1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 /* Free the request command so it is not used as response */ 36 kfree_skb(hdev->req_skb); 37 hdev->req_skb = NULL; 38 39 if (skb) { 40 struct sock *sk = hci_skb_sk(skb); 41 42 /* Drop sk reference if set */ 43 if (sk) 44 sock_put(sk); 45 46 hdev->req_rsp = skb_get(skb); 47 } 48 49 wake_up_interruptible(&hdev->req_wait_q); 50 } 51 52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 53 u32 plen, const void *param, 54 struct sock *sk) 55 { 56 int len = HCI_COMMAND_HDR_SIZE + plen; 57 struct hci_command_hdr *hdr; 58 struct sk_buff *skb; 59 60 skb = bt_skb_alloc(len, GFP_ATOMIC); 61 if (!skb) 62 return NULL; 63 64 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 65 hdr->opcode = cpu_to_le16(opcode); 66 hdr->plen = plen; 67 68 if (plen) 69 skb_put_data(skb, param, plen); 70 71 bt_dev_dbg(hdev, "skb len %d", skb->len); 72 73 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 74 hci_skb_opcode(skb) = opcode; 75 76 /* Grab a reference if command needs to be associated with a sock (e.g. 77 * likely mgmt socket that initiated the command). 78 */ 79 if (sk) { 80 hci_skb_sk(skb) = sk; 81 sock_hold(sk); 82 } 83 84 return skb; 85 } 86 87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 88 const void *param, u8 event, struct sock *sk) 89 { 90 struct hci_dev *hdev = req->hdev; 91 struct sk_buff *skb; 92 93 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 94 95 /* If an error occurred during request building, there is no point in 96 * queueing the HCI command. We can simply return. 97 */ 98 if (req->err) 99 return; 100 101 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 102 if (!skb) { 103 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 104 opcode); 105 req->err = -ENOMEM; 106 return; 107 } 108 109 if (skb_queue_empty(&req->cmd_q)) 110 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 111 112 hci_skb_event(skb) = event; 113 114 skb_queue_tail(&req->cmd_q, skb); 115 } 116 117 static int hci_cmd_sync_run(struct hci_request *req) 118 { 119 struct hci_dev *hdev = req->hdev; 120 struct sk_buff *skb; 121 unsigned long flags; 122 123 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 124 125 /* If an error occurred during request building, remove all HCI 126 * commands queued on the HCI request queue. 127 */ 128 if (req->err) { 129 skb_queue_purge(&req->cmd_q); 130 return req->err; 131 } 132 133 /* Do not allow empty requests */ 134 if (skb_queue_empty(&req->cmd_q)) 135 return -ENODATA; 136 137 skb = skb_peek_tail(&req->cmd_q); 138 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 139 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 140 141 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 142 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 143 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 144 145 queue_work(hdev->workqueue, &hdev->cmd_work); 146 147 return 0; 148 } 149 150 /* This function requires the caller holds hdev->req_lock. */ 151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 152 const void *param, u8 event, u32 timeout, 153 struct sock *sk) 154 { 155 struct hci_request req; 156 struct sk_buff *skb; 157 int err = 0; 158 159 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 160 161 hci_req_init(&req, hdev); 162 163 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 164 165 hdev->req_status = HCI_REQ_PEND; 166 167 err = hci_cmd_sync_run(&req); 168 if (err < 0) 169 return ERR_PTR(err); 170 171 err = wait_event_interruptible_timeout(hdev->req_wait_q, 172 hdev->req_status != HCI_REQ_PEND, 173 timeout); 174 175 if (err == -ERESTARTSYS) 176 return ERR_PTR(-EINTR); 177 178 switch (hdev->req_status) { 179 case HCI_REQ_DONE: 180 err = -bt_to_errno(hdev->req_result); 181 break; 182 183 case HCI_REQ_CANCELED: 184 err = -hdev->req_result; 185 break; 186 187 default: 188 err = -ETIMEDOUT; 189 break; 190 } 191 192 hdev->req_status = 0; 193 hdev->req_result = 0; 194 skb = hdev->req_rsp; 195 hdev->req_rsp = NULL; 196 197 bt_dev_dbg(hdev, "end: err %d", err); 198 199 if (err < 0) { 200 kfree_skb(skb); 201 return ERR_PTR(err); 202 } 203 204 return skb; 205 } 206 EXPORT_SYMBOL(__hci_cmd_sync_sk); 207 208 /* This function requires the caller holds hdev->req_lock. */ 209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 210 const void *param, u32 timeout) 211 { 212 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 213 } 214 EXPORT_SYMBOL(__hci_cmd_sync); 215 216 /* Send HCI command and wait for command complete event */ 217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 218 const void *param, u32 timeout) 219 { 220 struct sk_buff *skb; 221 222 if (!test_bit(HCI_UP, &hdev->flags)) 223 return ERR_PTR(-ENETDOWN); 224 225 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 226 227 hci_req_sync_lock(hdev); 228 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 229 hci_req_sync_unlock(hdev); 230 231 return skb; 232 } 233 EXPORT_SYMBOL(hci_cmd_sync); 234 235 /* This function requires the caller holds hdev->req_lock. */ 236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 237 const void *param, u8 event, u32 timeout) 238 { 239 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 240 NULL); 241 } 242 EXPORT_SYMBOL(__hci_cmd_sync_ev); 243 244 /* This function requires the caller holds hdev->req_lock. */ 245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 246 const void *param, u8 event, u32 timeout, 247 struct sock *sk) 248 { 249 struct sk_buff *skb; 250 u8 status; 251 252 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 253 if (IS_ERR(skb)) { 254 if (!event) 255 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 256 PTR_ERR(skb)); 257 return PTR_ERR(skb); 258 } 259 260 /* If command return a status event skb will be set to NULL as there are 261 * no parameters, in case of failure IS_ERR(skb) would have be set to 262 * the actual error would be found with PTR_ERR(skb). 263 */ 264 if (!skb) 265 return 0; 266 267 status = skb->data[0]; 268 269 kfree_skb(skb); 270 271 return status; 272 } 273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 274 275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 276 const void *param, u32 timeout) 277 { 278 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 279 NULL); 280 } 281 EXPORT_SYMBOL(__hci_cmd_sync_status); 282 283 static void hci_cmd_sync_work(struct work_struct *work) 284 { 285 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 286 287 bt_dev_dbg(hdev, ""); 288 289 /* Dequeue all entries and run them */ 290 while (1) { 291 struct hci_cmd_sync_work_entry *entry; 292 293 mutex_lock(&hdev->cmd_sync_work_lock); 294 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 295 struct hci_cmd_sync_work_entry, 296 list); 297 if (entry) 298 list_del(&entry->list); 299 mutex_unlock(&hdev->cmd_sync_work_lock); 300 301 if (!entry) 302 break; 303 304 bt_dev_dbg(hdev, "entry %p", entry); 305 306 if (entry->func) { 307 int err; 308 309 hci_req_sync_lock(hdev); 310 err = entry->func(hdev, entry->data); 311 if (entry->destroy) 312 entry->destroy(hdev, entry->data, err); 313 hci_req_sync_unlock(hdev); 314 } 315 316 kfree(entry); 317 } 318 } 319 320 static void hci_cmd_sync_cancel_work(struct work_struct *work) 321 { 322 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 323 324 cancel_delayed_work_sync(&hdev->cmd_timer); 325 cancel_delayed_work_sync(&hdev->ncmd_timer); 326 atomic_set(&hdev->cmd_cnt, 1); 327 328 wake_up_interruptible(&hdev->req_wait_q); 329 } 330 331 static int hci_scan_disable_sync(struct hci_dev *hdev); 332 static int scan_disable_sync(struct hci_dev *hdev, void *data) 333 { 334 return hci_scan_disable_sync(hdev); 335 } 336 337 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 338 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 339 { 340 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 341 } 342 343 static void le_scan_disable(struct work_struct *work) 344 { 345 struct hci_dev *hdev = container_of(work, struct hci_dev, 346 le_scan_disable.work); 347 int status; 348 349 bt_dev_dbg(hdev, ""); 350 hci_dev_lock(hdev); 351 352 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 353 goto _return; 354 355 cancel_delayed_work(&hdev->le_scan_restart); 356 357 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 358 if (status) { 359 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 360 goto _return; 361 } 362 363 hdev->discovery.scan_start = 0; 364 365 /* If we were running LE only scan, change discovery state. If 366 * we were running both LE and BR/EDR inquiry simultaneously, 367 * and BR/EDR inquiry is already finished, stop discovery, 368 * otherwise BR/EDR inquiry will stop discovery when finished. 369 * If we will resolve remote device name, do not change 370 * discovery state. 371 */ 372 373 if (hdev->discovery.type == DISCOV_TYPE_LE) 374 goto discov_stopped; 375 376 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 377 goto _return; 378 379 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 380 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 381 hdev->discovery.state != DISCOVERY_RESOLVING) 382 goto discov_stopped; 383 384 goto _return; 385 } 386 387 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 388 if (status) { 389 bt_dev_err(hdev, "inquiry failed: status %d", status); 390 goto discov_stopped; 391 } 392 393 goto _return; 394 395 discov_stopped: 396 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 397 398 _return: 399 hci_dev_unlock(hdev); 400 } 401 402 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 403 u8 filter_dup); 404 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 405 { 406 /* If controller is not scanning we are done. */ 407 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 408 return 0; 409 410 if (hdev->scanning_paused) { 411 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 412 return 0; 413 } 414 415 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 416 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 417 LE_SCAN_FILTER_DUP_ENABLE); 418 } 419 420 static void le_scan_restart(struct work_struct *work) 421 { 422 struct hci_dev *hdev = container_of(work, struct hci_dev, 423 le_scan_restart.work); 424 unsigned long timeout, duration, scan_start, now; 425 int status; 426 427 bt_dev_dbg(hdev, ""); 428 429 status = hci_le_scan_restart_sync(hdev); 430 if (status) { 431 bt_dev_err(hdev, "failed to restart LE scan: status %d", 432 status); 433 return; 434 } 435 436 hci_dev_lock(hdev); 437 438 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 439 !hdev->discovery.scan_start) 440 goto unlock; 441 442 /* When the scan was started, hdev->le_scan_disable has been queued 443 * after duration from scan_start. During scan restart this job 444 * has been canceled, and we need to queue it again after proper 445 * timeout, to make sure that scan does not run indefinitely. 446 */ 447 duration = hdev->discovery.scan_duration; 448 scan_start = hdev->discovery.scan_start; 449 now = jiffies; 450 if (now - scan_start <= duration) { 451 int elapsed; 452 453 if (now >= scan_start) 454 elapsed = now - scan_start; 455 else 456 elapsed = ULONG_MAX - scan_start + now; 457 458 timeout = duration - elapsed; 459 } else { 460 timeout = 0; 461 } 462 463 queue_delayed_work(hdev->req_workqueue, 464 &hdev->le_scan_disable, timeout); 465 466 unlock: 467 hci_dev_unlock(hdev); 468 } 469 470 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 471 { 472 bt_dev_dbg(hdev, ""); 473 474 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 475 list_empty(&hdev->adv_instances)) 476 return 0; 477 478 if (hdev->cur_adv_instance) { 479 return hci_schedule_adv_instance_sync(hdev, 480 hdev->cur_adv_instance, 481 true); 482 } else { 483 if (ext_adv_capable(hdev)) { 484 hci_start_ext_adv_sync(hdev, 0x00); 485 } else { 486 hci_update_adv_data_sync(hdev, 0x00); 487 hci_update_scan_rsp_data_sync(hdev, 0x00); 488 hci_enable_advertising_sync(hdev); 489 } 490 } 491 492 return 0; 493 } 494 495 static void reenable_adv(struct work_struct *work) 496 { 497 struct hci_dev *hdev = container_of(work, struct hci_dev, 498 reenable_adv_work); 499 int status; 500 501 bt_dev_dbg(hdev, ""); 502 503 hci_dev_lock(hdev); 504 505 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 506 if (status) 507 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 508 509 hci_dev_unlock(hdev); 510 } 511 512 static void cancel_adv_timeout(struct hci_dev *hdev) 513 { 514 if (hdev->adv_instance_timeout) { 515 hdev->adv_instance_timeout = 0; 516 cancel_delayed_work(&hdev->adv_instance_expire); 517 } 518 } 519 520 /* For a single instance: 521 * - force == true: The instance will be removed even when its remaining 522 * lifetime is not zero. 523 * - force == false: the instance will be deactivated but kept stored unless 524 * the remaining lifetime is zero. 525 * 526 * For instance == 0x00: 527 * - force == true: All instances will be removed regardless of their timeout 528 * setting. 529 * - force == false: Only instances that have a timeout will be removed. 530 */ 531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 532 u8 instance, bool force) 533 { 534 struct adv_info *adv_instance, *n, *next_instance = NULL; 535 int err; 536 u8 rem_inst; 537 538 /* Cancel any timeout concerning the removed instance(s). */ 539 if (!instance || hdev->cur_adv_instance == instance) 540 cancel_adv_timeout(hdev); 541 542 /* Get the next instance to advertise BEFORE we remove 543 * the current one. This can be the same instance again 544 * if there is only one instance. 545 */ 546 if (instance && hdev->cur_adv_instance == instance) 547 next_instance = hci_get_next_instance(hdev, instance); 548 549 if (instance == 0x00) { 550 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 551 list) { 552 if (!(force || adv_instance->timeout)) 553 continue; 554 555 rem_inst = adv_instance->instance; 556 err = hci_remove_adv_instance(hdev, rem_inst); 557 if (!err) 558 mgmt_advertising_removed(sk, hdev, rem_inst); 559 } 560 } else { 561 adv_instance = hci_find_adv_instance(hdev, instance); 562 563 if (force || (adv_instance && adv_instance->timeout && 564 !adv_instance->remaining_time)) { 565 /* Don't advertise a removed instance. */ 566 if (next_instance && 567 next_instance->instance == instance) 568 next_instance = NULL; 569 570 err = hci_remove_adv_instance(hdev, instance); 571 if (!err) 572 mgmt_advertising_removed(sk, hdev, instance); 573 } 574 } 575 576 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 577 return 0; 578 579 if (next_instance && !ext_adv_capable(hdev)) 580 return hci_schedule_adv_instance_sync(hdev, 581 next_instance->instance, 582 false); 583 584 return 0; 585 } 586 587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 588 { 589 u8 instance = *(u8 *)data; 590 591 kfree(data); 592 593 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 594 595 if (list_empty(&hdev->adv_instances)) 596 return hci_disable_advertising_sync(hdev); 597 598 return 0; 599 } 600 601 static void adv_timeout_expire(struct work_struct *work) 602 { 603 u8 *inst_ptr; 604 struct hci_dev *hdev = container_of(work, struct hci_dev, 605 adv_instance_expire.work); 606 607 bt_dev_dbg(hdev, ""); 608 609 hci_dev_lock(hdev); 610 611 hdev->adv_instance_timeout = 0; 612 613 if (hdev->cur_adv_instance == 0x00) 614 goto unlock; 615 616 inst_ptr = kmalloc(1, GFP_KERNEL); 617 if (!inst_ptr) 618 goto unlock; 619 620 *inst_ptr = hdev->cur_adv_instance; 621 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 622 623 unlock: 624 hci_dev_unlock(hdev); 625 } 626 627 void hci_cmd_sync_init(struct hci_dev *hdev) 628 { 629 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 630 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 631 mutex_init(&hdev->cmd_sync_work_lock); 632 mutex_init(&hdev->unregister_lock); 633 634 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 635 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 636 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 637 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 638 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 639 } 640 641 void hci_cmd_sync_clear(struct hci_dev *hdev) 642 { 643 struct hci_cmd_sync_work_entry *entry, *tmp; 644 645 cancel_work_sync(&hdev->cmd_sync_work); 646 cancel_work_sync(&hdev->reenable_adv_work); 647 648 mutex_lock(&hdev->cmd_sync_work_lock); 649 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 650 if (entry->destroy) 651 entry->destroy(hdev, entry->data, -ECANCELED); 652 653 list_del(&entry->list); 654 kfree(entry); 655 } 656 mutex_unlock(&hdev->cmd_sync_work_lock); 657 } 658 659 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 660 { 661 bt_dev_dbg(hdev, "err 0x%2.2x", err); 662 663 if (hdev->req_status == HCI_REQ_PEND) { 664 hdev->req_result = err; 665 hdev->req_status = HCI_REQ_CANCELED; 666 667 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 668 } 669 } 670 EXPORT_SYMBOL(hci_cmd_sync_cancel); 671 672 /* Cancel ongoing command request synchronously: 673 * 674 * - Set result and mark status to HCI_REQ_CANCELED 675 * - Wakeup command sync thread 676 */ 677 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 678 { 679 bt_dev_dbg(hdev, "err 0x%2.2x", err); 680 681 if (hdev->req_status == HCI_REQ_PEND) { 682 /* req_result is __u32 so error must be positive to be properly 683 * propagated. 684 */ 685 hdev->req_result = err < 0 ? -err : err; 686 hdev->req_status = HCI_REQ_CANCELED; 687 688 wake_up_interruptible(&hdev->req_wait_q); 689 } 690 } 691 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 692 693 /* Submit HCI command to be run in as cmd_sync_work: 694 * 695 * - hdev must _not_ be unregistered 696 */ 697 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 698 void *data, hci_cmd_sync_work_destroy_t destroy) 699 { 700 struct hci_cmd_sync_work_entry *entry; 701 int err = 0; 702 703 mutex_lock(&hdev->unregister_lock); 704 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 705 err = -ENODEV; 706 goto unlock; 707 } 708 709 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 710 if (!entry) { 711 err = -ENOMEM; 712 goto unlock; 713 } 714 entry->func = func; 715 entry->data = data; 716 entry->destroy = destroy; 717 718 mutex_lock(&hdev->cmd_sync_work_lock); 719 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 720 mutex_unlock(&hdev->cmd_sync_work_lock); 721 722 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 723 724 unlock: 725 mutex_unlock(&hdev->unregister_lock); 726 return err; 727 } 728 EXPORT_SYMBOL(hci_cmd_sync_submit); 729 730 /* Queue HCI command: 731 * 732 * - hdev must be running 733 */ 734 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 735 void *data, hci_cmd_sync_work_destroy_t destroy) 736 { 737 /* Only queue command if hdev is running which means it had been opened 738 * and is either on init phase or is already up. 739 */ 740 if (!test_bit(HCI_RUNNING, &hdev->flags)) 741 return -ENETDOWN; 742 743 return hci_cmd_sync_submit(hdev, func, data, destroy); 744 } 745 EXPORT_SYMBOL(hci_cmd_sync_queue); 746 747 int hci_update_eir_sync(struct hci_dev *hdev) 748 { 749 struct hci_cp_write_eir cp; 750 751 bt_dev_dbg(hdev, ""); 752 753 if (!hdev_is_powered(hdev)) 754 return 0; 755 756 if (!lmp_ext_inq_capable(hdev)) 757 return 0; 758 759 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 760 return 0; 761 762 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 763 return 0; 764 765 memset(&cp, 0, sizeof(cp)); 766 767 eir_create(hdev, cp.data); 768 769 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 770 return 0; 771 772 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 773 774 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 775 HCI_CMD_TIMEOUT); 776 } 777 778 static u8 get_service_classes(struct hci_dev *hdev) 779 { 780 struct bt_uuid *uuid; 781 u8 val = 0; 782 783 list_for_each_entry(uuid, &hdev->uuids, list) 784 val |= uuid->svc_hint; 785 786 return val; 787 } 788 789 int hci_update_class_sync(struct hci_dev *hdev) 790 { 791 u8 cod[3]; 792 793 bt_dev_dbg(hdev, ""); 794 795 if (!hdev_is_powered(hdev)) 796 return 0; 797 798 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 799 return 0; 800 801 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 802 return 0; 803 804 cod[0] = hdev->minor_class; 805 cod[1] = hdev->major_class; 806 cod[2] = get_service_classes(hdev); 807 808 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 809 cod[1] |= 0x20; 810 811 if (memcmp(cod, hdev->dev_class, 3) == 0) 812 return 0; 813 814 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 815 sizeof(cod), cod, HCI_CMD_TIMEOUT); 816 } 817 818 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 819 { 820 /* If there is no connection we are OK to advertise. */ 821 if (hci_conn_num(hdev, LE_LINK) == 0) 822 return true; 823 824 /* Check le_states if there is any connection in peripheral role. */ 825 if (hdev->conn_hash.le_num_peripheral > 0) { 826 /* Peripheral connection state and non connectable mode 827 * bit 20. 828 */ 829 if (!connectable && !(hdev->le_states[2] & 0x10)) 830 return false; 831 832 /* Peripheral connection state and connectable mode bit 38 833 * and scannable bit 21. 834 */ 835 if (connectable && (!(hdev->le_states[4] & 0x40) || 836 !(hdev->le_states[2] & 0x20))) 837 return false; 838 } 839 840 /* Check le_states if there is any connection in central role. */ 841 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 842 /* Central connection state and non connectable mode bit 18. */ 843 if (!connectable && !(hdev->le_states[2] & 0x02)) 844 return false; 845 846 /* Central connection state and connectable mode bit 35 and 847 * scannable 19. 848 */ 849 if (connectable && (!(hdev->le_states[4] & 0x08) || 850 !(hdev->le_states[2] & 0x08))) 851 return false; 852 } 853 854 return true; 855 } 856 857 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 858 { 859 /* If privacy is not enabled don't use RPA */ 860 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 861 return false; 862 863 /* If basic privacy mode is enabled use RPA */ 864 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 865 return true; 866 867 /* If limited privacy mode is enabled don't use RPA if we're 868 * both discoverable and bondable. 869 */ 870 if ((flags & MGMT_ADV_FLAG_DISCOV) && 871 hci_dev_test_flag(hdev, HCI_BONDABLE)) 872 return false; 873 874 /* We're neither bondable nor discoverable in the limited 875 * privacy mode, therefore use RPA. 876 */ 877 return true; 878 } 879 880 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 881 { 882 /* If we're advertising or initiating an LE connection we can't 883 * go ahead and change the random address at this time. This is 884 * because the eventual initiator address used for the 885 * subsequently created connection will be undefined (some 886 * controllers use the new address and others the one we had 887 * when the operation started). 888 * 889 * In this kind of scenario skip the update and let the random 890 * address be updated at the next cycle. 891 */ 892 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 893 hci_lookup_le_connect(hdev)) { 894 bt_dev_dbg(hdev, "Deferring random address update"); 895 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 896 return 0; 897 } 898 899 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 900 6, rpa, HCI_CMD_TIMEOUT); 901 } 902 903 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 904 bool rpa, u8 *own_addr_type) 905 { 906 int err; 907 908 /* If privacy is enabled use a resolvable private address. If 909 * current RPA has expired or there is something else than 910 * the current RPA in use, then generate a new one. 911 */ 912 if (rpa) { 913 /* If Controller supports LL Privacy use own address type is 914 * 0x03 915 */ 916 if (use_ll_privacy(hdev)) 917 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 918 else 919 *own_addr_type = ADDR_LE_DEV_RANDOM; 920 921 /* Check if RPA is valid */ 922 if (rpa_valid(hdev)) 923 return 0; 924 925 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 926 if (err < 0) { 927 bt_dev_err(hdev, "failed to generate new RPA"); 928 return err; 929 } 930 931 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 932 if (err) 933 return err; 934 935 return 0; 936 } 937 938 /* In case of required privacy without resolvable private address, 939 * use an non-resolvable private address. This is useful for active 940 * scanning and non-connectable advertising. 