xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_codec.h"
16 #include "hci_debugfs.h"
17 #include "smp.h"
18 #include "eir.h"
19 #include "msft.h"
20 #include "aosp.h"
21 #include "leds.h"
22 
23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24 				  struct sk_buff *skb)
25 {
26 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
27 
28 	if (hdev->req_status != HCI_REQ_PEND)
29 		return;
30 
31 	hdev->req_result = result;
32 	hdev->req_status = HCI_REQ_DONE;
33 
34 	if (skb) {
35 		struct sock *sk = hci_skb_sk(skb);
36 
37 		/* Drop sk reference if set */
38 		if (sk)
39 			sock_put(sk);
40 
41 		hdev->req_skb = skb_get(skb);
42 	}
43 
44 	wake_up_interruptible(&hdev->req_wait_q);
45 }
46 
47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
48 					  u32 plen, const void *param,
49 					  struct sock *sk)
50 {
51 	int len = HCI_COMMAND_HDR_SIZE + plen;
52 	struct hci_command_hdr *hdr;
53 	struct sk_buff *skb;
54 
55 	skb = bt_skb_alloc(len, GFP_ATOMIC);
56 	if (!skb)
57 		return NULL;
58 
59 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
60 	hdr->opcode = cpu_to_le16(opcode);
61 	hdr->plen   = plen;
62 
63 	if (plen)
64 		skb_put_data(skb, param, plen);
65 
66 	bt_dev_dbg(hdev, "skb len %d", skb->len);
67 
68 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
69 	hci_skb_opcode(skb) = opcode;
70 
71 	/* Grab a reference if command needs to be associated with a sock (e.g.
72 	 * likely mgmt socket that initiated the command).
73 	 */
74 	if (sk) {
75 		hci_skb_sk(skb) = sk;
76 		sock_hold(sk);
77 	}
78 
79 	return skb;
80 }
81 
82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
83 			     const void *param, u8 event, struct sock *sk)
84 {
85 	struct hci_dev *hdev = req->hdev;
86 	struct sk_buff *skb;
87 
88 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
89 
90 	/* If an error occurred during request building, there is no point in
91 	 * queueing the HCI command. We can simply return.
92 	 */
93 	if (req->err)
94 		return;
95 
96 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
97 	if (!skb) {
98 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
99 			   opcode);
100 		req->err = -ENOMEM;
101 		return;
102 	}
103 
104 	if (skb_queue_empty(&req->cmd_q))
105 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
106 
107 	hci_skb_event(skb) = event;
108 
109 	skb_queue_tail(&req->cmd_q, skb);
110 }
111 
112 static int hci_cmd_sync_run(struct hci_request *req)
113 {
114 	struct hci_dev *hdev = req->hdev;
115 	struct sk_buff *skb;
116 	unsigned long flags;
117 
118 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
119 
120 	/* If an error occurred during request building, remove all HCI
121 	 * commands queued on the HCI request queue.
122 	 */
123 	if (req->err) {
124 		skb_queue_purge(&req->cmd_q);
125 		return req->err;
126 	}
127 
128 	/* Do not allow empty requests */
129 	if (skb_queue_empty(&req->cmd_q))
130 		return -ENODATA;
131 
132 	skb = skb_peek_tail(&req->cmd_q);
133 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
134 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
135 
136 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
137 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
138 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
139 
140 	queue_work(hdev->workqueue, &hdev->cmd_work);
141 
142 	return 0;
143 }
144 
145 /* This function requires the caller holds hdev->req_lock. */
146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
147 				  const void *param, u8 event, u32 timeout,
148 				  struct sock *sk)
149 {
150 	struct hci_request req;
151 	struct sk_buff *skb;
152 	int err = 0;
153 
154 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
155 
156 	hci_req_init(&req, hdev);
157 
158 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
159 
160 	hdev->req_status = HCI_REQ_PEND;
161 
162 	err = hci_cmd_sync_run(&req);
163 	if (err < 0)
164 		return ERR_PTR(err);
165 
166 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
167 					       hdev->req_status != HCI_REQ_PEND,
168 					       timeout);
169 
170 	if (err == -ERESTARTSYS)
171 		return ERR_PTR(-EINTR);
172 
173 	switch (hdev->req_status) {
174 	case HCI_REQ_DONE:
175 		err = -bt_to_errno(hdev->req_result);
176 		break;
177 
178 	case HCI_REQ_CANCELED:
179 		err = -hdev->req_result;
180 		break;
181 
182 	default:
183 		err = -ETIMEDOUT;
184 		break;
185 	}
186 
187 	hdev->req_status = 0;
188 	hdev->req_result = 0;
189 	skb = hdev->req_skb;
190 	hdev->req_skb = NULL;
191 
192 	bt_dev_dbg(hdev, "end: err %d", err);
193 
194 	if (err < 0) {
195 		kfree_skb(skb);
196 		return ERR_PTR(err);
197 	}
198 
199 	return skb;
200 }
201 EXPORT_SYMBOL(__hci_cmd_sync_sk);
202 
203 /* This function requires the caller holds hdev->req_lock. */
204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
205 			       const void *param, u32 timeout)
206 {
207 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
208 }
209 EXPORT_SYMBOL(__hci_cmd_sync);
210 
211 /* Send HCI command and wait for command complete event */
212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
213 			     const void *param, u32 timeout)
214 {
215 	struct sk_buff *skb;
216 
217 	if (!test_bit(HCI_UP, &hdev->flags))
218 		return ERR_PTR(-ENETDOWN);
219 
220 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
221 
222 	hci_req_sync_lock(hdev);
223 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
224 	hci_req_sync_unlock(hdev);
225 
226 	return skb;
227 }
228 EXPORT_SYMBOL(hci_cmd_sync);
229 
230 /* This function requires the caller holds hdev->req_lock. */
231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
232 				  const void *param, u8 event, u32 timeout)
233 {
234 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
235 				 NULL);
236 }
237 EXPORT_SYMBOL(__hci_cmd_sync_ev);
238 
239 /* This function requires the caller holds hdev->req_lock. */
240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
241 			     const void *param, u8 event, u32 timeout,
242 			     struct sock *sk)
243 {
244 	struct sk_buff *skb;
245 	u8 status;
246 
247 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
248 	if (IS_ERR(skb)) {
249 		if (!event)
250 			bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
251 				   PTR_ERR(skb));
252 		return PTR_ERR(skb);
253 	}
254 
255 	/* If command return a status event skb will be set to NULL as there are
256 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
257 	 * the actual error would be found with PTR_ERR(skb).
258 	 */
259 	if (!skb)
260 		return 0;
261 
262 	status = skb->data[0];
263 
264 	kfree_skb(skb);
265 
266 	return status;
267 }
268 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
269 
270 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
271 			  const void *param, u32 timeout)
272 {
273 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
274 					NULL);
275 }
276 EXPORT_SYMBOL(__hci_cmd_sync_status);
277 
278 static void hci_cmd_sync_work(struct work_struct *work)
279 {
280 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
281 
282 	bt_dev_dbg(hdev, "");
283 
284 	/* Dequeue all entries and run them */
285 	while (1) {
286 		struct hci_cmd_sync_work_entry *entry;
287 
288 		mutex_lock(&hdev->cmd_sync_work_lock);
289 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
290 						 struct hci_cmd_sync_work_entry,
291 						 list);
292 		if (entry)
293 			list_del(&entry->list);
294 		mutex_unlock(&hdev->cmd_sync_work_lock);
295 
296 		if (!entry)
297 			break;
298 
299 		bt_dev_dbg(hdev, "entry %p", entry);
300 
301 		if (entry->func) {
302 			int err;
303 
304 			hci_req_sync_lock(hdev);
305 			err = entry->func(hdev, entry->data);
306 			if (entry->destroy)
307 				entry->destroy(hdev, entry->data, err);
308 			hci_req_sync_unlock(hdev);
309 		}
310 
311 		kfree(entry);
312 	}
313 }
314 
315 static void hci_cmd_sync_cancel_work(struct work_struct *work)
316 {
317 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
318 
319 	cancel_delayed_work_sync(&hdev->cmd_timer);
320 	cancel_delayed_work_sync(&hdev->ncmd_timer);
321 	atomic_set(&hdev->cmd_cnt, 1);
322 
323 	wake_up_interruptible(&hdev->req_wait_q);
324 }
325 
326 static int hci_scan_disable_sync(struct hci_dev *hdev);
327 static int scan_disable_sync(struct hci_dev *hdev, void *data)
328 {
329 	return hci_scan_disable_sync(hdev);
330 }
331 
332 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
333 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
334 {
335 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
336 }
337 
338 static void le_scan_disable(struct work_struct *work)
339 {
340 	struct hci_dev *hdev = container_of(work, struct hci_dev,
341 					    le_scan_disable.work);
342 	int status;
343 
344 	bt_dev_dbg(hdev, "");
345 	hci_dev_lock(hdev);
346 
347 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
348 		goto _return;
349 
350 	cancel_delayed_work(&hdev->le_scan_restart);
351 
352 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
353 	if (status) {
354 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
355 		goto _return;
356 	}
357 
358 	hdev->discovery.scan_start = 0;
359 
360 	/* If we were running LE only scan, change discovery state. If
361 	 * we were running both LE and BR/EDR inquiry simultaneously,
362 	 * and BR/EDR inquiry is already finished, stop discovery,
363 	 * otherwise BR/EDR inquiry will stop discovery when finished.
364 	 * If we will resolve remote device name, do not change
365 	 * discovery state.
366 	 */
367 
368 	if (hdev->discovery.type == DISCOV_TYPE_LE)
369 		goto discov_stopped;
370 
371 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
372 		goto _return;
373 
374 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
375 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
376 		    hdev->discovery.state != DISCOVERY_RESOLVING)
377 			goto discov_stopped;
378 
379 		goto _return;
380 	}
381 
382 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
383 	if (status) {
384 		bt_dev_err(hdev, "inquiry failed: status %d", status);
385 		goto discov_stopped;
386 	}
387 
388 	goto _return;
389 
390 discov_stopped:
391 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
392 
393 _return:
394 	hci_dev_unlock(hdev);
395 }
396 
397 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
398 				       u8 filter_dup);
399 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
400 {
401 	/* If controller is not scanning we are done. */
402 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
403 		return 0;
404 
405 	if (hdev->scanning_paused) {
406 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
407 		return 0;
408 	}
409 
410 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
411 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
412 					   LE_SCAN_FILTER_DUP_ENABLE);
413 }
414 
415 static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
416 {
417 	return hci_le_scan_restart_sync(hdev);
418 }
419 
420 static void le_scan_restart(struct work_struct *work)
421 {
422 	struct hci_dev *hdev = container_of(work, struct hci_dev,
423 					    le_scan_restart.work);
424 	unsigned long timeout, duration, scan_start, now;
425 	int status;
426 
427 	bt_dev_dbg(hdev, "");
428 
429 	hci_dev_lock(hdev);
430 
431 	status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
432 	if (status) {
433 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
434 			   status);
435 		goto unlock;
436 	}
437 
438 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
439 	    !hdev->discovery.scan_start)
440 		goto unlock;
441 
442 	/* When the scan was started, hdev->le_scan_disable has been queued
443 	 * after duration from scan_start. During scan restart this job
444 	 * has been canceled, and we need to queue it again after proper
445 	 * timeout, to make sure that scan does not run indefinitely.
446 	 */
447 	duration = hdev->discovery.scan_duration;
448 	scan_start = hdev->discovery.scan_start;
449 	now = jiffies;
450 	if (now - scan_start <= duration) {
451 		int elapsed;
452 
453 		if (now >= scan_start)
454 			elapsed = now - scan_start;
455 		else
456 			elapsed = ULONG_MAX - scan_start + now;
457 
458 		timeout = duration - elapsed;
459 	} else {
460 		timeout = 0;
461 	}
462 
463 	queue_delayed_work(hdev->req_workqueue,
464 			   &hdev->le_scan_disable, timeout);
465 
466 unlock:
467 	hci_dev_unlock(hdev);
468 }
469 
470 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
471 {
472 	bt_dev_dbg(hdev, "");
473 
474 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
475 	    list_empty(&hdev->adv_instances))
476 		return 0;
477 
478 	if (hdev->cur_adv_instance) {
479 		return hci_schedule_adv_instance_sync(hdev,
480 						      hdev->cur_adv_instance,
481 						      true);
482 	} else {
483 		if (ext_adv_capable(hdev)) {
484 			hci_start_ext_adv_sync(hdev, 0x00);
485 		} else {
486 			hci_update_adv_data_sync(hdev, 0x00);
487 			hci_update_scan_rsp_data_sync(hdev, 0x00);
488 			hci_enable_advertising_sync(hdev);
489 		}
490 	}
491 
492 	return 0;
493 }
494 
495 static void reenable_adv(struct work_struct *work)
496 {
497 	struct hci_dev *hdev = container_of(work, struct hci_dev,
498 					    reenable_adv_work);
499 	int status;
500 
501 	bt_dev_dbg(hdev, "");
502 
503 	hci_dev_lock(hdev);
504 
505 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
506 	if (status)
507 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
508 
509 	hci_dev_unlock(hdev);
510 }
511 
512 static void cancel_adv_timeout(struct hci_dev *hdev)
513 {
514 	if (hdev->adv_instance_timeout) {
515 		hdev->adv_instance_timeout = 0;
516 		cancel_delayed_work(&hdev->adv_instance_expire);
517 	}
518 }
519 
520 /* For a single instance:
521  * - force == true: The instance will be removed even when its remaining
522  *   lifetime is not zero.
523  * - force == false: the instance will be deactivated but kept stored unless
524  *   the remaining lifetime is zero.
525  *
526  * For instance == 0x00:
527  * - force == true: All instances will be removed regardless of their timeout
528  *   setting.
529  * - force == false: Only instances that have a timeout will be removed.
530  */
531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
532 				u8 instance, bool force)
533 {
534 	struct adv_info *adv_instance, *n, *next_instance = NULL;
535 	int err;
536 	u8 rem_inst;
537 
538 	/* Cancel any timeout concerning the removed instance(s). */
539 	if (!instance || hdev->cur_adv_instance == instance)
540 		cancel_adv_timeout(hdev);
541 
542 	/* Get the next instance to advertise BEFORE we remove
543 	 * the current one. This can be the same instance again
544 	 * if there is only one instance.
545 	 */
546 	if (instance && hdev->cur_adv_instance == instance)
547 		next_instance = hci_get_next_instance(hdev, instance);
548 
549 	if (instance == 0x00) {
550 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
551 					 list) {
552 			if (!(force || adv_instance->timeout))
553 				continue;
554 
555 			rem_inst = adv_instance->instance;
556 			err = hci_remove_adv_instance(hdev, rem_inst);
557 			if (!err)
558 				mgmt_advertising_removed(sk, hdev, rem_inst);
559 		}
560 	} else {
561 		adv_instance = hci_find_adv_instance(hdev, instance);
562 
563 		if (force || (adv_instance && adv_instance->timeout &&
564 			      !adv_instance->remaining_time)) {
565 			/* Don't advertise a removed instance. */
566 			if (next_instance &&
567 			    next_instance->instance == instance)
568 				next_instance = NULL;
569 
570 			err = hci_remove_adv_instance(hdev, instance);
571 			if (!err)
572 				mgmt_advertising_removed(sk, hdev, instance);
573 		}
574 	}
575 
576 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
577 		return 0;
578 
579 	if (next_instance && !ext_adv_capable(hdev))
580 		return hci_schedule_adv_instance_sync(hdev,
581 						      next_instance->instance,
582 						      false);
583 
584 	return 0;
585 }
586 
587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
588 {
589 	u8 instance = *(u8 *)data;
590 
591 	kfree(data);
592 
593 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
594 
595 	if (list_empty(&hdev->adv_instances))
596 		return hci_disable_advertising_sync(hdev);
597 
598 	return 0;
599 }
600 
601 static void adv_timeout_expire(struct work_struct *work)
602 {
603 	u8 *inst_ptr;
604 	struct hci_dev *hdev = container_of(work, struct hci_dev,
605 					    adv_instance_expire.work);
606 
607 	bt_dev_dbg(hdev, "");
608 
609 	hci_dev_lock(hdev);
610 
611 	hdev->adv_instance_timeout = 0;
612 
613 	if (hdev->cur_adv_instance == 0x00)
614 		goto unlock;
615 
616 	inst_ptr = kmalloc(1, GFP_KERNEL);
617 	if (!inst_ptr)
618 		goto unlock;
619 
620 	*inst_ptr = hdev->cur_adv_instance;
621 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
622 
623 unlock:
624 	hci_dev_unlock(hdev);
625 }
626 
627 void hci_cmd_sync_init(struct hci_dev *hdev)
628 {
629 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
630 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
631 	mutex_init(&hdev->cmd_sync_work_lock);
632 	mutex_init(&hdev->unregister_lock);
633 
634 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
635 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
636 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
637 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
638 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
639 }
640 
641 void hci_cmd_sync_clear(struct hci_dev *hdev)
642 {
643 	struct hci_cmd_sync_work_entry *entry, *tmp;
644 
645 	cancel_work_sync(&hdev->cmd_sync_work);
646 	cancel_work_sync(&hdev->reenable_adv_work);
647 
648 	mutex_lock(&hdev->cmd_sync_work_lock);
649 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
650 		if (entry->destroy)
651 			entry->destroy(hdev, entry->data, -ECANCELED);
652 
653 		list_del(&entry->list);
654 		kfree(entry);
655 	}
656 	mutex_unlock(&hdev->cmd_sync_work_lock);
657 }
658 
659 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
660 {
661 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
662 
663 	if (hdev->req_status == HCI_REQ_PEND) {
664 		hdev->req_result = err;
665 		hdev->req_status = HCI_REQ_CANCELED;
666 
667 		cancel_delayed_work_sync(&hdev->cmd_timer);
668 		cancel_delayed_work_sync(&hdev->ncmd_timer);
669 		atomic_set(&hdev->cmd_cnt, 1);
670 
671 		wake_up_interruptible(&hdev->req_wait_q);
672 	}
673 }
674 
675 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
676 {
677 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
678 
679 	if (hdev->req_status == HCI_REQ_PEND) {
680 		hdev->req_result = err;
681 		hdev->req_status = HCI_REQ_CANCELED;
682 
683 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
684 	}
685 }
686 EXPORT_SYMBOL(hci_cmd_sync_cancel);
687 
688 /* Submit HCI command to be run in as cmd_sync_work:
689  *
690  * - hdev must _not_ be unregistered
691  */
692 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
693 			void *data, hci_cmd_sync_work_destroy_t destroy)
694 {
695 	struct hci_cmd_sync_work_entry *entry;
696 	int err = 0;
697 
698 	mutex_lock(&hdev->unregister_lock);
699 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
700 		err = -ENODEV;
701 		goto unlock;
702 	}
703 
704 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
705 	if (!entry) {
706 		err = -ENOMEM;
707 		goto unlock;
708 	}
709 	entry->func = func;
710 	entry->data = data;
711 	entry->destroy = destroy;
712 
713 	mutex_lock(&hdev->cmd_sync_work_lock);
714 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
715 	mutex_unlock(&hdev->cmd_sync_work_lock);
716 
717 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
718 
719 unlock:
720 	mutex_unlock(&hdev->unregister_lock);
721 	return err;
722 }
723 EXPORT_SYMBOL(hci_cmd_sync_submit);
724 
725 /* Queue HCI command:
726  *
727  * - hdev must be running
728  */
729 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
730 		       void *data, hci_cmd_sync_work_destroy_t destroy)
731 {
732 	/* Only queue command if hdev is running which means it had been opened
733 	 * and is either on init phase or is already up.
734 	 */
735 	if (!test_bit(HCI_RUNNING, &hdev->flags))
736 		return -ENETDOWN;
737 
738 	return hci_cmd_sync_submit(hdev, func, data, destroy);
739 }
740 EXPORT_SYMBOL(hci_cmd_sync_queue);
741 
742 int hci_update_eir_sync(struct hci_dev *hdev)
743 {
744 	struct hci_cp_write_eir cp;
745 
746 	bt_dev_dbg(hdev, "");
747 
748 	if (!hdev_is_powered(hdev))
749 		return 0;
750 
751 	if (!lmp_ext_inq_capable(hdev))
752 		return 0;
753 
754 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
755 		return 0;
756 
757 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
758 		return 0;
759 
760 	memset(&cp, 0, sizeof(cp));
761 
762 	eir_create(hdev, cp.data);
763 
764 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
765 		return 0;
766 
767 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
768 
769 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
770 				     HCI_CMD_TIMEOUT);
771 }
772 
773 static u8 get_service_classes(struct hci_dev *hdev)
774 {
775 	struct bt_uuid *uuid;
776 	u8 val = 0;
777 
778 	list_for_each_entry(uuid, &hdev->uuids, list)
779 		val |= uuid->svc_hint;
780 
781 	return val;
782 }
783 
784 int hci_update_class_sync(struct hci_dev *hdev)
785 {
786 	u8 cod[3];
787 
788 	bt_dev_dbg(hdev, "");
789 
790 	if (!hdev_is_powered(hdev))
791 		return 0;
792 
793 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
794 		return 0;
795 
796 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
797 		return 0;
798 
799 	cod[0] = hdev->minor_class;
800 	cod[1] = hdev->major_class;
801 	cod[2] = get_service_classes(hdev);
802 
803 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
804 		cod[1] |= 0x20;
805 
806 	if (memcmp(cod, hdev->dev_class, 3) == 0)
807 		return 0;
808 
809 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
810 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
811 }
812 
813 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
814 {
815 	/* If there is no connection we are OK to advertise. */
816 	if (hci_conn_num(hdev, LE_LINK) == 0)
817 		return true;
818 
819 	/* Check le_states if there is any connection in peripheral role. */
820 	if (hdev->conn_hash.le_num_peripheral > 0) {
821 		/* Peripheral connection state and non connectable mode
822 		 * bit 20.
823 		 */
824 		if (!connectable && !(hdev->le_states[2] & 0x10))
825 			return false;
826 
827 		/* Peripheral connection state and connectable mode bit 38
828 		 * and scannable bit 21.
829 		 */
830 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
831 				    !(hdev->le_states[2] & 0x20)))
832 			return false;
833 	}
834 
835 	/* Check le_states if there is any connection in central role. */
836 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
837 		/* Central connection state and non connectable mode bit 18. */
838 		if (!connectable && !(hdev->le_states[2] & 0x02))
839 			return false;
840 
841 		/* Central connection state and connectable mode bit 35 and
842 		 * scannable 19.
