 } 868 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 869 870 /* Dequeue one HCI command entry: 871 * 872 * - Lookup and cancel first entry that matches. 873 */ 874 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 875 hci_cmd_sync_work_func_t func, 876 void *data, hci_cmd_sync_work_destroy_t destroy) 877 { 878 struct hci_cmd_sync_work_entry *entry; 879 880 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 881 if (!entry) 882 return false; 883 884 hci_cmd_sync_cancel_entry(hdev, entry); 885 886 return true; 887 } 888 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 889 890 /* Dequeue HCI command entry: 891 * 892 * - Lookup and cancel any entry that matches by function callback or data or 893 * destroy callback. 894 */ 895 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 896 void *data, hci_cmd_sync_work_destroy_t destroy) 897 { 898 struct hci_cmd_sync_work_entry *entry; 899 bool ret = false; 900 901 mutex_lock(&hdev->cmd_sync_work_lock); 902 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 903 destroy))) { 904 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 905 ret = true; 906 } 907 mutex_unlock(&hdev->cmd_sync_work_lock); 908 909 return ret; 910 } 911 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 912 913 int hci_update_eir_sync(struct hci_dev *hdev) 914 { 915 struct hci_cp_write_eir cp; 916 917 bt_dev_dbg(hdev, ""); 918 919 if (!hdev_is_powered(hdev)) 920 return 0; 921 922 if (!lmp_ext_inq_capable(hdev)) 923 return 0; 924 925 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 926 return 0; 927 928 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 929 return 0; 930 931 memset(&cp, 0, sizeof(cp)); 932 933 eir_create(hdev, cp.data); 934 935 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 936 return 0; 937 938 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 939 940 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 941 HCI_CMD_TIMEOUT); 942 } 943 944 static u8 get_service_classes(struct hci_dev *hdev) 945 { 946 struct bt_uuid *uuid; 947 u8 val = 0; 948 949 list_for_each_entry(uuid, &hdev->uuids, list) 950 val |= uuid->svc_hint; 951 952 return val; 953 } 954 955 int hci_update_class_sync(struct hci_dev *hdev) 956 { 957 u8 cod[3]; 958 959 bt_dev_dbg(hdev, ""); 960 961 if (!hdev_is_powered(hdev)) 962 return 0; 963 964 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 965 return 0; 966 967 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 968 return 0; 969 970 cod[0] = hdev->minor_class; 971 cod[1] = hdev->major_class; 972 cod[2] = get_service_classes(hdev); 973 974 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 975 cod[1] |= 0x20; 976 977 if (memcmp(cod, hdev->dev_class, 3) == 0) 978 return 0; 979 980 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 981 sizeof(cod), cod, HCI_CMD_TIMEOUT); 982 } 983 984 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 985 { 986 /* If there is no connection we are OK to advertise. */ 987 if (hci_conn_num(hdev, LE_LINK) == 0) 988 return true; 989 990 /* Check le_states if there is any connection in peripheral role. */ 991 if (hdev->conn_hash.le_num_peripheral > 0) { 992 /* Peripheral connection state and non connectable mode 993 * bit 20. 994 */ 995 if (!connectable && !(hdev->le_states[2] & 0x10)) 996 return false; 997 998 /* Peripheral connection state and connectable mode bit 38 999 * and scannable bit 21. 1000 */ 1001 if (connectable && (!(hdev->le_states[4] & 0x40) || 1002 !(hdev->le_states[2] & 0x20))) 1003 return false; 1004 } 1005 1006 /* Check le_states if there is any connection in central role. */ 1007 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 1008 /* Central connection state and non connectable mode bit 18. */ 1009 if (!connectable && !(hdev->le_states[2] & 0x02)) 1010 return false; 1011 1012 /* Central connection state and connectable mode bit 35 and 1013 * scannable 19. 1014 */ 1015 if (connectable && (!(hdev->le_states[4] & 0x08) || 1016 !(hdev->le_states[2] & 0x08))) 1017 return false; 1018 } 1019 1020 return true; 1021 } 1022 1023 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1024 { 1025 /* If privacy is not enabled don't use RPA */ 1026 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1027 return false; 1028 1029 /* If basic privacy mode is enabled use RPA */ 1030 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1031 return true; 1032 1033 /* If limited privacy mode is enabled don't use RPA if we're 1034 * both discoverable and bondable. 1035 */ 1036 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1037 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1038 return false; 1039 1040 /* We're neither bondable nor discoverable in the limited 1041 * privacy mode, therefore use RPA. 1042 */ 1043 return true; 1044 } 1045 1046 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1047 { 1048 /* If we're advertising or initiating an LE connection we can't 1049 * go ahead and change the random address at this time. This is 1050 * because the eventual initiator address used for the 1051 * subsequently created connection will be undefined (some 1052 * controllers use the new address and others the one we had 1053 * when the operation started). 1054 * 1055 * In this kind of scenario skip the update and let the random 1056 * address be updated at the next cycle. 1057 */ 1058 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1059 hci_lookup_le_connect(hdev)) { 1060 bt_dev_dbg(hdev, "Deferring random address update"); 1061 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1062 return 0; 1063 } 1064 1065 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1066 6, rpa, HCI_CMD_TIMEOUT); 1067 } 1068 1069 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1070 bool rpa, u8 *own_addr_type) 1071 { 1072 int err; 1073 1074 /* If privacy is enabled use a resolvable private address. If 1075 * current RPA has expired or there is something else than 1076 * the current RPA in use, then generate a new one. 1077 */ 1078 if (rpa) { 1079 /* If Controller supports LL Privacy use own address type is 1080 * 0x03 1081 */ 1082 if (use_ll_privacy(hdev)) 1083 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1084 else 1085 *own_addr_type = ADDR_LE_DEV_RANDOM; 1086 1087 /* Check if RPA is valid */ 1088 if (rpa_valid(hdev)) 1089 return 0; 1090 1091 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1092 if (err < 0) { 1093 bt_dev_err(hdev, "failed to generate new RPA"); 1094 return err; 1095 } 1096 1097 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1098 if (err) 1099 return err; 1100 1101 return 0; 1102 } 1103 1104 /* In case of required privacy without resolvable private address, 1105 * use an non-resolvable private address. This is useful for active 1106 * scanning and non-connectable advertising. 1107 */ 1108 if (require_privacy) { 1109 bdaddr_t nrpa; 1110 1111 while (true) { 1112 /* The non-resolvable private address is generated 1113 * from random six bytes with the two most significant 1114 * bits cleared. 1115 */ 1116 get_random_bytes(&nrpa, 6); 1117 nrpa.b[5] &= 0x3f; 1118 1119 /* The non-resolvable private address shall not be 1120 * equal to the public address. 1121 */ 1122 if (bacmp(&hdev->bdaddr, &nrpa)) 1123 break; 1124 } 1125 1126 *own_addr_type = ADDR_LE_DEV_RANDOM; 1127 1128 return hci_set_random_addr_sync(hdev, &nrpa); 1129 } 1130 1131 /* If forcing static address is in use or there is no public 1132 * address use the static address as random address (but skip 1133 * the HCI command if the current random address is already the 1134 * static one. 1135 * 1136 * In case BR/EDR has been disabled on a dual-mode controller 1137 * and a static address has been configured, then use that 1138 * address instead of the public BR/EDR address. 1139 */ 1140 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1141 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1142 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1143 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1144 *own_addr_type = ADDR_LE_DEV_RANDOM; 1145 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1146 return hci_set_random_addr_sync(hdev, 1147 &hdev->static_addr); 1148 return 0; 1149 } 1150 1151 /* Neither privacy nor static address is being used so use a 1152 * public address. 1153 */ 1154 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1155 1156 return 0; 1157 } 1158 1159 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1160 { 1161 struct hci_cp_le_set_ext_adv_enable *cp; 1162 struct hci_cp_ext_adv_set *set; 1163 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1164 u8 size; 1165 1166 /* If request specifies an instance that doesn't exist, fail */ 1167 if (instance > 0) { 1168 struct adv_info *adv; 1169 1170 adv = hci_find_adv_instance(hdev, instance); 1171 if (!adv) 1172 return -EINVAL; 1173 1174 /* If not enabled there is nothing to do */ 1175 if (!adv->enabled) 1176 return 0; 1177 } 1178 1179 memset(data, 0, sizeof(data)); 1180 1181 cp = (void *)data; 1182 set = (void *)cp->data; 1183 1184 /* Instance 0x00 indicates all advertising instances will be disabled */ 1185 cp->num_of_sets = !!instance; 1186 cp->enable = 0x00; 1187 1188 set->handle = instance; 1189 1190 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1191 1192 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1193 size, data, HCI_CMD_TIMEOUT); 1194 } 1195 1196 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1197 bdaddr_t *random_addr) 1198 { 1199 struct hci_cp_le_set_adv_set_rand_addr cp; 1200 int err; 1201 1202 if (!instance) { 1203 /* Instance 0x00 doesn't have an adv_info, instead it uses 1204 * hdev->random_addr to track its address so whenever it needs 1205 * to be updated this also set the random address since 1206 * hdev->random_addr is shared with scan state machine. 1207 */ 1208 err = hci_set_random_addr_sync(hdev, random_addr); 1209 if (err) 1210 return err; 1211 } 1212 1213 memset(&cp, 0, sizeof(cp)); 1214 1215 cp.handle = instance; 1216 bacpy(&cp.bdaddr, random_addr); 1217 1218 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1219 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1220 } 1221 1222 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1223 { 1224 struct hci_cp_le_set_ext_adv_params cp; 1225 bool connectable; 1226 u32 flags; 1227 bdaddr_t random_addr; 1228 u8 own_addr_type; 1229 int err; 1230 struct adv_info *adv; 1231 bool secondary_adv; 1232 1233 if (instance > 0) { 1234 adv = hci_find_adv_instance(hdev, instance); 1235 if (!adv) 1236 return -EINVAL; 1237 } else { 1238 adv = NULL; 1239 } 1240 1241 /* Updating parameters of an active instance will return a 1242 * Command Disallowed error, so we must first disable the 1243 * instance if it is active. 1244 */ 1245 if (adv && !adv->pending) { 1246 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1247 if (err) 1248 return err; 1249 } 1250 1251 flags = hci_adv_instance_flags(hdev, instance); 1252 1253 /* If the "connectable" instance flag was not set, then choose between 1254 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1255 */ 1256 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1257 mgmt_get_connectable(hdev); 1258 1259 if (!is_advertising_allowed(hdev, connectable)) 1260 return -EPERM; 1261 1262 /* Set require_privacy to true only when non-connectable 1263 * advertising is used. In that case it is fine to use a 1264 * non-resolvable private address. 1265 */ 1266 err = hci_get_random_address(hdev, !connectable, 1267 adv_use_rpa(hdev, flags), adv, 1268 &own_addr_type, &random_addr); 1269 if (err < 0) 1270 return err; 1271 1272 memset(&cp, 0, sizeof(cp)); 1273 1274 if (adv) { 1275 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1276 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1277 cp.tx_power = adv->tx_power; 1278 } else { 1279 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1280 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1281 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1282 } 1283 1284 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1285 1286 if (connectable) { 1287 if (secondary_adv) 1288 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1289 else 1290 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1291 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1292 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1293 if (secondary_adv) 1294 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1295 else 1296 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1297 } else { 1298 if (secondary_adv) 1299 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1300 else 1301 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1302 } 1303 1304 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1305 * contains the peer’s Identity Address and the Peer_Address_Type 1306 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1307 * These parameters are used to locate the corresponding local IRK in 1308 * the resolving list; this IRK is used to generate their own address 1309 * used in the advertisement. 1310 */ 1311 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1312 hci_copy_identity_address(hdev, &cp.peer_addr, 1313 &cp.peer_addr_type); 1314 1315 cp.own_addr_type = own_addr_type; 1316 cp.channel_map = hdev->le_adv_channel_map; 1317 cp.handle = instance; 1318 1319 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1320 cp.primary_phy = HCI_ADV_PHY_1M; 1321 cp.secondary_phy = HCI_ADV_PHY_2M; 1322 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1323 cp.primary_phy = HCI_ADV_PHY_CODED; 1324 cp.secondary_phy = HCI_ADV_PHY_CODED; 1325 } else { 1326 /* In all other cases use 1M */ 1327 cp.primary_phy = HCI_ADV_PHY_1M; 1328 cp.secondary_phy = HCI_ADV_PHY_1M; 1329 } 1330 1331 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1332 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1333 if (err) 1334 return err; 1335 1336 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1337 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1338 bacmp(&random_addr, BDADDR_ANY)) { 1339 /* Check if random address need to be updated */ 1340 if (adv) { 1341 if (!bacmp(&random_addr, &adv->random_addr)) 1342 return 0; 1343 } else { 1344 if (!bacmp(&random_addr, &hdev->random_addr)) 1345 return 0; 1346 } 1347 1348 return hci_set_adv_set_random_addr_sync(hdev, instance, 1349 &random_addr); 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1356 { 1357 struct { 1358 struct hci_cp_le_set_ext_scan_rsp_data cp; 1359 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1360 } pdu; 1361 u8 len; 1362 struct adv_info *adv = NULL; 1363 int err; 1364 1365 memset(&pdu, 0, sizeof(pdu)); 1366 1367 if (instance) { 1368 adv = hci_find_adv_instance(hdev, instance); 1369 if (!adv || !adv->scan_rsp_changed) 1370 return 0; 1371 } 1372 1373 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1374 1375 pdu.cp.handle = instance; 1376 pdu.cp.length = len; 1377 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1378 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1379 1380 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1381 sizeof(pdu.cp) + len, &pdu.cp, 1382 HCI_CMD_TIMEOUT); 1383 if (err) 1384 return err; 1385 1386 if (adv) { 1387 adv->scan_rsp_changed = false; 1388 } else { 1389 memcpy(hdev->scan_rsp_data, pdu.data, len); 1390 hdev->scan_rsp_data_len = len; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1397 { 1398 struct hci_cp_le_set_scan_rsp_data cp; 1399 u8 len; 1400 1401 memset(&cp, 0, sizeof(cp)); 1402 1403 len = eir_create_scan_rsp(hdev, instance, cp.data); 1404 1405 if (hdev->scan_rsp_data_len == len && 1406 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1407 return 0; 1408 1409 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1410 hdev->scan_rsp_data_len = len; 1411 1412 cp.length = len; 1413 1414 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1415 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1416 } 1417 1418 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1419 { 1420 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1421 return 0; 1422 1423 if (ext_adv_capable(hdev)) 1424 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1425 1426 return __hci_set_scan_rsp_data_sync(hdev, instance); 1427 } 1428 1429 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1430 { 1431 struct hci_cp_le_set_ext_adv_enable *cp; 1432 struct hci_cp_ext_adv_set *set; 1433 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1434 struct adv_info *adv; 1435 1436 if (instance > 0) { 1437 adv = hci_find_adv_instance(hdev, instance); 1438 if (!adv) 1439 return -EINVAL; 1440 /* If already enabled there is nothing to do */ 1441 if (adv->enabled) 1442 return 0; 1443 } else { 1444 adv = NULL; 1445 } 1446 1447 cp = (void *)data; 1448 set = (void *)cp->data; 1449 1450 memset(cp, 0, sizeof(*cp)); 1451 1452 cp->enable = 0x01; 1453 cp->num_of_sets = 0x01; 1454 1455 memset(set, 0, sizeof(*set)); 1456 1457 set->handle = instance; 1458 1459 /* Set duration per instance since controller is responsible for 1460 * scheduling it. 1461 */ 1462 if (adv && adv->timeout) { 1463 u16 duration = adv->timeout * MSEC_PER_SEC; 1464 1465 /* Time = N * 10 ms */ 1466 set->duration = cpu_to_le16(duration / 10); 1467 } 1468 1469 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1470 sizeof(*cp) + 1471 sizeof(*set) * cp->num_of_sets, 1472 data, HCI_CMD_TIMEOUT); 1473 } 1474 1475 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1476 { 1477 int err; 1478 1479 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1480 if (err) 1481 return err; 1482 1483 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1484 if (err) 1485 return err; 1486 1487 return hci_enable_ext_advertising_sync(hdev, instance); 1488 } 1489 1490 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1491 { 1492 struct hci_cp_le_set_per_adv_enable cp; 1493 struct adv_info *adv = NULL; 1494 1495 /* If periodic advertising already disabled there is nothing to do. */ 1496 adv = hci_find_adv_instance(hdev, instance); 1497 if (!adv || !adv->periodic || !adv->enabled) 1498 return 0; 1499 1500 memset(&cp, 0, sizeof(cp)); 1501 1502 cp.enable = 0x00; 1503 cp.handle = instance; 1504 1505 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1506 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1507 } 1508 1509 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1510 u16 min_interval, u16 max_interval) 1511 { 1512 struct hci_cp_le_set_per_adv_params cp; 1513 1514 memset(&cp, 0, sizeof(cp)); 1515 1516 if (!min_interval) 1517 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1518 1519 if (!max_interval) 1520 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1521 1522 cp.handle = instance; 1523 cp.min_interval = cpu_to_le16(min_interval); 1524 cp.max_interval = cpu_to_le16(max_interval); 1525 cp.periodic_properties = 0x0000; 1526 1527 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1528 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1529 } 1530 1531 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1532 { 1533 struct { 1534 struct hci_cp_le_set_per_adv_data cp; 1535 u8 data[HCI_MAX_PER_AD_LENGTH]; 1536 } pdu; 1537 u8 len; 1538 1539 memset(&pdu, 0, sizeof(pdu)); 1540 1541 if (instance) { 1542 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1543 1544 if (!adv || !adv->periodic) 1545 return 0; 1546 } 1547 1548 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1549 1550 pdu.cp.length = len; 1551 pdu.cp.handle = instance; 1552 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1553 1554 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1555 sizeof(pdu.cp) + len, &pdu, 1556 HCI_CMD_TIMEOUT); 1557 } 1558 1559 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1560 { 1561 struct hci_cp_le_set_per_adv_enable cp; 1562 struct adv_info *adv = NULL; 1563 1564 /* If periodic advertising already enabled there is nothing to do. */ 1565 adv = hci_find_adv_instance(hdev, instance); 1566 if (adv && adv->periodic && adv->enabled) 1567 return 0; 1568 1569 memset(&cp, 0, sizeof(cp)); 1570 1571 cp.enable = 0x01; 1572 cp.handle = instance; 1573 1574 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1575 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1576 } 1577 1578 /* Checks if periodic advertising data contains a Basic Announcement and if it 1579 * does generates a Broadcast ID and add Broadcast Announcement. 1580 */ 1581 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1582 { 1583 u8 bid[3]; 1584 u8 ad[4 + 3]; 1585 1586 /* Skip if NULL adv as instance 0x00 is used for general purpose 1587 * advertising so it cannot used for the likes of Broadcast Announcement 1588 * as it can be overwritten at any point. 1589 */ 1590 if (!adv) 1591 return 0; 1592 1593 /* Check if PA data doesn't contains a Basic Audio Announcement then 1594 * there is nothing to do. 1595 */ 1596 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1597 0x1851, NULL)) 1598 return 0; 1599 1600 /* Check if advertising data already has a Broadcast Announcement since 1601 * the process may want to control the Broadcast ID directly and in that 1602 * case the kernel shall no interfere. 