941 */ 942 if (require_privacy) { 943 bdaddr_t nrpa; 944 945 while (true) { 946 /* The non-resolvable private address is generated 947 * from random six bytes with the two most significant 948 * bits cleared. 949 */ 950 get_random_bytes(&nrpa, 6); 951 nrpa.b[5] &= 0x3f; 952 953 /* The non-resolvable private address shall not be 954 * equal to the public address. 955 */ 956 if (bacmp(&hdev->bdaddr, &nrpa)) 957 break; 958 } 959 960 *own_addr_type = ADDR_LE_DEV_RANDOM; 961 962 return hci_set_random_addr_sync(hdev, &nrpa); 963 } 964 965 /* If forcing static address is in use or there is no public 966 * address use the static address as random address (but skip 967 * the HCI command if the current random address is already the 968 * static one. 969 * 970 * In case BR/EDR has been disabled on a dual-mode controller 971 * and a static address has been configured, then use that 972 * address instead of the public BR/EDR address. 973 */ 974 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 975 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 976 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 977 bacmp(&hdev->static_addr, BDADDR_ANY))) { 978 *own_addr_type = ADDR_LE_DEV_RANDOM; 979 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 980 return hci_set_random_addr_sync(hdev, 981 &hdev->static_addr); 982 return 0; 983 } 984 985 /* Neither privacy nor static address is being used so use a 986 * public address. 987 */ 988 *own_addr_type = ADDR_LE_DEV_PUBLIC; 989 990 return 0; 991 } 992 993 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 994 { 995 struct hci_cp_le_set_ext_adv_enable *cp; 996 struct hci_cp_ext_adv_set *set; 997 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 998 u8 size; 999 1000 /* If request specifies an instance that doesn't exist, fail */ 1001 if (instance > 0) { 1002 struct adv_info *adv; 1003 1004 adv = hci_find_adv_instance(hdev, instance); 1005 if (!adv) 1006 return -EINVAL; 1007 1008 /* If not enabled there is nothing to do */ 1009 if (!adv->enabled) 1010 return 0; 1011 } 1012 1013 memset(data, 0, sizeof(data)); 1014 1015 cp = (void *)data; 1016 set = (void *)cp->data; 1017 1018 /* Instance 0x00 indicates all advertising instances will be disabled */ 1019 cp->num_of_sets = !!instance; 1020 cp->enable = 0x00; 1021 1022 set->handle = instance; 1023 1024 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1025 1026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1027 size, data, HCI_CMD_TIMEOUT); 1028 } 1029 1030 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1031 bdaddr_t *random_addr) 1032 { 1033 struct hci_cp_le_set_adv_set_rand_addr cp; 1034 int err; 1035 1036 if (!instance) { 1037 /* Instance 0x00 doesn't have an adv_info, instead it uses 1038 * hdev->random_addr to track its address so whenever it needs 1039 * to be updated this also set the random address since 1040 * hdev->random_addr is shared with scan state machine. 1041 */ 1042 err = hci_set_random_addr_sync(hdev, random_addr); 1043 if (err) 1044 return err; 1045 } 1046 1047 memset(&cp, 0, sizeof(cp)); 1048 1049 cp.handle = instance; 1050 bacpy(&cp.bdaddr, random_addr); 1051 1052 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1053 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1054 } 1055 1056 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1057 { 1058 struct hci_cp_le_set_ext_adv_params cp; 1059 bool connectable; 1060 u32 flags; 1061 bdaddr_t random_addr; 1062 u8 own_addr_type; 1063 int err; 1064 struct adv_info *adv; 1065 bool secondary_adv; 1066 1067 if (instance > 0) { 1068 adv = hci_find_adv_instance(hdev, instance); 1069 if (!adv) 1070 return -EINVAL; 1071 } else { 1072 adv = NULL; 1073 } 1074 1075 /* Updating parameters of an active instance will return a 1076 * Command Disallowed error, so we must first disable the 1077 * instance if it is active. 1078 */ 1079 if (adv && !adv->pending) { 1080 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1081 if (err) 1082 return err; 1083 } 1084 1085 flags = hci_adv_instance_flags(hdev, instance); 1086 1087 /* If the "connectable" instance flag was not set, then choose between 1088 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1089 */ 1090 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1091 mgmt_get_connectable(hdev); 1092 1093 if (!is_advertising_allowed(hdev, connectable)) 1094 return -EPERM; 1095 1096 /* Set require_privacy to true only when non-connectable 1097 * advertising is used. In that case it is fine to use a 1098 * non-resolvable private address. 1099 */ 1100 err = hci_get_random_address(hdev, !connectable, 1101 adv_use_rpa(hdev, flags), adv, 1102 &own_addr_type, &random_addr); 1103 if (err < 0) 1104 return err; 1105 1106 memset(&cp, 0, sizeof(cp)); 1107 1108 if (adv) { 1109 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1110 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1111 cp.tx_power = adv->tx_power; 1112 } else { 1113 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1114 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1115 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1116 } 1117 1118 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1119 1120 if (connectable) { 1121 if (secondary_adv) 1122 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1123 else 1124 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1125 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1126 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1127 if (secondary_adv) 1128 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1129 else 1130 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1131 } else { 1132 if (secondary_adv) 1133 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1134 else 1135 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1136 } 1137 1138 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1139 * contains the peer’s Identity Address and the Peer_Address_Type 1140 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1141 * These parameters are used to locate the corresponding local IRK in 1142 * the resolving list; this IRK is used to generate their own address 1143 * used in the advertisement. 1144 */ 1145 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1146 hci_copy_identity_address(hdev, &cp.peer_addr, 1147 &cp.peer_addr_type); 1148 1149 cp.own_addr_type = own_addr_type; 1150 cp.channel_map = hdev->le_adv_channel_map; 1151 cp.handle = instance; 1152 1153 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1154 cp.primary_phy = HCI_ADV_PHY_1M; 1155 cp.secondary_phy = HCI_ADV_PHY_2M; 1156 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1157 cp.primary_phy = HCI_ADV_PHY_CODED; 1158 cp.secondary_phy = HCI_ADV_PHY_CODED; 1159 } else { 1160 /* In all other cases use 1M */ 1161 cp.primary_phy = HCI_ADV_PHY_1M; 1162 cp.secondary_phy = HCI_ADV_PHY_1M; 1163 } 1164 1165 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1166 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1167 if (err) 1168 return err; 1169 1170 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1171 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1172 bacmp(&random_addr, BDADDR_ANY)) { 1173 /* Check if random address need to be updated */ 1174 if (adv) { 1175 if (!bacmp(&random_addr, &adv->random_addr)) 1176 return 0; 1177 } else { 1178 if (!bacmp(&random_addr, &hdev->random_addr)) 1179 return 0; 1180 } 1181 1182 return hci_set_adv_set_random_addr_sync(hdev, instance, 1183 &random_addr); 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1190 { 1191 struct { 1192 struct hci_cp_le_set_ext_scan_rsp_data cp; 1193 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1194 } pdu; 1195 u8 len; 1196 struct adv_info *adv = NULL; 1197 int err; 1198 1199 memset(&pdu, 0, sizeof(pdu)); 1200 1201 if (instance) { 1202 adv = hci_find_adv_instance(hdev, instance); 1203 if (!adv || !adv->scan_rsp_changed) 1204 return 0; 1205 } 1206 1207 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1208 1209 pdu.cp.handle = instance; 1210 pdu.cp.length = len; 1211 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1212 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1213 1214 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1215 sizeof(pdu.cp) + len, &pdu.cp, 1216 HCI_CMD_TIMEOUT); 1217 if (err) 1218 return err; 1219 1220 if (adv) { 1221 adv->scan_rsp_changed = false; 1222 } else { 1223 memcpy(hdev->scan_rsp_data, pdu.data, len); 1224 hdev->scan_rsp_data_len = len; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1231 { 1232 struct hci_cp_le_set_scan_rsp_data cp; 1233 u8 len; 1234 1235 memset(&cp, 0, sizeof(cp)); 1236 1237 len = eir_create_scan_rsp(hdev, instance, cp.data); 1238 1239 if (hdev->scan_rsp_data_len == len && 1240 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1241 return 0; 1242 1243 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1244 hdev->scan_rsp_data_len = len; 1245 1246 cp.length = len; 1247 1248 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1249 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1250 } 1251 1252 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1253 { 1254 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1255 return 0; 1256 1257 if (ext_adv_capable(hdev)) 1258 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1259 1260 return __hci_set_scan_rsp_data_sync(hdev, instance); 1261 } 1262 1263 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1264 { 1265 struct hci_cp_le_set_ext_adv_enable *cp; 1266 struct hci_cp_ext_adv_set *set; 1267 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1268 struct adv_info *adv; 1269 1270 if (instance > 0) { 1271 adv = hci_find_adv_instance(hdev, instance); 1272 if (!adv) 1273 return -EINVAL; 1274 /* If already enabled there is nothing to do */ 1275 if (adv->enabled) 1276 return 0; 1277 } else { 1278 adv = NULL; 1279 } 1280 1281 cp = (void *)data; 1282 set = (void *)cp->data; 1283 1284 memset(cp, 0, sizeof(*cp)); 1285 1286 cp->enable = 0x01; 1287 cp->num_of_sets = 0x01; 1288 1289 memset(set, 0, sizeof(*set)); 1290 1291 set->handle = instance; 1292 1293 /* Set duration per instance since controller is responsible for 1294 * scheduling it. 1295 */ 1296 if (adv && adv->timeout) { 1297 u16 duration = adv->timeout * MSEC_PER_SEC; 1298 1299 /* Time = N * 10 ms */ 1300 set->duration = cpu_to_le16(duration / 10); 1301 } 1302 1303 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1304 sizeof(*cp) + 1305 sizeof(*set) * cp->num_of_sets, 1306 data, HCI_CMD_TIMEOUT); 1307 } 1308 1309 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1310 { 1311 int err; 1312 1313 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1314 if (err) 1315 return err; 1316 1317 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1318 if (err) 1319 return err; 1320 1321 return hci_enable_ext_advertising_sync(hdev, instance); 1322 } 1323 1324 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1325 { 1326 struct hci_cp_le_set_per_adv_enable cp; 1327 struct adv_info *adv = NULL; 1328 1329 /* If periodic advertising already disabled there is nothing to do. */ 1330 adv = hci_find_adv_instance(hdev, instance); 1331 if (!adv || !adv->periodic || !adv->enabled) 1332 return 0; 1333 1334 memset(&cp, 0, sizeof(cp)); 1335 1336 cp.enable = 0x00; 1337 cp.handle = instance; 1338 1339 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1340 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1341 } 1342 1343 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1344 u16 min_interval, u16 max_interval) 1345 { 1346 struct hci_cp_le_set_per_adv_params cp; 1347 1348 memset(&cp, 0, sizeof(cp)); 1349 1350 if (!min_interval) 1351 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1352 1353 if (!max_interval) 1354 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1355 1356 cp.handle = instance; 1357 cp.min_interval = cpu_to_le16(min_interval); 1358 cp.max_interval = cpu_to_le16(max_interval); 1359 cp.periodic_properties = 0x0000; 1360 1361 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1362 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1363 } 1364 1365 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1366 { 1367 struct { 1368 struct hci_cp_le_set_per_adv_data cp; 1369 u8 data[HCI_MAX_PER_AD_LENGTH]; 1370 } pdu; 1371 u8 len; 1372 1373 memset(&pdu, 0, sizeof(pdu)); 1374 1375 if (instance) { 1376 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1377 1378 if (!adv || !adv->periodic) 1379 return 0; 1380 } 1381 1382 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1383 1384 pdu.cp.length = len; 1385 pdu.cp.handle = instance; 1386 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1387 1388 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1389 sizeof(pdu.cp) + len, &pdu, 1390 HCI_CMD_TIMEOUT); 1391 } 1392 1393 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1394 { 1395 struct hci_cp_le_set_per_adv_enable cp; 1396 struct adv_info *adv = NULL; 1397 1398 /* If periodic advertising already enabled there is nothing to do. */ 1399 adv = hci_find_adv_instance(hdev, instance); 1400 if (adv && adv->periodic && adv->enabled) 1401 return 0; 1402 1403 memset(&cp, 0, sizeof(cp)); 1404 1405 cp.enable = 0x01; 1406 cp.handle = instance; 1407 1408 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1409 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1410 } 1411 1412 /* Checks if periodic advertising data contains a Basic Announcement and if it 1413 * does generates a Broadcast ID and add Broadcast Announcement. 1414 */ 1415 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1416 { 1417 u8 bid[3]; 1418 u8 ad[4 + 3]; 1419 1420 /* Skip if NULL adv as instance 0x00 is used for general purpose 1421 * advertising so it cannot used for the likes of Broadcast Announcement 1422 * as it can be overwritten at any point. 1423 */ 1424 if (!adv) 1425 return 0; 1426 1427 /* Check if PA data doesn't contains a Basic Audio Announcement then 1428 * there is nothing to do. 1429 */ 1430 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1431 0x1851, NULL)) 1432 return 0; 1433 1434 /* Check if advertising data already has a Broadcast Announcement since 1435 * the process may want to control the Broadcast ID directly and in that 1436 * case the kernel shall no interfere. 1437 */ 1438 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1439 NULL)) 1440 return 0; 1441 1442 /* Generate Broadcast ID */ 1443 get_random_bytes(bid, sizeof(bid)); 1444 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1445 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1446 1447 return hci_update_adv_data_sync(hdev, adv->instance); 1448 } 1449 1450 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1451 u8 *data, u32 flags, u16 min_interval, 1452 u16 max_interval, u16 sync_interval) 1453 { 1454 struct adv_info *adv = NULL; 1455 int err; 1456 bool added = false; 1457 1458 hci_disable_per_advertising_sync(hdev, instance); 1459 1460 if (instance) { 1461 adv = hci_find_adv_instance(hdev, instance); 1462 /* Create an instance if that could not be found */ 1463 if (!adv) { 1464 adv = hci_add_per_instance(hdev, instance, flags, 1465 data_len, data, 1466 sync_interval, 1467 sync_interval); 1468 if (IS_ERR(adv)) 1469 return PTR_ERR(adv); 1470 adv->pending = false; 1471 added = true; 1472 } 1473 } 1474 1475 /* Start advertising */ 1476 err = hci_start_ext_adv_sync(hdev, instance); 1477 if (err < 0) 1478 goto fail; 1479 1480 err = hci_adv_bcast_annoucement(hdev, adv); 1481 if (err < 0) 1482 goto fail; 1483 1484 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1485 max_interval); 1486 if (err < 0) 1487 goto fail; 1488 1489 err = hci_set_per_adv_data_sync(hdev, instance); 1490 if (err < 0) 1491 goto fail; 1492 1493 err = hci_enable_per_advertising_sync(hdev, instance); 1494 if (err < 0) 1495 goto fail; 1496 1497 return 0; 1498 1499 fail: 1500 if (added) 1501 hci_remove_adv_instance(hdev, instance); 1502 1503 return err; 1504 } 1505 1506 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1507 { 1508 int err; 1509 1510 if (ext_adv_capable(hdev)) 1511 return hci_start_ext_adv_sync(hdev, instance); 1512 1513 err = hci_update_adv_data_sync(hdev, instance); 1514 if (err) 1515 return err; 1516 1517 err = hci_update_scan_rsp_data_sync(hdev, instance); 1518 if (err) 1519 return err; 1520 1521 return hci_enable_advertising_sync(hdev); 1522 } 1523 1524 int hci_enable_advertising_sync(struct hci_dev *hdev) 1525 { 1526 struct adv_info *adv_instance; 1527 struct hci_cp_le_set_adv_param cp; 1528 u8 own_addr_type, enable = 0x01; 1529 bool connectable; 1530 u16 adv_min_interval, adv_max_interval; 1531 u32 flags; 1532 u8 status; 1533 1534 if (ext_adv_capable(hdev)) 1535 return hci_enable_ext_advertising_sync(hdev, 1536 hdev->cur_adv_instance); 1537 1538 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1539 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1540 1541 /* If the "connectable" instance flag was not set, then choose between 1542 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1543 */ 1544 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1545 mgmt_get_connectable(hdev); 1546 1547 if (!is_advertising_allowed(hdev, connectable)) 1548 return -EINVAL; 1549 1550 status = hci_disable_advertising_sync(hdev); 1551 if (status) 1552 return status; 1553 1554 /* Clear the HCI_LE_ADV bit temporarily so that the 1555 * hci_update_random_address knows that it's safe to go ahead 1556 * and write a new random address. The flag will be set back on 1557 * as soon as the SET_ADV_ENABLE HCI command completes. 1558 */ 1559 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1560 1561 /* Set require_privacy to true only when non-connectable 1562 * advertising is used. In that case it is fine to use a 1563 * non-resolvable private address. 1564 */ 1565 status = hci_update_random_address_sync(hdev, !connectable, 1566 adv_use_rpa(hdev, flags), 1567 &own_addr_type); 1568 if (status) 1569 return status; 1570 1571 memset(&cp, 0, sizeof(cp)); 1572 1573 if (adv_instance) { 1574 adv_min_interval = adv_instance->min_interval; 1575 adv_max_interval = adv_instance->max_interval; 1576 } else { 1577 adv_min_interval = hdev->le_adv_min_interval; 1578 adv_max_interval = hdev->le_adv_max_interval; 1579 } 1580 1581 if (connectable) { 1582 cp.type = LE_ADV_IND; 1583 } else { 1584 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1585 cp.type = LE_ADV_SCAN_IND; 1586 else 1587 cp.type = LE_ADV_NONCONN_IND; 1588 1589 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1590 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1591 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1592 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1593 } 1594 } 1595 1596 cp.min_interval = cpu_to_le16(adv_min_interval); 1597 cp.max_interval = cpu_to_le16(adv_max_interval); 1598 cp.own_address_type = own_addr_type; 1599 cp.channel_map = hdev->le_adv_channel_map; 1600 1601 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1602 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1603 if (status) 1604 return status; 1605 1606 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1607 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1608 } 1609 1610 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1611 { 1612 return hci_enable_advertising_sync(hdev); 1613 } 1614 1615 int hci_enable_advertising(struct hci_dev *hdev) 1616 { 1617 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1618 list_empty(&hdev->adv_instances)) 1619 return 0; 1620 1621 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1622 } 1623 1624 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1625 struct sock *sk) 1626 { 1627 int err; 1628 1629 if (!ext_adv_capable(hdev)) 1630 return 0; 1631 1632 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1633 if (err) 1634 return err; 1635 1636 /* If request specifies an instance that doesn't exist, fail */ 1637 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1638 return -EINVAL; 1639 1640 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1641 sizeof(instance), &instance, 0, 1642 HCI_CMD_TIMEOUT, sk); 1643 } 1644 1645 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1646 { 1647 struct adv_info *adv = data; 1648 u8 instance = 0; 1649 1650 if (adv) 1651 instance = adv->instance; 1652 1653 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1654 } 1655 1656 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1657 { 1658 struct adv_info *adv = NULL; 1659 1660 if (instance) { 1661 adv = hci_find_adv_instance(hdev, instance); 1662 if (!adv) 1663 return -EINVAL; 1664 } 1665 1666 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1667 } 1668 1669 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1670 { 1671 struct hci_cp_le_term_big cp; 1672 1673 memset(&cp, 0, sizeof(cp)); 1674 cp.handle = handle; 1675 cp.reason = reason; 1676 1677 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1678 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1679 } 1680 1681 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1682 { 1683 struct { 1684 struct hci_cp_le_set_ext_adv_data cp; 1685 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1686 } pdu; 1687 u8 len; 1688 struct adv_info *adv = NULL; 1689 int err; 1690 1691 memset(&pdu, 0, sizeof(pdu)); 1692 1693 if (instance) { 1694 adv = hci_find_adv_instance(hdev, instance); 1695 if (!adv || !adv->adv_data_changed) 1696 return 0; 1697 } 1698 1699 len = eir_create_adv_data(hdev, instance, pdu.data); 1700 1701 pdu.cp.length = len; 1702 pdu.cp.handle = instance; 1703 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1704 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1705 1706 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1707 sizeof(pdu.cp) + len, &pdu.cp, 1708 HCI_CMD_TIMEOUT); 1709 if (err) 1710 return err; 1711 1712 /* Update data if the command succeed */ 1713 if (adv) { 1714 adv->adv_data_changed = false; 1715 } else { 1716 memcpy(hdev->adv_data, pdu.data, len); 1717 hdev->adv_data_len = len; 1718 } 1719 1720 return 0; 1721 } 1722 1723 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1724 { 1725 struct hci_cp_le_set_adv_data cp; 1726 u8 len; 1727 1728 memset(&cp, 0, sizeof(cp)); 1729 1730 len = eir_create_adv_data(hdev, instance, cp.data); 1731 1732 /* There's nothing to do if the data hasn't changed */ 1733 if (hdev->adv_data_len == len && 1734 memcmp(cp.data, hdev->adv_data, len) == 0) 1735 return 0; 1736 1737 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1738 hdev->adv_data_len = len; 1739 1740 cp.length = len; 1741 1742 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1743 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1744 } 1745 1746 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1747 { 1748 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1749 return 0; 1750 1751 if (ext_adv_capable(hdev)) 1752 return hci_set_ext_adv_data_sync(hdev, instance); 1753 1754 return hci_set_adv_data_sync(hdev, instance); 1755 } 1756 1757 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1758 bool force) 1759 { 1760 struct adv_info *adv = NULL; 1761 u16 timeout; 1762 1763 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1764 return -EPERM; 1765 1766 if (hdev->adv_instance_timeout) 1767 return -EBUSY; 1768 1769 adv = hci_find_adv_instance(hdev, instance); 1770 if (!adv) 1771 return -ENOENT; 1772 1773 /* A zero timeout means unlimited advertising. As long as there is 1774 * only one instance, duration should be ignored. We still set a timeout 1775 * in case further instances are being added later on. 1776 * 1777 * If the remaining lifetime of the instance is more than the duration 1778 * then the timeout corresponds to the duration, otherwise it will be 1779 * reduced to the remaining instance lifetime. 