xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 				PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 
280 	bt_dev_dbg(hdev, "");
281 
282 	/* Dequeue all entries and run them */
283 	while (1) {
284 		struct hci_cmd_sync_work_entry *entry;
285 
286 		mutex_lock(&hdev->cmd_sync_work_lock);
287 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 						 struct hci_cmd_sync_work_entry,
289 						 list);
290 		if (entry)
291 			list_del(&entry->list);
292 		mutex_unlock(&hdev->cmd_sync_work_lock);
293 
294 		if (!entry)
295 			break;
296 
297 		bt_dev_dbg(hdev, "entry %p", entry);
298 
299 		if (entry->func) {
300 			int err;
301 
302 			hci_req_sync_lock(hdev);
303 			err = entry->func(hdev, entry->data);
304 			if (entry->destroy)
305 				entry->destroy(hdev, entry->data, err);
306 			hci_req_sync_unlock(hdev);
307 		}
308 
309 		kfree(entry);
310 	}
311 }
312 
313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316 
317 	cancel_delayed_work_sync(&hdev->cmd_timer);
318 	cancel_delayed_work_sync(&hdev->ncmd_timer);
319 	atomic_set(&hdev->cmd_cnt, 1);
320 
321 	wake_up_interruptible(&hdev->req_wait_q);
322 }
323 
324 static int hci_scan_disable_sync(struct hci_dev *hdev);
325 static int scan_disable_sync(struct hci_dev *hdev, void *data)
326 {
327 	return hci_scan_disable_sync(hdev);
328 }
329 
330 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
331 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
332 {
333 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
334 }
335 
336 static void le_scan_disable(struct work_struct *work)
337 {
338 	struct hci_dev *hdev = container_of(work, struct hci_dev,
339 					    le_scan_disable.work);
340 	int status;
341 
342 	bt_dev_dbg(hdev, "");
343 	hci_dev_lock(hdev);
344 
345 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
346 		goto _return;
347 
348 	cancel_delayed_work(&hdev->le_scan_restart);
349 
350 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
351 	if (status) {
352 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
353 		goto _return;
354 	}
355 
356 	hdev->discovery.scan_start = 0;
357 
358 	/* If we were running LE only scan, change discovery state. If
359 	 * we were running both LE and BR/EDR inquiry simultaneously,
360 	 * and BR/EDR inquiry is already finished, stop discovery,
361 	 * otherwise BR/EDR inquiry will stop discovery when finished.
362 	 * If we will resolve remote device name, do not change
363 	 * discovery state.
364 	 */
365 
366 	if (hdev->discovery.type == DISCOV_TYPE_LE)
367 		goto discov_stopped;
368 
369 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
370 		goto _return;
371 
372 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
373 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
374 		    hdev->discovery.state != DISCOVERY_RESOLVING)
375 			goto discov_stopped;
376 
377 		goto _return;
378 	}
379 
380 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
381 	if (status) {
382 		bt_dev_err(hdev, "inquiry failed: status %d", status);
383 		goto discov_stopped;
384 	}
385 
386 	goto _return;
387 
388 discov_stopped:
389 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
390 
391 _return:
392 	hci_dev_unlock(hdev);
393 }
394 
395 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
396 				       u8 filter_dup);
397 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
398 {
399 	/* If controller is not scanning we are done. */
400 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
401 		return 0;
402 
403 	if (hdev->scanning_paused) {
404 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
405 		return 0;
406 	}
407 
408 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
409 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
410 					   LE_SCAN_FILTER_DUP_ENABLE);
411 }
412 
413 static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
414 {
415 	return hci_le_scan_restart_sync(hdev);
416 }
417 
418 static void le_scan_restart(struct work_struct *work)
419 {
420 	struct hci_dev *hdev = container_of(work, struct hci_dev,
421 					    le_scan_restart.work);
422 	unsigned long timeout, duration, scan_start, now;
423 	int status;
424 
425 	bt_dev_dbg(hdev, "");
426 
427 	hci_dev_lock(hdev);
428 
429 	status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
430 	if (status) {
431 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
432 			   status);
433 		goto unlock;
434 	}
435 
436 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
437 	    !hdev->discovery.scan_start)
438 		goto unlock;
439 
440 	/* When the scan was started, hdev->le_scan_disable has been queued
441 	 * after duration from scan_start. During scan restart this job
442 	 * has been canceled, and we need to queue it again after proper
443 	 * timeout, to make sure that scan does not run indefinitely.
444 	 */
445 	duration = hdev->discovery.scan_duration;
446 	scan_start = hdev->discovery.scan_start;
447 	now = jiffies;
448 	if (now - scan_start <= duration) {
449 		int elapsed;
450 
451 		if (now >= scan_start)
452 			elapsed = now - scan_start;
453 		else
454 			elapsed = ULONG_MAX - scan_start + now;
455 
456 		timeout = duration - elapsed;
457 	} else {
458 		timeout = 0;
459 	}
460 
461 	queue_delayed_work(hdev->req_workqueue,
462 			   &hdev->le_scan_disable, timeout);
463 
464 unlock:
465 	hci_dev_unlock(hdev);
466 }
467 
468 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
469 {
470 	bt_dev_dbg(hdev, "");
471 
472 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
473 	    list_empty(&hdev->adv_instances))
474 		return 0;
475 
476 	if (hdev->cur_adv_instance) {
477 		return hci_schedule_adv_instance_sync(hdev,
478 						      hdev->cur_adv_instance,
479 						      true);
480 	} else {
481 		if (ext_adv_capable(hdev)) {
482 			hci_start_ext_adv_sync(hdev, 0x00);
483 		} else {
484 			hci_update_adv_data_sync(hdev, 0x00);
485 			hci_update_scan_rsp_data_sync(hdev, 0x00);
486 			hci_enable_advertising_sync(hdev);
487 		}
488 	}
489 
490 	return 0;
491 }
492 
493 static void reenable_adv(struct work_struct *work)
494 {
495 	struct hci_dev *hdev = container_of(work, struct hci_dev,
496 					    reenable_adv_work);
497 	int status;
498 
499 	bt_dev_dbg(hdev, "");
500 
501 	hci_dev_lock(hdev);
502 
503 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
504 	if (status)
505 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
506 
507 	hci_dev_unlock(hdev);
508 }
509 
510 static void cancel_adv_timeout(struct hci_dev *hdev)
511 {
512 	if (hdev->adv_instance_timeout) {
513 		hdev->adv_instance_timeout = 0;
514 		cancel_delayed_work(&hdev->adv_instance_expire);
515 	}
516 }
517 
518 /* For a single instance:
519  * - force == true: The instance will be removed even when its remaining
520  *   lifetime is not zero.
521  * - force == false: the instance will be deactivated but kept stored unless
522  *   the remaining lifetime is zero.
523  *
524  * For instance == 0x00:
525  * - force == true: All instances will be removed regardless of their timeout
526  *   setting.
527  * - force == false: Only instances that have a timeout will be removed.
528  */
529 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
530 				u8 instance, bool force)
531 {
532 	struct adv_info *adv_instance, *n, *next_instance = NULL;
533 	int err;
534 	u8 rem_inst;
535 
536 	/* Cancel any timeout concerning the removed instance(s). */
537 	if (!instance || hdev->cur_adv_instance == instance)
538 		cancel_adv_timeout(hdev);
539 
540 	/* Get the next instance to advertise BEFORE we remove
541 	 * the current one. This can be the same instance again
542 	 * if there is only one instance.
543 	 */
544 	if (instance && hdev->cur_adv_instance == instance)
545 		next_instance = hci_get_next_instance(hdev, instance);
546 
547 	if (instance == 0x00) {
548 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
549 					 list) {
550 			if (!(force || adv_instance->timeout))
551 				continue;
552 
553 			rem_inst = adv_instance->instance;
554 			err = hci_remove_adv_instance(hdev, rem_inst);
555 			if (!err)
556 				mgmt_advertising_removed(sk, hdev, rem_inst);
557 		}
558 	} else {
559 		adv_instance = hci_find_adv_instance(hdev, instance);
560 
561 		if (force || (adv_instance && adv_instance->timeout &&
562 			      !adv_instance->remaining_time)) {
563 			/* Don't advertise a removed instance. */
564 			if (next_instance &&
565 			    next_instance->instance == instance)
566 				next_instance = NULL;
567 
568 			err = hci_remove_adv_instance(hdev, instance);
569 			if (!err)
570 				mgmt_advertising_removed(sk, hdev, instance);
571 		}
572 	}
573 
574 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
575 		return 0;
576 
577 	if (next_instance && !ext_adv_capable(hdev))
578 		return hci_schedule_adv_instance_sync(hdev,
579 						      next_instance->instance,
580 						      false);
581 
582 	return 0;
583 }
584 
585 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
586 {
587 	u8 instance = *(u8 *)data;
588 
589 	kfree(data);
590 
591 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
592 
593 	if (list_empty(&hdev->adv_instances))
594 		return hci_disable_advertising_sync(hdev);
595 
596 	return 0;
597 }
598 
599 static void adv_timeout_expire(struct work_struct *work)
600 {
601 	u8 *inst_ptr;
602 	struct hci_dev *hdev = container_of(work, struct hci_dev,
603 					    adv_instance_expire.work);
604 
605 	bt_dev_dbg(hdev, "");
606 
607 	hci_dev_lock(hdev);
608 
609 	hdev->adv_instance_timeout = 0;
610 
611 	if (hdev->cur_adv_instance == 0x00)
612 		goto unlock;
613 
614 	inst_ptr = kmalloc(1, GFP_KERNEL);
615 	if (!inst_ptr)
616 		goto unlock;
617 
618 	*inst_ptr = hdev->cur_adv_instance;
619 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
620 
621 unlock:
622 	hci_dev_unlock(hdev);
623 }
624 
625 void hci_cmd_sync_init(struct hci_dev *hdev)
626 {
627 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
628 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
629 	mutex_init(&hdev->cmd_sync_work_lock);
630 
631 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
632 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
633 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
634 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
635 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
636 }
637 
638 void hci_cmd_sync_clear(struct hci_dev *hdev)
639 {
640 	struct hci_cmd_sync_work_entry *entry, *tmp;
641 
642 	cancel_work_sync(&hdev->cmd_sync_work);
643 	cancel_work_sync(&hdev->reenable_adv_work);
644 
645 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
646 		if (entry->destroy)
647 			entry->destroy(hdev, entry->data, -ECANCELED);
648 
649 		list_del(&entry->list);
650 		kfree(entry);
651 	}
652 }
653 
654 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
655 {
656 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
657 
658 	if (hdev->req_status == HCI_REQ_PEND) {
659 		hdev->req_result = err;
660 		hdev->req_status = HCI_REQ_CANCELED;
661 
662 		cancel_delayed_work_sync(&hdev->cmd_timer);
663 		cancel_delayed_work_sync(&hdev->ncmd_timer);
664 		atomic_set(&hdev->cmd_cnt, 1);
665 
666 		wake_up_interruptible(&hdev->req_wait_q);
667 	}
668 }
669 
670 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
671 {
672 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
673 
674 	if (hdev->req_status == HCI_REQ_PEND) {
675 		hdev->req_result = err;
676 		hdev->req_status = HCI_REQ_CANCELED;
677 
678 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
679 	}
680 }
681 EXPORT_SYMBOL(hci_cmd_sync_cancel);
682 
683 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
684 		       void *data, hci_cmd_sync_work_destroy_t destroy)
685 {
686 	struct hci_cmd_sync_work_entry *entry;
687 
688 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
689 		return -ENODEV;
690 
691 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
692 	if (!entry)
693 		return -ENOMEM;
694 
695 	entry->func = func;
696 	entry->data = data;
697 	entry->destroy = destroy;
698 
699 	mutex_lock(&hdev->cmd_sync_work_lock);
700 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
701 	mutex_unlock(&hdev->cmd_sync_work_lock);
702 
703 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL(hci_cmd_sync_queue);
708 
709 int hci_update_eir_sync(struct hci_dev *hdev)
710 {
711 	struct hci_cp_write_eir cp;
712 
713 	bt_dev_dbg(hdev, "");
714 
715 	if (!hdev_is_powered(hdev))
716 		return 0;
717 
718 	if (!lmp_ext_inq_capable(hdev))
719 		return 0;
720 
721 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
722 		return 0;
723 
724 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
725 		return 0;
726 
727 	memset(&cp, 0, sizeof(cp));
728 
729 	eir_create(hdev, cp.data);
730 
731 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
732 		return 0;
733 
734 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
735 
736 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
737 				     HCI_CMD_TIMEOUT);
738 }
739 
740 static u8 get_service_classes(struct hci_dev *hdev)
741 {
742 	struct bt_uuid *uuid;
743 	u8 val = 0;
744 
745 	list_for_each_entry(uuid, &hdev->uuids, list)
746 		val |= uuid->svc_hint;
747 
748 	return val;
749 }
750 
751 int hci_update_class_sync(struct hci_dev *hdev)
752 {
753 	u8 cod[3];
754 
755 	bt_dev_dbg(hdev, "");
756 
757 	if (!hdev_is_powered(hdev))
758 		return 0;
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
761 		return 0;
762 
763 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
764 		return 0;
765 
766 	cod[0] = hdev->minor_class;
767 	cod[1] = hdev->major_class;
768 	cod[2] = get_service_classes(hdev);
769 
770 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
771 		cod[1] |= 0x20;
772 
773 	if (memcmp(cod, hdev->dev_class, 3) == 0)
774 		return 0;
775 
776 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
777 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
778 }
779 
780 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
781 {
782 	/* If there is no connection we are OK to advertise. */
783 	if (hci_conn_num(hdev, LE_LINK) == 0)
784 		return true;
785 
786 	/* Check le_states if there is any connection in peripheral role. */
787 	if (hdev->conn_hash.le_num_peripheral > 0) {
788 		/* Peripheral connection state and non connectable mode
789 		 * bit 20.
790 		 */
791 		if (!connectable && !(hdev->le_states[2] & 0x10))
792 			return false;
793 
794 		/* Peripheral connection state and connectable mode bit 38
795 		 * and scannable bit 21.
796 		 */
797 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
798 				    !(hdev->le_states[2] & 0x20)))
799 			return false;
800 	}
801 
802 	/* Check le_states if there is any connection in central role. */
803 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
804 		/* Central connection state and non connectable mode bit 18. */
805 		if (!connectable && !(hdev->le_states[2] & 0x02))
806 			return false;
807 
808 		/* Central connection state and connectable mode bit 35 and
809 		 * scannable 19.
810 		 */
811 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
812 				    !(hdev->le_states[2] & 0x08)))
813 			return false;
814 	}
815 
816 	return true;
817 }
818 
819 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
820 {
821 	/* If privacy is not enabled don't use RPA */
822 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
823 		return false;
824 
825 	/* If basic privacy mode is enabled use RPA */
826 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
827 		return true;
828 
829 	/* If limited privacy mode is enabled don't use RPA if we're
830 	 * both discoverable and bondable.
831 	 */
832 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
833 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
834 		return false;
835 
836 	/* We're neither bondable nor discoverable in the limited
837 	 * privacy mode, therefore use RPA.
838 	 */
839 	return true;
840 }
841 
842 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
843 {
844 	/* If we're advertising or initiating an LE connection we can't
845 	 * go ahead and change the random address at this time. This is
846 	 * because the eventual initiator address used for the
847 	 * subsequently created connection will be undefined (some
848 	 * controllers use the new address and others the one we had
849 	 * when the operation started).
850 	 *
851 	 * In this kind of scenario skip the update and let the random
852 	 * address be updated at the next cycle.
853 	 */
854 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
855 	    hci_lookup_le_connect(hdev)) {
856 		bt_dev_dbg(hdev, "Deferring random address update");
857 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
858 		return 0;
859 	}
860 
861 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
862 				     6, rpa, HCI_CMD_TIMEOUT);
863 }
864 
865 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
866 				   bool rpa, u8 *own_addr_type)
867 {
868 	int err;
869 
870 	/* If privacy is enabled use a resolvable private address. If
871 	 * current RPA has expired or there is something else than
872 	 * the current RPA in use, then generate a new one.
873 	 */
874 	if (rpa) {
875 		/* If Controller supports LL Privacy use own address type is
876 		 * 0x03
877 		 */
878 		if (use_ll_privacy(hdev))
879 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
880 		else
881 			*own_addr_type = ADDR_LE_DEV_RANDOM;
882 
883 		/* Check if RPA is valid */
884 		if (rpa_valid(hdev))
885 			return 0;
886 
887 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
888 		if (err < 0) {
889 			bt_dev_err(hdev, "failed to generate new RPA");
890 			return err;
891 		}
892 
893 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
894 		if (err)
895 			return err;
896 
897 		return 0;
898 	}
899 
900 	/* In case of required privacy without resolvable private address,
901 	 * use an non-resolvable private address. This is useful for active
902 	 * scanning and non-connectable advertising.
903 	 */
904 	if (require_privacy) {
905 		bdaddr_t nrpa;
906 
907 		while (true) {
908 			/* The non-resolvable private address is generated
909 			 * from random six bytes with the two most significant
910 			 * bits cleared.
911 			 */
912 			get_random_bytes(&nrpa, 6);
913 			nrpa.b[5] &= 0x3f;
914 
915 			/* The non-resolvable private address shall not be
916 			 * equal to the public address.
917 			 */
918 			if (bacmp(&hdev->bdaddr, &nrpa))
919 				break;
920 		}
921 
922 		*own_addr_type = ADDR_LE_DEV_RANDOM;
923 
924 		return hci_set_random_addr_sync(hdev, &nrpa);
925 	}
926 
927 	/* If forcing static address is in use or there is no public
928 	 * address use the static address as random address (but skip
929 	 * the HCI command if the current random address is already the
930 	 * static one.
931 	 *
932 	 * In case BR/EDR has been disabled on a dual-mode controller
933 	 * and a static address has been configured, then use that
934 	 * address instead of the public BR/EDR address.
935 	 */
936 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
937 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
938 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
939 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
940 		*own_addr_type = ADDR_LE_DEV_RANDOM;
941 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
942 			return hci_set_random_addr_sync(hdev,
943 							&hdev->static_addr);
944 		return 0;
945 	}
946 
947 	/* Neither privacy nor static address is being used so use a
948 	 * public address.
949 	 */
950 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
951 
952 	return 0;
953 }
954 
955 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
956 {
957 	struct hci_cp_le_set_ext_adv_enable *cp;
958 	struct hci_cp_ext_adv_set *set;
959 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
960 	u8 size;
961 
962 	/* If request specifies an instance that doesn't exist, fail */
963 	if (instance > 0) {
964 		struct adv_info *adv;
965 
966 		adv = hci_find_adv_instance(hdev, instance);
967 		if (!adv)
968 			return -EINVAL;
969 
970 		/* If not enabled there is nothing to do */
971 		if (!adv->enabled)
972 			return 0;
973 	}
974 
975 	memset(data, 0, sizeof(data));
976 
977 	cp = (void *)data;
978 	set = (void *)cp->data;
979 
980 	/* Instance 0x00 indicates all advertising instances will be disabled */
981 	cp->num_of_sets = !!instance;
982 	cp->enable = 0x00;
983 
984 	set->handle = instance;
985 
986 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
987 
988 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
989 				     size, data, HCI_CMD_TIMEOUT);
990 }
991 
992 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
993 					    bdaddr_t *random_addr)
994 {
995 	struct hci_cp_le_set_adv_set_rand_addr cp;
996 	int err;
997 
998 	if (!instance) {
999 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1000 		 * hdev->random_addr to track its address so whenever it needs
1001 		 * to be updated this also set the random address since
1002 		 * hdev->random_addr is shared with scan state machine.
1003 		 */
1004 		err = hci_set_random_addr_sync(hdev, random_addr);
1005 		if (err)
1006 			return err;
1007 	}
1008 
1009 	memset(&cp, 0, sizeof(cp));
1010 
1011 	cp.handle = instance;
1012 	bacpy(&cp.bdaddr, random_addr);
1013 
1014 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1015 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1016 }
1017 
1018 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1019 {
1020 	struct hci_cp_le_set_ext_adv_params cp;
1021 	bool connectable;
1022 	u32 flags;
1023 	bdaddr_t random_addr;
1024 	u8 own_addr_type;
1025 	int err;
1026 	struct adv_info *adv;
1027 	bool secondary_adv;
1028 
1029 	if (instance > 0) {
1030 		adv = hci_find_adv_instance(hdev, instance);
1031 		if (!adv)
1032 			return -EINVAL;
1033 	} else {
1034 		adv = NULL;
1035 	}
1036 
1037 	/* Updating parameters of an active instance will return a
1038 	 * Command Disallowed error, so we must first disable the
1039 	 * instance if it is active.