1603 */ 1604 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1605 NULL)) 1606 return 0; 1607 1608 /* Generate Broadcast ID */ 1609 get_random_bytes(bid, sizeof(bid)); 1610 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1611 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1612 1613 return hci_update_adv_data_sync(hdev, adv->instance); 1614 } 1615 1616 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1617 u8 *data, u32 flags, u16 min_interval, 1618 u16 max_interval, u16 sync_interval) 1619 { 1620 struct adv_info *adv = NULL; 1621 int err; 1622 bool added = false; 1623 1624 hci_disable_per_advertising_sync(hdev, instance); 1625 1626 if (instance) { 1627 adv = hci_find_adv_instance(hdev, instance); 1628 /* Create an instance if that could not be found */ 1629 if (!adv) { 1630 adv = hci_add_per_instance(hdev, instance, flags, 1631 data_len, data, 1632 sync_interval, 1633 sync_interval); 1634 if (IS_ERR(adv)) 1635 return PTR_ERR(adv); 1636 adv->pending = false; 1637 added = true; 1638 } 1639 } 1640 1641 /* Start advertising */ 1642 err = hci_start_ext_adv_sync(hdev, instance); 1643 if (err < 0) 1644 goto fail; 1645 1646 err = hci_adv_bcast_annoucement(hdev, adv); 1647 if (err < 0) 1648 goto fail; 1649 1650 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1651 max_interval); 1652 if (err < 0) 1653 goto fail; 1654 1655 err = hci_set_per_adv_data_sync(hdev, instance); 1656 if (err < 0) 1657 goto fail; 1658 1659 err = hci_enable_per_advertising_sync(hdev, instance); 1660 if (err < 0) 1661 goto fail; 1662 1663 return 0; 1664 1665 fail: 1666 if (added) 1667 hci_remove_adv_instance(hdev, instance); 1668 1669 return err; 1670 } 1671 1672 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1673 { 1674 int err; 1675 1676 if (ext_adv_capable(hdev)) 1677 return hci_start_ext_adv_sync(hdev, instance); 1678 1679 err = hci_update_adv_data_sync(hdev, instance); 1680 if (err) 1681 return err; 1682 1683 err = hci_update_scan_rsp_data_sync(hdev, instance); 1684 if (err) 1685 return err; 1686 1687 return hci_enable_advertising_sync(hdev); 1688 } 1689 1690 int hci_enable_advertising_sync(struct hci_dev *hdev) 1691 { 1692 struct adv_info *adv_instance; 1693 struct hci_cp_le_set_adv_param cp; 1694 u8 own_addr_type, enable = 0x01; 1695 bool connectable; 1696 u16 adv_min_interval, adv_max_interval; 1697 u32 flags; 1698 u8 status; 1699 1700 if (ext_adv_capable(hdev)) 1701 return hci_enable_ext_advertising_sync(hdev, 1702 hdev->cur_adv_instance); 1703 1704 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1705 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1706 1707 /* If the "connectable" instance flag was not set, then choose between 1708 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1709 */ 1710 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1711 mgmt_get_connectable(hdev); 1712 1713 if (!is_advertising_allowed(hdev, connectable)) 1714 return -EINVAL; 1715 1716 status = hci_disable_advertising_sync(hdev); 1717 if (status) 1718 return status; 1719 1720 /* Clear the HCI_LE_ADV bit temporarily so that the 1721 * hci_update_random_address knows that it's safe to go ahead 1722 * and write a new random address. The flag will be set back on 1723 * as soon as the SET_ADV_ENABLE HCI command completes. 1724 */ 1725 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1726 1727 /* Set require_privacy to true only when non-connectable 1728 * advertising is used. In that case it is fine to use a 1729 * non-resolvable private address. 1730 */ 1731 status = hci_update_random_address_sync(hdev, !connectable, 1732 adv_use_rpa(hdev, flags), 1733 &own_addr_type); 1734 if (status) 1735 return status; 1736 1737 memset(&cp, 0, sizeof(cp)); 1738 1739 if (adv_instance) { 1740 adv_min_interval = adv_instance->min_interval; 1741 adv_max_interval = adv_instance->max_interval; 1742 } else { 1743 adv_min_interval = hdev->le_adv_min_interval; 1744 adv_max_interval = hdev->le_adv_max_interval; 1745 } 1746 1747 if (connectable) { 1748 cp.type = LE_ADV_IND; 1749 } else { 1750 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1751 cp.type = LE_ADV_SCAN_IND; 1752 else 1753 cp.type = LE_ADV_NONCONN_IND; 1754 1755 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1756 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1757 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1758 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1759 } 1760 } 1761 1762 cp.min_interval = cpu_to_le16(adv_min_interval); 1763 cp.max_interval = cpu_to_le16(adv_max_interval); 1764 cp.own_address_type = own_addr_type; 1765 cp.channel_map = hdev->le_adv_channel_map; 1766 1767 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1768 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1769 if (status) 1770 return status; 1771 1772 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1773 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1774 } 1775 1776 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1777 { 1778 return hci_enable_advertising_sync(hdev); 1779 } 1780 1781 int hci_enable_advertising(struct hci_dev *hdev) 1782 { 1783 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1784 list_empty(&hdev->adv_instances)) 1785 return 0; 1786 1787 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1788 } 1789 1790 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1791 struct sock *sk) 1792 { 1793 int err; 1794 1795 if (!ext_adv_capable(hdev)) 1796 return 0; 1797 1798 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1799 if (err) 1800 return err; 1801 1802 /* If request specifies an instance that doesn't exist, fail */ 1803 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1804 return -EINVAL; 1805 1806 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1807 sizeof(instance), &instance, 0, 1808 HCI_CMD_TIMEOUT, sk); 1809 } 1810 1811 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1812 { 1813 struct adv_info *adv = data; 1814 u8 instance = 0; 1815 1816 if (adv) 1817 instance = adv->instance; 1818 1819 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1820 } 1821 1822 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1823 { 1824 struct adv_info *adv = NULL; 1825 1826 if (instance) { 1827 adv = hci_find_adv_instance(hdev, instance); 1828 if (!adv) 1829 return -EINVAL; 1830 } 1831 1832 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1833 } 1834 1835 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1836 { 1837 struct hci_cp_le_term_big cp; 1838 1839 memset(&cp, 0, sizeof(cp)); 1840 cp.handle = handle; 1841 cp.reason = reason; 1842 1843 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1844 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1845 } 1846 1847 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1848 { 1849 struct { 1850 struct hci_cp_le_set_ext_adv_data cp; 1851 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1852 } pdu; 1853 u8 len; 1854 struct adv_info *adv = NULL; 1855 int err; 1856 1857 memset(&pdu, 0, sizeof(pdu)); 1858 1859 if (instance) { 1860 adv = hci_find_adv_instance(hdev, instance); 1861 if (!adv || !adv->adv_data_changed) 1862 return 0; 1863 } 1864 1865 len = eir_create_adv_data(hdev, instance, pdu.data); 1866 1867 pdu.cp.length = len; 1868 pdu.cp.handle = instance; 1869 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1870 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1871 1872 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1873 sizeof(pdu.cp) + len, &pdu.cp, 1874 HCI_CMD_TIMEOUT); 1875 if (err) 1876 return err; 1877 1878 /* Update data if the command succeed */ 1879 if (adv) { 1880 adv->adv_data_changed = false; 1881 } else { 1882 memcpy(hdev->adv_data, pdu.data, len); 1883 hdev->adv_data_len = len; 1884 } 1885 1886 return 0; 1887 } 1888 1889 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1890 { 1891 struct hci_cp_le_set_adv_data cp; 1892 u8 len; 1893 1894 memset(&cp, 0, sizeof(cp)); 1895 1896 len = eir_create_adv_data(hdev, instance, cp.data); 1897 1898 /* There's nothing to do if the data hasn't changed */ 1899 if (hdev->adv_data_len == len && 1900 memcmp(cp.data, hdev->adv_data, len) == 0) 1901 return 0; 1902 1903 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1904 hdev->adv_data_len = len; 1905 1906 cp.length = len; 1907 1908 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1909 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1910 } 1911 1912 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1913 { 1914 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1915 return 0; 1916 1917 if (ext_adv_capable(hdev)) 1918 return hci_set_ext_adv_data_sync(hdev, instance); 1919 1920 return hci_set_adv_data_sync(hdev, instance); 1921 } 1922 1923 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1924 bool force) 1925 { 1926 struct adv_info *adv = NULL; 1927 u16 timeout; 1928 1929 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1930 return -EPERM; 1931 1932 if (hdev->adv_instance_timeout) 1933 return -EBUSY; 1934 1935 adv = hci_find_adv_instance(hdev, instance); 1936 if (!adv) 1937 return -ENOENT; 1938 1939 /* A zero timeout means unlimited advertising. As long as there is 1940 * only one instance, duration should be ignored. We still set a timeout 1941 * in case further instances are being added later on. 1942 * 1943 * If the remaining lifetime of the instance is more than the duration 1944 * then the timeout corresponds to the duration, otherwise it will be 1945 * reduced to the remaining instance lifetime. 1946 */ 1947 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1948 timeout = adv->duration; 1949 else 1950 timeout = adv->remaining_time; 1951 1952 /* The remaining time is being reduced unless the instance is being 1953 * advertised without time limit. 1954 */ 1955 if (adv->timeout) 1956 adv->remaining_time = adv->remaining_time - timeout; 1957 1958 /* Only use work for scheduling instances with legacy advertising */ 1959 if (!ext_adv_capable(hdev)) { 1960 hdev->adv_instance_timeout = timeout; 1961 queue_delayed_work(hdev->req_workqueue, 1962 &hdev->adv_instance_expire, 1963 msecs_to_jiffies(timeout * 1000)); 1964 } 1965 1966 /* If we're just re-scheduling the same instance again then do not 1967 * execute any HCI commands. This happens when a single instance is 1968 * being advertised. 1969 */ 1970 if (!force && hdev->cur_adv_instance == instance && 1971 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1972 return 0; 1973 1974 hdev->cur_adv_instance = instance; 1975 1976 return hci_start_adv_sync(hdev, instance); 1977 } 1978 1979 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1980 { 1981 int err; 1982 1983 if (!ext_adv_capable(hdev)) 1984 return 0; 1985 1986 /* Disable instance 0x00 to disable all instances */ 1987 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1988 if (err) 1989 return err; 1990 1991 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1992 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1993 } 1994 1995 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1996 { 1997 struct adv_info *adv, *n; 1998 int err = 0; 1999 2000 if (ext_adv_capable(hdev)) 2001 /* Remove all existing sets */ 2002 err = hci_clear_adv_sets_sync(hdev, sk); 2003 if (ext_adv_capable(hdev)) 2004 return err; 2005 2006 /* This is safe as long as there is no command send while the lock is 2007 * held. 2008 */ 2009 hci_dev_lock(hdev); 2010 2011 /* Cleanup non-ext instances */ 2012 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 2013 u8 instance = adv->instance; 2014 int err; 2015 2016 if (!(force || adv->timeout)) 2017 continue; 2018 2019 err = hci_remove_adv_instance(hdev, instance); 2020 if (!err) 2021 mgmt_advertising_removed(sk, hdev, instance); 2022 } 2023 2024 hci_dev_unlock(hdev); 2025 2026 return 0; 2027 } 2028 2029 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 2030 struct sock *sk) 2031 { 2032 int err = 0; 2033 2034 /* If we use extended advertising, instance has to be removed first. */ 2035 if (ext_adv_capable(hdev)) 2036 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2037 if (ext_adv_capable(hdev)) 2038 return err; 2039 2040 /* This is safe as long as there is no command send while the lock is 2041 * held. 2042 */ 2043 hci_dev_lock(hdev); 2044 2045 err = hci_remove_adv_instance(hdev, instance); 2046 if (!err) 2047 mgmt_advertising_removed(sk, hdev, instance); 2048 2049 hci_dev_unlock(hdev); 2050 2051 return err; 2052 } 2053 2054 /* For a single instance: 2055 * - force == true: The instance will be removed even when its remaining 2056 * lifetime is not zero. 2057 * - force == false: the instance will be deactivated but kept stored unless 2058 * the remaining lifetime is zero. 2059 * 2060 * For instance == 0x00: 2061 * - force == true: All instances will be removed regardless of their timeout 2062 * setting. 2063 * - force == false: Only instances that have a timeout will be removed. 2064 */ 2065 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2066 u8 instance, bool force) 2067 { 2068 struct adv_info *next = NULL; 2069 int err; 2070 2071 /* Cancel any timeout concerning the removed instance(s). */ 2072 if (!instance || hdev->cur_adv_instance == instance) 2073 cancel_adv_timeout(hdev); 2074 2075 /* Get the next instance to advertise BEFORE we remove 2076 * the current one. This can be the same instance again 2077 * if there is only one instance. 2078 */ 2079 if (hdev->cur_adv_instance == instance) 2080 next = hci_get_next_instance(hdev, instance); 2081 2082 if (!instance) { 2083 err = hci_clear_adv_sync(hdev, sk, force); 2084 if (err) 2085 return err; 2086 } else { 2087 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2088 2089 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2090 /* Don't advertise a removed instance. */ 2091 if (next && next->instance == instance) 2092 next = NULL; 2093 2094 err = hci_remove_adv_sync(hdev, instance, sk); 2095 if (err) 2096 return err; 2097 } 2098 } 2099 2100 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2101 return 0; 2102 2103 if (next && !ext_adv_capable(hdev)) 2104 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2105 2106 return 0; 2107 } 2108 2109 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2110 { 2111 struct hci_cp_read_rssi cp; 2112 2113 cp.handle = handle; 2114 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2115 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2116 } 2117 2118 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2119 { 2120 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2121 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2122 } 2123 2124 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2125 { 2126 struct hci_cp_read_tx_power cp; 2127 2128 cp.handle = handle; 2129 cp.type = type; 2130 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2131 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2132 } 2133 2134 int hci_disable_advertising_sync(struct hci_dev *hdev) 2135 { 2136 u8 enable = 0x00; 2137 int err = 0; 2138 2139 /* If controller is not advertising we are done. */ 2140 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2141 return 0; 2142 2143 if (ext_adv_capable(hdev)) 2144 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2145 if (ext_adv_capable(hdev)) 2146 return err; 2147 2148 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2149 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2150 } 2151 2152 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2153 u8 filter_dup) 2154 { 2155 struct hci_cp_le_set_ext_scan_enable cp; 2156 2157 memset(&cp, 0, sizeof(cp)); 2158 cp.enable = val; 2159 2160 if (hci_dev_test_flag(hdev, HCI_MESH)) 2161 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2162 else 2163 cp.filter_dup = filter_dup; 2164 2165 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2166 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2167 } 2168 2169 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2170 u8 filter_dup) 2171 { 2172 struct hci_cp_le_set_scan_enable cp; 2173 2174 if (use_ext_scan(hdev)) 2175 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2176 2177 memset(&cp, 0, sizeof(cp)); 2178 cp.enable = val; 2179 2180 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2181 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2182 else 2183 cp.filter_dup = filter_dup; 2184 2185 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2186 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2187 } 2188 2189 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2190 { 2191 if (!use_ll_privacy(hdev)) 2192 return 0; 2193 2194 /* If controller is not/already resolving we are done. */ 2195 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2196 return 0; 2197 2198 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2199 sizeof(val), &val, HCI_CMD_TIMEOUT); 2200 } 2201 2202 static int hci_scan_disable_sync(struct hci_dev *hdev) 2203 { 2204 int err; 2205 2206 /* If controller is not scanning we are done. */ 2207 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2208 return 0; 2209 2210 if (hdev->scanning_paused) { 2211 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2212 return 0; 2213 } 2214 2215 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2216 if (err) { 2217 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2218 return err; 2219 } 2220 2221 return err; 2222 } 2223 2224 static bool scan_use_rpa(struct hci_dev *hdev) 2225 { 2226 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2227 } 2228 2229 static void hci_start_interleave_scan(struct hci_dev *hdev) 2230 { 2231 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2232 queue_delayed_work(hdev->req_workqueue, 2233 &hdev->interleave_scan, 0); 2234 } 2235 2236 static bool is_interleave_scanning(struct hci_dev *hdev) 2237 { 2238 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2239 } 2240 2241 static void cancel_interleave_scan(struct hci_dev *hdev) 2242 { 2243 bt_dev_dbg(hdev, "cancelling interleave scan"); 2244 2245 cancel_delayed_work_sync(&hdev->interleave_scan); 2246 2247 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2248 } 2249 2250 /* Return true if interleave_scan wasn't started until exiting this function, 2251 * otherwise, return false 2252 */ 2253 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2254 { 2255 /* Do interleaved scan only if all of the following are true: 2256 * - There is at least one ADV monitor 2257 * - At least one pending LE connection or one device to be scanned for 2258 * - Monitor offloading is not supported 2259 * If so, we should alternate between allowlist scan and one without 2260 * any filters to save power. 2261 */ 2262 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2263 !(list_empty(&hdev->pend_le_conns) && 2264 list_empty(&hdev->pend_le_reports)) && 2265 hci_get_adv_monitor_offload_ext(hdev) == 2266 HCI_ADV_MONITOR_EXT_NONE; 2267 bool is_interleaving = is_interleave_scanning(hdev); 2268 2269 if (use_interleaving && !is_interleaving) { 2270 hci_start_interleave_scan(hdev); 2271 bt_dev_dbg(hdev, "starting interleave scan"); 2272 return true; 2273 } 2274 2275 if (!use_interleaving && is_interleaving) 2276 cancel_interleave_scan(hdev); 2277 2278 return false; 2279 } 2280 2281 /* Removes connection to resolve list if needed.*/ 2282 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2283 bdaddr_t *bdaddr, u8 bdaddr_type) 2284 { 2285 struct hci_cp_le_del_from_resolv_list cp; 2286 struct bdaddr_list_with_irk *entry; 2287 2288 if (!use_ll_privacy(hdev)) 2289 return 0; 2290 2291 /* Check if the IRK has been programmed */ 2292 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2293 bdaddr_type); 2294 if (!entry) 2295 return 0; 2296 2297 cp.bdaddr_type = bdaddr_type; 2298 bacpy(&cp.bdaddr, bdaddr); 2299 2300 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2301 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2302 } 2303 2304 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2305 bdaddr_t *bdaddr, u8 bdaddr_type) 2306 { 2307 struct hci_cp_le_del_from_accept_list cp; 2308 int err; 2309 2310 /* Check if device is on accept list before removing it */ 2311 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2312 return 0; 2313 2314 cp.bdaddr_type = bdaddr_type; 2315 bacpy(&cp.bdaddr, bdaddr); 2316 2317 /* Ignore errors when removing from resolving list as that is likely 2318 * that the device was never added. 2319 */ 2320 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2321 2322 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2323 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2324 if (err) { 2325 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2326 return err; 2327 } 2328 2329 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2330 cp.bdaddr_type); 2331 2332 return 0; 2333 } 2334 2335 struct conn_params { 2336 bdaddr_t addr; 2337 u8 addr_type; 2338 hci_conn_flags_t flags; 2339 u8 privacy_mode; 2340 }; 2341 2342 /* Adds connection to resolve list if needed. 