1780 */ 1781 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1782 timeout = adv->duration; 1783 else 1784 timeout = adv->remaining_time; 1785 1786 /* The remaining time is being reduced unless the instance is being 1787 * advertised without time limit. 1788 */ 1789 if (adv->timeout) 1790 adv->remaining_time = adv->remaining_time - timeout; 1791 1792 /* Only use work for scheduling instances with legacy advertising */ 1793 if (!ext_adv_capable(hdev)) { 1794 hdev->adv_instance_timeout = timeout; 1795 queue_delayed_work(hdev->req_workqueue, 1796 &hdev->adv_instance_expire, 1797 msecs_to_jiffies(timeout * 1000)); 1798 } 1799 1800 /* If we're just re-scheduling the same instance again then do not 1801 * execute any HCI commands. This happens when a single instance is 1802 * being advertised. 1803 */ 1804 if (!force && hdev->cur_adv_instance == instance && 1805 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1806 return 0; 1807 1808 hdev->cur_adv_instance = instance; 1809 1810 return hci_start_adv_sync(hdev, instance); 1811 } 1812 1813 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1814 { 1815 int err; 1816 1817 if (!ext_adv_capable(hdev)) 1818 return 0; 1819 1820 /* Disable instance 0x00 to disable all instances */ 1821 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1822 if (err) 1823 return err; 1824 1825 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1826 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1827 } 1828 1829 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1830 { 1831 struct adv_info *adv, *n; 1832 int err = 0; 1833 1834 if (ext_adv_capable(hdev)) 1835 /* Remove all existing sets */ 1836 err = hci_clear_adv_sets_sync(hdev, sk); 1837 if (ext_adv_capable(hdev)) 1838 return err; 1839 1840 /* This is safe as long as there is no command send while the lock is 1841 * held. 1842 */ 1843 hci_dev_lock(hdev); 1844 1845 /* Cleanup non-ext instances */ 1846 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1847 u8 instance = adv->instance; 1848 int err; 1849 1850 if (!(force || adv->timeout)) 1851 continue; 1852 1853 err = hci_remove_adv_instance(hdev, instance); 1854 if (!err) 1855 mgmt_advertising_removed(sk, hdev, instance); 1856 } 1857 1858 hci_dev_unlock(hdev); 1859 1860 return 0; 1861 } 1862 1863 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1864 struct sock *sk) 1865 { 1866 int err = 0; 1867 1868 /* If we use extended advertising, instance has to be removed first. */ 1869 if (ext_adv_capable(hdev)) 1870 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1871 if (ext_adv_capable(hdev)) 1872 return err; 1873 1874 /* This is safe as long as there is no command send while the lock is 1875 * held. 1876 */ 1877 hci_dev_lock(hdev); 1878 1879 err = hci_remove_adv_instance(hdev, instance); 1880 if (!err) 1881 mgmt_advertising_removed(sk, hdev, instance); 1882 1883 hci_dev_unlock(hdev); 1884 1885 return err; 1886 } 1887 1888 /* For a single instance: 1889 * - force == true: The instance will be removed even when its remaining 1890 * lifetime is not zero. 1891 * - force == false: the instance will be deactivated but kept stored unless 1892 * the remaining lifetime is zero. 1893 * 1894 * For instance == 0x00: 1895 * - force == true: All instances will be removed regardless of their timeout 1896 * setting. 1897 * - force == false: Only instances that have a timeout will be removed. 1898 */ 1899 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1900 u8 instance, bool force) 1901 { 1902 struct adv_info *next = NULL; 1903 int err; 1904 1905 /* Cancel any timeout concerning the removed instance(s). */ 1906 if (!instance || hdev->cur_adv_instance == instance) 1907 cancel_adv_timeout(hdev); 1908 1909 /* Get the next instance to advertise BEFORE we remove 1910 * the current one. This can be the same instance again 1911 * if there is only one instance. 1912 */ 1913 if (hdev->cur_adv_instance == instance) 1914 next = hci_get_next_instance(hdev, instance); 1915 1916 if (!instance) { 1917 err = hci_clear_adv_sync(hdev, sk, force); 1918 if (err) 1919 return err; 1920 } else { 1921 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1922 1923 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1924 /* Don't advertise a removed instance. */ 1925 if (next && next->instance == instance) 1926 next = NULL; 1927 1928 err = hci_remove_adv_sync(hdev, instance, sk); 1929 if (err) 1930 return err; 1931 } 1932 } 1933 1934 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1935 return 0; 1936 1937 if (next && !ext_adv_capable(hdev)) 1938 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1939 1940 return 0; 1941 } 1942 1943 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1944 { 1945 struct hci_cp_read_rssi cp; 1946 1947 cp.handle = handle; 1948 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1949 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1950 } 1951 1952 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1953 { 1954 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1955 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1956 } 1957 1958 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1959 { 1960 struct hci_cp_read_tx_power cp; 1961 1962 cp.handle = handle; 1963 cp.type = type; 1964 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1965 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1966 } 1967 1968 int hci_disable_advertising_sync(struct hci_dev *hdev) 1969 { 1970 u8 enable = 0x00; 1971 int err = 0; 1972 1973 /* If controller is not advertising we are done. */ 1974 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1975 return 0; 1976 1977 if (ext_adv_capable(hdev)) 1978 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1979 if (ext_adv_capable(hdev)) 1980 return err; 1981 1982 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1983 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1984 } 1985 1986 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1987 u8 filter_dup) 1988 { 1989 struct hci_cp_le_set_ext_scan_enable cp; 1990 1991 memset(&cp, 0, sizeof(cp)); 1992 cp.enable = val; 1993 1994 if (hci_dev_test_flag(hdev, HCI_MESH)) 1995 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1996 else 1997 cp.filter_dup = filter_dup; 1998 1999 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2000 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2001 } 2002 2003 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2004 u8 filter_dup) 2005 { 2006 struct hci_cp_le_set_scan_enable cp; 2007 2008 if (use_ext_scan(hdev)) 2009 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2010 2011 memset(&cp, 0, sizeof(cp)); 2012 cp.enable = val; 2013 2014 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2015 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2016 else 2017 cp.filter_dup = filter_dup; 2018 2019 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2020 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2021 } 2022 2023 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2024 { 2025 if (!use_ll_privacy(hdev)) 2026 return 0; 2027 2028 /* If controller is not/already resolving we are done. */ 2029 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2030 return 0; 2031 2032 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2033 sizeof(val), &val, HCI_CMD_TIMEOUT); 2034 } 2035 2036 static int hci_scan_disable_sync(struct hci_dev *hdev) 2037 { 2038 int err; 2039 2040 /* If controller is not scanning we are done. */ 2041 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2042 return 0; 2043 2044 if (hdev->scanning_paused) { 2045 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2046 return 0; 2047 } 2048 2049 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2050 if (err) { 2051 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2052 return err; 2053 } 2054 2055 return err; 2056 } 2057 2058 static bool scan_use_rpa(struct hci_dev *hdev) 2059 { 2060 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2061 } 2062 2063 static void hci_start_interleave_scan(struct hci_dev *hdev) 2064 { 2065 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2066 queue_delayed_work(hdev->req_workqueue, 2067 &hdev->interleave_scan, 0); 2068 } 2069 2070 static bool is_interleave_scanning(struct hci_dev *hdev) 2071 { 2072 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2073 } 2074 2075 static void cancel_interleave_scan(struct hci_dev *hdev) 2076 { 2077 bt_dev_dbg(hdev, "cancelling interleave scan"); 2078 2079 cancel_delayed_work_sync(&hdev->interleave_scan); 2080 2081 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2082 } 2083 2084 /* Return true if interleave_scan wasn't started until exiting this function, 2085 * otherwise, return false 2086 */ 2087 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2088 { 2089 /* Do interleaved scan only if all of the following are true: 2090 * - There is at least one ADV monitor 2091 * - At least one pending LE connection or one device to be scanned for 2092 * - Monitor offloading is not supported 2093 * If so, we should alternate between allowlist scan and one without 2094 * any filters to save power. 2095 */ 2096 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2097 !(list_empty(&hdev->pend_le_conns) && 2098 list_empty(&hdev->pend_le_reports)) && 2099 hci_get_adv_monitor_offload_ext(hdev) == 2100 HCI_ADV_MONITOR_EXT_NONE; 2101 bool is_interleaving = is_interleave_scanning(hdev); 2102 2103 if (use_interleaving && !is_interleaving) { 2104 hci_start_interleave_scan(hdev); 2105 bt_dev_dbg(hdev, "starting interleave scan"); 2106 return true; 2107 } 2108 2109 if (!use_interleaving && is_interleaving) 2110 cancel_interleave_scan(hdev); 2111 2112 return false; 2113 } 2114 2115 /* Removes connection to resolve list if needed.*/ 2116 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2117 bdaddr_t *bdaddr, u8 bdaddr_type) 2118 { 2119 struct hci_cp_le_del_from_resolv_list cp; 2120 struct bdaddr_list_with_irk *entry; 2121 2122 if (!use_ll_privacy(hdev)) 2123 return 0; 2124 2125 /* Check if the IRK has been programmed */ 2126 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2127 bdaddr_type); 2128 if (!entry) 2129 return 0; 2130 2131 cp.bdaddr_type = bdaddr_type; 2132 bacpy(&cp.bdaddr, bdaddr); 2133 2134 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2135 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2136 } 2137 2138 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2139 bdaddr_t *bdaddr, u8 bdaddr_type) 2140 { 2141 struct hci_cp_le_del_from_accept_list cp; 2142 int err; 2143 2144 /* Check if device is on accept list before removing it */ 2145 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2146 return 0; 2147 2148 cp.bdaddr_type = bdaddr_type; 2149 bacpy(&cp.bdaddr, bdaddr); 2150 2151 /* Ignore errors when removing from resolving list as that is likely 2152 * that the device was never added. 2153 */ 2154 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2155 2156 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2157 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2158 if (err) { 2159 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2160 return err; 2161 } 2162 2163 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2164 cp.bdaddr_type); 2165 2166 return 0; 2167 } 2168 2169 struct conn_params { 2170 bdaddr_t addr; 2171 u8 addr_type; 2172 hci_conn_flags_t flags; 2173 u8 privacy_mode; 2174 }; 2175 2176 /* Adds connection to resolve list if needed. 2177 * Setting params to NULL programs local hdev->irk 2178 */ 2179 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2180 struct conn_params *params) 2181 { 2182 struct hci_cp_le_add_to_resolv_list cp; 2183 struct smp_irk *irk; 2184 struct bdaddr_list_with_irk *entry; 2185 struct hci_conn_params *p; 2186 2187 if (!use_ll_privacy(hdev)) 2188 return 0; 2189 2190 /* Attempt to program local identity address, type and irk if params is 2191 * NULL. 2192 */ 2193 if (!params) { 2194 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2195 return 0; 2196 2197 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2198 memcpy(cp.peer_irk, hdev->irk, 16); 2199 goto done; 2200 } 2201 2202 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2203 if (!irk) 2204 return 0; 2205 2206 /* Check if the IK has _not_ been programmed yet. */ 2207 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2208 ¶ms->addr, 2209 params->addr_type); 2210 if (entry) 2211 return 0; 2212 2213 cp.bdaddr_type = params->addr_type; 2214 bacpy(&cp.bdaddr, ¶ms->addr); 2215 memcpy(cp.peer_irk, irk->val, 16); 2216 2217 /* Default privacy mode is always Network */ 2218 params->privacy_mode = HCI_NETWORK_PRIVACY; 2219 2220 rcu_read_lock(); 2221 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2222 ¶ms->addr, params->addr_type); 2223 if (!p) 2224 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2225 ¶ms->addr, params->addr_type); 2226 if (p) 2227 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2228 rcu_read_unlock(); 2229 2230 done: 2231 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2232 memcpy(cp.local_irk, hdev->irk, 16); 2233 else 2234 memset(cp.local_irk, 0, 16); 2235 2236 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2237 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2238 } 2239 2240 /* Set Device Privacy Mode. */ 2241 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2242 struct conn_params *params) 2243 { 2244 struct hci_cp_le_set_privacy_mode cp; 2245 struct smp_irk *irk; 2246 2247 /* If device privacy mode has already been set there is nothing to do */ 2248 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2249 return 0; 2250 2251 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2252 * indicates that LL Privacy has been enabled and 2253 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2254 */ 2255 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2256 return 0; 2257 2258 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2259 if (!irk) 2260 return 0; 2261 2262 memset(&cp, 0, sizeof(cp)); 2263 cp.bdaddr_type = irk->addr_type; 2264 bacpy(&cp.bdaddr, &irk->bdaddr); 2265 cp.mode = HCI_DEVICE_PRIVACY; 2266 2267 /* Note: params->privacy_mode is not updated since it is a copy */ 2268 2269 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2270 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2271 } 2272 2273 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2274 * this attempts to program the device in the resolving list as well and 2275 * properly set the privacy mode. 2276 */ 2277 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2278 struct conn_params *params, 2279 u8 *num_entries) 2280 { 2281 struct hci_cp_le_add_to_accept_list cp; 2282 int err; 2283 2284 /* During suspend, only wakeable devices can be in acceptlist */ 2285 if (hdev->suspended && 2286 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2287 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2288 params->addr_type); 2289 return 0; 2290 } 2291 2292 /* Select filter policy to accept all advertising */ 2293 if (*num_entries >= hdev->le_accept_list_size) 2294 return -ENOSPC; 2295 2296 /* Accept list can not be used with RPAs */ 2297 if (!use_ll_privacy(hdev) && 2298 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2299 return -EINVAL; 2300 2301 /* Attempt to program the device in the resolving list first to avoid 2302 * having to rollback in case it fails since the resolving list is 2303 * dynamic it can probably be smaller than the accept list. 2304 */ 2305 err = hci_le_add_resolve_list_sync(hdev, params); 2306 if (err) { 2307 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2308 return err; 2309 } 2310 2311 /* Set Privacy Mode */ 2312 err = hci_le_set_privacy_mode_sync(hdev, params); 2313 if (err) { 2314 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2315 return err; 2316 } 2317 2318 /* Check if already in accept list */ 2319 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2320 params->addr_type)) 2321 return 0; 2322 2323 *num_entries += 1; 2324 cp.bdaddr_type = params->addr_type; 2325 bacpy(&cp.bdaddr, ¶ms->addr); 2326 2327 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2328 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2329 if (err) { 2330 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2331 /* Rollback the device from the resolving list */ 2332 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2333 return err; 2334 } 2335 2336 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2337 cp.bdaddr_type); 2338 2339 return 0; 2340 } 2341 2342 /* This function disables/pause all advertising instances */ 2343 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2344 { 2345 int err; 2346 int old_state; 2347 2348 /* If already been paused there is nothing to do. */ 2349 if (hdev->advertising_paused) 2350 return 0; 2351 2352 bt_dev_dbg(hdev, "Pausing directed advertising"); 2353 2354 /* Stop directed advertising */ 2355 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2356 if (old_state) { 2357 /* When discoverable timeout triggers, then just make sure 2358 * the limited discoverable flag is cleared. Even in the case 2359 * of a timeout triggered from general discoverable, it is 2360 * safe to unconditionally clear the flag. 2361 */ 2362 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2363 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2364 hdev->discov_timeout = 0; 2365 } 2366 2367 bt_dev_dbg(hdev, "Pausing advertising instances"); 2368 2369 /* Call to disable any advertisements active on the controller. 2370 * This will succeed even if no advertisements are configured. 2371 */ 2372 err = hci_disable_advertising_sync(hdev); 2373 if (err) 2374 return err; 2375 2376 /* If we are using software rotation, pause the loop */ 2377 if (!ext_adv_capable(hdev)) 2378 cancel_adv_timeout(hdev); 2379 2380 hdev->advertising_paused = true; 2381 hdev->advertising_old_state = old_state; 2382 2383 return 0; 2384 } 2385 2386 /* This function enables all user advertising instances */ 2387 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2388 { 2389 struct adv_info *adv, *tmp; 2390 int err; 2391 2392 /* If advertising has not been paused there is nothing to do. */ 2393 if (!hdev->advertising_paused) 2394 return 0; 2395 2396 /* Resume directed advertising */ 2397 hdev->advertising_paused = false; 2398 if (hdev->advertising_old_state) { 2399 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2400 hdev->advertising_old_state = 0; 2401 } 2402 2403 bt_dev_dbg(hdev, "Resuming advertising instances"); 2404 2405 if (ext_adv_capable(hdev)) { 2406 /* Call for each tracked instance to be re-enabled */ 2407 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2408 err = hci_enable_ext_advertising_sync(hdev, 2409 adv->instance); 2410 if (!err) 2411 continue; 2412 2413 /* If the instance cannot be resumed remove it */ 2414 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2415 NULL); 2416 } 2417 } else { 2418 /* Schedule for most recent instance to be restarted and begin 2419 * the software rotation loop 2420 */ 2421 err = hci_schedule_adv_instance_sync(hdev, 2422 hdev->cur_adv_instance, 2423 true); 2424 } 2425 2426 hdev->advertising_paused = false; 2427 2428 return err; 2429 } 2430 2431 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2432 { 2433 int err; 2434 2435 if (!use_ll_privacy(hdev)) 2436 return 0; 2437 2438 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2439 return 0; 2440 2441 /* Cannot disable addr resolution if scanning is enabled or 2442 * when initiating an LE connection. 2443 */ 2444 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2445 hci_lookup_le_connect(hdev)) { 2446 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2447 return -EPERM; 2448 } 2449 2450 /* Cannot disable addr resolution if advertising is enabled. */ 2451 err = hci_pause_advertising_sync(hdev); 2452 if (err) { 2453 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2454 return err; 2455 } 2456 2457 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2458 if (err) 2459 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2460 err); 2461 2462 /* Return if address resolution is disabled and RPA is not used. */ 2463 if (!err && scan_use_rpa(hdev)) 2464 return 0; 2465 2466 hci_resume_advertising_sync(hdev); 2467 return err; 2468 } 2469 2470 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2471 bool extended, struct sock *sk) 2472 { 2473 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2474 HCI_OP_READ_LOCAL_OOB_DATA; 2475 2476 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2477 } 2478 2479 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2480 { 2481 struct hci_conn_params *params; 2482 struct conn_params *p; 2483 size_t i; 2484 2485 rcu_read_lock(); 2486 2487 i = 0; 2488 list_for_each_entry_rcu(params, list, action) 2489 ++i; 2490 *n = i; 2491 2492 rcu_read_unlock(); 2493 2494 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2495 if (!p) 2496 return NULL; 2497 2498 rcu_read_lock(); 2499 2500 i = 0; 2501 list_for_each_entry_rcu(params, list, action) { 2502 /* Racing adds are handled in next scan update */ 2503 if (i >= *n) 2504 break; 2505 2506 /* No hdev->lock, but: addr, addr_type are immutable. 2507 * privacy_mode is only written by us or in 2508 * hci_cc_le_set_privacy_mode that we wait for. 2509 * We should be idempotent so MGMT updating flags 2510 * while we are processing is OK. 2511 */ 2512 bacpy(&p[i].addr, ¶ms->addr); 2513 p[i].addr_type = params->addr_type; 2514 p[i].flags = READ_ONCE(params->flags); 2515 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2516 ++i; 2517 } 2518 2519 rcu_read_unlock(); 2520 2521 *n = i; 2522 return p; 2523 } 2524 2525 /* Device must not be scanning when updating the accept list. 2526 * 2527 * Update is done using the following sequence: 2528 * 2529 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2530 * Remove Devices From Accept List -> 2531 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2532 * Add Devices to Accept List -> 2533 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2534 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2535 * Enable Scanning 2536 * 2537 * In case of failure advertising shall be restored to its original state and 2538 * return would disable accept list since either accept or resolving list could 2539 * not be programmed. 2540 * 2541 */ 2542 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2543 { 2544 struct conn_params *params; 2545 struct bdaddr_list *b, *t; 2546 u8 num_entries = 0; 2547 bool pend_conn, pend_report; 2548 u8 filter_policy; 2549 size_t i, n; 2550 int err; 2551 2552 /* Pause advertising if resolving list can be used as controllers 2553 * cannot accept resolving list modifications while advertising. 2554 */ 2555 if (use_ll_privacy(hdev)) { 2556 err = hci_pause_advertising_sync(hdev); 2557 if (err) { 2558 bt_dev_err(hdev, "pause advertising failed: %d", err); 2559 return 0x00; 2560 } 2561 } 2562 2563 /* Disable address resolution while reprogramming accept list since 2564 * devices that do have an IRK will be programmed in the resolving list 2565 * when LL Privacy is enabled. 2566 */ 2567 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2568 if (err) { 2569 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2570 goto done; 2571 } 2572 2573 /* Go through the current accept list programmed into the 2574 * controller one by one and check if that address is connected or is 2575 * still in the list of pending connections or list of devices to 2576 * report. If not present in either list, then remove it from 2577 * the controller. 