1040 	 */
1041 	if (adv && !adv->pending) {
1042 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1043 		if (err)
1044 			return err;
1045 	}
1046 
1047 	flags = hci_adv_instance_flags(hdev, instance);
1048 
1049 	/* If the "connectable" instance flag was not set, then choose between
1050 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1051 	 */
1052 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1053 		      mgmt_get_connectable(hdev);
1054 
1055 	if (!is_advertising_allowed(hdev, connectable))
1056 		return -EPERM;
1057 
1058 	/* Set require_privacy to true only when non-connectable
1059 	 * advertising is used. In that case it is fine to use a
1060 	 * non-resolvable private address.
1061 	 */
1062 	err = hci_get_random_address(hdev, !connectable,
1063 				     adv_use_rpa(hdev, flags), adv,
1064 				     &own_addr_type, &random_addr);
1065 	if (err < 0)
1066 		return err;
1067 
1068 	memset(&cp, 0, sizeof(cp));
1069 
1070 	if (adv) {
1071 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1072 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1073 		cp.tx_power = adv->tx_power;
1074 	} else {
1075 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1076 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1077 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1078 	}
1079 
1080 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1081 
1082 	if (connectable) {
1083 		if (secondary_adv)
1084 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1085 		else
1086 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1087 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1088 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1089 		if (secondary_adv)
1090 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1091 		else
1092 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1093 	} else {
1094 		if (secondary_adv)
1095 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1096 		else
1097 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1098 	}
1099 
1100 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1101 	 * contains the peer’s Identity Address and the Peer_Address_Type
1102 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1103 	 * These parameters are used to locate the corresponding local IRK in
1104 	 * the resolving list; this IRK is used to generate their own address
1105 	 * used in the advertisement.
1106 	 */
1107 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1108 		hci_copy_identity_address(hdev, &cp.peer_addr,
1109 					  &cp.peer_addr_type);
1110 
1111 	cp.own_addr_type = own_addr_type;
1112 	cp.channel_map = hdev->le_adv_channel_map;
1113 	cp.handle = instance;
1114 
1115 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1116 		cp.primary_phy = HCI_ADV_PHY_1M;
1117 		cp.secondary_phy = HCI_ADV_PHY_2M;
1118 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1119 		cp.primary_phy = HCI_ADV_PHY_CODED;
1120 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1121 	} else {
1122 		/* In all other cases use 1M */
1123 		cp.primary_phy = HCI_ADV_PHY_1M;
1124 		cp.secondary_phy = HCI_ADV_PHY_1M;
1125 	}
1126 
1127 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1128 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1129 	if (err)
1130 		return err;
1131 
1132 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1133 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1134 	    bacmp(&random_addr, BDADDR_ANY)) {
1135 		/* Check if random address need to be updated */
1136 		if (adv) {
1137 			if (!bacmp(&random_addr, &adv->random_addr))
1138 				return 0;
1139 		} else {
1140 			if (!bacmp(&random_addr, &hdev->random_addr))
1141 				return 0;
1142 		}
1143 
1144 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1145 							&random_addr);
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1152 {
1153 	struct {
1154 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1155 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1156 	} pdu;
1157 	u8 len;
1158 	struct adv_info *adv = NULL;
1159 	int err;
1160 
1161 	memset(&pdu, 0, sizeof(pdu));
1162 
1163 	if (instance) {
1164 		adv = hci_find_adv_instance(hdev, instance);
1165 		if (!adv || !adv->scan_rsp_changed)
1166 			return 0;
1167 	}
1168 
1169 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1170 
1171 	pdu.cp.handle = instance;
1172 	pdu.cp.length = len;
1173 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1174 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1175 
1176 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1177 				    sizeof(pdu.cp) + len, &pdu.cp,
1178 				    HCI_CMD_TIMEOUT);
1179 	if (err)
1180 		return err;
1181 
1182 	if (adv) {
1183 		adv->scan_rsp_changed = false;
1184 	} else {
1185 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1186 		hdev->scan_rsp_data_len = len;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1193 {
1194 	struct hci_cp_le_set_scan_rsp_data cp;
1195 	u8 len;
1196 
1197 	memset(&cp, 0, sizeof(cp));
1198 
1199 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1200 
1201 	if (hdev->scan_rsp_data_len == len &&
1202 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1203 		return 0;
1204 
1205 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1206 	hdev->scan_rsp_data_len = len;
1207 
1208 	cp.length = len;
1209 
1210 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1211 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1212 }
1213 
1214 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1215 {
1216 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1217 		return 0;
1218 
1219 	if (ext_adv_capable(hdev))
1220 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1221 
1222 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1223 }
1224 
1225 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1226 {
1227 	struct hci_cp_le_set_ext_adv_enable *cp;
1228 	struct hci_cp_ext_adv_set *set;
1229 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1230 	struct adv_info *adv;
1231 
1232 	if (instance > 0) {
1233 		adv = hci_find_adv_instance(hdev, instance);
1234 		if (!adv)
1235 			return -EINVAL;
1236 		/* If already enabled there is nothing to do */
1237 		if (adv->enabled)
1238 			return 0;
1239 	} else {
1240 		adv = NULL;
1241 	}
1242 
1243 	cp = (void *)data;
1244 	set = (void *)cp->data;
1245 
1246 	memset(cp, 0, sizeof(*cp));
1247 
1248 	cp->enable = 0x01;
1249 	cp->num_of_sets = 0x01;
1250 
1251 	memset(set, 0, sizeof(*set));
1252 
1253 	set->handle = instance;
1254 
1255 	/* Set duration per instance since controller is responsible for
1256 	 * scheduling it.
1257 	 */
1258 	if (adv && adv->timeout) {
1259 		u16 duration = adv->timeout * MSEC_PER_SEC;
1260 
1261 		/* Time = N * 10 ms */
1262 		set->duration = cpu_to_le16(duration / 10);
1263 	}
1264 
1265 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1266 				     sizeof(*cp) +
1267 				     sizeof(*set) * cp->num_of_sets,
1268 				     data, HCI_CMD_TIMEOUT);
1269 }
1270 
1271 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1272 {
1273 	int err;
1274 
1275 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1276 	if (err)
1277 		return err;
1278 
1279 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1280 	if (err)
1281 		return err;
1282 
1283 	return hci_enable_ext_advertising_sync(hdev, instance);
1284 }
1285 
1286 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1287 {
1288 	struct hci_cp_le_set_per_adv_enable cp;
1289 
1290 	/* If periodic advertising already disabled there is nothing to do. */
1291 	if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1292 		return 0;
1293 
1294 	memset(&cp, 0, sizeof(cp));
1295 
1296 	cp.enable = 0x00;
1297 	cp.handle = instance;
1298 
1299 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1300 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1301 }
1302 
1303 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1304 				       u16 min_interval, u16 max_interval)
1305 {
1306 	struct hci_cp_le_set_per_adv_params cp;
1307 
1308 	memset(&cp, 0, sizeof(cp));
1309 
1310 	if (!min_interval)
1311 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1312 
1313 	if (!max_interval)
1314 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1315 
1316 	cp.handle = instance;
1317 	cp.min_interval = cpu_to_le16(min_interval);
1318 	cp.max_interval = cpu_to_le16(max_interval);
1319 	cp.periodic_properties = 0x0000;
1320 
1321 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1322 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1323 }
1324 
1325 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1326 {
1327 	struct {
1328 		struct hci_cp_le_set_per_adv_data cp;
1329 		u8 data[HCI_MAX_PER_AD_LENGTH];
1330 	} pdu;
1331 	u8 len;
1332 
1333 	memset(&pdu, 0, sizeof(pdu));
1334 
1335 	if (instance) {
1336 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1337 
1338 		if (!adv || !adv->periodic)
1339 			return 0;
1340 	}
1341 
1342 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1343 
1344 	pdu.cp.length = len;
1345 	pdu.cp.handle = instance;
1346 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1347 
1348 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1349 				     sizeof(pdu.cp) + len, &pdu,
1350 				     HCI_CMD_TIMEOUT);
1351 }
1352 
1353 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1354 {
1355 	struct hci_cp_le_set_per_adv_enable cp;
1356 
1357 	/* If periodic advertising already enabled there is nothing to do. */
1358 	if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1359 		return 0;
1360 
1361 	memset(&cp, 0, sizeof(cp));
1362 
1363 	cp.enable = 0x01;
1364 	cp.handle = instance;
1365 
1366 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1367 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1368 }
1369 
1370 /* Checks if periodic advertising data contains a Basic Announcement and if it
1371  * does generates a Broadcast ID and add Broadcast Announcement.
1372  */
1373 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1374 {
1375 	u8 bid[3];
1376 	u8 ad[4 + 3];
1377 
1378 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1379 	 * advertising so it cannot used for the likes of Broadcast Announcement
1380 	 * as it can be overwritten at any point.
1381 	 */
1382 	if (!adv)
1383 		return 0;
1384 
1385 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1386 	 * there is nothing to do.
1387 	 */
1388 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1389 				  0x1851, NULL))
1390 		return 0;
1391 
1392 	/* Check if advertising data already has a Broadcast Announcement since
1393 	 * the process may want to control the Broadcast ID directly and in that
1394 	 * case the kernel shall no interfere.
1395 	 */
1396 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1397 				 NULL))
1398 		return 0;
1399 
1400 	/* Generate Broadcast ID */
1401 	get_random_bytes(bid, sizeof(bid));
1402 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1403 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1404 
1405 	return hci_update_adv_data_sync(hdev, adv->instance);
1406 }
1407 
1408 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1409 			   u8 *data, u32 flags, u16 min_interval,
1410 			   u16 max_interval, u16 sync_interval)
1411 {
1412 	struct adv_info *adv = NULL;
1413 	int err;
1414 	bool added = false;
1415 
1416 	hci_disable_per_advertising_sync(hdev, instance);
1417 
1418 	if (instance) {
1419 		adv = hci_find_adv_instance(hdev, instance);
1420 		/* Create an instance if that could not be found */
1421 		if (!adv) {
1422 			adv = hci_add_per_instance(hdev, instance, flags,
1423 						   data_len, data,
1424 						   sync_interval,
1425 						   sync_interval);
1426 			if (IS_ERR(adv))
1427 				return PTR_ERR(adv);
1428 			added = true;
1429 		}
1430 	}
1431 
1432 	/* Only start advertising if instance 0 or if a dedicated instance has
1433 	 * been added.
1434 	 */
1435 	if (!adv || added) {
1436 		err = hci_start_ext_adv_sync(hdev, instance);
1437 		if (err < 0)
1438 			goto fail;
1439 
1440 		err = hci_adv_bcast_annoucement(hdev, adv);
1441 		if (err < 0)
1442 			goto fail;
1443 	}
1444 
1445 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1446 					  max_interval);
1447 	if (err < 0)
1448 		goto fail;
1449 
1450 	err = hci_set_per_adv_data_sync(hdev, instance);
1451 	if (err < 0)
1452 		goto fail;
1453 
1454 	err = hci_enable_per_advertising_sync(hdev, instance);
1455 	if (err < 0)
1456 		goto fail;
1457 
1458 	return 0;
1459 
1460 fail:
1461 	if (added)
1462 		hci_remove_adv_instance(hdev, instance);
1463 
1464 	return err;
1465 }
1466 
1467 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1468 {
1469 	int err;
1470 
1471 	if (ext_adv_capable(hdev))
1472 		return hci_start_ext_adv_sync(hdev, instance);
1473 
1474 	err = hci_update_adv_data_sync(hdev, instance);
1475 	if (err)
1476 		return err;
1477 
1478 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1479 	if (err)
1480 		return err;
1481 
1482 	return hci_enable_advertising_sync(hdev);
1483 }
1484 
1485 int hci_enable_advertising_sync(struct hci_dev *hdev)
1486 {
1487 	struct adv_info *adv_instance;
1488 	struct hci_cp_le_set_adv_param cp;
1489 	u8 own_addr_type, enable = 0x01;
1490 	bool connectable;
1491 	u16 adv_min_interval, adv_max_interval;
1492 	u32 flags;
1493 	u8 status;
1494 
1495 	if (ext_adv_capable(hdev))
1496 		return hci_enable_ext_advertising_sync(hdev,
1497 						       hdev->cur_adv_instance);
1498 
1499 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1500 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1501 
1502 	/* If the "connectable" instance flag was not set, then choose between
1503 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1504 	 */
1505 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1506 		      mgmt_get_connectable(hdev);
1507 
1508 	if (!is_advertising_allowed(hdev, connectable))
1509 		return -EINVAL;
1510 
1511 	status = hci_disable_advertising_sync(hdev);
1512 	if (status)
1513 		return status;
1514 
1515 	/* Clear the HCI_LE_ADV bit temporarily so that the
1516 	 * hci_update_random_address knows that it's safe to go ahead
1517 	 * and write a new random address. The flag will be set back on
1518 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1519 	 */
1520 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1521 
1522 	/* Set require_privacy to true only when non-connectable
1523 	 * advertising is used. In that case it is fine to use a
1524 	 * non-resolvable private address.
1525 	 */
1526 	status = hci_update_random_address_sync(hdev, !connectable,
1527 						adv_use_rpa(hdev, flags),
1528 						&own_addr_type);
1529 	if (status)
1530 		return status;
1531 
1532 	memset(&cp, 0, sizeof(cp));
1533 
1534 	if (adv_instance) {
1535 		adv_min_interval = adv_instance->min_interval;
1536 		adv_max_interval = adv_instance->max_interval;
1537 	} else {
1538 		adv_min_interval = hdev->le_adv_min_interval;
1539 		adv_max_interval = hdev->le_adv_max_interval;
1540 	}
1541 
1542 	if (connectable) {
1543 		cp.type = LE_ADV_IND;
1544 	} else {
1545 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1546 			cp.type = LE_ADV_SCAN_IND;
1547 		else
1548 			cp.type = LE_ADV_NONCONN_IND;
1549 
1550 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1551 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1552 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1553 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1554 		}
1555 	}
1556 
1557 	cp.min_interval = cpu_to_le16(adv_min_interval);
1558 	cp.max_interval = cpu_to_le16(adv_max_interval);
1559 	cp.own_address_type = own_addr_type;
1560 	cp.channel_map = hdev->le_adv_channel_map;
1561 
1562 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1563 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1564 	if (status)
1565 		return status;
1566 
1567 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1568 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1569 }
1570 
1571 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1572 {
1573 	return hci_enable_advertising_sync(hdev);
1574 }
1575 
1576 int hci_enable_advertising(struct hci_dev *hdev)
1577 {
1578 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1579 	    list_empty(&hdev->adv_instances))
1580 		return 0;
1581 
1582 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1583 }
1584 
1585 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1586 				     struct sock *sk)
1587 {
1588 	int err;
1589 
1590 	if (!ext_adv_capable(hdev))
1591 		return 0;
1592 
1593 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1594 	if (err)
1595 		return err;
1596 
1597 	/* If request specifies an instance that doesn't exist, fail */
1598 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1599 		return -EINVAL;
1600 
1601 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1602 					sizeof(instance), &instance, 0,
1603 					HCI_CMD_TIMEOUT, sk);
1604 }
1605 
1606 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1607 {
1608 	struct adv_info *adv = data;
1609 	u8 instance = 0;
1610 
1611 	if (adv)
1612 		instance = adv->instance;
1613 
1614 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1615 }
1616 
1617 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv = NULL;
1620 
1621 	if (instance) {
1622 		adv = hci_find_adv_instance(hdev, instance);
1623 		if (!adv)
1624 			return -EINVAL;
1625 	}
1626 
1627 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1628 }
1629 
1630 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1631 {
1632 	struct hci_cp_le_term_big cp;
1633 
1634 	memset(&cp, 0, sizeof(cp));
1635 	cp.handle = handle;
1636 	cp.reason = reason;
1637 
1638 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1639 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1640 }
1641 
1642 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1643 {
1644 	struct {
1645 		struct hci_cp_le_set_ext_adv_data cp;
1646 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1647 	} pdu;
1648 	u8 len;
1649 	struct adv_info *adv = NULL;
1650 	int err;
1651 
1652 	memset(&pdu, 0, sizeof(pdu));
1653 
1654 	if (instance) {
1655 		adv = hci_find_adv_instance(hdev, instance);
1656 		if (!adv || !adv->adv_data_changed)
1657 			return 0;
1658 	}
1659 
1660 	len = eir_create_adv_data(hdev, instance, pdu.data);
1661 
1662 	pdu.cp.length = len;
1663 	pdu.cp.handle = instance;
1664 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1665 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1666 
1667 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1668 				    sizeof(pdu.cp) + len, &pdu.cp,
1669 				    HCI_CMD_TIMEOUT);
1670 	if (err)
1671 		return err;
1672 
1673 	/* Update data if the command succeed */
1674 	if (adv) {
1675 		adv->adv_data_changed = false;
1676 	} else {
1677 		memcpy(hdev->adv_data, pdu.data, len);
1678 		hdev->adv_data_len = len;
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1685 {
1686 	struct hci_cp_le_set_adv_data cp;
1687 	u8 len;
1688 
1689 	memset(&cp, 0, sizeof(cp));
1690 
1691 	len = eir_create_adv_data(hdev, instance, cp.data);
1692 
1693 	/* There's nothing to do if the data hasn't changed */
1694 	if (hdev->adv_data_len == len &&
1695 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1696 		return 0;
1697 
1698 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1699 	hdev->adv_data_len = len;
1700 
1701 	cp.length = len;
1702 
1703 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1704 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1705 }
1706 
1707 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1708 {
1709 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1710 		return 0;
1711 
1712 	if (ext_adv_capable(hdev))
1713 		return hci_set_ext_adv_data_sync(hdev, instance);
1714 
1715 	return hci_set_adv_data_sync(hdev, instance);
1716 }
1717 
1718 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1719 				   bool force)
1720 {
1721 	struct adv_info *adv = NULL;
1722 	u16 timeout;
1723 
1724 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1725 		return -EPERM;
1726 
1727 	if (hdev->adv_instance_timeout)
1728 		return -EBUSY;
1729 
1730 	adv = hci_find_adv_instance(hdev, instance);
1731 	if (!adv)
1732 		return -ENOENT;
1733 
1734 	/* A zero timeout means unlimited advertising. As long as there is
1735 	 * only one instance, duration should be ignored. We still set a timeout
1736 	 * in case further instances are being added later on.
1737 	 *
1738 	 * If the remaining lifetime of the instance is more than the duration
1739 	 * then the timeout corresponds to the duration, otherwise it will be
1740 	 * reduced to the remaining instance lifetime.
1741 	 */
1742 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1743 		timeout = adv->duration;
1744 	else
1745 		timeout = adv->remaining_time;
1746 
1747 	/* The remaining time is being reduced unless the instance is being
1748 	 * advertised without time limit.
1749 	 */
1750 	if (adv->timeout)
1751 		adv->remaining_time = adv->remaining_time - timeout;
1752 
1753 	/* Only use work for scheduling instances with legacy advertising */
1754 	if (!ext_adv_capable(hdev)) {
1755 		hdev->adv_instance_timeout = timeout;
1756 		queue_delayed_work(hdev->req_workqueue,
1757 				   &hdev->adv_instance_expire,
1758 				   msecs_to_jiffies(timeout * 1000));
1759 	}
1760 
1761 	/* If we're just re-scheduling the same instance again then do not
1762 	 * execute any HCI commands. This happens when a single instance is
1763 	 * being advertised.
1764 	 */
1765 	if (!force && hdev->cur_adv_instance == instance &&
1766 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1767 		return 0;
1768 
1769 	hdev->cur_adv_instance = instance;
1770 
1771 	return hci_start_adv_sync(hdev, instance);
1772 }
1773 
1774 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1775 {
1776 	int err;
1777 
1778 	if (!ext_adv_capable(hdev))
1779 		return 0;
1780 
1781 	/* Disable instance 0x00 to disable all instances */
1782 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1783 	if (err)
1784 		return err;
1785 
1786 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1787 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1788 }
1789 
1790 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1791 {
1792 	struct adv_info *adv, *n;
1793 	int err = 0;
1794 
1795 	if (ext_adv_capable(hdev))
1796 		/* Remove all existing sets */
1797 		err = hci_clear_adv_sets_sync(hdev, sk);
1798 	if (ext_adv_capable(hdev))
1799 		return err;
1800 
1801 	/* This is safe as long as there is no command send while the lock is
1802 	 * held.
1803 	 */
1804 	hci_dev_lock(hdev);
1805 
1806 	/* Cleanup non-ext instances */
1807 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1808 		u8 instance = adv->instance;
1809 		int err;
1810 
1811 		if (!(force || adv->timeout))
1812 			continue;
1813 
1814 		err = hci_remove_adv_instance(hdev, instance);
1815 		if (!err)
1816 			mgmt_advertising_removed(sk, hdev, instance);
1817 	}
1818 
1819 	hci_dev_unlock(hdev);
1820 
1821 	return 0;
1822 }
1823 
1824 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1825 			       struct sock *sk)
1826 {
1827 	int err = 0;
1828 
1829 	/* If we use extended advertising, instance has to be removed first. */
1830 	if (ext_adv_capable(hdev))
1831 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1832 	if (ext_adv_capable(hdev))
1833 		return err;
1834 
1835 	/* This is safe as long as there is no command send while the lock is
1836 	 * held.