843 		 */
844 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
845 				    !(hdev->le_states[2] & 0x08)))
846 			return false;
847 	}
848 
849 	return true;
850 }
851 
852 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
853 {
854 	/* If privacy is not enabled don't use RPA */
855 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
856 		return false;
857 
858 	/* If basic privacy mode is enabled use RPA */
859 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
860 		return true;
861 
862 	/* If limited privacy mode is enabled don't use RPA if we're
863 	 * both discoverable and bondable.
864 	 */
865 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
866 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
867 		return false;
868 
869 	/* We're neither bondable nor discoverable in the limited
870 	 * privacy mode, therefore use RPA.
871 	 */
872 	return true;
873 }
874 
875 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
876 {
877 	/* If we're advertising or initiating an LE connection we can't
878 	 * go ahead and change the random address at this time. This is
879 	 * because the eventual initiator address used for the
880 	 * subsequently created connection will be undefined (some
881 	 * controllers use the new address and others the one we had
882 	 * when the operation started).
883 	 *
884 	 * In this kind of scenario skip the update and let the random
885 	 * address be updated at the next cycle.
886 	 */
887 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
888 	    hci_lookup_le_connect(hdev)) {
889 		bt_dev_dbg(hdev, "Deferring random address update");
890 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
891 		return 0;
892 	}
893 
894 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
895 				     6, rpa, HCI_CMD_TIMEOUT);
896 }
897 
898 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
899 				   bool rpa, u8 *own_addr_type)
900 {
901 	int err;
902 
903 	/* If privacy is enabled use a resolvable private address. If
904 	 * current RPA has expired or there is something else than
905 	 * the current RPA in use, then generate a new one.
906 	 */
907 	if (rpa) {
908 		/* If Controller supports LL Privacy use own address type is
909 		 * 0x03
910 		 */
911 		if (use_ll_privacy(hdev))
912 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
913 		else
914 			*own_addr_type = ADDR_LE_DEV_RANDOM;
915 
916 		/* Check if RPA is valid */
917 		if (rpa_valid(hdev))
918 			return 0;
919 
920 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
921 		if (err < 0) {
922 			bt_dev_err(hdev, "failed to generate new RPA");
923 			return err;
924 		}
925 
926 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
927 		if (err)
928 			return err;
929 
930 		return 0;
931 	}
932 
933 	/* In case of required privacy without resolvable private address,
934 	 * use an non-resolvable private address. This is useful for active
935 	 * scanning and non-connectable advertising.
936 	 */
937 	if (require_privacy) {
938 		bdaddr_t nrpa;
939 
940 		while (true) {
941 			/* The non-resolvable private address is generated
942 			 * from random six bytes with the two most significant
943 			 * bits cleared.
944 			 */
945 			get_random_bytes(&nrpa, 6);
946 			nrpa.b[5] &= 0x3f;
947 
948 			/* The non-resolvable private address shall not be
949 			 * equal to the public address.
950 			 */
951 			if (bacmp(&hdev->bdaddr, &nrpa))
952 				break;
953 		}
954 
955 		*own_addr_type = ADDR_LE_DEV_RANDOM;
956 
957 		return hci_set_random_addr_sync(hdev, &nrpa);
958 	}
959 
960 	/* If forcing static address is in use or there is no public
961 	 * address use the static address as random address (but skip
962 	 * the HCI command if the current random address is already the
963 	 * static one.
964 	 *
965 	 * In case BR/EDR has been disabled on a dual-mode controller
966 	 * and a static address has been configured, then use that
967 	 * address instead of the public BR/EDR address.
968 	 */
969 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
970 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
971 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
972 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
973 		*own_addr_type = ADDR_LE_DEV_RANDOM;
974 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
975 			return hci_set_random_addr_sync(hdev,
976 							&hdev->static_addr);
977 		return 0;
978 	}
979 
980 	/* Neither privacy nor static address is being used so use a
981 	 * public address.
982 	 */
983 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
984 
985 	return 0;
986 }
987 
988 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
989 {
990 	struct hci_cp_le_set_ext_adv_enable *cp;
991 	struct hci_cp_ext_adv_set *set;
992 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
993 	u8 size;
994 
995 	/* If request specifies an instance that doesn't exist, fail */
996 	if (instance > 0) {
997 		struct adv_info *adv;
998 
999 		adv = hci_find_adv_instance(hdev, instance);
1000 		if (!adv)
1001 			return -EINVAL;
1002 
1003 		/* If not enabled there is nothing to do */
1004 		if (!adv->enabled)
1005 			return 0;
1006 	}
1007 
1008 	memset(data, 0, sizeof(data));
1009 
1010 	cp = (void *)data;
1011 	set = (void *)cp->data;
1012 
1013 	/* Instance 0x00 indicates all advertising instances will be disabled */
1014 	cp->num_of_sets = !!instance;
1015 	cp->enable = 0x00;
1016 
1017 	set->handle = instance;
1018 
1019 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1020 
1021 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1022 				     size, data, HCI_CMD_TIMEOUT);
1023 }
1024 
1025 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1026 					    bdaddr_t *random_addr)
1027 {
1028 	struct hci_cp_le_set_adv_set_rand_addr cp;
1029 	int err;
1030 
1031 	if (!instance) {
1032 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1033 		 * hdev->random_addr to track its address so whenever it needs
1034 		 * to be updated this also set the random address since
1035 		 * hdev->random_addr is shared with scan state machine.
1036 		 */
1037 		err = hci_set_random_addr_sync(hdev, random_addr);
1038 		if (err)
1039 			return err;
1040 	}
1041 
1042 	memset(&cp, 0, sizeof(cp));
1043 
1044 	cp.handle = instance;
1045 	bacpy(&cp.bdaddr, random_addr);
1046 
1047 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1048 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1049 }
1050 
1051 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1052 {
1053 	struct hci_cp_le_set_ext_adv_params cp;
1054 	bool connectable;
1055 	u32 flags;
1056 	bdaddr_t random_addr;
1057 	u8 own_addr_type;
1058 	int err;
1059 	struct adv_info *adv;
1060 	bool secondary_adv;
1061 
1062 	if (instance > 0) {
1063 		adv = hci_find_adv_instance(hdev, instance);
1064 		if (!adv)
1065 			return -EINVAL;
1066 	} else {
1067 		adv = NULL;
1068 	}
1069 
1070 	/* Updating parameters of an active instance will return a
1071 	 * Command Disallowed error, so we must first disable the
1072 	 * instance if it is active.
1073 	 */
1074 	if (adv && !adv->pending) {
1075 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1076 		if (err)
1077 			return err;
1078 	}
1079 
1080 	flags = hci_adv_instance_flags(hdev, instance);
1081 
1082 	/* If the "connectable" instance flag was not set, then choose between
1083 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1084 	 */
1085 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1086 		      mgmt_get_connectable(hdev);
1087 
1088 	if (!is_advertising_allowed(hdev, connectable))
1089 		return -EPERM;
1090 
1091 	/* Set require_privacy to true only when non-connectable
1092 	 * advertising is used. In that case it is fine to use a
1093 	 * non-resolvable private address.
1094 	 */
1095 	err = hci_get_random_address(hdev, !connectable,
1096 				     adv_use_rpa(hdev, flags), adv,
1097 				     &own_addr_type, &random_addr);
1098 	if (err < 0)
1099 		return err;
1100 
1101 	memset(&cp, 0, sizeof(cp));
1102 
1103 	if (adv) {
1104 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1105 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1106 		cp.tx_power = adv->tx_power;
1107 	} else {
1108 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1109 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1110 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1111 	}
1112 
1113 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1114 
1115 	if (connectable) {
1116 		if (secondary_adv)
1117 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1118 		else
1119 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1120 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1121 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1122 		if (secondary_adv)
1123 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1124 		else
1125 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1126 	} else {
1127 		if (secondary_adv)
1128 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1129 		else
1130 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1131 	}
1132 
1133 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1134 	 * contains the peer’s Identity Address and the Peer_Address_Type
1135 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1136 	 * These parameters are used to locate the corresponding local IRK in
1137 	 * the resolving list; this IRK is used to generate their own address
1138 	 * used in the advertisement.
1139 	 */
1140 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1141 		hci_copy_identity_address(hdev, &cp.peer_addr,
1142 					  &cp.peer_addr_type);
1143 
1144 	cp.own_addr_type = own_addr_type;
1145 	cp.channel_map = hdev->le_adv_channel_map;
1146 	cp.handle = instance;
1147 
1148 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1149 		cp.primary_phy = HCI_ADV_PHY_1M;
1150 		cp.secondary_phy = HCI_ADV_PHY_2M;
1151 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1152 		cp.primary_phy = HCI_ADV_PHY_CODED;
1153 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1154 	} else {
1155 		/* In all other cases use 1M */
1156 		cp.primary_phy = HCI_ADV_PHY_1M;
1157 		cp.secondary_phy = HCI_ADV_PHY_1M;
1158 	}
1159 
1160 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1161 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1162 	if (err)
1163 		return err;
1164 
1165 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1166 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1167 	    bacmp(&random_addr, BDADDR_ANY)) {
1168 		/* Check if random address need to be updated */
1169 		if (adv) {
1170 			if (!bacmp(&random_addr, &adv->random_addr))
1171 				return 0;
1172 		} else {
1173 			if (!bacmp(&random_addr, &hdev->random_addr))
1174 				return 0;
1175 		}
1176 
1177 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1178 							&random_addr);
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1185 {
1186 	struct {
1187 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1188 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1189 	} pdu;
1190 	u8 len;
1191 	struct adv_info *adv = NULL;
1192 	int err;
1193 
1194 	memset(&pdu, 0, sizeof(pdu));
1195 
1196 	if (instance) {
1197 		adv = hci_find_adv_instance(hdev, instance);
1198 		if (!adv || !adv->scan_rsp_changed)
1199 			return 0;
1200 	}
1201 
1202 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1203 
1204 	pdu.cp.handle = instance;
1205 	pdu.cp.length = len;
1206 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1207 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1208 
1209 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1210 				    sizeof(pdu.cp) + len, &pdu.cp,
1211 				    HCI_CMD_TIMEOUT);
1212 	if (err)
1213 		return err;
1214 
1215 	if (adv) {
1216 		adv->scan_rsp_changed = false;
1217 	} else {
1218 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1219 		hdev->scan_rsp_data_len = len;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1226 {
1227 	struct hci_cp_le_set_scan_rsp_data cp;
1228 	u8 len;
1229 
1230 	memset(&cp, 0, sizeof(cp));
1231 
1232 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1233 
1234 	if (hdev->scan_rsp_data_len == len &&
1235 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1236 		return 0;
1237 
1238 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1239 	hdev->scan_rsp_data_len = len;
1240 
1241 	cp.length = len;
1242 
1243 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1244 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1245 }
1246 
1247 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1248 {
1249 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1250 		return 0;
1251 
1252 	if (ext_adv_capable(hdev))
1253 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1254 
1255 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1256 }
1257 
1258 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1259 {
1260 	struct hci_cp_le_set_ext_adv_enable *cp;
1261 	struct hci_cp_ext_adv_set *set;
1262 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1263 	struct adv_info *adv;
1264 
1265 	if (instance > 0) {
1266 		adv = hci_find_adv_instance(hdev, instance);
1267 		if (!adv)
1268 			return -EINVAL;
1269 		/* If already enabled there is nothing to do */
1270 		if (adv->enabled)
1271 			return 0;
1272 	} else {
1273 		adv = NULL;
1274 	}
1275 
1276 	cp = (void *)data;
1277 	set = (void *)cp->data;
1278 
1279 	memset(cp, 0, sizeof(*cp));
1280 
1281 	cp->enable = 0x01;
1282 	cp->num_of_sets = 0x01;
1283 
1284 	memset(set, 0, sizeof(*set));
1285 
1286 	set->handle = instance;
1287 
1288 	/* Set duration per instance since controller is responsible for
1289 	 * scheduling it.
1290 	 */
1291 	if (adv && adv->timeout) {
1292 		u16 duration = adv->timeout * MSEC_PER_SEC;
1293 
1294 		/* Time = N * 10 ms */
1295 		set->duration = cpu_to_le16(duration / 10);
1296 	}
1297 
1298 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1299 				     sizeof(*cp) +
1300 				     sizeof(*set) * cp->num_of_sets,
1301 				     data, HCI_CMD_TIMEOUT);
1302 }
1303 
1304 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1305 {
1306 	int err;
1307 
1308 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1309 	if (err)
1310 		return err;
1311 
1312 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1313 	if (err)
1314 		return err;
1315 
1316 	return hci_enable_ext_advertising_sync(hdev, instance);
1317 }
1318 
1319 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1320 {
1321 	struct hci_cp_le_set_per_adv_enable cp;
1322 
1323 	/* If periodic advertising already disabled there is nothing to do. */
1324 	if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1325 		return 0;
1326 
1327 	memset(&cp, 0, sizeof(cp));
1328 
1329 	cp.enable = 0x00;
1330 	cp.handle = instance;
1331 
1332 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1333 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1334 }
1335 
1336 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1337 				       u16 min_interval, u16 max_interval)
1338 {
1339 	struct hci_cp_le_set_per_adv_params cp;
1340 
1341 	memset(&cp, 0, sizeof(cp));
1342 
1343 	if (!min_interval)
1344 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1345 
1346 	if (!max_interval)
1347 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1348 
1349 	cp.handle = instance;
1350 	cp.min_interval = cpu_to_le16(min_interval);
1351 	cp.max_interval = cpu_to_le16(max_interval);
1352 	cp.periodic_properties = 0x0000;
1353 
1354 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1355 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1356 }
1357 
1358 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1359 {
1360 	struct {
1361 		struct hci_cp_le_set_per_adv_data cp;
1362 		u8 data[HCI_MAX_PER_AD_LENGTH];
1363 	} pdu;
1364 	u8 len;
1365 
1366 	memset(&pdu, 0, sizeof(pdu));
1367 
1368 	if (instance) {
1369 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1370 
1371 		if (!adv || !adv->periodic)
1372 			return 0;
1373 	}
1374 
1375 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1376 
1377 	pdu.cp.length = len;
1378 	pdu.cp.handle = instance;
1379 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1380 
1381 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1382 				     sizeof(pdu.cp) + len, &pdu,
1383 				     HCI_CMD_TIMEOUT);
1384 }
1385 
1386 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1387 {
1388 	struct hci_cp_le_set_per_adv_enable cp;
1389 
1390 	/* If periodic advertising already enabled there is nothing to do. */
1391 	if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1392 		return 0;
1393 
1394 	memset(&cp, 0, sizeof(cp));
1395 
1396 	cp.enable = 0x01;
1397 	cp.handle = instance;
1398 
1399 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1400 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1401 }
1402 
1403 /* Checks if periodic advertising data contains a Basic Announcement and if it
1404  * does generates a Broadcast ID and add Broadcast Announcement.
1405  */
1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1407 {
1408 	u8 bid[3];
1409 	u8 ad[4 + 3];
1410 
1411 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1412 	 * advertising so it cannot used for the likes of Broadcast Announcement
1413 	 * as it can be overwritten at any point.
1414 	 */
1415 	if (!adv)
1416 		return 0;
1417 
1418 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1419 	 * there is nothing to do.
1420 	 */
1421 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1422 				  0x1851, NULL))
1423 		return 0;
1424 
1425 	/* Check if advertising data already has a Broadcast Announcement since
1426 	 * the process may want to control the Broadcast ID directly and in that
1427 	 * case the kernel shall no interfere.
1428 	 */
1429 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1430 				 NULL))
1431 		return 0;
1432 
1433 	/* Generate Broadcast ID */
1434 	get_random_bytes(bid, sizeof(bid));
1435 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1436 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1437 
1438 	return hci_update_adv_data_sync(hdev, adv->instance);
1439 }
1440 
1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1442 			   u8 *data, u32 flags, u16 min_interval,
1443 			   u16 max_interval, u16 sync_interval)
1444 {
1445 	struct adv_info *adv = NULL;
1446 	int err;
1447 	bool added = false;
1448 
1449 	hci_disable_per_advertising_sync(hdev, instance);
1450 
1451 	if (instance) {
1452 		adv = hci_find_adv_instance(hdev, instance);
1453 		/* Create an instance if that could not be found */
1454 		if (!adv) {
1455 			adv = hci_add_per_instance(hdev, instance, flags,
1456 						   data_len, data,
1457 						   sync_interval,
1458 						   sync_interval);
1459 			if (IS_ERR(adv))
1460 				return PTR_ERR(adv);
1461 			added = true;
1462 		}
1463 	}
1464 
1465 	/* Only start advertising if instance 0 or if a dedicated instance has
1466 	 * been added.
1467 	 */
1468 	if (!adv || added) {
1469 		err = hci_start_ext_adv_sync(hdev, instance);
1470 		if (err < 0)
1471 			goto fail;
1472 
1473 		err = hci_adv_bcast_annoucement(hdev, adv);
1474 		if (err < 0)
1475 			goto fail;
1476 	}
1477 
1478 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1479 					  max_interval);
1480 	if (err < 0)
1481 		goto fail;
1482 
1483 	err = hci_set_per_adv_data_sync(hdev, instance);
1484 	if (err < 0)
1485 		goto fail;
1486 
1487 	err = hci_enable_per_advertising_sync(hdev, instance);
1488 	if (err < 0)
1489 		goto fail;
1490 
1491 	return 0;
1492 
1493 fail:
1494 	if (added)
1495 		hci_remove_adv_instance(hdev, instance);
1496 
1497 	return err;
1498 }
1499 
1500 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1501 {
1502 	int err;
1503 
1504 	if (ext_adv_capable(hdev))
1505 		return hci_start_ext_adv_sync(hdev, instance);
1506 
1507 	err = hci_update_adv_data_sync(hdev, instance);
1508 	if (err)
1509 		return err;
1510 
1511 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1512 	if (err)
1513 		return err;
1514 
1515 	return hci_enable_advertising_sync(hdev);
1516 }
1517 
1518 int hci_enable_advertising_sync(struct hci_dev *hdev)
1519 {
1520 	struct adv_info *adv_instance;
1521 	struct hci_cp_le_set_adv_param cp;
1522 	u8 own_addr_type, enable = 0x01;
1523 	bool connectable;
1524 	u16 adv_min_interval, adv_max_interval;
1525 	u32 flags;
1526 	u8 status;
1527 
1528 	if (ext_adv_capable(hdev))
1529 		return hci_enable_ext_advertising_sync(hdev,
1530 						       hdev->cur_adv_instance);
1531 
1532 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1533 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1534 
1535 	/* If the "connectable" instance flag was not set, then choose between
1536 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1537 	 */
1538 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1539 		      mgmt_get_connectable(hdev);
1540 
1541 	if (!is_advertising_allowed(hdev, connectable))
1542 		return -EINVAL;
1543 
1544 	status = hci_disable_advertising_sync(hdev);
1545 	if (status)
1546 		return status;
1547 
1548 	/* Clear the HCI_LE_ADV bit temporarily so that the
1549 	 * hci_update_random_address knows that it's safe to go ahead
1550 	 * and write a new random address. The flag will be set back on
1551 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1552 	 */
1553 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1554 
1555 	/* Set require_privacy to true only when non-connectable
1556 	 * advertising is used. In that case it is fine to use a
1557 	 * non-resolvable private address.
1558 	 */
1559 	status = hci_update_random_address_sync(hdev, !connectable,
1560 						adv_use_rpa(hdev, flags),
1561 						&own_addr_type);
1562 	if (status)
1563 		return status;
1564 
1565 	memset(&cp, 0, sizeof(cp));
1566 
1567 	if (adv_instance) {
1568 		adv_min_interval = adv_instance->min_interval;
1569 		adv_max_interval = adv_instance->max_interval;
1570 	} else {
1571 		adv_min_interval = hdev->le_adv_min_interval;
1572 		adv_max_interval = hdev->le_adv_max_interval;
1573 	}
1574 
1575 	if (connectable) {
1576 		cp.type = LE_ADV_IND;
1577 	} else {
1578 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1579 			cp.type = LE_ADV_SCAN_IND;
1580 		else
1581 			cp.type = LE_ADV_NONCONN_IND;
1582 
1583 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1584 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1585 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1586 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1587 		}
1588 	}
1589 
1590 	cp.min_interval = cpu_to_le16(adv_min_interval);
1591 	cp.max_interval = cpu_to_le16(adv_max_interval);
1592 	cp.own_address_type = own_addr_type;
1593 	cp.channel_map = hdev->le_adv_channel_map;
1594 
1595 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1596 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1597 	if (status)
1598 		return status;
1599 
1600 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1601 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1602 }
1603 
1604 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1605 {
1606 	return hci_enable_advertising_sync(hdev);
1607 }
1608 
1609 int hci_enable_advertising(struct hci_dev *hdev)
1610 {
1611 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1612 	    list_empty(&hdev->adv_instances))
1613 		return 0;
1614 
1615 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1616 }
1617 
1618 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1619 				     struct sock *sk)
1620 {
1621 	int err;
1622 
1623 	if (!ext_adv_capable(hdev))
1624 		return 0;
1625 
1626 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1627 	if (err)
1628 		return err;
1629 
1630 	/* If request specifies an instance that doesn't exist, fail */
1631 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1632 		return -EINVAL;
1633 
1634 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1635 					sizeof(instance), &instance, 0,
1636 					HCI_CMD_TIMEOUT, sk);
1637 }
1638 
1639 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1640 {
1641 	struct adv_info *adv = data;
1642 	u8 instance = 0;
1643 
1644 	if (adv)
1645 		instance = adv->instance;
1646 
1647 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1648 }
1649 
1650 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1651 {
1652 	struct adv_info *adv = NULL;
1653 
1654 	if (instance) {
1655 		adv = hci_find_adv_instance(hdev, instance);
1656 		if (!adv)
1657 			return -EINVAL;
1658 	}
1659 
1660 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1661 }
1662 
1663 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1664 {
1665 	struct hci_cp_le_term_big cp;
1666 
1667 	memset(&cp, 0, sizeof(cp));
1668 	cp.handle = handle;
1669 	cp.reason = reason;
1670 
1671 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1672 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1673 }
1674 
1675 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1676 {
1677 	struct {
1678 		struct hci_cp_le_set_ext_adv_data cp;
1679 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1680 	} pdu;
1681 	u8 len;
1682 	struct adv_info *adv = NULL;
1683 	int err;
1684 
1685 	memset(&pdu, 0, sizeof(pdu));
1686 
1687 	if (instance) {
1688 		adv = hci_find_adv_instance(hdev, instance);
1689 		if (!adv || !adv->adv_data_changed)
1690 			return 0;
1691 	}
1692 
1693 	len = eir_create_adv_data(hdev, instance, pdu.data);
1694 
1695 	pdu.cp.length = len;
1696 	pdu.cp.handle = instance;
1697 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1698 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1699 
1700 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1701 				    sizeof(pdu.cp) + len, &pdu.cp,
1702 				    HCI_CMD_TIMEOUT);
1703 	if (err)
1704 		return err;
1705 
1706 	/* Update data if the command succeed */
1707 	if (adv) {
1708 		adv->adv_data_changed = false;
1709 	} else {
1710 		memcpy(hdev->adv_data, pdu.data, len);
1711 		hdev->adv_data_len = len;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1718 {
1719 	struct hci_cp_le_set_adv_data cp;
1720 	u8 len;
1721 
1722 	memset(&cp, 0, sizeof(cp));
1723 
1724 	len = eir_create_adv_data(hdev, instance, cp.data);
1725 
1726 	/* There's nothing to do if the data hasn't changed */
1727 	if (hdev->adv_data_len == len &&
1728 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1729 		return 0;
1730 
1731 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1732 	hdev->adv_data_len = len;
1733 
1734 	cp.length = len;
1735 
1736 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1737 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1738 }
1739 
1740 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1741 {
1742 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1743 		return 0;
1744 
1745 	if (ext_adv_capable(hdev))
1746 		return hci_set_ext_adv_data_sync(hdev, instance);
1747 
1748 	return hci_set_adv_data_sync(hdev, instance);
1749 }
1750 
1751 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1752 				   bool force)
1753 {
1754 	struct adv_info *adv = NULL;
1755 	u16 timeout;
1756 
1757 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1758 		return -EPERM;
1759 
1760 	if (hdev->adv_instance_timeout)
1761 		return -EBUSY;
1762 
1763 	adv = hci_find_adv_instance(hdev, instance);
1764 	if (!adv)
1765 		return -ENOENT;
1766 
1767 	/* A zero timeout means unlimited advertising. As long as there is
1768 	 * only one instance, duration should be ignored. We still set a timeout
1769 	 * in case further instances are being added later on.