2343 * Setting params to NULL programs local hdev->irk 2344 */ 2345 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2346 struct conn_params *params) 2347 { 2348 struct hci_cp_le_add_to_resolv_list cp; 2349 struct smp_irk *irk; 2350 struct bdaddr_list_with_irk *entry; 2351 struct hci_conn_params *p; 2352 2353 if (!use_ll_privacy(hdev)) 2354 return 0; 2355 2356 /* Attempt to program local identity address, type and irk if params is 2357 * NULL. 2358 */ 2359 if (!params) { 2360 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2361 return 0; 2362 2363 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2364 memcpy(cp.peer_irk, hdev->irk, 16); 2365 goto done; 2366 } 2367 2368 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2369 if (!irk) 2370 return 0; 2371 2372 /* Check if the IK has _not_ been programmed yet. */ 2373 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2374 ¶ms->addr, 2375 params->addr_type); 2376 if (entry) 2377 return 0; 2378 2379 cp.bdaddr_type = params->addr_type; 2380 bacpy(&cp.bdaddr, ¶ms->addr); 2381 memcpy(cp.peer_irk, irk->val, 16); 2382 2383 /* Default privacy mode is always Network */ 2384 params->privacy_mode = HCI_NETWORK_PRIVACY; 2385 2386 rcu_read_lock(); 2387 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2388 ¶ms->addr, params->addr_type); 2389 if (!p) 2390 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2391 ¶ms->addr, params->addr_type); 2392 if (p) 2393 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2394 rcu_read_unlock(); 2395 2396 done: 2397 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2398 memcpy(cp.local_irk, hdev->irk, 16); 2399 else 2400 memset(cp.local_irk, 0, 16); 2401 2402 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2403 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2404 } 2405 2406 /* Set Device Privacy Mode. */ 2407 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2408 struct conn_params *params) 2409 { 2410 struct hci_cp_le_set_privacy_mode cp; 2411 struct smp_irk *irk; 2412 2413 /* If device privacy mode has already been set there is nothing to do */ 2414 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2415 return 0; 2416 2417 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2418 * indicates that LL Privacy has been enabled and 2419 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2420 */ 2421 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2422 return 0; 2423 2424 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2425 if (!irk) 2426 return 0; 2427 2428 memset(&cp, 0, sizeof(cp)); 2429 cp.bdaddr_type = irk->addr_type; 2430 bacpy(&cp.bdaddr, &irk->bdaddr); 2431 cp.mode = HCI_DEVICE_PRIVACY; 2432 2433 /* Note: params->privacy_mode is not updated since it is a copy */ 2434 2435 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2436 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2437 } 2438 2439 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2440 * this attempts to program the device in the resolving list as well and 2441 * properly set the privacy mode. 2442 */ 2443 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2444 struct conn_params *params, 2445 u8 *num_entries) 2446 { 2447 struct hci_cp_le_add_to_accept_list cp; 2448 int err; 2449 2450 /* During suspend, only wakeable devices can be in acceptlist */ 2451 if (hdev->suspended && 2452 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2453 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2454 params->addr_type); 2455 return 0; 2456 } 2457 2458 /* Select filter policy to accept all advertising */ 2459 if (*num_entries >= hdev->le_accept_list_size) 2460 return -ENOSPC; 2461 2462 /* Accept list can not be used with RPAs */ 2463 if (!use_ll_privacy(hdev) && 2464 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2465 return -EINVAL; 2466 2467 /* Attempt to program the device in the resolving list first to avoid 2468 * having to rollback in case it fails since the resolving list is 2469 * dynamic it can probably be smaller than the accept list. 2470 */ 2471 err = hci_le_add_resolve_list_sync(hdev, params); 2472 if (err) { 2473 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2474 return err; 2475 } 2476 2477 /* Set Privacy Mode */ 2478 err = hci_le_set_privacy_mode_sync(hdev, params); 2479 if (err) { 2480 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2481 return err; 2482 } 2483 2484 /* Check if already in accept list */ 2485 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2486 params->addr_type)) 2487 return 0; 2488 2489 *num_entries += 1; 2490 cp.bdaddr_type = params->addr_type; 2491 bacpy(&cp.bdaddr, ¶ms->addr); 2492 2493 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2494 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2495 if (err) { 2496 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2497 /* Rollback the device from the resolving list */ 2498 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2499 return err; 2500 } 2501 2502 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2503 cp.bdaddr_type); 2504 2505 return 0; 2506 } 2507 2508 /* This function disables/pause all advertising instances */ 2509 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2510 { 2511 int err; 2512 int old_state; 2513 2514 /* If already been paused there is nothing to do. */ 2515 if (hdev->advertising_paused) 2516 return 0; 2517 2518 bt_dev_dbg(hdev, "Pausing directed advertising"); 2519 2520 /* Stop directed advertising */ 2521 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2522 if (old_state) { 2523 /* When discoverable timeout triggers, then just make sure 2524 * the limited discoverable flag is cleared. Even in the case 2525 * of a timeout triggered from general discoverable, it is 2526 * safe to unconditionally clear the flag. 2527 */ 2528 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2529 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2530 hdev->discov_timeout = 0; 2531 } 2532 2533 bt_dev_dbg(hdev, "Pausing advertising instances"); 2534 2535 /* Call to disable any advertisements active on the controller. 2536 * This will succeed even if no advertisements are configured. 2537 */ 2538 err = hci_disable_advertising_sync(hdev); 2539 if (err) 2540 return err; 2541 2542 /* If we are using software rotation, pause the loop */ 2543 if (!ext_adv_capable(hdev)) 2544 cancel_adv_timeout(hdev); 2545 2546 hdev->advertising_paused = true; 2547 hdev->advertising_old_state = old_state; 2548 2549 return 0; 2550 } 2551 2552 /* This function enables all user advertising instances */ 2553 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2554 { 2555 struct adv_info *adv, *tmp; 2556 int err; 2557 2558 /* If advertising has not been paused there is nothing to do. */ 2559 if (!hdev->advertising_paused) 2560 return 0; 2561 2562 /* Resume directed advertising */ 2563 hdev->advertising_paused = false; 2564 if (hdev->advertising_old_state) { 2565 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2566 hdev->advertising_old_state = 0; 2567 } 2568 2569 bt_dev_dbg(hdev, "Resuming advertising instances"); 2570 2571 if (ext_adv_capable(hdev)) { 2572 /* Call for each tracked instance to be re-enabled */ 2573 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2574 err = hci_enable_ext_advertising_sync(hdev, 2575 adv->instance); 2576 if (!err) 2577 continue; 2578 2579 /* If the instance cannot be resumed remove it */ 2580 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2581 NULL); 2582 } 2583 } else { 2584 /* Schedule for most recent instance to be restarted and begin 2585 * the software rotation loop 2586 */ 2587 err = hci_schedule_adv_instance_sync(hdev, 2588 hdev->cur_adv_instance, 2589 true); 2590 } 2591 2592 hdev->advertising_paused = false; 2593 2594 return err; 2595 } 2596 2597 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2598 { 2599 int err; 2600 2601 if (!use_ll_privacy(hdev)) 2602 return 0; 2603 2604 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2605 return 0; 2606 2607 /* Cannot disable addr resolution if scanning is enabled or 2608 * when initiating an LE connection. 2609 */ 2610 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2611 hci_lookup_le_connect(hdev)) { 2612 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2613 return -EPERM; 2614 } 2615 2616 /* Cannot disable addr resolution if advertising is enabled. */ 2617 err = hci_pause_advertising_sync(hdev); 2618 if (err) { 2619 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2620 return err; 2621 } 2622 2623 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2624 if (err) 2625 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2626 err); 2627 2628 /* Return if address resolution is disabled and RPA is not used. */ 2629 if (!err && scan_use_rpa(hdev)) 2630 return 0; 2631 2632 hci_resume_advertising_sync(hdev); 2633 return err; 2634 } 2635 2636 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2637 bool extended, struct sock *sk) 2638 { 2639 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2640 HCI_OP_READ_LOCAL_OOB_DATA; 2641 2642 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2643 } 2644 2645 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2646 { 2647 struct hci_conn_params *params; 2648 struct conn_params *p; 2649 size_t i; 2650 2651 rcu_read_lock(); 2652 2653 i = 0; 2654 list_for_each_entry_rcu(params, list, action) 2655 ++i; 2656 *n = i; 2657 2658 rcu_read_unlock(); 2659 2660 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2661 if (!p) 2662 return NULL; 2663 2664 rcu_read_lock(); 2665 2666 i = 0; 2667 list_for_each_entry_rcu(params, list, action) { 2668 /* Racing adds are handled in next scan update */ 2669 if (i >= *n) 2670 break; 2671 2672 /* No hdev->lock, but: addr, addr_type are immutable. 2673 * privacy_mode is only written by us or in 2674 * hci_cc_le_set_privacy_mode that we wait for. 2675 * We should be idempotent so MGMT updating flags 2676 * while we are processing is OK. 2677 */ 2678 bacpy(&p[i].addr, ¶ms->addr); 2679 p[i].addr_type = params->addr_type; 2680 p[i].flags = READ_ONCE(params->flags); 2681 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2682 ++i; 2683 } 2684 2685 rcu_read_unlock(); 2686 2687 *n = i; 2688 return p; 2689 } 2690 2691 /* Device must not be scanning when updating the accept list. 2692 * 2693 * Update is done using the following sequence: 2694 * 2695 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2696 * Remove Devices From Accept List -> 2697 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2698 * Add Devices to Accept List -> 2699 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2700 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2701 * Enable Scanning 2702 * 2703 * In case of failure advertising shall be restored to its original state and 2704 * return would disable accept list since either accept or resolving list could 2705 * not be programmed. 2706 * 2707 */ 2708 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2709 { 2710 struct conn_params *params; 2711 struct bdaddr_list *b, *t; 2712 u8 num_entries = 0; 2713 bool pend_conn, pend_report; 2714 u8 filter_policy; 2715 size_t i, n; 2716 int err; 2717 2718 /* Pause advertising if resolving list can be used as controllers 2719 * cannot accept resolving list modifications while advertising. 2720 */ 2721 if (use_ll_privacy(hdev)) { 2722 err = hci_pause_advertising_sync(hdev); 2723 if (err) { 2724 bt_dev_err(hdev, "pause advertising failed: %d", err); 2725 return 0x00; 2726 } 2727 } 2728 2729 /* Disable address resolution while reprogramming accept list since 2730 * devices that do have an IRK will be programmed in the resolving list 2731 * when LL Privacy is enabled. 2732 */ 2733 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2734 if (err) { 2735 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2736 goto done; 2737 } 2738 2739 /* Go through the current accept list programmed into the 2740 * controller one by one and check if that address is connected or is 2741 * still in the list of pending connections or list of devices to 2742 * report. If not present in either list, then remove it from 2743 * the controller. 2744 */ 2745 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2746 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2747 continue; 2748 2749 /* Pointers not dereferenced, no locks needed */ 2750 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2751 &b->bdaddr, 2752 b->bdaddr_type); 2753 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2754 &b->bdaddr, 2755 b->bdaddr_type); 2756 2757 /* If the device is not likely to connect or report, 2758 * remove it from the acceptlist. 2759 */ 2760 if (!pend_conn && !pend_report) { 2761 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2762 b->bdaddr_type); 2763 continue; 2764 } 2765 2766 num_entries++; 2767 } 2768 2769 /* Since all no longer valid accept list entries have been 2770 * removed, walk through the list of pending connections 2771 * and ensure that any new device gets programmed into 2772 * the controller. 2773 * 2774 * If the list of the devices is larger than the list of 2775 * available accept list entries in the controller, then 2776 * just abort and return filer policy value to not use the 2777 * accept list. 2778 * 2779 * The list and params may be mutated while we wait for events, 2780 * so make a copy and iterate it. 2781 */ 2782 2783 params = conn_params_copy(&hdev->pend_le_conns, &n); 2784 if (!params) { 2785 err = -ENOMEM; 2786 goto done; 2787 } 2788 2789 for (i = 0; i < n; ++i) { 2790 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2791 &num_entries); 2792 if (err) { 2793 kvfree(params); 2794 goto done; 2795 } 2796 } 2797 2798 kvfree(params); 2799 2800 /* After adding all new pending connections, walk through 2801 * the list of pending reports and also add these to the 2802 * accept list if there is still space. Abort if space runs out. 2803 */ 2804 2805 params = conn_params_copy(&hdev->pend_le_reports, &n); 2806 if (!params) { 2807 err = -ENOMEM; 2808 goto done; 2809 } 2810 2811 for (i = 0; i < n; ++i) { 2812 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2813 &num_entries); 2814 if (err) { 2815 kvfree(params); 2816 goto done; 2817 } 2818 } 2819 2820 kvfree(params); 2821 2822 /* Use the allowlist unless the following conditions are all true: 2823 * - We are not currently suspending 2824 * - There are 1 or more ADV monitors registered and it's not offloaded 2825 * - Interleaved scanning is not currently using the allowlist 2826 */ 2827 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2828 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2829 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2830 err = -EINVAL; 2831 2832 done: 2833 filter_policy = err ? 0x00 : 0x01; 2834 2835 /* Enable address resolution when LL Privacy is enabled. */ 2836 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2837 if (err) 2838 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2839 2840 /* Resume advertising if it was paused */ 2841 if (use_ll_privacy(hdev)) 2842 hci_resume_advertising_sync(hdev); 2843 2844 /* Select filter policy to use accept list */ 2845 return filter_policy; 2846 } 2847 2848 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2849 u8 type, u16 interval, u16 window) 2850 { 2851 cp->type = type; 2852 cp->interval = cpu_to_le16(interval); 2853 cp->window = cpu_to_le16(window); 2854 } 2855 2856 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2857 u16 interval, u16 window, 2858 u8 own_addr_type, u8 filter_policy) 2859 { 2860 struct hci_cp_le_set_ext_scan_params *cp; 2861 struct hci_cp_le_scan_phy_params *phy; 2862 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2863 u8 num_phy = 0x00; 2864 2865 cp = (void *)data; 2866 phy = (void *)cp->data; 2867 2868 memset(data, 0, sizeof(data)); 2869 2870 cp->own_addr_type = own_addr_type; 2871 cp->filter_policy = filter_policy; 2872 2873 /* Check if PA Sync is in progress then select the PHY based on the 2874 * hci_conn.iso_qos. 2875 */ 2876 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2877 struct hci_cp_le_add_to_accept_list *sent; 2878 2879 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2880 if (sent) { 2881 struct hci_conn *conn; 2882 2883 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2884 &sent->bdaddr); 2885 if (conn) { 2886 struct bt_iso_qos *qos = &conn->iso_qos; 2887 2888 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2889 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2890 cp->scanning_phys |= LE_SCAN_PHY_1M; 2891 hci_le_scan_phy_params(phy, type, 2892 interval, 2893 window); 2894 num_phy++; 2895 phy++; 2896 } 2897 2898 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2899 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2900 hci_le_scan_phy_params(phy, type, 2901 interval * 3, 2902 window * 3); 2903 num_phy++; 2904 phy++; 2905 } 2906 2907 if (num_phy) 2908 goto done; 2909 } 2910 } 2911 } 2912 2913 if (scan_1m(hdev) || scan_2m(hdev)) { 2914 cp->scanning_phys |= LE_SCAN_PHY_1M; 2915 hci_le_scan_phy_params(phy, type, interval, window); 2916 num_phy++; 2917 phy++; 2918 } 2919 2920 if (scan_coded(hdev)) { 2921 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2922 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2923 num_phy++; 2924 phy++; 2925 } 2926 2927 done: 2928 if (!num_phy) 2929 return -EINVAL; 2930 2931 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2932 sizeof(*cp) + sizeof(*phy) * num_phy, 2933 data, HCI_CMD_TIMEOUT); 2934 } 2935 2936 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2937 u16 interval, u16 window, 2938 u8 own_addr_type, u8 filter_policy) 2939 { 2940 struct hci_cp_le_set_scan_param cp; 2941 2942 if (use_ext_scan(hdev)) 2943 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2944 window, own_addr_type, 2945 filter_policy); 2946 2947 memset(&cp, 0, sizeof(cp)); 2948 cp.type = type; 2949 cp.interval = cpu_to_le16(interval); 2950 cp.window = cpu_to_le16(window); 2951 cp.own_address_type = own_addr_type; 2952 cp.filter_policy = filter_policy; 2953 2954 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2955 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2956 } 2957 2958 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2959 u16 window, u8 own_addr_type, u8 filter_policy, 2960 u8 filter_dup) 2961 { 2962 int err; 2963 2964 if (hdev->scanning_paused) { 2965 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2966 return 0; 2967 } 2968 2969 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2970 own_addr_type, filter_policy); 2971 if (err) 2972 return err; 2973 2974 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2975 } 2976 2977 static int hci_passive_scan_sync(struct hci_dev *hdev) 2978 { 2979 u8 own_addr_type; 2980 u8 filter_policy; 2981 u16 window, interval; 2982 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2983 int err; 2984 2985 if (hdev->scanning_paused) { 2986 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2987 return 0; 2988 } 2989 2990 err = hci_scan_disable_sync(hdev); 2991 if (err) { 2992 bt_dev_err(hdev, "disable scanning failed: %d", err); 2993 return err; 2994 } 2995 2996 /* Set require_privacy to false since no SCAN_REQ are send 2997 * during passive scanning. Not using an non-resolvable address 2998 * here is important so that peer devices using direct 2999 * advertising with our address will be correctly reported 3000 * by the controller. 3001 */ 3002 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3003 &own_addr_type)) 3004 return 0; 3005 3006 if (hdev->enable_advmon_interleave_scan && 3007 hci_update_interleaved_scan_sync(hdev)) 3008 return 0; 3009 3010 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3011 3012 /* Adding or removing entries from the accept list must 3013 * happen before enabling scanning. The controller does 3014 * not allow accept list modification while scanning. 3015 */ 3016 filter_policy = hci_update_accept_list_sync(hdev); 3017 3018 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3019 * passive scanning cannot be started since that would require the host 3020 * to be woken up to process the reports. 3021 */ 3022 if (hdev->suspended && !filter_policy) { 3023 /* Check if accept list is empty then there is no need to scan 3024 * while suspended. 3025 */ 3026 if (list_empty(&hdev->le_accept_list)) 3027 return 0; 3028 3029 /* If there are devices is the accept_list that means some 3030 * devices could not be programmed which in non-suspended case 3031 * means filter_policy needs to be set to 0x00 so the host needs 3032 * to filter, but since this is treating suspended case we 3033 * can ignore device needing host to filter to allow devices in 3034 * the acceptlist to be able to wakeup the system. 3035 */ 3036 filter_policy = 0x01; 3037 } 3038 3039 /* When the controller is using random resolvable addresses and 3040 * with that having LE privacy enabled, then controllers with 3041 * Extended Scanner Filter Policies support can now enable support 3042 * for handling directed advertising. 3043 * 3044 * So instead of using filter polices 0x00 (no acceptlist) 3045 * and 0x01 (acceptlist enabled) use the new filter policies 3046 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3047 */ 3048 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3049 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3050 filter_policy |= 0x02; 3051 3052 if (hdev->suspended) { 3053 window = hdev->le_scan_window_suspend; 3054 interval = hdev->le_scan_int_suspend; 3055 } else if (hci_is_le_conn_scanning(hdev)) { 3056 window = hdev->le_scan_window_connect; 3057 interval = hdev->le_scan_int_connect; 3058 } else if (hci_is_adv_monitoring(hdev)) { 3059 window = hdev->le_scan_window_adv_monitor; 3060 interval = hdev->le_scan_int_adv_monitor; 3061 3062 /* Disable duplicates filter when scanning for advertisement 3063 * monitor for the following reasons. 3064 * 3065 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3066 * controllers ignore RSSI_Sampling_Period when the duplicates 3067 * filter is enabled. 3068 * 3069 * For SW pattern filtering, when we're not doing interleaved 3070 * scanning, it is necessary to disable duplicates filter, 3071 * otherwise hosts can only receive one advertisement and it's 3072 * impossible to know if a peer is still in range. 3073 */ 3074 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3075 } else { 3076 window = hdev->le_scan_window; 3077 interval = hdev->le_scan_interval; 3078 } 3079 3080 /* Disable all filtering for Mesh */ 3081 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3082 filter_policy = 0; 3083 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3084 } 3085 3086 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3087 3088 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3089 own_addr_type, filter_policy, filter_dups); 3090 } 3091 3092 /* This function controls the passive scanning based on hdev->pend_le_conns 3093 * list. If there are pending LE connection we start the background scanning, 3094 * otherwise we stop it in the following sequence: 3095 * 3096 * If there are devices to scan: 3097 * 3098 * Disable Scanning -> Update Accept List -> 3099 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3100 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3101 * Enable Scanning 3102 * 3103 * Otherwise: 3104 * 3105 * Disable Scanning 3106 */ 3107 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3108 { 3109 int err; 3110 3111 if (!test_bit(HCI_UP, &hdev->flags) || 3112 test_bit(HCI_INIT, &hdev->flags) || 3113 hci_dev_test_flag(hdev, HCI_SETUP) || 3114 hci_dev_test_flag(hdev, HCI_CONFIG) || 3115 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3116 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3117 return 0; 3118 3119 /* No point in doing scanning if LE support hasn't been enabled */ 3120 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3121 return 0; 3122 3123 /* If discovery is active don't interfere with it */ 3124 if (hdev->discovery.state != DISCOVERY_STOPPED) 3125 return 0; 3126 3127 /* Reset RSSI and UUID filters when starting background scanning 3128 * since these filters are meant for service discovery only. 3129 * 3130 * The Start Discovery and Start Service Discovery operations 3131 * ensure to set proper values for RSSI threshold and UUID 3132 * filter list. So it is safe to just reset them here. 3133 */ 3134 hci_discovery_filter_clear(hdev); 3135 3136 bt_dev_dbg(hdev, "ADV monitoring is %s", 3137 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3138 3139 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3140 list_empty(&hdev->pend_le_conns) && 3141 list_empty(&hdev->pend_le_reports) && 3142 !hci_is_adv_monitoring(hdev) && 3143 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3144 /* If there is no pending LE connections or devices 3145 * to be scanned for or no ADV monitors, we should stop the 3146 * background scanning. 