1837 	 */
1838 	hci_dev_lock(hdev);
1839 
1840 	err = hci_remove_adv_instance(hdev, instance);
1841 	if (!err)
1842 		mgmt_advertising_removed(sk, hdev, instance);
1843 
1844 	hci_dev_unlock(hdev);
1845 
1846 	return err;
1847 }
1848 
1849 /* For a single instance:
1850  * - force == true: The instance will be removed even when its remaining
1851  *   lifetime is not zero.
1852  * - force == false: the instance will be deactivated but kept stored unless
1853  *   the remaining lifetime is zero.
1854  *
1855  * For instance == 0x00:
1856  * - force == true: All instances will be removed regardless of their timeout
1857  *   setting.
1858  * - force == false: Only instances that have a timeout will be removed.
1859  */
1860 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1861 				u8 instance, bool force)
1862 {
1863 	struct adv_info *next = NULL;
1864 	int err;
1865 
1866 	/* Cancel any timeout concerning the removed instance(s). */
1867 	if (!instance || hdev->cur_adv_instance == instance)
1868 		cancel_adv_timeout(hdev);
1869 
1870 	/* Get the next instance to advertise BEFORE we remove
1871 	 * the current one. This can be the same instance again
1872 	 * if there is only one instance.
1873 	 */
1874 	if (hdev->cur_adv_instance == instance)
1875 		next = hci_get_next_instance(hdev, instance);
1876 
1877 	if (!instance) {
1878 		err = hci_clear_adv_sync(hdev, sk, force);
1879 		if (err)
1880 			return err;
1881 	} else {
1882 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1883 
1884 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1885 			/* Don't advertise a removed instance. */
1886 			if (next && next->instance == instance)
1887 				next = NULL;
1888 
1889 			err = hci_remove_adv_sync(hdev, instance, sk);
1890 			if (err)
1891 				return err;
1892 		}
1893 	}
1894 
1895 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1896 		return 0;
1897 
1898 	if (next && !ext_adv_capable(hdev))
1899 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1900 
1901 	return 0;
1902 }
1903 
1904 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1905 {
1906 	struct hci_cp_read_rssi cp;
1907 
1908 	cp.handle = handle;
1909 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1910 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1911 }
1912 
1913 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1914 {
1915 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1916 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1917 }
1918 
1919 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1920 {
1921 	struct hci_cp_read_tx_power cp;
1922 
1923 	cp.handle = handle;
1924 	cp.type = type;
1925 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1926 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1927 }
1928 
1929 int hci_disable_advertising_sync(struct hci_dev *hdev)
1930 {
1931 	u8 enable = 0x00;
1932 	int err = 0;
1933 
1934 	/* If controller is not advertising we are done. */
1935 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1936 		return 0;
1937 
1938 	if (ext_adv_capable(hdev))
1939 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1940 	if (ext_adv_capable(hdev))
1941 		return err;
1942 
1943 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1944 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1945 }
1946 
1947 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1948 					   u8 filter_dup)
1949 {
1950 	struct hci_cp_le_set_ext_scan_enable cp;
1951 
1952 	memset(&cp, 0, sizeof(cp));
1953 	cp.enable = val;
1954 
1955 	if (hci_dev_test_flag(hdev, HCI_MESH))
1956 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1957 	else
1958 		cp.filter_dup = filter_dup;
1959 
1960 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1961 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1962 }
1963 
1964 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1965 				       u8 filter_dup)
1966 {
1967 	struct hci_cp_le_set_scan_enable cp;
1968 
1969 	if (use_ext_scan(hdev))
1970 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1971 
1972 	memset(&cp, 0, sizeof(cp));
1973 	cp.enable = val;
1974 
1975 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
1976 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1977 	else
1978 		cp.filter_dup = filter_dup;
1979 
1980 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1981 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1982 }
1983 
1984 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1985 {
1986 	if (!use_ll_privacy(hdev))
1987 		return 0;
1988 
1989 	/* If controller is not/already resolving we are done. */
1990 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1991 		return 0;
1992 
1993 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1994 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1995 }
1996 
1997 static int hci_scan_disable_sync(struct hci_dev *hdev)
1998 {
1999 	int err;
2000 
2001 	/* If controller is not scanning we are done. */
2002 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2003 		return 0;
2004 
2005 	if (hdev->scanning_paused) {
2006 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2007 		return 0;
2008 	}
2009 
2010 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2011 	if (err) {
2012 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2013 		return err;
2014 	}
2015 
2016 	return err;
2017 }
2018 
2019 static bool scan_use_rpa(struct hci_dev *hdev)
2020 {
2021 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2022 }
2023 
2024 static void hci_start_interleave_scan(struct hci_dev *hdev)
2025 {
2026 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2027 	queue_delayed_work(hdev->req_workqueue,
2028 			   &hdev->interleave_scan, 0);
2029 }
2030 
2031 static bool is_interleave_scanning(struct hci_dev *hdev)
2032 {
2033 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2034 }
2035 
2036 static void cancel_interleave_scan(struct hci_dev *hdev)
2037 {
2038 	bt_dev_dbg(hdev, "cancelling interleave scan");
2039 
2040 	cancel_delayed_work_sync(&hdev->interleave_scan);
2041 
2042 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2043 }
2044 
2045 /* Return true if interleave_scan wasn't started until exiting this function,
2046  * otherwise, return false
2047  */
2048 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2049 {
2050 	/* Do interleaved scan only if all of the following are true:
2051 	 * - There is at least one ADV monitor
2052 	 * - At least one pending LE connection or one device to be scanned for
2053 	 * - Monitor offloading is not supported
2054 	 * If so, we should alternate between allowlist scan and one without
2055 	 * any filters to save power.
2056 	 */
2057 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2058 				!(list_empty(&hdev->pend_le_conns) &&
2059 				  list_empty(&hdev->pend_le_reports)) &&
2060 				hci_get_adv_monitor_offload_ext(hdev) ==
2061 				    HCI_ADV_MONITOR_EXT_NONE;
2062 	bool is_interleaving = is_interleave_scanning(hdev);
2063 
2064 	if (use_interleaving && !is_interleaving) {
2065 		hci_start_interleave_scan(hdev);
2066 		bt_dev_dbg(hdev, "starting interleave scan");
2067 		return true;
2068 	}
2069 
2070 	if (!use_interleaving && is_interleaving)
2071 		cancel_interleave_scan(hdev);
2072 
2073 	return false;
2074 }
2075 
2076 /* Removes connection to resolve list if needed.*/
2077 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2078 					bdaddr_t *bdaddr, u8 bdaddr_type)
2079 {
2080 	struct hci_cp_le_del_from_resolv_list cp;
2081 	struct bdaddr_list_with_irk *entry;
2082 
2083 	if (!use_ll_privacy(hdev))
2084 		return 0;
2085 
2086 	/* Check if the IRK has been programmed */
2087 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2088 						bdaddr_type);
2089 	if (!entry)
2090 		return 0;
2091 
2092 	cp.bdaddr_type = bdaddr_type;
2093 	bacpy(&cp.bdaddr, bdaddr);
2094 
2095 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2096 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2097 }
2098 
2099 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2100 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2101 {
2102 	struct hci_cp_le_del_from_accept_list cp;
2103 	int err;
2104 
2105 	/* Check if device is on accept list before removing it */
2106 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2107 		return 0;
2108 
2109 	cp.bdaddr_type = bdaddr_type;
2110 	bacpy(&cp.bdaddr, bdaddr);
2111 
2112 	/* Ignore errors when removing from resolving list as that is likely
2113 	 * that the device was never added.
2114 	 */
2115 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2116 
2117 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2118 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2119 	if (err) {
2120 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2121 		return err;
2122 	}
2123 
2124 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2125 		   cp.bdaddr_type);
2126 
2127 	return 0;
2128 }
2129 
2130 /* Adds connection to resolve list if needed.
2131  * Setting params to NULL programs local hdev->irk
2132  */
2133 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2134 					struct hci_conn_params *params)
2135 {
2136 	struct hci_cp_le_add_to_resolv_list cp;
2137 	struct smp_irk *irk;
2138 	struct bdaddr_list_with_irk *entry;
2139 
2140 	if (!use_ll_privacy(hdev))
2141 		return 0;
2142 
2143 	/* Attempt to program local identity address, type and irk if params is
2144 	 * NULL.
2145 	 */
2146 	if (!params) {
2147 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2148 			return 0;
2149 
2150 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2151 		memcpy(cp.peer_irk, hdev->irk, 16);
2152 		goto done;
2153 	}
2154 
2155 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2156 	if (!irk)
2157 		return 0;
2158 
2159 	/* Check if the IK has _not_ been programmed yet. */
2160 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2161 						&params->addr,
2162 						params->addr_type);
2163 	if (entry)
2164 		return 0;
2165 
2166 	cp.bdaddr_type = params->addr_type;
2167 	bacpy(&cp.bdaddr, &params->addr);
2168 	memcpy(cp.peer_irk, irk->val, 16);
2169 
2170 	/* Default privacy mode is always Network */
2171 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2172 
2173 done:
2174 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2175 		memcpy(cp.local_irk, hdev->irk, 16);
2176 	else
2177 		memset(cp.local_irk, 0, 16);
2178 
2179 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2180 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2181 }
2182 
2183 /* Set Device Privacy Mode. */
2184 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2185 					struct hci_conn_params *params)
2186 {
2187 	struct hci_cp_le_set_privacy_mode cp;
2188 	struct smp_irk *irk;
2189 
2190 	/* If device privacy mode has already been set there is nothing to do */
2191 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2192 		return 0;
2193 
2194 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2195 	 * indicates that LL Privacy has been enabled and
2196 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2197 	 */
2198 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2199 		return 0;
2200 
2201 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2202 	if (!irk)
2203 		return 0;
2204 
2205 	memset(&cp, 0, sizeof(cp));
2206 	cp.bdaddr_type = irk->addr_type;
2207 	bacpy(&cp.bdaddr, &irk->bdaddr);
2208 	cp.mode = HCI_DEVICE_PRIVACY;
2209 
2210 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2211 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2212 }
2213 
2214 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2215  * this attempts to program the device in the resolving list as well and
2216  * properly set the privacy mode.
2217  */
2218 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2219 				       struct hci_conn_params *params,
2220 				       u8 *num_entries)
2221 {
2222 	struct hci_cp_le_add_to_accept_list cp;
2223 	int err;
2224 
2225 	/* During suspend, only wakeable devices can be in acceptlist */
2226 	if (hdev->suspended &&
2227 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2228 		return 0;
2229 
2230 	/* Select filter policy to accept all advertising */
2231 	if (*num_entries >= hdev->le_accept_list_size)
2232 		return -ENOSPC;
2233 
2234 	/* Accept list can not be used with RPAs */
2235 	if (!use_ll_privacy(hdev) &&
2236 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2237 		return -EINVAL;
2238 
2239 	/* Attempt to program the device in the resolving list first to avoid
2240 	 * having to rollback in case it fails since the resolving list is
2241 	 * dynamic it can probably be smaller than the accept list.
2242 	 */
2243 	err = hci_le_add_resolve_list_sync(hdev, params);
2244 	if (err) {
2245 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2246 		return err;
2247 	}
2248 
2249 	/* Set Privacy Mode */
2250 	err = hci_le_set_privacy_mode_sync(hdev, params);
2251 	if (err) {
2252 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2253 		return err;
2254 	}
2255 
2256 	/* Check if already in accept list */
2257 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2258 				   params->addr_type))
2259 		return 0;
2260 
2261 	*num_entries += 1;
2262 	cp.bdaddr_type = params->addr_type;
2263 	bacpy(&cp.bdaddr, &params->addr);
2264 
2265 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2266 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2267 	if (err) {
2268 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2269 		/* Rollback the device from the resolving list */
2270 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2271 		return err;
2272 	}
2273 
2274 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2275 		   cp.bdaddr_type);
2276 
2277 	return 0;
2278 }
2279 
2280 /* This function disables/pause all advertising instances */
2281 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2282 {
2283 	int err;
2284 	int old_state;
2285 
2286 	/* If already been paused there is nothing to do. */
2287 	if (hdev->advertising_paused)
2288 		return 0;
2289 
2290 	bt_dev_dbg(hdev, "Pausing directed advertising");
2291 
2292 	/* Stop directed advertising */
2293 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2294 	if (old_state) {
2295 		/* When discoverable timeout triggers, then just make sure
2296 		 * the limited discoverable flag is cleared. Even in the case
2297 		 * of a timeout triggered from general discoverable, it is
2298 		 * safe to unconditionally clear the flag.
2299 		 */
2300 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2301 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2302 		hdev->discov_timeout = 0;
2303 	}
2304 
2305 	bt_dev_dbg(hdev, "Pausing advertising instances");
2306 
2307 	/* Call to disable any advertisements active on the controller.
2308 	 * This will succeed even if no advertisements are configured.
2309 	 */
2310 	err = hci_disable_advertising_sync(hdev);
2311 	if (err)
2312 		return err;
2313 
2314 	/* If we are using software rotation, pause the loop */
2315 	if (!ext_adv_capable(hdev))
2316 		cancel_adv_timeout(hdev);
2317 
2318 	hdev->advertising_paused = true;
2319 	hdev->advertising_old_state = old_state;
2320 
2321 	return 0;
2322 }
2323 
2324 /* This function enables all user advertising instances */
2325 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2326 {
2327 	struct adv_info *adv, *tmp;
2328 	int err;
2329 
2330 	/* If advertising has not been paused there is nothing  to do. */
2331 	if (!hdev->advertising_paused)
2332 		return 0;
2333 
2334 	/* Resume directed advertising */
2335 	hdev->advertising_paused = false;
2336 	if (hdev->advertising_old_state) {
2337 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2338 		hdev->advertising_old_state = 0;
2339 	}
2340 
2341 	bt_dev_dbg(hdev, "Resuming advertising instances");
2342 
2343 	if (ext_adv_capable(hdev)) {
2344 		/* Call for each tracked instance to be re-enabled */
2345 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2346 			err = hci_enable_ext_advertising_sync(hdev,
2347 							      adv->instance);
2348 			if (!err)
2349 				continue;
2350 
2351 			/* If the instance cannot be resumed remove it */
2352 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2353 							 NULL);
2354 		}
2355 	} else {
2356 		/* Schedule for most recent instance to be restarted and begin
2357 		 * the software rotation loop
2358 		 */
2359 		err = hci_schedule_adv_instance_sync(hdev,
2360 						     hdev->cur_adv_instance,
2361 						     true);
2362 	}
2363 
2364 	hdev->advertising_paused = false;
2365 
2366 	return err;
2367 }
2368 
2369 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2370 					     bool extended, struct sock *sk)
2371 {
2372 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2373 					HCI_OP_READ_LOCAL_OOB_DATA;
2374 
2375 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2376 }
2377 
2378 /* Device must not be scanning when updating the accept list.
2379  *
2380  * Update is done using the following sequence:
2381  *
2382  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2383  * Remove Devices From Accept List ->
2384  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2385  * Add Devices to Accept List ->
2386  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2387  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2388  * Enable Scanning
2389  *
2390  * In case of failure advertising shall be restored to its original state and
2391  * return would disable accept list since either accept or resolving list could
2392  * not be programmed.
2393  *
2394  */
2395 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2396 {
2397 	struct hci_conn_params *params;
2398 	struct bdaddr_list *b, *t;
2399 	u8 num_entries = 0;
2400 	bool pend_conn, pend_report;
2401 	u8 filter_policy;
2402 	int err;
2403 
2404 	/* Pause advertising if resolving list can be used as controllers are
2405 	 * cannot accept resolving list modifications while advertising.
2406 	 */
2407 	if (use_ll_privacy(hdev)) {
2408 		err = hci_pause_advertising_sync(hdev);
2409 		if (err) {
2410 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2411 			return 0x00;
2412 		}
2413 	}
2414 
2415 	/* Disable address resolution while reprogramming accept list since
2416 	 * devices that do have an IRK will be programmed in the resolving list
2417 	 * when LL Privacy is enabled.
2418 	 */
2419 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2420 	if (err) {
2421 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2422 		goto done;
2423 	}
2424 
2425 	/* Go through the current accept list programmed into the
2426 	 * controller one by one and check if that address is connected or is
2427 	 * still in the list of pending connections or list of devices to
2428 	 * report. If not present in either list, then remove it from
2429 	 * the controller.
2430 	 */
2431 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2432 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2433 			continue;
2434 
2435 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2436 						      &b->bdaddr,
2437 						      b->bdaddr_type);
2438 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2439 							&b->bdaddr,
2440 							b->bdaddr_type);
2441 
2442 		/* If the device is not likely to connect or report,
2443 		 * remove it from the acceptlist.
2444 		 */
2445 		if (!pend_conn && !pend_report) {
2446 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2447 						    b->bdaddr_type);
2448 			continue;
2449 		}
2450 
2451 		num_entries++;
2452 	}
2453 
2454 	/* Since all no longer valid accept list entries have been
2455 	 * removed, walk through the list of pending connections
2456 	 * and ensure that any new device gets programmed into
2457 	 * the controller.
2458 	 *
2459 	 * If the list of the devices is larger than the list of
2460 	 * available accept list entries in the controller, then
2461 	 * just abort and return filer policy value to not use the
2462 	 * accept list.
2463 	 */
2464 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
2465 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2466 		if (err)
2467 			goto done;
2468 	}
2469 
2470 	/* After adding all new pending connections, walk through
2471 	 * the list of pending reports and also add these to the
2472 	 * accept list if there is still space. Abort if space runs out.
2473 	 */
2474 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
2475 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2476 		if (err)
2477 			goto done;
2478 	}
2479 
2480 	/* Use the allowlist unless the following conditions are all true:
2481 	 * - We are not currently suspending
2482 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2483 	 * - Interleaved scanning is not currently using the allowlist
2484 	 */
2485 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2486 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2487 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2488 		err = -EINVAL;
2489 
2490 done:
2491 	filter_policy = err ? 0x00 : 0x01;
2492 
2493 	/* Enable address resolution when LL Privacy is enabled. */
2494 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2495 	if (err)
2496 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2497 
2498 	/* Resume advertising if it was paused */
2499 	if (use_ll_privacy(hdev))
2500 		hci_resume_advertising_sync(hdev);
2501 
2502 	/* Select filter policy to use accept list */
2503 	return filter_policy;
2504 }
2505 
2506 /* Returns true if an le connection is in the scanning state */
2507 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
2508 {
2509 	struct hci_conn_hash *h = &hdev->conn_hash;
2510 	struct hci_conn  *c;
2511 
2512 	rcu_read_lock();
2513 
2514 	list_for_each_entry_rcu(c, &h->list, list) {
2515 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
2516 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
2517 			rcu_read_unlock();
2518 			return true;
2519 		}
2520 	}
2521 
2522 	rcu_read_unlock();
2523 
2524 	return false;
2525 }
2526 
2527 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2528 					  u16 interval, u16 window,
2529 					  u8 own_addr_type, u8 filter_policy)
2530 {
2531 	struct hci_cp_le_set_ext_scan_params *cp;
2532 	struct hci_cp_le_scan_phy_params *phy;
2533 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2534 	u8 num_phy = 0;
2535 
2536 	cp = (void *)data;
2537 	phy = (void *)cp->data;
2538 
2539 	memset(data, 0, sizeof(data));
2540 
2541 	cp->own_addr_type = own_addr_type;
2542 	cp->filter_policy = filter_policy;
2543 
2544 	if (scan_1m(hdev) || scan_2m(hdev)) {
2545 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2546 
2547 		phy->type = type;
2548 		phy->interval = cpu_to_le16(interval);
2549 		phy->window = cpu_to_le16(window);
2550 
2551 		num_phy++;
2552 		phy++;
2553 	}
2554 
2555 	if (scan_coded(hdev)) {
2556 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2557 
2558 		phy->type = type;
2559 		phy->interval = cpu_to_le16(interval);
2560 		phy->window = cpu_to_le16(window);
2561 
2562 		num_phy++;
2563 		phy++;
2564 	}
2565 
2566 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2567 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2568 				     data, HCI_CMD_TIMEOUT);
2569 }
2570 
2571 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2572 				      u16 interval, u16 window,
2573 				      u8 own_addr_type, u8 filter_policy)
2574 {
2575 	struct hci_cp_le_set_scan_param cp;
2576 
2577 	if (use_ext_scan(hdev))
2578 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2579 						      window, own_addr_type,
2580 						      filter_policy);
2581 
2582 	memset(&cp, 0, sizeof(cp));
2583 	cp.type = type;
2584 	cp.interval = cpu_to_le16(interval);
2585 	cp.window = cpu_to_le16(window);
2586 	cp.own_address_type = own_addr_type;
2587 	cp.filter_policy = filter_policy;
2588 
2589 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2590 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2591 }
2592 
2593 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2594 			       u16 window, u8 own_addr_type, u8 filter_policy,
2595 			       u8 filter_dup)
2596 {
2597 	int err;
2598 
2599 	if (hdev->scanning_paused) {
2600 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2601 		return 0;
2602 	}
2603 
2604 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2605 					 own_addr_type, filter_policy);
2606 	if (err)
2607 		return err;
2608 
2609 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2610 }
2611 
2612 static int hci_passive_scan_sync(struct hci_dev *hdev)
2613 {
2614 	u8 own_addr_type;
2615 	u8 filter_policy;
2616 	u16 window, interval;
2617 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2618 	int err;
2619 
2620 	if (hdev->scanning_paused) {
2621 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2622 		return 0;
2623 	}
2624 
2625 	err = hci_scan_disable_sync(hdev);
2626 	if (err) {
2627 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2628 		return err;
2629 	}
2630 
2631 	/* Set require_privacy to false since no SCAN_REQ are send
2632 	 * during passive scanning. Not using an non-resolvable address
2633 	 * here is important so that peer devices using direct
2634 	 * advertising with our address will be correctly reported
2635 	 * by the controller.