2578 */ 2579 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2580 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2581 continue; 2582 2583 /* Pointers not dereferenced, no locks needed */ 2584 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2585 &b->bdaddr, 2586 b->bdaddr_type); 2587 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2588 &b->bdaddr, 2589 b->bdaddr_type); 2590 2591 /* If the device is not likely to connect or report, 2592 * remove it from the acceptlist. 2593 */ 2594 if (!pend_conn && !pend_report) { 2595 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2596 b->bdaddr_type); 2597 continue; 2598 } 2599 2600 num_entries++; 2601 } 2602 2603 /* Since all no longer valid accept list entries have been 2604 * removed, walk through the list of pending connections 2605 * and ensure that any new device gets programmed into 2606 * the controller. 2607 * 2608 * If the list of the devices is larger than the list of 2609 * available accept list entries in the controller, then 2610 * just abort and return filer policy value to not use the 2611 * accept list. 2612 * 2613 * The list and params may be mutated while we wait for events, 2614 * so make a copy and iterate it. 2615 */ 2616 2617 params = conn_params_copy(&hdev->pend_le_conns, &n); 2618 if (!params) { 2619 err = -ENOMEM; 2620 goto done; 2621 } 2622 2623 for (i = 0; i < n; ++i) { 2624 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2625 &num_entries); 2626 if (err) { 2627 kvfree(params); 2628 goto done; 2629 } 2630 } 2631 2632 kvfree(params); 2633 2634 /* After adding all new pending connections, walk through 2635 * the list of pending reports and also add these to the 2636 * accept list if there is still space. Abort if space runs out. 2637 */ 2638 2639 params = conn_params_copy(&hdev->pend_le_reports, &n); 2640 if (!params) { 2641 err = -ENOMEM; 2642 goto done; 2643 } 2644 2645 for (i = 0; i < n; ++i) { 2646 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2647 &num_entries); 2648 if (err) { 2649 kvfree(params); 2650 goto done; 2651 } 2652 } 2653 2654 kvfree(params); 2655 2656 /* Use the allowlist unless the following conditions are all true: 2657 * - We are not currently suspending 2658 * - There are 1 or more ADV monitors registered and it's not offloaded 2659 * - Interleaved scanning is not currently using the allowlist 2660 */ 2661 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2662 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2663 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2664 err = -EINVAL; 2665 2666 done: 2667 filter_policy = err ? 0x00 : 0x01; 2668 2669 /* Enable address resolution when LL Privacy is enabled. */ 2670 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2671 if (err) 2672 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2673 2674 /* Resume advertising if it was paused */ 2675 if (use_ll_privacy(hdev)) 2676 hci_resume_advertising_sync(hdev); 2677 2678 /* Select filter policy to use accept list */ 2679 return filter_policy; 2680 } 2681 2682 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2683 u8 type, u16 interval, u16 window) 2684 { 2685 cp->type = type; 2686 cp->interval = cpu_to_le16(interval); 2687 cp->window = cpu_to_le16(window); 2688 } 2689 2690 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2691 u16 interval, u16 window, 2692 u8 own_addr_type, u8 filter_policy) 2693 { 2694 struct hci_cp_le_set_ext_scan_params *cp; 2695 struct hci_cp_le_scan_phy_params *phy; 2696 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2697 u8 num_phy = 0x00; 2698 2699 cp = (void *)data; 2700 phy = (void *)cp->data; 2701 2702 memset(data, 0, sizeof(data)); 2703 2704 cp->own_addr_type = own_addr_type; 2705 cp->filter_policy = filter_policy; 2706 2707 /* Check if PA Sync is in progress then select the PHY based on the 2708 * hci_conn.iso_qos. 2709 */ 2710 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2711 struct hci_cp_le_add_to_accept_list *sent; 2712 2713 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2714 if (sent) { 2715 struct hci_conn *conn; 2716 2717 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2718 &sent->bdaddr); 2719 if (conn) { 2720 struct bt_iso_qos *qos = &conn->iso_qos; 2721 2722 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2723 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2724 cp->scanning_phys |= LE_SCAN_PHY_1M; 2725 hci_le_scan_phy_params(phy, type, 2726 interval, 2727 window); 2728 num_phy++; 2729 phy++; 2730 } 2731 2732 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2733 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2734 hci_le_scan_phy_params(phy, type, 2735 interval * 3, 2736 window * 3); 2737 num_phy++; 2738 phy++; 2739 } 2740 2741 if (num_phy) 2742 goto done; 2743 } 2744 } 2745 } 2746 2747 if (scan_1m(hdev) || scan_2m(hdev)) { 2748 cp->scanning_phys |= LE_SCAN_PHY_1M; 2749 hci_le_scan_phy_params(phy, type, interval, window); 2750 num_phy++; 2751 phy++; 2752 } 2753 2754 if (scan_coded(hdev)) { 2755 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2756 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2757 num_phy++; 2758 phy++; 2759 } 2760 2761 done: 2762 if (!num_phy) 2763 return -EINVAL; 2764 2765 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2766 sizeof(*cp) + sizeof(*phy) * num_phy, 2767 data, HCI_CMD_TIMEOUT); 2768 } 2769 2770 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2771 u16 interval, u16 window, 2772 u8 own_addr_type, u8 filter_policy) 2773 { 2774 struct hci_cp_le_set_scan_param cp; 2775 2776 if (use_ext_scan(hdev)) 2777 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2778 window, own_addr_type, 2779 filter_policy); 2780 2781 memset(&cp, 0, sizeof(cp)); 2782 cp.type = type; 2783 cp.interval = cpu_to_le16(interval); 2784 cp.window = cpu_to_le16(window); 2785 cp.own_address_type = own_addr_type; 2786 cp.filter_policy = filter_policy; 2787 2788 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2789 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2790 } 2791 2792 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2793 u16 window, u8 own_addr_type, u8 filter_policy, 2794 u8 filter_dup) 2795 { 2796 int err; 2797 2798 if (hdev->scanning_paused) { 2799 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2800 return 0; 2801 } 2802 2803 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2804 own_addr_type, filter_policy); 2805 if (err) 2806 return err; 2807 2808 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2809 } 2810 2811 static int hci_passive_scan_sync(struct hci_dev *hdev) 2812 { 2813 u8 own_addr_type; 2814 u8 filter_policy; 2815 u16 window, interval; 2816 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2817 int err; 2818 2819 if (hdev->scanning_paused) { 2820 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2821 return 0; 2822 } 2823 2824 err = hci_scan_disable_sync(hdev); 2825 if (err) { 2826 bt_dev_err(hdev, "disable scanning failed: %d", err); 2827 return err; 2828 } 2829 2830 /* Set require_privacy to false since no SCAN_REQ are send 2831 * during passive scanning. Not using an non-resolvable address 2832 * here is important so that peer devices using direct 2833 * advertising with our address will be correctly reported 2834 * by the controller. 2835 */ 2836 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2837 &own_addr_type)) 2838 return 0; 2839 2840 if (hdev->enable_advmon_interleave_scan && 2841 hci_update_interleaved_scan_sync(hdev)) 2842 return 0; 2843 2844 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2845 2846 /* Adding or removing entries from the accept list must 2847 * happen before enabling scanning. The controller does 2848 * not allow accept list modification while scanning. 2849 */ 2850 filter_policy = hci_update_accept_list_sync(hdev); 2851 2852 /* When the controller is using random resolvable addresses and 2853 * with that having LE privacy enabled, then controllers with 2854 * Extended Scanner Filter Policies support can now enable support 2855 * for handling directed advertising. 2856 * 2857 * So instead of using filter polices 0x00 (no acceptlist) 2858 * and 0x01 (acceptlist enabled) use the new filter policies 2859 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2860 */ 2861 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2862 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2863 filter_policy |= 0x02; 2864 2865 if (hdev->suspended) { 2866 window = hdev->le_scan_window_suspend; 2867 interval = hdev->le_scan_int_suspend; 2868 } else if (hci_is_le_conn_scanning(hdev)) { 2869 window = hdev->le_scan_window_connect; 2870 interval = hdev->le_scan_int_connect; 2871 } else if (hci_is_adv_monitoring(hdev)) { 2872 window = hdev->le_scan_window_adv_monitor; 2873 interval = hdev->le_scan_int_adv_monitor; 2874 } else { 2875 window = hdev->le_scan_window; 2876 interval = hdev->le_scan_interval; 2877 } 2878 2879 /* Disable all filtering for Mesh */ 2880 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2881 filter_policy = 0; 2882 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2883 } 2884 2885 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2886 2887 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2888 own_addr_type, filter_policy, filter_dups); 2889 } 2890 2891 /* This function controls the passive scanning based on hdev->pend_le_conns 2892 * list. If there are pending LE connection we start the background scanning, 2893 * otherwise we stop it in the following sequence: 2894 * 2895 * If there are devices to scan: 2896 * 2897 * Disable Scanning -> Update Accept List -> 2898 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2899 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2900 * Enable Scanning 2901 * 2902 * Otherwise: 2903 * 2904 * Disable Scanning 2905 */ 2906 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2907 { 2908 int err; 2909 2910 if (!test_bit(HCI_UP, &hdev->flags) || 2911 test_bit(HCI_INIT, &hdev->flags) || 2912 hci_dev_test_flag(hdev, HCI_SETUP) || 2913 hci_dev_test_flag(hdev, HCI_CONFIG) || 2914 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2915 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2916 return 0; 2917 2918 /* No point in doing scanning if LE support hasn't been enabled */ 2919 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2920 return 0; 2921 2922 /* If discovery is active don't interfere with it */ 2923 if (hdev->discovery.state != DISCOVERY_STOPPED) 2924 return 0; 2925 2926 /* Reset RSSI and UUID filters when starting background scanning 2927 * since these filters are meant for service discovery only. 2928 * 2929 * The Start Discovery and Start Service Discovery operations 2930 * ensure to set proper values for RSSI threshold and UUID 2931 * filter list. So it is safe to just reset them here. 2932 */ 2933 hci_discovery_filter_clear(hdev); 2934 2935 bt_dev_dbg(hdev, "ADV monitoring is %s", 2936 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2937 2938 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2939 list_empty(&hdev->pend_le_conns) && 2940 list_empty(&hdev->pend_le_reports) && 2941 !hci_is_adv_monitoring(hdev) && 2942 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2943 /* If there is no pending LE connections or devices 2944 * to be scanned for or no ADV monitors, we should stop the 2945 * background scanning. 2946 */ 2947 2948 bt_dev_dbg(hdev, "stopping background scanning"); 2949 2950 err = hci_scan_disable_sync(hdev); 2951 if (err) 2952 bt_dev_err(hdev, "stop background scanning failed: %d", 2953 err); 2954 } else { 2955 /* If there is at least one pending LE connection, we should 2956 * keep the background scan running. 2957 */ 2958 2959 /* If controller is connecting, we should not start scanning 2960 * since some controllers are not able to scan and connect at 2961 * the same time. 2962 */ 2963 if (hci_lookup_le_connect(hdev)) 2964 return 0; 2965 2966 bt_dev_dbg(hdev, "start background scanning"); 2967 2968 err = hci_passive_scan_sync(hdev); 2969 if (err) 2970 bt_dev_err(hdev, "start background scanning failed: %d", 2971 err); 2972 } 2973 2974 return err; 2975 } 2976 2977 static int update_scan_sync(struct hci_dev *hdev, void *data) 2978 { 2979 return hci_update_scan_sync(hdev); 2980 } 2981 2982 int hci_update_scan(struct hci_dev *hdev) 2983 { 2984 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2985 } 2986 2987 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2988 { 2989 return hci_update_passive_scan_sync(hdev); 2990 } 2991 2992 int hci_update_passive_scan(struct hci_dev *hdev) 2993 { 2994 /* Only queue if it would have any effect */ 2995 if (!test_bit(HCI_UP, &hdev->flags) || 2996 test_bit(HCI_INIT, &hdev->flags) || 2997 hci_dev_test_flag(hdev, HCI_SETUP) || 2998 hci_dev_test_flag(hdev, HCI_CONFIG) || 2999 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3000 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3001 return 0; 3002 3003 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 3004 } 3005 3006 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3007 { 3008 int err; 3009 3010 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3011 return 0; 3012 3013 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3014 sizeof(val), &val, HCI_CMD_TIMEOUT); 3015 3016 if (!err) { 3017 if (val) { 3018 hdev->features[1][0] |= LMP_HOST_SC; 3019 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3020 } else { 3021 hdev->features[1][0] &= ~LMP_HOST_SC; 3022 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3023 } 3024 } 3025 3026 return err; 3027 } 3028 3029 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3030 { 3031 int err; 3032 3033 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3034 lmp_host_ssp_capable(hdev)) 3035 return 0; 3036 3037 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3038 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3039 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3040 } 3041 3042 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3043 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3044 if (err) 3045 return err; 3046 3047 return hci_write_sc_support_sync(hdev, 0x01); 3048 } 3049 3050 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3051 { 3052 struct hci_cp_write_le_host_supported cp; 3053 3054 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3055 !lmp_bredr_capable(hdev)) 3056 return 0; 3057 3058 /* Check first if we already have the right host state 3059 * (host features set) 3060 */ 3061 if (le == lmp_host_le_capable(hdev) && 3062 simul == lmp_host_le_br_capable(hdev)) 3063 return 0; 3064 3065 memset(&cp, 0, sizeof(cp)); 3066 3067 cp.le = le; 3068 cp.simul = simul; 3069 3070 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3071 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3072 } 3073 3074 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3075 { 3076 struct adv_info *adv, *tmp; 3077 int err; 3078 3079 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3080 return 0; 3081 3082 /* If RPA Resolution has not been enable yet it means the 3083 * resolving list is empty and we should attempt to program the 3084 * local IRK in order to support using own_addr_type 3085 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3086 */ 3087 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3088 hci_le_add_resolve_list_sync(hdev, NULL); 3089 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3090 } 3091 3092 /* Make sure the controller has a good default for 3093 * advertising data. This also applies to the case 3094 * where BR/EDR was toggled during the AUTO_OFF phase. 3095 */ 3096 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3097 list_empty(&hdev->adv_instances)) { 3098 if (ext_adv_capable(hdev)) { 3099 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3100 if (!err) 3101 hci_update_scan_rsp_data_sync(hdev, 0x00); 3102 } else { 3103 err = hci_update_adv_data_sync(hdev, 0x00); 3104 if (!err) 3105 hci_update_scan_rsp_data_sync(hdev, 0x00); 3106 } 3107 3108 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3109 hci_enable_advertising_sync(hdev); 3110 } 3111 3112 /* Call for each tracked instance to be scheduled */ 3113 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3114 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3115 3116 return 0; 3117 } 3118 3119 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3120 { 3121 u8 link_sec; 3122 3123 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3124 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3125 return 0; 3126 3127 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3128 sizeof(link_sec), &link_sec, 3129 HCI_CMD_TIMEOUT); 3130 } 3131 3132 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3133 { 3134 struct hci_cp_write_page_scan_activity cp; 3135 u8 type; 3136 int err = 0; 3137 3138 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3139 return 0; 3140 3141 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3142 return 0; 3143 3144 memset(&cp, 0, sizeof(cp)); 3145 3146 if (enable) { 3147 type = PAGE_SCAN_TYPE_INTERLACED; 3148 3149 /* 160 msec page scan interval */ 3150 cp.interval = cpu_to_le16(0x0100); 3151 } else { 3152 type = hdev->def_page_scan_type; 3153 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3154 } 3155 3156 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3157 3158 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3159 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3160 err = __hci_cmd_sync_status(hdev, 3161 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3162 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3163 if (err) 3164 return err; 3165 } 3166 3167 if (hdev->page_scan_type != type) 3168 err = __hci_cmd_sync_status(hdev, 3169 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3170 sizeof(type), &type, 3171 HCI_CMD_TIMEOUT); 3172 3173 return err; 3174 } 3175 3176 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3177 { 3178 struct bdaddr_list *b; 3179 3180 list_for_each_entry(b, &hdev->accept_list, list) { 3181 struct hci_conn *conn; 3182 3183 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3184 if (!conn) 3185 return true; 3186 3187 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3188 return true; 3189 } 3190 3191 return false; 3192 } 3193 3194 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3195 { 3196 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3197 sizeof(val), &val, 3198 HCI_CMD_TIMEOUT); 3199 } 3200 3201 int hci_update_scan_sync(struct hci_dev *hdev) 3202 { 3203 u8 scan; 3204 3205 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3206 return 0; 3207 3208 if (!hdev_is_powered(hdev)) 3209 return 0; 3210 3211 if (mgmt_powering_down(hdev)) 3212 return 0; 3213 3214 if (hdev->scanning_paused) 3215 return 0; 3216 3217 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3218 disconnected_accept_list_entries(hdev)) 3219 scan = SCAN_PAGE; 3220 else 3221 scan = SCAN_DISABLED; 3222 3223 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3224 scan |= SCAN_INQUIRY; 3225 3226 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3227 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3228 return 0; 3229 3230 return hci_write_scan_enable_sync(hdev, scan); 3231 } 3232 3233 int hci_update_name_sync(struct hci_dev *hdev) 3234 { 3235 struct hci_cp_write_local_name cp; 3236 3237 memset(&cp, 0, sizeof(cp)); 3238 3239 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3240 3241 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3242 sizeof(cp), &cp, 3243 HCI_CMD_TIMEOUT); 3244 } 3245 3246 /* This function perform powered update HCI command sequence after the HCI init 3247 * sequence which end up resetting all states, the sequence is as follows: 3248 * 3249 * HCI_SSP_ENABLED(Enable SSP) 3250 * HCI_LE_ENABLED(Enable LE) 3251 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3252 * Update adv data) 3253 * Enable Authentication 3254 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3255 * Set Name -> Set EIR) 3256 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3257 */ 3258 int hci_powered_update_sync(struct hci_dev *hdev) 3259 { 3260 int err; 3261 3262 /* Register the available SMP channels (BR/EDR and LE) only when 3263 * successfully powering on the controller. This late 3264 * registration is required so that LE SMP can clearly decide if 3265 * the public address or static address is used. 3266 */ 3267 smp_register(hdev); 3268 3269 err = hci_write_ssp_mode_sync(hdev, 0x01); 3270 if (err) 3271 return err; 3272 3273 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3274 if (err) 3275 return err; 3276 3277 err = hci_powered_update_adv_sync(hdev); 3278 if (err) 3279 return err; 3280 3281 err = hci_write_auth_enable_sync(hdev); 3282 if (err) 3283 return err; 3284 3285 if (lmp_bredr_capable(hdev)) { 3286 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3287 hci_write_fast_connectable_sync(hdev, true); 3288 else 3289 hci_write_fast_connectable_sync(hdev, false); 3290 hci_update_scan_sync(hdev); 3291 hci_update_class_sync(hdev); 3292 hci_update_name_sync(hdev); 3293 hci_update_eir_sync(hdev); 3294 } 3295 3296 /* If forcing static address is in use or there is no public 3297 * address use the static address as random address (but skip 3298 * the HCI command if the current random address is already the 3299 * static one. 3300 * 3301 * In case BR/EDR has been disabled on a dual-mode controller 3302 * and a static address has been configured, then use that 3303 * address instead of the public BR/EDR address. 3304 */ 3305 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3306 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3307 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3308 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3309 return hci_set_random_addr_sync(hdev, 3310 &hdev->static_addr); 3311 } 3312 3313 return 0; 3314 } 3315 3316 /** 3317 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3318 * (BD_ADDR) for a HCI device from 3319 * a firmware node property. 3320 * @hdev: The HCI device 3321 * 3322 * Search the firmware node for 'local-bd-address'. 