3147 */ 3148 3149 bt_dev_dbg(hdev, "stopping background scanning"); 3150 3151 err = hci_scan_disable_sync(hdev); 3152 if (err) 3153 bt_dev_err(hdev, "stop background scanning failed: %d", 3154 err); 3155 } else { 3156 /* If there is at least one pending LE connection, we should 3157 * keep the background scan running. 3158 */ 3159 3160 /* If controller is connecting, we should not start scanning 3161 * since some controllers are not able to scan and connect at 3162 * the same time. 3163 */ 3164 if (hci_lookup_le_connect(hdev)) 3165 return 0; 3166 3167 bt_dev_dbg(hdev, "start background scanning"); 3168 3169 err = hci_passive_scan_sync(hdev); 3170 if (err) 3171 bt_dev_err(hdev, "start background scanning failed: %d", 3172 err); 3173 } 3174 3175 return err; 3176 } 3177 3178 static int update_scan_sync(struct hci_dev *hdev, void *data) 3179 { 3180 return hci_update_scan_sync(hdev); 3181 } 3182 3183 int hci_update_scan(struct hci_dev *hdev) 3184 { 3185 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3186 } 3187 3188 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3189 { 3190 return hci_update_passive_scan_sync(hdev); 3191 } 3192 3193 int hci_update_passive_scan(struct hci_dev *hdev) 3194 { 3195 /* Only queue if it would have any effect */ 3196 if (!test_bit(HCI_UP, &hdev->flags) || 3197 test_bit(HCI_INIT, &hdev->flags) || 3198 hci_dev_test_flag(hdev, HCI_SETUP) || 3199 hci_dev_test_flag(hdev, HCI_CONFIG) || 3200 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3201 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3202 return 0; 3203 3204 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3205 NULL); 3206 } 3207 3208 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3209 { 3210 int err; 3211 3212 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3213 return 0; 3214 3215 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3216 sizeof(val), &val, HCI_CMD_TIMEOUT); 3217 3218 if (!err) { 3219 if (val) { 3220 hdev->features[1][0] |= LMP_HOST_SC; 3221 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3222 } else { 3223 hdev->features[1][0] &= ~LMP_HOST_SC; 3224 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3225 } 3226 } 3227 3228 return err; 3229 } 3230 3231 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3232 { 3233 int err; 3234 3235 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3236 lmp_host_ssp_capable(hdev)) 3237 return 0; 3238 3239 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3240 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3241 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3242 } 3243 3244 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3245 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3246 if (err) 3247 return err; 3248 3249 return hci_write_sc_support_sync(hdev, 0x01); 3250 } 3251 3252 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3253 { 3254 struct hci_cp_write_le_host_supported cp; 3255 3256 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3257 !lmp_bredr_capable(hdev)) 3258 return 0; 3259 3260 /* Check first if we already have the right host state 3261 * (host features set) 3262 */ 3263 if (le == lmp_host_le_capable(hdev) && 3264 simul == lmp_host_le_br_capable(hdev)) 3265 return 0; 3266 3267 memset(&cp, 0, sizeof(cp)); 3268 3269 cp.le = le; 3270 cp.simul = simul; 3271 3272 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3273 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3274 } 3275 3276 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3277 { 3278 struct adv_info *adv, *tmp; 3279 int err; 3280 3281 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3282 return 0; 3283 3284 /* If RPA Resolution has not been enable yet it means the 3285 * resolving list is empty and we should attempt to program the 3286 * local IRK in order to support using own_addr_type 3287 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3288 */ 3289 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3290 hci_le_add_resolve_list_sync(hdev, NULL); 3291 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3292 } 3293 3294 /* Make sure the controller has a good default for 3295 * advertising data. This also applies to the case 3296 * where BR/EDR was toggled during the AUTO_OFF phase. 3297 */ 3298 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3299 list_empty(&hdev->adv_instances)) { 3300 if (ext_adv_capable(hdev)) { 3301 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3302 if (!err) 3303 hci_update_scan_rsp_data_sync(hdev, 0x00); 3304 } else { 3305 err = hci_update_adv_data_sync(hdev, 0x00); 3306 if (!err) 3307 hci_update_scan_rsp_data_sync(hdev, 0x00); 3308 } 3309 3310 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3311 hci_enable_advertising_sync(hdev); 3312 } 3313 3314 /* Call for each tracked instance to be scheduled */ 3315 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3316 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3317 3318 return 0; 3319 } 3320 3321 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3322 { 3323 u8 link_sec; 3324 3325 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3326 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3327 return 0; 3328 3329 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3330 sizeof(link_sec), &link_sec, 3331 HCI_CMD_TIMEOUT); 3332 } 3333 3334 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3335 { 3336 struct hci_cp_write_page_scan_activity cp; 3337 u8 type; 3338 int err = 0; 3339 3340 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3341 return 0; 3342 3343 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3344 return 0; 3345 3346 memset(&cp, 0, sizeof(cp)); 3347 3348 if (enable) { 3349 type = PAGE_SCAN_TYPE_INTERLACED; 3350 3351 /* 160 msec page scan interval */ 3352 cp.interval = cpu_to_le16(0x0100); 3353 } else { 3354 type = hdev->def_page_scan_type; 3355 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3356 } 3357 3358 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3359 3360 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3361 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3362 err = __hci_cmd_sync_status(hdev, 3363 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3364 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3365 if (err) 3366 return err; 3367 } 3368 3369 if (hdev->page_scan_type != type) 3370 err = __hci_cmd_sync_status(hdev, 3371 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3372 sizeof(type), &type, 3373 HCI_CMD_TIMEOUT); 3374 3375 return err; 3376 } 3377 3378 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3379 { 3380 struct bdaddr_list *b; 3381 3382 list_for_each_entry(b, &hdev->accept_list, list) { 3383 struct hci_conn *conn; 3384 3385 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3386 if (!conn) 3387 return true; 3388 3389 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3390 return true; 3391 } 3392 3393 return false; 3394 } 3395 3396 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3397 { 3398 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3399 sizeof(val), &val, 3400 HCI_CMD_TIMEOUT); 3401 } 3402 3403 int hci_update_scan_sync(struct hci_dev *hdev) 3404 { 3405 u8 scan; 3406 3407 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3408 return 0; 3409 3410 if (!hdev_is_powered(hdev)) 3411 return 0; 3412 3413 if (mgmt_powering_down(hdev)) 3414 return 0; 3415 3416 if (hdev->scanning_paused) 3417 return 0; 3418 3419 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3420 disconnected_accept_list_entries(hdev)) 3421 scan = SCAN_PAGE; 3422 else 3423 scan = SCAN_DISABLED; 3424 3425 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3426 scan |= SCAN_INQUIRY; 3427 3428 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3429 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3430 return 0; 3431 3432 return hci_write_scan_enable_sync(hdev, scan); 3433 } 3434 3435 int hci_update_name_sync(struct hci_dev *hdev) 3436 { 3437 struct hci_cp_write_local_name cp; 3438 3439 memset(&cp, 0, sizeof(cp)); 3440 3441 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3442 3443 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3444 sizeof(cp), &cp, 3445 HCI_CMD_TIMEOUT); 3446 } 3447 3448 /* This function perform powered update HCI command sequence after the HCI init 3449 * sequence which end up resetting all states, the sequence is as follows: 3450 * 3451 * HCI_SSP_ENABLED(Enable SSP) 3452 * HCI_LE_ENABLED(Enable LE) 3453 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3454 * Update adv data) 3455 * Enable Authentication 3456 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3457 * Set Name -> Set EIR) 3458 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3459 */ 3460 int hci_powered_update_sync(struct hci_dev *hdev) 3461 { 3462 int err; 3463 3464 /* Register the available SMP channels (BR/EDR and LE) only when 3465 * successfully powering on the controller. This late 3466 * registration is required so that LE SMP can clearly decide if 3467 * the public address or static address is used. 3468 */ 3469 smp_register(hdev); 3470 3471 err = hci_write_ssp_mode_sync(hdev, 0x01); 3472 if (err) 3473 return err; 3474 3475 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3476 if (err) 3477 return err; 3478 3479 err = hci_powered_update_adv_sync(hdev); 3480 if (err) 3481 return err; 3482 3483 err = hci_write_auth_enable_sync(hdev); 3484 if (err) 3485 return err; 3486 3487 if (lmp_bredr_capable(hdev)) { 3488 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3489 hci_write_fast_connectable_sync(hdev, true); 3490 else 3491 hci_write_fast_connectable_sync(hdev, false); 3492 hci_update_scan_sync(hdev); 3493 hci_update_class_sync(hdev); 3494 hci_update_name_sync(hdev); 3495 hci_update_eir_sync(hdev); 3496 } 3497 3498 /* If forcing static address is in use or there is no public 3499 * address use the static address as random address (but skip 3500 * the HCI command if the current random address is already the 3501 * static one. 3502 * 3503 * In case BR/EDR has been disabled on a dual-mode controller 3504 * and a static address has been configured, then use that 3505 * address instead of the public BR/EDR address. 3506 */ 3507 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3508 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3509 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3510 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3511 return hci_set_random_addr_sync(hdev, 3512 &hdev->static_addr); 3513 } 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3520 * (BD_ADDR) for a HCI device from 3521 * a firmware node property. 3522 * @hdev: The HCI device 3523 * 3524 * Search the firmware node for 'local-bd-address'. 3525 * 3526 * All-zero BD addresses are rejected, because those could be properties 3527 * that exist in the firmware tables, but were not updated by the firmware. For 3528 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3529 */ 3530 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3531 { 3532 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3533 bdaddr_t ba; 3534 int ret; 3535 3536 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3537 (u8 *)&ba, sizeof(ba)); 3538 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3539 return; 3540 3541 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3542 baswap(&hdev->public_addr, &ba); 3543 else 3544 bacpy(&hdev->public_addr, &ba); 3545 } 3546 3547 struct hci_init_stage { 3548 int (*func)(struct hci_dev *hdev); 3549 }; 3550 3551 /* Run init stage NULL terminated function table */ 3552 static int hci_init_stage_sync(struct hci_dev *hdev, 3553 const struct hci_init_stage *stage) 3554 { 3555 size_t i; 3556 3557 for (i = 0; stage[i].func; i++) { 3558 int err; 3559 3560 err = stage[i].func(hdev); 3561 if (err) 3562 return err; 3563 } 3564 3565 return 0; 3566 } 3567 3568 /* Read Local Version */ 3569 static int hci_read_local_version_sync(struct hci_dev *hdev) 3570 { 3571 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3572 0, NULL, HCI_CMD_TIMEOUT); 3573 } 3574 3575 /* Read BD Address */ 3576 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3577 { 3578 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3579 0, NULL, HCI_CMD_TIMEOUT); 3580 } 3581 3582 #define HCI_INIT(_func) \ 3583 { \ 3584 .func = _func, \ 3585 } 3586 3587 static const struct hci_init_stage hci_init0[] = { 3588 /* HCI_OP_READ_LOCAL_VERSION */ 3589 HCI_INIT(hci_read_local_version_sync), 3590 /* HCI_OP_READ_BD_ADDR */ 3591 HCI_INIT(hci_read_bd_addr_sync), 3592 {} 3593 }; 3594 3595 int hci_reset_sync(struct hci_dev *hdev) 3596 { 3597 int err; 3598 3599 set_bit(HCI_RESET, &hdev->flags); 3600 3601 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3602 HCI_CMD_TIMEOUT); 3603 if (err) 3604 return err; 3605 3606 return 0; 3607 } 3608 3609 static int hci_init0_sync(struct hci_dev *hdev) 3610 { 3611 int err; 3612 3613 bt_dev_dbg(hdev, ""); 3614 3615 /* Reset */ 3616 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3617 err = hci_reset_sync(hdev); 3618 if (err) 3619 return err; 3620 } 3621 3622 return hci_init_stage_sync(hdev, hci_init0); 3623 } 3624 3625 static int hci_unconf_init_sync(struct hci_dev *hdev) 3626 { 3627 int err; 3628 3629 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3630 return 0; 3631 3632 err = hci_init0_sync(hdev); 3633 if (err < 0) 3634 return err; 3635 3636 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3637 hci_debugfs_create_basic(hdev); 3638 3639 return 0; 3640 } 3641 3642 /* Read Local Supported Features. */ 3643 static int hci_read_local_features_sync(struct hci_dev *hdev) 3644 { 3645 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3646 0, NULL, HCI_CMD_TIMEOUT); 3647 } 3648 3649 /* BR Controller init stage 1 command sequence */ 3650 static const struct hci_init_stage br_init1[] = { 3651 /* HCI_OP_READ_LOCAL_FEATURES */ 3652 HCI_INIT(hci_read_local_features_sync), 3653 /* HCI_OP_READ_LOCAL_VERSION */ 3654 HCI_INIT(hci_read_local_version_sync), 3655 /* HCI_OP_READ_BD_ADDR */ 3656 HCI_INIT(hci_read_bd_addr_sync), 3657 {} 3658 }; 3659 3660 /* Read Local Commands */ 3661 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3662 { 3663 /* All Bluetooth 1.2 and later controllers should support the 3664 * HCI command for reading the local supported commands. 3665 * 3666 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3667 * but do not have support for this command. If that is the case, 3668 * the driver can quirk the behavior and skip reading the local 3669 * supported commands. 3670 */ 3671 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3672 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3673 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3674 0, NULL, HCI_CMD_TIMEOUT); 3675 3676 return 0; 3677 } 3678 3679 static int hci_init1_sync(struct hci_dev *hdev) 3680 { 3681 int err; 3682 3683 bt_dev_dbg(hdev, ""); 3684 3685 /* Reset */ 3686 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3687 err = hci_reset_sync(hdev); 3688 if (err) 3689 return err; 3690 } 3691 3692 return hci_init_stage_sync(hdev, br_init1); 3693 } 3694 3695 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3696 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3697 { 3698 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3699 0, NULL, HCI_CMD_TIMEOUT); 3700 } 3701 3702 /* Read Class of Device */ 3703 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3704 { 3705 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3706 0, NULL, HCI_CMD_TIMEOUT); 3707 } 3708 3709 /* Read Local Name */ 3710 static int hci_read_local_name_sync(struct hci_dev *hdev) 3711 { 3712 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3713 0, NULL, HCI_CMD_TIMEOUT); 3714 } 3715 3716 /* Read Voice Setting */ 3717 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3718 { 3719 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3720 0, NULL, HCI_CMD_TIMEOUT); 3721 } 3722 3723 /* Read Number of Supported IAC */ 3724 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3725 { 3726 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3727 0, NULL, HCI_CMD_TIMEOUT); 3728 } 3729 3730 /* Read Current IAC LAP */ 3731 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3732 { 3733 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3734 0, NULL, HCI_CMD_TIMEOUT); 3735 } 3736 3737 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3738 u8 cond_type, bdaddr_t *bdaddr, 3739 u8 auto_accept) 3740 { 3741 struct hci_cp_set_event_filter cp; 3742 3743 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3744 return 0; 3745 3746 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3747 return 0; 3748 3749 memset(&cp, 0, sizeof(cp)); 3750 cp.flt_type = flt_type; 3751 3752 if (flt_type != HCI_FLT_CLEAR_ALL) { 3753 cp.cond_type = cond_type; 3754 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3755 cp.addr_conn_flt.auto_accept = auto_accept; 3756 } 3757 3758 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3759 flt_type == HCI_FLT_CLEAR_ALL ? 3760 sizeof(cp.flt_type) : sizeof(cp), &cp, 3761 HCI_CMD_TIMEOUT); 3762 } 3763 3764 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3765 { 3766 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3767 return 0; 3768 3769 /* In theory the state machine should not reach here unless 3770 * a hci_set_event_filter_sync() call succeeds, but we do 3771 * the check both for parity and as a future reminder. 3772 */ 3773 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3774 return 0; 3775 3776 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3777 BDADDR_ANY, 0x00); 3778 } 3779 3780 /* Connection accept timeout ~20 secs */ 3781 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3782 { 3783 __le16 param = cpu_to_le16(0x7d00); 3784 3785 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3786 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3787 } 3788 3789 /* BR Controller init stage 2 command sequence */ 3790 static const struct hci_init_stage br_init2[] = { 3791 /* HCI_OP_READ_BUFFER_SIZE */ 3792 HCI_INIT(hci_read_buffer_size_sync), 3793 /* HCI_OP_READ_CLASS_OF_DEV */ 3794 HCI_INIT(hci_read_dev_class_sync), 3795 /* HCI_OP_READ_LOCAL_NAME */ 3796 HCI_INIT(hci_read_local_name_sync), 3797 /* HCI_OP_READ_VOICE_SETTING */ 3798 HCI_INIT(hci_read_voice_setting_sync), 3799 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3800 HCI_INIT(hci_read_num_supported_iac_sync), 3801 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3802 HCI_INIT(hci_read_current_iac_lap_sync), 3803 /* HCI_OP_SET_EVENT_FLT */ 3804 HCI_INIT(hci_clear_event_filter_sync), 3805 /* HCI_OP_WRITE_CA_TIMEOUT */ 3806 HCI_INIT(hci_write_ca_timeout_sync), 3807 {} 3808 }; 3809 3810 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3811 { 3812 u8 mode = 0x01; 3813 3814 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3815 return 0; 3816 3817 /* When SSP is available, then the host features page 3818 * should also be available as well. However some 3819 * controllers list the max_page as 0 as long as SSP 3820 * has not been enabled. To achieve proper debugging 3821 * output, force the minimum max_page to 1 at least. 3822 */ 3823 hdev->max_page = 0x01; 3824 3825 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3826 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3827 } 3828 3829 static int hci_write_eir_sync(struct hci_dev *hdev) 3830 { 3831 struct hci_cp_write_eir cp; 3832 3833 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3834 return 0; 3835 3836 memset(hdev->eir, 0, sizeof(hdev->eir)); 3837 memset(&cp, 0, sizeof(cp)); 3838 3839 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3840 HCI_CMD_TIMEOUT); 3841 } 3842 3843 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3844 { 3845 u8 mode; 3846 3847 if (!lmp_inq_rssi_capable(hdev) && 3848 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3849 return 0; 3850 3851 /* If Extended Inquiry Result events are supported, then 3852 * they are clearly preferred over Inquiry Result with RSSI 3853 * events. 3854 */ 3855 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3856 3857 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3858 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3859 } 3860 3861 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3862 { 3863 if (!lmp_inq_tx_pwr_capable(hdev)) 3864 return 0; 3865 3866 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3867 0, NULL, HCI_CMD_TIMEOUT); 3868 } 3869 3870 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3871 { 3872 struct hci_cp_read_local_ext_features cp; 3873 3874 if (!lmp_ext_feat_capable(hdev)) 3875 return 0; 3876 3877 memset(&cp, 0, sizeof(cp)); 3878 cp.page = page; 3879 3880 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3881 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3882 } 3883 3884 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3885 { 3886 return hci_read_local_ext_features_sync(hdev, 0x01); 3887 } 3888 3889 /* HCI Controller init stage 2 command sequence */ 3890 static const struct hci_init_stage hci_init2[] = { 3891 /* HCI_OP_READ_LOCAL_COMMANDS */ 3892 HCI_INIT(hci_read_local_cmds_sync), 3893 /* HCI_OP_WRITE_SSP_MODE */ 3894 HCI_INIT(hci_write_ssp_mode_1_sync), 3895 /* HCI_OP_WRITE_EIR */ 3896 HCI_INIT(hci_write_eir_sync), 3897 /* HCI_OP_WRITE_INQUIRY_MODE */ 3898 HCI_INIT(hci_write_inquiry_mode_sync), 3899 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3900 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3901 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3902 HCI_INIT(hci_read_local_ext_features_1_sync), 3903 /* HCI_OP_WRITE_AUTH_ENABLE */ 3904 HCI_INIT(hci_write_auth_enable_sync), 3905 {} 3906 }; 3907 3908 /* Read LE Buffer Size */ 3909 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3910 { 3911 /* Use Read LE Buffer Size V2 if supported */ 3912 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3913 return __hci_cmd_sync_status(hdev, 3914 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3915 0, NULL, HCI_CMD_TIMEOUT); 3916 3917 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3918 0, NULL, HCI_CMD_TIMEOUT); 3919 } 3920 3921 /* Read LE Local Supported Features */ 3922 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3923 { 3924 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3925 0, NULL, HCI_CMD_TIMEOUT); 3926 } 3927 3928 /* Read LE Supported States */ 3929 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3930 { 3931 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3932 0, NULL, HCI_CMD_TIMEOUT); 3933 } 3934 3935 /* LE Controller init stage 2 command sequence */ 3936 static const struct hci_init_stage le_init2[] = { 3937 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3938 HCI_INIT(hci_le_read_local_features_sync), 3939 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3940 HCI_INIT(hci_le_read_buffer_size_sync), 3941 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3942 HCI_INIT(hci_le_read_supported_states_sync), 3943 {} 3944 }; 3945 3946 static int hci_init2_sync(struct hci_dev *hdev) 3947 { 3948 int err; 3949 3950 bt_dev_dbg(hdev, ""); 3951 3952 err = hci_init_stage_sync(hdev, hci_init2); 3953 if (err) 3954 return err; 3955 3956 if (lmp_bredr_capable(hdev)) { 3957 err = hci_init_stage_sync(hdev, br_init2); 3958 if (err) 3959 return err; 3960 } else { 3961 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3962 } 3963 3964 if (lmp_le_capable(hdev)) { 3965 err = hci_init_stage_sync(hdev, le_init2); 3966 if (err) 3967 return err; 3968 /* LE-only controllers have LE implicitly enabled */ 3969 if (!lmp_bredr_capable(hdev)) 3970 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3971 } 3972 3973 return 0; 3974 } 3975 3976 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3977 { 3978 /* The second byte is 0xff instead of 0x9f (two reserved bits 3979 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3980 * command otherwise. 