2636 	 */
2637 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2638 					   &own_addr_type))
2639 		return 0;
2640 
2641 	if (hdev->enable_advmon_interleave_scan &&
2642 	    hci_update_interleaved_scan_sync(hdev))
2643 		return 0;
2644 
2645 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2646 
2647 	/* Adding or removing entries from the accept list must
2648 	 * happen before enabling scanning. The controller does
2649 	 * not allow accept list modification while scanning.
2650 	 */
2651 	filter_policy = hci_update_accept_list_sync(hdev);
2652 
2653 	/* When the controller is using random resolvable addresses and
2654 	 * with that having LE privacy enabled, then controllers with
2655 	 * Extended Scanner Filter Policies support can now enable support
2656 	 * for handling directed advertising.
2657 	 *
2658 	 * So instead of using filter polices 0x00 (no acceptlist)
2659 	 * and 0x01 (acceptlist enabled) use the new filter policies
2660 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2661 	 */
2662 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2663 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2664 		filter_policy |= 0x02;
2665 
2666 	if (hdev->suspended) {
2667 		window = hdev->le_scan_window_suspend;
2668 		interval = hdev->le_scan_int_suspend;
2669 	} else if (hci_is_le_conn_scanning(hdev)) {
2670 		window = hdev->le_scan_window_connect;
2671 		interval = hdev->le_scan_int_connect;
2672 	} else if (hci_is_adv_monitoring(hdev)) {
2673 		window = hdev->le_scan_window_adv_monitor;
2674 		interval = hdev->le_scan_int_adv_monitor;
2675 	} else {
2676 		window = hdev->le_scan_window;
2677 		interval = hdev->le_scan_interval;
2678 	}
2679 
2680 	/* Disable all filtering for Mesh */
2681 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2682 		filter_policy = 0;
2683 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2684 	}
2685 
2686 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2687 
2688 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2689 				   own_addr_type, filter_policy, filter_dups);
2690 }
2691 
2692 /* This function controls the passive scanning based on hdev->pend_le_conns
2693  * list. If there are pending LE connection we start the background scanning,
2694  * otherwise we stop it in the following sequence:
2695  *
2696  * If there are devices to scan:
2697  *
2698  * Disable Scanning -> Update Accept List ->
2699  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2700  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2701  * Enable Scanning
2702  *
2703  * Otherwise:
2704  *
2705  * Disable Scanning
2706  */
2707 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2708 {
2709 	int err;
2710 
2711 	if (!test_bit(HCI_UP, &hdev->flags) ||
2712 	    test_bit(HCI_INIT, &hdev->flags) ||
2713 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2714 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2715 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2716 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2717 		return 0;
2718 
2719 	/* No point in doing scanning if LE support hasn't been enabled */
2720 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2721 		return 0;
2722 
2723 	/* If discovery is active don't interfere with it */
2724 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2725 		return 0;
2726 
2727 	/* Reset RSSI and UUID filters when starting background scanning
2728 	 * since these filters are meant for service discovery only.
2729 	 *
2730 	 * The Start Discovery and Start Service Discovery operations
2731 	 * ensure to set proper values for RSSI threshold and UUID
2732 	 * filter list. So it is safe to just reset them here.
2733 	 */
2734 	hci_discovery_filter_clear(hdev);
2735 
2736 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2737 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2738 
2739 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2740 	    list_empty(&hdev->pend_le_conns) &&
2741 	    list_empty(&hdev->pend_le_reports) &&
2742 	    !hci_is_adv_monitoring(hdev) &&
2743 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2744 		/* If there is no pending LE connections or devices
2745 		 * to be scanned for or no ADV monitors, we should stop the
2746 		 * background scanning.
2747 		 */
2748 
2749 		bt_dev_dbg(hdev, "stopping background scanning");
2750 
2751 		err = hci_scan_disable_sync(hdev);
2752 		if (err)
2753 			bt_dev_err(hdev, "stop background scanning failed: %d",
2754 				   err);
2755 	} else {
2756 		/* If there is at least one pending LE connection, we should
2757 		 * keep the background scan running.
2758 		 */
2759 
2760 		/* If controller is connecting, we should not start scanning
2761 		 * since some controllers are not able to scan and connect at
2762 		 * the same time.
2763 		 */
2764 		if (hci_lookup_le_connect(hdev))
2765 			return 0;
2766 
2767 		bt_dev_dbg(hdev, "start background scanning");
2768 
2769 		err = hci_passive_scan_sync(hdev);
2770 		if (err)
2771 			bt_dev_err(hdev, "start background scanning failed: %d",
2772 				   err);
2773 	}
2774 
2775 	return err;
2776 }
2777 
2778 static int update_scan_sync(struct hci_dev *hdev, void *data)
2779 {
2780 	return hci_update_scan_sync(hdev);
2781 }
2782 
2783 int hci_update_scan(struct hci_dev *hdev)
2784 {
2785 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2786 }
2787 
2788 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2789 {
2790 	return hci_update_passive_scan_sync(hdev);
2791 }
2792 
2793 int hci_update_passive_scan(struct hci_dev *hdev)
2794 {
2795 	/* Only queue if it would have any effect */
2796 	if (!test_bit(HCI_UP, &hdev->flags) ||
2797 	    test_bit(HCI_INIT, &hdev->flags) ||
2798 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2799 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2800 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2801 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2802 		return 0;
2803 
2804 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2805 }
2806 
2807 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2808 {
2809 	int err;
2810 
2811 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2812 		return 0;
2813 
2814 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2815 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2816 
2817 	if (!err) {
2818 		if (val) {
2819 			hdev->features[1][0] |= LMP_HOST_SC;
2820 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2821 		} else {
2822 			hdev->features[1][0] &= ~LMP_HOST_SC;
2823 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2824 		}
2825 	}
2826 
2827 	return err;
2828 }
2829 
2830 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2831 {
2832 	int err;
2833 
2834 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2835 	    lmp_host_ssp_capable(hdev))
2836 		return 0;
2837 
2838 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2839 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2840 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2841 	}
2842 
2843 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2844 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2845 	if (err)
2846 		return err;
2847 
2848 	return hci_write_sc_support_sync(hdev, 0x01);
2849 }
2850 
2851 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2852 {
2853 	struct hci_cp_write_le_host_supported cp;
2854 
2855 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2856 	    !lmp_bredr_capable(hdev))
2857 		return 0;
2858 
2859 	/* Check first if we already have the right host state
2860 	 * (host features set)
2861 	 */
2862 	if (le == lmp_host_le_capable(hdev) &&
2863 	    simul == lmp_host_le_br_capable(hdev))
2864 		return 0;
2865 
2866 	memset(&cp, 0, sizeof(cp));
2867 
2868 	cp.le = le;
2869 	cp.simul = simul;
2870 
2871 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2872 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2873 }
2874 
2875 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2876 {
2877 	struct adv_info *adv, *tmp;
2878 	int err;
2879 
2880 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2881 		return 0;
2882 
2883 	/* If RPA Resolution has not been enable yet it means the
2884 	 * resolving list is empty and we should attempt to program the
2885 	 * local IRK in order to support using own_addr_type
2886 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2887 	 */
2888 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2889 		hci_le_add_resolve_list_sync(hdev, NULL);
2890 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2891 	}
2892 
2893 	/* Make sure the controller has a good default for
2894 	 * advertising data. This also applies to the case
2895 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2896 	 */
2897 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2898 	    list_empty(&hdev->adv_instances)) {
2899 		if (ext_adv_capable(hdev)) {
2900 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2901 			if (!err)
2902 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2903 		} else {
2904 			err = hci_update_adv_data_sync(hdev, 0x00);
2905 			if (!err)
2906 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2907 		}
2908 
2909 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2910 			hci_enable_advertising_sync(hdev);
2911 	}
2912 
2913 	/* Call for each tracked instance to be scheduled */
2914 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2915 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2916 
2917 	return 0;
2918 }
2919 
2920 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2921 {
2922 	u8 link_sec;
2923 
2924 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2925 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2926 		return 0;
2927 
2928 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2929 				     sizeof(link_sec), &link_sec,
2930 				     HCI_CMD_TIMEOUT);
2931 }
2932 
2933 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2934 {
2935 	struct hci_cp_write_page_scan_activity cp;
2936 	u8 type;
2937 	int err = 0;
2938 
2939 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2940 		return 0;
2941 
2942 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2943 		return 0;
2944 
2945 	memset(&cp, 0, sizeof(cp));
2946 
2947 	if (enable) {
2948 		type = PAGE_SCAN_TYPE_INTERLACED;
2949 
2950 		/* 160 msec page scan interval */
2951 		cp.interval = cpu_to_le16(0x0100);
2952 	} else {
2953 		type = hdev->def_page_scan_type;
2954 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2955 	}
2956 
2957 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2958 
2959 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2960 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2961 		err = __hci_cmd_sync_status(hdev,
2962 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2963 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2964 		if (err)
2965 			return err;
2966 	}
2967 
2968 	if (hdev->page_scan_type != type)
2969 		err = __hci_cmd_sync_status(hdev,
2970 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2971 					    sizeof(type), &type,
2972 					    HCI_CMD_TIMEOUT);
2973 
2974 	return err;
2975 }
2976 
2977 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2978 {
2979 	struct bdaddr_list *b;
2980 
2981 	list_for_each_entry(b, &hdev->accept_list, list) {
2982 		struct hci_conn *conn;
2983 
2984 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2985 		if (!conn)
2986 			return true;
2987 
2988 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2989 			return true;
2990 	}
2991 
2992 	return false;
2993 }
2994 
2995 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2996 {
2997 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2998 					    sizeof(val), &val,
2999 					    HCI_CMD_TIMEOUT);
3000 }
3001 
3002 int hci_update_scan_sync(struct hci_dev *hdev)
3003 {
3004 	u8 scan;
3005 
3006 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3007 		return 0;
3008 
3009 	if (!hdev_is_powered(hdev))
3010 		return 0;
3011 
3012 	if (mgmt_powering_down(hdev))
3013 		return 0;
3014 
3015 	if (hdev->scanning_paused)
3016 		return 0;
3017 
3018 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3019 	    disconnected_accept_list_entries(hdev))
3020 		scan = SCAN_PAGE;
3021 	else
3022 		scan = SCAN_DISABLED;
3023 
3024 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3025 		scan |= SCAN_INQUIRY;
3026 
3027 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3028 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3029 		return 0;
3030 
3031 	return hci_write_scan_enable_sync(hdev, scan);
3032 }
3033 
3034 int hci_update_name_sync(struct hci_dev *hdev)
3035 {
3036 	struct hci_cp_write_local_name cp;
3037 
3038 	memset(&cp, 0, sizeof(cp));
3039 
3040 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3041 
3042 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3043 					    sizeof(cp), &cp,
3044 					    HCI_CMD_TIMEOUT);
3045 }
3046 
3047 /* This function perform powered update HCI command sequence after the HCI init
3048  * sequence which end up resetting all states, the sequence is as follows:
3049  *
3050  * HCI_SSP_ENABLED(Enable SSP)
3051  * HCI_LE_ENABLED(Enable LE)
3052  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3053  * Update adv data)
3054  * Enable Authentication
3055  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3056  * Set Name -> Set EIR)
3057  */
3058 int hci_powered_update_sync(struct hci_dev *hdev)
3059 {
3060 	int err;
3061 
3062 	/* Register the available SMP channels (BR/EDR and LE) only when
3063 	 * successfully powering on the controller. This late
3064 	 * registration is required so that LE SMP can clearly decide if
3065 	 * the public address or static address is used.
3066 	 */
3067 	smp_register(hdev);
3068 
3069 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3070 	if (err)
3071 		return err;
3072 
3073 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3074 	if (err)
3075 		return err;
3076 
3077 	err = hci_powered_update_adv_sync(hdev);
3078 	if (err)
3079 		return err;
3080 
3081 	err = hci_write_auth_enable_sync(hdev);
3082 	if (err)
3083 		return err;
3084 
3085 	if (lmp_bredr_capable(hdev)) {
3086 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3087 			hci_write_fast_connectable_sync(hdev, true);
3088 		else
3089 			hci_write_fast_connectable_sync(hdev, false);
3090 		hci_update_scan_sync(hdev);
3091 		hci_update_class_sync(hdev);
3092 		hci_update_name_sync(hdev);
3093 		hci_update_eir_sync(hdev);
3094 	}
3095 
3096 	return 0;
3097 }
3098 
3099 /**
3100  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3101  *				       (BD_ADDR) for a HCI device from
3102  *				       a firmware node property.
3103  * @hdev:	The HCI device
3104  *
3105  * Search the firmware node for 'local-bd-address'.
3106  *
3107  * All-zero BD addresses are rejected, because those could be properties
3108  * that exist in the firmware tables, but were not updated by the firmware. For
3109  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3110  */
3111 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3112 {
3113 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3114 	bdaddr_t ba;
3115 	int ret;
3116 
3117 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3118 					    (u8 *)&ba, sizeof(ba));
3119 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3120 		return;
3121 
3122 	bacpy(&hdev->public_addr, &ba);
3123 }
3124 
3125 struct hci_init_stage {
3126 	int (*func)(struct hci_dev *hdev);
3127 };
3128 
3129 /* Run init stage NULL terminated function table */
3130 static int hci_init_stage_sync(struct hci_dev *hdev,
3131 			       const struct hci_init_stage *stage)
3132 {
3133 	size_t i;
3134 
3135 	for (i = 0; stage[i].func; i++) {
3136 		int err;
3137 
3138 		err = stage[i].func(hdev);
3139 		if (err)
3140 			return err;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 /* Read Local Version */
3147 static int hci_read_local_version_sync(struct hci_dev *hdev)
3148 {
3149 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3150 				     0, NULL, HCI_CMD_TIMEOUT);
3151 }
3152 
3153 /* Read BD Address */
3154 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3155 {
3156 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3157 				     0, NULL, HCI_CMD_TIMEOUT);
3158 }
3159 
3160 #define HCI_INIT(_func) \
3161 { \
3162 	.func = _func, \
3163 }
3164 
3165 static const struct hci_init_stage hci_init0[] = {
3166 	/* HCI_OP_READ_LOCAL_VERSION */
3167 	HCI_INIT(hci_read_local_version_sync),
3168 	/* HCI_OP_READ_BD_ADDR */
3169 	HCI_INIT(hci_read_bd_addr_sync),
3170 	{}
3171 };
3172 
3173 int hci_reset_sync(struct hci_dev *hdev)
3174 {
3175 	int err;
3176 
3177 	set_bit(HCI_RESET, &hdev->flags);
3178 
3179 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3180 				    HCI_CMD_TIMEOUT);
3181 	if (err)
3182 		return err;
3183 
3184 	return 0;
3185 }
3186 
3187 static int hci_init0_sync(struct hci_dev *hdev)
3188 {
3189 	int err;
3190 
3191 	bt_dev_dbg(hdev, "");
3192 
3193 	/* Reset */
3194 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3195 		err = hci_reset_sync(hdev);
3196 		if (err)
3197 			return err;
3198 	}
3199 
3200 	return hci_init_stage_sync(hdev, hci_init0);
3201 }
3202 
3203 static int hci_unconf_init_sync(struct hci_dev *hdev)
3204 {
3205 	int err;
3206 
3207 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3208 		return 0;
3209 
3210 	err = hci_init0_sync(hdev);
3211 	if (err < 0)
3212 		return err;
3213 
3214 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3215 		hci_debugfs_create_basic(hdev);
3216 
3217 	return 0;
3218 }
3219 
3220 /* Read Local Supported Features. */
3221 static int hci_read_local_features_sync(struct hci_dev *hdev)
3222 {
3223 	 /* Not all AMP controllers support this command */
3224 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3225 		return 0;
3226 
3227 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3228 				     0, NULL, HCI_CMD_TIMEOUT);
3229 }
3230 
3231 /* BR Controller init stage 1 command sequence */
3232 static const struct hci_init_stage br_init1[] = {
3233 	/* HCI_OP_READ_LOCAL_FEATURES */
3234 	HCI_INIT(hci_read_local_features_sync),
3235 	/* HCI_OP_READ_LOCAL_VERSION */
3236 	HCI_INIT(hci_read_local_version_sync),
3237 	/* HCI_OP_READ_BD_ADDR */
3238 	HCI_INIT(hci_read_bd_addr_sync),
3239 	{}
3240 };
3241 
3242 /* Read Local Commands */
3243 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3244 {
3245 	/* All Bluetooth 1.2 and later controllers should support the
3246 	 * HCI command for reading the local supported commands.
3247 	 *
3248 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3249 	 * but do not have support for this command. If that is the case,
3250 	 * the driver can quirk the behavior and skip reading the local
3251 	 * supported commands.
3252 	 */
3253 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3254 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3255 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3256 					     0, NULL, HCI_CMD_TIMEOUT);
3257 
3258 	return 0;
3259 }
3260 
3261 /* Read Local AMP Info */
3262 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3263 {
3264 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3265 				     0, NULL, HCI_CMD_TIMEOUT);
3266 }
3267 
3268 /* Read Data Blk size */
3269 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3270 {
3271 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3272 				     0, NULL, HCI_CMD_TIMEOUT);
3273 }
3274 
3275 /* Read Flow Control Mode */
3276 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3277 {
3278 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3279 				     0, NULL, HCI_CMD_TIMEOUT);
3280 }
3281 
3282 /* Read Location Data */
3283 static int hci_read_location_data_sync(struct hci_dev *hdev)
3284 {
3285 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3286 				     0, NULL, HCI_CMD_TIMEOUT);
3287 }
3288 
3289 /* AMP Controller init stage 1 command sequence */
3290 static const struct hci_init_stage amp_init1[] = {
3291 	/* HCI_OP_READ_LOCAL_VERSION */
3292 	HCI_INIT(hci_read_local_version_sync),
3293 	/* HCI_OP_READ_LOCAL_COMMANDS */
3294 	HCI_INIT(hci_read_local_cmds_sync),
3295 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3296 	HCI_INIT(hci_read_local_amp_info_sync),
3297 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3298 	HCI_INIT(hci_read_data_block_size_sync),
3299 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3300 	HCI_INIT(hci_read_flow_control_mode_sync),
3301 	/* HCI_OP_READ_LOCATION_DATA */
3302 	HCI_INIT(hci_read_location_data_sync),
3303 };
3304 
3305 static int hci_init1_sync(struct hci_dev *hdev)
3306 {
3307 	int err;
3308 
3309 	bt_dev_dbg(hdev, "");
3310 
3311 	/* Reset */
3312 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3313 		err = hci_reset_sync(hdev);
3314 		if (err)
3315 			return err;
3316 	}
3317 
3318 	switch (hdev->dev_type) {
3319 	case HCI_PRIMARY:
3320 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3321 		return hci_init_stage_sync(hdev, br_init1);
3322 	case HCI_AMP:
3323 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3324 		return hci_init_stage_sync(hdev, amp_init1);
3325 	default:
3326 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3327 		break;
3328 	}
3329 
3330 	return 0;
3331 }
3332 
3333 /* AMP Controller init stage 2 command sequence */
3334 static const struct hci_init_stage amp_init2[] = {
3335 	/* HCI_OP_READ_LOCAL_FEATURES */
3336 	HCI_INIT(hci_read_local_features_sync),
3337 };
3338 
3339 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3340 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3341 {
3342 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3343 				     0, NULL, HCI_CMD_TIMEOUT);
3344 }
3345 
3346 /* Read Class of Device */
3347 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3348 {
3349 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3350 				     0, NULL, HCI_CMD_TIMEOUT);
3351 }
3352 
3353 /* Read Local Name */
3354 static int hci_read_local_name_sync(struct hci_dev *hdev)
3355 {
3356 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3357 				     0, NULL, HCI_CMD_TIMEOUT);
3358 }
3359 
3360 /* Read Voice Setting */
3361 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3362 {
3363 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3364 				     0, NULL, HCI_CMD_TIMEOUT);
3365 }
3366 
3367 /* Read Number of Supported IAC */
3368 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3369 {
3370 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3371 				     0, NULL, HCI_CMD_TIMEOUT);
3372 }
3373 
3374 /* Read Current IAC LAP */
3375 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3376 {
3377 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3378 				     0, NULL, HCI_CMD_TIMEOUT);
3379 }
3380 
3381 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3382 				     u8 cond_type, bdaddr_t *bdaddr,
3383 				     u8 auto_accept)
3384 {
3385 	struct hci_cp_set_event_filter cp;
3386 
3387 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3388 		return 0;
3389 
3390 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3391 		return 0;
3392 
3393 	memset(&cp, 0, sizeof(cp));
3394 	cp.flt_type = flt_type;
3395 
3396 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3397 		cp.cond_type = cond_type;
3398 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3399 		cp.addr_conn_flt.auto_accept = auto_accept;
3400 	}
3401 
3402 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3403 				     flt_type == HCI_FLT_CLEAR_ALL ?