1770 	 *
1771 	 * If the remaining lifetime of the instance is more than the duration
1772 	 * then the timeout corresponds to the duration, otherwise it will be
1773 	 * reduced to the remaining instance lifetime.
1774 	 */
1775 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1776 		timeout = adv->duration;
1777 	else
1778 		timeout = adv->remaining_time;
1779 
1780 	/* The remaining time is being reduced unless the instance is being
1781 	 * advertised without time limit.
1782 	 */
1783 	if (adv->timeout)
1784 		adv->remaining_time = adv->remaining_time - timeout;
1785 
1786 	/* Only use work for scheduling instances with legacy advertising */
1787 	if (!ext_adv_capable(hdev)) {
1788 		hdev->adv_instance_timeout = timeout;
1789 		queue_delayed_work(hdev->req_workqueue,
1790 				   &hdev->adv_instance_expire,
1791 				   msecs_to_jiffies(timeout * 1000));
1792 	}
1793 
1794 	/* If we're just re-scheduling the same instance again then do not
1795 	 * execute any HCI commands. This happens when a single instance is
1796 	 * being advertised.
1797 	 */
1798 	if (!force && hdev->cur_adv_instance == instance &&
1799 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1800 		return 0;
1801 
1802 	hdev->cur_adv_instance = instance;
1803 
1804 	return hci_start_adv_sync(hdev, instance);
1805 }
1806 
1807 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1808 {
1809 	int err;
1810 
1811 	if (!ext_adv_capable(hdev))
1812 		return 0;
1813 
1814 	/* Disable instance 0x00 to disable all instances */
1815 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1816 	if (err)
1817 		return err;
1818 
1819 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1820 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1821 }
1822 
1823 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1824 {
1825 	struct adv_info *adv, *n;
1826 	int err = 0;
1827 
1828 	if (ext_adv_capable(hdev))
1829 		/* Remove all existing sets */
1830 		err = hci_clear_adv_sets_sync(hdev, sk);
1831 	if (ext_adv_capable(hdev))
1832 		return err;
1833 
1834 	/* This is safe as long as there is no command send while the lock is
1835 	 * held.
1836 	 */
1837 	hci_dev_lock(hdev);
1838 
1839 	/* Cleanup non-ext instances */
1840 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1841 		u8 instance = adv->instance;
1842 		int err;
1843 
1844 		if (!(force || adv->timeout))
1845 			continue;
1846 
1847 		err = hci_remove_adv_instance(hdev, instance);
1848 		if (!err)
1849 			mgmt_advertising_removed(sk, hdev, instance);
1850 	}
1851 
1852 	hci_dev_unlock(hdev);
1853 
1854 	return 0;
1855 }
1856 
1857 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1858 			       struct sock *sk)
1859 {
1860 	int err = 0;
1861 
1862 	/* If we use extended advertising, instance has to be removed first. */
1863 	if (ext_adv_capable(hdev))
1864 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1865 	if (ext_adv_capable(hdev))
1866 		return err;
1867 
1868 	/* This is safe as long as there is no command send while the lock is
1869 	 * held.
1870 	 */
1871 	hci_dev_lock(hdev);
1872 
1873 	err = hci_remove_adv_instance(hdev, instance);
1874 	if (!err)
1875 		mgmt_advertising_removed(sk, hdev, instance);
1876 
1877 	hci_dev_unlock(hdev);
1878 
1879 	return err;
1880 }
1881 
1882 /* For a single instance:
1883  * - force == true: The instance will be removed even when its remaining
1884  *   lifetime is not zero.
1885  * - force == false: the instance will be deactivated but kept stored unless
1886  *   the remaining lifetime is zero.
1887  *
1888  * For instance == 0x00:
1889  * - force == true: All instances will be removed regardless of their timeout
1890  *   setting.
1891  * - force == false: Only instances that have a timeout will be removed.
1892  */
1893 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1894 				u8 instance, bool force)
1895 {
1896 	struct adv_info *next = NULL;
1897 	int err;
1898 
1899 	/* Cancel any timeout concerning the removed instance(s). */
1900 	if (!instance || hdev->cur_adv_instance == instance)
1901 		cancel_adv_timeout(hdev);
1902 
1903 	/* Get the next instance to advertise BEFORE we remove
1904 	 * the current one. This can be the same instance again
1905 	 * if there is only one instance.
1906 	 */
1907 	if (hdev->cur_adv_instance == instance)
1908 		next = hci_get_next_instance(hdev, instance);
1909 
1910 	if (!instance) {
1911 		err = hci_clear_adv_sync(hdev, sk, force);
1912 		if (err)
1913 			return err;
1914 	} else {
1915 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1916 
1917 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1918 			/* Don't advertise a removed instance. */
1919 			if (next && next->instance == instance)
1920 				next = NULL;
1921 
1922 			err = hci_remove_adv_sync(hdev, instance, sk);
1923 			if (err)
1924 				return err;
1925 		}
1926 	}
1927 
1928 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1929 		return 0;
1930 
1931 	if (next && !ext_adv_capable(hdev))
1932 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1933 
1934 	return 0;
1935 }
1936 
1937 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1938 {
1939 	struct hci_cp_read_rssi cp;
1940 
1941 	cp.handle = handle;
1942 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1943 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1944 }
1945 
1946 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1947 {
1948 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1949 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1950 }
1951 
1952 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1953 {
1954 	struct hci_cp_read_tx_power cp;
1955 
1956 	cp.handle = handle;
1957 	cp.type = type;
1958 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1959 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1960 }
1961 
1962 int hci_disable_advertising_sync(struct hci_dev *hdev)
1963 {
1964 	u8 enable = 0x00;
1965 	int err = 0;
1966 
1967 	/* If controller is not advertising we are done. */
1968 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1969 		return 0;
1970 
1971 	if (ext_adv_capable(hdev))
1972 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1973 	if (ext_adv_capable(hdev))
1974 		return err;
1975 
1976 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1977 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1978 }
1979 
1980 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1981 					   u8 filter_dup)
1982 {
1983 	struct hci_cp_le_set_ext_scan_enable cp;
1984 
1985 	memset(&cp, 0, sizeof(cp));
1986 	cp.enable = val;
1987 
1988 	if (hci_dev_test_flag(hdev, HCI_MESH))
1989 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1990 	else
1991 		cp.filter_dup = filter_dup;
1992 
1993 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1994 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1995 }
1996 
1997 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1998 				       u8 filter_dup)
1999 {
2000 	struct hci_cp_le_set_scan_enable cp;
2001 
2002 	if (use_ext_scan(hdev))
2003 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2004 
2005 	memset(&cp, 0, sizeof(cp));
2006 	cp.enable = val;
2007 
2008 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2009 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2010 	else
2011 		cp.filter_dup = filter_dup;
2012 
2013 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2014 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2015 }
2016 
2017 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2018 {
2019 	if (!use_ll_privacy(hdev))
2020 		return 0;
2021 
2022 	/* If controller is not/already resolving we are done. */
2023 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2024 		return 0;
2025 
2026 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2027 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2028 }
2029 
2030 static int hci_scan_disable_sync(struct hci_dev *hdev)
2031 {
2032 	int err;
2033 
2034 	/* If controller is not scanning we are done. */
2035 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2036 		return 0;
2037 
2038 	if (hdev->scanning_paused) {
2039 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2040 		return 0;
2041 	}
2042 
2043 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2044 	if (err) {
2045 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2046 		return err;
2047 	}
2048 
2049 	return err;
2050 }
2051 
2052 static bool scan_use_rpa(struct hci_dev *hdev)
2053 {
2054 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2055 }
2056 
2057 static void hci_start_interleave_scan(struct hci_dev *hdev)
2058 {
2059 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2060 	queue_delayed_work(hdev->req_workqueue,
2061 			   &hdev->interleave_scan, 0);
2062 }
2063 
2064 static bool is_interleave_scanning(struct hci_dev *hdev)
2065 {
2066 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2067 }
2068 
2069 static void cancel_interleave_scan(struct hci_dev *hdev)
2070 {
2071 	bt_dev_dbg(hdev, "cancelling interleave scan");
2072 
2073 	cancel_delayed_work_sync(&hdev->interleave_scan);
2074 
2075 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2076 }
2077 
2078 /* Return true if interleave_scan wasn't started until exiting this function,
2079  * otherwise, return false
2080  */
2081 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2082 {
2083 	/* Do interleaved scan only if all of the following are true:
2084 	 * - There is at least one ADV monitor
2085 	 * - At least one pending LE connection or one device to be scanned for
2086 	 * - Monitor offloading is not supported
2087 	 * If so, we should alternate between allowlist scan and one without
2088 	 * any filters to save power.
2089 	 */
2090 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2091 				!(list_empty(&hdev->pend_le_conns) &&
2092 				  list_empty(&hdev->pend_le_reports)) &&
2093 				hci_get_adv_monitor_offload_ext(hdev) ==
2094 				    HCI_ADV_MONITOR_EXT_NONE;
2095 	bool is_interleaving = is_interleave_scanning(hdev);
2096 
2097 	if (use_interleaving && !is_interleaving) {
2098 		hci_start_interleave_scan(hdev);
2099 		bt_dev_dbg(hdev, "starting interleave scan");
2100 		return true;
2101 	}
2102 
2103 	if (!use_interleaving && is_interleaving)
2104 		cancel_interleave_scan(hdev);
2105 
2106 	return false;
2107 }
2108 
2109 /* Removes connection to resolve list if needed.*/
2110 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2111 					bdaddr_t *bdaddr, u8 bdaddr_type)
2112 {
2113 	struct hci_cp_le_del_from_resolv_list cp;
2114 	struct bdaddr_list_with_irk *entry;
2115 
2116 	if (!use_ll_privacy(hdev))
2117 		return 0;
2118 
2119 	/* Check if the IRK has been programmed */
2120 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2121 						bdaddr_type);
2122 	if (!entry)
2123 		return 0;
2124 
2125 	cp.bdaddr_type = bdaddr_type;
2126 	bacpy(&cp.bdaddr, bdaddr);
2127 
2128 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2129 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2130 }
2131 
2132 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2133 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2134 {
2135 	struct hci_cp_le_del_from_accept_list cp;
2136 	int err;
2137 
2138 	/* Check if device is on accept list before removing it */
2139 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2140 		return 0;
2141 
2142 	cp.bdaddr_type = bdaddr_type;
2143 	bacpy(&cp.bdaddr, bdaddr);
2144 
2145 	/* Ignore errors when removing from resolving list as that is likely
2146 	 * that the device was never added.
2147 	 */
2148 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2149 
2150 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2151 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2152 	if (err) {
2153 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2154 		return err;
2155 	}
2156 
2157 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2158 		   cp.bdaddr_type);
2159 
2160 	return 0;
2161 }
2162 
2163 /* Adds connection to resolve list if needed.
2164  * Setting params to NULL programs local hdev->irk
2165  */
2166 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2167 					struct hci_conn_params *params)
2168 {
2169 	struct hci_cp_le_add_to_resolv_list cp;
2170 	struct smp_irk *irk;
2171 	struct bdaddr_list_with_irk *entry;
2172 
2173 	if (!use_ll_privacy(hdev))
2174 		return 0;
2175 
2176 	/* Attempt to program local identity address, type and irk if params is
2177 	 * NULL.
2178 	 */
2179 	if (!params) {
2180 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2181 			return 0;
2182 
2183 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2184 		memcpy(cp.peer_irk, hdev->irk, 16);
2185 		goto done;
2186 	}
2187 
2188 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2189 	if (!irk)
2190 		return 0;
2191 
2192 	/* Check if the IK has _not_ been programmed yet. */
2193 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2194 						&params->addr,
2195 						params->addr_type);
2196 	if (entry)
2197 		return 0;
2198 
2199 	cp.bdaddr_type = params->addr_type;
2200 	bacpy(&cp.bdaddr, &params->addr);
2201 	memcpy(cp.peer_irk, irk->val, 16);
2202 
2203 	/* Default privacy mode is always Network */
2204 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2205 
2206 done:
2207 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2208 		memcpy(cp.local_irk, hdev->irk, 16);
2209 	else
2210 		memset(cp.local_irk, 0, 16);
2211 
2212 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2213 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2214 }
2215 
2216 /* Set Device Privacy Mode. */
2217 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2218 					struct hci_conn_params *params)
2219 {
2220 	struct hci_cp_le_set_privacy_mode cp;
2221 	struct smp_irk *irk;
2222 
2223 	/* If device privacy mode has already been set there is nothing to do */
2224 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2225 		return 0;
2226 
2227 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2228 	 * indicates that LL Privacy has been enabled and
2229 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2230 	 */
2231 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2232 		return 0;
2233 
2234 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2235 	if (!irk)
2236 		return 0;
2237 
2238 	memset(&cp, 0, sizeof(cp));
2239 	cp.bdaddr_type = irk->addr_type;
2240 	bacpy(&cp.bdaddr, &irk->bdaddr);
2241 	cp.mode = HCI_DEVICE_PRIVACY;
2242 
2243 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2244 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2245 }
2246 
2247 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2248  * this attempts to program the device in the resolving list as well and
2249  * properly set the privacy mode.
2250  */
2251 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2252 				       struct hci_conn_params *params,
2253 				       u8 *num_entries)
2254 {
2255 	struct hci_cp_le_add_to_accept_list cp;
2256 	int err;
2257 
2258 	/* During suspend, only wakeable devices can be in acceptlist */
2259 	if (hdev->suspended &&
2260 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2261 		return 0;
2262 
2263 	/* Select filter policy to accept all advertising */
2264 	if (*num_entries >= hdev->le_accept_list_size)
2265 		return -ENOSPC;
2266 
2267 	/* Accept list can not be used with RPAs */
2268 	if (!use_ll_privacy(hdev) &&
2269 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2270 		return -EINVAL;
2271 
2272 	/* Attempt to program the device in the resolving list first to avoid
2273 	 * having to rollback in case it fails since the resolving list is
2274 	 * dynamic it can probably be smaller than the accept list.
2275 	 */
2276 	err = hci_le_add_resolve_list_sync(hdev, params);
2277 	if (err) {
2278 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2279 		return err;
2280 	}
2281 
2282 	/* Set Privacy Mode */
2283 	err = hci_le_set_privacy_mode_sync(hdev, params);
2284 	if (err) {
2285 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2286 		return err;
2287 	}
2288 
2289 	/* Check if already in accept list */
2290 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2291 				   params->addr_type))
2292 		return 0;
2293 
2294 	*num_entries += 1;
2295 	cp.bdaddr_type = params->addr_type;
2296 	bacpy(&cp.bdaddr, &params->addr);
2297 
2298 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2299 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2300 	if (err) {
2301 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2302 		/* Rollback the device from the resolving list */
2303 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2304 		return err;
2305 	}
2306 
2307 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2308 		   cp.bdaddr_type);
2309 
2310 	return 0;
2311 }
2312 
2313 /* This function disables/pause all advertising instances */
2314 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2315 {
2316 	int err;
2317 	int old_state;
2318 
2319 	/* If already been paused there is nothing to do. */
2320 	if (hdev->advertising_paused)
2321 		return 0;
2322 
2323 	bt_dev_dbg(hdev, "Pausing directed advertising");
2324 
2325 	/* Stop directed advertising */
2326 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2327 	if (old_state) {
2328 		/* When discoverable timeout triggers, then just make sure
2329 		 * the limited discoverable flag is cleared. Even in the case
2330 		 * of a timeout triggered from general discoverable, it is
2331 		 * safe to unconditionally clear the flag.
2332 		 */
2333 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2334 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2335 		hdev->discov_timeout = 0;
2336 	}
2337 
2338 	bt_dev_dbg(hdev, "Pausing advertising instances");
2339 
2340 	/* Call to disable any advertisements active on the controller.
2341 	 * This will succeed even if no advertisements are configured.
2342 	 */
2343 	err = hci_disable_advertising_sync(hdev);
2344 	if (err)
2345 		return err;
2346 
2347 	/* If we are using software rotation, pause the loop */
2348 	if (!ext_adv_capable(hdev))
2349 		cancel_adv_timeout(hdev);
2350 
2351 	hdev->advertising_paused = true;
2352 	hdev->advertising_old_state = old_state;
2353 
2354 	return 0;
2355 }
2356 
2357 /* This function enables all user advertising instances */
2358 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2359 {
2360 	struct adv_info *adv, *tmp;
2361 	int err;
2362 
2363 	/* If advertising has not been paused there is nothing  to do. */
2364 	if (!hdev->advertising_paused)
2365 		return 0;
2366 
2367 	/* Resume directed advertising */
2368 	hdev->advertising_paused = false;
2369 	if (hdev->advertising_old_state) {
2370 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2371 		hdev->advertising_old_state = 0;
2372 	}
2373 
2374 	bt_dev_dbg(hdev, "Resuming advertising instances");
2375 
2376 	if (ext_adv_capable(hdev)) {
2377 		/* Call for each tracked instance to be re-enabled */
2378 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2379 			err = hci_enable_ext_advertising_sync(hdev,
2380 							      adv->instance);
2381 			if (!err)
2382 				continue;
2383 
2384 			/* If the instance cannot be resumed remove it */
2385 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2386 							 NULL);
2387 		}
2388 	} else {
2389 		/* Schedule for most recent instance to be restarted and begin
2390 		 * the software rotation loop
2391 		 */
2392 		err = hci_schedule_adv_instance_sync(hdev,
2393 						     hdev->cur_adv_instance,
2394 						     true);
2395 	}
2396 
2397 	hdev->advertising_paused = false;
2398 
2399 	return err;
2400 }
2401 
2402 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2403 {
2404 	int err;
2405 
2406 	if (!use_ll_privacy(hdev))
2407 		return 0;
2408 
2409 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2410 		return 0;
2411 
2412 	/* Cannot disable addr resolution if scanning is enabled or
2413 	 * when initiating an LE connection.
2414 	 */
2415 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2416 	    hci_lookup_le_connect(hdev)) {
2417 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2418 		return -EPERM;
2419 	}
2420 
2421 	/* Cannot disable addr resolution if advertising is enabled. */
2422 	err = hci_pause_advertising_sync(hdev);
2423 	if (err) {
2424 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2425 		return err;
2426 	}
2427 
2428 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2429 	if (err)
2430 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2431 			   err);
2432 
2433 	/* Return if address resolution is disabled and RPA is not used. */
2434 	if (!err && scan_use_rpa(hdev))
2435 		return 0;
2436 
2437 	hci_resume_advertising_sync(hdev);
2438 	return err;
2439 }
2440 
2441 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2442 					     bool extended, struct sock *sk)
2443 {
2444 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2445 					HCI_OP_READ_LOCAL_OOB_DATA;
2446 
2447 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2448 }
2449 
2450 /* Device must not be scanning when updating the accept list.
2451  *
2452  * Update is done using the following sequence:
2453  *
2454  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2455  * Remove Devices From Accept List ->
2456  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2457  * Add Devices to Accept List ->
2458  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2459  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2460  * Enable Scanning
2461  *
2462  * In case of failure advertising shall be restored to its original state and
2463  * return would disable accept list since either accept or resolving list could
2464  * not be programmed.
2465  *
2466  */
2467 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2468 {
2469 	struct hci_conn_params *params;
2470 	struct bdaddr_list *b, *t;
2471 	u8 num_entries = 0;
2472 	bool pend_conn, pend_report;
2473 	u8 filter_policy;
2474 	int err;
2475 
2476 	/* Pause advertising if resolving list can be used as controllers
2477 	 * cannot accept resolving list modifications while advertising.
2478 	 */
2479 	if (use_ll_privacy(hdev)) {
2480 		err = hci_pause_advertising_sync(hdev);
2481 		if (err) {
2482 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2483 			return 0x00;
2484 		}
2485 	}
2486 
2487 	/* Disable address resolution while reprogramming accept list since
2488 	 * devices that do have an IRK will be programmed in the resolving list
2489 	 * when LL Privacy is enabled.