3981 */ 3982 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3983 3984 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3985 * any event mask for pre 1.2 devices. 3986 */ 3987 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3988 return 0; 3989 3990 if (lmp_bredr_capable(hdev)) { 3991 events[4] |= 0x01; /* Flow Specification Complete */ 3992 3993 /* Don't set Disconnect Complete and mode change when 3994 * suspended as that would wakeup the host when disconnecting 3995 * due to suspend. 3996 */ 3997 if (hdev->suspended) { 3998 events[0] &= 0xef; 3999 events[2] &= 0xf7; 4000 } 4001 } else { 4002 /* Use a different default for LE-only devices */ 4003 memset(events, 0, sizeof(events)); 4004 events[1] |= 0x20; /* Command Complete */ 4005 events[1] |= 0x40; /* Command Status */ 4006 events[1] |= 0x80; /* Hardware Error */ 4007 4008 /* If the controller supports the Disconnect command, enable 4009 * the corresponding event. In addition enable packet flow 4010 * control related events. 4011 */ 4012 if (hdev->commands[0] & 0x20) { 4013 /* Don't set Disconnect Complete when suspended as that 4014 * would wakeup the host when disconnecting due to 4015 * suspend. 4016 */ 4017 if (!hdev->suspended) 4018 events[0] |= 0x10; /* Disconnection Complete */ 4019 events[2] |= 0x04; /* Number of Completed Packets */ 4020 events[3] |= 0x02; /* Data Buffer Overflow */ 4021 } 4022 4023 /* If the controller supports the Read Remote Version 4024 * Information command, enable the corresponding event. 4025 */ 4026 if (hdev->commands[2] & 0x80) 4027 events[1] |= 0x08; /* Read Remote Version Information 4028 * Complete 4029 */ 4030 4031 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4032 events[0] |= 0x80; /* Encryption Change */ 4033 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4034 } 4035 } 4036 4037 if (lmp_inq_rssi_capable(hdev) || 4038 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4039 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4040 4041 if (lmp_ext_feat_capable(hdev)) 4042 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4043 4044 if (lmp_esco_capable(hdev)) { 4045 events[5] |= 0x08; /* Synchronous Connection Complete */ 4046 events[5] |= 0x10; /* Synchronous Connection Changed */ 4047 } 4048 4049 if (lmp_sniffsubr_capable(hdev)) 4050 events[5] |= 0x20; /* Sniff Subrating */ 4051 4052 if (lmp_pause_enc_capable(hdev)) 4053 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4054 4055 if (lmp_ext_inq_capable(hdev)) 4056 events[5] |= 0x40; /* Extended Inquiry Result */ 4057 4058 if (lmp_no_flush_capable(hdev)) 4059 events[7] |= 0x01; /* Enhanced Flush Complete */ 4060 4061 if (lmp_lsto_capable(hdev)) 4062 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4063 4064 if (lmp_ssp_capable(hdev)) { 4065 events[6] |= 0x01; /* IO Capability Request */ 4066 events[6] |= 0x02; /* IO Capability Response */ 4067 events[6] |= 0x04; /* User Confirmation Request */ 4068 events[6] |= 0x08; /* User Passkey Request */ 4069 events[6] |= 0x10; /* Remote OOB Data Request */ 4070 events[6] |= 0x20; /* Simple Pairing Complete */ 4071 events[7] |= 0x04; /* User Passkey Notification */ 4072 events[7] |= 0x08; /* Keypress Notification */ 4073 events[7] |= 0x10; /* Remote Host Supported 4074 * Features Notification 4075 */ 4076 } 4077 4078 if (lmp_le_capable(hdev)) 4079 events[7] |= 0x20; /* LE Meta-Event */ 4080 4081 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4082 sizeof(events), events, HCI_CMD_TIMEOUT); 4083 } 4084 4085 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4086 { 4087 struct hci_cp_read_stored_link_key cp; 4088 4089 if (!(hdev->commands[6] & 0x20) || 4090 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4091 return 0; 4092 4093 memset(&cp, 0, sizeof(cp)); 4094 bacpy(&cp.bdaddr, BDADDR_ANY); 4095 cp.read_all = 0x01; 4096 4097 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4098 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4099 } 4100 4101 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4102 { 4103 struct hci_cp_write_def_link_policy cp; 4104 u16 link_policy = 0; 4105 4106 if (!(hdev->commands[5] & 0x10)) 4107 return 0; 4108 4109 memset(&cp, 0, sizeof(cp)); 4110 4111 if (lmp_rswitch_capable(hdev)) 4112 link_policy |= HCI_LP_RSWITCH; 4113 if (lmp_hold_capable(hdev)) 4114 link_policy |= HCI_LP_HOLD; 4115 if (lmp_sniff_capable(hdev)) 4116 link_policy |= HCI_LP_SNIFF; 4117 if (lmp_park_capable(hdev)) 4118 link_policy |= HCI_LP_PARK; 4119 4120 cp.policy = cpu_to_le16(link_policy); 4121 4122 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4123 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4124 } 4125 4126 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4127 { 4128 if (!(hdev->commands[8] & 0x01)) 4129 return 0; 4130 4131 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4132 0, NULL, HCI_CMD_TIMEOUT); 4133 } 4134 4135 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4136 { 4137 if (!(hdev->commands[18] & 0x04) || 4138 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4139 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4140 return 0; 4141 4142 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4143 0, NULL, HCI_CMD_TIMEOUT); 4144 } 4145 4146 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4147 { 4148 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4149 * support the Read Page Scan Type command. Check support for 4150 * this command in the bit mask of supported commands. 4151 */ 4152 if (!(hdev->commands[13] & 0x01)) 4153 return 0; 4154 4155 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4156 0, NULL, HCI_CMD_TIMEOUT); 4157 } 4158 4159 /* Read features beyond page 1 if available */ 4160 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4161 { 4162 u8 page; 4163 int err; 4164 4165 if (!lmp_ext_feat_capable(hdev)) 4166 return 0; 4167 4168 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4169 page++) { 4170 err = hci_read_local_ext_features_sync(hdev, page); 4171 if (err) 4172 return err; 4173 } 4174 4175 return 0; 4176 } 4177 4178 /* HCI Controller init stage 3 command sequence */ 4179 static const struct hci_init_stage hci_init3[] = { 4180 /* HCI_OP_SET_EVENT_MASK */ 4181 HCI_INIT(hci_set_event_mask_sync), 4182 /* HCI_OP_READ_STORED_LINK_KEY */ 4183 HCI_INIT(hci_read_stored_link_key_sync), 4184 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4185 HCI_INIT(hci_setup_link_policy_sync), 4186 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4187 HCI_INIT(hci_read_page_scan_activity_sync), 4188 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4189 HCI_INIT(hci_read_def_err_data_reporting_sync), 4190 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4191 HCI_INIT(hci_read_page_scan_type_sync), 4192 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4193 HCI_INIT(hci_read_local_ext_features_all_sync), 4194 {} 4195 }; 4196 4197 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4198 { 4199 u8 events[8]; 4200 4201 if (!lmp_le_capable(hdev)) 4202 return 0; 4203 4204 memset(events, 0, sizeof(events)); 4205 4206 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4207 events[0] |= 0x10; /* LE Long Term Key Request */ 4208 4209 /* If controller supports the Connection Parameters Request 4210 * Link Layer Procedure, enable the corresponding event. 4211 */ 4212 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4213 /* LE Remote Connection Parameter Request */ 4214 events[0] |= 0x20; 4215 4216 /* If the controller supports the Data Length Extension 4217 * feature, enable the corresponding event. 4218 */ 4219 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4220 events[0] |= 0x40; /* LE Data Length Change */ 4221 4222 /* If the controller supports LL Privacy feature or LE Extended Adv, 4223 * enable the corresponding event. 4224 */ 4225 if (use_enhanced_conn_complete(hdev)) 4226 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4227 4228 /* If the controller supports Extended Scanner Filter 4229 * Policies, enable the corresponding event. 4230 */ 4231 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4232 events[1] |= 0x04; /* LE Direct Advertising Report */ 4233 4234 /* If the controller supports Channel Selection Algorithm #2 4235 * feature, enable the corresponding event. 4236 */ 4237 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4238 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4239 4240 /* If the controller supports the LE Set Scan Enable command, 4241 * enable the corresponding advertising report event. 4242 */ 4243 if (hdev->commands[26] & 0x08) 4244 events[0] |= 0x02; /* LE Advertising Report */ 4245 4246 /* If the controller supports the LE Create Connection 4247 * command, enable the corresponding event. 4248 */ 4249 if (hdev->commands[26] & 0x10) 4250 events[0] |= 0x01; /* LE Connection Complete */ 4251 4252 /* If the controller supports the LE Connection Update 4253 * command, enable the corresponding event. 4254 */ 4255 if (hdev->commands[27] & 0x04) 4256 events[0] |= 0x04; /* LE Connection Update Complete */ 4257 4258 /* If the controller supports the LE Read Remote Used Features 4259 * command, enable the corresponding event. 4260 */ 4261 if (hdev->commands[27] & 0x20) 4262 /* LE Read Remote Used Features Complete */ 4263 events[0] |= 0x08; 4264 4265 /* If the controller supports the LE Read Local P-256 4266 * Public Key command, enable the corresponding event. 4267 */ 4268 if (hdev->commands[34] & 0x02) 4269 /* LE Read Local P-256 Public Key Complete */ 4270 events[0] |= 0x80; 4271 4272 /* If the controller supports the LE Generate DHKey 4273 * command, enable the corresponding event. 4274 */ 4275 if (hdev->commands[34] & 0x04) 4276 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4277 4278 /* If the controller supports the LE Set Default PHY or 4279 * LE Set PHY commands, enable the corresponding event. 4280 */ 4281 if (hdev->commands[35] & (0x20 | 0x40)) 4282 events[1] |= 0x08; /* LE PHY Update Complete */ 4283 4284 /* If the controller supports LE Set Extended Scan Parameters 4285 * and LE Set Extended Scan Enable commands, enable the 4286 * corresponding event. 4287 */ 4288 if (use_ext_scan(hdev)) 4289 events[1] |= 0x10; /* LE Extended Advertising Report */ 4290 4291 /* If the controller supports the LE Extended Advertising 4292 * command, enable the corresponding event. 4293 */ 4294 if (ext_adv_capable(hdev)) 4295 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4296 4297 if (cis_capable(hdev)) { 4298 events[3] |= 0x01; /* LE CIS Established */ 4299 if (cis_peripheral_capable(hdev)) 4300 events[3] |= 0x02; /* LE CIS Request */ 4301 } 4302 4303 if (bis_capable(hdev)) { 4304 events[1] |= 0x20; /* LE PA Report */ 4305 events[1] |= 0x40; /* LE PA Sync Established */ 4306 events[3] |= 0x04; /* LE Create BIG Complete */ 4307 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4308 events[3] |= 0x10; /* LE BIG Sync Established */ 4309 events[3] |= 0x20; /* LE BIG Sync Loss */ 4310 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4311 } 4312 4313 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4314 sizeof(events), events, HCI_CMD_TIMEOUT); 4315 } 4316 4317 /* Read LE Advertising Channel TX Power */ 4318 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4319 { 4320 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4321 /* HCI TS spec forbids mixing of legacy and extended 4322 * advertising commands wherein READ_ADV_TX_POWER is 4323 * also included. So do not call it if extended adv 4324 * is supported otherwise controller will return 4325 * COMMAND_DISALLOWED for extended commands. 4326 */ 4327 return __hci_cmd_sync_status(hdev, 4328 HCI_OP_LE_READ_ADV_TX_POWER, 4329 0, NULL, HCI_CMD_TIMEOUT); 4330 } 4331 4332 return 0; 4333 } 4334 4335 /* Read LE Min/Max Tx Power*/ 4336 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4337 { 4338 if (!(hdev->commands[38] & 0x80) || 4339 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4340 return 0; 4341 4342 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4343 0, NULL, HCI_CMD_TIMEOUT); 4344 } 4345 4346 /* Read LE Accept List Size */ 4347 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4348 { 4349 if (!(hdev->commands[26] & 0x40)) 4350 return 0; 4351 4352 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4353 0, NULL, HCI_CMD_TIMEOUT); 4354 } 4355 4356 /* Clear LE Accept List */ 4357 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4358 { 4359 if (!(hdev->commands[26] & 0x80)) 4360 return 0; 4361 4362 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4363 HCI_CMD_TIMEOUT); 4364 } 4365 4366 /* Read LE Resolving List Size */ 4367 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4368 { 4369 if (!(hdev->commands[34] & 0x40)) 4370 return 0; 4371 4372 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4373 0, NULL, HCI_CMD_TIMEOUT); 4374 } 4375 4376 /* Clear LE Resolving List */ 4377 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4378 { 4379 if (!(hdev->commands[34] & 0x20)) 4380 return 0; 4381 4382 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4383 HCI_CMD_TIMEOUT); 4384 } 4385 4386 /* Set RPA timeout */ 4387 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4388 { 4389 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4390 4391 if (!(hdev->commands[35] & 0x04) || 4392 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4393 return 0; 4394 4395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4396 sizeof(timeout), &timeout, 4397 HCI_CMD_TIMEOUT); 4398 } 4399 4400 /* Read LE Maximum Data Length */ 4401 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4402 { 4403 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4404 return 0; 4405 4406 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4407 HCI_CMD_TIMEOUT); 4408 } 4409 4410 /* Read LE Suggested Default Data Length */ 4411 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4412 { 4413 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4414 return 0; 4415 4416 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4417 HCI_CMD_TIMEOUT); 4418 } 4419 4420 /* Read LE Number of Supported Advertising Sets */ 4421 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4422 { 4423 if (!ext_adv_capable(hdev)) 4424 return 0; 4425 4426 return __hci_cmd_sync_status(hdev, 4427 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4428 0, NULL, HCI_CMD_TIMEOUT); 4429 } 4430 4431 /* Write LE Host Supported */ 4432 static int hci_set_le_support_sync(struct hci_dev *hdev) 4433 { 4434 struct hci_cp_write_le_host_supported cp; 4435 4436 /* LE-only devices do not support explicit enablement */ 4437 if (!lmp_bredr_capable(hdev)) 4438 return 0; 4439 4440 memset(&cp, 0, sizeof(cp)); 4441 4442 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4443 cp.le = 0x01; 4444 cp.simul = 0x00; 4445 } 4446 4447 if (cp.le == lmp_host_le_capable(hdev)) 4448 return 0; 4449 4450 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4451 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4452 } 4453 4454 /* LE Set Host Feature */ 4455 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4456 { 4457 struct hci_cp_le_set_host_feature cp; 4458 4459 if (!iso_capable(hdev)) 4460 return 0; 4461 4462 memset(&cp, 0, sizeof(cp)); 4463 4464 /* Isochronous Channels (Host Support) */ 4465 cp.bit_number = 32; 4466 cp.bit_value = 1; 4467 4468 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4469 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4470 } 4471 4472 /* LE Controller init stage 3 command sequence */ 4473 static const struct hci_init_stage le_init3[] = { 4474 /* HCI_OP_LE_SET_EVENT_MASK */ 4475 HCI_INIT(hci_le_set_event_mask_sync), 4476 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4477 HCI_INIT(hci_le_read_adv_tx_power_sync), 4478 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4479 HCI_INIT(hci_le_read_tx_power_sync), 4480 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4481 HCI_INIT(hci_le_read_accept_list_size_sync), 4482 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4483 HCI_INIT(hci_le_clear_accept_list_sync), 4484 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4485 HCI_INIT(hci_le_read_resolv_list_size_sync), 4486 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4487 HCI_INIT(hci_le_clear_resolv_list_sync), 4488 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4489 HCI_INIT(hci_le_set_rpa_timeout_sync), 4490 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4491 HCI_INIT(hci_le_read_max_data_len_sync), 4492 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4493 HCI_INIT(hci_le_read_def_data_len_sync), 4494 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4495 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4496 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4497 HCI_INIT(hci_set_le_support_sync), 4498 /* HCI_OP_LE_SET_HOST_FEATURE */ 4499 HCI_INIT(hci_le_set_host_feature_sync), 4500 {} 4501 }; 4502 4503 static int hci_init3_sync(struct hci_dev *hdev) 4504 { 4505 int err; 4506 4507 bt_dev_dbg(hdev, ""); 4508 4509 err = hci_init_stage_sync(hdev, hci_init3); 4510 if (err) 4511 return err; 4512 4513 if (lmp_le_capable(hdev)) 4514 return hci_init_stage_sync(hdev, le_init3); 4515 4516 return 0; 4517 } 4518 4519 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4520 { 4521 struct hci_cp_delete_stored_link_key cp; 4522 4523 /* Some Broadcom based Bluetooth controllers do not support the 4524 * Delete Stored Link Key command. They are clearly indicating its 4525 * absence in the bit mask of supported commands. 4526 * 4527 * Check the supported commands and only if the command is marked 4528 * as supported send it. If not supported assume that the controller 4529 * does not have actual support for stored link keys which makes this 4530 * command redundant anyway. 4531 * 4532 * Some controllers indicate that they support handling deleting 4533 * stored link keys, but they don't. The quirk lets a driver 4534 * just disable this command. 4535 */ 4536 if (!(hdev->commands[6] & 0x80) || 4537 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4538 return 0; 4539 4540 memset(&cp, 0, sizeof(cp)); 4541 bacpy(&cp.bdaddr, BDADDR_ANY); 4542 cp.delete_all = 0x01; 4543 4544 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4545 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4546 } 4547 4548 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4549 { 4550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4551 bool changed = false; 4552 4553 /* Set event mask page 2 if the HCI command for it is supported */ 4554 if (!(hdev->commands[22] & 0x04)) 4555 return 0; 4556 4557 /* If Connectionless Peripheral Broadcast central role is supported 4558 * enable all necessary events for it. 4559 */ 4560 if (lmp_cpb_central_capable(hdev)) { 4561 events[1] |= 0x40; /* Triggered Clock Capture */ 4562 events[1] |= 0x80; /* Synchronization Train Complete */ 4563 events[2] |= 0x08; /* Truncated Page Complete */ 4564 events[2] |= 0x20; /* CPB Channel Map Change */ 4565 changed = true; 4566 } 4567 4568 /* If Connectionless Peripheral Broadcast peripheral role is supported 4569 * enable all necessary events for it. 4570 */ 4571 if (lmp_cpb_peripheral_capable(hdev)) { 4572 events[2] |= 0x01; /* Synchronization Train Received */ 4573 events[2] |= 0x02; /* CPB Receive */ 4574 events[2] |= 0x04; /* CPB Timeout */ 4575 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4576 changed = true; 4577 } 4578 4579 /* Enable Authenticated Payload Timeout Expired event if supported */ 4580 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4581 events[2] |= 0x80; 4582 changed = true; 4583 } 4584 4585 /* Some Broadcom based controllers indicate support for Set Event 4586 * Mask Page 2 command, but then actually do not support it. Since 4587 * the default value is all bits set to zero, the command is only 4588 * required if the event mask has to be changed. In case no change 4589 * to the event mask is needed, skip this command. 4590 */ 4591 if (!changed) 4592 return 0; 4593 4594 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4595 sizeof(events), events, HCI_CMD_TIMEOUT); 4596 } 4597 4598 /* Read local codec list if the HCI command is supported */ 4599 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4600 { 4601 if (hdev->commands[45] & 0x04) 4602 hci_read_supported_codecs_v2(hdev); 4603 else if (hdev->commands[29] & 0x20) 4604 hci_read_supported_codecs(hdev); 4605 4606 return 0; 4607 } 4608 4609 /* Read local pairing options if the HCI command is supported */ 4610 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4611 { 4612 if (!