3404 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3405 				     HCI_CMD_TIMEOUT);
3406 }
3407 
3408 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3409 {
3410 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3411 		return 0;
3412 
3413 	/* In theory the state machine should not reach here unless
3414 	 * a hci_set_event_filter_sync() call succeeds, but we do
3415 	 * the check both for parity and as a future reminder.
3416 	 */
3417 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3418 		return 0;
3419 
3420 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3421 					 BDADDR_ANY, 0x00);
3422 }
3423 
3424 /* Connection accept timeout ~20 secs */
3425 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3426 {
3427 	__le16 param = cpu_to_le16(0x7d00);
3428 
3429 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3430 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3431 }
3432 
3433 /* BR Controller init stage 2 command sequence */
3434 static const struct hci_init_stage br_init2[] = {
3435 	/* HCI_OP_READ_BUFFER_SIZE */
3436 	HCI_INIT(hci_read_buffer_size_sync),
3437 	/* HCI_OP_READ_CLASS_OF_DEV */
3438 	HCI_INIT(hci_read_dev_class_sync),
3439 	/* HCI_OP_READ_LOCAL_NAME */
3440 	HCI_INIT(hci_read_local_name_sync),
3441 	/* HCI_OP_READ_VOICE_SETTING */
3442 	HCI_INIT(hci_read_voice_setting_sync),
3443 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3444 	HCI_INIT(hci_read_num_supported_iac_sync),
3445 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3446 	HCI_INIT(hci_read_current_iac_lap_sync),
3447 	/* HCI_OP_SET_EVENT_FLT */
3448 	HCI_INIT(hci_clear_event_filter_sync),
3449 	/* HCI_OP_WRITE_CA_TIMEOUT */
3450 	HCI_INIT(hci_write_ca_timeout_sync),
3451 	{}
3452 };
3453 
3454 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3455 {
3456 	u8 mode = 0x01;
3457 
3458 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3459 		return 0;
3460 
3461 	/* When SSP is available, then the host features page
3462 	 * should also be available as well. However some
3463 	 * controllers list the max_page as 0 as long as SSP
3464 	 * has not been enabled. To achieve proper debugging
3465 	 * output, force the minimum max_page to 1 at least.
3466 	 */
3467 	hdev->max_page = 0x01;
3468 
3469 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3470 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3471 }
3472 
3473 static int hci_write_eir_sync(struct hci_dev *hdev)
3474 {
3475 	struct hci_cp_write_eir cp;
3476 
3477 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3478 		return 0;
3479 
3480 	memset(hdev->eir, 0, sizeof(hdev->eir));
3481 	memset(&cp, 0, sizeof(cp));
3482 
3483 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3484 				     HCI_CMD_TIMEOUT);
3485 }
3486 
3487 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3488 {
3489 	u8 mode;
3490 
3491 	if (!lmp_inq_rssi_capable(hdev) &&
3492 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3493 		return 0;
3494 
3495 	/* If Extended Inquiry Result events are supported, then
3496 	 * they are clearly preferred over Inquiry Result with RSSI
3497 	 * events.
3498 	 */
3499 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3500 
3501 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3502 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3503 }
3504 
3505 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3506 {
3507 	if (!lmp_inq_tx_pwr_capable(hdev))
3508 		return 0;
3509 
3510 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3511 				     0, NULL, HCI_CMD_TIMEOUT);
3512 }
3513 
3514 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3515 {
3516 	struct hci_cp_read_local_ext_features cp;
3517 
3518 	if (!lmp_ext_feat_capable(hdev))
3519 		return 0;
3520 
3521 	memset(&cp, 0, sizeof(cp));
3522 	cp.page = page;
3523 
3524 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3525 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3526 }
3527 
3528 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3529 {
3530 	return hci_read_local_ext_features_sync(hdev, 0x01);
3531 }
3532 
3533 /* HCI Controller init stage 2 command sequence */
3534 static const struct hci_init_stage hci_init2[] = {
3535 	/* HCI_OP_READ_LOCAL_COMMANDS */
3536 	HCI_INIT(hci_read_local_cmds_sync),
3537 	/* HCI_OP_WRITE_SSP_MODE */
3538 	HCI_INIT(hci_write_ssp_mode_1_sync),
3539 	/* HCI_OP_WRITE_EIR */
3540 	HCI_INIT(hci_write_eir_sync),
3541 	/* HCI_OP_WRITE_INQUIRY_MODE */
3542 	HCI_INIT(hci_write_inquiry_mode_sync),
3543 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3544 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3545 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3546 	HCI_INIT(hci_read_local_ext_features_1_sync),
3547 	/* HCI_OP_WRITE_AUTH_ENABLE */
3548 	HCI_INIT(hci_write_auth_enable_sync),
3549 	{}
3550 };
3551 
3552 /* Read LE Buffer Size */
3553 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3554 {
3555 	/* Use Read LE Buffer Size V2 if supported */
3556 	if (hdev->commands[41] & 0x20)
3557 		return __hci_cmd_sync_status(hdev,
3558 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3559 					     0, NULL, HCI_CMD_TIMEOUT);
3560 
3561 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3562 				     0, NULL, HCI_CMD_TIMEOUT);
3563 }
3564 
3565 /* Read LE Local Supported Features */
3566 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3567 {
3568 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3569 				     0, NULL, HCI_CMD_TIMEOUT);
3570 }
3571 
3572 /* Read LE Supported States */
3573 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3574 {
3575 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3576 				     0, NULL, HCI_CMD_TIMEOUT);
3577 }
3578 
3579 /* LE Controller init stage 2 command sequence */
3580 static const struct hci_init_stage le_init2[] = {
3581 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3582 	HCI_INIT(hci_le_read_buffer_size_sync),
3583 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3584 	HCI_INIT(hci_le_read_local_features_sync),
3585 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3586 	HCI_INIT(hci_le_read_supported_states_sync),
3587 	{}
3588 };
3589 
3590 static int hci_init2_sync(struct hci_dev *hdev)
3591 {
3592 	int err;
3593 
3594 	bt_dev_dbg(hdev, "");
3595 
3596 	if (hdev->dev_type == HCI_AMP)
3597 		return hci_init_stage_sync(hdev, amp_init2);
3598 
3599 	err = hci_init_stage_sync(hdev, hci_init2);
3600 	if (err)
3601 		return err;
3602 
3603 	if (lmp_bredr_capable(hdev)) {
3604 		err = hci_init_stage_sync(hdev, br_init2);
3605 		if (err)
3606 			return err;
3607 	} else {
3608 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3609 	}
3610 
3611 	if (lmp_le_capable(hdev)) {
3612 		err = hci_init_stage_sync(hdev, le_init2);
3613 		if (err)
3614 			return err;
3615 		/* LE-only controllers have LE implicitly enabled */
3616 		if (!lmp_bredr_capable(hdev))
3617 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3618 	}
3619 
3620 	return 0;
3621 }
3622 
3623 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3624 {
3625 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3626 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3627 	 * command otherwise.
3628 	 */
3629 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3630 
3631 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3632 	 * any event mask for pre 1.2 devices.
3633 	 */
3634 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3635 		return 0;
3636 
3637 	if (lmp_bredr_capable(hdev)) {
3638 		events[4] |= 0x01; /* Flow Specification Complete */
3639 
3640 		/* Don't set Disconnect Complete when suspended as that
3641 		 * would wakeup the host when disconnecting due to
3642 		 * suspend.
3643 		 */
3644 		if (hdev->suspended)
3645 			events[0] &= 0xef;
3646 	} else {
3647 		/* Use a different default for LE-only devices */
3648 		memset(events, 0, sizeof(events));
3649 		events[1] |= 0x20; /* Command Complete */
3650 		events[1] |= 0x40; /* Command Status */
3651 		events[1] |= 0x80; /* Hardware Error */
3652 
3653 		/* If the controller supports the Disconnect command, enable
3654 		 * the corresponding event. In addition enable packet flow
3655 		 * control related events.
3656 		 */
3657 		if (hdev->commands[0] & 0x20) {
3658 			/* Don't set Disconnect Complete when suspended as that
3659 			 * would wakeup the host when disconnecting due to
3660 			 * suspend.
3661 			 */
3662 			if (!hdev->suspended)
3663 				events[0] |= 0x10; /* Disconnection Complete */
3664 			events[2] |= 0x04; /* Number of Completed Packets */
3665 			events[3] |= 0x02; /* Data Buffer Overflow */
3666 		}
3667 
3668 		/* If the controller supports the Read Remote Version
3669 		 * Information command, enable the corresponding event.
3670 		 */
3671 		if (hdev->commands[2] & 0x80)
3672 			events[1] |= 0x08; /* Read Remote Version Information
3673 					    * Complete
3674 					    */
3675 
3676 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3677 			events[0] |= 0x80; /* Encryption Change */
3678 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3679 		}
3680 	}
3681 
3682 	if (lmp_inq_rssi_capable(hdev) ||
3683 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3684 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3685 
3686 	if (lmp_ext_feat_capable(hdev))
3687 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3688 
3689 	if (lmp_esco_capable(hdev)) {
3690 		events[5] |= 0x08; /* Synchronous Connection Complete */
3691 		events[5] |= 0x10; /* Synchronous Connection Changed */
3692 	}
3693 
3694 	if (lmp_sniffsubr_capable(hdev))
3695 		events[5] |= 0x20; /* Sniff Subrating */
3696 
3697 	if (lmp_pause_enc_capable(hdev))
3698 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3699 
3700 	if (lmp_ext_inq_capable(hdev))
3701 		events[5] |= 0x40; /* Extended Inquiry Result */
3702 
3703 	if (lmp_no_flush_capable(hdev))
3704 		events[7] |= 0x01; /* Enhanced Flush Complete */
3705 
3706 	if (lmp_lsto_capable(hdev))
3707 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3708 
3709 	if (lmp_ssp_capable(hdev)) {
3710 		events[6] |= 0x01;	/* IO Capability Request */
3711 		events[6] |= 0x02;	/* IO Capability Response */
3712 		events[6] |= 0x04;	/* User Confirmation Request */
3713 		events[6] |= 0x08;	/* User Passkey Request */
3714 		events[6] |= 0x10;	/* Remote OOB Data Request */
3715 		events[6] |= 0x20;	/* Simple Pairing Complete */
3716 		events[7] |= 0x04;	/* User Passkey Notification */
3717 		events[7] |= 0x08;	/* Keypress Notification */
3718 		events[7] |= 0x10;	/* Remote Host Supported
3719 					 * Features Notification
3720 					 */
3721 	}
3722 
3723 	if (lmp_le_capable(hdev))
3724 		events[7] |= 0x20;	/* LE Meta-Event */
3725 
3726 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3727 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3728 }
3729 
3730 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3731 {
3732 	struct hci_cp_read_stored_link_key cp;
3733 
3734 	if (!(hdev->commands[6] & 0x20) ||
3735 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3736 		return 0;
3737 
3738 	memset(&cp, 0, sizeof(cp));
3739 	bacpy(&cp.bdaddr, BDADDR_ANY);
3740 	cp.read_all = 0x01;
3741 
3742 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3743 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3744 }
3745 
3746 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3747 {
3748 	struct hci_cp_write_def_link_policy cp;
3749 	u16 link_policy = 0;
3750 
3751 	if (!(hdev->commands[5] & 0x10))
3752 		return 0;
3753 
3754 	memset(&cp, 0, sizeof(cp));
3755 
3756 	if (lmp_rswitch_capable(hdev))
3757 		link_policy |= HCI_LP_RSWITCH;
3758 	if (lmp_hold_capable(hdev))
3759 		link_policy |= HCI_LP_HOLD;
3760 	if (lmp_sniff_capable(hdev))
3761 		link_policy |= HCI_LP_SNIFF;
3762 	if (lmp_park_capable(hdev))
3763 		link_policy |= HCI_LP_PARK;
3764 
3765 	cp.policy = cpu_to_le16(link_policy);
3766 
3767 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3768 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3769 }
3770 
3771 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3772 {
3773 	if (!(hdev->commands[8] & 0x01))
3774 		return 0;
3775 
3776 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3777 				     0, NULL, HCI_CMD_TIMEOUT);
3778 }
3779 
3780 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3781 {
3782 	if (!(hdev->commands[18] & 0x04) ||
3783 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
3784 		return 0;
3785 
3786 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3787 				     0, NULL, HCI_CMD_TIMEOUT);
3788 }
3789 
3790 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3791 {
3792 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3793 	 * support the Read Page Scan Type command. Check support for
3794 	 * this command in the bit mask of supported commands.
3795 	 */
3796 	if (!(hdev->commands[13] & 0x01))
3797 		return 0;
3798 
3799 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3800 				     0, NULL, HCI_CMD_TIMEOUT);
3801 }
3802 
3803 /* Read features beyond page 1 if available */
3804 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3805 {
3806 	u8 page;
3807 	int err;
3808 
3809 	if (!lmp_ext_feat_capable(hdev))
3810 		return 0;
3811 
3812 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3813 	     page++) {
3814 		err = hci_read_local_ext_features_sync(hdev, page);
3815 		if (err)
3816 			return err;
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 /* HCI Controller init stage 3 command sequence */
3823 static const struct hci_init_stage hci_init3[] = {
3824 	/* HCI_OP_SET_EVENT_MASK */
3825 	HCI_INIT(hci_set_event_mask_sync),
3826 	/* HCI_OP_READ_STORED_LINK_KEY */
3827 	HCI_INIT(hci_read_stored_link_key_sync),
3828 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3829 	HCI_INIT(hci_setup_link_policy_sync),
3830 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3831 	HCI_INIT(hci_read_page_scan_activity_sync),
3832 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3833 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3834 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3835 	HCI_INIT(hci_read_page_scan_type_sync),
3836 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3837 	HCI_INIT(hci_read_local_ext_features_all_sync),
3838 	{}
3839 };
3840 
3841 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3842 {
3843 	u8 events[8];
3844 
3845 	if (!lmp_le_capable(hdev))
3846 		return 0;
3847 
3848 	memset(events, 0, sizeof(events));
3849 
3850 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3851 		events[0] |= 0x10;	/* LE Long Term Key Request */
3852 
3853 	/* If controller supports the Connection Parameters Request
3854 	 * Link Layer Procedure, enable the corresponding event.
3855 	 */
3856 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3857 		/* LE Remote Connection Parameter Request */
3858 		events[0] |= 0x20;
3859 
3860 	/* If the controller supports the Data Length Extension
3861 	 * feature, enable the corresponding event.
3862 	 */
3863 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3864 		events[0] |= 0x40;	/* LE Data Length Change */
3865 
3866 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3867 	 * enable the corresponding event.
3868 	 */
3869 	if (use_enhanced_conn_complete(hdev))
3870 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3871 
3872 	/* If the controller supports Extended Scanner Filter
3873 	 * Policies, enable the corresponding event.
3874 	 */
3875 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3876 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3877 
3878 	/* If the controller supports Channel Selection Algorithm #2
3879 	 * feature, enable the corresponding event.
3880 	 */
3881 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3882 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3883 
3884 	/* If the controller supports the LE Set Scan Enable command,
3885 	 * enable the corresponding advertising report event.
3886 	 */
3887 	if (hdev->commands[26] & 0x08)
3888 		events[0] |= 0x02;	/* LE Advertising Report */
3889 
3890 	/* If the controller supports the LE Create Connection
3891 	 * command, enable the corresponding event.
3892 	 */
3893 	if (hdev->commands[26] & 0x10)
3894 		events[0] |= 0x01;	/* LE Connection Complete */
3895 
3896 	/* If the controller supports the LE Connection Update
3897 	 * command, enable the corresponding event.
3898 	 */
3899 	if (hdev->commands[27] & 0x04)
3900 		events[0] |= 0x04;	/* LE Connection Update Complete */
3901 
3902 	/* If the controller supports the LE Read Remote Used Features
3903 	 * command, enable the corresponding event.
3904 	 */
3905 	if (hdev->commands[27] & 0x20)
3906 		/* LE Read Remote Used Features Complete */
3907 		events[0] |= 0x08;
3908 
3909 	/* If the controller supports the LE Read Local P-256
3910 	 * Public Key command, enable the corresponding event.
3911 	 */
3912 	if (hdev->commands[34] & 0x02)
3913 		/* LE Read Local P-256 Public Key Complete */
3914 		events[0] |= 0x80;
3915 
3916 	/* If the controller supports the LE Generate DHKey
3917 	 * command, enable the corresponding event.
3918 	 */
3919 	if (hdev->commands[34] & 0x04)
3920 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3921 
3922 	/* If the controller supports the LE Set Default PHY or
3923 	 * LE Set PHY commands, enable the corresponding event.
3924 	 */
3925 	if (hdev->commands[35] & (0x20 | 0x40))
3926 		events[1] |= 0x08;        /* LE PHY Update Complete */
3927 
3928 	/* If the controller supports LE Set Extended Scan Parameters
3929 	 * and LE Set Extended Scan Enable commands, enable the
3930 	 * corresponding event.
3931 	 */
3932 	if (use_ext_scan(hdev))
3933 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3934 
3935 	/* If the controller supports the LE Extended Advertising
3936 	 * command, enable the corresponding event.
3937 	 */
3938 	if (ext_adv_capable(hdev))
3939 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3940 
3941 	if (cis_capable(hdev)) {
3942 		events[3] |= 0x01;	/* LE CIS Established */
3943 		if (cis_peripheral_capable(hdev))
3944 			events[3] |= 0x02; /* LE CIS Request */
3945 	}
3946 
3947 	if (bis_capable(hdev)) {
3948 		events[3] |= 0x04;	/* LE Create BIG Complete */
3949 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
3950 		events[3] |= 0x10;	/* LE BIG Sync Established */
3951 		events[3] |= 0x20;	/* LE BIG Sync Loss */
3952 	}
3953 
3954 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3955 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3956 }
3957 
3958 /* Read LE Advertising Channel TX Power */
3959 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3960 {
3961 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3962 		/* HCI TS spec forbids mixing of legacy and extended
3963 		 * advertising commands wherein READ_ADV_TX_POWER is
3964 		 * also included. So do not call it if extended adv
3965 		 * is supported otherwise controller will return
3966 		 * COMMAND_DISALLOWED for extended commands.