2490 	 */
2491 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2492 	if (err) {
2493 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2494 		goto done;
2495 	}
2496 
2497 	/* Go through the current accept list programmed into the
2498 	 * controller one by one and check if that address is connected or is
2499 	 * still in the list of pending connections or list of devices to
2500 	 * report. If not present in either list, then remove it from
2501 	 * the controller.
2502 	 */
2503 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2504 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2505 			continue;
2506 
2507 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2508 						      &b->bdaddr,
2509 						      b->bdaddr_type);
2510 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2511 							&b->bdaddr,
2512 							b->bdaddr_type);
2513 
2514 		/* If the device is not likely to connect or report,
2515 		 * remove it from the acceptlist.
2516 		 */
2517 		if (!pend_conn && !pend_report) {
2518 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2519 						    b->bdaddr_type);
2520 			continue;
2521 		}
2522 
2523 		num_entries++;
2524 	}
2525 
2526 	/* Since all no longer valid accept list entries have been
2527 	 * removed, walk through the list of pending connections
2528 	 * and ensure that any new device gets programmed into
2529 	 * the controller.
2530 	 *
2531 	 * If the list of the devices is larger than the list of
2532 	 * available accept list entries in the controller, then
2533 	 * just abort and return filer policy value to not use the
2534 	 * accept list.
2535 	 */
2536 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
2537 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2538 		if (err)
2539 			goto done;
2540 	}
2541 
2542 	/* After adding all new pending connections, walk through
2543 	 * the list of pending reports and also add these to the
2544 	 * accept list if there is still space. Abort if space runs out.
2545 	 */
2546 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
2547 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2548 		if (err)
2549 			goto done;
2550 	}
2551 
2552 	/* Use the allowlist unless the following conditions are all true:
2553 	 * - We are not currently suspending
2554 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2555 	 * - Interleaved scanning is not currently using the allowlist
2556 	 */
2557 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2558 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2559 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2560 		err = -EINVAL;
2561 
2562 done:
2563 	filter_policy = err ? 0x00 : 0x01;
2564 
2565 	/* Enable address resolution when LL Privacy is enabled. */
2566 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2567 	if (err)
2568 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2569 
2570 	/* Resume advertising if it was paused */
2571 	if (use_ll_privacy(hdev))
2572 		hci_resume_advertising_sync(hdev);
2573 
2574 	/* Select filter policy to use accept list */
2575 	return filter_policy;
2576 }
2577 
2578 /* Returns true if an le connection is in the scanning state */
2579 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
2580 {
2581 	struct hci_conn_hash *h = &hdev->conn_hash;
2582 	struct hci_conn  *c;
2583 
2584 	rcu_read_lock();
2585 
2586 	list_for_each_entry_rcu(c, &h->list, list) {
2587 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
2588 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
2589 			rcu_read_unlock();
2590 			return true;
2591 		}
2592 	}
2593 
2594 	rcu_read_unlock();
2595 
2596 	return false;
2597 }
2598 
2599 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2600 					  u16 interval, u16 window,
2601 					  u8 own_addr_type, u8 filter_policy)
2602 {
2603 	struct hci_cp_le_set_ext_scan_params *cp;
2604 	struct hci_cp_le_scan_phy_params *phy;
2605 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2606 	u8 num_phy = 0;
2607 
2608 	cp = (void *)data;
2609 	phy = (void *)cp->data;
2610 
2611 	memset(data, 0, sizeof(data));
2612 
2613 	cp->own_addr_type = own_addr_type;
2614 	cp->filter_policy = filter_policy;
2615 
2616 	if (scan_1m(hdev) || scan_2m(hdev)) {
2617 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2618 
2619 		phy->type = type;
2620 		phy->interval = cpu_to_le16(interval);
2621 		phy->window = cpu_to_le16(window);
2622 
2623 		num_phy++;
2624 		phy++;
2625 	}
2626 
2627 	if (scan_coded(hdev)) {
2628 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2629 
2630 		phy->type = type;
2631 		phy->interval = cpu_to_le16(interval);
2632 		phy->window = cpu_to_le16(window);
2633 
2634 		num_phy++;
2635 		phy++;
2636 	}
2637 
2638 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2639 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2640 				     data, HCI_CMD_TIMEOUT);
2641 }
2642 
2643 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2644 				      u16 interval, u16 window,
2645 				      u8 own_addr_type, u8 filter_policy)
2646 {
2647 	struct hci_cp_le_set_scan_param cp;
2648 
2649 	if (use_ext_scan(hdev))
2650 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2651 						      window, own_addr_type,
2652 						      filter_policy);
2653 
2654 	memset(&cp, 0, sizeof(cp));
2655 	cp.type = type;
2656 	cp.interval = cpu_to_le16(interval);
2657 	cp.window = cpu_to_le16(window);
2658 	cp.own_address_type = own_addr_type;
2659 	cp.filter_policy = filter_policy;
2660 
2661 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2662 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2663 }
2664 
2665 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2666 			       u16 window, u8 own_addr_type, u8 filter_policy,
2667 			       u8 filter_dup)
2668 {
2669 	int err;
2670 
2671 	if (hdev->scanning_paused) {
2672 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2673 		return 0;
2674 	}
2675 
2676 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2677 					 own_addr_type, filter_policy);
2678 	if (err)
2679 		return err;
2680 
2681 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2682 }
2683 
2684 static int hci_passive_scan_sync(struct hci_dev *hdev)
2685 {
2686 	u8 own_addr_type;
2687 	u8 filter_policy;
2688 	u16 window, interval;
2689 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2690 	int err;
2691 
2692 	if (hdev->scanning_paused) {
2693 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2694 		return 0;
2695 	}
2696 
2697 	err = hci_scan_disable_sync(hdev);
2698 	if (err) {
2699 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2700 		return err;
2701 	}
2702 
2703 	/* Set require_privacy to false since no SCAN_REQ are send
2704 	 * during passive scanning. Not using an non-resolvable address
2705 	 * here is important so that peer devices using direct
2706 	 * advertising with our address will be correctly reported
2707 	 * by the controller.
2708 	 */
2709 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2710 					   &own_addr_type))
2711 		return 0;
2712 
2713 	if (hdev->enable_advmon_interleave_scan &&
2714 	    hci_update_interleaved_scan_sync(hdev))
2715 		return 0;
2716 
2717 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2718 
2719 	/* Adding or removing entries from the accept list must
2720 	 * happen before enabling scanning. The controller does
2721 	 * not allow accept list modification while scanning.
2722 	 */
2723 	filter_policy = hci_update_accept_list_sync(hdev);
2724 
2725 	/* When the controller is using random resolvable addresses and
2726 	 * with that having LE privacy enabled, then controllers with
2727 	 * Extended Scanner Filter Policies support can now enable support
2728 	 * for handling directed advertising.
2729 	 *
2730 	 * So instead of using filter polices 0x00 (no acceptlist)
2731 	 * and 0x01 (acceptlist enabled) use the new filter policies
2732 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2733 	 */
2734 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2735 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2736 		filter_policy |= 0x02;
2737 
2738 	if (hdev->suspended) {
2739 		window = hdev->le_scan_window_suspend;
2740 		interval = hdev->le_scan_int_suspend;
2741 	} else if (hci_is_le_conn_scanning(hdev)) {
2742 		window = hdev->le_scan_window_connect;
2743 		interval = hdev->le_scan_int_connect;
2744 	} else if (hci_is_adv_monitoring(hdev)) {
2745 		window = hdev->le_scan_window_adv_monitor;
2746 		interval = hdev->le_scan_int_adv_monitor;
2747 	} else {
2748 		window = hdev->le_scan_window;
2749 		interval = hdev->le_scan_interval;
2750 	}
2751 
2752 	/* Disable all filtering for Mesh */
2753 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2754 		filter_policy = 0;
2755 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2756 	}
2757 
2758 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2759 
2760 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2761 				   own_addr_type, filter_policy, filter_dups);
2762 }
2763 
2764 /* This function controls the passive scanning based on hdev->pend_le_conns
2765  * list. If there are pending LE connection we start the background scanning,
2766  * otherwise we stop it in the following sequence:
2767  *
2768  * If there are devices to scan:
2769  *
2770  * Disable Scanning -> Update Accept List ->
2771  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2772  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2773  * Enable Scanning
2774  *
2775  * Otherwise:
2776  *
2777  * Disable Scanning
2778  */
2779 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2780 {
2781 	int err;
2782 
2783 	if (!test_bit(HCI_UP, &hdev->flags) ||
2784 	    test_bit(HCI_INIT, &hdev->flags) ||
2785 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2786 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2787 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2788 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2789 		return 0;
2790 
2791 	/* No point in doing scanning if LE support hasn't been enabled */
2792 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2793 		return 0;
2794 
2795 	/* If discovery is active don't interfere with it */
2796 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2797 		return 0;
2798 
2799 	/* Reset RSSI and UUID filters when starting background scanning
2800 	 * since these filters are meant for service discovery only.
2801 	 *
2802 	 * The Start Discovery and Start Service Discovery operations
2803 	 * ensure to set proper values for RSSI threshold and UUID
2804 	 * filter list. So it is safe to just reset them here.
2805 	 */
2806 	hci_discovery_filter_clear(hdev);
2807 
2808 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2809 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2810 
2811 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2812 	    list_empty(&hdev->pend_le_conns) &&
2813 	    list_empty(&hdev->pend_le_reports) &&
2814 	    !hci_is_adv_monitoring(hdev) &&
2815 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2816 		/* If there is no pending LE connections or devices
2817 		 * to be scanned for or no ADV monitors, we should stop the
2818 		 * background scanning.
2819 		 */
2820 
2821 		bt_dev_dbg(hdev, "stopping background scanning");
2822 
2823 		err = hci_scan_disable_sync(hdev);
2824 		if (err)
2825 			bt_dev_err(hdev, "stop background scanning failed: %d",
2826 				   err);
2827 	} else {
2828 		/* If there is at least one pending LE connection, we should
2829 		 * keep the background scan running.
2830 		 */
2831 
2832 		/* If controller is connecting, we should not start scanning
2833 		 * since some controllers are not able to scan and connect at
2834 		 * the same time.
2835 		 */
2836 		if (hci_lookup_le_connect(hdev))
2837 			return 0;
2838 
2839 		bt_dev_dbg(hdev, "start background scanning");
2840 
2841 		err = hci_passive_scan_sync(hdev);
2842 		if (err)
2843 			bt_dev_err(hdev, "start background scanning failed: %d",
2844 				   err);
2845 	}
2846 
2847 	return err;
2848 }
2849 
2850 static int update_scan_sync(struct hci_dev *hdev, void *data)
2851 {
2852 	return hci_update_scan_sync(hdev);
2853 }
2854 
2855 int hci_update_scan(struct hci_dev *hdev)
2856 {
2857 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2858 }
2859 
2860 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2861 {
2862 	return hci_update_passive_scan_sync(hdev);
2863 }
2864 
2865 int hci_update_passive_scan(struct hci_dev *hdev)
2866 {
2867 	/* Only queue if it would have any effect */
2868 	if (!test_bit(HCI_UP, &hdev->flags) ||
2869 	    test_bit(HCI_INIT, &hdev->flags) ||
2870 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2871 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2872 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2873 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2874 		return 0;
2875 
2876 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2877 }
2878 
2879 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2880 {
2881 	int err;
2882 
2883 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2884 		return 0;
2885 
2886 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2887 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2888 
2889 	if (!err) {
2890 		if (val) {
2891 			hdev->features[1][0] |= LMP_HOST_SC;
2892 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2893 		} else {
2894 			hdev->features[1][0] &= ~LMP_HOST_SC;
2895 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2896 		}
2897 	}
2898 
2899 	return err;
2900 }
2901 
2902 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2903 {
2904 	int err;
2905 
2906 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2907 	    lmp_host_ssp_capable(hdev))
2908 		return 0;
2909 
2910 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2911 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2912 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2913 	}
2914 
2915 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2916 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2917 	if (err)
2918 		return err;
2919 
2920 	return hci_write_sc_support_sync(hdev, 0x01);
2921 }
2922 
2923 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2924 {
2925 	struct hci_cp_write_le_host_supported cp;
2926 
2927 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2928 	    !lmp_bredr_capable(hdev))
2929 		return 0;
2930 
2931 	/* Check first if we already have the right host state
2932 	 * (host features set)
2933 	 */
2934 	if (le == lmp_host_le_capable(hdev) &&
2935 	    simul == lmp_host_le_br_capable(hdev))
2936 		return 0;
2937 
2938 	memset(&cp, 0, sizeof(cp));
2939 
2940 	cp.le = le;
2941 	cp.simul = simul;
2942 
2943 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2944 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2945 }
2946 
2947 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2948 {
2949 	struct adv_info *adv, *tmp;
2950 	int err;
2951 
2952 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2953 		return 0;
2954 
2955 	/* If RPA Resolution has not been enable yet it means the
2956 	 * resolving list is empty and we should attempt to program the
2957 	 * local IRK in order to support using own_addr_type
2958 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2959 	 */
2960 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2961 		hci_le_add_resolve_list_sync(hdev, NULL);
2962 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2963 	}
2964 
2965 	/* Make sure the controller has a good default for
2966 	 * advertising data. This also applies to the case
2967 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2968 	 */
2969 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2970 	    list_empty(&hdev->adv_instances)) {
2971 		if (ext_adv_capable(hdev)) {
2972 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2973 			if (!err)
2974 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2975 		} else {
2976 			err = hci_update_adv_data_sync(hdev, 0x00);
2977 			if (!err)
2978 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2979 		}
2980 
2981 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2982 			hci_enable_advertising_sync(hdev);
2983 	}
2984 
2985 	/* Call for each tracked instance to be scheduled */
2986 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2987 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2988 
2989 	return 0;
2990 }
2991 
2992 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2993 {
2994 	u8 link_sec;
2995 
2996 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2997 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2998 		return 0;
2999 
3000 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3001 				     sizeof(link_sec), &link_sec,
3002 				     HCI_CMD_TIMEOUT);
3003 }
3004 
3005 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3006 {
3007 	struct hci_cp_write_page_scan_activity cp;
3008 	u8 type;
3009 	int err = 0;
3010 
3011 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3012 		return 0;
3013 
3014 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3015 		return 0;
3016 
3017 	memset(&cp, 0, sizeof(cp));
3018 
3019 	if (enable) {
3020 		type = PAGE_SCAN_TYPE_INTERLACED;
3021 
3022 		/* 160 msec page scan interval */
3023 		cp.interval = cpu_to_le16(0x0100);
3024 	} else {
3025 		type = hdev->def_page_scan_type;
3026 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3027 	}
3028 
3029 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3030 
3031 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3032 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3033 		err = __hci_cmd_sync_status(hdev,
3034 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3035 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3036 		if (err)
3037 			return err;
3038 	}
3039 
3040 	if (hdev->page_scan_type != type)
3041 		err = __hci_cmd_sync_status(hdev,
3042 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3043 					    sizeof(type), &type,
3044 					    HCI_CMD_TIMEOUT);
3045 
3046 	return err;
3047 }
3048 
3049 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3050 {
3051 	struct bdaddr_list *b;
3052 
3053 	list_for_each_entry(b, &hdev->accept_list, list) {
3054 		struct hci_conn *conn;
3055 
3056 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3057 		if (!conn)
3058 			return true;
3059 
3060 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3061 			return true;
3062 	}
3063 
3064 	return false;
3065 }
3066 
3067 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3068 {
3069 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3070 					    sizeof(val), &val,
3071 					    HCI_CMD_TIMEOUT);
3072 }
3073 
3074 int hci_update_scan_sync(struct hci_dev *hdev)
3075 {
3076 	u8 scan;
3077 
3078 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3079 		return 0;
3080 
3081 	if (!hdev_is_powered(hdev))
3082 		return 0;
3083 
3084 	if (mgmt_powering_down(hdev))
3085 		return 0;
3086 
3087 	if (hdev->scanning_paused)
3088 		return 0;
3089 
3090 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3091 	    disconnected_accept_list_entries(hdev))
3092 		scan = SCAN_PAGE;
3093 	else
3094 		scan = SCAN_DISABLED;
3095 
3096 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3097 		scan |= SCAN_INQUIRY;
3098 
3099 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3100 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3101 		return 0;
3102 
3103 	return hci_write_scan_enable_sync(hdev, scan);
3104 }
3105 
3106 int hci_update_name_sync(struct hci_dev *hdev)
3107 {
3108 	struct hci_cp_write_local_name cp;
3109 
3110 	memset(&cp, 0, sizeof(cp));
3111 
3112 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3113 
3114 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3115 					    sizeof(cp), &cp,
3116 					    HCI_CMD_TIMEOUT);
3117 }
3118 
3119 /* This function perform powered update HCI command sequence after the HCI init
3120  * sequence which end up resetting all states, the sequence is as follows:
3121  *
3122  * HCI_SSP_ENABLED(Enable SSP)
3123  * HCI_LE_ENABLED(Enable LE)
3124  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3125  * Update adv data)
3126  * Enable Authentication
3127  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3128  * Set Name -> Set EIR)
3129  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3130  */
3131 int hci_powered_update_sync(struct hci_dev *hdev)
3132 {
3133 	int err;
3134 
3135 	/* Register the available SMP channels (BR/EDR and LE) only when
3136 	 * successfully powering on the controller. This late
3137 	 * registration is required so that LE SMP can clearly decide if
3138 	 * the public address or static address is used.
3139 	 */
3140 	smp_register(hdev);
3141 
3142 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3143 	if (err)
3144 		return err;
3145 
3146 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3147 	if (err)
3148 		return err;
3149 
3150 	err = hci_powered_update_adv_sync(hdev);
3151 	if (err)
3152 		return err;
3153 
3154 	err = hci_write_auth_enable_sync(hdev);
3155 	if (err)
3156 		return err;
3157 
3158 	if (lmp_bredr_capable(hdev)) {
3159 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3160 			hci_write_fast_connectable_sync(hdev, true);
3161 		else
3162 			hci_write_fast_connectable_sync(hdev, false);
3163 		hci_update_scan_sync(hdev);
3164 		hci_update_class_sync(hdev);
3165 		hci_update_name_sync(hdev);
3166 		hci_update_eir_sync(hdev);
3167 	}
3168 
3169 	/* If forcing static address is in use or there is no public
3170 	 * address use the static address as random address (but skip
3171 	 * the HCI command if the current random address is already the
3172 	 * static one.
3173 	 *
3174 	 * In case BR/EDR has been disabled on a dual-mode controller
3175 	 * and a static address has been configured, then use that
3176 	 * address instead of the public BR/EDR address.
3177 	 */
3178 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3179 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3180 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3181 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3182 			return hci_set_random_addr_sync(hdev,
3183 							&hdev->static_addr);
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 /**
3190  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3191  *				       (BD_ADDR) for a HCI device from
3192  *				       a firmware node property.
3193  * @hdev:	The HCI device
3194  *
3195  * Search the firmware node for 'local-bd-address'.
3196  *
3197  * All-zero BD addresses are rejected, because those could be properties
3198  * that exist in the firmware tables, but were not updated by the firmware. For
3199  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3200  */
3201 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3202 {
3203 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3204 	bdaddr_t ba;
3205 	int ret;
3206 
3207 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3208 					    (u8 *)&ba, sizeof(ba));
3209 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3210 		return;
3211 
3212 	bacpy(&hdev->public_addr, &ba);
3213 }
3214 
3215 struct hci_init_stage {
3216 	int (*func)(struct hci_dev *hdev);
3217 };
3218 
3219 /* Run init stage NULL terminated function table */
3220 static int hci_init_stage_sync(struct hci_dev *hdev,
3221 			       const struct hci_init_stage *stage)
3222 {
3223 	size_t i;
3224 
3225 	for (i = 0; stage[i].func; i++) {
3226 		int err;
3227 
3228 		err = stage[i].func(hdev);
3229 		if (err)
3230 			return err;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 /* Read Local Version */
3237 static int hci_read_local_version_sync(struct hci_dev *hdev)
3238 {
3239 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3240 				     0, NULL, HCI_CMD_TIMEOUT);
3241 }
3242 
3243 /* Read BD Address */
3244 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3245 {
3246 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3247 				     0, NULL, HCI_CMD_TIMEOUT);
3248 }
3249 
3250 #define HCI_INIT(_func) \
3251 { \
3252 	.func = _func, \
3253 }
3254 
3255 static const struct hci_init_stage hci_init0[] = {
3256 	/* HCI_OP_READ_LOCAL_VERSION */
3257 	HCI_INIT(hci_read_local_version_sync),
3258 	/* HCI_OP_READ_BD_ADDR */
3259 	HCI_INIT(hci_read_bd_addr_sync),
3260 	{}
3261 };
3262 
3263 int hci_reset_sync(struct hci_dev *hdev)
3264 {
3265 	int err;
3266 
3267 	set_bit(HCI_RESET, &hdev->flags);
3268 
3269 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3270 				    HCI_CMD_TIMEOUT);
3271 	if (err)
3272 		return err;
3273 
3274 	return 0;
3275 }
3276 
3277 static int hci_init0_sync(struct hci_dev *hdev)
3278 {
3279 	int err;
3280 
3281 	bt_dev_dbg(hdev, "");
3282 
3283 	/* Reset */
3284 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3285 		err = hci_reset_sync(hdev);
3286 		if (err)
3287 			return err;
3288 	}
3289 
3290 	return hci_init_stage_sync(hdev, hci_init0);
3291 }
3292 
3293 static int hci_unconf_init_sync(struct hci_dev *hdev)
3294 {
3295 	int err;
3296 
3297 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3298 		return 0;
3299 
3300 	err = hci_init0_sync(hdev);
3301 	if (err < 0)
3302 		return err;
3303 
3304 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3305 		hci_debugfs_create_basic(hdev);
3306 
3307 	return 0;
3308 }
3309 
3310 /* Read Local Supported Features. */
3311 static int hci_read_local_features_sync(struct hci_dev *hdev)
3312 {
3313 	 /* Not all AMP controllers support this command */
3314 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3315 		return 0;
3316 
3317 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3318 				     0, NULL, HCI_CMD_TIMEOUT);
3319 }
3320 
3321 /* BR Controller init stage 1 command sequence */
3322 static const struct hci_init_stage br_init1[] = {
3323 	/* HCI_OP_READ_LOCAL_FEATURES */
3324 	HCI_INIT(hci_read_local_features_sync),
3325 	/* HCI_OP_READ_LOCAL_VERSION */
3326 	HCI_INIT(hci_read_local_version_sync),
3327 	/* HCI_OP_READ_BD_ADDR */
3328 	HCI_INIT(hci_read_bd_addr_sync),
3329 	{}
3330 };
3331 
3332 /* Read Local Commands */
3333 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3334 {
3335 	/* All Bluetooth 1.2 and later controllers should support the
3336 	 * HCI command for reading the local supported commands.