3323 * 3324 * All-zero BD addresses are rejected, because those could be properties 3325 * that exist in the firmware tables, but were not updated by the firmware. For 3326 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3327 */ 3328 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3329 { 3330 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3331 bdaddr_t ba; 3332 int ret; 3333 3334 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3335 (u8 *)&ba, sizeof(ba)); 3336 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3337 return; 3338 3339 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3340 baswap(&hdev->public_addr, &ba); 3341 else 3342 bacpy(&hdev->public_addr, &ba); 3343 } 3344 3345 struct hci_init_stage { 3346 int (*func)(struct hci_dev *hdev); 3347 }; 3348 3349 /* Run init stage NULL terminated function table */ 3350 static int hci_init_stage_sync(struct hci_dev *hdev, 3351 const struct hci_init_stage *stage) 3352 { 3353 size_t i; 3354 3355 for (i = 0; stage[i].func; i++) { 3356 int err; 3357 3358 err = stage[i].func(hdev); 3359 if (err) 3360 return err; 3361 } 3362 3363 return 0; 3364 } 3365 3366 /* Read Local Version */ 3367 static int hci_read_local_version_sync(struct hci_dev *hdev) 3368 { 3369 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3370 0, NULL, HCI_CMD_TIMEOUT); 3371 } 3372 3373 /* Read BD Address */ 3374 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3375 { 3376 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3377 0, NULL, HCI_CMD_TIMEOUT); 3378 } 3379 3380 #define HCI_INIT(_func) \ 3381 { \ 3382 .func = _func, \ 3383 } 3384 3385 static const struct hci_init_stage hci_init0[] = { 3386 /* HCI_OP_READ_LOCAL_VERSION */ 3387 HCI_INIT(hci_read_local_version_sync), 3388 /* HCI_OP_READ_BD_ADDR */ 3389 HCI_INIT(hci_read_bd_addr_sync), 3390 {} 3391 }; 3392 3393 int hci_reset_sync(struct hci_dev *hdev) 3394 { 3395 int err; 3396 3397 set_bit(HCI_RESET, &hdev->flags); 3398 3399 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3400 HCI_CMD_TIMEOUT); 3401 if (err) 3402 return err; 3403 3404 return 0; 3405 } 3406 3407 static int hci_init0_sync(struct hci_dev *hdev) 3408 { 3409 int err; 3410 3411 bt_dev_dbg(hdev, ""); 3412 3413 /* Reset */ 3414 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3415 err = hci_reset_sync(hdev); 3416 if (err) 3417 return err; 3418 } 3419 3420 return hci_init_stage_sync(hdev, hci_init0); 3421 } 3422 3423 static int hci_unconf_init_sync(struct hci_dev *hdev) 3424 { 3425 int err; 3426 3427 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3428 return 0; 3429 3430 err = hci_init0_sync(hdev); 3431 if (err < 0) 3432 return err; 3433 3434 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3435 hci_debugfs_create_basic(hdev); 3436 3437 return 0; 3438 } 3439 3440 /* Read Local Supported Features. */ 3441 static int hci_read_local_features_sync(struct hci_dev *hdev) 3442 { 3443 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3444 0, NULL, HCI_CMD_TIMEOUT); 3445 } 3446 3447 /* BR Controller init stage 1 command sequence */ 3448 static const struct hci_init_stage br_init1[] = { 3449 /* HCI_OP_READ_LOCAL_FEATURES */ 3450 HCI_INIT(hci_read_local_features_sync), 3451 /* HCI_OP_READ_LOCAL_VERSION */ 3452 HCI_INIT(hci_read_local_version_sync), 3453 /* HCI_OP_READ_BD_ADDR */ 3454 HCI_INIT(hci_read_bd_addr_sync), 3455 {} 3456 }; 3457 3458 /* Read Local Commands */ 3459 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3460 { 3461 /* All Bluetooth 1.2 and later controllers should support the 3462 * HCI command for reading the local supported commands. 3463 * 3464 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3465 * but do not have support for this command. If that is the case, 3466 * the driver can quirk the behavior and skip reading the local 3467 * supported commands. 3468 */ 3469 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3470 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3471 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3472 0, NULL, HCI_CMD_TIMEOUT); 3473 3474 return 0; 3475 } 3476 3477 static int hci_init1_sync(struct hci_dev *hdev) 3478 { 3479 int err; 3480 3481 bt_dev_dbg(hdev, ""); 3482 3483 /* Reset */ 3484 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3485 err = hci_reset_sync(hdev); 3486 if (err) 3487 return err; 3488 } 3489 3490 return hci_init_stage_sync(hdev, br_init1); 3491 } 3492 3493 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3494 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3495 { 3496 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3497 0, NULL, HCI_CMD_TIMEOUT); 3498 } 3499 3500 /* Read Class of Device */ 3501 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3502 { 3503 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3504 0, NULL, HCI_CMD_TIMEOUT); 3505 } 3506 3507 /* Read Local Name */ 3508 static int hci_read_local_name_sync(struct hci_dev *hdev) 3509 { 3510 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3511 0, NULL, HCI_CMD_TIMEOUT); 3512 } 3513 3514 /* Read Voice Setting */ 3515 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3516 { 3517 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3518 0, NULL, HCI_CMD_TIMEOUT); 3519 } 3520 3521 /* Read Number of Supported IAC */ 3522 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3523 { 3524 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3525 0, NULL, HCI_CMD_TIMEOUT); 3526 } 3527 3528 /* Read Current IAC LAP */ 3529 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3530 { 3531 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3532 0, NULL, HCI_CMD_TIMEOUT); 3533 } 3534 3535 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3536 u8 cond_type, bdaddr_t *bdaddr, 3537 u8 auto_accept) 3538 { 3539 struct hci_cp_set_event_filter cp; 3540 3541 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3542 return 0; 3543 3544 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3545 return 0; 3546 3547 memset(&cp, 0, sizeof(cp)); 3548 cp.flt_type = flt_type; 3549 3550 if (flt_type != HCI_FLT_CLEAR_ALL) { 3551 cp.cond_type = cond_type; 3552 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3553 cp.addr_conn_flt.auto_accept = auto_accept; 3554 } 3555 3556 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3557 flt_type == HCI_FLT_CLEAR_ALL ? 3558 sizeof(cp.flt_type) : sizeof(cp), &cp, 3559 HCI_CMD_TIMEOUT); 3560 } 3561 3562 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3563 { 3564 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3565 return 0; 3566 3567 /* In theory the state machine should not reach here unless 3568 * a hci_set_event_filter_sync() call succeeds, but we do 3569 * the check both for parity and as a future reminder. 3570 */ 3571 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3572 return 0; 3573 3574 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3575 BDADDR_ANY, 0x00); 3576 } 3577 3578 /* Connection accept timeout ~20 secs */ 3579 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3580 { 3581 __le16 param = cpu_to_le16(0x7d00); 3582 3583 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3584 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3585 } 3586 3587 /* BR Controller init stage 2 command sequence */ 3588 static const struct hci_init_stage br_init2[] = { 3589 /* HCI_OP_READ_BUFFER_SIZE */ 3590 HCI_INIT(hci_read_buffer_size_sync), 3591 /* HCI_OP_READ_CLASS_OF_DEV */ 3592 HCI_INIT(hci_read_dev_class_sync), 3593 /* HCI_OP_READ_LOCAL_NAME */ 3594 HCI_INIT(hci_read_local_name_sync), 3595 /* HCI_OP_READ_VOICE_SETTING */ 3596 HCI_INIT(hci_read_voice_setting_sync), 3597 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3598 HCI_INIT(hci_read_num_supported_iac_sync), 3599 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3600 HCI_INIT(hci_read_current_iac_lap_sync), 3601 /* HCI_OP_SET_EVENT_FLT */ 3602 HCI_INIT(hci_clear_event_filter_sync), 3603 /* HCI_OP_WRITE_CA_TIMEOUT */ 3604 HCI_INIT(hci_write_ca_timeout_sync), 3605 {} 3606 }; 3607 3608 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3609 { 3610 u8 mode = 0x01; 3611 3612 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3613 return 0; 3614 3615 /* When SSP is available, then the host features page 3616 * should also be available as well. However some 3617 * controllers list the max_page as 0 as long as SSP 3618 * has not been enabled. To achieve proper debugging 3619 * output, force the minimum max_page to 1 at least. 3620 */ 3621 hdev->max_page = 0x01; 3622 3623 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3624 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3625 } 3626 3627 static int hci_write_eir_sync(struct hci_dev *hdev) 3628 { 3629 struct hci_cp_write_eir cp; 3630 3631 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3632 return 0; 3633 3634 memset(hdev->eir, 0, sizeof(hdev->eir)); 3635 memset(&cp, 0, sizeof(cp)); 3636 3637 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3638 HCI_CMD_TIMEOUT); 3639 } 3640 3641 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3642 { 3643 u8 mode; 3644 3645 if (!lmp_inq_rssi_capable(hdev) && 3646 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3647 return 0; 3648 3649 /* If Extended Inquiry Result events are supported, then 3650 * they are clearly preferred over Inquiry Result with RSSI 3651 * events. 3652 */ 3653 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3654 3655 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3656 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3657 } 3658 3659 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3660 { 3661 if (!lmp_inq_tx_pwr_capable(hdev)) 3662 return 0; 3663 3664 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3665 0, NULL, HCI_CMD_TIMEOUT); 3666 } 3667 3668 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3669 { 3670 struct hci_cp_read_local_ext_features cp; 3671 3672 if (!lmp_ext_feat_capable(hdev)) 3673 return 0; 3674 3675 memset(&cp, 0, sizeof(cp)); 3676 cp.page = page; 3677 3678 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3679 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3680 } 3681 3682 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3683 { 3684 return hci_read_local_ext_features_sync(hdev, 0x01); 3685 } 3686 3687 /* HCI Controller init stage 2 command sequence */ 3688 static const struct hci_init_stage hci_init2[] = { 3689 /* HCI_OP_READ_LOCAL_COMMANDS */ 3690 HCI_INIT(hci_read_local_cmds_sync), 3691 /* HCI_OP_WRITE_SSP_MODE */ 3692 HCI_INIT(hci_write_ssp_mode_1_sync), 3693 /* HCI_OP_WRITE_EIR */ 3694 HCI_INIT(hci_write_eir_sync), 3695 /* HCI_OP_WRITE_INQUIRY_MODE */ 3696 HCI_INIT(hci_write_inquiry_mode_sync), 3697 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3698 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3699 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3700 HCI_INIT(hci_read_local_ext_features_1_sync), 3701 /* HCI_OP_WRITE_AUTH_ENABLE */ 3702 HCI_INIT(hci_write_auth_enable_sync), 3703 {} 3704 }; 3705 3706 /* Read LE Buffer Size */ 3707 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3708 { 3709 /* Use Read LE Buffer Size V2 if supported */ 3710 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3711 return __hci_cmd_sync_status(hdev, 3712 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3713 0, NULL, HCI_CMD_TIMEOUT); 3714 3715 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3716 0, NULL, HCI_CMD_TIMEOUT); 3717 } 3718 3719 /* Read LE Local Supported Features */ 3720 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3721 { 3722 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3723 0, NULL, HCI_CMD_TIMEOUT); 3724 } 3725 3726 /* Read LE Supported States */ 3727 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3728 { 3729 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3730 0, NULL, HCI_CMD_TIMEOUT); 3731 } 3732 3733 /* LE Controller init stage 2 command sequence */ 3734 static const struct hci_init_stage le_init2[] = { 3735 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3736 HCI_INIT(hci_le_read_local_features_sync), 3737 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3738 HCI_INIT(hci_le_read_buffer_size_sync), 3739 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3740 HCI_INIT(hci_le_read_supported_states_sync), 3741 {} 3742 }; 3743 3744 static int hci_init2_sync(struct hci_dev *hdev) 3745 { 3746 int err; 3747 3748 bt_dev_dbg(hdev, ""); 3749 3750 err = hci_init_stage_sync(hdev, hci_init2); 3751 if (err) 3752 return err; 3753 3754 if (lmp_bredr_capable(hdev)) { 3755 err = hci_init_stage_sync(hdev, br_init2); 3756 if (err) 3757 return err; 3758 } else { 3759 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3760 } 3761 3762 if (lmp_le_capable(hdev)) { 3763 err = hci_init_stage_sync(hdev, le_init2); 3764 if (err) 3765 return err; 3766 /* LE-only controllers have LE implicitly enabled */ 3767 if (!lmp_bredr_capable(hdev)) 3768 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3769 } 3770 3771 return 0; 3772 } 3773 3774 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3775 { 3776 /* The second byte is 0xff instead of 0x9f (two reserved bits 3777 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3778 * command otherwise. 3779 */ 3780 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3781 3782 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3783 * any event mask for pre 1.2 devices. 3784 */ 3785 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3786 return 0; 3787 3788 if (lmp_bredr_capable(hdev)) { 3789 events[4] |= 0x01; /* Flow Specification Complete */ 3790 3791 /* Don't set Disconnect Complete and mode change when 3792 * suspended as that would wakeup the host when disconnecting 3793 * due to suspend. 3794 */ 3795 if (hdev->suspended) { 3796 events[0] &= 0xef; 3797 events[2] &= 0xf7; 3798 } 3799 } else { 3800 /* Use a different default for LE-only devices */ 3801 memset(events, 0, sizeof(events)); 3802 events[1] |= 0x20; /* Command Complete */ 3803 events[1] |= 0x40; /* Command Status */ 3804 events[1] |= 0x80; /* Hardware Error */ 3805 3806 /* If the controller supports the Disconnect command, enable 3807 * the corresponding event. In addition enable packet flow 3808 * control related events. 3809 */ 3810 if (hdev->commands[0] & 0x20) { 3811 /* Don't set Disconnect Complete when suspended as that 3812 * would wakeup the host when disconnecting due to 3813 * suspend. 3814 */ 3815 if (!hdev->suspended) 3816 events[0] |= 0x10; /* Disconnection Complete */ 3817 events[2] |= 0x04; /* Number of Completed Packets */ 3818 events[3] |= 0x02; /* Data Buffer Overflow */ 3819 } 3820 3821 /* If the controller supports the Read Remote Version 3822 * Information command, enable the corresponding event. 3823 */ 3824 if (hdev->commands[2] & 0x80) 3825 events[1] |= 0x08; /* Read Remote Version Information 3826 * Complete 3827 */ 3828 3829 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3830 events[0] |= 0x80; /* Encryption Change */ 3831 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3832 } 3833 } 3834 3835 if (lmp_inq_rssi_capable(hdev) || 3836 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3837 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3838 3839 if (lmp_ext_feat_capable(hdev)) 3840 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3841 3842 if (lmp_esco_capable(hdev)) { 3843 events[5] |= 0x08; /* Synchronous Connection Complete */ 3844 events[5] |= 0x10; /* Synchronous Connection Changed */ 3845 } 3846 3847 if (lmp_sniffsubr_capable(hdev)) 3848 events[5] |= 0x20; /* Sniff Subrating */ 3849 3850 if (lmp_pause_enc_capable(hdev)) 3851 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3852 3853 if (lmp_ext_inq_capable(hdev)) 3854 events[5] |= 0x40; /* Extended Inquiry Result */ 3855 3856 if (lmp_no_flush_capable(hdev)) 3857 events[7] |= 0x01; /* Enhanced Flush Complete */ 3858 3859 if (lmp_lsto_capable(hdev)) 3860 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3861 3862 if (lmp_ssp_capable(hdev)) { 3863 events[6] |= 0x01; /* IO Capability Request */ 3864 events[6] |= 0x02; /* IO Capability Response */ 3865 events[6] |= 0x04; /* User Confirmation Request */ 3866 events[6] |= 0x08; /* User Passkey Request */ 3867 events[6] |= 0x10; /* Remote OOB Data Request */ 3868 events[6] |= 0x20; /* Simple Pairing Complete */ 3869 events[7] |= 0x04; /* User Passkey Notification */ 3870 events[7] |= 0x08; /* Keypress Notification */ 3871 events[7] |= 0x10; /* Remote Host Supported 3872 * Features Notification 3873 */ 3874 } 3875 3876 if (lmp_le_capable(hdev)) 3877 events[7] |= 0x20; /* LE Meta-Event */ 3878 3879 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3880 sizeof(events), events, HCI_CMD_TIMEOUT); 3881 } 3882 3883 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3884 { 3885 struct hci_cp_read_stored_link_key cp; 3886 3887 if (!(hdev->commands[6] & 0x20) || 3888 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3889 return 0; 3890 3891 memset(&cp, 0, sizeof(cp)); 3892 bacpy(&cp.bdaddr, BDADDR_ANY); 3893 cp.read_all = 0x01; 3894 3895 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3896 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3897 } 3898 3899 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3900 { 3901 struct hci_cp_write_def_link_policy cp; 3902 u16 link_policy = 0; 3903 3904 if (!(hdev->commands[5] & 0x10)) 3905 return 0; 3906 3907 memset(&cp, 0, sizeof(cp)); 3908 3909 if (lmp_rswitch_capable(hdev)) 3910 link_policy |= HCI_LP_RSWITCH; 3911 if (lmp_hold_capable(hdev)) 3912 link_policy |= HCI_LP_HOLD; 3913 if (lmp_sniff_capable(hdev)) 3914 link_policy |= HCI_LP_SNIFF; 3915 if (lmp_park_capable(hdev)) 3916 link_policy |= HCI_LP_PARK; 3917 3918 cp.policy = cpu_to_le16(link_policy); 3919 3920 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3921 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3922 } 3923 3924 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3925 { 3926 if (!(hdev->commands[8] & 0x01)) 3927 return 0; 3928 3929 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3930 0, NULL, HCI_CMD_TIMEOUT); 3931 } 3932 3933 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3934 { 3935 if (!(hdev->commands[18] & 0x04) || 3936 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3937 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3938 return 0; 3939 3940 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3941 0, NULL, HCI_CMD_TIMEOUT); 3942 } 3943 3944 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3945 { 3946 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3947 * support the Read Page Scan Type command. Check support for 3948 * this command in the bit mask of supported commands. 3949 */ 3950 if (!(hdev->commands[13] & 0x01)) 3951 return 0; 3952 3953 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3954 0, NULL, HCI_CMD_TIMEOUT); 3955 } 3956 3957 /* Read features beyond page 1 if available */ 3958 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3959 { 3960 u8 page; 3961 int err; 3962 3963 if (!lmp_ext_feat_capable(hdev)) 3964 return 0; 3965 3966 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3967 page++) { 3968 err = hci_read_local_ext_features_sync(hdev, page); 3969 if (err) 3970 return err; 3971 } 3972 3973 return 0; 3974 } 3975 3976 /* HCI Controller init stage 3 command sequence */ 3977 static const struct hci_init_stage hci_init3[] = { 3978 /* HCI_OP_SET_EVENT_MASK */ 3979 HCI_INIT(hci_set_event_mask_sync), 3980 /* HCI_OP_READ_STORED_LINK_KEY */ 3981 HCI_INIT(hci_read_stored_link_key_sync), 3982 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3983 HCI_INIT(hci_setup_link_policy_sync), 3984 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3985 HCI_INIT(hci_read_page_scan_activity_sync), 3986 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3987 HCI_INIT(hci_read_def_err_data_reporting_sync), 3988 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3989 HCI_INIT(hci_read_page_scan_type_sync), 3990 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3991 HCI_INIT(hci_read_local_ext_features_all_sync), 3992 {} 3993 }; 3994 3995 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3996 { 3997 u8 events[8]; 3998 3999 if (!lmp_le_capable(hdev)) 4000 return 0; 4001 4002 memset(events, 0, sizeof(events)); 4003 4004 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4005 events[0] |= 0x10; /* LE Long Term Key Request */ 4006 4007 /* If controller supports the Connection Parameters Request 4008 * Link Layer Procedure, enable the corresponding event. 4009 */ 4010 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4011 /* LE Remote Connection Parameter Request */ 4012 events[0] |= 0x20; 4013 4014 /* If the controller supports the Data Length Extension 4015 * feature, enable the corresponding event. 4016 */ 4017 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4018 events[0] |= 0x40; /* LE Data Length Change */ 4019 4020 /* If the controller supports LL Privacy feature or LE Extended Adv, 4021 * enable the corresponding event. 4022 */ 4023 if (use_enhanced_conn_complete(hdev)) 4024 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4025 4026 /* If the controller supports Extended Scanner Filter 4027 * Policies, enable the corresponding event. 4028 */ 4029 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4030 events[1] |= 0x04; /* LE Direct Advertising Report */ 4031 4032 /* If the controller supports Channel Selection Algorithm #2 4033 * feature, enable the corresponding event. 4034 */ 4035 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4036 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4037 4038 /* If the controller supports the LE Set Scan Enable command, 4039 * enable the corresponding advertising report event. 4040 */ 4041 if (hdev->commands[26] & 0x08) 4042 events[0] |= 0x02; /* LE Advertising Report */ 4043 4044 /* If the controller supports the LE Create Connection 4045 * command, enable the corresponding event. 4046 */ 4047 if (hdev->commands[26] & 0x10) 4048 events[0] |= 0x01; /* LE Connection Complete */ 4049 4050 /* If the controller supports the LE Connection Update 4051 * command, enable the corresponding event. 4052 */ 4053 if (hdev->commands[27] & 0x04) 4054 events[0] |= 0x04; /* LE Connection Update Complete */ 4055 4056 /* If the controller supports the LE Read Remote Used Features 4057 * command, enable the corresponding event. 4058 */ 4059 if (hdev->commands[27] & 0x20) 4060 /* LE Read Remote Used Features Complete */ 4061 events[0] |= 0x08; 4062 4063 /* If the controller supports the LE Read Local P-256 4064 * Public Key command, enable the corresponding event. 4065 */ 4066 if (hdev->commands[34] & 0x02) 4067 /* LE Read Local P-256 Public Key Complete */ 4068 events[0] |= 0x80; 4069 4070 /* If the controller supports the LE Generate DHKey 4071 * command, enable the corresponding event. 4072 */ 4073 if (hdev->commands[34] & 0x04) 4074 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4075 4076 /* If the controller supports the LE Set Default PHY or 4077 * LE Set PHY commands, enable the corresponding event. 4078 */ 4079 if (hdev->commands[35] & (0x20 | 0x40)) 4080 events[1] |= 0x08; /* LE PHY Update Complete */ 4081 4082 /* If the controller supports LE Set Extended Scan Parameters 4083 * and LE Set Extended Scan Enable commands, enable the 4084 * corresponding event. 4085 */ 4086 if (use_ext_scan(hdev)) 4087 events[1] |= 0x10; /* LE Extended Advertising Report */ 4088 4089 /* If the controller supports the LE Extended Advertising 4090 * command, enable the corresponding event. 4091 */ 4092 if (ext_adv_capable(hdev)) 4093 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4094 4095 if (cis_capable(hdev)) { 4096 events[3] |= 0x01; /* LE CIS Established */ 4097 if (cis_peripheral_capable(hdev)) 4098 events[3] |= 0x02; /* LE CIS Request */ 4099 } 4100 4101 if (bis_capable(hdev)) { 4102 events[1] |= 0x20; /* LE PA Report */ 4103 events[1] |= 0x40; /* LE PA Sync Established */ 4104 events[3] |= 0x04; /* LE Create BIG Complete */ 4105 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4106 events[3] |= 0x10; /* LE BIG Sync Established */ 4107 events[3] |= 0x20; /* LE BIG Sync Loss */ 4108 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4109 } 4110 4111 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4112 sizeof(events), events, HCI_CMD_TIMEOUT); 4113 } 4114 4115 /* Read LE Advertising Channel TX Power */ 4116 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4117 { 4118 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4119 /* HCI TS spec forbids mixing of legacy and extended 4120 * advertising commands wherein READ_ADV_TX_POWER is 4121 * also included. So do not call it if extended adv 4122 * is supported otherwise controller will return 4123 * COMMAND_DISALLOWED for extended commands. 4124 */ 4125 return __hci_cmd_sync_status(hdev, 4126 HCI_OP_LE_READ_ADV_TX_POWER, 4127 0, NULL, HCI_CMD_TIMEOUT); 4128 } 4129 4130 return 0; 4131 } 4132 4133 /* Read LE Min/Max Tx Power*/ 4134 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4135 { 4136 if (!(hdev->commands[38] & 0x80) || 4137 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4138 return 0; 4139 4140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4141 0, NULL, HCI_CMD_TIMEOUT); 4142 } 4143 4144 /* Read LE Accept List Size */ 4145 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4146 { 4147 if (!(hdev->commands[26] & 0x40)) 4148 return 0; 4149 4150 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4151 0, NULL, HCI_CMD_TIMEOUT); 4152 } 4153 4154 /* Clear LE Accept List */ 4155 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4156 { 4157 if (!