3967 		 */
3968 		return __hci_cmd_sync_status(hdev,
3969 					       HCI_OP_LE_READ_ADV_TX_POWER,
3970 					       0, NULL, HCI_CMD_TIMEOUT);
3971 	}
3972 
3973 	return 0;
3974 }
3975 
3976 /* Read LE Min/Max Tx Power*/
3977 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3978 {
3979 	if (!(hdev->commands[38] & 0x80) ||
3980 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3981 		return 0;
3982 
3983 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3984 				     0, NULL, HCI_CMD_TIMEOUT);
3985 }
3986 
3987 /* Read LE Accept List Size */
3988 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3989 {
3990 	if (!(hdev->commands[26] & 0x40))
3991 		return 0;
3992 
3993 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3994 				     0, NULL, HCI_CMD_TIMEOUT);
3995 }
3996 
3997 /* Clear LE Accept List */
3998 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3999 {
4000 	if (!(hdev->commands[26] & 0x80))
4001 		return 0;
4002 
4003 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4004 				     HCI_CMD_TIMEOUT);
4005 }
4006 
4007 /* Read LE Resolving List Size */
4008 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4009 {
4010 	if (!(hdev->commands[34] & 0x40))
4011 		return 0;
4012 
4013 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4014 				     0, NULL, HCI_CMD_TIMEOUT);
4015 }
4016 
4017 /* Clear LE Resolving List */
4018 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4019 {
4020 	if (!(hdev->commands[34] & 0x20))
4021 		return 0;
4022 
4023 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4024 				     HCI_CMD_TIMEOUT);
4025 }
4026 
4027 /* Set RPA timeout */
4028 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4029 {
4030 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4031 
4032 	if (!(hdev->commands[35] & 0x04))
4033 		return 0;
4034 
4035 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4036 				     sizeof(timeout), &timeout,
4037 				     HCI_CMD_TIMEOUT);
4038 }
4039 
4040 /* Read LE Maximum Data Length */
4041 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4042 {
4043 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4044 		return 0;
4045 
4046 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4047 				     HCI_CMD_TIMEOUT);
4048 }
4049 
4050 /* Read LE Suggested Default Data Length */
4051 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4052 {
4053 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4054 		return 0;
4055 
4056 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4057 				     HCI_CMD_TIMEOUT);
4058 }
4059 
4060 /* Read LE Number of Supported Advertising Sets */
4061 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4062 {
4063 	if (!ext_adv_capable(hdev))
4064 		return 0;
4065 
4066 	return __hci_cmd_sync_status(hdev,
4067 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4068 				     0, NULL, HCI_CMD_TIMEOUT);
4069 }
4070 
4071 /* Write LE Host Supported */
4072 static int hci_set_le_support_sync(struct hci_dev *hdev)
4073 {
4074 	struct hci_cp_write_le_host_supported cp;
4075 
4076 	/* LE-only devices do not support explicit enablement */
4077 	if (!lmp_bredr_capable(hdev))
4078 		return 0;
4079 
4080 	memset(&cp, 0, sizeof(cp));
4081 
4082 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4083 		cp.le = 0x01;
4084 		cp.simul = 0x00;
4085 	}
4086 
4087 	if (cp.le == lmp_host_le_capable(hdev))
4088 		return 0;
4089 
4090 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4091 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4092 }
4093 
4094 /* LE Set Host Feature */
4095 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4096 {
4097 	struct hci_cp_le_set_host_feature cp;
4098 
4099 	if (!iso_capable(hdev))
4100 		return 0;
4101 
4102 	memset(&cp, 0, sizeof(cp));
4103 
4104 	/* Isochronous Channels (Host Support) */
4105 	cp.bit_number = 32;
4106 	cp.bit_value = 1;
4107 
4108 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4109 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4110 }
4111 
4112 /* LE Controller init stage 3 command sequence */
4113 static const struct hci_init_stage le_init3[] = {
4114 	/* HCI_OP_LE_SET_EVENT_MASK */
4115 	HCI_INIT(hci_le_set_event_mask_sync),
4116 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4117 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4118 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4119 	HCI_INIT(hci_le_read_tx_power_sync),
4120 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4121 	HCI_INIT(hci_le_read_accept_list_size_sync),
4122 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4123 	HCI_INIT(hci_le_clear_accept_list_sync),
4124 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4125 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4126 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4127 	HCI_INIT(hci_le_clear_resolv_list_sync),
4128 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4129 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4130 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4131 	HCI_INIT(hci_le_read_max_data_len_sync),
4132 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4133 	HCI_INIT(hci_le_read_def_data_len_sync),
4134 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4135 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4136 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4137 	HCI_INIT(hci_set_le_support_sync),
4138 	/* HCI_OP_LE_SET_HOST_FEATURE */
4139 	HCI_INIT(hci_le_set_host_feature_sync),
4140 	{}
4141 };
4142 
4143 static int hci_init3_sync(struct hci_dev *hdev)
4144 {
4145 	int err;
4146 
4147 	bt_dev_dbg(hdev, "");
4148 
4149 	err = hci_init_stage_sync(hdev, hci_init3);
4150 	if (err)
4151 		return err;
4152 
4153 	if (lmp_le_capable(hdev))
4154 		return hci_init_stage_sync(hdev, le_init3);
4155 
4156 	return 0;
4157 }
4158 
4159 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4160 {
4161 	struct hci_cp_delete_stored_link_key cp;
4162 
4163 	/* Some Broadcom based Bluetooth controllers do not support the
4164 	 * Delete Stored Link Key command. They are clearly indicating its
4165 	 * absence in the bit mask of supported commands.
4166 	 *
4167 	 * Check the supported commands and only if the command is marked
4168 	 * as supported send it. If not supported assume that the controller
4169 	 * does not have actual support for stored link keys which makes this
4170 	 * command redundant anyway.
4171 	 *
4172 	 * Some controllers indicate that they support handling deleting
4173 	 * stored link keys, but they don't. The quirk lets a driver
4174 	 * just disable this command.
4175 	 */
4176 	if (!(hdev->commands[6] & 0x80) ||
4177 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4178 		return 0;
4179 
4180 	memset(&cp, 0, sizeof(cp));
4181 	bacpy(&cp.bdaddr, BDADDR_ANY);
4182 	cp.delete_all = 0x01;
4183 
4184 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4185 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4186 }
4187 
4188 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4189 {
4190 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4191 	bool changed = false;
4192 
4193 	/* Set event mask page 2 if the HCI command for it is supported */
4194 	if (!(hdev->commands[22] & 0x04))
4195 		return 0;
4196 
4197 	/* If Connectionless Peripheral Broadcast central role is supported
4198 	 * enable all necessary events for it.
4199 	 */
4200 	if (lmp_cpb_central_capable(hdev)) {
4201 		events[1] |= 0x40;	/* Triggered Clock Capture */
4202 		events[1] |= 0x80;	/* Synchronization Train Complete */
4203 		events[2] |= 0x08;	/* Truncated Page Complete */
4204 		events[2] |= 0x20;	/* CPB Channel Map Change */
4205 		changed = true;
4206 	}
4207 
4208 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4209 	 * enable all necessary events for it.
4210 	 */
4211 	if (lmp_cpb_peripheral_capable(hdev)) {
4212 		events[2] |= 0x01;	/* Synchronization Train Received */
4213 		events[2] |= 0x02;	/* CPB Receive */
4214 		events[2] |= 0x04;	/* CPB Timeout */
4215 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4216 		changed = true;
4217 	}
4218 
4219 	/* Enable Authenticated Payload Timeout Expired event if supported */
4220 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4221 		events[2] |= 0x80;
4222 		changed = true;
4223 	}
4224 
4225 	/* Some Broadcom based controllers indicate support for Set Event
4226 	 * Mask Page 2 command, but then actually do not support it. Since
4227 	 * the default value is all bits set to zero, the command is only
4228 	 * required if the event mask has to be changed. In case no change
4229 	 * to the event mask is needed, skip this command.
4230 	 */
4231 	if (!changed)
4232 		return 0;
4233 
4234 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4235 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4236 }
4237 
4238 /* Read local codec list if the HCI command is supported */
4239 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4240 {
4241 	if (!(hdev->commands[29] & 0x20))
4242 		return 0;
4243 
4244 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
4245 				     HCI_CMD_TIMEOUT);
4246 }
4247 
4248 /* Read local pairing options if the HCI command is supported */
4249 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4250 {
4251 	if (!(hdev->commands[41] & 0x08))
4252 		return 0;
4253 
4254 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4255 				     0, NULL, HCI_CMD_TIMEOUT);
4256 }
4257 
4258 /* Get MWS transport configuration if the HCI command is supported */
4259 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4260 {
4261 	if (!(hdev->commands[30] & 0x08))
4262 		return 0;
4263 
4264 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4265 				     0, NULL, HCI_CMD_TIMEOUT);
4266 }
4267 
4268 /* Check for Synchronization Train support */
4269 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4270 {
4271 	if (!lmp_sync_train_capable(hdev))
4272 		return 0;
4273 
4274 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4275 				     0, NULL, HCI_CMD_TIMEOUT);
4276 }
4277 
4278 /* Enable Secure Connections if supported and configured */
4279 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4280 {
4281 	u8 support = 0x01;
4282 
4283 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4284 	    !bredr_sc_enabled(hdev))
4285 		return 0;
4286 
4287 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4288 				     sizeof(support), &support,
4289 				     HCI_CMD_TIMEOUT);
4290 }
4291 
4292 /* Set erroneous data reporting if supported to the wideband speech
4293  * setting value
4294  */
4295 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4296 {
4297 	struct hci_cp_write_def_err_data_reporting cp;
4298 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4299 
4300 	if (!(hdev->commands[18] & 0x08) ||
4301 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
4302 		return 0;
4303 
4304 	if (enabled == hdev->err_data_reporting)
4305 		return 0;
4306 
4307 	memset(&cp, 0, sizeof(cp));
4308 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4309 				ERR_DATA_REPORTING_DISABLED;
4310 
4311 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4312 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4313 }
4314 
4315 static const struct hci_init_stage hci_init4[] = {
4316 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4317 	HCI_INIT(hci_delete_stored_link_key_sync),
4318 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4319 	HCI_INIT(hci_set_event_mask_page_2_sync),
4320 	/* HCI_OP_READ_LOCAL_CODECS */
4321 	HCI_INIT(hci_read_local_codecs_sync),
4322 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4323 	HCI_INIT(hci_read_local_pairing_opts_sync),
4324 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4325 	HCI_INIT(hci_get_mws_transport_config_sync),
4326 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4327 	HCI_INIT(hci_read_sync_train_params_sync),
4328 	/* HCI_OP_WRITE_SC_SUPPORT */
4329 	HCI_INIT(hci_write_sc_support_1_sync),
4330 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4331 	HCI_INIT(hci_set_err_data_report_sync),
4332 	{}
4333 };
4334 
4335 /* Set Suggested Default Data Length to maximum if supported */
4336 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4337 {
4338 	struct hci_cp_le_write_def_data_len cp;
4339 
4340 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4341 		return 0;
4342 
4343 	memset(&cp, 0, sizeof(cp));
4344 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4345 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4346 
4347 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4348 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4349 }
4350 
4351 /* Set Default PHY parameters if command is supported */
4352 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4353 {
4354 	struct hci_cp_le_set_default_phy cp;
4355 
4356 	if (!(hdev->commands[35] & 0x20))
4357 		return 0;
4358 
4359 	memset(&cp, 0, sizeof(cp));
4360 	cp.all_phys = 0x00;
4361 	cp.tx_phys = hdev->le_tx_def_phys;
4362 	cp.rx_phys = hdev->le_rx_def_phys;
4363 
4364 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4365 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4366 }
4367 
4368 static const struct hci_init_stage le_init4[] = {
4369 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4370 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4371 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4372 	HCI_INIT(hci_le_set_default_phy_sync),
4373 	{}
4374 };
4375 
4376 static int hci_init4_sync(struct hci_dev *hdev)
4377 {
4378 	int err;
4379 
4380 	bt_dev_dbg(hdev, "");
4381 
4382 	err = hci_init_stage_sync(hdev, hci_init4);
4383 	if (err)
4384 		return err;
4385 
4386 	if (lmp_le_capable(hdev))
4387 		return hci_init_stage_sync(hdev, le_init4);
4388 
4389 	return 0;
4390 }
4391 
4392 static int hci_init_sync(struct hci_dev *hdev)
4393 {
4394 	int err;
4395 
4396 	err = hci_init1_sync(hdev);
4397 	if (err < 0)
4398 		return err;
4399 
4400 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4401 		hci_debugfs_create_basic(hdev);
4402 
4403 	err = hci_init2_sync(hdev);
4404 	if (err < 0)
4405 		return err;
4406 
4407 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4408 	 * BR/EDR/LE type controllers. AMP controllers only need the
4409 	 * first two stages of init.
4410 	 */
4411 	if (hdev->dev_type != HCI_PRIMARY)
4412 		return 0;
4413 
4414 	err = hci_init3_sync(hdev);
4415 	if (err < 0)
4416 		return err;
4417 
4418 	err = hci_init4_sync(hdev);
4419 	if (err < 0)
4420 		return err;
4421 
4422 	/* This function is only called when the controller is actually in
4423 	 * configured state. When the controller is marked as unconfigured,
4424 	 * this initialization procedure is not run.
4425 	 *
4426 	 * It means that it is possible that a controller runs through its
4427 	 * setup phase and then discovers missing settings. If that is the
4428 	 * case, then this function will not be called. It then will only
4429 	 * be called during the config phase.
4430 	 *
4431 	 * So only when in setup phase or config phase, create the debugfs
4432 	 * entries and register the SMP channels.
4433 	 */
4434 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4435 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4436 		return 0;
4437 
4438 	hci_debugfs_create_common(hdev);
4439 
4440 	if (lmp_bredr_capable(hdev))
4441 		hci_debugfs_create_bredr(hdev);
4442 
4443 	if (lmp_le_capable(hdev))
4444 		hci_debugfs_create_le(hdev);
4445 
4446 	return 0;
4447 }
4448 
4449 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4450 
4451 static const struct {
4452 	unsigned long quirk;
4453 	const char *desc;
4454 } hci_broken_table[] = {
4455 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4456 			 "HCI Read Local Supported Commands not supported"),
4457 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4458 			 "HCI Delete Stored Link Key command is advertised, "
4459 			 "but not supported."),
4460 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4461 			 "HCI Read Transmit Power Level command is advertised, "
4462 			 "but not supported."),
4463 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4464 			 "HCI Set Event Filter command not supported."),
4465 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4466 			 "HCI Enhanced Setup Synchronous Connection command is "
4467 			 "advertised, but not supported.")
4468 };
4469 
4470 /* This function handles hdev setup stage:
4471  *
4472  * Calls hdev->setup
4473  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4474  */
4475 static int hci_dev_setup_sync(struct hci_dev *hdev)
4476 {
4477 	int ret = 0;
4478 	bool invalid_bdaddr;
4479 	size_t i;
4480 
4481 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4482 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4483 		return 0;
4484 
4485 	bt_dev_dbg(hdev, "");
4486 
4487 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4488 
4489 	if (hdev->setup)
4490 		ret = hdev->setup(hdev);
4491 
4492 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4493 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4494 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4495 	}
4496 
4497 	/* The transport driver can set the quirk to mark the
4498 	 * BD_ADDR invalid before creating the HCI device or in
4499 	 * its setup callback.
4500 	 */
4501 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
4502 
4503 	if (!ret) {
4504 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
4505 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
4506 				hci_dev_get_bd_addr_from_property(hdev);
4507 
4508 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4509 			    hdev->set_bdaddr) {
4510 				ret = hdev->set_bdaddr(hdev,
4511 						       &hdev->public_addr);
4512 
4513 				/* If setting of the BD_ADDR from the device
4514 				 * property succeeds, then treat the address
4515 				 * as valid even if the invalid BD_ADDR
4516 				 * quirk indicates otherwise.
4517 				 */
4518 				if (!ret)
4519 					invalid_bdaddr = false;
4520 			}
4521 		}
4522 	}
4523 
4524 	/* The transport driver can set these quirks before
4525 	 * creating the HCI device or in its setup callback.
4526 	 *
4527 	 * For the invalid BD_ADDR quirk it is possible that
4528 	 * it becomes a valid address if the bootloader does
4529 	 * provide it (see above).
4530 	 *
4531 	 * In case any of them is set, the controller has to
4532 	 * start up as unconfigured.
4533 	 */
4534 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4535 	    invalid_bdaddr)
4536 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4537 
4538 	/* For an unconfigured controller it is required to
4539 	 * read at least the version information provided by
4540 	 * the Read Local Version Information command.
4541 	 *
4542 	 * If the set_bdaddr driver callback is provided, then
4543 	 * also the original Bluetooth public device address
4544 	 * will be read using the Read BD Address command.
4545 	 */
4546 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4547 		return hci_unconf_init_sync(hdev);
4548 
4549 	return ret;
4550 }
4551 
4552 /* This function handles hdev init stage:
4553  *
4554  * Calls hci_dev_setup_sync to perform setup stage
4555  * Calls hci_init_sync to perform HCI command init sequence
4556  */
4557 static int hci_dev_init_sync(struct hci_dev *hdev)
4558 {
4559 	int ret;
4560 
4561 	bt_dev_dbg(hdev, "");
4562 
4563 	atomic_set(&hdev->cmd_cnt, 1);
4564 	set_bit(HCI_INIT, &hdev->flags);
4565 
4566 	ret = hci_dev_setup_sync(hdev);
4567 
4568 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4569 		/* If public address change is configured, ensure that
4570 		 * the address gets programmed. If the driver does not
4571 		 * support changing the public address, fail the power
4572 		 * on procedure.
4573 		 */
4574 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4575 		    hdev->set_bdaddr)
4576 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4577 		else
4578 			ret = -EADDRNOTAVAIL;
4579 	}
4580 
4581 	if (!ret) {
4582 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4583 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4584 			ret = hci_init_sync(hdev);
4585 			if (!ret && hdev->post_init)
4586 				ret = hdev->post_init(hdev);
4587 		}
4588 	}
4589 
4590 	/* If the HCI Reset command is clearing all diagnostic settings,
4591 	 * then they need to be reprogrammed after the init procedure
4592 	 * completed.
4593 	 */
4594 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4595 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4596 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4597 		ret = hdev->set_diag(hdev, true);
4598 
4599 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4600 		msft_do_open(hdev);
4601 		aosp_do_open(hdev);
4602 	}
4603 
4604 	clear_bit(HCI_INIT, &hdev->flags);
4605 
4606 	return ret;
4607 }
4608 
4609 int hci_dev_open_sync(struct hci_dev *hdev)
4610 {
4611 	int ret;
4612 
4613 	bt_dev_dbg(hdev, "");
4614 
4615 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4616 		ret = -ENODEV;
4617 		goto done;
4618 	}
4619 
4620 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4621 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4622 		/* Check for rfkill but allow the HCI setup stage to
4623 		 * proceed (which in itself doesn't cause any RF activity).
4624 		 */
4625 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4626 			ret = -ERFKILL;
4627 			goto done;
4628 		}
4629 
4630 		/* Check for valid public address or a configured static
4631 		 * random address, but let the HCI setup proceed to
4632 		 * be able to determine if there is a public address
4633 		 * or not.
4634 		 *
4635 		 * In case of user channel usage, it is not important
4636 		 * if a public address or static random address is
4637 		 * available.
4638 		 *
4639 		 * This check is only valid for BR/EDR controllers
4640 		 * since AMP controllers do not have an address.
4641 		 */
4642 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4643 		    hdev->dev_type == HCI_PRIMARY &&
4644 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4645 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4646 			ret = -EADDRNOTAVAIL;
4647 			goto done;
4648 		}
4649 	}
4650 
4651 	if (test_bit(HCI_UP, &hdev->flags)) {
4652 		ret = -EALREADY;
4653 		goto done;
4654 	}
4655 
4656 	if (hdev->open(hdev)) {
4657 		ret = -EIO;
4658 		goto done;
4659 	}
4660 
4661 	set_bit(HCI_RUNNING, &hdev->flags);
4662 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4663 
4664 	ret = hci_dev_init_sync(hdev);
4665 	if (!ret) {
4666 		hci_dev_hold(hdev);
4667 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4668 		hci_adv_instances_set_rpa_expired(hdev, true);
4669 		set_bit(HCI_UP, &hdev->flags);
4670 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4671 		hci_leds_update_powered(hdev, true);
4672 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4673 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4674 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4675 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4676 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4677 		    hdev->dev_type == HCI_PRIMARY) {
4678 			ret = hci_powered_update_sync(hdev);
4679 			mgmt_power_on(hdev, ret);
4680 		}
4681 	} else {
4682 		/* Init failed, cleanup */
4683 		flush_work(&hdev->tx_work);
4684 
4685 		/* Since hci_rx_work() is possible to awake new cmd_work
4686 		 * it should be flushed first to avoid unexpected call of
4687 		 * hci_cmd_work()
4688 		 */
4689 		flush_work(&hdev->rx_work);
4690 		flush_work(&hdev->cmd_work);
4691 
4692 		skb_queue_purge(&hdev->cmd_q);
4693 		skb_queue_purge(&hdev->rx_q);
4694 
4695 		if (hdev->flush)
4696 			hdev->flush(hdev);
4697 
4698 		if (hdev->sent_cmd) {
4699 			kfree_skb(hdev->sent_cmd);
4700 			hdev->sent_cmd = NULL;
4701 		}
4702 
4703 		clear_bit(HCI_RUNNING, &hdev->flags);
4704 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4705 
4706 		hdev->close(hdev);
4707 		hdev->flags &= BIT(HCI_RAW);
4708 	}
4709 
4710 done:
4711 	return ret;
4712 }
4713 
4714 /* This function requires the caller holds hdev->lock */
4715 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4716 {
4717 	struct hci_conn_params *p;
4718 
4719 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4720 		if (p->conn) {
4721 			hci_conn_drop(p->conn);
4722 			hci_conn_put(p->conn);
4723 			p->conn = NULL;
4724 		}
4725 		list_del_init(&p->action);
4726 	}
4727 
4728 	BT_DBG("All LE pending actions cleared");
4729 }
4730 
4731 static int hci_dev_shutdown(struct hci_dev *hdev)
4732 {
4733 	int err = 0;
4734 	/* Similar to how we first do setup and then set the exclusive access
4735 	 * bit for userspace, we must first unset userchannel and then clean up.