3337 	 *
3338 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3339 	 * but do not have support for this command. If that is the case,
3340 	 * the driver can quirk the behavior and skip reading the local
3341 	 * supported commands.
3342 	 */
3343 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3344 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3345 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3346 					     0, NULL, HCI_CMD_TIMEOUT);
3347 
3348 	return 0;
3349 }
3350 
3351 /* Read Local AMP Info */
3352 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3353 {
3354 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3355 				     0, NULL, HCI_CMD_TIMEOUT);
3356 }
3357 
3358 /* Read Data Blk size */
3359 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3360 {
3361 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3362 				     0, NULL, HCI_CMD_TIMEOUT);
3363 }
3364 
3365 /* Read Flow Control Mode */
3366 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3367 {
3368 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3369 				     0, NULL, HCI_CMD_TIMEOUT);
3370 }
3371 
3372 /* Read Location Data */
3373 static int hci_read_location_data_sync(struct hci_dev *hdev)
3374 {
3375 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3376 				     0, NULL, HCI_CMD_TIMEOUT);
3377 }
3378 
3379 /* AMP Controller init stage 1 command sequence */
3380 static const struct hci_init_stage amp_init1[] = {
3381 	/* HCI_OP_READ_LOCAL_VERSION */
3382 	HCI_INIT(hci_read_local_version_sync),
3383 	/* HCI_OP_READ_LOCAL_COMMANDS */
3384 	HCI_INIT(hci_read_local_cmds_sync),
3385 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3386 	HCI_INIT(hci_read_local_amp_info_sync),
3387 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3388 	HCI_INIT(hci_read_data_block_size_sync),
3389 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3390 	HCI_INIT(hci_read_flow_control_mode_sync),
3391 	/* HCI_OP_READ_LOCATION_DATA */
3392 	HCI_INIT(hci_read_location_data_sync),
3393 	{}
3394 };
3395 
3396 static int hci_init1_sync(struct hci_dev *hdev)
3397 {
3398 	int err;
3399 
3400 	bt_dev_dbg(hdev, "");
3401 
3402 	/* Reset */
3403 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3404 		err = hci_reset_sync(hdev);
3405 		if (err)
3406 			return err;
3407 	}
3408 
3409 	switch (hdev->dev_type) {
3410 	case HCI_PRIMARY:
3411 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3412 		return hci_init_stage_sync(hdev, br_init1);
3413 	case HCI_AMP:
3414 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3415 		return hci_init_stage_sync(hdev, amp_init1);
3416 	default:
3417 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3418 		break;
3419 	}
3420 
3421 	return 0;
3422 }
3423 
3424 /* AMP Controller init stage 2 command sequence */
3425 static const struct hci_init_stage amp_init2[] = {
3426 	/* HCI_OP_READ_LOCAL_FEATURES */
3427 	HCI_INIT(hci_read_local_features_sync),
3428 	{}
3429 };
3430 
3431 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3432 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3433 {
3434 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3435 				     0, NULL, HCI_CMD_TIMEOUT);
3436 }
3437 
3438 /* Read Class of Device */
3439 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3440 {
3441 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3442 				     0, NULL, HCI_CMD_TIMEOUT);
3443 }
3444 
3445 /* Read Local Name */
3446 static int hci_read_local_name_sync(struct hci_dev *hdev)
3447 {
3448 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3449 				     0, NULL, HCI_CMD_TIMEOUT);
3450 }
3451 
3452 /* Read Voice Setting */
3453 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3454 {
3455 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3456 				     0, NULL, HCI_CMD_TIMEOUT);
3457 }
3458 
3459 /* Read Number of Supported IAC */
3460 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3461 {
3462 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3463 				     0, NULL, HCI_CMD_TIMEOUT);
3464 }
3465 
3466 /* Read Current IAC LAP */
3467 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3468 {
3469 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3470 				     0, NULL, HCI_CMD_TIMEOUT);
3471 }
3472 
3473 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3474 				     u8 cond_type, bdaddr_t *bdaddr,
3475 				     u8 auto_accept)
3476 {
3477 	struct hci_cp_set_event_filter cp;
3478 
3479 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3480 		return 0;
3481 
3482 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3483 		return 0;
3484 
3485 	memset(&cp, 0, sizeof(cp));
3486 	cp.flt_type = flt_type;
3487 
3488 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3489 		cp.cond_type = cond_type;
3490 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3491 		cp.addr_conn_flt.auto_accept = auto_accept;
3492 	}
3493 
3494 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3495 				     flt_type == HCI_FLT_CLEAR_ALL ?
3496 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3497 				     HCI_CMD_TIMEOUT);
3498 }
3499 
3500 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3501 {
3502 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3503 		return 0;
3504 
3505 	/* In theory the state machine should not reach here unless
3506 	 * a hci_set_event_filter_sync() call succeeds, but we do
3507 	 * the check both for parity and as a future reminder.
3508 	 */
3509 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3510 		return 0;
3511 
3512 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3513 					 BDADDR_ANY, 0x00);
3514 }
3515 
3516 /* Connection accept timeout ~20 secs */
3517 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3518 {
3519 	__le16 param = cpu_to_le16(0x7d00);
3520 
3521 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3522 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3523 }
3524 
3525 /* BR Controller init stage 2 command sequence */
3526 static const struct hci_init_stage br_init2[] = {
3527 	/* HCI_OP_READ_BUFFER_SIZE */
3528 	HCI_INIT(hci_read_buffer_size_sync),
3529 	/* HCI_OP_READ_CLASS_OF_DEV */
3530 	HCI_INIT(hci_read_dev_class_sync),
3531 	/* HCI_OP_READ_LOCAL_NAME */
3532 	HCI_INIT(hci_read_local_name_sync),
3533 	/* HCI_OP_READ_VOICE_SETTING */
3534 	HCI_INIT(hci_read_voice_setting_sync),
3535 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3536 	HCI_INIT(hci_read_num_supported_iac_sync),
3537 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3538 	HCI_INIT(hci_read_current_iac_lap_sync),
3539 	/* HCI_OP_SET_EVENT_FLT */
3540 	HCI_INIT(hci_clear_event_filter_sync),
3541 	/* HCI_OP_WRITE_CA_TIMEOUT */
3542 	HCI_INIT(hci_write_ca_timeout_sync),
3543 	{}
3544 };
3545 
3546 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3547 {
3548 	u8 mode = 0x01;
3549 
3550 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3551 		return 0;
3552 
3553 	/* When SSP is available, then the host features page
3554 	 * should also be available as well. However some
3555 	 * controllers list the max_page as 0 as long as SSP
3556 	 * has not been enabled. To achieve proper debugging
3557 	 * output, force the minimum max_page to 1 at least.
3558 	 */
3559 	hdev->max_page = 0x01;
3560 
3561 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3562 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3563 }
3564 
3565 static int hci_write_eir_sync(struct hci_dev *hdev)
3566 {
3567 	struct hci_cp_write_eir cp;
3568 
3569 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3570 		return 0;
3571 
3572 	memset(hdev->eir, 0, sizeof(hdev->eir));
3573 	memset(&cp, 0, sizeof(cp));
3574 
3575 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3576 				     HCI_CMD_TIMEOUT);
3577 }
3578 
3579 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3580 {
3581 	u8 mode;
3582 
3583 	if (!lmp_inq_rssi_capable(hdev) &&
3584 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3585 		return 0;
3586 
3587 	/* If Extended Inquiry Result events are supported, then
3588 	 * they are clearly preferred over Inquiry Result with RSSI
3589 	 * events.
3590 	 */
3591 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3592 
3593 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3594 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3595 }
3596 
3597 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3598 {
3599 	if (!lmp_inq_tx_pwr_capable(hdev))
3600 		return 0;
3601 
3602 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3603 				     0, NULL, HCI_CMD_TIMEOUT);
3604 }
3605 
3606 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3607 {
3608 	struct hci_cp_read_local_ext_features cp;
3609 
3610 	if (!lmp_ext_feat_capable(hdev))
3611 		return 0;
3612 
3613 	memset(&cp, 0, sizeof(cp));
3614 	cp.page = page;
3615 
3616 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3617 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3618 }
3619 
3620 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3621 {
3622 	return hci_read_local_ext_features_sync(hdev, 0x01);
3623 }
3624 
3625 /* HCI Controller init stage 2 command sequence */
3626 static const struct hci_init_stage hci_init2[] = {
3627 	/* HCI_OP_READ_LOCAL_COMMANDS */
3628 	HCI_INIT(hci_read_local_cmds_sync),
3629 	/* HCI_OP_WRITE_SSP_MODE */
3630 	HCI_INIT(hci_write_ssp_mode_1_sync),
3631 	/* HCI_OP_WRITE_EIR */
3632 	HCI_INIT(hci_write_eir_sync),
3633 	/* HCI_OP_WRITE_INQUIRY_MODE */
3634 	HCI_INIT(hci_write_inquiry_mode_sync),
3635 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3636 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3637 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3638 	HCI_INIT(hci_read_local_ext_features_1_sync),
3639 	/* HCI_OP_WRITE_AUTH_ENABLE */
3640 	HCI_INIT(hci_write_auth_enable_sync),
3641 	{}
3642 };
3643 
3644 /* Read LE Buffer Size */
3645 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3646 {
3647 	/* Use Read LE Buffer Size V2 if supported */
3648 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3649 		return __hci_cmd_sync_status(hdev,
3650 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3651 					     0, NULL, HCI_CMD_TIMEOUT);
3652 
3653 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3654 				     0, NULL, HCI_CMD_TIMEOUT);
3655 }
3656 
3657 /* Read LE Local Supported Features */
3658 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3659 {
3660 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3661 				     0, NULL, HCI_CMD_TIMEOUT);
3662 }
3663 
3664 /* Read LE Supported States */
3665 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3666 {
3667 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3668 				     0, NULL, HCI_CMD_TIMEOUT);
3669 }
3670 
3671 /* LE Controller init stage 2 command sequence */
3672 static const struct hci_init_stage le_init2[] = {
3673 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3674 	HCI_INIT(hci_le_read_local_features_sync),
3675 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3676 	HCI_INIT(hci_le_read_buffer_size_sync),
3677 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3678 	HCI_INIT(hci_le_read_supported_states_sync),
3679 	{}
3680 };
3681 
3682 static int hci_init2_sync(struct hci_dev *hdev)
3683 {
3684 	int err;
3685 
3686 	bt_dev_dbg(hdev, "");
3687 
3688 	if (hdev->dev_type == HCI_AMP)
3689 		return hci_init_stage_sync(hdev, amp_init2);
3690 
3691 	err = hci_init_stage_sync(hdev, hci_init2);
3692 	if (err)
3693 		return err;
3694 
3695 	if (lmp_bredr_capable(hdev)) {
3696 		err = hci_init_stage_sync(hdev, br_init2);
3697 		if (err)
3698 			return err;
3699 	} else {
3700 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3701 	}
3702 
3703 	if (lmp_le_capable(hdev)) {
3704 		err = hci_init_stage_sync(hdev, le_init2);
3705 		if (err)
3706 			return err;
3707 		/* LE-only controllers have LE implicitly enabled */
3708 		if (!lmp_bredr_capable(hdev))
3709 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3716 {
3717 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3718 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3719 	 * command otherwise.
3720 	 */
3721 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3722 
3723 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3724 	 * any event mask for pre 1.2 devices.
3725 	 */
3726 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3727 		return 0;
3728 
3729 	if (lmp_bredr_capable(hdev)) {
3730 		events[4] |= 0x01; /* Flow Specification Complete */
3731 
3732 		/* Don't set Disconnect Complete when suspended as that
3733 		 * would wakeup the host when disconnecting due to
3734 		 * suspend.
3735 		 */
3736 		if (hdev->suspended)
3737 			events[0] &= 0xef;
3738 	} else {
3739 		/* Use a different default for LE-only devices */
3740 		memset(events, 0, sizeof(events));
3741 		events[1] |= 0x20; /* Command Complete */
3742 		events[1] |= 0x40; /* Command Status */
3743 		events[1] |= 0x80; /* Hardware Error */
3744 
3745 		/* If the controller supports the Disconnect command, enable
3746 		 * the corresponding event. In addition enable packet flow
3747 		 * control related events.
3748 		 */
3749 		if (hdev->commands[0] & 0x20) {
3750 			/* Don't set Disconnect Complete when suspended as that
3751 			 * would wakeup the host when disconnecting due to
3752 			 * suspend.
3753 			 */
3754 			if (!hdev->suspended)
3755 				events[0] |= 0x10; /* Disconnection Complete */
3756 			events[2] |= 0x04; /* Number of Completed Packets */
3757 			events[3] |= 0x02; /* Data Buffer Overflow */
3758 		}
3759 
3760 		/* If the controller supports the Read Remote Version
3761 		 * Information command, enable the corresponding event.
3762 		 */
3763 		if (hdev->commands[2] & 0x80)
3764 			events[1] |= 0x08; /* Read Remote Version Information
3765 					    * Complete
3766 					    */
3767 
3768 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3769 			events[0] |= 0x80; /* Encryption Change */
3770 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3771 		}
3772 	}
3773 
3774 	if (lmp_inq_rssi_capable(hdev) ||
3775 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3776 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3777 
3778 	if (lmp_ext_feat_capable(hdev))
3779 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3780 
3781 	if (lmp_esco_capable(hdev)) {
3782 		events[5] |= 0x08; /* Synchronous Connection Complete */
3783 		events[5] |= 0x10; /* Synchronous Connection Changed */
3784 	}
3785 
3786 	if (lmp_sniffsubr_capable(hdev))
3787 		events[5] |= 0x20; /* Sniff Subrating */
3788 
3789 	if (lmp_pause_enc_capable(hdev))
3790 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3791 
3792 	if (lmp_ext_inq_capable(hdev))
3793 		events[5] |= 0x40; /* Extended Inquiry Result */
3794 
3795 	if (lmp_no_flush_capable(hdev))
3796 		events[7] |= 0x01; /* Enhanced Flush Complete */
3797 
3798 	if (lmp_lsto_capable(hdev))
3799 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3800 
3801 	if (lmp_ssp_capable(hdev)) {
3802 		events[6] |= 0x01;	/* IO Capability Request */
3803 		events[6] |= 0x02;	/* IO Capability Response */
3804 		events[6] |= 0x04;	/* User Confirmation Request */
3805 		events[6] |= 0x08;	/* User Passkey Request */
3806 		events[6] |= 0x10;	/* Remote OOB Data Request */
3807 		events[6] |= 0x20;	/* Simple Pairing Complete */
3808 		events[7] |= 0x04;	/* User Passkey Notification */
3809 		events[7] |= 0x08;	/* Keypress Notification */
3810 		events[7] |= 0x10;	/* Remote Host Supported
3811 					 * Features Notification
3812 					 */
3813 	}
3814 
3815 	if (lmp_le_capable(hdev))
3816 		events[7] |= 0x20;	/* LE Meta-Event */
3817 
3818 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3819 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3820 }
3821 
3822 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3823 {
3824 	struct hci_cp_read_stored_link_key cp;
3825 
3826 	if (!(hdev->commands[6] & 0x20) ||
3827 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3828 		return 0;
3829 
3830 	memset(&cp, 0, sizeof(cp));
3831 	bacpy(&cp.bdaddr, BDADDR_ANY);
3832 	cp.read_all = 0x01;
3833 
3834 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3835 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3836 }
3837 
3838 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3839 {
3840 	struct hci_cp_write_def_link_policy cp;
3841 	u16 link_policy = 0;
3842 
3843 	if (!(hdev->commands[5] & 0x10))
3844 		return 0;
3845 
3846 	memset(&cp, 0, sizeof(cp));
3847 
3848 	if (lmp_rswitch_capable(hdev))
3849 		link_policy |= HCI_LP_RSWITCH;
3850 	if (lmp_hold_capable(hdev))
3851 		link_policy |= HCI_LP_HOLD;
3852 	if (lmp_sniff_capable(hdev))
3853 		link_policy |= HCI_LP_SNIFF;
3854 	if (lmp_park_capable(hdev))
3855 		link_policy |= HCI_LP_PARK;
3856 
3857 	cp.policy = cpu_to_le16(link_policy);
3858 
3859 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3860 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3861 }
3862 
3863 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3864 {
3865 	if (!(hdev->commands[8] & 0x01))
3866 		return 0;
3867 
3868 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3869 				     0, NULL, HCI_CMD_TIMEOUT);
3870 }
3871 
3872 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3873 {
3874 	if (!(hdev->commands[18] & 0x04) ||
3875 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3876 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3877 		return 0;
3878 
3879 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3880 				     0, NULL, HCI_CMD_TIMEOUT);
3881 }
3882 
3883 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3884 {
3885 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3886 	 * support the Read Page Scan Type command. Check support for
3887 	 * this command in the bit mask of supported commands.
3888 	 */
3889 	if (!(hdev->commands[13] & 0x01))
3890 		return 0;
3891 
3892 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3893 				     0, NULL, HCI_CMD_TIMEOUT);
3894 }
3895 
3896 /* Read features beyond page 1 if available */
3897 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3898 {
3899 	u8 page;
3900 	int err;
3901 
3902 	if (!lmp_ext_feat_capable(hdev))
3903 		return 0;
3904 
3905 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3906 	     page++) {
3907 		err = hci_read_local_ext_features_sync(hdev, page);
3908 		if (err)
3909 			return err;
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 /* HCI Controller init stage 3 command sequence */
3916 static const struct hci_init_stage hci_init3[] = {
3917 	/* HCI_OP_SET_EVENT_MASK */
3918 	HCI_INIT(hci_set_event_mask_sync),
3919 	/* HCI_OP_READ_STORED_LINK_KEY */
3920 	HCI_INIT(hci_read_stored_link_key_sync),
3921 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3922 	HCI_INIT(hci_setup_link_policy_sync),
3923 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3924 	HCI_INIT(hci_read_page_scan_activity_sync),
3925 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3926 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3927 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3928 	HCI_INIT(hci_read_page_scan_type_sync),
3929 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3930 	HCI_INIT(hci_read_local_ext_features_all_sync),
3931 	{}
3932 };
3933 
3934 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3935 {
3936 	u8 events[8];
3937 
3938 	if (!lmp_le_capable(hdev))
3939 		return 0;
3940 
3941 	memset(events, 0, sizeof(events));
3942 
3943 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3944 		events[0] |= 0x10;	/* LE Long Term Key Request */
3945 
3946 	/* If controller supports the Connection Parameters Request
3947 	 * Link Layer Procedure, enable the corresponding event.
3948 	 */
3949 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3950 		/* LE Remote Connection Parameter Request */
3951 		events[0] |= 0x20;
3952 
3953 	/* If the controller supports the Data Length Extension
3954 	 * feature, enable the corresponding event.
3955 	 */
3956 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3957 		events[0] |= 0x40;	/* LE Data Length Change */
3958 
3959 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3960 	 * enable the corresponding event.
3961 	 */
3962 	if (use_enhanced_conn_complete(hdev))
3963 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3964 
3965 	/* If the controller supports Extended Scanner Filter
3966 	 * Policies, enable the corresponding event.
3967 	 */
3968 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3969 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3970 
3971 	/* If the controller supports Channel Selection Algorithm #2
3972 	 * feature, enable the corresponding event.
3973 	 */
3974 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3975 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3976 
3977 	/* If the controller supports the LE Set Scan Enable command,
3978 	 * enable the corresponding advertising report event.
3979 	 */
3980 	if (hdev->commands[26] & 0x08)
3981 		events[0] |= 0x02;	/* LE Advertising Report */
3982 
3983 	/* If the controller supports the LE Create Connection
3984 	 * command, enable the corresponding event.
3985 	 */
3986 	if (hdev->commands[26] & 0x10)
3987 		events[0] |= 0x01;	/* LE Connection Complete */
3988 
3989 	/* If the controller supports the LE Connection Update
3990 	 * command, enable the corresponding event.
3991 	 */
3992 	if (hdev->commands[27] & 0x04)
3993 		events[0] |= 0x04;	/* LE Connection Update Complete */
3994 
3995 	/* If the controller supports the LE Read Remote Used Features
3996 	 * command, enable the corresponding event.
3997 	 */
3998 	if (hdev->commands[27] & 0x20)
3999 		/* LE Read Remote Used Features Complete */
4000 		events[0] |= 0x08;
4001 
4002 	/* If the controller supports the LE Read Local P-256
4003 	 * Public Key command, enable the corresponding event.
4004 	 */
4005 	if (hdev->commands[34] & 0x02)
4006 		/* LE Read Local P-256 Public Key Complete */
4007 		events[0] |= 0x80;
4008 
4009 	/* If the controller supports the LE Generate DHKey
4010 	 * command, enable the corresponding event.
4011 	 */
4012 	if (hdev->commands[34] & 0x04)
4013 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4014 
4015 	/* If the controller supports the LE Set Default PHY or
4016 	 * LE Set PHY commands, enable the corresponding event.
4017 	 */
4018 	if (hdev->commands[35] & (0x20 | 0x40))
4019 		events[1] |= 0x08;        /* LE PHY Update Complete */
4020 
4021 	/* If the controller supports LE Set Extended Scan Parameters
4022 	 * and LE Set Extended Scan Enable commands, enable the
4023 	 * corresponding event.
4024 	 */
4025 	if (use_ext_scan(hdev))
4026 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4027 
4028 	/* If the controller supports the LE Extended Advertising
4029 	 * command, enable the corresponding event.
4030 	 */
4031 	if (ext_adv_capable(hdev))
4032 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4033 
4034 	if (cis_capable(hdev)) {
4035 		events[3] |= 0x01;	/* LE CIS Established */
4036 		if (cis_peripheral_capable(hdev))
4037 			events[3] |= 0x02; /* LE CIS Request */
4038 	}
4039 
4040 	if (bis_capable(hdev)) {
4041 		events[3] |= 0x04;	/* LE Create BIG Complete */
4042 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4043 		events[3] |= 0x10;	/* LE BIG Sync Established */
4044 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4045 	}
4046 
4047 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4048 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4049 }
4050 
4051 /* Read LE Advertising Channel TX Power */
4052 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4053 {
4054 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4055 		/* HCI TS spec forbids mixing of legacy and extended
4056 		 * advertising commands wherein READ_ADV_TX_POWER is
4057 		 * also included. So do not call it if extended adv
4058 		 * is supported otherwise controller will return
4059 		 * COMMAND_DISALLOWED for extended commands.
