xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 1f0d40d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_codec.h"
16 #include "hci_debugfs.h"
17 #include "smp.h"
18 #include "eir.h"
19 #include "msft.h"
20 #include "aosp.h"
21 #include "leds.h"
22 
23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24 				  struct sk_buff *skb)
25 {
26 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
27 
28 	if (hdev->req_status != HCI_REQ_PEND)
29 		return;
30 
31 	hdev->req_result = result;
32 	hdev->req_status = HCI_REQ_DONE;
33 
34 	if (skb) {
35 		struct sock *sk = hci_skb_sk(skb);
36 
37 		/* Drop sk reference if set */
38 		if (sk)
39 			sock_put(sk);
40 
41 		hdev->req_skb = skb_get(skb);
42 	}
43 
44 	wake_up_interruptible(&hdev->req_wait_q);
45 }
46 
47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
48 					  u32 plen, const void *param,
49 					  struct sock *sk)
50 {
51 	int len = HCI_COMMAND_HDR_SIZE + plen;
52 	struct hci_command_hdr *hdr;
53 	struct sk_buff *skb;
54 
55 	skb = bt_skb_alloc(len, GFP_ATOMIC);
56 	if (!skb)
57 		return NULL;
58 
59 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
60 	hdr->opcode = cpu_to_le16(opcode);
61 	hdr->plen   = plen;
62 
63 	if (plen)
64 		skb_put_data(skb, param, plen);
65 
66 	bt_dev_dbg(hdev, "skb len %d", skb->len);
67 
68 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
69 	hci_skb_opcode(skb) = opcode;
70 
71 	/* Grab a reference if command needs to be associated with a sock (e.g.
72 	 * likely mgmt socket that initiated the command).
73 	 */
74 	if (sk) {
75 		hci_skb_sk(skb) = sk;
76 		sock_hold(sk);
77 	}
78 
79 	return skb;
80 }
81 
82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
83 			     const void *param, u8 event, struct sock *sk)
84 {
85 	struct hci_dev *hdev = req->hdev;
86 	struct sk_buff *skb;
87 
88 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
89 
90 	/* If an error occurred during request building, there is no point in
91 	 * queueing the HCI command. We can simply return.
92 	 */
93 	if (req->err)
94 		return;
95 
96 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
97 	if (!skb) {
98 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
99 			   opcode);
100 		req->err = -ENOMEM;
101 		return;
102 	}
103 
104 	if (skb_queue_empty(&req->cmd_q))
105 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
106 
107 	hci_skb_event(skb) = event;
108 
109 	skb_queue_tail(&req->cmd_q, skb);
110 }
111 
112 static int hci_cmd_sync_run(struct hci_request *req)
113 {
114 	struct hci_dev *hdev = req->hdev;
115 	struct sk_buff *skb;
116 	unsigned long flags;
117 
118 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
119 
120 	/* If an error occurred during request building, remove all HCI
121 	 * commands queued on the HCI request queue.
122 	 */
123 	if (req->err) {
124 		skb_queue_purge(&req->cmd_q);
125 		return req->err;
126 	}
127 
128 	/* Do not allow empty requests */
129 	if (skb_queue_empty(&req->cmd_q))
130 		return -ENODATA;
131 
132 	skb = skb_peek_tail(&req->cmd_q);
133 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
134 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
135 
136 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
137 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
138 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
139 
140 	queue_work(hdev->workqueue, &hdev->cmd_work);
141 
142 	return 0;
143 }
144 
145 /* This function requires the caller holds hdev->req_lock. */
146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
147 				  const void *param, u8 event, u32 timeout,
148 				  struct sock *sk)
149 {
150 	struct hci_request req;
151 	struct sk_buff *skb;
152 	int err = 0;
153 
154 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
155 
156 	hci_req_init(&req, hdev);
157 
158 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
159 
160 	hdev->req_status = HCI_REQ_PEND;
161 
162 	err = hci_cmd_sync_run(&req);
163 	if (err < 0)
164 		return ERR_PTR(err);
165 
166 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
167 					       hdev->req_status != HCI_REQ_PEND,
168 					       timeout);
169 
170 	if (err == -ERESTARTSYS)
171 		return ERR_PTR(-EINTR);
172 
173 	switch (hdev->req_status) {
174 	case HCI_REQ_DONE:
175 		err = -bt_to_errno(hdev->req_result);
176 		break;
177 
178 	case HCI_REQ_CANCELED:
179 		err = -hdev->req_result;
180 		break;
181 
182 	default:
183 		err = -ETIMEDOUT;
184 		break;
185 	}
186 
187 	hdev->req_status = 0;
188 	hdev->req_result = 0;
189 	skb = hdev->req_skb;
190 	hdev->req_skb = NULL;
191 
192 	bt_dev_dbg(hdev, "end: err %d", err);
193 
194 	if (err < 0) {
195 		kfree_skb(skb);
196 		return ERR_PTR(err);
197 	}
198 
199 	return skb;
200 }
201 EXPORT_SYMBOL(__hci_cmd_sync_sk);
202 
203 /* This function requires the caller holds hdev->req_lock. */
204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
205 			       const void *param, u32 timeout)
206 {
207 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
208 }
209 EXPORT_SYMBOL(__hci_cmd_sync);
210 
211 /* Send HCI command and wait for command complete event */
212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
213 			     const void *param, u32 timeout)
214 {
215 	struct sk_buff *skb;
216 
217 	if (!test_bit(HCI_UP, &hdev->flags))
218 		return ERR_PTR(-ENETDOWN);
219 
220 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
221 
222 	hci_req_sync_lock(hdev);
223 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
224 	hci_req_sync_unlock(hdev);
225 
226 	return skb;
227 }
228 EXPORT_SYMBOL(hci_cmd_sync);
229 
230 /* This function requires the caller holds hdev->req_lock. */
231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
232 				  const void *param, u8 event, u32 timeout)
233 {
234 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
235 				 NULL);
236 }
237 EXPORT_SYMBOL(__hci_cmd_sync_ev);
238 
239 /* This function requires the caller holds hdev->req_lock. */
240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
241 			     const void *param, u8 event, u32 timeout,
242 			     struct sock *sk)
243 {
244 	struct sk_buff *skb;
245 	u8 status;
246 
247 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
248 	if (IS_ERR(skb)) {
249 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
250 				PTR_ERR(skb));
251 		return PTR_ERR(skb);
252 	}
253 
254 	/* If command return a status event skb will be set to NULL as there are
255 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
256 	 * the actual error would be found with PTR_ERR(skb).