(hdev->commands[41] & 0x08)) 4613 return 0; 4614 4615 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4616 0, NULL, HCI_CMD_TIMEOUT); 4617 } 4618 4619 /* Get MWS transport configuration if the HCI command is supported */ 4620 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4621 { 4622 if (!mws_transport_config_capable(hdev)) 4623 return 0; 4624 4625 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4626 0, NULL, HCI_CMD_TIMEOUT); 4627 } 4628 4629 /* Check for Synchronization Train support */ 4630 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4631 { 4632 if (!lmp_sync_train_capable(hdev)) 4633 return 0; 4634 4635 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4636 0, NULL, HCI_CMD_TIMEOUT); 4637 } 4638 4639 /* Enable Secure Connections if supported and configured */ 4640 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4641 { 4642 u8 support = 0x01; 4643 4644 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4645 !bredr_sc_enabled(hdev)) 4646 return 0; 4647 4648 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4649 sizeof(support), &support, 4650 HCI_CMD_TIMEOUT); 4651 } 4652 4653 /* Set erroneous data reporting if supported to the wideband speech 4654 * setting value 4655 */ 4656 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4657 { 4658 struct hci_cp_write_def_err_data_reporting cp; 4659 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4660 4661 if (!(hdev->commands[18] & 0x08) || 4662 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4663 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4664 return 0; 4665 4666 if (enabled == hdev->err_data_reporting) 4667 return 0; 4668 4669 memset(&cp, 0, sizeof(cp)); 4670 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4671 ERR_DATA_REPORTING_DISABLED; 4672 4673 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4674 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4675 } 4676 4677 static const struct hci_init_stage hci_init4[] = { 4678 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4679 HCI_INIT(hci_delete_stored_link_key_sync), 4680 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4681 HCI_INIT(hci_set_event_mask_page_2_sync), 4682 /* HCI_OP_READ_LOCAL_CODECS */ 4683 HCI_INIT(hci_read_local_codecs_sync), 4684 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4685 HCI_INIT(hci_read_local_pairing_opts_sync), 4686 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4687 HCI_INIT(hci_get_mws_transport_config_sync), 4688 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4689 HCI_INIT(hci_read_sync_train_params_sync), 4690 /* HCI_OP_WRITE_SC_SUPPORT */ 4691 HCI_INIT(hci_write_sc_support_1_sync), 4692 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4693 HCI_INIT(hci_set_err_data_report_sync), 4694 {} 4695 }; 4696 4697 /* Set Suggested Default Data Length to maximum if supported */ 4698 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4699 { 4700 struct hci_cp_le_write_def_data_len cp; 4701 4702 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4703 return 0; 4704 4705 memset(&cp, 0, sizeof(cp)); 4706 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4707 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4708 4709 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4710 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4711 } 4712 4713 /* Set Default PHY parameters if command is supported, enables all supported 4714 * PHYs according to the LE Features bits. 4715 */ 4716 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4717 { 4718 struct hci_cp_le_set_default_phy cp; 4719 4720 if (!(hdev->commands[35] & 0x20)) { 4721 /* If the command is not supported it means only 1M PHY is 4722 * supported. 4723 */ 4724 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4725 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4726 return 0; 4727 } 4728 4729 memset(&cp, 0, sizeof(cp)); 4730 cp.all_phys = 0x00; 4731 cp.tx_phys = HCI_LE_SET_PHY_1M; 4732 cp.rx_phys = HCI_LE_SET_PHY_1M; 4733 4734 /* Enables 2M PHY if supported */ 4735 if (le_2m_capable(hdev)) { 4736 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4737 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4738 } 4739 4740 /* Enables Coded PHY if supported */ 4741 if (le_coded_capable(hdev)) { 4742 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4743 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4744 } 4745 4746 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4747 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4748 } 4749 4750 static const struct hci_init_stage le_init4[] = { 4751 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4752 HCI_INIT(hci_le_set_write_def_data_len_sync), 4753 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4754 HCI_INIT(hci_le_set_default_phy_sync), 4755 {} 4756 }; 4757 4758 static int hci_init4_sync(struct hci_dev *hdev) 4759 { 4760 int err; 4761 4762 bt_dev_dbg(hdev, ""); 4763 4764 err = hci_init_stage_sync(hdev, hci_init4); 4765 if (err) 4766 return err; 4767 4768 if (lmp_le_capable(hdev)) 4769 return hci_init_stage_sync(hdev, le_init4); 4770 4771 return 0; 4772 } 4773 4774 static int hci_init_sync(struct hci_dev *hdev) 4775 { 4776 int err; 4777 4778 err = hci_init1_sync(hdev); 4779 if (err < 0) 4780 return err; 4781 4782 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4783 hci_debugfs_create_basic(hdev); 4784 4785 err = hci_init2_sync(hdev); 4786 if (err < 0) 4787 return err; 4788 4789 err = hci_init3_sync(hdev); 4790 if (err < 0) 4791 return err; 4792 4793 err = hci_init4_sync(hdev); 4794 if (err < 0) 4795 return err; 4796 4797 /* This function is only called when the controller is actually in 4798 * configured state. When the controller is marked as unconfigured, 4799 * this initialization procedure is not run. 4800 * 4801 * It means that it is possible that a controller runs through its 4802 * setup phase and then discovers missing settings. If that is the 4803 * case, then this function will not be called. It then will only 4804 * be called during the config phase. 4805 * 4806 * So only when in setup phase or config phase, create the debugfs 4807 * entries and register the SMP channels. 4808 */ 4809 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4810 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4811 return 0; 4812 4813 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4814 return 0; 4815 4816 hci_debugfs_create_common(hdev); 4817 4818 if (lmp_bredr_capable(hdev)) 4819 hci_debugfs_create_bredr(hdev); 4820 4821 if (lmp_le_capable(hdev)) 4822 hci_debugfs_create_le(hdev); 4823 4824 return 0; 4825 } 4826 4827 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4828 4829 static const struct { 4830 unsigned long quirk; 4831 const char *desc; 4832 } hci_broken_table[] = { 4833 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4834 "HCI Read Local Supported Commands not supported"), 4835 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4836 "HCI Delete Stored Link Key command is advertised, " 4837 "but not supported."), 4838 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4839 "HCI Read Default Erroneous Data Reporting command is " 4840 "advertised, but not supported."), 4841 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4842 "HCI Read Transmit Power Level command is advertised, " 4843 "but not supported."), 4844 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4845 "HCI Set Event Filter command not supported."), 4846 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4847 "HCI Enhanced Setup Synchronous Connection command is " 4848 "advertised, but not supported."), 4849 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4850 "HCI LE Set Random Private Address Timeout command is " 4851 "advertised, but not supported."), 4852 HCI_QUIRK_BROKEN(LE_CODED, 4853 "HCI LE Coded PHY feature bit is set, " 4854 "but its usage is not supported.") 4855 }; 4856 4857 /* This function handles hdev setup stage: 4858 * 4859 * Calls hdev->setup 4860 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4861 */ 4862 static int hci_dev_setup_sync(struct hci_dev *hdev) 4863 { 4864 int ret = 0; 4865 bool invalid_bdaddr; 4866 size_t i; 4867 4868 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4869 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4870 return 0; 4871 4872 bt_dev_dbg(hdev, ""); 4873 4874 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4875 4876 if (hdev->setup) 4877 ret = hdev->setup(hdev); 4878 4879 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4880 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4881 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4882 } 4883 4884 /* The transport driver can set the quirk to mark the 4885 * BD_ADDR invalid before creating the HCI device or in 4886 * its setup callback. 4887 */ 4888 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4889 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4890 if (!ret) { 4891 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4892 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4893 hci_dev_get_bd_addr_from_property(hdev); 4894 4895 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4896 hdev->set_bdaddr) { 4897 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4898 if (!ret) 4899 invalid_bdaddr = false; 4900 } 4901 } 4902 4903 /* The transport driver can set these quirks before 4904 * creating the HCI device or in its setup callback. 4905 * 4906 * For the invalid BD_ADDR quirk it is possible that 4907 * it becomes a valid address if the bootloader does 4908 * provide it (see above). 4909 * 4910 * In case any of them is set, the controller has to 4911 * start up as unconfigured. 4912 */ 4913 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4914 invalid_bdaddr) 4915 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4916 4917 /* For an unconfigured controller it is required to 4918 * read at least the version information provided by 4919 * the Read Local Version Information command. 4920 * 4921 * If the set_bdaddr driver callback is provided, then 4922 * also the original Bluetooth public device address 4923 * will be read using the Read BD Address command. 4924 */ 4925 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4926 return hci_unconf_init_sync(hdev); 4927 4928 return ret; 4929 } 4930 4931 /* This function handles hdev init stage: 4932 * 4933 * Calls hci_dev_setup_sync to perform setup stage 4934 * Calls hci_init_sync to perform HCI command init sequence 4935 */ 4936 static int hci_dev_init_sync(struct hci_dev *hdev) 4937 { 4938 int ret; 4939 4940 bt_dev_dbg(hdev, ""); 4941 4942 atomic_set(&hdev->cmd_cnt, 1); 4943 set_bit(HCI_INIT, &hdev->flags); 4944 4945 ret = hci_dev_setup_sync(hdev); 4946 4947 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4948 /* If public address change is configured, ensure that 4949 * the address gets programmed. If the driver does not 4950 * support changing the public address, fail the power 4951 * on procedure. 4952 */ 4953 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4954 hdev->set_bdaddr) 4955 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4956 else 4957 ret = -EADDRNOTAVAIL; 4958 } 4959 4960 if (!ret) { 4961 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4962 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4963 ret = hci_init_sync(hdev); 4964 if (!ret && hdev->post_init) 4965 ret = hdev->post_init(hdev); 4966 } 4967 } 4968 4969 /* If the HCI Reset command is clearing all diagnostic settings, 4970 * then they need to be reprogrammed after the init procedure 4971 * completed. 4972 */ 4973 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4974 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4975 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4976 ret = hdev->set_diag(hdev, true); 4977 4978 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4979 msft_do_open(hdev); 4980 aosp_do_open(hdev); 4981 } 4982 4983 clear_bit(HCI_INIT, &hdev->flags); 4984 4985 return ret; 4986 } 4987 4988 int hci_dev_open_sync(struct hci_dev *hdev) 4989 { 4990 int ret; 4991 4992 bt_dev_dbg(hdev, ""); 4993 4994 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4995 ret = -ENODEV; 4996 goto done; 4997 } 4998 4999 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5000 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 5001 /* Check for rfkill but allow the HCI setup stage to 5002 * proceed (which in itself doesn't cause any RF activity). 5003 */ 5004 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 5005 ret = -ERFKILL; 5006 goto done; 5007 } 5008 5009 /* Check for valid public address or a configured static 5010 * random address, but let the HCI setup proceed to 5011 * be able to determine if there is a public address 5012 * or not. 5013 * 5014 * In case of user channel usage, it is not important 5015 * if a public address or static random address is 5016 * available. 5017 */ 5018 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5019 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5020 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5021 ret = -EADDRNOTAVAIL; 5022 goto done; 5023 } 5024 } 5025 5026 if (test_bit(HCI_UP, &hdev->flags)) { 5027 ret = -EALREADY; 5028 goto done; 5029 } 5030 5031 if (hdev->open(hdev)) { 5032 ret = -EIO; 5033 goto done; 5034 } 5035 5036 hci_devcd_reset(hdev); 5037 5038 set_bit(HCI_RUNNING, &hdev->flags); 5039 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5040 5041 ret = hci_dev_init_sync(hdev); 5042 if (!ret) { 5043 hci_dev_hold(hdev); 5044 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5045 hci_adv_instances_set_rpa_expired(hdev, true); 5046 set_bit(HCI_UP, &hdev->flags); 5047 hci_sock_dev_event(hdev, HCI_DEV_UP); 5048 hci_leds_update_powered(hdev, true); 5049 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5050 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5051 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5052 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5053 hci_dev_test_flag(hdev, HCI_MGMT)) { 5054 ret = hci_powered_update_sync(hdev); 5055 mgmt_power_on(hdev, ret); 5056 } 5057 } else { 5058 /* Init failed, cleanup */ 5059 flush_work(&hdev->tx_work); 5060 5061 /* Since hci_rx_work() is possible to awake new cmd_work 5062 * it should be flushed first to avoid unexpected call of 5063 * hci_cmd_work() 5064 */ 5065 flush_work(&hdev->rx_work); 5066 flush_work(&hdev->cmd_work); 5067 5068 skb_queue_purge(&hdev->cmd_q); 5069 skb_queue_purge(&hdev->rx_q); 5070 5071 if (hdev->flush) 5072 hdev->flush(hdev); 5073 5074 if (hdev->sent_cmd) { 5075 cancel_delayed_work_sync(&hdev->cmd_timer); 5076 kfree_skb(hdev->sent_cmd); 5077 hdev->sent_cmd = NULL; 5078 } 5079 5080 if (hdev->req_skb) { 5081 kfree_skb(hdev->req_skb); 5082 hdev->req_skb = NULL; 5083 } 5084 5085 clear_bit(HCI_RUNNING, &hdev->flags); 5086 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5087 5088 hdev->close(hdev); 5089 hdev->flags &= BIT(HCI_RAW); 5090 } 5091 5092 done: 5093 return ret; 5094 } 5095 5096 /* This function requires the caller holds hdev->lock */ 5097 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5098 { 5099 struct hci_conn_params *p; 5100 5101 list_for_each_entry(p, &hdev->le_conn_params, list) { 5102 hci_pend_le_list_del_init(p); 5103 if (p->conn) { 5104 hci_conn_drop(p->conn); 5105 hci_conn_put(p->conn); 5106 p->conn = NULL; 5107 } 5108 } 5109 5110 BT_DBG("All LE pending actions cleared"); 5111 } 5112 5113 static int hci_dev_shutdown(struct hci_dev *hdev) 5114 { 5115 int err = 0; 5116 /* Similar to how we first do setup and then set the exclusive access 5117 * bit for userspace, we must first unset userchannel and then clean up. 5118 * Otherwise, the kernel can't properly use the hci channel to clean up 5119 * the controller (some shutdown routines require sending additional 5120 * commands to the controller for example). 5121 */ 5122 bool was_userchannel = 5123 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5124 5125 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5126 test_bit(HCI_UP, &hdev->flags)) { 5127 /* Execute vendor specific shutdown routine */ 5128 if (hdev->shutdown) 5129 err = hdev->shutdown(hdev); 5130 } 5131 5132 if (was_userchannel) 5133 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5134 5135 return err; 5136 } 5137 5138 int hci_dev_close_sync(struct hci_dev *hdev) 5139 { 5140 bool auto_off; 5141 int err = 0; 5142 5143 bt_dev_dbg(hdev, ""); 5144 5145 cancel_delayed_work(&hdev->power_off); 5146 cancel_delayed_work(&hdev->ncmd_timer); 5147 cancel_delayed_work(&hdev->le_scan_disable); 5148 cancel_delayed_work(&hdev->le_scan_restart); 5149 5150 hci_request_cancel_all(hdev); 5151 5152 if (hdev->adv_instance_timeout) { 5153 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5154 hdev->adv_instance_timeout = 0; 5155 } 5156 5157 err = hci_dev_shutdown(hdev); 5158 5159 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5160 cancel_delayed_work_sync(&hdev->cmd_timer); 5161 return err; 5162 } 5163 5164 hci_leds_update_powered(hdev, false); 5165 5166 /* Flush RX and TX works */ 5167 flush_work(&hdev->tx_work); 5168 flush_work(&hdev->rx_work); 5169 5170 if (hdev->discov_timeout > 0) { 5171 hdev->discov_timeout = 0; 5172 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5173 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5174 } 5175 5176 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5177 cancel_delayed_work(&hdev->service_cache); 5178 5179 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5180 struct adv_info *adv_instance; 5181 5182 cancel_delayed_work_sync(&hdev->rpa_expired); 5183 5184 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5185 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5186 } 5187 5188 /* Avoid potential lockdep warnings from the *_flush() calls by 5189 * ensuring the workqueue is empty up front. 5190 */ 5191 drain_workqueue(hdev->workqueue); 5192 5193 hci_dev_lock(hdev); 5194 5195 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5196 5197 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5198 5199 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5200 hci_dev_test_flag(hdev, HCI_MGMT)) 5201 __mgmt_power_off(hdev); 5202 5203 hci_inquiry_cache_flush(hdev); 5204 hci_pend_le_actions_clear(hdev); 5205 hci_conn_hash_flush(hdev); 5206 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5207 smp_unregister(hdev); 5208 hci_dev_unlock(hdev); 5209 5210 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5211 5212 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5213 aosp_do_close(hdev); 5214 msft_do_close(hdev); 5215 } 5216 5217 if (hdev->flush) 5218 hdev->flush(hdev); 5219 5220 /* Reset device */ 5221 skb_queue_purge(&hdev->cmd_q); 5222 atomic_set(&hdev->cmd_cnt, 1); 5223 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5224 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5225 set_bit(HCI_INIT, &hdev->flags); 5226 hci_reset_sync(hdev); 5227 clear_bit(HCI_INIT, &hdev->flags); 5228 } 5229 5230 /* flush cmd work */ 5231 flush_work(&hdev->cmd_work); 5232 5233 /* Drop queues */ 5234 skb_queue_purge(&hdev->rx_q); 5235 skb_queue_purge(&hdev->cmd_q); 5236 skb_queue_purge(&hdev->raw_q); 5237 5238 /* Drop last sent command */ 5239 if (hdev->sent_cmd) { 5240 cancel_delayed_work_sync(&hdev->cmd_timer); 5241 kfree_skb(hdev->sent_cmd); 5242 hdev->sent_cmd = NULL; 5243 } 5244 5245 /* Drop last request */ 5246 if (hdev->req_skb) { 5247 kfree_skb(hdev->req_skb); 5248 hdev->req_skb = NULL; 5249 } 5250 5251 clear_bit(HCI_RUNNING, &hdev->flags); 5252 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5253 5254 /* After this point our queues are empty and no tasks are scheduled. */ 5255 hdev->close(hdev); 5256 5257 /* Clear flags */ 5258 hdev->flags &= BIT(HCI_RAW); 5259 hci_dev_clear_volatile_flags(hdev); 5260 5261 memset(hdev->eir, 0, sizeof(hdev->eir)); 5262 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5263 bacpy(&hdev->random_addr, BDADDR_ANY); 5264 hci_codec_list_clear(&hdev->local_codecs); 5265 5266 hci_dev_put(hdev); 5267 return err; 5268 } 5269 5270 /* This function perform power on HCI command sequence as follows: 5271 * 5272 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5273 * sequence otherwise run hci_dev_open_sync which will follow with 5274 * hci_powered_update_sync after the init sequence is completed. 5275 */ 5276 static int hci_power_on_sync(struct hci_dev *hdev) 5277 { 5278 int err; 5279 5280 if (test_bit(HCI_UP, &hdev->flags) && 5281 hci_dev_test_flag(hdev, HCI_MGMT) && 5282 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5283 cancel_delayed_work(&hdev->power_off); 5284 return hci_powered_update_sync(hdev); 5285 } 5286 5287 err = hci_dev_open_sync(hdev); 5288 if (err < 0) 5289 return err; 5290 5291 /* During the HCI setup phase, a few error conditions are 5292 * ignored and they need to be checked now. If they are still 5293 * valid, it is important to return the device back off. 5294 */ 5295 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5296 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5297 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5298 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5299 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5300 hci_dev_close_sync(hdev); 5301 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5302 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5303 HCI_AUTO_OFF_TIMEOUT); 5304 } 5305 5306 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5307 /* For unconfigured devices, set the HCI_RAW flag 5308 * so that userspace can easily identify them. 5309 */ 5310 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5311 set_bit(HCI_RAW, &hdev->flags); 5312 5313 /* For fully configured devices, this will send 5314 * the Index Added event. For unconfigured devices, 5315 * it will send Unconfigued Index Added event. 5316 * 5317 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5318 * and no event will be send. 5319 */ 5320 mgmt_index_added(hdev); 5321 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5322 /* When the controller is now configured, then it 5323 * is important to clear the HCI_RAW flag. 5324 */ 5325 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5326 clear_bit(HCI_RAW, &hdev->flags); 5327 5328 /* Powering on the controller with HCI_CONFIG set only 5329 * happens with the transition from unconfigured to 5330 * configured. This will send the Index Added event. 