(hdev->commands[26] & 0x80)) 4158 return 0; 4159 4160 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4161 HCI_CMD_TIMEOUT); 4162 } 4163 4164 /* Read LE Resolving List Size */ 4165 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4166 { 4167 if (!(hdev->commands[34] & 0x40)) 4168 return 0; 4169 4170 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4171 0, NULL, HCI_CMD_TIMEOUT); 4172 } 4173 4174 /* Clear LE Resolving List */ 4175 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4176 { 4177 if (!(hdev->commands[34] & 0x20)) 4178 return 0; 4179 4180 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4181 HCI_CMD_TIMEOUT); 4182 } 4183 4184 /* Set RPA timeout */ 4185 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4186 { 4187 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4188 4189 if (!(hdev->commands[35] & 0x04) || 4190 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4191 return 0; 4192 4193 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4194 sizeof(timeout), &timeout, 4195 HCI_CMD_TIMEOUT); 4196 } 4197 4198 /* Read LE Maximum Data Length */ 4199 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4200 { 4201 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4202 return 0; 4203 4204 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4205 HCI_CMD_TIMEOUT); 4206 } 4207 4208 /* Read LE Suggested Default Data Length */ 4209 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4210 { 4211 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4212 return 0; 4213 4214 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4215 HCI_CMD_TIMEOUT); 4216 } 4217 4218 /* Read LE Number of Supported Advertising Sets */ 4219 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4220 { 4221 if (!ext_adv_capable(hdev)) 4222 return 0; 4223 4224 return __hci_cmd_sync_status(hdev, 4225 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4226 0, NULL, HCI_CMD_TIMEOUT); 4227 } 4228 4229 /* Write LE Host Supported */ 4230 static int hci_set_le_support_sync(struct hci_dev *hdev) 4231 { 4232 struct hci_cp_write_le_host_supported cp; 4233 4234 /* LE-only devices do not support explicit enablement */ 4235 if (!lmp_bredr_capable(hdev)) 4236 return 0; 4237 4238 memset(&cp, 0, sizeof(cp)); 4239 4240 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4241 cp.le = 0x01; 4242 cp.simul = 0x00; 4243 } 4244 4245 if (cp.le == lmp_host_le_capable(hdev)) 4246 return 0; 4247 4248 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4249 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4250 } 4251 4252 /* LE Set Host Feature */ 4253 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4254 { 4255 struct hci_cp_le_set_host_feature cp; 4256 4257 if (!iso_capable(hdev)) 4258 return 0; 4259 4260 memset(&cp, 0, sizeof(cp)); 4261 4262 /* Isochronous Channels (Host Support) */ 4263 cp.bit_number = 32; 4264 cp.bit_value = 1; 4265 4266 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4267 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4268 } 4269 4270 /* LE Controller init stage 3 command sequence */ 4271 static const struct hci_init_stage le_init3[] = { 4272 /* HCI_OP_LE_SET_EVENT_MASK */ 4273 HCI_INIT(hci_le_set_event_mask_sync), 4274 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4275 HCI_INIT(hci_le_read_adv_tx_power_sync), 4276 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4277 HCI_INIT(hci_le_read_tx_power_sync), 4278 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4279 HCI_INIT(hci_le_read_accept_list_size_sync), 4280 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4281 HCI_INIT(hci_le_clear_accept_list_sync), 4282 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4283 HCI_INIT(hci_le_read_resolv_list_size_sync), 4284 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4285 HCI_INIT(hci_le_clear_resolv_list_sync), 4286 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4287 HCI_INIT(hci_le_set_rpa_timeout_sync), 4288 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4289 HCI_INIT(hci_le_read_max_data_len_sync), 4290 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4291 HCI_INIT(hci_le_read_def_data_len_sync), 4292 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4293 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4294 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4295 HCI_INIT(hci_set_le_support_sync), 4296 /* HCI_OP_LE_SET_HOST_FEATURE */ 4297 HCI_INIT(hci_le_set_host_feature_sync), 4298 {} 4299 }; 4300 4301 static int hci_init3_sync(struct hci_dev *hdev) 4302 { 4303 int err; 4304 4305 bt_dev_dbg(hdev, ""); 4306 4307 err = hci_init_stage_sync(hdev, hci_init3); 4308 if (err) 4309 return err; 4310 4311 if (lmp_le_capable(hdev)) 4312 return hci_init_stage_sync(hdev, le_init3); 4313 4314 return 0; 4315 } 4316 4317 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4318 { 4319 struct hci_cp_delete_stored_link_key cp; 4320 4321 /* Some Broadcom based Bluetooth controllers do not support the 4322 * Delete Stored Link Key command. They are clearly indicating its 4323 * absence in the bit mask of supported commands. 4324 * 4325 * Check the supported commands and only if the command is marked 4326 * as supported send it. If not supported assume that the controller 4327 * does not have actual support for stored link keys which makes this 4328 * command redundant anyway. 4329 * 4330 * Some controllers indicate that they support handling deleting 4331 * stored link keys, but they don't. The quirk lets a driver 4332 * just disable this command. 4333 */ 4334 if (!(hdev->commands[6] & 0x80) || 4335 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4336 return 0; 4337 4338 memset(&cp, 0, sizeof(cp)); 4339 bacpy(&cp.bdaddr, BDADDR_ANY); 4340 cp.delete_all = 0x01; 4341 4342 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4343 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4344 } 4345 4346 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4347 { 4348 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4349 bool changed = false; 4350 4351 /* Set event mask page 2 if the HCI command for it is supported */ 4352 if (!(hdev->commands[22] & 0x04)) 4353 return 0; 4354 4355 /* If Connectionless Peripheral Broadcast central role is supported 4356 * enable all necessary events for it. 4357 */ 4358 if (lmp_cpb_central_capable(hdev)) { 4359 events[1] |= 0x40; /* Triggered Clock Capture */ 4360 events[1] |= 0x80; /* Synchronization Train Complete */ 4361 events[2] |= 0x08; /* Truncated Page Complete */ 4362 events[2] |= 0x20; /* CPB Channel Map Change */ 4363 changed = true; 4364 } 4365 4366 /* If Connectionless Peripheral Broadcast peripheral role is supported 4367 * enable all necessary events for it. 4368 */ 4369 if (lmp_cpb_peripheral_capable(hdev)) { 4370 events[2] |= 0x01; /* Synchronization Train Received */ 4371 events[2] |= 0x02; /* CPB Receive */ 4372 events[2] |= 0x04; /* CPB Timeout */ 4373 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4374 changed = true; 4375 } 4376 4377 /* Enable Authenticated Payload Timeout Expired event if supported */ 4378 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4379 events[2] |= 0x80; 4380 changed = true; 4381 } 4382 4383 /* Some Broadcom based controllers indicate support for Set Event 4384 * Mask Page 2 command, but then actually do not support it. Since 4385 * the default value is all bits set to zero, the command is only 4386 * required if the event mask has to be changed. In case no change 4387 * to the event mask is needed, skip this command. 4388 */ 4389 if (!changed) 4390 return 0; 4391 4392 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4393 sizeof(events), events, HCI_CMD_TIMEOUT); 4394 } 4395 4396 /* Read local codec list if the HCI command is supported */ 4397 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4398 { 4399 if (hdev->commands[45] & 0x04) 4400 hci_read_supported_codecs_v2(hdev); 4401 else if (hdev->commands[29] & 0x20) 4402 hci_read_supported_codecs(hdev); 4403 4404 return 0; 4405 } 4406 4407 /* Read local pairing options if the HCI command is supported */ 4408 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4409 { 4410 if (!(hdev->commands[41] & 0x08)) 4411 return 0; 4412 4413 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4414 0, NULL, HCI_CMD_TIMEOUT); 4415 } 4416 4417 /* Get MWS transport configuration if the HCI command is supported */ 4418 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4419 { 4420 if (!mws_transport_config_capable(hdev)) 4421 return 0; 4422 4423 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4424 0, NULL, HCI_CMD_TIMEOUT); 4425 } 4426 4427 /* Check for Synchronization Train support */ 4428 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4429 { 4430 if (!lmp_sync_train_capable(hdev)) 4431 return 0; 4432 4433 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4434 0, NULL, HCI_CMD_TIMEOUT); 4435 } 4436 4437 /* Enable Secure Connections if supported and configured */ 4438 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4439 { 4440 u8 support = 0x01; 4441 4442 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4443 !bredr_sc_enabled(hdev)) 4444 return 0; 4445 4446 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4447 sizeof(support), &support, 4448 HCI_CMD_TIMEOUT); 4449 } 4450 4451 /* Set erroneous data reporting if supported to the wideband speech 4452 * setting value 4453 */ 4454 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4455 { 4456 struct hci_cp_write_def_err_data_reporting cp; 4457 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4458 4459 if (!(hdev->commands[18] & 0x08) || 4460 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4461 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4462 return 0; 4463 4464 if (enabled == hdev->err_data_reporting) 4465 return 0; 4466 4467 memset(&cp, 0, sizeof(cp)); 4468 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4469 ERR_DATA_REPORTING_DISABLED; 4470 4471 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4472 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4473 } 4474 4475 static const struct hci_init_stage hci_init4[] = { 4476 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4477 HCI_INIT(hci_delete_stored_link_key_sync), 4478 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4479 HCI_INIT(hci_set_event_mask_page_2_sync), 4480 /* HCI_OP_READ_LOCAL_CODECS */ 4481 HCI_INIT(hci_read_local_codecs_sync), 4482 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4483 HCI_INIT(hci_read_local_pairing_opts_sync), 4484 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4485 HCI_INIT(hci_get_mws_transport_config_sync), 4486 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4487 HCI_INIT(hci_read_sync_train_params_sync), 4488 /* HCI_OP_WRITE_SC_SUPPORT */ 4489 HCI_INIT(hci_write_sc_support_1_sync), 4490 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4491 HCI_INIT(hci_set_err_data_report_sync), 4492 {} 4493 }; 4494 4495 /* Set Suggested Default Data Length to maximum if supported */ 4496 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4497 { 4498 struct hci_cp_le_write_def_data_len cp; 4499 4500 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4501 return 0; 4502 4503 memset(&cp, 0, sizeof(cp)); 4504 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4505 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4506 4507 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4508 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4509 } 4510 4511 /* Set Default PHY parameters if command is supported, enables all supported 4512 * PHYs according to the LE Features bits. 4513 */ 4514 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4515 { 4516 struct hci_cp_le_set_default_phy cp; 4517 4518 if (!(hdev->commands[35] & 0x20)) { 4519 /* If the command is not supported it means only 1M PHY is 4520 * supported. 4521 */ 4522 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4523 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4524 return 0; 4525 } 4526 4527 memset(&cp, 0, sizeof(cp)); 4528 cp.all_phys = 0x00; 4529 cp.tx_phys = HCI_LE_SET_PHY_1M; 4530 cp.rx_phys = HCI_LE_SET_PHY_1M; 4531 4532 /* Enables 2M PHY if supported */ 4533 if (le_2m_capable(hdev)) { 4534 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4535 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4536 } 4537 4538 /* Enables Coded PHY if supported */ 4539 if (le_coded_capable(hdev)) { 4540 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4541 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4542 } 4543 4544 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4545 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4546 } 4547 4548 static const struct hci_init_stage le_init4[] = { 4549 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4550 HCI_INIT(hci_le_set_write_def_data_len_sync), 4551 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4552 HCI_INIT(hci_le_set_default_phy_sync), 4553 {} 4554 }; 4555 4556 static int hci_init4_sync(struct hci_dev *hdev) 4557 { 4558 int err; 4559 4560 bt_dev_dbg(hdev, ""); 4561 4562 err = hci_init_stage_sync(hdev, hci_init4); 4563 if (err) 4564 return err; 4565 4566 if (lmp_le_capable(hdev)) 4567 return hci_init_stage_sync(hdev, le_init4); 4568 4569 return 0; 4570 } 4571 4572 static int hci_init_sync(struct hci_dev *hdev) 4573 { 4574 int err; 4575 4576 err = hci_init1_sync(hdev); 4577 if (err < 0) 4578 return err; 4579 4580 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4581 hci_debugfs_create_basic(hdev); 4582 4583 err = hci_init2_sync(hdev); 4584 if (err < 0) 4585 return err; 4586 4587 err = hci_init3_sync(hdev); 4588 if (err < 0) 4589 return err; 4590 4591 err = hci_init4_sync(hdev); 4592 if (err < 0) 4593 return err; 4594 4595 /* This function is only called when the controller is actually in 4596 * configured state. When the controller is marked as unconfigured, 4597 * this initialization procedure is not run. 4598 * 4599 * It means that it is possible that a controller runs through its 4600 * setup phase and then discovers missing settings. If that is the 4601 * case, then this function will not be called. It then will only 4602 * be called during the config phase. 4603 * 4604 * So only when in setup phase or config phase, create the debugfs 4605 * entries and register the SMP channels. 4606 */ 4607 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4608 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4609 return 0; 4610 4611 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4612 return 0; 4613 4614 hci_debugfs_create_common(hdev); 4615 4616 if (lmp_bredr_capable(hdev)) 4617 hci_debugfs_create_bredr(hdev); 4618 4619 if (lmp_le_capable(hdev)) 4620 hci_debugfs_create_le(hdev); 4621 4622 return 0; 4623 } 4624 4625 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4626 4627 static const struct { 4628 unsigned long quirk; 4629 const char *desc; 4630 } hci_broken_table[] = { 4631 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4632 "HCI Read Local Supported Commands not supported"), 4633 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4634 "HCI Delete Stored Link Key command is advertised, " 4635 "but not supported."), 4636 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4637 "HCI Read Default Erroneous Data Reporting command is " 4638 "advertised, but not supported."), 4639 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4640 "HCI Read Transmit Power Level command is advertised, " 4641 "but not supported."), 4642 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4643 "HCI Set Event Filter command not supported."), 4644 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4645 "HCI Enhanced Setup Synchronous Connection command is " 4646 "advertised, but not supported."), 4647 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4648 "HCI LE Set Random Private Address Timeout command is " 4649 "advertised, but not supported."), 4650 HCI_QUIRK_BROKEN(LE_CODED, 4651 "HCI LE Coded PHY feature bit is set, " 4652 "but its usage is not supported.") 4653 }; 4654 4655 /* This function handles hdev setup stage: 4656 * 4657 * Calls hdev->setup 4658 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4659 */ 4660 static int hci_dev_setup_sync(struct hci_dev *hdev) 4661 { 4662 int ret = 0; 4663 bool invalid_bdaddr; 4664 size_t i; 4665 4666 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4667 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4668 return 0; 4669 4670 bt_dev_dbg(hdev, ""); 4671 4672 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4673 4674 if (hdev->setup) 4675 ret = hdev->setup(hdev); 4676 4677 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4678 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4679 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4680 } 4681 4682 /* The transport driver can set the quirk to mark the 4683 * BD_ADDR invalid before creating the HCI device or in 4684 * its setup callback. 4685 */ 4686 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4687 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4688 if (!ret) { 4689 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4690 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4691 hci_dev_get_bd_addr_from_property(hdev); 4692 4693 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4694 hdev->set_bdaddr) { 4695 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4696 if (!ret) 4697 invalid_bdaddr = false; 4698 } 4699 } 4700 4701 /* The transport driver can set these quirks before 4702 * creating the HCI device or in its setup callback. 4703 * 4704 * For the invalid BD_ADDR quirk it is possible that 4705 * it becomes a valid address if the bootloader does 4706 * provide it (see above). 4707 * 4708 * In case any of them is set, the controller has to 4709 * start up as unconfigured. 4710 */ 4711 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4712 invalid_bdaddr) 4713 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4714 4715 /* For an unconfigured controller it is required to 4716 * read at least the version information provided by 4717 * the Read Local Version Information command. 4718 * 4719 * If the set_bdaddr driver callback is provided, then 4720 * also the original Bluetooth public device address 4721 * will be read using the Read BD Address command. 4722 */ 4723 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4724 return hci_unconf_init_sync(hdev); 4725 4726 return ret; 4727 } 4728 4729 /* This function handles hdev init stage: 4730 * 4731 * Calls hci_dev_setup_sync to perform setup stage 4732 * Calls hci_init_sync to perform HCI command init sequence 4733 */ 4734 static int hci_dev_init_sync(struct hci_dev *hdev) 4735 { 4736 int ret; 4737 4738 bt_dev_dbg(hdev, ""); 4739 4740 atomic_set(&hdev->cmd_cnt, 1); 4741 set_bit(HCI_INIT, &hdev->flags); 4742 4743 ret = hci_dev_setup_sync(hdev); 4744 4745 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4746 /* If public address change is configured, ensure that 4747 * the address gets programmed. If the driver does not 4748 * support changing the public address, fail the power 4749 * on procedure. 4750 */ 4751 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4752 hdev->set_bdaddr) 4753 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4754 else 4755 ret = -EADDRNOTAVAIL; 4756 } 4757 4758 if (!ret) { 4759 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4760 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4761 ret = hci_init_sync(hdev); 4762 if (!ret && hdev->post_init) 4763 ret = hdev->post_init(hdev); 4764 } 4765 } 4766 4767 /* If the HCI Reset command is clearing all diagnostic settings, 4768 * then they need to be reprogrammed after the init procedure 4769 * completed. 4770 */ 4771 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4772 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4773 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4774 ret = hdev->set_diag(hdev, true); 4775 4776 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4777 msft_do_open(hdev); 4778 aosp_do_open(hdev); 4779 } 4780 4781 clear_bit(HCI_INIT, &hdev->flags); 4782 4783 return ret; 4784 } 4785 4786 int hci_dev_open_sync(struct hci_dev *hdev) 4787 { 4788 int ret; 4789 4790 bt_dev_dbg(hdev, ""); 4791 4792 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4793 ret = -ENODEV; 4794 goto done; 4795 } 4796 4797 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4798 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4799 /* Check for rfkill but allow the HCI setup stage to 4800 * proceed (which in itself doesn't cause any RF activity). 4801 */ 4802 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4803 ret = -ERFKILL; 4804 goto done; 4805 } 4806 4807 /* Check for valid public address or a configured static 4808 * random address, but let the HCI setup proceed to 4809 * be able to determine if there is a public address 4810 * or not. 4811 * 4812 * In case of user channel usage, it is not important 4813 * if a public address or static random address is 4814 * available. 4815 */ 4816 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4817 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4818 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4819 ret = -EADDRNOTAVAIL; 4820 goto done; 4821 } 4822 } 4823 4824 if (test_bit(HCI_UP, &hdev->flags)) { 4825 ret = -EALREADY; 4826 goto done; 4827 } 4828 4829 if (hdev->open(hdev)) { 4830 ret = -EIO; 4831 goto done; 4832 } 4833 4834 hci_devcd_reset(hdev); 4835 4836 set_bit(HCI_RUNNING, &hdev->flags); 4837 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4838 4839 ret = hci_dev_init_sync(hdev); 4840 if (!ret) { 4841 hci_dev_hold(hdev); 4842 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4843 hci_adv_instances_set_rpa_expired(hdev, true); 4844 set_bit(HCI_UP, &hdev->flags); 4845 hci_sock_dev_event(hdev, HCI_DEV_UP); 4846 hci_leds_update_powered(hdev, true); 4847 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4848 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4849 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4850 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4851 hci_dev_test_flag(hdev, HCI_MGMT)) { 4852 ret = hci_powered_update_sync(hdev); 4853 mgmt_power_on(hdev, ret); 4854 } 4855 } else { 4856 /* Init failed, cleanup */ 4857 flush_work(&hdev->tx_work); 4858 4859 /* Since hci_rx_work() is possible to awake new cmd_work 4860 * it should be flushed first to avoid unexpected call of 4861 * hci_cmd_work() 4862 */ 4863 flush_work(&hdev->rx_work); 4864 flush_work(&hdev->cmd_work); 4865 4866 skb_queue_purge(&hdev->cmd_q); 4867 skb_queue_purge(&hdev->rx_q); 4868 4869 if (hdev->flush) 4870 hdev->flush(hdev); 4871 4872 if (hdev->sent_cmd) { 4873 cancel_delayed_work_sync(&hdev->cmd_timer); 4874 kfree_skb(hdev->sent_cmd); 4875 hdev->sent_cmd = NULL; 4876 } 4877 4878 if (hdev->req_skb) { 4879 kfree_skb(hdev->req_skb); 4880 hdev->req_skb = NULL; 4881 } 4882 4883 clear_bit(HCI_RUNNING, &hdev->flags); 4884 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4885 4886 hdev->close(hdev); 4887 hdev->flags &= BIT(HCI_RAW); 4888 } 4889 4890 done: 4891 return ret; 4892 } 4893 4894 /* This function requires the caller holds hdev->lock */ 4895 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4896 { 4897 struct hci_conn_params *p; 4898 4899 list_for_each_entry(p, &hdev->le_conn_params, list) { 4900 hci_pend_le_list_del_init(p); 4901 if (p->conn) { 4902 hci_conn_drop(p->conn); 4903 hci_conn_put(p->conn); 4904 p->conn = NULL; 4905 } 4906 } 4907 4908 BT_DBG("All LE pending actions cleared"); 4909 } 4910 4911 static int hci_dev_shutdown(struct hci_dev *hdev) 4912 { 4913 int err = 0; 4914 /* Similar to how we first do setup and then set the exclusive access 4915 * bit for userspace, we must first unset userchannel and then clean up. 4916 * Otherwise, the kernel can't properly use the hci channel to clean up 4917 * the controller (some shutdown routines require sending additional 4918 * commands to the controller for example). 