4060 		 */
4061 		return __hci_cmd_sync_status(hdev,
4062 					       HCI_OP_LE_READ_ADV_TX_POWER,
4063 					       0, NULL, HCI_CMD_TIMEOUT);
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 /* Read LE Min/Max Tx Power*/
4070 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4071 {
4072 	if (!(hdev->commands[38] & 0x80) ||
4073 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4074 		return 0;
4075 
4076 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4077 				     0, NULL, HCI_CMD_TIMEOUT);
4078 }
4079 
4080 /* Read LE Accept List Size */
4081 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4082 {
4083 	if (!(hdev->commands[26] & 0x40))
4084 		return 0;
4085 
4086 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4087 				     0, NULL, HCI_CMD_TIMEOUT);
4088 }
4089 
4090 /* Clear LE Accept List */
4091 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4092 {
4093 	if (!(hdev->commands[26] & 0x80))
4094 		return 0;
4095 
4096 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4097 				     HCI_CMD_TIMEOUT);
4098 }
4099 
4100 /* Read LE Resolving List Size */
4101 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4102 {
4103 	if (!(hdev->commands[34] & 0x40))
4104 		return 0;
4105 
4106 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4107 				     0, NULL, HCI_CMD_TIMEOUT);
4108 }
4109 
4110 /* Clear LE Resolving List */
4111 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4112 {
4113 	if (!(hdev->commands[34] & 0x20))
4114 		return 0;
4115 
4116 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4117 				     HCI_CMD_TIMEOUT);
4118 }
4119 
4120 /* Set RPA timeout */
4121 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4122 {
4123 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4124 
4125 	if (!(hdev->commands[35] & 0x04) ||
4126 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4127 		return 0;
4128 
4129 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4130 				     sizeof(timeout), &timeout,
4131 				     HCI_CMD_TIMEOUT);
4132 }
4133 
4134 /* Read LE Maximum Data Length */
4135 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4136 {
4137 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4138 		return 0;
4139 
4140 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4141 				     HCI_CMD_TIMEOUT);
4142 }
4143 
4144 /* Read LE Suggested Default Data Length */
4145 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4146 {
4147 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4148 		return 0;
4149 
4150 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4151 				     HCI_CMD_TIMEOUT);
4152 }
4153 
4154 /* Read LE Number of Supported Advertising Sets */
4155 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4156 {
4157 	if (!ext_adv_capable(hdev))
4158 		return 0;
4159 
4160 	return __hci_cmd_sync_status(hdev,
4161 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4162 				     0, NULL, HCI_CMD_TIMEOUT);
4163 }
4164 
4165 /* Write LE Host Supported */
4166 static int hci_set_le_support_sync(struct hci_dev *hdev)
4167 {
4168 	struct hci_cp_write_le_host_supported cp;
4169 
4170 	/* LE-only devices do not support explicit enablement */
4171 	if (!lmp_bredr_capable(hdev))
4172 		return 0;
4173 
4174 	memset(&cp, 0, sizeof(cp));
4175 
4176 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4177 		cp.le = 0x01;
4178 		cp.simul = 0x00;
4179 	}
4180 
4181 	if (cp.le == lmp_host_le_capable(hdev))
4182 		return 0;
4183 
4184 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4185 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4186 }
4187 
4188 /* LE Set Host Feature */
4189 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4190 {
4191 	struct hci_cp_le_set_host_feature cp;
4192 
4193 	if (!iso_capable(hdev))
4194 		return 0;
4195 
4196 	memset(&cp, 0, sizeof(cp));
4197 
4198 	/* Isochronous Channels (Host Support) */
4199 	cp.bit_number = 32;
4200 	cp.bit_value = 1;
4201 
4202 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4203 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4204 }
4205 
4206 /* LE Controller init stage 3 command sequence */
4207 static const struct hci_init_stage le_init3[] = {
4208 	/* HCI_OP_LE_SET_EVENT_MASK */
4209 	HCI_INIT(hci_le_set_event_mask_sync),
4210 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4211 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4212 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4213 	HCI_INIT(hci_le_read_tx_power_sync),
4214 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4215 	HCI_INIT(hci_le_read_accept_list_size_sync),
4216 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4217 	HCI_INIT(hci_le_clear_accept_list_sync),
4218 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4219 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4220 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4221 	HCI_INIT(hci_le_clear_resolv_list_sync),
4222 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4223 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4224 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4225 	HCI_INIT(hci_le_read_max_data_len_sync),
4226 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4227 	HCI_INIT(hci_le_read_def_data_len_sync),
4228 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4229 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4230 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4231 	HCI_INIT(hci_set_le_support_sync),
4232 	/* HCI_OP_LE_SET_HOST_FEATURE */
4233 	HCI_INIT(hci_le_set_host_feature_sync),
4234 	{}
4235 };
4236 
4237 static int hci_init3_sync(struct hci_dev *hdev)
4238 {
4239 	int err;
4240 
4241 	bt_dev_dbg(hdev, "");
4242 
4243 	err = hci_init_stage_sync(hdev, hci_init3);
4244 	if (err)
4245 		return err;
4246 
4247 	if (lmp_le_capable(hdev))
4248 		return hci_init_stage_sync(hdev, le_init3);
4249 
4250 	return 0;
4251 }
4252 
4253 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4254 {
4255 	struct hci_cp_delete_stored_link_key cp;
4256 
4257 	/* Some Broadcom based Bluetooth controllers do not support the
4258 	 * Delete Stored Link Key command. They are clearly indicating its
4259 	 * absence in the bit mask of supported commands.
4260 	 *
4261 	 * Check the supported commands and only if the command is marked
4262 	 * as supported send it. If not supported assume that the controller
4263 	 * does not have actual support for stored link keys which makes this
4264 	 * command redundant anyway.
4265 	 *
4266 	 * Some controllers indicate that they support handling deleting
4267 	 * stored link keys, but they don't. The quirk lets a driver
4268 	 * just disable this command.
4269 	 */
4270 	if (!(hdev->commands[6] & 0x80) ||
4271 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4272 		return 0;
4273 
4274 	memset(&cp, 0, sizeof(cp));
4275 	bacpy(&cp.bdaddr, BDADDR_ANY);
4276 	cp.delete_all = 0x01;
4277 
4278 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4279 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4280 }
4281 
4282 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4283 {
4284 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4285 	bool changed = false;
4286 
4287 	/* Set event mask page 2 if the HCI command for it is supported */
4288 	if (!(hdev->commands[22] & 0x04))
4289 		return 0;
4290 
4291 	/* If Connectionless Peripheral Broadcast central role is supported
4292 	 * enable all necessary events for it.
4293 	 */
4294 	if (lmp_cpb_central_capable(hdev)) {
4295 		events[1] |= 0x40;	/* Triggered Clock Capture */
4296 		events[1] |= 0x80;	/* Synchronization Train Complete */
4297 		events[2] |= 0x08;	/* Truncated Page Complete */
4298 		events[2] |= 0x20;	/* CPB Channel Map Change */
4299 		changed = true;
4300 	}
4301 
4302 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4303 	 * enable all necessary events for it.
4304 	 */
4305 	if (lmp_cpb_peripheral_capable(hdev)) {
4306 		events[2] |= 0x01;	/* Synchronization Train Received */
4307 		events[2] |= 0x02;	/* CPB Receive */
4308 		events[2] |= 0x04;	/* CPB Timeout */
4309 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4310 		changed = true;
4311 	}
4312 
4313 	/* Enable Authenticated Payload Timeout Expired event if supported */
4314 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4315 		events[2] |= 0x80;
4316 		changed = true;
4317 	}
4318 
4319 	/* Some Broadcom based controllers indicate support for Set Event
4320 	 * Mask Page 2 command, but then actually do not support it. Since
4321 	 * the default value is all bits set to zero, the command is only
4322 	 * required if the event mask has to be changed. In case no change
4323 	 * to the event mask is needed, skip this command.
4324 	 */
4325 	if (!changed)
4326 		return 0;
4327 
4328 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4329 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4330 }
4331 
4332 /* Read local codec list if the HCI command is supported */
4333 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4334 {
4335 	if (hdev->commands[45] & 0x04)
4336 		hci_read_supported_codecs_v2(hdev);
4337 	else if (hdev->commands[29] & 0x20)
4338 		hci_read_supported_codecs(hdev);
4339 
4340 	return 0;
4341 }
4342 
4343 /* Read local pairing options if the HCI command is supported */
4344 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4345 {
4346 	if (!(hdev->commands[41] & 0x08))
4347 		return 0;
4348 
4349 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4350 				     0, NULL, HCI_CMD_TIMEOUT);
4351 }
4352 
4353 /* Get MWS transport configuration if the HCI command is supported */
4354 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4355 {
4356 	if (!mws_transport_config_capable(hdev))
4357 		return 0;
4358 
4359 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4360 				     0, NULL, HCI_CMD_TIMEOUT);
4361 }
4362 
4363 /* Check for Synchronization Train support */
4364 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4365 {
4366 	if (!lmp_sync_train_capable(hdev))
4367 		return 0;
4368 
4369 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4370 				     0, NULL, HCI_CMD_TIMEOUT);
4371 }
4372 
4373 /* Enable Secure Connections if supported and configured */
4374 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4375 {
4376 	u8 support = 0x01;
4377 
4378 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4379 	    !bredr_sc_enabled(hdev))
4380 		return 0;
4381 
4382 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4383 				     sizeof(support), &support,
4384 				     HCI_CMD_TIMEOUT);
4385 }
4386 
4387 /* Set erroneous data reporting if supported to the wideband speech
4388  * setting value
4389  */
4390 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4391 {
4392 	struct hci_cp_write_def_err_data_reporting cp;
4393 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4394 
4395 	if (!(hdev->commands[18] & 0x08) ||
4396 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4397 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4398 		return 0;
4399 
4400 	if (enabled == hdev->err_data_reporting)
4401 		return 0;
4402 
4403 	memset(&cp, 0, sizeof(cp));
4404 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4405 				ERR_DATA_REPORTING_DISABLED;
4406 
4407 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4408 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4409 }
4410 
4411 static const struct hci_init_stage hci_init4[] = {
4412 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4413 	HCI_INIT(hci_delete_stored_link_key_sync),
4414 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4415 	HCI_INIT(hci_set_event_mask_page_2_sync),
4416 	/* HCI_OP_READ_LOCAL_CODECS */
4417 	HCI_INIT(hci_read_local_codecs_sync),
4418 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4419 	HCI_INIT(hci_read_local_pairing_opts_sync),
4420 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4421 	HCI_INIT(hci_get_mws_transport_config_sync),
4422 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4423 	HCI_INIT(hci_read_sync_train_params_sync),
4424 	/* HCI_OP_WRITE_SC_SUPPORT */
4425 	HCI_INIT(hci_write_sc_support_1_sync),
4426 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4427 	HCI_INIT(hci_set_err_data_report_sync),
4428 	{}
4429 };
4430 
4431 /* Set Suggested Default Data Length to maximum if supported */
4432 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4433 {
4434 	struct hci_cp_le_write_def_data_len cp;
4435 
4436 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4437 		return 0;
4438 
4439 	memset(&cp, 0, sizeof(cp));
4440 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4441 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4442 
4443 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4444 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4445 }
4446 
4447 /* Set Default PHY parameters if command is supported, enables all supported
4448  * PHYs according to the LE Features bits.
4449  */
4450 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4451 {
4452 	struct hci_cp_le_set_default_phy cp;
4453 
4454 	if (!(hdev->commands[35] & 0x20)) {
4455 		/* If the command is not supported it means only 1M PHY is
4456 		 * supported.
4457 		 */
4458 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4459 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4460 		return 0;
4461 	}
4462 
4463 	memset(&cp, 0, sizeof(cp));
4464 	cp.all_phys = 0x00;
4465 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4466 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4467 
4468 	/* Enables 2M PHY if supported */
4469 	if (le_2m_capable(hdev)) {
4470 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4471 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4472 	}
4473 
4474 	/* Enables Coded PHY if supported */
4475 	if (le_coded_capable(hdev)) {
4476 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4477 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4478 	}
4479 
4480 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4481 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4482 }
4483 
4484 static const struct hci_init_stage le_init4[] = {
4485 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4486 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4487 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4488 	HCI_INIT(hci_le_set_default_phy_sync),
4489 	{}
4490 };
4491 
4492 static int hci_init4_sync(struct hci_dev *hdev)
4493 {
4494 	int err;
4495 
4496 	bt_dev_dbg(hdev, "");
4497 
4498 	err = hci_init_stage_sync(hdev, hci_init4);
4499 	if (err)
4500 		return err;
4501 
4502 	if (lmp_le_capable(hdev))
4503 		return hci_init_stage_sync(hdev, le_init4);
4504 
4505 	return 0;
4506 }
4507 
4508 static int hci_init_sync(struct hci_dev *hdev)
4509 {
4510 	int err;
4511 
4512 	err = hci_init1_sync(hdev);
4513 	if (err < 0)
4514 		return err;
4515 
4516 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4517 		hci_debugfs_create_basic(hdev);
4518 
4519 	err = hci_init2_sync(hdev);
4520 	if (err < 0)
4521 		return err;
4522 
4523 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4524 	 * BR/EDR/LE type controllers. AMP controllers only need the
4525 	 * first two stages of init.
4526 	 */
4527 	if (hdev->dev_type != HCI_PRIMARY)
4528 		return 0;
4529 
4530 	err = hci_init3_sync(hdev);
4531 	if (err < 0)
4532 		return err;
4533 
4534 	err = hci_init4_sync(hdev);
4535 	if (err < 0)
4536 		return err;
4537 
4538 	/* This function is only called when the controller is actually in
4539 	 * configured state. When the controller is marked as unconfigured,
4540 	 * this initialization procedure is not run.
4541 	 *
4542 	 * It means that it is possible that a controller runs through its
4543 	 * setup phase and then discovers missing settings. If that is the
4544 	 * case, then this function will not be called. It then will only
4545 	 * be called during the config phase.
4546 	 *
4547 	 * So only when in setup phase or config phase, create the debugfs
4548 	 * entries and register the SMP channels.
4549 	 */
4550 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4551 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4552 		return 0;
4553 
4554 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4555 		return 0;
4556 
4557 	hci_debugfs_create_common(hdev);
4558 
4559 	if (lmp_bredr_capable(hdev))
4560 		hci_debugfs_create_bredr(hdev);
4561 
4562 	if (lmp_le_capable(hdev))
4563 		hci_debugfs_create_le(hdev);
4564 
4565 	return 0;
4566 }
4567 
4568 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4569 
4570 static const struct {
4571 	unsigned long quirk;
4572 	const char *desc;
4573 } hci_broken_table[] = {
4574 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4575 			 "HCI Read Local Supported Commands not supported"),
4576 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4577 			 "HCI Delete Stored Link Key command is advertised, "
4578 			 "but not supported."),
4579 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4580 			 "HCI Read Default Erroneous Data Reporting command is "
4581 			 "advertised, but not supported."),
4582 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4583 			 "HCI Read Transmit Power Level command is advertised, "
4584 			 "but not supported."),
4585 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4586 			 "HCI Set Event Filter command not supported."),
4587 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4588 			 "HCI Enhanced Setup Synchronous Connection command is "
4589 			 "advertised, but not supported."),
4590 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4591 			 "HCI LE Set Random Private Address Timeout command is "
4592 			 "advertised, but not supported.")
4593 };
4594 
4595 /* This function handles hdev setup stage:
4596  *
4597  * Calls hdev->setup
4598  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4599  */
4600 static int hci_dev_setup_sync(struct hci_dev *hdev)
4601 {
4602 	int ret = 0;
4603 	bool invalid_bdaddr;
4604 	size_t i;
4605 
4606 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4607 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4608 		return 0;
4609 
4610 	bt_dev_dbg(hdev, "");
4611 
4612 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4613 
4614 	if (hdev->setup)
4615 		ret = hdev->setup(hdev);
4616 
4617 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4618 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4619 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4620 	}
4621 
4622 	/* The transport driver can set the quirk to mark the
4623 	 * BD_ADDR invalid before creating the HCI device or in
4624 	 * its setup callback.
4625 	 */
4626 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
4627 
4628 	if (!ret) {
4629 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
4630 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
4631 				hci_dev_get_bd_addr_from_property(hdev);
4632 
4633 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4634 			    hdev->set_bdaddr) {
4635 				ret = hdev->set_bdaddr(hdev,
4636 						       &hdev->public_addr);
4637 
4638 				/* If setting of the BD_ADDR from the device
4639 				 * property succeeds, then treat the address
4640 				 * as valid even if the invalid BD_ADDR
4641 				 * quirk indicates otherwise.
4642 				 */
4643 				if (!ret)
4644 					invalid_bdaddr = false;
4645 			}
4646 		}
4647 	}
4648 
4649 	/* The transport driver can set these quirks before
4650 	 * creating the HCI device or in its setup callback.
4651 	 *
4652 	 * For the invalid BD_ADDR quirk it is possible that
4653 	 * it becomes a valid address if the bootloader does
4654 	 * provide it (see above).
4655 	 *
4656 	 * In case any of them is set, the controller has to
4657 	 * start up as unconfigured.
4658 	 */
4659 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4660 	    invalid_bdaddr)
4661 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4662 
4663 	/* For an unconfigured controller it is required to
4664 	 * read at least the version information provided by
4665 	 * the Read Local Version Information command.
4666 	 *
4667 	 * If the set_bdaddr driver callback is provided, then
4668 	 * also the original Bluetooth public device address
4669 	 * will be read using the Read BD Address command.
4670 	 */
4671 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4672 		return hci_unconf_init_sync(hdev);
4673 
4674 	return ret;
4675 }
4676 
4677 /* This function handles hdev init stage:
4678  *
4679  * Calls hci_dev_setup_sync to perform setup stage
4680  * Calls hci_init_sync to perform HCI command init sequence
4681  */
4682 static int hci_dev_init_sync(struct hci_dev *hdev)
4683 {
4684 	int ret;
4685 
4686 	bt_dev_dbg(hdev, "");
4687 
4688 	atomic_set(&hdev->cmd_cnt, 1);
4689 	set_bit(HCI_INIT, &hdev->flags);
4690 
4691 	ret = hci_dev_setup_sync(hdev);
4692 
4693 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4694 		/* If public address change is configured, ensure that
4695 		 * the address gets programmed. If the driver does not
4696 		 * support changing the public address, fail the power
4697 		 * on procedure.
4698 		 */
4699 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4700 		    hdev->set_bdaddr)
4701 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4702 		else
4703 			ret = -EADDRNOTAVAIL;
4704 	}
4705 
4706 	if (!ret) {
4707 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4708 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4709 			ret = hci_init_sync(hdev);
4710 			if (!ret && hdev->post_init)
4711 				ret = hdev->post_init(hdev);
4712 		}
4713 	}
4714 
4715 	/* If the HCI Reset command is clearing all diagnostic settings,
4716 	 * then they need to be reprogrammed after the init procedure
4717 	 * completed.
4718 	 */
4719 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4720 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4721 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4722 		ret = hdev->set_diag(hdev, true);
4723 
4724 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4725 		msft_do_open(hdev);
4726 		aosp_do_open(hdev);
4727 	}
4728 
4729 	clear_bit(HCI_INIT, &hdev->flags);
4730 
4731 	return ret;
4732 }
4733 
4734 int hci_dev_open_sync(struct hci_dev *hdev)
4735 {
4736 	int ret;
4737 
4738 	bt_dev_dbg(hdev, "");
4739 
4740 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4741 		ret = -ENODEV;
4742 		goto done;
4743 	}
4744 
4745 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4746 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4747 		/* Check for rfkill but allow the HCI setup stage to
4748 		 * proceed (which in itself doesn't cause any RF activity).
4749 		 */
4750 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4751 			ret = -ERFKILL;
4752 			goto done;
4753 		}
4754 
4755 		/* Check for valid public address or a configured static
4756 		 * random address, but let the HCI setup proceed to
4757 		 * be able to determine if there is a public address
4758 		 * or not.
4759 		 *
4760 		 * In case of user channel usage, it is not important
4761 		 * if a public address or static random address is
4762 		 * available.
4763 		 *
4764 		 * This check is only valid for BR/EDR controllers
4765 		 * since AMP controllers do not have an address.
4766 		 */
4767 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4768 		    hdev->dev_type == HCI_PRIMARY &&
4769 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4770 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4771 			ret = -EADDRNOTAVAIL;
4772 			goto done;
4773 		}
4774 	}
4775 
4776 	if (test_bit(HCI_UP, &hdev->flags)) {
4777 		ret = -EALREADY;
4778 		goto done;
4779 	}
4780 
4781 	if (hdev->open(hdev)) {
4782 		ret = -EIO;
4783 		goto done;
4784 	}
4785 
4786 	hci_devcd_reset(hdev);
4787 
4788 	set_bit(HCI_RUNNING, &hdev->flags);
4789 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4790 
4791 	ret = hci_dev_init_sync(hdev);
4792 	if (!ret) {
4793 		hci_dev_hold(hdev);
4794 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4795 		hci_adv_instances_set_rpa_expired(hdev, true);
4796 		set_bit(HCI_UP, &hdev->flags);
4797 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4798 		hci_leds_update_powered(hdev, true);
4799 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4800 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4801 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4802 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4803 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4804 		    hdev->dev_type == HCI_PRIMARY) {
4805 			ret = hci_powered_update_sync(hdev);
4806 			mgmt_power_on(hdev, ret);
4807 		}
4808 	} else {
4809 		/* Init failed, cleanup */
4810 		flush_work(&hdev->tx_work);
4811 
4812 		/* Since hci_rx_work() is possible to awake new cmd_work
4813 		 * it should be flushed first to avoid unexpected call of
4814 		 * hci_cmd_work()
4815 		 */
4816 		flush_work(&hdev->rx_work);
4817 		flush_work(&hdev->cmd_work);
4818 
4819 		skb_queue_purge(&hdev->cmd_q);
4820 		skb_queue_purge(&hdev->rx_q);
4821 
4822 		if (hdev->flush)
4823 			hdev->flush(hdev);
4824 
4825 		if (hdev->sent_cmd) {
4826 			cancel_delayed_work_sync(&hdev->cmd_timer);
4827 			kfree_skb(hdev->sent_cmd);
4828 			hdev->sent_cmd = NULL;
4829 		}
4830 
4831 		clear_bit(HCI_RUNNING, &hdev->flags);
4832 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4833 
4834 		hdev->close(hdev);
4835 		hdev->flags &= BIT(HCI_RAW);
4836 	}
4837 
4838 done:
4839 	return ret;
4840 }
4841 
4842 /* This function requires the caller holds hdev->lock */
4843 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4844 {
4845 	struct hci_conn_params *p;
4846 
4847 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4848 		if (p->conn) {
4849 			hci_conn_drop(p->conn);
4850 			hci_conn_put(p->conn);
4851 			p->conn = NULL;
4852 		}
4853 		list_del_init(&p->action);
4854 	}
4855 
4856 	BT_DBG("All LE pending actions cleared");
4857 }
4858 
4859 static int hci_dev_shutdown(struct hci_dev *hdev)
4860 {
4861 	int err = 0;
4862 	/* Similar to how we first do setup and then set the exclusive access
4863 	 * bit for userspace, we must first unset userchannel and then clean up.