5331 */ 5332 mgmt_index_added(hdev); 5333 } 5334 5335 return 0; 5336 } 5337 5338 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5339 { 5340 struct hci_cp_remote_name_req_cancel cp; 5341 5342 memset(&cp, 0, sizeof(cp)); 5343 bacpy(&cp.bdaddr, addr); 5344 5345 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5346 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5347 } 5348 5349 int hci_stop_discovery_sync(struct hci_dev *hdev) 5350 { 5351 struct discovery_state *d = &hdev->discovery; 5352 struct inquiry_entry *e; 5353 int err; 5354 5355 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5356 5357 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5358 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5359 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5360 0, NULL, HCI_CMD_TIMEOUT); 5361 if (err) 5362 return err; 5363 } 5364 5365 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5366 cancel_delayed_work(&hdev->le_scan_disable); 5367 cancel_delayed_work(&hdev->le_scan_restart); 5368 5369 err = hci_scan_disable_sync(hdev); 5370 if (err) 5371 return err; 5372 } 5373 5374 } else { 5375 err = hci_scan_disable_sync(hdev); 5376 if (err) 5377 return err; 5378 } 5379 5380 /* Resume advertising if it was paused */ 5381 if (use_ll_privacy(hdev)) 5382 hci_resume_advertising_sync(hdev); 5383 5384 /* No further actions needed for LE-only discovery */ 5385 if (d->type == DISCOV_TYPE_LE) 5386 return 0; 5387 5388 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5389 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5390 NAME_PENDING); 5391 if (!e) 5392 return 0; 5393 5394 /* Ignore cancel errors since it should interfere with stopping 5395 * of the discovery. 5396 */ 5397 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5398 } 5399 5400 return 0; 5401 } 5402 5403 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5404 u8 reason) 5405 { 5406 struct hci_cp_disconnect cp; 5407 5408 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5409 /* This is a BIS connection, hci_conn_del will 5410 * do the necessary cleanup. 5411 */ 5412 hci_dev_lock(hdev); 5413 hci_conn_failed(conn, reason); 5414 hci_dev_unlock(hdev); 5415 5416 return 0; 5417 } 5418 5419 memset(&cp, 0, sizeof(cp)); 5420 cp.handle = cpu_to_le16(conn->handle); 5421 cp.reason = reason; 5422 5423 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5424 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5425 * used when suspending or powering off, where we don't want to wait 5426 * for the peer's response. 5427 */ 5428 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5429 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5430 sizeof(cp), &cp, 5431 HCI_EV_DISCONN_COMPLETE, 5432 HCI_CMD_TIMEOUT, NULL); 5433 5434 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5435 HCI_CMD_TIMEOUT); 5436 } 5437 5438 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5439 struct hci_conn *conn, u8 reason) 5440 { 5441 /* Return reason if scanning since the connection shall probably be 5442 * cleanup directly. 5443 */ 5444 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5445 return reason; 5446 5447 if (conn->role == HCI_ROLE_SLAVE || 5448 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5449 return 0; 5450 5451 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5452 0, NULL, HCI_CMD_TIMEOUT); 5453 } 5454 5455 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5456 u8 reason) 5457 { 5458 if (conn->type == LE_LINK) 5459 return hci_le_connect_cancel_sync(hdev, conn, reason); 5460 5461 if (conn->type == ISO_LINK) { 5462 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5463 * page 1857: 5464 * 5465 * If this command is issued for a CIS on the Central and the 5466 * CIS is successfully terminated before being established, 5467 * then an HCI_LE_CIS_Established event shall also be sent for 5468 * this CIS with the Status Operation Cancelled by Host (0x44). 5469 */ 5470 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5471 return hci_disconnect_sync(hdev, conn, reason); 5472 5473 /* CIS with no Create CIS sent have nothing to cancel */ 5474 if (bacmp(&conn->dst, BDADDR_ANY)) 5475 return HCI_ERROR_LOCAL_HOST_TERM; 5476 5477 /* There is no way to cancel a BIS without terminating the BIG 5478 * which is done later on connection cleanup. 5479 */ 5480 return 0; 5481 } 5482 5483 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5484 return 0; 5485 5486 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5487 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5488 * used when suspending or powering off, where we don't want to wait 5489 * for the peer's response. 5490 */ 5491 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5492 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5493 6, &conn->dst, 5494 HCI_EV_CONN_COMPLETE, 5495 HCI_CMD_TIMEOUT, NULL); 5496 5497 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5498 6, &conn->dst, HCI_CMD_TIMEOUT); 5499 } 5500 5501 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5502 u8 reason) 5503 { 5504 struct hci_cp_reject_sync_conn_req cp; 5505 5506 memset(&cp, 0, sizeof(cp)); 5507 bacpy(&cp.bdaddr, &conn->dst); 5508 cp.reason = reason; 5509 5510 /* SCO rejection has its own limited set of 5511 * allowed error values (0x0D-0x0F). 5512 */ 5513 if (reason < 0x0d || reason > 0x0f) 5514 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5515 5516 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5517 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5518 } 5519 5520 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5521 u8 reason) 5522 { 5523 struct hci_cp_le_reject_cis cp; 5524 5525 memset(&cp, 0, sizeof(cp)); 5526 cp.handle = cpu_to_le16(conn->handle); 5527 cp.reason = reason; 5528 5529 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5530 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5531 } 5532 5533 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5534 u8 reason) 5535 { 5536 struct hci_cp_reject_conn_req cp; 5537 5538 if (conn->type == ISO_LINK) 5539 return hci_le_reject_cis_sync(hdev, conn, reason); 5540 5541 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5542 return hci_reject_sco_sync(hdev, conn, reason); 5543 5544 memset(&cp, 0, sizeof(cp)); 5545 bacpy(&cp.bdaddr, &conn->dst); 5546 cp.reason = reason; 5547 5548 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5549 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5550 } 5551 5552 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5553 { 5554 int err = 0; 5555 u16 handle = conn->handle; 5556 bool disconnect = false; 5557 struct hci_conn *c; 5558 5559 switch (conn->state) { 5560 case BT_CONNECTED: 5561 case BT_CONFIG: 5562 err = hci_disconnect_sync(hdev, conn, reason); 5563 break; 5564 case BT_CONNECT: 5565 err = hci_connect_cancel_sync(hdev, conn, reason); 5566 break; 5567 case BT_CONNECT2: 5568 err = hci_reject_conn_sync(hdev, conn, reason); 5569 break; 5570 case BT_OPEN: 5571 case BT_BOUND: 5572 break; 5573 default: 5574 disconnect = true; 5575 break; 5576 } 5577 5578 hci_dev_lock(hdev); 5579 5580 /* Check if the connection has been cleaned up concurrently */ 5581 c = hci_conn_hash_lookup_handle(hdev, handle); 5582 if (!c || c != conn) { 5583 err = 0; 5584 goto unlock; 5585 } 5586 5587 /* Cleanup hci_conn object if it cannot be cancelled as it 5588 * likelly means the controller and host stack are out of sync 5589 * or in case of LE it was still scanning so it can be cleanup 5590 * safely. 5591 */ 5592 if (disconnect) { 5593 conn->state = BT_CLOSED; 5594 hci_disconn_cfm(conn, reason); 5595 hci_conn_del(conn); 5596 } else { 5597 hci_conn_failed(conn, reason); 5598 } 5599 5600 unlock: 5601 hci_dev_unlock(hdev); 5602 return err; 5603 } 5604 5605 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5606 { 5607 struct list_head *head = &hdev->conn_hash.list; 5608 struct hci_conn *conn; 5609 5610 rcu_read_lock(); 5611 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5612 /* Make sure the connection is not freed while unlocking */ 5613 conn = hci_conn_get(conn); 5614 rcu_read_unlock(); 5615 /* Disregard possible errors since hci_conn_del shall have been 5616 * called even in case of errors had occurred since it would 5617 * then cause hci_conn_failed to be called which calls 5618 * hci_conn_del internally. 5619 */ 5620 hci_abort_conn_sync(hdev, conn, reason); 5621 hci_conn_put(conn); 5622 rcu_read_lock(); 5623 } 5624 rcu_read_unlock(); 5625 5626 return 0; 5627 } 5628 5629 /* This function perform power off HCI command sequence as follows: 5630 * 5631 * Clear Advertising 5632 * Stop Discovery 5633 * Disconnect all connections 5634 * hci_dev_close_sync 5635 */ 5636 static int hci_power_off_sync(struct hci_dev *hdev) 5637 { 5638 int err; 5639 5640 /* If controller is already down there is nothing to do */ 5641 if (!test_bit(HCI_UP, &hdev->flags)) 5642 return 0; 5643 5644 if (test_bit(HCI_ISCAN, &hdev->flags) || 5645 test_bit(HCI_PSCAN, &hdev->flags)) { 5646 err = hci_write_scan_enable_sync(hdev, 0x00); 5647 if (err) 5648 return err; 5649 } 5650 5651 err = hci_clear_adv_sync(hdev, NULL, false); 5652 if (err) 5653 return err; 5654 5655 err = hci_stop_discovery_sync(hdev); 5656 if (err) 5657 return err; 5658 5659 /* Terminated due to Power Off */ 5660 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5661 if (err) 5662 return err; 5663 5664 return hci_dev_close_sync(hdev); 5665 } 5666 5667 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5668 { 5669 if (val) 5670 return hci_power_on_sync(hdev); 5671 5672 return hci_power_off_sync(hdev); 5673 } 5674 5675 static int hci_write_iac_sync(struct hci_dev *hdev) 5676 { 5677 struct hci_cp_write_current_iac_lap cp; 5678 5679 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5680 return 0; 5681 5682 memset(&cp, 0, sizeof(cp)); 5683 5684 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5685 /* Limited discoverable mode */ 5686 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5687 cp.iac_lap[0] = 0x00; /* LIAC */ 5688 cp.iac_lap[1] = 0x8b; 5689 cp.iac_lap[2] = 0x9e; 5690 cp.iac_lap[3] = 0x33; /* GIAC */ 5691 cp.iac_lap[4] = 0x8b; 5692 cp.iac_lap[5] = 0x9e; 5693 } else { 5694 /* General discoverable mode */ 5695 cp.num_iac = 1; 5696 cp.iac_lap[0] = 0x33; /* GIAC */ 5697 cp.iac_lap[1] = 0x8b; 5698 cp.iac_lap[2] = 0x9e; 5699 } 5700 5701 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5702 (cp.num_iac * 3) + 1, &cp, 5703 HCI_CMD_TIMEOUT); 5704 } 5705 5706 int hci_update_discoverable_sync(struct hci_dev *hdev) 5707 { 5708 int err = 0; 5709 5710 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5711 err = hci_write_iac_sync(hdev); 5712 if (err) 5713 return err; 5714 5715 err = hci_update_scan_sync(hdev); 5716 if (err) 5717 return err; 5718 5719 err = hci_update_class_sync(hdev); 5720 if (err) 5721 return err; 5722 } 5723 5724 /* Advertising instances don't use the global discoverable setting, so 5725 * only update AD if advertising was enabled using Set Advertising. 5726 */ 5727 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5728 err = hci_update_adv_data_sync(hdev, 0x00); 5729 if (err) 5730 return err; 5731 5732 /* Discoverable mode affects the local advertising 5733 * address in limited privacy mode. 5734 */ 5735 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5736 if (ext_adv_capable(hdev)) 5737 err = hci_start_ext_adv_sync(hdev, 0x00); 5738 else 5739 err = hci_enable_advertising_sync(hdev); 5740 } 5741 } 5742 5743 return err; 5744 } 5745 5746 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5747 { 5748 return hci_update_discoverable_sync(hdev); 5749 } 5750 5751 int hci_update_discoverable(struct hci_dev *hdev) 5752 { 5753 /* Only queue if it would have any effect */ 5754 if (hdev_is_powered(hdev) && 5755 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5756 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5757 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5758 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5759 NULL); 5760 5761 return 0; 5762 } 5763 5764 int hci_update_connectable_sync(struct hci_dev *hdev) 5765 { 5766 int err; 5767 5768 err = hci_update_scan_sync(hdev); 5769 if (err) 5770 return err; 5771 5772 /* If BR/EDR is not enabled and we disable advertising as a 5773 * by-product of disabling connectable, we need to update the 5774 * advertising flags. 5775 */ 5776 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5777 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5778 5779 /* Update the advertising parameters if necessary */ 5780 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5781 !list_empty(&hdev->adv_instances)) { 5782 if (ext_adv_capable(hdev)) 5783 err = hci_start_ext_adv_sync(hdev, 5784 hdev->cur_adv_instance); 5785 else 5786 err = hci_enable_advertising_sync(hdev); 5787 5788 if (err) 5789 return err; 5790 } 5791 5792 return hci_update_passive_scan_sync(hdev); 5793 } 5794 5795 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5796 { 5797 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5798 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5799 struct hci_cp_inquiry cp; 5800 5801 bt_dev_dbg(hdev, ""); 5802 5803 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5804 return 0; 5805 5806 hci_dev_lock(hdev); 5807 hci_inquiry_cache_flush(hdev); 5808 hci_dev_unlock(hdev); 5809 5810 memset(&cp, 0, sizeof(cp)); 5811 5812 if (hdev->discovery.limited) 5813 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5814 else 5815 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5816 5817 cp.length = length; 5818 5819 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5820 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5821 } 5822 5823 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5824 { 5825 u8 own_addr_type; 5826 /* Accept list is not used for discovery */ 5827 u8 filter_policy = 0x00; 5828 /* Default is to enable duplicates filter */ 5829 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5830 int err; 5831 5832 bt_dev_dbg(hdev, ""); 5833 5834 /* If controller is scanning, it means the passive scanning is 5835 * running. Thus, we should temporarily stop it in order to set the 5836 * discovery scanning parameters. 5837 */ 5838 err = hci_scan_disable_sync(hdev); 5839 if (err) { 5840 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5841 return err; 5842 } 5843 5844 cancel_interleave_scan(hdev); 5845 5846 /* Pause address resolution for active scan and stop advertising if 5847 * privacy is enabled. 5848 */ 5849 err = hci_pause_addr_resolution(hdev); 5850 if (err) 5851 goto failed; 5852 5853 /* All active scans will be done with either a resolvable private 5854 * address (when privacy feature has been enabled) or non-resolvable 5855 * private address. 5856 */ 5857 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5858 &own_addr_type); 5859 if (err < 0) 5860 own_addr_type = ADDR_LE_DEV_PUBLIC; 5861 5862 if (hci_is_adv_monitoring(hdev)) { 5863 /* Duplicate filter should be disabled when some advertisement 5864 * monitor is activated, otherwise AdvMon can only receive one 5865 * advertisement for one peer(*) during active scanning, and 5866 * might report loss to these peers. 5867 * 5868 * Note that different controllers have different meanings of 5869 * |duplicate|. Some of them consider packets with the same 5870 * address as duplicate, and others consider packets with the 5871 * same address and the same RSSI as duplicate. Although in the 5872 * latter case we don't need to disable duplicate filter, but 5873 * it is common to have active scanning for a short period of 5874 * time, the power impact should be neglectable. 5875 */ 5876 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5877 } 5878 5879 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5880 hdev->le_scan_window_discovery, 5881 own_addr_type, filter_policy, filter_dup); 5882 if (!err) 5883 return err; 5884 5885 failed: 5886 /* Resume advertising if it was paused */ 5887 if (use_ll_privacy(hdev)) 5888 hci_resume_advertising_sync(hdev); 5889 5890 /* Resume passive scanning */ 5891 hci_update_passive_scan_sync(hdev); 5892 return err; 5893 } 5894 5895 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5896 { 5897 int err; 5898 5899 bt_dev_dbg(hdev, ""); 5900 5901 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5902 if (err) 5903 return err; 5904 5905 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5906 } 5907 5908 int hci_start_discovery_sync(struct hci_dev *hdev) 5909 { 5910 unsigned long timeout; 5911 int err; 5912 5913 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5914 5915 switch (hdev->discovery.type) { 5916 case DISCOV_TYPE_BREDR: 5917 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5918 case DISCOV_TYPE_INTERLEAVED: 5919 /* When running simultaneous discovery, the LE scanning time 5920 * should occupy the whole discovery time sine BR/EDR inquiry 5921 * and LE scanning are scheduled by the controller. 5922 * 5923 * For interleaving discovery in comparison, BR/EDR inquiry 5924 * and LE scanning are done sequentially with separate 5925 * timeouts. 5926 */ 5927 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5928 &hdev->quirks)) { 5929 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5930 /* During simultaneous discovery, we double LE scan 5931 * interval. We must leave some time for the controller 5932 * to do BR/EDR inquiry. 5933 */ 5934 err = hci_start_interleaved_discovery_sync(hdev); 5935 break; 5936 } 5937 5938 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5939 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5940 break; 5941 case DISCOV_TYPE_LE: 5942 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5943 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5944 break; 5945 default: 5946 return -EINVAL; 5947 } 5948 5949 if (err) 5950 return err; 5951 5952 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5953 5954 /* When service discovery is used and the controller has a 5955 * strict duplicate filter, it is important to remember the 5956 * start and duration of the scan. This is required for 5957 * restarting scanning during the discovery phase. 5958 */ 5959 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5960 hdev->discovery.result_filtering) { 5961 hdev->discovery.scan_start = jiffies; 5962 hdev->discovery.scan_duration = timeout; 5963 } 5964 5965 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5966 timeout); 5967 return 0; 5968 } 5969 5970 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5971 { 5972 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5973 case HCI_ADV_MONITOR_EXT_MSFT: 5974 msft_suspend_sync(hdev); 5975 break; 5976 default: 5977 return; 5978 } 5979 } 5980 5981 /* This function disables discovery and mark it as paused */ 5982 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5983 { 5984 int old_state = hdev->discovery.state; 5985 int err; 5986 5987 /* If discovery already stopped/stopping/paused there nothing to do */ 5988 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5989 hdev->discovery_paused) 5990 return 0; 5991 5992 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5993 err = hci_stop_discovery_sync(hdev); 5994 if (err) 5995 return err; 5996 5997 hdev->discovery_paused = true; 5998 hdev->discovery_old_state = old_state; 5999 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 6000 6001 return 0; 6002 } 6003 6004 static int hci_update_event_filter_sync(struct hci_dev *hdev) 6005 { 6006 struct bdaddr_list_with_flags *b; 6007 u8 scan = SCAN_DISABLED; 6008 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 6009 int err; 6010 6011 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 6012 return 0; 6013 6014 /* Some fake CSR controllers lock up after setting this type of 6015 * filter, so avoid sending the request altogether. 6016 */ 6017 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 6018 return 0; 6019 6020 /* Always clear event filter when starting */ 6021 hci_clear_event_filter_sync(hdev); 6022 6023 list_for_each_entry(b, &hdev->accept_list, list) { 6024 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6025 continue; 6026 6027 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6028 6029 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6030 HCI_CONN_SETUP_ALLOW_BDADDR, 6031 &b->bdaddr, 6032 HCI_CONN_SETUP_AUTO_ON); 6033 if (err) 6034 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 6035 &b->bdaddr); 6036 else 6037 scan = SCAN_PAGE; 6038 } 6039 6040 if (scan && !scanning) 6041 hci_write_scan_enable_sync(hdev, scan); 6042 else if (!scan && scanning) 6043 hci_write_scan_enable_sync(hdev, scan); 6044 6045 return 0; 6046 } 6047 6048 /* This function disables scan (BR and LE) and mark it as paused */ 6049 static int hci_pause_scan_sync(struct hci_dev *hdev) 6050 { 6051 if (hdev->scanning_paused) 6052 return 0; 6053 6054 /* Disable page scan if enabled */ 6055 if (test_bit(HCI_PSCAN, &hdev->flags)) 6056 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6057 6058 hci_scan_disable_sync(hdev); 6059 6060 hdev->scanning_paused = true; 6061 6062 return 0; 6063 } 6064 6065 /* This function performs the HCI suspend procedures in the follow order: 6066 * 6067 * Pause discovery (active scanning/inquiry) 6068 * Pause Directed Advertising/Advertising 6069 * Pause Scanning (passive scanning in case discovery was not active) 6070 * Disconnect all connections 6071 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6072 * otherwise: 6073 * Update event mask (only set events that are allowed to wake up the host) 6074 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6075 * Update passive scanning (lower duty cycle) 6076 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6077 */ 6078 int hci_suspend_sync(struct hci_dev *hdev) 6079 { 6080 int err; 6081 6082 /* If marked as suspended there nothing to do */ 6083 if (hdev->suspended) 6084 return 0; 6085 6086 /* Mark device as suspended */ 6087 hdev->suspended = true; 6088 6089 /* Pause discovery if not already stopped */ 6090 hci_pause_discovery_sync(hdev); 6091 6092 /* Pause other advertisements */ 6093 hci_pause_advertising_sync(hdev); 6094 6095 /* Suspend monitor filters */ 6096 hci_suspend_monitor_sync(hdev); 6097 6098 /* Prevent disconnects from causing scanning to be re-enabled */ 6099 hci_pause_scan_sync(hdev); 6100 6101 if (hci_conn_count(hdev)) { 6102 /* Soft disconnect everything (power off) */ 6103 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6104 if (err) { 6105 /* Set state to BT_RUNNING so resume doesn't notify */ 6106 hdev->suspend_state = BT_RUNNING; 6107 hci_resume_sync(hdev); 6108 return err; 6109 } 6110 6111 /* Update event mask so only the allowed event can wakeup the 6112 * host. 6113 */ 6114 hci_set_event_mask_sync(hdev); 6115 } 6116 6117 /* Only configure accept list if disconnect succeeded and wake 6118 * isn't being prevented. 