4919 */ 4920 bool was_userchannel = 4921 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4922 4923 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4924 test_bit(HCI_UP, &hdev->flags)) { 4925 /* Execute vendor specific shutdown routine */ 4926 if (hdev->shutdown) 4927 err = hdev->shutdown(hdev); 4928 } 4929 4930 if (was_userchannel) 4931 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4932 4933 return err; 4934 } 4935 4936 int hci_dev_close_sync(struct hci_dev *hdev) 4937 { 4938 bool auto_off; 4939 int err = 0; 4940 4941 bt_dev_dbg(hdev, ""); 4942 4943 cancel_delayed_work(&hdev->power_off); 4944 cancel_delayed_work(&hdev->ncmd_timer); 4945 cancel_delayed_work(&hdev->le_scan_disable); 4946 cancel_delayed_work(&hdev->le_scan_restart); 4947 4948 hci_request_cancel_all(hdev); 4949 4950 if (hdev->adv_instance_timeout) { 4951 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4952 hdev->adv_instance_timeout = 0; 4953 } 4954 4955 err = hci_dev_shutdown(hdev); 4956 4957 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4958 cancel_delayed_work_sync(&hdev->cmd_timer); 4959 return err; 4960 } 4961 4962 hci_leds_update_powered(hdev, false); 4963 4964 /* Flush RX and TX works */ 4965 flush_work(&hdev->tx_work); 4966 flush_work(&hdev->rx_work); 4967 4968 if (hdev->discov_timeout > 0) { 4969 hdev->discov_timeout = 0; 4970 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4971 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4972 } 4973 4974 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4975 cancel_delayed_work(&hdev->service_cache); 4976 4977 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4978 struct adv_info *adv_instance; 4979 4980 cancel_delayed_work_sync(&hdev->rpa_expired); 4981 4982 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4983 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4984 } 4985 4986 /* Avoid potential lockdep warnings from the *_flush() calls by 4987 * ensuring the workqueue is empty up front. 4988 */ 4989 drain_workqueue(hdev->workqueue); 4990 4991 hci_dev_lock(hdev); 4992 4993 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4994 4995 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4996 4997 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4998 hci_dev_test_flag(hdev, HCI_MGMT)) 4999 __mgmt_power_off(hdev); 5000 5001 hci_inquiry_cache_flush(hdev); 5002 hci_pend_le_actions_clear(hdev); 5003 hci_conn_hash_flush(hdev); 5004 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5005 smp_unregister(hdev); 5006 hci_dev_unlock(hdev); 5007 5008 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5009 5010 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5011 aosp_do_close(hdev); 5012 msft_do_close(hdev); 5013 } 5014 5015 if (hdev->flush) 5016 hdev->flush(hdev); 5017 5018 /* Reset device */ 5019 skb_queue_purge(&hdev->cmd_q); 5020 atomic_set(&hdev->cmd_cnt, 1); 5021 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5022 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5023 set_bit(HCI_INIT, &hdev->flags); 5024 hci_reset_sync(hdev); 5025 clear_bit(HCI_INIT, &hdev->flags); 5026 } 5027 5028 /* flush cmd work */ 5029 flush_work(&hdev->cmd_work); 5030 5031 /* Drop queues */ 5032 skb_queue_purge(&hdev->rx_q); 5033 skb_queue_purge(&hdev->cmd_q); 5034 skb_queue_purge(&hdev->raw_q); 5035 5036 /* Drop last sent command */ 5037 if (hdev->sent_cmd) { 5038 cancel_delayed_work_sync(&hdev->cmd_timer); 5039 kfree_skb(hdev->sent_cmd); 5040 hdev->sent_cmd = NULL; 5041 } 5042 5043 /* Drop last request */ 5044 if (hdev->req_skb) { 5045 kfree_skb(hdev->req_skb); 5046 hdev->req_skb = NULL; 5047 } 5048 5049 clear_bit(HCI_RUNNING, &hdev->flags); 5050 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5051 5052 /* After this point our queues are empty and no tasks are scheduled. */ 5053 hdev->close(hdev); 5054 5055 /* Clear flags */ 5056 hdev->flags &= BIT(HCI_RAW); 5057 hci_dev_clear_volatile_flags(hdev); 5058 5059 memset(hdev->eir, 0, sizeof(hdev->eir)); 5060 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5061 bacpy(&hdev->random_addr, BDADDR_ANY); 5062 hci_codec_list_clear(&hdev->local_codecs); 5063 5064 hci_dev_put(hdev); 5065 return err; 5066 } 5067 5068 /* This function perform power on HCI command sequence as follows: 5069 * 5070 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5071 * sequence otherwise run hci_dev_open_sync which will follow with 5072 * hci_powered_update_sync after the init sequence is completed. 5073 */ 5074 static int hci_power_on_sync(struct hci_dev *hdev) 5075 { 5076 int err; 5077 5078 if (test_bit(HCI_UP, &hdev->flags) && 5079 hci_dev_test_flag(hdev, HCI_MGMT) && 5080 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5081 cancel_delayed_work(&hdev->power_off); 5082 return hci_powered_update_sync(hdev); 5083 } 5084 5085 err = hci_dev_open_sync(hdev); 5086 if (err < 0) 5087 return err; 5088 5089 /* During the HCI setup phase, a few error conditions are 5090 * ignored and they need to be checked now. If they are still 5091 * valid, it is important to return the device back off. 5092 */ 5093 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5094 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5095 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5096 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5097 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5098 hci_dev_close_sync(hdev); 5099 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5100 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5101 HCI_AUTO_OFF_TIMEOUT); 5102 } 5103 5104 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5105 /* For unconfigured devices, set the HCI_RAW flag 5106 * so that userspace can easily identify them. 5107 */ 5108 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5109 set_bit(HCI_RAW, &hdev->flags); 5110 5111 /* For fully configured devices, this will send 5112 * the Index Added event. For unconfigured devices, 5113 * it will send Unconfigued Index Added event. 5114 * 5115 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5116 * and no event will be send. 5117 */ 5118 mgmt_index_added(hdev); 5119 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5120 /* When the controller is now configured, then it 5121 * is important to clear the HCI_RAW flag. 5122 */ 5123 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5124 clear_bit(HCI_RAW, &hdev->flags); 5125 5126 /* Powering on the controller with HCI_CONFIG set only 5127 * happens with the transition from unconfigured to 5128 * configured. This will send the Index Added event. 5129 */ 5130 mgmt_index_added(hdev); 5131 } 5132 5133 return 0; 5134 } 5135 5136 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5137 { 5138 struct hci_cp_remote_name_req_cancel cp; 5139 5140 memset(&cp, 0, sizeof(cp)); 5141 bacpy(&cp.bdaddr, addr); 5142 5143 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5144 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5145 } 5146 5147 int hci_stop_discovery_sync(struct hci_dev *hdev) 5148 { 5149 struct discovery_state *d = &hdev->discovery; 5150 struct inquiry_entry *e; 5151 int err; 5152 5153 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5154 5155 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5156 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5157 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5158 0, NULL, HCI_CMD_TIMEOUT); 5159 if (err) 5160 return err; 5161 } 5162 5163 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5164 cancel_delayed_work(&hdev->le_scan_disable); 5165 cancel_delayed_work(&hdev->le_scan_restart); 5166 5167 err = hci_scan_disable_sync(hdev); 5168 if (err) 5169 return err; 5170 } 5171 5172 } else { 5173 err = hci_scan_disable_sync(hdev); 5174 if (err) 5175 return err; 5176 } 5177 5178 /* Resume advertising if it was paused */ 5179 if (use_ll_privacy(hdev)) 5180 hci_resume_advertising_sync(hdev); 5181 5182 /* No further actions needed for LE-only discovery */ 5183 if (d->type == DISCOV_TYPE_LE) 5184 return 0; 5185 5186 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5187 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5188 NAME_PENDING); 5189 if (!e) 5190 return 0; 5191 5192 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5193 } 5194 5195 return 0; 5196 } 5197 5198 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5199 u8 reason) 5200 { 5201 struct hci_cp_disconnect cp; 5202 5203 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5204 /* This is a BIS connection, hci_conn_del will 5205 * do the necessary cleanup. 5206 */ 5207 hci_dev_lock(hdev); 5208 hci_conn_failed(conn, reason); 5209 hci_dev_unlock(hdev); 5210 5211 return 0; 5212 } 5213 5214 memset(&cp, 0, sizeof(cp)); 5215 cp.handle = cpu_to_le16(conn->handle); 5216 cp.reason = reason; 5217 5218 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5219 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5220 * used when suspending or powering off, where we don't want to wait 5221 * for the peer's response. 5222 */ 5223 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5224 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5225 sizeof(cp), &cp, 5226 HCI_EV_DISCONN_COMPLETE, 5227 HCI_CMD_TIMEOUT, NULL); 5228 5229 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5230 HCI_CMD_TIMEOUT); 5231 } 5232 5233 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5234 struct hci_conn *conn, u8 reason) 5235 { 5236 /* Return reason if scanning since the connection shall probably be 5237 * cleanup directly. 5238 */ 5239 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5240 return reason; 5241 5242 if (conn->role == HCI_ROLE_SLAVE || 5243 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5244 return 0; 5245 5246 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5247 0, NULL, HCI_CMD_TIMEOUT); 5248 } 5249 5250 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5251 u8 reason) 5252 { 5253 if (conn->type == LE_LINK) 5254 return hci_le_connect_cancel_sync(hdev, conn, reason); 5255 5256 if (conn->type == ISO_LINK) { 5257 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5258 * page 1857: 5259 * 5260 * If this command is issued for a CIS on the Central and the 5261 * CIS is successfully terminated before being established, 5262 * then an HCI_LE_CIS_Established event shall also be sent for 5263 * this CIS with the Status Operation Cancelled by Host (0x44). 5264 */ 5265 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5266 return hci_disconnect_sync(hdev, conn, reason); 5267 5268 /* CIS with no Create CIS sent have nothing to cancel */ 5269 if (bacmp(&conn->dst, BDADDR_ANY)) 5270 return HCI_ERROR_LOCAL_HOST_TERM; 5271 5272 /* There is no way to cancel a BIS without terminating the BIG 5273 * which is done later on connection cleanup. 5274 */ 5275 return 0; 5276 } 5277 5278 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5279 return 0; 5280 5281 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5282 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5283 * used when suspending or powering off, where we don't want to wait 5284 * for the peer's response. 5285 */ 5286 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5287 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5288 6, &conn->dst, 5289 HCI_EV_CONN_COMPLETE, 5290 HCI_CMD_TIMEOUT, NULL); 5291 5292 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5293 6, &conn->dst, HCI_CMD_TIMEOUT); 5294 } 5295 5296 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5297 u8 reason) 5298 { 5299 struct hci_cp_reject_sync_conn_req cp; 5300 5301 memset(&cp, 0, sizeof(cp)); 5302 bacpy(&cp.bdaddr, &conn->dst); 5303 cp.reason = reason; 5304 5305 /* SCO rejection has its own limited set of 5306 * allowed error values (0x0D-0x0F). 5307 */ 5308 if (reason < 0x0d || reason > 0x0f) 5309 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5310 5311 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5312 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5313 } 5314 5315 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5316 u8 reason) 5317 { 5318 struct hci_cp_le_reject_cis cp; 5319 5320 memset(&cp, 0, sizeof(cp)); 5321 cp.handle = cpu_to_le16(conn->handle); 5322 cp.reason = reason; 5323 5324 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5325 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5326 } 5327 5328 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5329 u8 reason) 5330 { 5331 struct hci_cp_reject_conn_req cp; 5332 5333 if (conn->type == ISO_LINK) 5334 return hci_le_reject_cis_sync(hdev, conn, reason); 5335 5336 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5337 return hci_reject_sco_sync(hdev, conn, reason); 5338 5339 memset(&cp, 0, sizeof(cp)); 5340 bacpy(&cp.bdaddr, &conn->dst); 5341 cp.reason = reason; 5342 5343 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5344 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5345 } 5346 5347 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5348 { 5349 int err = 0; 5350 u16 handle = conn->handle; 5351 bool disconnect = false; 5352 struct hci_conn *c; 5353 5354 switch (conn->state) { 5355 case BT_CONNECTED: 5356 case BT_CONFIG: 5357 err = hci_disconnect_sync(hdev, conn, reason); 5358 break; 5359 case BT_CONNECT: 5360 err = hci_connect_cancel_sync(hdev, conn, reason); 5361 break; 5362 case BT_CONNECT2: 5363 err = hci_reject_conn_sync(hdev, conn, reason); 5364 break; 5365 case BT_OPEN: 5366 case BT_BOUND: 5367 break; 5368 default: 5369 disconnect = true; 5370 break; 5371 } 5372 5373 hci_dev_lock(hdev); 5374 5375 /* Check if the connection has been cleaned up concurrently */ 5376 c = hci_conn_hash_lookup_handle(hdev, handle); 5377 if (!c || c != conn) { 5378 err = 0; 5379 goto unlock; 5380 } 5381 5382 /* Cleanup hci_conn object if it cannot be cancelled as it 5383 * likelly means the controller and host stack are out of sync 5384 * or in case of LE it was still scanning so it can be cleanup 5385 * safely. 5386 */ 5387 if (disconnect) { 5388 conn->state = BT_CLOSED; 5389 hci_disconn_cfm(conn, reason); 5390 hci_conn_del(conn); 5391 } else { 5392 hci_conn_failed(conn, reason); 5393 } 5394 5395 unlock: 5396 hci_dev_unlock(hdev); 5397 return err; 5398 } 5399 5400 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5401 { 5402 struct list_head *head = &hdev->conn_hash.list; 5403 struct hci_conn *conn; 5404 5405 rcu_read_lock(); 5406 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5407 /* Make sure the connection is not freed while unlocking */ 5408 conn = hci_conn_get(conn); 5409 rcu_read_unlock(); 5410 /* Disregard possible errors since hci_conn_del shall have been 5411 * called even in case of errors had occurred since it would 5412 * then cause hci_conn_failed to be called which calls 5413 * hci_conn_del internally. 5414 */ 5415 hci_abort_conn_sync(hdev, conn, reason); 5416 hci_conn_put(conn); 5417 rcu_read_lock(); 5418 } 5419 rcu_read_unlock(); 5420 5421 return 0; 5422 } 5423 5424 /* This function perform power off HCI command sequence as follows: 5425 * 5426 * Clear Advertising 5427 * Stop Discovery 5428 * Disconnect all connections 5429 * hci_dev_close_sync 5430 */ 5431 static int hci_power_off_sync(struct hci_dev *hdev) 5432 { 5433 int err; 5434 5435 /* If controller is already down there is nothing to do */ 5436 if (!test_bit(HCI_UP, &hdev->flags)) 5437 return 0; 5438 5439 if (test_bit(HCI_ISCAN, &hdev->flags) || 5440 test_bit(HCI_PSCAN, &hdev->flags)) { 5441 err = hci_write_scan_enable_sync(hdev, 0x00); 5442 if (err) 5443 return err; 5444 } 5445 5446 err = hci_clear_adv_sync(hdev, NULL, false); 5447 if (err) 5448 return err; 5449 5450 err = hci_stop_discovery_sync(hdev); 5451 if (err) 5452 return err; 5453 5454 /* Terminated due to Power Off */ 5455 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5456 if (err) 5457 return err; 5458 5459 return hci_dev_close_sync(hdev); 5460 } 5461 5462 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5463 { 5464 if (val) 5465 return hci_power_on_sync(hdev); 5466 5467 return hci_power_off_sync(hdev); 5468 } 5469 5470 static int hci_write_iac_sync(struct hci_dev *hdev) 5471 { 5472 struct hci_cp_write_current_iac_lap cp; 5473 5474 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5475 return 0; 5476 5477 memset(&cp, 0, sizeof(cp)); 5478 5479 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5480 /* Limited discoverable mode */ 5481 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5482 cp.iac_lap[0] = 0x00; /* LIAC */ 5483 cp.iac_lap[1] = 0x8b; 5484 cp.iac_lap[2] = 0x9e; 5485 cp.iac_lap[3] = 0x33; /* GIAC */ 5486 cp.iac_lap[4] = 0x8b; 5487 cp.iac_lap[5] = 0x9e; 5488 } else { 5489 /* General discoverable mode */ 5490 cp.num_iac = 1; 5491 cp.iac_lap[0] = 0x33; /* GIAC */ 5492 cp.iac_lap[1] = 0x8b; 5493 cp.iac_lap[2] = 0x9e; 5494 } 5495 5496 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5497 (cp.num_iac * 3) + 1, &cp, 5498 HCI_CMD_TIMEOUT); 5499 } 5500 5501 int hci_update_discoverable_sync(struct hci_dev *hdev) 5502 { 5503 int err = 0; 5504 5505 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5506 err = hci_write_iac_sync(hdev); 5507 if (err) 5508 return err; 5509 5510 err = hci_update_scan_sync(hdev); 5511 if (err) 5512 return err; 5513 5514 err = hci_update_class_sync(hdev); 5515 if (err) 5516 return err; 5517 } 5518 5519 /* Advertising instances don't use the global discoverable setting, so 5520 * only update AD if advertising was enabled using Set Advertising. 5521 */ 5522 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5523 err = hci_update_adv_data_sync(hdev, 0x00); 5524 if (err) 5525 return err; 5526 5527 /* Discoverable mode affects the local advertising 5528 * address in limited privacy mode. 5529 */ 5530 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5531 if (ext_adv_capable(hdev)) 5532 err = hci_start_ext_adv_sync(hdev, 0x00); 5533 else 5534 err = hci_enable_advertising_sync(hdev); 5535 } 5536 } 5537 5538 return err; 5539 } 5540 5541 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5542 { 5543 return hci_update_discoverable_sync(hdev); 5544 } 5545 5546 int hci_update_discoverable(struct hci_dev *hdev) 5547 { 5548 /* Only queue if it would have any effect */ 5549 if (hdev_is_powered(hdev) && 5550 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5551 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5552 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5553 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5554 NULL); 5555 5556 return 0; 5557 } 5558 5559 int hci_update_connectable_sync(struct hci_dev *hdev) 5560 { 5561 int err; 5562 5563 err = hci_update_scan_sync(hdev); 5564 if (err) 5565 return err; 5566 5567 /* If BR/EDR is not enabled and we disable advertising as a 5568 * by-product of disabling connectable, we need to update the 5569 * advertising flags. 5570 */ 5571 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5572 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5573 5574 /* Update the advertising parameters if necessary */ 5575 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5576 !list_empty(&hdev->adv_instances)) { 5577 if (ext_adv_capable(hdev)) 5578 err = hci_start_ext_adv_sync(hdev, 5579 hdev->cur_adv_instance); 5580 else 5581 err = hci_enable_advertising_sync(hdev); 5582 5583 if (err) 5584 return err; 5585 } 5586 5587 return hci_update_passive_scan_sync(hdev); 5588 } 5589 5590 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5591 { 5592 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5593 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5594 struct hci_cp_inquiry cp; 5595 5596 bt_dev_dbg(hdev, ""); 5597 5598 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5599 return 0; 5600 5601 hci_dev_lock(hdev); 5602 hci_inquiry_cache_flush(hdev); 5603 hci_dev_unlock(hdev); 5604 5605 memset(&cp, 0, sizeof(cp)); 5606 5607 if (hdev->discovery.limited) 5608 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5609 else 5610 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5611 5612 cp.length = length; 5613 5614 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5615 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5616 } 5617 5618 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5619 { 5620 u8 own_addr_type; 5621 /* Accept list is not used for discovery */ 5622 u8 filter_policy = 0x00; 5623 /* Default is to enable duplicates filter */ 5624 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5625 int err; 5626 5627 bt_dev_dbg(hdev, ""); 5628 5629 /* If controller is scanning, it means the passive scanning is 5630 * running. Thus, we should temporarily stop it in order to set the 5631 * discovery scanning parameters. 5632 */ 5633 err = hci_scan_disable_sync(hdev); 5634 if (err) { 5635 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5636 return err; 5637 } 5638 5639 cancel_interleave_scan(hdev); 5640 5641 /* Pause address resolution for active scan and stop advertising if 5642 * privacy is enabled. 5643 */ 5644 err = hci_pause_addr_resolution(hdev); 5645 if (err) 5646 goto failed; 5647 5648 /* All active scans will be done with either a resolvable private 5649 * address (when privacy feature has been enabled) or non-resolvable 5650 * private address. 5651 */ 5652 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5653 &own_addr_type); 5654 if (err < 0) 5655 own_addr_type = ADDR_LE_DEV_PUBLIC; 5656 5657 if (hci_is_adv_monitoring(hdev)) { 5658 /* Duplicate filter should be disabled when some advertisement 5659 * monitor is activated, otherwise AdvMon can only receive one 5660 * advertisement for one peer(*) during active scanning, and 5661 * might report loss to these peers. 5662 * 5663 * Note that different controllers have different meanings of 5664 * |duplicate|. Some of them consider packets with the same 5665 * address as duplicate, and others consider packets with the 5666 * same address and the same RSSI as duplicate. Although in the 5667 * latter case we don't need to disable duplicate filter, but 5668 * it is common to have active scanning for a short period of 5669 * time, the power impact should be neglectable. 5670 */ 5671 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5672 } 5673 5674 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5675 hdev->le_scan_window_discovery, 5676 own_addr_type, filter_policy, filter_dup); 5677 if (!err) 5678 return err; 5679 5680 failed: 5681 /* Resume advertising if it was paused */ 5682 if (use_ll_privacy(hdev)) 5683 hci_resume_advertising_sync(hdev); 5684 5685 /* Resume passive scanning */ 5686 hci_update_passive_scan_sync(hdev); 5687 return err; 5688 } 5689 5690 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5691 { 5692 int err; 5693 5694 bt_dev_dbg(hdev, ""); 5695 5696 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5697 if (err) 5698 return err; 5699 5700 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5701 } 5702 5703 int hci_start_discovery_sync(struct hci_dev *hdev) 5704 { 5705 unsigned long timeout; 5706 int err; 5707 5708 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5709 5710 switch (hdev->discovery.type) { 5711 case DISCOV_TYPE_BREDR: 5712 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5713 case DISCOV_TYPE_INTERLEAVED: 5714 /* When running simultaneous discovery, the LE scanning time 5715 * should occupy the whole discovery time sine BR/EDR inquiry 5716 * and LE scanning are scheduled by the controller. 5717 * 5718 * For interleaving discovery in comparison, BR/EDR inquiry 5719 * and LE scanning are done sequentially with separate 5720 * timeouts. 