4736 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4737 	 * the controller (some shutdown routines require sending additional
4738 	 * commands to the controller for example).
4739 	 */
4740 	bool was_userchannel =
4741 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4742 
4743 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4744 	    test_bit(HCI_UP, &hdev->flags)) {
4745 		/* Execute vendor specific shutdown routine */
4746 		if (hdev->shutdown)
4747 			err = hdev->shutdown(hdev);
4748 	}
4749 
4750 	if (was_userchannel)
4751 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4752 
4753 	return err;
4754 }
4755 
4756 int hci_dev_close_sync(struct hci_dev *hdev)
4757 {
4758 	bool auto_off;
4759 	int err = 0;
4760 
4761 	bt_dev_dbg(hdev, "");
4762 
4763 	cancel_delayed_work(&hdev->power_off);
4764 	cancel_delayed_work(&hdev->ncmd_timer);
4765 	cancel_delayed_work(&hdev->le_scan_disable);
4766 	cancel_delayed_work(&hdev->le_scan_restart);
4767 
4768 	hci_request_cancel_all(hdev);
4769 
4770 	if (hdev->adv_instance_timeout) {
4771 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4772 		hdev->adv_instance_timeout = 0;
4773 	}
4774 
4775 	err = hci_dev_shutdown(hdev);
4776 
4777 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4778 		cancel_delayed_work_sync(&hdev->cmd_timer);
4779 		return err;
4780 	}
4781 
4782 	hci_leds_update_powered(hdev, false);
4783 
4784 	/* Flush RX and TX works */
4785 	flush_work(&hdev->tx_work);
4786 	flush_work(&hdev->rx_work);
4787 
4788 	if (hdev->discov_timeout > 0) {
4789 		hdev->discov_timeout = 0;
4790 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4791 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4792 	}
4793 
4794 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4795 		cancel_delayed_work(&hdev->service_cache);
4796 
4797 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4798 		struct adv_info *adv_instance;
4799 
4800 		cancel_delayed_work_sync(&hdev->rpa_expired);
4801 
4802 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4803 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4804 	}
4805 
4806 	/* Avoid potential lockdep warnings from the *_flush() calls by
4807 	 * ensuring the workqueue is empty up front.
4808 	 */
4809 	drain_workqueue(hdev->workqueue);
4810 
4811 	hci_dev_lock(hdev);
4812 
4813 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4814 
4815 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4816 
4817 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4818 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4819 	    hci_dev_test_flag(hdev, HCI_MGMT))
4820 		__mgmt_power_off(hdev);
4821 
4822 	hci_inquiry_cache_flush(hdev);
4823 	hci_pend_le_actions_clear(hdev);
4824 	hci_conn_hash_flush(hdev);
4825 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4826 	smp_unregister(hdev);
4827 	hci_dev_unlock(hdev);
4828 
4829 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4830 
4831 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4832 		aosp_do_close(hdev);
4833 		msft_do_close(hdev);
4834 	}
4835 
4836 	if (hdev->flush)
4837 		hdev->flush(hdev);
4838 
4839 	/* Reset device */
4840 	skb_queue_purge(&hdev->cmd_q);
4841 	atomic_set(&hdev->cmd_cnt, 1);
4842 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4843 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4844 		set_bit(HCI_INIT, &hdev->flags);
4845 		hci_reset_sync(hdev);
4846 		clear_bit(HCI_INIT, &hdev->flags);
4847 	}
4848 
4849 	/* flush cmd  work */
4850 	flush_work(&hdev->cmd_work);
4851 
4852 	/* Drop queues */
4853 	skb_queue_purge(&hdev->rx_q);
4854 	skb_queue_purge(&hdev->cmd_q);
4855 	skb_queue_purge(&hdev->raw_q);
4856 
4857 	/* Drop last sent command */
4858 	if (hdev->sent_cmd) {
4859 		cancel_delayed_work_sync(&hdev->cmd_timer);
4860 		kfree_skb(hdev->sent_cmd);
4861 		hdev->sent_cmd = NULL;
4862 	}
4863 
4864 	clear_bit(HCI_RUNNING, &hdev->flags);
4865 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4866 
4867 	/* After this point our queues are empty and no tasks are scheduled. */
4868 	hdev->close(hdev);
4869 
4870 	/* Clear flags */
4871 	hdev->flags &= BIT(HCI_RAW);
4872 	hci_dev_clear_volatile_flags(hdev);
4873 
4874 	/* Controller radio is available but is currently powered down */
4875 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4876 
4877 	memset(hdev->eir, 0, sizeof(hdev->eir));
4878 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4879 	bacpy(&hdev->random_addr, BDADDR_ANY);
4880 
4881 	hci_dev_put(hdev);
4882 	return err;
4883 }
4884 
4885 /* This function perform power on HCI command sequence as follows:
4886  *
4887  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4888  * sequence otherwise run hci_dev_open_sync which will follow with
4889  * hci_powered_update_sync after the init sequence is completed.
4890  */
4891 static int hci_power_on_sync(struct hci_dev *hdev)
4892 {
4893 	int err;
4894 
4895 	if (test_bit(HCI_UP, &hdev->flags) &&
4896 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4897 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4898 		cancel_delayed_work(&hdev->power_off);
4899 		return hci_powered_update_sync(hdev);
4900 	}
4901 
4902 	err = hci_dev_open_sync(hdev);
4903 	if (err < 0)
4904 		return err;
4905 
4906 	/* During the HCI setup phase, a few error conditions are
4907 	 * ignored and they need to be checked now. If they are still
4908 	 * valid, it is important to return the device back off.
4909 	 */
4910 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4911 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4912 	    (hdev->dev_type == HCI_PRIMARY &&
4913 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4914 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4915 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4916 		hci_dev_close_sync(hdev);
4917 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4918 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4919 				   HCI_AUTO_OFF_TIMEOUT);
4920 	}
4921 
4922 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4923 		/* For unconfigured devices, set the HCI_RAW flag
4924 		 * so that userspace can easily identify them.
4925 		 */
4926 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4927 			set_bit(HCI_RAW, &hdev->flags);
4928 
4929 		/* For fully configured devices, this will send
4930 		 * the Index Added event. For unconfigured devices,
4931 		 * it will send Unconfigued Index Added event.
4932 		 *
4933 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4934 		 * and no event will be send.
4935 		 */
4936 		mgmt_index_added(hdev);
4937 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4938 		/* When the controller is now configured, then it
4939 		 * is important to clear the HCI_RAW flag.
4940 		 */
4941 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4942 			clear_bit(HCI_RAW, &hdev->flags);
4943 
4944 		/* Powering on the controller with HCI_CONFIG set only
4945 		 * happens with the transition from unconfigured to
4946 		 * configured. This will send the Index Added event.
4947 		 */
4948 		mgmt_index_added(hdev);
4949 	}
4950 
4951 	return 0;
4952 }
4953 
4954 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4955 {
4956 	struct hci_cp_remote_name_req_cancel cp;
4957 
4958 	memset(&cp, 0, sizeof(cp));
4959 	bacpy(&cp.bdaddr, addr);
4960 
4961 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4962 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4963 }
4964 
4965 int hci_stop_discovery_sync(struct hci_dev *hdev)
4966 {
4967 	struct discovery_state *d = &hdev->discovery;
4968 	struct inquiry_entry *e;
4969 	int err;
4970 
4971 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4972 
4973 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4974 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4975 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4976 						    0, NULL, HCI_CMD_TIMEOUT);
4977 			if (err)
4978 				return err;
4979 		}
4980 
4981 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4982 			cancel_delayed_work(&hdev->le_scan_disable);
4983 			cancel_delayed_work(&hdev->le_scan_restart);
4984 
4985 			err = hci_scan_disable_sync(hdev);
4986 			if (err)
4987 				return err;
4988 		}
4989 
4990 	} else {
4991 		err = hci_scan_disable_sync(hdev);
4992 		if (err)
4993 			return err;
4994 	}
4995 
4996 	/* Resume advertising if it was paused */
4997 	if (use_ll_privacy(hdev))
4998 		hci_resume_advertising_sync(hdev);
4999 
5000 	/* No further actions needed for LE-only discovery */
5001 	if (d->type == DISCOV_TYPE_LE)
5002 		return 0;
5003 
5004 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5005 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5006 						     NAME_PENDING);
5007 		if (!e)
5008 			return 0;
5009 
5010 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5017 					u8 reason)
5018 {
5019 	struct hci_cp_disconn_phy_link cp;
5020 
5021 	memset(&cp, 0, sizeof(cp));
5022 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5023 	cp.reason = reason;
5024 
5025 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5026 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5027 }
5028 
5029 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5030 			       u8 reason)
5031 {
5032 	struct hci_cp_disconnect cp;
5033 
5034 	if (conn->type == AMP_LINK)
5035 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5036 
5037 	memset(&cp, 0, sizeof(cp));
5038 	cp.handle = cpu_to_le16(conn->handle);
5039 	cp.reason = reason;
5040 
5041 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
5042 	 * suspending.
5043 	 */
5044 	if (!hdev->suspended)
5045 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5046 						sizeof(cp), &cp,
5047 						HCI_EV_DISCONN_COMPLETE,
5048 						HCI_CMD_TIMEOUT, NULL);
5049 
5050 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5051 				     HCI_CMD_TIMEOUT);
5052 }
5053 
5054 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5055 				      struct hci_conn *conn)
5056 {
5057 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5058 		return 0;
5059 
5060 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5061 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5062 }
5063 
5064 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
5065 {
5066 	if (conn->type == LE_LINK)
5067 		return hci_le_connect_cancel_sync(hdev, conn);
5068 
5069 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5070 		return 0;
5071 
5072 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5073 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5074 }
5075 
5076 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5077 			       u8 reason)
5078 {
5079 	struct hci_cp_reject_sync_conn_req cp;
5080 
5081 	memset(&cp, 0, sizeof(cp));
5082 	bacpy(&cp.bdaddr, &conn->dst);
5083 	cp.reason = reason;
5084 
5085 	/* SCO rejection has its own limited set of
5086 	 * allowed error values (0x0D-0x0F).
5087 	 */
5088 	if (reason < 0x0d || reason > 0x0f)
5089 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5090 
5091 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5092 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5093 }
5094 
5095 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5096 				u8 reason)
5097 {
5098 	struct hci_cp_reject_conn_req cp;
5099 
5100 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5101 		return hci_reject_sco_sync(hdev, conn, reason);
5102 
5103 	memset(&cp, 0, sizeof(cp));
5104 	bacpy(&cp.bdaddr, &conn->dst);
5105 	cp.reason = reason;
5106 
5107 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5108 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5109 }
5110 
5111 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5112 {
5113 	int err;
5114 
5115 	switch (conn->state) {
5116 	case BT_CONNECTED:
5117 	case BT_CONFIG:
5118 		return hci_disconnect_sync(hdev, conn, reason);
5119 	case BT_CONNECT:
5120 		err = hci_connect_cancel_sync(hdev, conn);
5121 		/* Cleanup hci_conn object if it cannot be cancelled as it
5122 		 * likelly means the controller and host stack are out of sync.
5123 		 */
5124 		if (err) {
5125 			hci_dev_lock(hdev);
5126 			hci_conn_failed(conn, err);
5127 			hci_dev_unlock(hdev);
5128 		}
5129 		return err;
5130 	case BT_CONNECT2:
5131 		return hci_reject_conn_sync(hdev, conn, reason);
5132 	default:
5133 		conn->state = BT_CLOSED;
5134 		break;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5141 {
5142 	struct hci_conn *conn, *tmp;
5143 	int err;
5144 
5145 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
5146 		err = hci_abort_conn_sync(hdev, conn, reason);
5147 		if (err)
5148 			return err;
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 /* This function perform power off HCI command sequence as follows:
5155  *
5156  * Clear Advertising
5157  * Stop Discovery
5158  * Disconnect all connections
5159  * hci_dev_close_sync
5160  */
5161 static int hci_power_off_sync(struct hci_dev *hdev)
5162 {
5163 	int err;
5164 
5165 	/* If controller is already down there is nothing to do */
5166 	if (!test_bit(HCI_UP, &hdev->flags))
5167 		return 0;
5168 
5169 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5170 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5171 		err = hci_write_scan_enable_sync(hdev, 0x00);
5172 		if (err)
5173 			return err;
5174 	}
5175 
5176 	err = hci_clear_adv_sync(hdev, NULL, false);
5177 	if (err)
5178 		return err;
5179 
5180 	err = hci_stop_discovery_sync(hdev);
5181 	if (err)
5182 		return err;
5183 
5184 	/* Terminated due to Power Off */
5185 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5186 	if (err)
5187 		return err;
5188 
5189 	return hci_dev_close_sync(hdev);
5190 }
5191 
5192 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5193 {
5194 	if (val)
5195 		return hci_power_on_sync(hdev);
5196 
5197 	return hci_power_off_sync(hdev);
5198 }
5199 
5200 static int hci_write_iac_sync(struct hci_dev *hdev)
5201 {
5202 	struct hci_cp_write_current_iac_lap cp;
5203 
5204 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5205 		return 0;
5206 
5207 	memset(&cp, 0, sizeof(cp));
5208 
5209 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5210 		/* Limited discoverable mode */
5211 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5212 		cp.iac_lap[0] = 0x00;	/* LIAC */
5213 		cp.iac_lap[1] = 0x8b;
5214 		cp.iac_lap[2] = 0x9e;
5215 		cp.iac_lap[3] = 0x33;	/* GIAC */
5216 		cp.iac_lap[4] = 0x8b;
5217 		cp.iac_lap[5] = 0x9e;
5218 	} else {
5219 		/* General discoverable mode */
5220 		cp.num_iac = 1;
5221 		cp.iac_lap[0] = 0x33;	/* GIAC */
5222 		cp.iac_lap[1] = 0x8b;
5223 		cp.iac_lap[2] = 0x9e;
5224 	}
5225 
5226 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5227 				     (cp.num_iac * 3) + 1, &cp,
5228 				     HCI_CMD_TIMEOUT);
5229 }
5230 
5231 int hci_update_discoverable_sync(struct hci_dev *hdev)
5232 {
5233 	int err = 0;
5234 
5235 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5236 		err = hci_write_iac_sync(hdev);
5237 		if (err)
5238 			return err;
5239 
5240 		err = hci_update_scan_sync(hdev);
5241 		if (err)
5242 			return err;
5243 
5244 		err = hci_update_class_sync(hdev);
5245 		if (err)
5246 			return err;
5247 	}
5248 
5249 	/* Advertising instances don't use the global discoverable setting, so
5250 	 * only update AD if advertising was enabled using Set Advertising.
5251 	 */
5252 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5253 		err = hci_update_adv_data_sync(hdev, 0x00);
5254 		if (err)
5255 			return err;
5256 
5257 		/* Discoverable mode affects the local advertising
5258 		 * address in limited privacy mode.
5259 		 */
5260 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5261 			if (ext_adv_capable(hdev))
5262 				err = hci_start_ext_adv_sync(hdev, 0x00);
5263 			else
5264 				err = hci_enable_advertising_sync(hdev);
5265 		}
5266 	}
5267 
5268 	return err;
5269 }
5270 
5271 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5272 {
5273 	return hci_update_discoverable_sync(hdev);
5274 }
5275 
5276 int hci_update_discoverable(struct hci_dev *hdev)
5277 {
5278 	/* Only queue if it would have any effect */
5279 	if (hdev_is_powered(hdev) &&
5280 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5281 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5282 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5283 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5284 					  NULL);
5285 
5286 	return 0;
5287 }
5288 
5289 int hci_update_connectable_sync(struct hci_dev *hdev)
5290 {
5291 	int err;
5292 
5293 	err = hci_update_scan_sync(hdev);
5294 	if (err)
5295 		return err;
5296 
5297 	/* If BR/EDR is not enabled and we disable advertising as a
5298 	 * by-product of disabling connectable, we need to update the
5299 	 * advertising flags.
5300 	 */
5301 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5302 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5303 
5304 	/* Update the advertising parameters if necessary */
5305 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5306 	    !list_empty(&hdev->adv_instances)) {
5307 		if (ext_adv_capable(hdev))
5308 			err = hci_start_ext_adv_sync(hdev,
5309 						     hdev->cur_adv_instance);
5310 		else
5311 			err = hci_enable_advertising_sync(hdev);
5312 
5313 		if (err)
5314 			return err;
5315 	}
5316 
5317 	return hci_update_passive_scan_sync(hdev);
5318 }
5319 
5320 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5321 {
5322 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5323 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5324 	struct hci_cp_inquiry cp;
5325 
5326 	bt_dev_dbg(hdev, "");
5327 
5328 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5329 		return 0;
5330 
5331 	hci_dev_lock(hdev);
5332 	hci_inquiry_cache_flush(hdev);
5333 	hci_dev_unlock(hdev);
5334 
5335 	memset(&cp, 0, sizeof(cp));
5336 
5337 	if (hdev->discovery.limited)
5338 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5339 	else
5340 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5341 
5342 	cp.length = length;
5343 
5344 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5345 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5346 }
5347 
5348 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5349 {
5350 	u8 own_addr_type;
5351 	/* Accept list is not used for discovery */
5352 	u8 filter_policy = 0x00;
5353 	/* Default is to enable duplicates filter */
5354 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5355 	int err;
5356 
5357 	bt_dev_dbg(hdev, "");
5358 
5359 	/* If controller is scanning, it means the passive scanning is
5360 	 * running. Thus, we should temporarily stop it in order to set the
5361 	 * discovery scanning parameters.
5362 	 */
5363 	err = hci_scan_disable_sync(hdev);
5364 	if (err) {
5365 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5366 		return err;
5367 	}
5368 
5369 	cancel_interleave_scan(hdev);
5370 
5371 	/* Pause advertising since active scanning disables address resolution
5372 	 * which advertising depend on in order to generate its RPAs.
5373 	 */
5374 	if (use_ll_privacy(hdev) && hci_dev_test_flag(hdev, HCI_PRIVACY)) {
5375 		err = hci_pause_advertising_sync(hdev);
5376 		if (err) {
5377 			bt_dev_err(hdev, "pause advertising failed: %d", err);
5378 			goto failed;
5379 		}
5380 	}
5381 
5382 	/* Disable address resolution while doing active scanning since the
5383 	 * accept list shall not be used and all reports shall reach the host
5384 	 * anyway.
5385 	 */
5386 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
5387 	if (err) {
5388 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
5389 			   err);
5390 		goto failed;
5391 	}
5392 
5393 	/* All active scans will be done with either a resolvable private
5394 	 * address (when privacy feature has been enabled) or non-resolvable
5395 	 * private address.
5396 	 */
5397 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5398 					     &own_addr_type);
5399 	if (err < 0)
5400 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5401 
5402 	if (hci_is_adv_monitoring(hdev)) {
5403 		/* Duplicate filter should be disabled when some advertisement
5404 		 * monitor is activated, otherwise AdvMon can only receive one
5405 		 * advertisement for one peer(*) during active scanning, and
5406 		 * might report loss to these peers.
5407 		 *
5408 		 * Note that different controllers have different meanings of
5409 		 * |duplicate|. Some of them consider packets with the same
5410 		 * address as duplicate, and others consider packets with the
5411 		 * same address and the same RSSI as duplicate. Although in the
5412 		 * latter case we don't need to disable duplicate filter, but
5413 		 * it is common to have active scanning for a short period of
5414 		 * time, the power impact should be neglectable.
5415 		 */
5416 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5417 	}
5418 
5419 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5420 				  hdev->le_scan_window_discovery,
5421 				  own_addr_type, filter_policy, filter_dup);
5422 	if (!err)
5423 		return err;
5424 
5425 failed:
5426 	/* Resume advertising if it was paused */
5427 	if (use_ll_privacy(hdev))
5428 		hci_resume_advertising_sync(hdev);
5429 
5430 	/* Resume passive scanning */
5431 	hci_update_passive_scan_sync(hdev);
5432 	return err;
5433 }
5434 
5435 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5436 {
5437 	int err;
5438 
5439 	bt_dev_dbg(hdev, "");
5440 
5441 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5442 	if (err)
5443 		return err;
5444 
5445 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5446 }
5447 
5448 int hci_start_discovery_sync(struct hci_dev *hdev)
5449 {
5450 	unsigned long timeout;
5451 	int err;
5452 
5453 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5454 
5455 	switch (hdev->discovery.type) {
5456 	case DISCOV_TYPE_BREDR:
5457 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5458 	case DISCOV_TYPE_INTERLEAVED:
5459 		/* When running simultaneous discovery, the LE scanning time
5460 		 * should occupy the whole discovery time sine BR/EDR inquiry
5461 		 * and LE scanning are scheduled by the controller.