6119 */ 6120 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6121 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6122 return 0; 6123 } 6124 6125 /* Unpause to take care of updating scanning params */ 6126 hdev->scanning_paused = false; 6127 6128 /* Enable event filter for paired devices */ 6129 hci_update_event_filter_sync(hdev); 6130 6131 /* Update LE passive scan if enabled */ 6132 hci_update_passive_scan_sync(hdev); 6133 6134 /* Pause scan changes again. */ 6135 hdev->scanning_paused = true; 6136 6137 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6138 6139 return 0; 6140 } 6141 6142 /* This function resumes discovery */ 6143 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6144 { 6145 int err; 6146 6147 /* If discovery not paused there nothing to do */ 6148 if (!hdev->discovery_paused) 6149 return 0; 6150 6151 hdev->discovery_paused = false; 6152 6153 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6154 6155 err = hci_start_discovery_sync(hdev); 6156 6157 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6158 DISCOVERY_FINDING); 6159 6160 return err; 6161 } 6162 6163 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6164 { 6165 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6166 case HCI_ADV_MONITOR_EXT_MSFT: 6167 msft_resume_sync(hdev); 6168 break; 6169 default: 6170 return; 6171 } 6172 } 6173 6174 /* This function resume scan and reset paused flag */ 6175 static int hci_resume_scan_sync(struct hci_dev *hdev) 6176 { 6177 if (!hdev->scanning_paused) 6178 return 0; 6179 6180 hdev->scanning_paused = false; 6181 6182 hci_update_scan_sync(hdev); 6183 6184 /* Reset passive scanning to normal */ 6185 hci_update_passive_scan_sync(hdev); 6186 6187 return 0; 6188 } 6189 6190 /* This function performs the HCI suspend procedures in the follow order: 6191 * 6192 * Restore event mask 6193 * Clear event filter 6194 * Update passive scanning (normal duty cycle) 6195 * Resume Directed Advertising/Advertising 6196 * Resume discovery (active scanning/inquiry) 6197 */ 6198 int hci_resume_sync(struct hci_dev *hdev) 6199 { 6200 /* If not marked as suspended there nothing to do */ 6201 if (!hdev->suspended) 6202 return 0; 6203 6204 hdev->suspended = false; 6205 6206 /* Restore event mask */ 6207 hci_set_event_mask_sync(hdev); 6208 6209 /* Clear any event filters and restore scan state */ 6210 hci_clear_event_filter_sync(hdev); 6211 6212 /* Resume scanning */ 6213 hci_resume_scan_sync(hdev); 6214 6215 /* Resume monitor filters */ 6216 hci_resume_monitor_sync(hdev); 6217 6218 /* Resume other advertisements */ 6219 hci_resume_advertising_sync(hdev); 6220 6221 /* Resume discovery */ 6222 hci_resume_discovery_sync(hdev); 6223 6224 return 0; 6225 } 6226 6227 static bool conn_use_rpa(struct hci_conn *conn) 6228 { 6229 struct hci_dev *hdev = conn->hdev; 6230 6231 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6232 } 6233 6234 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6235 struct hci_conn *conn) 6236 { 6237 struct hci_cp_le_set_ext_adv_params cp; 6238 int err; 6239 bdaddr_t random_addr; 6240 u8 own_addr_type; 6241 6242 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6243 &own_addr_type); 6244 if (err) 6245 return err; 6246 6247 /* Set require_privacy to false so that the remote device has a 6248 * chance of identifying us. 6249 */ 6250 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6251 &own_addr_type, &random_addr); 6252 if (err) 6253 return err; 6254 6255 memset(&cp, 0, sizeof(cp)); 6256 6257 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6258 cp.channel_map = hdev->le_adv_channel_map; 6259 cp.tx_power = HCI_TX_POWER_INVALID; 6260 cp.primary_phy = HCI_ADV_PHY_1M; 6261 cp.secondary_phy = HCI_ADV_PHY_1M; 6262 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6263 cp.own_addr_type = own_addr_type; 6264 cp.peer_addr_type = conn->dst_type; 6265 bacpy(&cp.peer_addr, &conn->dst); 6266 6267 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6268 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6269 * does not supports advertising data when the advertising set already 6270 * contains some, the controller shall return erroc code 'Invalid 6271 * HCI Command Parameters(0x12). 6272 * So it is required to remove adv set for handle 0x00. since we use 6273 * instance 0 for directed adv. 6274 */ 6275 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6276 if (err) 6277 return err; 6278 6279 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6280 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6281 if (err) 6282 return err; 6283 6284 /* Check if random address need to be updated */ 6285 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6286 bacmp(&random_addr, BDADDR_ANY) && 6287 bacmp(&random_addr, &hdev->random_addr)) { 6288 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6289 &random_addr); 6290 if (err) 6291 return err; 6292 } 6293 6294 return hci_enable_ext_advertising_sync(hdev, 0x00); 6295 } 6296 6297 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6298 struct hci_conn *conn) 6299 { 6300 struct hci_cp_le_set_adv_param cp; 6301 u8 status; 6302 u8 own_addr_type; 6303 u8 enable; 6304 6305 if (ext_adv_capable(hdev)) 6306 return hci_le_ext_directed_advertising_sync(hdev, conn); 6307 6308 /* Clear the HCI_LE_ADV bit temporarily so that the 6309 * hci_update_random_address knows that it's safe to go ahead 6310 * and write a new random address. The flag will be set back on 6311 * as soon as the SET_ADV_ENABLE HCI command completes. 6312 */ 6313 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6314 6315 /* Set require_privacy to false so that the remote device has a 6316 * chance of identifying us. 6317 */ 6318 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6319 &own_addr_type); 6320 if (status) 6321 return status; 6322 6323 memset(&cp, 0, sizeof(cp)); 6324 6325 /* Some controllers might reject command if intervals are not 6326 * within range for undirected advertising. 6327 * BCM20702A0 is known to be affected by this. 6328 */ 6329 cp.min_interval = cpu_to_le16(0x0020); 6330 cp.max_interval = cpu_to_le16(0x0020); 6331 6332 cp.type = LE_ADV_DIRECT_IND; 6333 cp.own_address_type = own_addr_type; 6334 cp.direct_addr_type = conn->dst_type; 6335 bacpy(&cp.direct_addr, &conn->dst); 6336 cp.channel_map = hdev->le_adv_channel_map; 6337 6338 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6339 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6340 if (status) 6341 return status; 6342 6343 enable = 0x01; 6344 6345 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6346 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6347 } 6348 6349 static void set_ext_conn_params(struct hci_conn *conn, 6350 struct hci_cp_le_ext_conn_param *p) 6351 { 6352 struct hci_dev *hdev = conn->hdev; 6353 6354 memset(p, 0, sizeof(*p)); 6355 6356 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6357 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6358 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6359 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6360 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6361 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6362 p->min_ce_len = cpu_to_le16(0x0000); 6363 p->max_ce_len = cpu_to_le16(0x0000); 6364 } 6365 6366 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6367 struct hci_conn *conn, u8 own_addr_type) 6368 { 6369 struct hci_cp_le_ext_create_conn *cp; 6370 struct hci_cp_le_ext_conn_param *p; 6371 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6372 u32 plen; 6373 6374 cp = (void *)data; 6375 p = (void *)cp->data; 6376 6377 memset(cp, 0, sizeof(*cp)); 6378 6379 bacpy(&cp->peer_addr, &conn->dst); 6380 cp->peer_addr_type = conn->dst_type; 6381 cp->own_addr_type = own_addr_type; 6382 6383 plen = sizeof(*cp); 6384 6385 if (scan_1m(hdev)) { 6386 cp->phys |= LE_SCAN_PHY_1M; 6387 set_ext_conn_params(conn, p); 6388 6389 p++; 6390 plen += sizeof(*p); 6391 } 6392 6393 if (scan_2m(hdev)) { 6394 cp->phys |= LE_SCAN_PHY_2M; 6395 set_ext_conn_params(conn, p); 6396 6397 p++; 6398 plen += sizeof(*p); 6399 } 6400 6401 if (scan_coded(hdev)) { 6402 cp->phys |= LE_SCAN_PHY_CODED; 6403 set_ext_conn_params(conn, p); 6404 6405 plen += sizeof(*p); 6406 } 6407 6408 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6409 plen, data, 6410 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6411 conn->conn_timeout, NULL); 6412 } 6413 6414 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6415 { 6416 struct hci_cp_le_create_conn cp; 6417 struct hci_conn_params *params; 6418 u8 own_addr_type; 6419 int err; 6420 struct hci_conn *conn = data; 6421 6422 if (!hci_conn_valid(hdev, conn)) 6423 return -ECANCELED; 6424 6425 bt_dev_dbg(hdev, "conn %p", conn); 6426 6427 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6428 conn->state = BT_CONNECT; 6429 6430 /* If requested to connect as peripheral use directed advertising */ 6431 if (conn->role == HCI_ROLE_SLAVE) { 6432 /* If we're active scanning and simultaneous roles is not 6433 * enabled simply reject the attempt. 6434 */ 6435 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6436 hdev->le_scan_type == LE_SCAN_ACTIVE && 6437 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6438 hci_conn_del(conn); 6439 return -EBUSY; 6440 } 6441 6442 /* Pause advertising while doing directed advertising. */ 6443 hci_pause_advertising_sync(hdev); 6444 6445 err = hci_le_directed_advertising_sync(hdev, conn); 6446 goto done; 6447 } 6448 6449 /* Disable advertising if simultaneous roles is not in use. */ 6450 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6451 hci_pause_advertising_sync(hdev); 6452 6453 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6454 if (params) { 6455 conn->le_conn_min_interval = params->conn_min_interval; 6456 conn->le_conn_max_interval = params->conn_max_interval; 6457 conn->le_conn_latency = params->conn_latency; 6458 conn->le_supv_timeout = params->supervision_timeout; 6459 } else { 6460 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6461 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6462 conn->le_conn_latency = hdev->le_conn_latency; 6463 conn->le_supv_timeout = hdev->le_supv_timeout; 6464 } 6465 6466 /* If controller is scanning, we stop it since some controllers are 6467 * not able to scan and connect at the same time. Also set the 6468 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6469 * handler for scan disabling knows to set the correct discovery 6470 * state. 6471 */ 6472 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6473 hci_scan_disable_sync(hdev); 6474 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6475 } 6476 6477 /* Update random address, but set require_privacy to false so 6478 * that we never connect with an non-resolvable address. 6479 */ 6480 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6481 &own_addr_type); 6482 if (err) 6483 goto done; 6484 6485 if (use_ext_conn(hdev)) { 6486 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6487 goto done; 6488 } 6489 6490 memset(&cp, 0, sizeof(cp)); 6491 6492 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6493 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6494 6495 bacpy(&cp.peer_addr, &conn->dst); 6496 cp.peer_addr_type = conn->dst_type; 6497 cp.own_address_type = own_addr_type; 6498 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6499 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6500 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6501 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6502 cp.min_ce_len = cpu_to_le16(0x0000); 6503 cp.max_ce_len = cpu_to_le16(0x0000); 6504 6505 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6506 * 6507 * If this event is unmasked and the HCI_LE_Connection_Complete event 6508 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6509 * sent when a new connection has been created. 6510 */ 6511 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6512 sizeof(cp), &cp, 6513 use_enhanced_conn_complete(hdev) ? 6514 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6515 HCI_EV_LE_CONN_COMPLETE, 6516 conn->conn_timeout, NULL); 6517 6518 done: 6519 if (err == -ETIMEDOUT) 6520 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6521 6522 /* Re-enable advertising after the connection attempt is finished. */ 6523 hci_resume_advertising_sync(hdev); 6524 return err; 6525 } 6526 6527 int hci_le_create_cis_sync(struct hci_dev *hdev) 6528 { 6529 struct { 6530 struct hci_cp_le_create_cis cp; 6531 struct hci_cis cis[0x1f]; 6532 } cmd; 6533 struct hci_conn *conn; 6534 u8 cig = BT_ISO_QOS_CIG_UNSET; 6535 6536 /* The spec allows only one pending LE Create CIS command at a time. If 6537 * the command is pending now, don't do anything. We check for pending 6538 * connections after each CIS Established event. 6539 * 6540 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6541 * page 2566: 6542 * 6543 * If the Host issues this command before all the 6544 * HCI_LE_CIS_Established events from the previous use of the 6545 * command have been generated, the Controller shall return the 6546 * error code Command Disallowed (0x0C). 6547 * 6548 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6549 * page 2567: 6550 * 6551 * When the Controller receives the HCI_LE_Create_CIS command, the 6552 * Controller sends the HCI_Command_Status event to the Host. An 6553 * HCI_LE_CIS_Established event will be generated for each CIS when it 6554 * is established or if it is disconnected or considered lost before 6555 * being established; until all the events are generated, the command 6556 * remains pending. 6557 */ 6558 6559 memset(&cmd, 0, sizeof(cmd)); 6560 6561 hci_dev_lock(hdev); 6562 6563 rcu_read_lock(); 6564 6565 /* Wait until previous Create CIS has completed */ 6566 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6567 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6568 goto done; 6569 } 6570 6571 /* Find CIG with all CIS ready */ 6572 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6573 struct hci_conn *link; 6574 6575 if (hci_conn_check_create_cis(conn)) 6576 continue; 6577 6578 cig = conn->iso_qos.ucast.cig; 6579 6580 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6581 if (hci_conn_check_create_cis(link) > 0 && 6582 link->iso_qos.ucast.cig == cig && 6583 link->state != BT_CONNECTED) { 6584 cig = BT_ISO_QOS_CIG_UNSET; 6585 break; 6586 } 6587 } 6588 6589 if (cig != BT_ISO_QOS_CIG_UNSET) 6590 break; 6591 } 6592 6593 if (cig == BT_ISO_QOS_CIG_UNSET) 6594 goto done; 6595 6596 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6597 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6598 6599 if (hci_conn_check_create_cis(conn) || 6600 conn->iso_qos.ucast.cig != cig) 6601 continue; 6602 6603 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6604 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6605 cis->cis_handle = cpu_to_le16(conn->handle); 6606 cmd.cp.num_cis++; 6607 6608 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6609 break; 6610 } 6611 6612 done: 6613 rcu_read_unlock(); 6614 6615 hci_dev_unlock(hdev); 6616 6617 if (!cmd.cp.num_cis) 6618 return 0; 6619 6620 /* Wait for HCI_LE_CIS_Established */ 6621 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6622 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6623 cmd.cp.num_cis, &cmd, 6624 HCI_EVT_LE_CIS_ESTABLISHED, 6625 conn->conn_timeout, NULL); 6626 } 6627 6628 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6629 { 6630 struct hci_cp_le_remove_cig cp; 6631 6632 memset(&cp, 0, sizeof(cp)); 6633 cp.cig_id = handle; 6634 6635 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6636 &cp, HCI_CMD_TIMEOUT); 6637 } 6638 6639 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6640 { 6641 struct hci_cp_le_big_term_sync cp; 6642 6643 memset(&cp, 0, sizeof(cp)); 6644 cp.handle = handle; 6645 6646 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6647 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6648 } 6649 6650 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6651 { 6652 struct hci_cp_le_pa_term_sync cp; 6653 6654 memset(&cp, 0, sizeof(cp)); 6655 cp.handle = cpu_to_le16(handle); 6656 6657 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6658 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6659 } 6660 6661 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6662 bool use_rpa, struct adv_info *adv_instance, 6663 u8 *own_addr_type, bdaddr_t *rand_addr) 6664 { 6665 int err; 6666 6667 bacpy(rand_addr, BDADDR_ANY); 6668 6669 /* If privacy is enabled use a resolvable private address. If 6670 * current RPA has expired then generate a new one. 6671 */ 6672 if (use_rpa) { 6673 /* If Controller supports LL Privacy use own address type is 6674 * 0x03 6675 */ 6676 if (use_ll_privacy(hdev)) 6677 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6678 else 6679 *own_addr_type = ADDR_LE_DEV_RANDOM; 6680 6681 if (adv_instance) { 6682 if (adv_rpa_valid(adv_instance)) 6683 return 0; 6684 } else { 6685 if (rpa_valid(hdev)) 6686 return 0; 6687 } 6688 6689 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6690 if (err < 0) { 6691 bt_dev_err(hdev, "failed to generate new RPA"); 6692 return err; 6693 } 6694 6695 bacpy(rand_addr, &hdev->rpa); 6696 6697 return 0; 6698 } 6699 6700 /* In case of required privacy without resolvable private address, 6701 * use an non-resolvable private address. This is useful for 6702 * non-connectable advertising. 6703 */ 6704 if (require_privacy) { 6705 bdaddr_t nrpa; 6706 6707 while (true) { 6708 /* The non-resolvable private address is generated 6709 * from random six bytes with the two most significant 6710 * bits cleared. 6711 */ 6712 get_random_bytes(&nrpa, 6); 6713 nrpa.b[5] &= 0x3f; 6714 6715 /* The non-resolvable private address shall not be 6716 * equal to the public address. 6717 */ 6718 if (bacmp(&hdev->bdaddr, &nrpa)) 6719 break; 6720 } 6721 6722 *own_addr_type = ADDR_LE_DEV_RANDOM; 6723 bacpy(rand_addr, &nrpa); 6724 6725 return 0; 6726 } 6727 6728 /* No privacy so use a public address. */ 6729 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6730 6731 return 0; 6732 } 6733 6734 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6735 { 6736 u8 instance = PTR_UINT(data); 6737 6738 return hci_update_adv_data_sync(hdev, instance); 6739 } 6740 6741 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6742 { 6743 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6744 UINT_PTR(instance), NULL); 6745 } 6746 6747 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6748 { 6749 struct hci_conn *conn = data; 6750 struct inquiry_entry *ie; 6751 struct hci_cp_create_conn cp; 6752 int err; 6753 6754 if (!hci_conn_valid(hdev, conn)) 6755 return -ECANCELED; 6756 6757 /* Many controllers disallow HCI Create Connection while it is doing 6758 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6759 * Connection. This may cause the MGMT discovering state to become false 6760 * without user space's request but it is okay since the MGMT Discovery 6761 * APIs do not promise that discovery should be done forever. Instead, 6762 * the user space monitors the status of MGMT discovering and it may 6763 * request for discovery again when this flag becomes false. 6764 */ 6765 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6766 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6767 NULL, HCI_CMD_TIMEOUT); 6768 if (err) 6769 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6770 } 6771 6772 conn->state = BT_CONNECT; 6773 conn->out = true; 6774 conn->role = HCI_ROLE_MASTER; 6775 6776 conn->attempt++; 6777 6778 conn->link_policy = hdev->link_policy; 6779 6780 memset(&cp, 0, sizeof(cp)); 6781 bacpy(&cp.bdaddr, &conn->dst); 6782 cp.pscan_rep_mode = 0x02; 6783 6784 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6785 if (ie) { 6786 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6787 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6788 cp.pscan_mode = ie->data.pscan_mode; 6789 cp.clock_offset = ie->data.clock_offset | 6790 cpu_to_le16(0x8000); 6791 } 6792 6793 memcpy(conn->dev_class, ie->data.dev_class, 3); 6794 } 6795 6796 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6797 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6798 cp.role_switch = 0x01; 6799 else 6800 cp.role_switch = 0x00; 6801 6802 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6803 sizeof(cp), &cp, 6804 HCI_EV_CONN_COMPLETE, 6805 conn->conn_timeout, NULL); 6806 } 6807 6808 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6809 { 6810 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6811 NULL); 6812 } 6813 6814 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6815 { 6816 struct hci_conn *conn = data; 6817 6818 bt_dev_dbg(hdev, "err %d", err); 6819 6820 if (err == -ECANCELED) 6821 return; 6822 6823 hci_dev_lock(hdev); 6824 6825 if (!hci_conn_valid(hdev, conn)) 6826 goto done; 6827 6828 if (!err) { 6829 hci_connect_le_scan_cleanup(conn, 0x00); 6830 goto done; 6831 } 6832 6833 /* Check if connection is still pending */ 6834 if (conn != hci_lookup_le_connect(hdev)) 6835 goto done; 6836 6837 /* Flush to make sure we send create conn cancel command if needed */ 6838 flush_delayed_work(&conn->le_conn_timeout); 6839 hci_conn_failed(conn, bt_status(err)); 6840 6841 done: 6842 hci_dev_unlock(hdev); 6843 } 6844 6845 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6846 { 6847 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6848 create_le_conn_complete); 6849 } 6850 6851 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6852 { 6853 if (conn->state != BT_OPEN) 6854 return -EINVAL; 6855 6856 switch (conn->type) { 6857 case ACL_LINK: 6858 return !hci_cmd_sync_dequeue_once(hdev, 6859 hci_acl_create_conn_sync, 6860 conn, NULL); 6861 case LE_LINK: 6862 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6863 conn, create_le_conn_complete); 6864 } 6865 6866 return -ENOENT; 6867 } 6868