5721 */ 5722 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5723 &hdev->quirks)) { 5724 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5725 /* During simultaneous discovery, we double LE scan 5726 * interval. We must leave some time for the controller 5727 * to do BR/EDR inquiry. 5728 */ 5729 err = hci_start_interleaved_discovery_sync(hdev); 5730 break; 5731 } 5732 5733 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5734 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5735 break; 5736 case DISCOV_TYPE_LE: 5737 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5738 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5739 break; 5740 default: 5741 return -EINVAL; 5742 } 5743 5744 if (err) 5745 return err; 5746 5747 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5748 5749 /* When service discovery is used and the controller has a 5750 * strict duplicate filter, it is important to remember the 5751 * start and duration of the scan. This is required for 5752 * restarting scanning during the discovery phase. 5753 */ 5754 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5755 hdev->discovery.result_filtering) { 5756 hdev->discovery.scan_start = jiffies; 5757 hdev->discovery.scan_duration = timeout; 5758 } 5759 5760 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5761 timeout); 5762 return 0; 5763 } 5764 5765 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5766 { 5767 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5768 case HCI_ADV_MONITOR_EXT_MSFT: 5769 msft_suspend_sync(hdev); 5770 break; 5771 default: 5772 return; 5773 } 5774 } 5775 5776 /* This function disables discovery and mark it as paused */ 5777 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5778 { 5779 int old_state = hdev->discovery.state; 5780 int err; 5781 5782 /* If discovery already stopped/stopping/paused there nothing to do */ 5783 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5784 hdev->discovery_paused) 5785 return 0; 5786 5787 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5788 err = hci_stop_discovery_sync(hdev); 5789 if (err) 5790 return err; 5791 5792 hdev->discovery_paused = true; 5793 hdev->discovery_old_state = old_state; 5794 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5795 5796 return 0; 5797 } 5798 5799 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5800 { 5801 struct bdaddr_list_with_flags *b; 5802 u8 scan = SCAN_DISABLED; 5803 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5804 int err; 5805 5806 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5807 return 0; 5808 5809 /* Some fake CSR controllers lock up after setting this type of 5810 * filter, so avoid sending the request altogether. 5811 */ 5812 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5813 return 0; 5814 5815 /* Always clear event filter when starting */ 5816 hci_clear_event_filter_sync(hdev); 5817 5818 list_for_each_entry(b, &hdev->accept_list, list) { 5819 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5820 continue; 5821 5822 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5823 5824 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5825 HCI_CONN_SETUP_ALLOW_BDADDR, 5826 &b->bdaddr, 5827 HCI_CONN_SETUP_AUTO_ON); 5828 if (err) 5829 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5830 &b->bdaddr); 5831 else 5832 scan = SCAN_PAGE; 5833 } 5834 5835 if (scan && !scanning) 5836 hci_write_scan_enable_sync(hdev, scan); 5837 else if (!scan && scanning) 5838 hci_write_scan_enable_sync(hdev, scan); 5839 5840 return 0; 5841 } 5842 5843 /* This function disables scan (BR and LE) and mark it as paused */ 5844 static int hci_pause_scan_sync(struct hci_dev *hdev) 5845 { 5846 if (hdev->scanning_paused) 5847 return 0; 5848 5849 /* Disable page scan if enabled */ 5850 if (test_bit(HCI_PSCAN, &hdev->flags)) 5851 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5852 5853 hci_scan_disable_sync(hdev); 5854 5855 hdev->scanning_paused = true; 5856 5857 return 0; 5858 } 5859 5860 /* This function performs the HCI suspend procedures in the follow order: 5861 * 5862 * Pause discovery (active scanning/inquiry) 5863 * Pause Directed Advertising/Advertising 5864 * Pause Scanning (passive scanning in case discovery was not active) 5865 * Disconnect all connections 5866 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5867 * otherwise: 5868 * Update event mask (only set events that are allowed to wake up the host) 5869 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5870 * Update passive scanning (lower duty cycle) 5871 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5872 */ 5873 int hci_suspend_sync(struct hci_dev *hdev) 5874 { 5875 int err; 5876 5877 /* If marked as suspended there nothing to do */ 5878 if (hdev->suspended) 5879 return 0; 5880 5881 /* Mark device as suspended */ 5882 hdev->suspended = true; 5883 5884 /* Pause discovery if not already stopped */ 5885 hci_pause_discovery_sync(hdev); 5886 5887 /* Pause other advertisements */ 5888 hci_pause_advertising_sync(hdev); 5889 5890 /* Suspend monitor filters */ 5891 hci_suspend_monitor_sync(hdev); 5892 5893 /* Prevent disconnects from causing scanning to be re-enabled */ 5894 hci_pause_scan_sync(hdev); 5895 5896 if (hci_conn_count(hdev)) { 5897 /* Soft disconnect everything (power off) */ 5898 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5899 if (err) { 5900 /* Set state to BT_RUNNING so resume doesn't notify */ 5901 hdev->suspend_state = BT_RUNNING; 5902 hci_resume_sync(hdev); 5903 return err; 5904 } 5905 5906 /* Update event mask so only the allowed event can wakeup the 5907 * host. 5908 */ 5909 hci_set_event_mask_sync(hdev); 5910 } 5911 5912 /* Only configure accept list if disconnect succeeded and wake 5913 * isn't being prevented. 5914 */ 5915 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5916 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5917 return 0; 5918 } 5919 5920 /* Unpause to take care of updating scanning params */ 5921 hdev->scanning_paused = false; 5922 5923 /* Enable event filter for paired devices */ 5924 hci_update_event_filter_sync(hdev); 5925 5926 /* Update LE passive scan if enabled */ 5927 hci_update_passive_scan_sync(hdev); 5928 5929 /* Pause scan changes again. */ 5930 hdev->scanning_paused = true; 5931 5932 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5933 5934 return 0; 5935 } 5936 5937 /* This function resumes discovery */ 5938 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5939 { 5940 int err; 5941 5942 /* If discovery not paused there nothing to do */ 5943 if (!hdev->discovery_paused) 5944 return 0; 5945 5946 hdev->discovery_paused = false; 5947 5948 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5949 5950 err = hci_start_discovery_sync(hdev); 5951 5952 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5953 DISCOVERY_FINDING); 5954 5955 return err; 5956 } 5957 5958 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5959 { 5960 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5961 case HCI_ADV_MONITOR_EXT_MSFT: 5962 msft_resume_sync(hdev); 5963 break; 5964 default: 5965 return; 5966 } 5967 } 5968 5969 /* This function resume scan and reset paused flag */ 5970 static int hci_resume_scan_sync(struct hci_dev *hdev) 5971 { 5972 if (!hdev->scanning_paused) 5973 return 0; 5974 5975 hdev->scanning_paused = false; 5976 5977 hci_update_scan_sync(hdev); 5978 5979 /* Reset passive scanning to normal */ 5980 hci_update_passive_scan_sync(hdev); 5981 5982 return 0; 5983 } 5984 5985 /* This function performs the HCI suspend procedures in the follow order: 5986 * 5987 * Restore event mask 5988 * Clear event filter 5989 * Update passive scanning (normal duty cycle) 5990 * Resume Directed Advertising/Advertising 5991 * Resume discovery (active scanning/inquiry) 5992 */ 5993 int hci_resume_sync(struct hci_dev *hdev) 5994 { 5995 /* If not marked as suspended there nothing to do */ 5996 if (!hdev->suspended) 5997 return 0; 5998 5999 hdev->suspended = false; 6000 6001 /* Restore event mask */ 6002 hci_set_event_mask_sync(hdev); 6003 6004 /* Clear any event filters and restore scan state */ 6005 hci_clear_event_filter_sync(hdev); 6006 6007 /* Resume scanning */ 6008 hci_resume_scan_sync(hdev); 6009 6010 /* Resume monitor filters */ 6011 hci_resume_monitor_sync(hdev); 6012 6013 /* Resume other advertisements */ 6014 hci_resume_advertising_sync(hdev); 6015 6016 /* Resume discovery */ 6017 hci_resume_discovery_sync(hdev); 6018 6019 return 0; 6020 } 6021 6022 static bool conn_use_rpa(struct hci_conn *conn) 6023 { 6024 struct hci_dev *hdev = conn->hdev; 6025 6026 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6027 } 6028 6029 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6030 struct hci_conn *conn) 6031 { 6032 struct hci_cp_le_set_ext_adv_params cp; 6033 int err; 6034 bdaddr_t random_addr; 6035 u8 own_addr_type; 6036 6037 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6038 &own_addr_type); 6039 if (err) 6040 return err; 6041 6042 /* Set require_privacy to false so that the remote device has a 6043 * chance of identifying us. 6044 */ 6045 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6046 &own_addr_type, &random_addr); 6047 if (err) 6048 return err; 6049 6050 memset(&cp, 0, sizeof(cp)); 6051 6052 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6053 cp.channel_map = hdev->le_adv_channel_map; 6054 cp.tx_power = HCI_TX_POWER_INVALID; 6055 cp.primary_phy = HCI_ADV_PHY_1M; 6056 cp.secondary_phy = HCI_ADV_PHY_1M; 6057 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6058 cp.own_addr_type = own_addr_type; 6059 cp.peer_addr_type = conn->dst_type; 6060 bacpy(&cp.peer_addr, &conn->dst); 6061 6062 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6063 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6064 * does not supports advertising data when the advertising set already 6065 * contains some, the controller shall return erroc code 'Invalid 6066 * HCI Command Parameters(0x12). 6067 * So it is required to remove adv set for handle 0x00. since we use 6068 * instance 0 for directed adv. 6069 */ 6070 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6071 if (err) 6072 return err; 6073 6074 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6075 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6076 if (err) 6077 return err; 6078 6079 /* Check if random address need to be updated */ 6080 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6081 bacmp(&random_addr, BDADDR_ANY) && 6082 bacmp(&random_addr, &hdev->random_addr)) { 6083 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6084 &random_addr); 6085 if (err) 6086 return err; 6087 } 6088 6089 return hci_enable_ext_advertising_sync(hdev, 0x00); 6090 } 6091 6092 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6093 struct hci_conn *conn) 6094 { 6095 struct hci_cp_le_set_adv_param cp; 6096 u8 status; 6097 u8 own_addr_type; 6098 u8 enable; 6099 6100 if (ext_adv_capable(hdev)) 6101 return hci_le_ext_directed_advertising_sync(hdev, conn); 6102 6103 /* Clear the HCI_LE_ADV bit temporarily so that the 6104 * hci_update_random_address knows that it's safe to go ahead 6105 * and write a new random address. The flag will be set back on 6106 * as soon as the SET_ADV_ENABLE HCI command completes. 6107 */ 6108 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6109 6110 /* Set require_privacy to false so that the remote device has a 6111 * chance of identifying us. 6112 */ 6113 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6114 &own_addr_type); 6115 if (status) 6116 return status; 6117 6118 memset(&cp, 0, sizeof(cp)); 6119 6120 /* Some controllers might reject command if intervals are not 6121 * within range for undirected advertising. 6122 * BCM20702A0 is known to be affected by this. 6123 */ 6124 cp.min_interval = cpu_to_le16(0x0020); 6125 cp.max_interval = cpu_to_le16(0x0020); 6126 6127 cp.type = LE_ADV_DIRECT_IND; 6128 cp.own_address_type = own_addr_type; 6129 cp.direct_addr_type = conn->dst_type; 6130 bacpy(&cp.direct_addr, &conn->dst); 6131 cp.channel_map = hdev->le_adv_channel_map; 6132 6133 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6134 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6135 if (status) 6136 return status; 6137 6138 enable = 0x01; 6139 6140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6141 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6142 } 6143 6144 static void set_ext_conn_params(struct hci_conn *conn, 6145 struct hci_cp_le_ext_conn_param *p) 6146 { 6147 struct hci_dev *hdev = conn->hdev; 6148 6149 memset(p, 0, sizeof(*p)); 6150 6151 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6152 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6153 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6154 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6155 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6156 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6157 p->min_ce_len = cpu_to_le16(0x0000); 6158 p->max_ce_len = cpu_to_le16(0x0000); 6159 } 6160 6161 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6162 struct hci_conn *conn, u8 own_addr_type) 6163 { 6164 struct hci_cp_le_ext_create_conn *cp; 6165 struct hci_cp_le_ext_conn_param *p; 6166 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6167 u32 plen; 6168 6169 cp = (void *)data; 6170 p = (void *)cp->data; 6171 6172 memset(cp, 0, sizeof(*cp)); 6173 6174 bacpy(&cp->peer_addr, &conn->dst); 6175 cp->peer_addr_type = conn->dst_type; 6176 cp->own_addr_type = own_addr_type; 6177 6178 plen = sizeof(*cp); 6179 6180 if (scan_1m(hdev)) { 6181 cp->phys |= LE_SCAN_PHY_1M; 6182 set_ext_conn_params(conn, p); 6183 6184 p++; 6185 plen += sizeof(*p); 6186 } 6187 6188 if (scan_2m(hdev)) { 6189 cp->phys |= LE_SCAN_PHY_2M; 6190 set_ext_conn_params(conn, p); 6191 6192 p++; 6193 plen += sizeof(*p); 6194 } 6195 6196 if (scan_coded(hdev)) { 6197 cp->phys |= LE_SCAN_PHY_CODED; 6198 set_ext_conn_params(conn, p); 6199 6200 plen += sizeof(*p); 6201 } 6202 6203 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6204 plen, data, 6205 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6206 conn->conn_timeout, NULL); 6207 } 6208 6209 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6210 { 6211 struct hci_cp_le_create_conn cp; 6212 struct hci_conn_params *params; 6213 u8 own_addr_type; 6214 int err; 6215 6216 /* If requested to connect as peripheral use directed advertising */ 6217 if (conn->role == HCI_ROLE_SLAVE) { 6218 /* If we're active scanning and simultaneous roles is not 6219 * enabled simply reject the attempt. 6220 */ 6221 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6222 hdev->le_scan_type == LE_SCAN_ACTIVE && 6223 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6224 hci_conn_del(conn); 6225 return -EBUSY; 6226 } 6227 6228 /* Pause advertising while doing directed advertising. */ 6229 hci_pause_advertising_sync(hdev); 6230 6231 err = hci_le_directed_advertising_sync(hdev, conn); 6232 goto done; 6233 } 6234 6235 /* Disable advertising if simultaneous roles is not in use. */ 6236 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6237 hci_pause_advertising_sync(hdev); 6238 6239 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6240 if (params) { 6241 conn->le_conn_min_interval = params->conn_min_interval; 6242 conn->le_conn_max_interval = params->conn_max_interval; 6243 conn->le_conn_latency = params->conn_latency; 6244 conn->le_supv_timeout = params->supervision_timeout; 6245 } else { 6246 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6247 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6248 conn->le_conn_latency = hdev->le_conn_latency; 6249 conn->le_supv_timeout = hdev->le_supv_timeout; 6250 } 6251 6252 /* If controller is scanning, we stop it since some controllers are 6253 * not able to scan and connect at the same time. Also set the 6254 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6255 * handler for scan disabling knows to set the correct discovery 6256 * state. 6257 */ 6258 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6259 hci_scan_disable_sync(hdev); 6260 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6261 } 6262 6263 /* Update random address, but set require_privacy to false so 6264 * that we never connect with an non-resolvable address. 6265 */ 6266 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6267 &own_addr_type); 6268 if (err) 6269 goto done; 6270 6271 if (use_ext_conn(hdev)) { 6272 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6273 goto done; 6274 } 6275 6276 memset(&cp, 0, sizeof(cp)); 6277 6278 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6279 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6280 6281 bacpy(&cp.peer_addr, &conn->dst); 6282 cp.peer_addr_type = conn->dst_type; 6283 cp.own_address_type = own_addr_type; 6284 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6285 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6286 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6287 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6288 cp.min_ce_len = cpu_to_le16(0x0000); 6289 cp.max_ce_len = cpu_to_le16(0x0000); 6290 6291 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6292 * 6293 * If this event is unmasked and the HCI_LE_Connection_Complete event 6294 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6295 * sent when a new connection has been created. 6296 */ 6297 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6298 sizeof(cp), &cp, 6299 use_enhanced_conn_complete(hdev) ? 6300 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6301 HCI_EV_LE_CONN_COMPLETE, 6302 conn->conn_timeout, NULL); 6303 6304 done: 6305 if (err == -ETIMEDOUT) 6306 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6307 6308 /* Re-enable advertising after the connection attempt is finished. */ 6309 hci_resume_advertising_sync(hdev); 6310 return err; 6311 } 6312 6313 int hci_le_create_cis_sync(struct hci_dev *hdev) 6314 { 6315 struct { 6316 struct hci_cp_le_create_cis cp; 6317 struct hci_cis cis[0x1f]; 6318 } cmd; 6319 struct hci_conn *conn; 6320 u8 cig = BT_ISO_QOS_CIG_UNSET; 6321 6322 /* The spec allows only one pending LE Create CIS command at a time. If 6323 * the command is pending now, don't do anything. We check for pending 6324 * connections after each CIS Established event. 6325 * 6326 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6327 * page 2566: 6328 * 6329 * If the Host issues this command before all the 6330 * HCI_LE_CIS_Established events from the previous use of the 6331 * command have been generated, the Controller shall return the 6332 * error code Command Disallowed (0x0C). 6333 * 6334 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6335 * page 2567: 6336 * 6337 * When the Controller receives the HCI_LE_Create_CIS command, the 6338 * Controller sends the HCI_Command_Status event to the Host. An 6339 * HCI_LE_CIS_Established event will be generated for each CIS when it 6340 * is established or if it is disconnected or considered lost before 6341 * being established; until all the events are generated, the command 6342 * remains pending. 6343 */ 6344 6345 memset(&cmd, 0, sizeof(cmd)); 6346 6347 hci_dev_lock(hdev); 6348 6349 rcu_read_lock(); 6350 6351 /* Wait until previous Create CIS has completed */ 6352 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6353 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6354 goto done; 6355 } 6356 6357 /* Find CIG with all CIS ready */ 6358 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6359 struct hci_conn *link; 6360 6361 if (hci_conn_check_create_cis(conn)) 6362 continue; 6363 6364 cig = conn->iso_qos.ucast.cig; 6365 6366 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6367 if (hci_conn_check_create_cis(link) > 0 && 6368 link->iso_qos.ucast.cig == cig && 6369 link->state != BT_CONNECTED) { 6370 cig = BT_ISO_QOS_CIG_UNSET; 6371 break; 6372 } 6373 } 6374 6375 if (cig != BT_ISO_QOS_CIG_UNSET) 6376 break; 6377 } 6378 6379 if (cig == BT_ISO_QOS_CIG_UNSET) 6380 goto done; 6381 6382 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6383 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6384 6385 if (hci_conn_check_create_cis(conn) || 6386 conn->iso_qos.ucast.cig != cig) 6387 continue; 6388 6389 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6390 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6391 cis->cis_handle = cpu_to_le16(conn->handle); 6392 cmd.cp.num_cis++; 6393 6394 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6395 break; 6396 } 6397 6398 done: 6399 rcu_read_unlock(); 6400 6401 hci_dev_unlock(hdev); 6402 6403 if (!cmd.cp.num_cis) 6404 return 0; 6405 6406 /* Wait for HCI_LE_CIS_Established */ 6407 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6408 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6409 cmd.cp.num_cis, &cmd, 6410 HCI_EVT_LE_CIS_ESTABLISHED, 6411 conn->conn_timeout, NULL); 6412 } 6413 6414 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6415 { 6416 struct hci_cp_le_remove_cig cp; 6417 6418 memset(&cp, 0, sizeof(cp)); 6419 cp.cig_id = handle; 6420 6421 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6422 &cp, HCI_CMD_TIMEOUT); 6423 } 6424 6425 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6426 { 6427 struct hci_cp_le_big_term_sync cp; 6428 6429 memset(&cp, 0, sizeof(cp)); 6430 cp.handle = handle; 6431 6432 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6433 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6434 } 6435 6436 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6437 { 6438 struct hci_cp_le_pa_term_sync cp; 6439 6440 memset(&cp, 0, sizeof(cp)); 6441 cp.handle = cpu_to_le16(handle); 6442 6443 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6444 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6445 } 6446 6447 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6448 bool use_rpa, struct adv_info *adv_instance, 6449 u8 *own_addr_type, bdaddr_t *rand_addr) 6450 { 6451 int err; 6452 6453 bacpy(rand_addr, BDADDR_ANY); 6454 6455 /* If privacy is enabled use a resolvable private address. If 6456 * current RPA has expired then generate a new one. 6457 */ 6458 if (use_rpa) { 6459 /* If Controller supports LL Privacy use own address type is 6460 * 0x03 6461 */ 6462 if (use_ll_privacy(hdev)) 6463 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6464 else 6465 *own_addr_type = ADDR_LE_DEV_RANDOM; 6466 6467 if (adv_instance) { 6468 if (adv_rpa_valid(adv_instance)) 6469 return 0; 6470 } else { 6471 if (rpa_valid(hdev)) 6472 return 0; 6473 } 6474 6475 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6476 if (err < 0) { 6477 bt_dev_err(hdev, "failed to generate new RPA"); 6478 return err; 6479 } 6480 6481 bacpy(rand_addr, &hdev->rpa); 6482 6483 return 0; 6484 } 6485 6486 /* In case of required privacy without resolvable private address, 6487 * use an non-resolvable private address. This is useful for 6488 * non-connectable advertising. 6489 */ 6490 if (require_privacy) { 6491 bdaddr_t nrpa; 6492 6493 while (true) { 6494 /* The non-resolvable private address is generated 6495 * from random six bytes with the two most significant 6496 * bits cleared. 6497 */ 6498 get_random_bytes(&nrpa, 6); 6499 nrpa.b[5] &= 0x3f; 6500 6501 /* The non-resolvable private address shall not be 6502 * equal to the public address. 6503 */ 6504 if (bacmp(&hdev->bdaddr, &nrpa)) 6505 break; 6506 } 6507 6508 *own_addr_type = ADDR_LE_DEV_RANDOM; 6509 bacpy(rand_addr, &nrpa); 6510 6511 return 0; 6512 } 6513 6514 /* No privacy so use a public address. */ 6515 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6516 6517 return 0; 6518 } 6519 6520 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6521 { 6522 u8 instance = PTR_UINT(data); 6523 6524 return hci_update_adv_data_sync(hdev, instance); 6525 } 6526 6527 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6528 { 6529 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6530 UINT_PTR(instance), NULL); 6531 } 6532