5462 		 *
5463 		 * For interleaving discovery in comparison, BR/EDR inquiry
5464 		 * and LE scanning are done sequentially with separate
5465 		 * timeouts.
5466 		 */
5467 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5468 			     &hdev->quirks)) {
5469 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5470 			/* During simultaneous discovery, we double LE scan
5471 			 * interval. We must leave some time for the controller
5472 			 * to do BR/EDR inquiry.
5473 			 */
5474 			err = hci_start_interleaved_discovery_sync(hdev);
5475 			break;
5476 		}
5477 
5478 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5479 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5480 		break;
5481 	case DISCOV_TYPE_LE:
5482 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5483 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5484 		break;
5485 	default:
5486 		return -EINVAL;
5487 	}
5488 
5489 	if (err)
5490 		return err;
5491 
5492 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5493 
5494 	/* When service discovery is used and the controller has a
5495 	 * strict duplicate filter, it is important to remember the
5496 	 * start and duration of the scan. This is required for
5497 	 * restarting scanning during the discovery phase.
5498 	 */
5499 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5500 	    hdev->discovery.result_filtering) {
5501 		hdev->discovery.scan_start = jiffies;
5502 		hdev->discovery.scan_duration = timeout;
5503 	}
5504 
5505 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5506 			   timeout);
5507 	return 0;
5508 }
5509 
5510 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5511 {
5512 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5513 	case HCI_ADV_MONITOR_EXT_MSFT:
5514 		msft_suspend_sync(hdev);
5515 		break;
5516 	default:
5517 		return;
5518 	}
5519 }
5520 
5521 /* This function disables discovery and mark it as paused */
5522 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5523 {
5524 	int old_state = hdev->discovery.state;
5525 	int err;
5526 
5527 	/* If discovery already stopped/stopping/paused there nothing to do */
5528 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5529 	    hdev->discovery_paused)
5530 		return 0;
5531 
5532 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5533 	err = hci_stop_discovery_sync(hdev);
5534 	if (err)
5535 		return err;
5536 
5537 	hdev->discovery_paused = true;
5538 	hdev->discovery_old_state = old_state;
5539 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5540 
5541 	return 0;
5542 }
5543 
5544 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5545 {
5546 	struct bdaddr_list_with_flags *b;
5547 	u8 scan = SCAN_DISABLED;
5548 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5549 	int err;
5550 
5551 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5552 		return 0;
5553 
5554 	/* Some fake CSR controllers lock up after setting this type of
5555 	 * filter, so avoid sending the request altogether.
5556 	 */
5557 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5558 		return 0;
5559 
5560 	/* Always clear event filter when starting */
5561 	hci_clear_event_filter_sync(hdev);
5562 
5563 	list_for_each_entry(b, &hdev->accept_list, list) {
5564 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5565 			continue;
5566 
5567 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5568 
5569 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5570 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5571 						 &b->bdaddr,
5572 						 HCI_CONN_SETUP_AUTO_ON);
5573 		if (err)
5574 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5575 				   &b->bdaddr);
5576 		else
5577 			scan = SCAN_PAGE;
5578 	}
5579 
5580 	if (scan && !scanning)
5581 		hci_write_scan_enable_sync(hdev, scan);
5582 	else if (!scan && scanning)
5583 		hci_write_scan_enable_sync(hdev, scan);
5584 
5585 	return 0;
5586 }
5587 
5588 /* This function disables scan (BR and LE) and mark it as paused */
5589 static int hci_pause_scan_sync(struct hci_dev *hdev)
5590 {
5591 	if (hdev->scanning_paused)
5592 		return 0;
5593 
5594 	/* Disable page scan if enabled */
5595 	if (test_bit(HCI_PSCAN, &hdev->flags))
5596 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5597 
5598 	hci_scan_disable_sync(hdev);
5599 
5600 	hdev->scanning_paused = true;
5601 
5602 	return 0;
5603 }
5604 
5605 /* This function performs the HCI suspend procedures in the follow order:
5606  *
5607  * Pause discovery (active scanning/inquiry)
5608  * Pause Directed Advertising/Advertising
5609  * Pause Scanning (passive scanning in case discovery was not active)
5610  * Disconnect all connections
5611  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5612  * otherwise:
5613  * Update event mask (only set events that are allowed to wake up the host)
5614  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5615  * Update passive scanning (lower duty cycle)
5616  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5617  */
5618 int hci_suspend_sync(struct hci_dev *hdev)
5619 {
5620 	int err;
5621 
5622 	/* If marked as suspended there nothing to do */
5623 	if (hdev->suspended)
5624 		return 0;
5625 
5626 	/* Mark device as suspended */
5627 	hdev->suspended = true;
5628 
5629 	/* Pause discovery if not already stopped */
5630 	hci_pause_discovery_sync(hdev);
5631 
5632 	/* Pause other advertisements */
5633 	hci_pause_advertising_sync(hdev);
5634 
5635 	/* Suspend monitor filters */
5636 	hci_suspend_monitor_sync(hdev);
5637 
5638 	/* Prevent disconnects from causing scanning to be re-enabled */
5639 	hci_pause_scan_sync(hdev);
5640 
5641 	if (hci_conn_count(hdev)) {
5642 		/* Soft disconnect everything (power off) */
5643 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5644 		if (err) {
5645 			/* Set state to BT_RUNNING so resume doesn't notify */
5646 			hdev->suspend_state = BT_RUNNING;
5647 			hci_resume_sync(hdev);
5648 			return err;
5649 		}
5650 
5651 		/* Update event mask so only the allowed event can wakeup the
5652 		 * host.
5653 		 */
5654 		hci_set_event_mask_sync(hdev);
5655 	}
5656 
5657 	/* Only configure accept list if disconnect succeeded and wake
5658 	 * isn't being prevented.
5659 	 */
5660 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5661 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5662 		return 0;
5663 	}
5664 
5665 	/* Unpause to take care of updating scanning params */
5666 	hdev->scanning_paused = false;
5667 
5668 	/* Enable event filter for paired devices */
5669 	hci_update_event_filter_sync(hdev);
5670 
5671 	/* Update LE passive scan if enabled */
5672 	hci_update_passive_scan_sync(hdev);
5673 
5674 	/* Pause scan changes again. */
5675 	hdev->scanning_paused = true;
5676 
5677 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5678 
5679 	return 0;
5680 }
5681 
5682 /* This function resumes discovery */
5683 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5684 {
5685 	int err;
5686 
5687 	/* If discovery not paused there nothing to do */
5688 	if (!hdev->discovery_paused)
5689 		return 0;
5690 
5691 	hdev->discovery_paused = false;
5692 
5693 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5694 
5695 	err = hci_start_discovery_sync(hdev);
5696 
5697 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5698 				DISCOVERY_FINDING);
5699 
5700 	return err;
5701 }
5702 
5703 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5704 {
5705 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5706 	case HCI_ADV_MONITOR_EXT_MSFT:
5707 		msft_resume_sync(hdev);
5708 		break;
5709 	default:
5710 		return;
5711 	}
5712 }
5713 
5714 /* This function resume scan and reset paused flag */
5715 static int hci_resume_scan_sync(struct hci_dev *hdev)
5716 {
5717 	if (!hdev->scanning_paused)
5718 		return 0;
5719 
5720 	hdev->scanning_paused = false;
5721 
5722 	hci_update_scan_sync(hdev);
5723 
5724 	/* Reset passive scanning to normal */
5725 	hci_update_passive_scan_sync(hdev);
5726 
5727 	return 0;
5728 }
5729 
5730 /* This function performs the HCI suspend procedures in the follow order:
5731  *
5732  * Restore event mask
5733  * Clear event filter
5734  * Update passive scanning (normal duty cycle)
5735  * Resume Directed Advertising/Advertising
5736  * Resume discovery (active scanning/inquiry)
5737  */
5738 int hci_resume_sync(struct hci_dev *hdev)
5739 {
5740 	/* If not marked as suspended there nothing to do */
5741 	if (!hdev->suspended)
5742 		return 0;
5743 
5744 	hdev->suspended = false;
5745 
5746 	/* Restore event mask */
5747 	hci_set_event_mask_sync(hdev);
5748 
5749 	/* Clear any event filters and restore scan state */
5750 	hci_clear_event_filter_sync(hdev);
5751 
5752 	/* Resume scanning */
5753 	hci_resume_scan_sync(hdev);
5754 
5755 	/* Resume monitor filters */
5756 	hci_resume_monitor_sync(hdev);
5757 
5758 	/* Resume other advertisements */
5759 	hci_resume_advertising_sync(hdev);
5760 
5761 	/* Resume discovery */
5762 	hci_resume_discovery_sync(hdev);
5763 
5764 	return 0;
5765 }
5766 
5767 static bool conn_use_rpa(struct hci_conn *conn)
5768 {
5769 	struct hci_dev *hdev = conn->hdev;
5770 
5771 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5772 }
5773 
5774 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5775 						struct hci_conn *conn)
5776 {
5777 	struct hci_cp_le_set_ext_adv_params cp;
5778 	int err;
5779 	bdaddr_t random_addr;
5780 	u8 own_addr_type;
5781 
5782 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5783 					     &own_addr_type);
5784 	if (err)
5785 		return err;
5786 
5787 	/* Set require_privacy to false so that the remote device has a
5788 	 * chance of identifying us.
5789 	 */
5790 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5791 				     &own_addr_type, &random_addr);
5792 	if (err)
5793 		return err;
5794 
5795 	memset(&cp, 0, sizeof(cp));
5796 
5797 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5798 	cp.own_addr_type = own_addr_type;
5799 	cp.channel_map = hdev->le_adv_channel_map;
5800 	cp.tx_power = HCI_TX_POWER_INVALID;
5801 	cp.primary_phy = HCI_ADV_PHY_1M;
5802 	cp.secondary_phy = HCI_ADV_PHY_1M;
5803 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5804 	cp.own_addr_type = own_addr_type;
5805 	cp.peer_addr_type = conn->dst_type;
5806 	bacpy(&cp.peer_addr, &conn->dst);
5807 
5808 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5809 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5810 	 * does not supports advertising data when the advertising set already
5811 	 * contains some, the controller shall return erroc code 'Invalid
5812 	 * HCI Command Parameters(0x12).
5813 	 * So it is required to remove adv set for handle 0x00. since we use
5814 	 * instance 0 for directed adv.
5815 	 */
5816 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5817 	if (err)
5818 		return err;
5819 
5820 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5821 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5822 	if (err)
5823 		return err;
5824 
5825 	/* Check if random address need to be updated */
5826 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5827 	    bacmp(&random_addr, BDADDR_ANY) &&
5828 	    bacmp(&random_addr, &hdev->random_addr)) {
5829 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5830 						       &random_addr);
5831 		if (err)
5832 			return err;
5833 	}
5834 
5835 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5836 }
5837 
5838 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5839 					    struct hci_conn *conn)
5840 {
5841 	struct hci_cp_le_set_adv_param cp;
5842 	u8 status;
5843 	u8 own_addr_type;
5844 	u8 enable;
5845 
5846 	if (ext_adv_capable(hdev))
5847 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5848 
5849 	/* Clear the HCI_LE_ADV bit temporarily so that the
5850 	 * hci_update_random_address knows that it's safe to go ahead
5851 	 * and write a new random address. The flag will be set back on
5852 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5853 	 */
5854 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5855 
5856 	/* Set require_privacy to false so that the remote device has a
5857 	 * chance of identifying us.
5858 	 */
5859 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5860 						&own_addr_type);
5861 	if (status)
5862 		return status;
5863 
5864 	memset(&cp, 0, sizeof(cp));
5865 
5866 	/* Some controllers might reject command if intervals are not
5867 	 * within range for undirected advertising.
5868 	 * BCM20702A0 is known to be affected by this.
5869 	 */
5870 	cp.min_interval = cpu_to_le16(0x0020);
5871 	cp.max_interval = cpu_to_le16(0x0020);
5872 
5873 	cp.type = LE_ADV_DIRECT_IND;
5874 	cp.own_address_type = own_addr_type;
5875 	cp.direct_addr_type = conn->dst_type;
5876 	bacpy(&cp.direct_addr, &conn->dst);
5877 	cp.channel_map = hdev->le_adv_channel_map;
5878 
5879 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5880 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5881 	if (status)
5882 		return status;
5883 
5884 	enable = 0x01;
5885 
5886 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5887 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5888 }
5889 
5890 static void set_ext_conn_params(struct hci_conn *conn,
5891 				struct hci_cp_le_ext_conn_param *p)
5892 {
5893 	struct hci_dev *hdev = conn->hdev;
5894 
5895 	memset(p, 0, sizeof(*p));
5896 
5897 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5898 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5899 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5900 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5901 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5902 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5903 	p->min_ce_len = cpu_to_le16(0x0000);
5904 	p->max_ce_len = cpu_to_le16(0x0000);
5905 }
5906 
5907 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5908 				       struct hci_conn *conn, u8 own_addr_type)
5909 {
5910 	struct hci_cp_le_ext_create_conn *cp;
5911 	struct hci_cp_le_ext_conn_param *p;
5912 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5913 	u32 plen;
5914 
5915 	cp = (void *)data;
5916 	p = (void *)cp->data;
5917 
5918 	memset(cp, 0, sizeof(*cp));
5919 
5920 	bacpy(&cp->peer_addr, &conn->dst);
5921 	cp->peer_addr_type = conn->dst_type;
5922 	cp->own_addr_type = own_addr_type;
5923 
5924 	plen = sizeof(*cp);
5925 
5926 	if (scan_1m(hdev)) {
5927 		cp->phys |= LE_SCAN_PHY_1M;
5928 		set_ext_conn_params(conn, p);
5929 
5930 		p++;
5931 		plen += sizeof(*p);
5932 	}
5933 
5934 	if (scan_2m(hdev)) {
5935 		cp->phys |= LE_SCAN_PHY_2M;
5936 		set_ext_conn_params(conn, p);
5937 
5938 		p++;
5939 		plen += sizeof(*p);
5940 	}
5941 
5942 	if (scan_coded(hdev)) {
5943 		cp->phys |= LE_SCAN_PHY_CODED;
5944 		set_ext_conn_params(conn, p);
5945 
5946 		plen += sizeof(*p);
5947 	}
5948 
5949 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5950 					plen, data,
5951 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5952 					conn->conn_timeout, NULL);
5953 }
5954 
5955 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5956 {
5957 	struct hci_cp_le_create_conn cp;
5958 	struct hci_conn_params *params;
5959 	u8 own_addr_type;
5960 	int err;
5961 
5962 	/* If requested to connect as peripheral use directed advertising */
5963 	if (conn->role == HCI_ROLE_SLAVE) {
5964 		/* If we're active scanning and simultaneous roles is not
5965 		 * enabled simply reject the attempt.
5966 		 */
5967 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5968 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5969 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5970 			hci_conn_del(conn);
5971 			return -EBUSY;
5972 		}
5973 
5974 		/* Pause advertising while doing directed advertising. */
5975 		hci_pause_advertising_sync(hdev);
5976 
5977 		err = hci_le_directed_advertising_sync(hdev, conn);
5978 		goto done;
5979 	}
5980 
5981 	/* Disable advertising if simultaneous roles is not in use. */
5982 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5983 		hci_pause_advertising_sync(hdev);
5984 
5985 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5986 	if (params) {
5987 		conn->le_conn_min_interval = params->conn_min_interval;
5988 		conn->le_conn_max_interval = params->conn_max_interval;
5989 		conn->le_conn_latency = params->conn_latency;
5990 		conn->le_supv_timeout = params->supervision_timeout;
5991 	} else {
5992 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5993 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5994 		conn->le_conn_latency = hdev->le_conn_latency;
5995 		conn->le_supv_timeout = hdev->le_supv_timeout;
5996 	}
5997 
5998 	/* If controller is scanning, we stop it since some controllers are
5999 	 * not able to scan and connect at the same time. Also set the
6000 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6001 	 * handler for scan disabling knows to set the correct discovery
6002 	 * state.
6003 	 */
6004 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6005 		hci_scan_disable_sync(hdev);
6006 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6007 	}
6008 
6009 	/* Update random address, but set require_privacy to false so
6010 	 * that we never connect with an non-resolvable address.
6011 	 */
6012 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6013 					     &own_addr_type);
6014 	if (err)
6015 		goto done;
6016 
6017 	if (use_ext_conn(hdev)) {
6018 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6019 		goto done;
6020 	}
6021 
6022 	memset(&cp, 0, sizeof(cp));
6023 
6024 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6025 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6026 
6027 	bacpy(&cp.peer_addr, &conn->dst);
6028 	cp.peer_addr_type = conn->dst_type;
6029 	cp.own_address_type = own_addr_type;
6030 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6031 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6032 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6033 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6034 	cp.min_ce_len = cpu_to_le16(0x0000);
6035 	cp.max_ce_len = cpu_to_le16(0x0000);
6036 
6037 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6038 	 *
6039 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6040 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6041 	 * sent when a new connection has been created.
6042 	 */
6043 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6044 				       sizeof(cp), &cp,
6045 				       use_enhanced_conn_complete(hdev) ?
6046 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6047 				       HCI_EV_LE_CONN_COMPLETE,
6048 				       conn->conn_timeout, NULL);
6049 
6050 done:
6051 	/* Re-enable advertising after the connection attempt is finished. */
6052 	hci_resume_advertising_sync(hdev);
6053 	return err;
6054 }
6055 
6056 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6057 {
6058 	struct hci_cp_le_remove_cig cp;
6059 
6060 	memset(&cp, 0, sizeof(cp));
6061 	cp.cig_id = handle;
6062 
6063 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6064 				     &cp, HCI_CMD_TIMEOUT);
6065 }
6066 
6067 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6068 {
6069 	struct hci_cp_le_big_term_sync cp;
6070 
6071 	memset(&cp, 0, sizeof(cp));
6072 	cp.handle = handle;
6073 
6074 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6075 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6076 }
6077 
6078 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6079 {
6080 	struct hci_cp_le_pa_term_sync cp;
6081 
6082 	memset(&cp, 0, sizeof(cp));
6083 	cp.handle = cpu_to_le16(handle);
6084 
6085 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6086 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6087 }
6088 
6089 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6090 			   bool use_rpa, struct adv_info *adv_instance,
6091 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6092 {
6093 	int err;
6094 
6095 	bacpy(rand_addr, BDADDR_ANY);
6096 
6097 	/* If privacy is enabled use a resolvable private address. If
6098 	 * current RPA has expired then generate a new one.
6099 	 */
6100 	if (use_rpa) {
6101 		/* If Controller supports LL Privacy use own address type is
6102 		 * 0x03
6103 		 */
6104 		if (use_ll_privacy(hdev))
6105 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6106 		else
6107 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6108 
6109 		if (adv_instance) {
6110 			if (adv_rpa_valid(adv_instance))
6111 				return 0;
6112 		} else {
6113 			if (rpa_valid(hdev))
6114 				return 0;
6115 		}
6116 
6117 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6118 		if (err < 0) {
6119 			bt_dev_err(hdev, "failed to generate new RPA");
6120 			return err;
6121 		}
6122 
6123 		bacpy(rand_addr, &hdev->rpa);
6124 
6125 		return 0;
6126 	}
6127 
6128 	/* In case of required privacy without resolvable private address,
6129 	 * use an non-resolvable private address. This is useful for
6130 	 * non-connectable advertising.
6131 	 */
6132 	if (require_privacy) {
6133 		bdaddr_t nrpa;
6134 
6135 		while (true) {
6136 			/* The non-resolvable private address is generated
6137 			 * from random six bytes with the two most significant
6138 			 * bits cleared.
6139 			 */
6140 			get_random_bytes(&nrpa, 6);
6141 			nrpa.b[5] &= 0x3f;
6142 
6143 			/* The non-resolvable private address shall not be
6144 			 * equal to the public address.
6145 			 */
6146 			if (bacmp(&hdev->bdaddr, &nrpa))
6147 				break;
6148 		}
6149 
6150 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6151 		bacpy(rand_addr, &nrpa);
6152 
6153 		return 0;
6154 	}
6155 
6156 	/* No privacy so use a public address. */
6157 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6158 
6159 	return 0;
6160 }
6161 
6162 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6163 {
6164 	u8 instance = *(u8 *)data;
6165 
6166 	kfree(data);
6167 
6168 	return hci_update_adv_data_sync(hdev, instance);
6169 }
6170 
6171 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6172 {
6173 	u8 *inst_ptr = kmalloc(1, GFP_KERNEL);
6174 
6175 	if (!inst_ptr)
6176 		return -ENOMEM;
6177 
6178 	*inst_ptr = instance;
6179 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync, inst_ptr, NULL);
6180 }
6181