4864 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4865 	 * the controller (some shutdown routines require sending additional
4866 	 * commands to the controller for example).
4867 	 */
4868 	bool was_userchannel =
4869 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4870 
4871 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4872 	    test_bit(HCI_UP, &hdev->flags)) {
4873 		/* Execute vendor specific shutdown routine */
4874 		if (hdev->shutdown)
4875 			err = hdev->shutdown(hdev);
4876 	}
4877 
4878 	if (was_userchannel)
4879 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4880 
4881 	return err;
4882 }
4883 
4884 int hci_dev_close_sync(struct hci_dev *hdev)
4885 {
4886 	bool auto_off;
4887 	int err = 0;
4888 
4889 	bt_dev_dbg(hdev, "");
4890 
4891 	cancel_delayed_work(&hdev->power_off);
4892 	cancel_delayed_work(&hdev->ncmd_timer);
4893 	cancel_delayed_work(&hdev->le_scan_disable);
4894 	cancel_delayed_work(&hdev->le_scan_restart);
4895 
4896 	hci_request_cancel_all(hdev);
4897 
4898 	if (hdev->adv_instance_timeout) {
4899 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4900 		hdev->adv_instance_timeout = 0;
4901 	}
4902 
4903 	err = hci_dev_shutdown(hdev);
4904 
4905 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4906 		cancel_delayed_work_sync(&hdev->cmd_timer);
4907 		return err;
4908 	}
4909 
4910 	hci_leds_update_powered(hdev, false);
4911 
4912 	/* Flush RX and TX works */
4913 	flush_work(&hdev->tx_work);
4914 	flush_work(&hdev->rx_work);
4915 
4916 	if (hdev->discov_timeout > 0) {
4917 		hdev->discov_timeout = 0;
4918 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4919 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4920 	}
4921 
4922 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4923 		cancel_delayed_work(&hdev->service_cache);
4924 
4925 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4926 		struct adv_info *adv_instance;
4927 
4928 		cancel_delayed_work_sync(&hdev->rpa_expired);
4929 
4930 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4931 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4932 	}
4933 
4934 	/* Avoid potential lockdep warnings from the *_flush() calls by
4935 	 * ensuring the workqueue is empty up front.
4936 	 */
4937 	drain_workqueue(hdev->workqueue);
4938 
4939 	hci_dev_lock(hdev);
4940 
4941 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4942 
4943 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4944 
4945 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4946 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4947 	    hci_dev_test_flag(hdev, HCI_MGMT))
4948 		__mgmt_power_off(hdev);
4949 
4950 	hci_inquiry_cache_flush(hdev);
4951 	hci_pend_le_actions_clear(hdev);
4952 	hci_conn_hash_flush(hdev);
4953 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4954 	smp_unregister(hdev);
4955 	hci_dev_unlock(hdev);
4956 
4957 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4958 
4959 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4960 		aosp_do_close(hdev);
4961 		msft_do_close(hdev);
4962 	}
4963 
4964 	if (hdev->flush)
4965 		hdev->flush(hdev);
4966 
4967 	/* Reset device */
4968 	skb_queue_purge(&hdev->cmd_q);
4969 	atomic_set(&hdev->cmd_cnt, 1);
4970 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4971 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4972 		set_bit(HCI_INIT, &hdev->flags);
4973 		hci_reset_sync(hdev);
4974 		clear_bit(HCI_INIT, &hdev->flags);
4975 	}
4976 
4977 	/* flush cmd  work */
4978 	flush_work(&hdev->cmd_work);
4979 
4980 	/* Drop queues */
4981 	skb_queue_purge(&hdev->rx_q);
4982 	skb_queue_purge(&hdev->cmd_q);
4983 	skb_queue_purge(&hdev->raw_q);
4984 
4985 	/* Drop last sent command */
4986 	if (hdev->sent_cmd) {
4987 		cancel_delayed_work_sync(&hdev->cmd_timer);
4988 		kfree_skb(hdev->sent_cmd);
4989 		hdev->sent_cmd = NULL;
4990 	}
4991 
4992 	clear_bit(HCI_RUNNING, &hdev->flags);
4993 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4994 
4995 	/* After this point our queues are empty and no tasks are scheduled. */
4996 	hdev->close(hdev);
4997 
4998 	/* Clear flags */
4999 	hdev->flags &= BIT(HCI_RAW);
5000 	hci_dev_clear_volatile_flags(hdev);
5001 
5002 	/* Controller radio is available but is currently powered down */
5003 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5004 
5005 	memset(hdev->eir, 0, sizeof(hdev->eir));
5006 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5007 	bacpy(&hdev->random_addr, BDADDR_ANY);
5008 
5009 	hci_dev_put(hdev);
5010 	return err;
5011 }
5012 
5013 /* This function perform power on HCI command sequence as follows:
5014  *
5015  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5016  * sequence otherwise run hci_dev_open_sync which will follow with
5017  * hci_powered_update_sync after the init sequence is completed.
5018  */
5019 static int hci_power_on_sync(struct hci_dev *hdev)
5020 {
5021 	int err;
5022 
5023 	if (test_bit(HCI_UP, &hdev->flags) &&
5024 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5025 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5026 		cancel_delayed_work(&hdev->power_off);
5027 		return hci_powered_update_sync(hdev);
5028 	}
5029 
5030 	err = hci_dev_open_sync(hdev);
5031 	if (err < 0)
5032 		return err;
5033 
5034 	/* During the HCI setup phase, a few error conditions are
5035 	 * ignored and they need to be checked now. If they are still
5036 	 * valid, it is important to return the device back off.
5037 	 */
5038 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5039 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5040 	    (hdev->dev_type == HCI_PRIMARY &&
5041 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5042 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5043 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5044 		hci_dev_close_sync(hdev);
5045 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5046 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5047 				   HCI_AUTO_OFF_TIMEOUT);
5048 	}
5049 
5050 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5051 		/* For unconfigured devices, set the HCI_RAW flag
5052 		 * so that userspace can easily identify them.
5053 		 */
5054 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5055 			set_bit(HCI_RAW, &hdev->flags);
5056 
5057 		/* For fully configured devices, this will send
5058 		 * the Index Added event. For unconfigured devices,
5059 		 * it will send Unconfigued Index Added event.
5060 		 *
5061 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5062 		 * and no event will be send.
5063 		 */
5064 		mgmt_index_added(hdev);
5065 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5066 		/* When the controller is now configured, then it
5067 		 * is important to clear the HCI_RAW flag.
5068 		 */
5069 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5070 			clear_bit(HCI_RAW, &hdev->flags);
5071 
5072 		/* Powering on the controller with HCI_CONFIG set only
5073 		 * happens with the transition from unconfigured to
5074 		 * configured. This will send the Index Added event.
5075 		 */
5076 		mgmt_index_added(hdev);
5077 	}
5078 
5079 	return 0;
5080 }
5081 
5082 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5083 {
5084 	struct hci_cp_remote_name_req_cancel cp;
5085 
5086 	memset(&cp, 0, sizeof(cp));
5087 	bacpy(&cp.bdaddr, addr);
5088 
5089 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5090 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5091 }
5092 
5093 int hci_stop_discovery_sync(struct hci_dev *hdev)
5094 {
5095 	struct discovery_state *d = &hdev->discovery;
5096 	struct inquiry_entry *e;
5097 	int err;
5098 
5099 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5100 
5101 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5102 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5103 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5104 						    0, NULL, HCI_CMD_TIMEOUT);
5105 			if (err)
5106 				return err;
5107 		}
5108 
5109 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5110 			cancel_delayed_work(&hdev->le_scan_disable);
5111 			cancel_delayed_work(&hdev->le_scan_restart);
5112 
5113 			err = hci_scan_disable_sync(hdev);
5114 			if (err)
5115 				return err;
5116 		}
5117 
5118 	} else {
5119 		err = hci_scan_disable_sync(hdev);
5120 		if (err)
5121 			return err;
5122 	}
5123 
5124 	/* Resume advertising if it was paused */
5125 	if (use_ll_privacy(hdev))
5126 		hci_resume_advertising_sync(hdev);
5127 
5128 	/* No further actions needed for LE-only discovery */
5129 	if (d->type == DISCOV_TYPE_LE)
5130 		return 0;
5131 
5132 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5133 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5134 						     NAME_PENDING);
5135 		if (!e)
5136 			return 0;
5137 
5138 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5139 	}
5140 
5141 	return 0;
5142 }
5143 
5144 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5145 					u8 reason)
5146 {
5147 	struct hci_cp_disconn_phy_link cp;
5148 
5149 	memset(&cp, 0, sizeof(cp));
5150 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5151 	cp.reason = reason;
5152 
5153 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5154 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5155 }
5156 
5157 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5158 			       u8 reason)
5159 {
5160 	struct hci_cp_disconnect cp;
5161 
5162 	if (conn->type == AMP_LINK)
5163 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5164 
5165 	memset(&cp, 0, sizeof(cp));
5166 	cp.handle = cpu_to_le16(conn->handle);
5167 	cp.reason = reason;
5168 
5169 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5170 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5171 	 * used when suspending or powering off, where we don't want to wait
5172 	 * for the peer's response.
5173 	 */
5174 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5175 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5176 						sizeof(cp), &cp,
5177 						HCI_EV_DISCONN_COMPLETE,
5178 						HCI_CMD_TIMEOUT, NULL);
5179 
5180 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5181 				     HCI_CMD_TIMEOUT);
5182 }
5183 
5184 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5185 				      struct hci_conn *conn)
5186 {
5187 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5188 		return 0;
5189 
5190 	if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5191 		return 0;
5192 
5193 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5194 				     0, NULL, HCI_CMD_TIMEOUT);
5195 }
5196 
5197 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
5198 {
5199 	if (conn->type == LE_LINK)
5200 		return hci_le_connect_cancel_sync(hdev, conn);
5201 
5202 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5203 		return 0;
5204 
5205 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5206 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5207 }
5208 
5209 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5210 			       u8 reason)
5211 {
5212 	struct hci_cp_reject_sync_conn_req cp;
5213 
5214 	memset(&cp, 0, sizeof(cp));
5215 	bacpy(&cp.bdaddr, &conn->dst);
5216 	cp.reason = reason;
5217 
5218 	/* SCO rejection has its own limited set of
5219 	 * allowed error values (0x0D-0x0F).
5220 	 */
5221 	if (reason < 0x0d || reason > 0x0f)
5222 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5223 
5224 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5225 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5226 }
5227 
5228 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5229 				u8 reason)
5230 {
5231 	struct hci_cp_reject_conn_req cp;
5232 
5233 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5234 		return hci_reject_sco_sync(hdev, conn, reason);
5235 
5236 	memset(&cp, 0, sizeof(cp));
5237 	bacpy(&cp.bdaddr, &conn->dst);
5238 	cp.reason = reason;
5239 
5240 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5241 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5242 }
5243 
5244 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5245 {
5246 	int err;
5247 
5248 	switch (conn->state) {
5249 	case BT_CONNECTED:
5250 	case BT_CONFIG:
5251 		return hci_disconnect_sync(hdev, conn, reason);
5252 	case BT_CONNECT:
5253 		err = hci_connect_cancel_sync(hdev, conn);
5254 		/* Cleanup hci_conn object if it cannot be cancelled as it
5255 		 * likelly means the controller and host stack are out of sync.
5256 		 */
5257 		if (err) {
5258 			hci_dev_lock(hdev);
5259 			hci_conn_failed(conn, err);
5260 			hci_dev_unlock(hdev);
5261 		}
5262 		return err;
5263 	case BT_CONNECT2:
5264 		return hci_reject_conn_sync(hdev, conn, reason);
5265 	default:
5266 		conn->state = BT_CLOSED;
5267 		break;
5268 	}
5269 
5270 	return 0;
5271 }
5272 
5273 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5274 {
5275 	struct hci_conn *conn, *tmp;
5276 	int err;
5277 
5278 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
5279 		err = hci_abort_conn_sync(hdev, conn, reason);
5280 		if (err)
5281 			return err;
5282 	}
5283 
5284 	return 0;
5285 }
5286 
5287 /* This function perform power off HCI command sequence as follows:
5288  *
5289  * Clear Advertising
5290  * Stop Discovery
5291  * Disconnect all connections
5292  * hci_dev_close_sync
5293  */
5294 static int hci_power_off_sync(struct hci_dev *hdev)
5295 {
5296 	int err;
5297 
5298 	/* If controller is already down there is nothing to do */
5299 	if (!test_bit(HCI_UP, &hdev->flags))
5300 		return 0;
5301 
5302 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5303 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5304 		err = hci_write_scan_enable_sync(hdev, 0x00);
5305 		if (err)
5306 			return err;
5307 	}
5308 
5309 	err = hci_clear_adv_sync(hdev, NULL, false);
5310 	if (err)
5311 		return err;
5312 
5313 	err = hci_stop_discovery_sync(hdev);
5314 	if (err)
5315 		return err;
5316 
5317 	/* Terminated due to Power Off */
5318 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5319 	if (err)
5320 		return err;
5321 
5322 	return hci_dev_close_sync(hdev);
5323 }
5324 
5325 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5326 {
5327 	if (val)
5328 		return hci_power_on_sync(hdev);
5329 
5330 	return hci_power_off_sync(hdev);
5331 }
5332 
5333 static int hci_write_iac_sync(struct hci_dev *hdev)
5334 {
5335 	struct hci_cp_write_current_iac_lap cp;
5336 
5337 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5338 		return 0;
5339 
5340 	memset(&cp, 0, sizeof(cp));
5341 
5342 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5343 		/* Limited discoverable mode */
5344 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5345 		cp.iac_lap[0] = 0x00;	/* LIAC */
5346 		cp.iac_lap[1] = 0x8b;
5347 		cp.iac_lap[2] = 0x9e;
5348 		cp.iac_lap[3] = 0x33;	/* GIAC */
5349 		cp.iac_lap[4] = 0x8b;
5350 		cp.iac_lap[5] = 0x9e;
5351 	} else {
5352 		/* General discoverable mode */
5353 		cp.num_iac = 1;
5354 		cp.iac_lap[0] = 0x33;	/* GIAC */
5355 		cp.iac_lap[1] = 0x8b;
5356 		cp.iac_lap[2] = 0x9e;
5357 	}
5358 
5359 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5360 				     (cp.num_iac * 3) + 1, &cp,
5361 				     HCI_CMD_TIMEOUT);
5362 }
5363 
5364 int hci_update_discoverable_sync(struct hci_dev *hdev)
5365 {
5366 	int err = 0;
5367 
5368 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5369 		err = hci_write_iac_sync(hdev);
5370 		if (err)
5371 			return err;
5372 
5373 		err = hci_update_scan_sync(hdev);
5374 		if (err)
5375 			return err;
5376 
5377 		err = hci_update_class_sync(hdev);
5378 		if (err)
5379 			return err;
5380 	}
5381 
5382 	/* Advertising instances don't use the global discoverable setting, so
5383 	 * only update AD if advertising was enabled using Set Advertising.
5384 	 */
5385 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5386 		err = hci_update_adv_data_sync(hdev, 0x00);
5387 		if (err)
5388 			return err;
5389 
5390 		/* Discoverable mode affects the local advertising
5391 		 * address in limited privacy mode.
5392 		 */
5393 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5394 			if (ext_adv_capable(hdev))
5395 				err = hci_start_ext_adv_sync(hdev, 0x00);
5396 			else
5397 				err = hci_enable_advertising_sync(hdev);
5398 		}
5399 	}
5400 
5401 	return err;
5402 }
5403 
5404 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5405 {
5406 	return hci_update_discoverable_sync(hdev);
5407 }
5408 
5409 int hci_update_discoverable(struct hci_dev *hdev)
5410 {
5411 	/* Only queue if it would have any effect */
5412 	if (hdev_is_powered(hdev) &&
5413 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5414 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5415 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5416 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5417 					  NULL);
5418 
5419 	return 0;
5420 }
5421 
5422 int hci_update_connectable_sync(struct hci_dev *hdev)
5423 {
5424 	int err;
5425 
5426 	err = hci_update_scan_sync(hdev);
5427 	if (err)
5428 		return err;
5429 
5430 	/* If BR/EDR is not enabled and we disable advertising as a
5431 	 * by-product of disabling connectable, we need to update the
5432 	 * advertising flags.
5433 	 */
5434 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5435 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5436 
5437 	/* Update the advertising parameters if necessary */
5438 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5439 	    !list_empty(&hdev->adv_instances)) {
5440 		if (ext_adv_capable(hdev))
5441 			err = hci_start_ext_adv_sync(hdev,
5442 						     hdev->cur_adv_instance);
5443 		else
5444 			err = hci_enable_advertising_sync(hdev);
5445 
5446 		if (err)
5447 			return err;
5448 	}
5449 
5450 	return hci_update_passive_scan_sync(hdev);
5451 }
5452 
5453 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5454 {
5455 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5456 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5457 	struct hci_cp_inquiry cp;
5458 
5459 	bt_dev_dbg(hdev, "");
5460 
5461 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5462 		return 0;
5463 
5464 	hci_dev_lock(hdev);
5465 	hci_inquiry_cache_flush(hdev);
5466 	hci_dev_unlock(hdev);
5467 
5468 	memset(&cp, 0, sizeof(cp));
5469 
5470 	if (hdev->discovery.limited)
5471 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5472 	else
5473 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5474 
5475 	cp.length = length;
5476 
5477 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5478 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5479 }
5480 
5481 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5482 {
5483 	u8 own_addr_type;
5484 	/* Accept list is not used for discovery */
5485 	u8 filter_policy = 0x00;
5486 	/* Default is to enable duplicates filter */
5487 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5488 	int err;
5489 
5490 	bt_dev_dbg(hdev, "");
5491 
5492 	/* If controller is scanning, it means the passive scanning is
5493 	 * running. Thus, we should temporarily stop it in order to set the
5494 	 * discovery scanning parameters.
5495 	 */
5496 	err = hci_scan_disable_sync(hdev);
5497 	if (err) {
5498 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5499 		return err;
5500 	}
5501 
5502 	cancel_interleave_scan(hdev);
5503 
5504 	/* Pause address resolution for active scan and stop advertising if
5505 	 * privacy is enabled.
5506 	 */
5507 	err = hci_pause_addr_resolution(hdev);
5508 	if (err)
5509 		goto failed;
5510 
5511 	/* All active scans will be done with either a resolvable private
5512 	 * address (when privacy feature has been enabled) or non-resolvable
5513 	 * private address.
5514 	 */
5515 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5516 					     &own_addr_type);
5517 	if (err < 0)
5518 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5519 
5520 	if (hci_is_adv_monitoring(hdev)) {
5521 		/* Duplicate filter should be disabled when some advertisement
5522 		 * monitor is activated, otherwise AdvMon can only receive one
5523 		 * advertisement for one peer(*) during active scanning, and
5524 		 * might report loss to these peers.
5525 		 *
5526 		 * Note that different controllers have different meanings of
5527 		 * |duplicate|. Some of them consider packets with the same
5528 		 * address as duplicate, and others consider packets with the
5529 		 * same address and the same RSSI as duplicate. Although in the
5530 		 * latter case we don't need to disable duplicate filter, but
5531 		 * it is common to have active scanning for a short period of
5532 		 * time, the power impact should be neglectable.
5533 		 */
5534 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5535 	}
5536 
5537 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5538 				  hdev->le_scan_window_discovery,
5539 				  own_addr_type, filter_policy, filter_dup);
5540 	if (!err)
5541 		return err;
5542 
5543 failed:
5544 	/* Resume advertising if it was paused */
5545 	if (use_ll_privacy(hdev))
5546 		hci_resume_advertising_sync(hdev);
5547 
5548 	/* Resume passive scanning */
5549 	hci_update_passive_scan_sync(hdev);
5550 	return err;
5551 }
5552 
5553 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5554 {
5555 	int err;
5556 
5557 	bt_dev_dbg(hdev, "");
5558 
5559 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5560 	if (err)
5561 		return err;
5562 
5563 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5564 }
5565 
5566 int hci_start_discovery_sync(struct hci_dev *hdev)
5567 {
5568 	unsigned long timeout;
5569 	int err;
5570 
5571 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5572 
5573 	switch (hdev->discovery.type) {
5574 	case DISCOV_TYPE_BREDR:
5575 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5576 	case DISCOV_TYPE_INTERLEAVED:
5577 		/* When running simultaneous discovery, the LE scanning time
5578 		 * should occupy the whole discovery time sine BR/EDR inquiry
5579 		 * and LE scanning are scheduled by the controller.
5580 		 *
5581 		 * For interleaving discovery in comparison, BR/EDR inquiry
5582 		 * and LE scanning are done sequentially with separate
5583 		 * timeouts.
5584 		 */
5585 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5586 			     &hdev->quirks)) {
5587 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5588 			/* During simultaneous discovery, we double LE scan
5589 			 * interval. We must leave some time for the controller
5590 			 * to do BR/EDR inquiry.
5591 			 */
5592 			err = hci_start_interleaved_discovery_sync(hdev);
5593 			break;
5594 		}
5595 
5596 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5597 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5598 		break;
5599 	case DISCOV_TYPE_LE:
5600 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5601 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5602 		break;
5603 	default:
5604 		return -EINVAL;
5605 	}
5606 
5607 	if (err)
5608 		return err;
5609 
5610 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5611 
5612 	/* When service discovery is used and the controller has a
5613 	 * strict duplicate filter, it is important to remember the
5614 	 * start and duration of the scan. This is required for
5615 	 * restarting scanning during the discovery phase.
5616 	 */
5617 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5618 	    hdev->discovery.result_filtering) {
5619 		hdev->discovery.scan_start = jiffies;
5620 		hdev->discovery.scan_duration = timeout;
5621 	}
5622 
5623 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5624 			   timeout);
5625 	return 0;
5626 }
5627 
5628 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5629 {
5630 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5631 	case HCI_ADV_MONITOR_EXT_MSFT:
5632 		msft_suspend_sync(hdev);
5633 		break;
5634 	default:
5635 		return;
5636 	}
5637 }
5638 
5639 /* This function disables discovery and mark it as paused */
5640 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5641 {
5642 	int old_state = hdev->discovery.state;
5643 	int err;
5644 
5645 	/* If discovery already stopped/stopping/paused there nothing to do */
5646 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5647 	    hdev->discovery_paused)
5648 		return 0;
5649 
5650 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5651 	err = hci_stop_discovery_sync(hdev);
5652 	if (err)
5653 		return err;
5654 
5655 	hdev->discovery_paused = true;
5656 	hdev->discovery_old_state = old_state;
5657 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5658 
5659 	return 0;
5660 }
5661 
5662 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5663 {
5664 	struct bdaddr_list_with_flags *b;
5665 	u8 scan = SCAN_DISABLED;
5666 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5667 	int err;
5668 
5669 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5670 		return 0;
5671 
5672 	/* Some fake CSR controllers lock up after setting this type of
5673 	 * filter, so avoid sending the request altogether.
5674 	 */
5675 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5676 		return 0;
5677 
5678 	/* Always clear event filter when starting */
5679 	hci_clear_event_filter_sync(hdev);
5680 
5681 	list_for_each_entry(b, &hdev->accept_list, list) {
5682 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5683 			continue;
5684 
5685 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5686 
5687 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5688 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5689 						 &b->bdaddr,
5690 						 HCI_CONN_SETUP_AUTO_ON);
5691 		if (err)
5692 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5693 				   &b->bdaddr);
5694 		else
5695 			scan = SCAN_PAGE;
5696 	}
5697 
5698 	if (scan && !scanning)
5699 		hci_write_scan_enable_sync(hdev, scan);
5700 	else if (!scan && scanning)
5701 		hci_write_scan_enable_sync(hdev, scan);
5702 
5703 	return 0;
5704 }
5705 
5706 /* This function disables scan (BR and LE) and mark it as paused */
5707 static int hci_pause_scan_sync(struct hci_dev *hdev)
5708 {
5709 	if (hdev->scanning_paused)
5710 		return 0;
5711 
5712 	/* Disable page scan if enabled */
5713 	if (test_bit(HCI_PSCAN, &hdev->flags))
5714 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5715 
5716 	hci_scan_disable_sync(hdev);
5717 
5718 	hdev->scanning_paused = true;
5719 
5720 	return 0;
5721 }
5722 
5723 /* This function performs the HCI suspend procedures in the follow order:
5724  *
5725  * Pause discovery (active scanning/inquiry)
5726  * Pause Directed Advertising/Advertising
5727  * Pause Scanning (passive scanning in case discovery was not active)
5728  * Disconnect all connections
5729  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5730  * otherwise:
5731  * Update event mask (only set events that are allowed to wake up the host)
5732  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5733  * Update passive scanning (lower duty cycle)
5734  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5735  */
5736 int hci_suspend_sync(struct hci_dev *hdev)
5737 {
5738 	int err;
5739 
5740 	/* If marked as suspended there nothing to do */
5741 	if (hdev->suspended)
5742 		return 0;
5743 
5744 	/* Mark device as suspended */
5745 	hdev->suspended = true;
5746 
5747 	/* Pause discovery if not already stopped */
5748 	hci_pause_discovery_sync(hdev);
5749 
5750 	/* Pause other advertisements */
5751 	hci_pause_advertising_sync(hdev);
5752 
5753 	/* Suspend monitor filters */
5754 	hci_suspend_monitor_sync(hdev);
5755 
5756 	/* Prevent disconnects from causing scanning to be re-enabled */
5757 	hci_pause_scan_sync(hdev);
5758 
5759 	if (hci_conn_count(hdev)) {
5760 		/* Soft disconnect everything (power off) */
5761 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5762 		if (err) {
5763 			/* Set state to BT_RUNNING so resume doesn't notify */
5764 			hdev->suspend_state = BT_RUNNING;
5765 			hci_resume_sync(hdev);
5766 			return err;
5767 		}
5768 
5769 		/* Update event mask so only the allowed event can wakeup the
5770 		 * host.
5771 		 */
5772 		hci_set_event_mask_sync(hdev);
5773 	}
5774 
5775 	/* Only configure accept list if disconnect succeeded and wake
5776 	 * isn't being prevented.
5777 	 */
5778 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5779 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5780 		return 0;
5781 	}
5782 
5783 	/* Unpause to take care of updating scanning params */
5784 	hdev->scanning_paused = false;
5785 
5786 	/* Enable event filter for paired devices */
5787 	hci_update_event_filter_sync(hdev);
5788 
5789 	/* Update LE passive scan if enabled */
5790 	hci_update_passive_scan_sync(hdev);
5791 
5792 	/* Pause scan changes again. */
5793 	hdev->scanning_paused = true;
5794 
5795 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5796 
5797 	return 0;
5798 }
5799 
5800 /* This function resumes discovery */
5801 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5802 {
5803 	int err;
5804 
5805 	/* If discovery not paused there nothing to do */
5806 	if (!hdev->discovery_paused)
5807 		return 0;
5808 
5809 	hdev->discovery_paused = false;
5810 
5811 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5812 
5813 	err = hci_start_discovery_sync(hdev);
5814 
5815 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5816 				DISCOVERY_FINDING);
5817 
5818 	return err;
5819 }
5820 
5821 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5822 {
5823 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5824 	case HCI_ADV_MONITOR_EXT_MSFT:
5825 		msft_resume_sync(hdev);
5826 		break;
5827 	default:
5828 		return;
5829 	}
5830 }
5831 
5832 /* This function resume scan and reset paused flag */
5833 static int hci_resume_scan_sync(struct hci_dev *hdev)
5834 {
5835 	if (!hdev->scanning_paused)
5836 		return 0;
5837 
5838 	hdev->scanning_paused = false;
5839 
5840 	hci_update_scan_sync(hdev);
5841 
5842 	/* Reset passive scanning to normal */
5843 	hci_update_passive_scan_sync(hdev);
5844 
5845 	return 0;
5846 }
5847 
5848 /* This function performs the HCI suspend procedures in the follow order:
5849  *
5850  * Restore event mask
5851  * Clear event filter
5852  * Update passive scanning (normal duty cycle)
5853  * Resume Directed Advertising/Advertising
5854  * Resume discovery (active scanning/inquiry)
5855  */
5856 int hci_resume_sync(struct hci_dev *hdev)
5857 {
5858 	/* If not marked as suspended there nothing to do */
5859 	if (!hdev->suspended)
5860 		return 0;
5861 
5862 	hdev->suspended = false;
5863 
5864 	/* Restore event mask */
5865 	hci_set_event_mask_sync(hdev);
5866 
5867 	/* Clear any event filters and restore scan state */
5868 	hci_clear_event_filter_sync(hdev);
5869 
5870 	/* Resume scanning */
5871 	hci_resume_scan_sync(hdev);
5872 
5873 	/* Resume monitor filters */
5874 	hci_resume_monitor_sync(hdev);
5875 
5876 	/* Resume other advertisements */
5877 	hci_resume_advertising_sync(hdev);
5878 
5879 	/* Resume discovery */
5880 	hci_resume_discovery_sync(hdev);
5881 
5882 	return 0;
5883 }
5884 
5885 static bool conn_use_rpa(struct hci_conn *conn)
5886 {
5887 	struct hci_dev *hdev = conn->hdev;
5888 
5889 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5890 }
5891 
5892 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5893 						struct hci_conn *conn)
5894 {
5895 	struct hci_cp_le_set_ext_adv_params cp;
5896 	int err;
5897 	bdaddr_t random_addr;
5898 	u8 own_addr_type;
5899 
5900 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5901 					     &own_addr_type);
5902 	if (err)
5903 		return err;
5904 
5905 	/* Set require_privacy to false so that the remote device has a
5906 	 * chance of identifying us.
5907 	 */
5908 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5909 				     &own_addr_type, &random_addr);
5910 	if (err)
5911 		return err;
5912 
5913 	memset(&cp, 0, sizeof(cp));
5914 
5915 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5916 	cp.channel_map = hdev->le_adv_channel_map;
5917 	cp.tx_power = HCI_TX_POWER_INVALID;
5918 	cp.primary_phy = HCI_ADV_PHY_1M;
5919 	cp.secondary_phy = HCI_ADV_PHY_1M;
5920 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5921 	cp.own_addr_type = own_addr_type;
5922 	cp.peer_addr_type = conn->dst_type;
5923 	bacpy(&cp.peer_addr, &conn->dst);
5924 
5925 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5926 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5927 	 * does not supports advertising data when the advertising set already
5928 	 * contains some, the controller shall return erroc code 'Invalid
5929 	 * HCI Command Parameters(0x12).
5930 	 * So it is required to remove adv set for handle 0x00. since we use
5931 	 * instance 0 for directed adv.
5932 	 */
5933 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5934 	if (err)
5935 		return err;
5936 
5937 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5938 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5939 	if (err)
5940 		return err;
5941 
5942 	/* Check if random address need to be updated */
5943 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5944 	    bacmp(&random_addr, BDADDR_ANY) &&
5945 	    bacmp(&random_addr, &hdev->random_addr)) {
5946 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5947 						       &random_addr);
5948 		if (err)
5949 			return err;
5950 	}
5951 
5952 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5953 }
5954 
5955 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5956 					    struct hci_conn *conn)
5957 {
5958 	struct hci_cp_le_set_adv_param cp;
5959 	u8 status;
5960 	u8 own_addr_type;
5961 	u8 enable;
5962 
5963 	if (ext_adv_capable(hdev))
5964 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5965 
5966 	/* Clear the HCI_LE_ADV bit temporarily so that the
5967 	 * hci_update_random_address knows that it's safe to go ahead
5968 	 * and write a new random address. The flag will be set back on
5969 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5970 	 */
5971 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5972 
5973 	/* Set require_privacy to false so that the remote device has a
5974 	 * chance of identifying us.
5975 	 */
5976 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5977 						&own_addr_type);
5978 	if (status)
5979 		return status;
5980 
5981 	memset(&cp, 0, sizeof(cp));
5982 
5983 	/* Some controllers might reject command if intervals are not
5984 	 * within range for undirected advertising.
5985 	 * BCM20702A0 is known to be affected by this.
5986 	 */
5987 	cp.min_interval = cpu_to_le16(0x0020);
5988 	cp.max_interval = cpu_to_le16(0x0020);
5989 
5990 	cp.type = LE_ADV_DIRECT_IND;
5991 	cp.own_address_type = own_addr_type;
5992 	cp.direct_addr_type = conn->dst_type;
5993 	bacpy(&cp.direct_addr, &conn->dst);
5994 	cp.channel_map = hdev->le_adv_channel_map;
5995 
5996 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5997 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5998 	if (status)
5999 		return status;
6000 
6001 	enable = 0x01;
6002 
6003 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6004 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6005 }
6006 
6007 static void set_ext_conn_params(struct hci_conn *conn,
6008 				struct hci_cp_le_ext_conn_param *p)
6009 {
6010 	struct hci_dev *hdev = conn->hdev;
6011 
6012 	memset(p, 0, sizeof(*p));
6013 
6014 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6015 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6016 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6017 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6018 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6019 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6020 	p->min_ce_len = cpu_to_le16(0x0000);
6021 	p->max_ce_len = cpu_to_le16(0x0000);
6022 }
6023 
6024 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6025 				       struct hci_conn *conn, u8 own_addr_type)
6026 {
6027 	struct hci_cp_le_ext_create_conn *cp;
6028 	struct hci_cp_le_ext_conn_param *p;
6029 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6030 	u32 plen;
6031 
6032 	cp = (void *)data;
6033 	p = (void *)cp->data;
6034 
6035 	memset(cp, 0, sizeof(*cp));
6036 
6037 	bacpy(&cp->peer_addr, &conn->dst);
6038 	cp->peer_addr_type = conn->dst_type;
6039 	cp->own_addr_type = own_addr_type;
6040 
6041 	plen = sizeof(*cp);
6042 
6043 	if (scan_1m(hdev)) {
6044 		cp->phys |= LE_SCAN_PHY_1M;
6045 		set_ext_conn_params(conn, p);
6046 
6047 		p++;
6048 		plen += sizeof(*p);
6049 	}
6050 
6051 	if (scan_2m(hdev)) {
6052 		cp->phys |= LE_SCAN_PHY_2M;
6053 		set_ext_conn_params(conn, p);
6054 
6055 		p++;
6056 		plen += sizeof(*p);
6057 	}
6058 
6059 	if (scan_coded(hdev)) {
6060 		cp->phys |= LE_SCAN_PHY_CODED;
6061 		set_ext_conn_params(conn, p);
6062 
6063 		plen += sizeof(*p);
6064 	}
6065 
6066 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6067 					plen, data,
6068 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6069 					conn->conn_timeout, NULL);
6070 }
6071 
6072 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6073 {
6074 	struct hci_cp_le_create_conn cp;
6075 	struct hci_conn_params *params;
6076 	u8 own_addr_type;
6077 	int err;
6078 
6079 	/* If requested to connect as peripheral use directed advertising */
6080 	if (conn->role == HCI_ROLE_SLAVE) {
6081 		/* If we're active scanning and simultaneous roles is not
6082 		 * enabled simply reject the attempt.
6083 		 */
6084 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6085 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6086 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6087 			hci_conn_del(conn);
6088 			return -EBUSY;
6089 		}
6090 
6091 		/* Pause advertising while doing directed advertising. */
6092 		hci_pause_advertising_sync(hdev);
6093 
6094 		err = hci_le_directed_advertising_sync(hdev, conn);
6095 		goto done;
6096 	}
6097 
6098 	/* Disable advertising if simultaneous roles is not in use. */
6099 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6100 		hci_pause_advertising_sync(hdev);
6101 
6102 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6103 	if (params) {
6104 		conn->le_conn_min_interval = params->conn_min_interval;
6105 		conn->le_conn_max_interval = params->conn_max_interval;
6106 		conn->le_conn_latency = params->conn_latency;
6107 		conn->le_supv_timeout = params->supervision_timeout;
6108 	} else {
6109 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6110 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6111 		conn->le_conn_latency = hdev->le_conn_latency;
6112 		conn->le_supv_timeout = hdev->le_supv_timeout;
6113 	}
6114 
6115 	/* If controller is scanning, we stop it since some controllers are
6116 	 * not able to scan and connect at the same time. Also set the
6117 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6118 	 * handler for scan disabling knows to set the correct discovery
6119 	 * state.
6120 	 */
6121 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6122 		hci_scan_disable_sync(hdev);
6123 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6124 	}
6125 
6126 	/* Update random address, but set require_privacy to false so
6127 	 * that we never connect with an non-resolvable address.
6128 	 */
6129 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6130 					     &own_addr_type);
6131 	if (err)
6132 		goto done;
6133 
6134 	if (use_ext_conn(hdev)) {
6135 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6136 		goto done;
6137 	}
6138 
6139 	memset(&cp, 0, sizeof(cp));
6140 
6141 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6142 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6143 
6144 	bacpy(&cp.peer_addr, &conn->dst);
6145 	cp.peer_addr_type = conn->dst_type;
6146 	cp.own_address_type = own_addr_type;
6147 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6148 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6149 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6150 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6151 	cp.min_ce_len = cpu_to_le16(0x0000);
6152 	cp.max_ce_len = cpu_to_le16(0x0000);
6153 
6154 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6155 	 *
6156 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6157 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6158 	 * sent when a new connection has been created.
6159 	 */
6160 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6161 				       sizeof(cp), &cp,
6162 				       use_enhanced_conn_complete(hdev) ?
6163 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6164 				       HCI_EV_LE_CONN_COMPLETE,
6165 				       conn->conn_timeout, NULL);
6166 
6167 done:
6168 	if (err == -ETIMEDOUT)
6169 		hci_le_connect_cancel_sync(hdev, conn);
6170 
6171 	/* Re-enable advertising after the connection attempt is finished. */
6172 	hci_resume_advertising_sync(hdev);
6173 	return err;
6174 }
6175 
6176 int hci_le_create_cis_sync(struct hci_dev *hdev, struct hci_conn *conn)
6177 {
6178 	struct {
6179 		struct hci_cp_le_create_cis cp;
6180 		struct hci_cis cis[0x1f];
6181 	} cmd;
6182 	u8 cig;
6183 	struct hci_conn *hcon = conn;
6184 
6185 	memset(&cmd, 0, sizeof(cmd));
6186 	cmd.cis[0].acl_handle = cpu_to_le16(conn->parent->handle);
6187 	cmd.cis[0].cis_handle = cpu_to_le16(conn->handle);
6188 	cmd.cp.num_cis++;
6189 	cig = conn->iso_qos.ucast.cig;
6190 
6191 	hci_dev_lock(hdev);
6192 
6193 	rcu_read_lock();
6194 
6195 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6196 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6197 
6198 		if (conn == hcon || conn->type != ISO_LINK ||
6199 		    conn->state == BT_CONNECTED ||
6200 		    conn->iso_qos.ucast.cig != cig)
6201 			continue;
6202 
6203 		/* Check if all CIS(s) belonging to a CIG are ready */
6204 		if (!conn->parent || conn->parent->state != BT_CONNECTED ||
6205 		    conn->state != BT_CONNECT) {
6206 			cmd.cp.num_cis = 0;
6207 			break;
6208 		}
6209 
6210 		/* Group all CIS with state BT_CONNECT since the spec don't
6211 		 * allow to send them individually:
6212 		 *
6213 		 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6214 		 * page 2566:
6215 		 *
6216 		 * If the Host issues this command before all the
6217 		 * HCI_LE_CIS_Established events from the previous use of the
6218 		 * command have been generated, the Controller shall return the
6219 		 * error code Command Disallowed (0x0C).
6220 		 */
6221 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6222 		cis->cis_handle = cpu_to_le16(conn->handle);
6223 		cmd.cp.num_cis++;
6224 	}
6225 
6226 	rcu_read_unlock();
6227 
6228 	hci_dev_unlock(hdev);
6229 
6230 	if (!cmd.cp.num_cis)
6231 		return 0;
6232 
6233 	/* Wait for HCI_LE_CIS_Established */
6234 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6235 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6236 					cmd.cp.num_cis, &cmd,
6237 					HCI_EVT_LE_CIS_ESTABLISHED,
6238 					conn->conn_timeout, NULL);
6239 }
6240 
6241 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6242 {
6243 	struct hci_cp_le_remove_cig cp;
6244 
6245 	memset(&cp, 0, sizeof(cp));
6246 	cp.cig_id = handle;
6247 
6248 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6249 				     &cp, HCI_CMD_TIMEOUT);
6250 }
6251 
6252 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6253 {
6254 	struct hci_cp_le_big_term_sync cp;
6255 
6256 	memset(&cp, 0, sizeof(cp));
6257 	cp.handle = handle;
6258 
6259 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6260 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6261 }
6262 
6263 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6264 {
6265 	struct hci_cp_le_pa_term_sync cp;
6266 
6267 	memset(&cp, 0, sizeof(cp));
6268 	cp.handle = cpu_to_le16(handle);
6269 
6270 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6271 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6272 }
6273 
6274 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6275 			   bool use_rpa, struct adv_info *adv_instance,
6276 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6277 {
6278 	int err;
6279 
6280 	bacpy(rand_addr, BDADDR_ANY);
6281 
6282 	/* If privacy is enabled use a resolvable private address. If
6283 	 * current RPA has expired then generate a new one.
6284 	 */
6285 	if (use_rpa) {
6286 		/* If Controller supports LL Privacy use own address type is
6287 		 * 0x03
6288 		 */
6289 		if (use_ll_privacy(hdev))
6290 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6291 		else
6292 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6293 
6294 		if (adv_instance) {
6295 			if (adv_rpa_valid(adv_instance))
6296 				return 0;
6297 		} else {
6298 			if (rpa_valid(hdev))
6299 				return 0;
6300 		}
6301 
6302 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6303 		if (err < 0) {
6304 			bt_dev_err(hdev, "failed to generate new RPA");
6305 			return err;
6306 		}
6307 
6308 		bacpy(rand_addr, &hdev->rpa);
6309 
6310 		return 0;
6311 	}
6312 
6313 	/* In case of required privacy without resolvable private address,
6314 	 * use an non-resolvable private address. This is useful for
6315 	 * non-connectable advertising.
6316 	 */
6317 	if (require_privacy) {
6318 		bdaddr_t nrpa;
6319 
6320 		while (true) {
6321 			/* The non-resolvable private address is generated
6322 			 * from random six bytes with the two most significant
6323 			 * bits cleared.
6324 			 */
6325 			get_random_bytes(&nrpa, 6);
6326 			nrpa.b[5] &= 0x3f;
6327 
6328 			/* The non-resolvable private address shall not be
6329 			 * equal to the public address.
6330 			 */
6331 			if (bacmp(&hdev->bdaddr, &nrpa))
6332 				break;
6333 		}
6334 
6335 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6336 		bacpy(rand_addr, &nrpa);
6337 
6338 		return 0;
6339 	}
6340 
6341 	/* No privacy so use a public address. */
6342 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6343 
6344 	return 0;
6345 }
6346 
6347 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6348 {
6349 	u8 instance = PTR_ERR(data);
6350 
6351 	return hci_update_adv_data_sync(hdev, instance);
6352 }
6353 
6354 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6355 {
6356 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6357 				  ERR_PTR(instance), NULL);
6358 }
6359