257 	 */
258 	if (!skb)
259 		return 0;
260 
261 	status = skb->data[0];
262 
263 	kfree_skb(skb);
264 
265 	return status;
266 }
267 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
268 
269 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
270 			  const void *param, u32 timeout)
271 {
272 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
273 					NULL);
274 }
275 EXPORT_SYMBOL(__hci_cmd_sync_status);
276 
277 static void hci_cmd_sync_work(struct work_struct *work)
278 {
279 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
280 
281 	bt_dev_dbg(hdev, "");
282 
283 	/* Dequeue all entries and run them */
284 	while (1) {
285 		struct hci_cmd_sync_work_entry *entry;
286 
287 		mutex_lock(&hdev->cmd_sync_work_lock);
288 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
289 						 struct hci_cmd_sync_work_entry,
290 						 list);
291 		if (entry)
292 			list_del(&entry->list);
293 		mutex_unlock(&hdev->cmd_sync_work_lock);
294 
295 		if (!entry)
296 			break;
297 
298 		bt_dev_dbg(hdev, "entry %p", entry);
299 
300 		if (entry->func) {
301 			int err;
302 
303 			hci_req_sync_lock(hdev);
304 			err = entry->func(hdev, entry->data);
305 			if (entry->destroy)
306 				entry->destroy(hdev, entry->data, err);
307 			hci_req_sync_unlock(hdev);
308 		}
309 
310 		kfree(entry);
311 	}
312 }
313 
314 static void hci_cmd_sync_cancel_work(struct work_struct *work)
315 {
316 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
317 
318 	cancel_delayed_work_sync(&hdev->cmd_timer);
319 	cancel_delayed_work_sync(&hdev->ncmd_timer);
320 	atomic_set(&hdev->cmd_cnt, 1);
321 
322 	wake_up_interruptible(&hdev->req_wait_q);
323 }
324 
325 static int hci_scan_disable_sync(struct hci_dev *hdev);
326 static int scan_disable_sync(struct hci_dev *hdev, void *data)
327 {
328 	return hci_scan_disable_sync(hdev);
329 }
330 
331 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
332 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
333 {
334 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
335 }
336 
337 static void le_scan_disable(struct work_struct *work)
338 {
339 	struct hci_dev *hdev = container_of(work, struct hci_dev,
340 					    le_scan_disable.work);
341 	int status;
342 
343 	bt_dev_dbg(hdev, "");
344 	hci_dev_lock(hdev);
345 
346 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
347 		goto _return;
348 
349 	cancel_delayed_work(&hdev->le_scan_restart);
350 
351 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
352 	if (status) {
353 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
354 		goto _return;
355 	}
356 
357 	hdev->discovery.scan_start = 0;
358 
359 	/* If we were running LE only scan, change discovery state. If
360 	 * we were running both LE and BR/EDR inquiry simultaneously,
361 	 * and BR/EDR inquiry is already finished, stop discovery,
362 	 * otherwise BR/EDR inquiry will stop discovery when finished.
363 	 * If we will resolve remote device name, do not change
364 	 * discovery state.
365 	 */
366 
367 	if (hdev->discovery.type == DISCOV_TYPE_LE)
368 		goto discov_stopped;
369 
370 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
371 		goto _return;
372 
373 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
374 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
375 		    hdev->discovery.state != DISCOVERY_RESOLVING)
376 			goto discov_stopped;
377 
378 		goto _return;
379 	}
380 
381 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
382 	if (status) {
383 		bt_dev_err(hdev, "inquiry failed: status %d", status);
384 		goto discov_stopped;
385 	}
386 
387 	goto _return;
388 
389 discov_stopped:
390 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
391 
392 _return:
393 	hci_dev_unlock(hdev);
394 }
395 
396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
397 				       u8 filter_dup);
398 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
399 {
400 	/* If controller is not scanning we are done. */
401 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
402 		return 0;
403 
404 	if (hdev->scanning_paused) {
405 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
406 		return 0;
407 	}
408 
409 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
410 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
411 					   LE_SCAN_FILTER_DUP_ENABLE);
412 }
413 
414 static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
415 {
416 	return hci_le_scan_restart_sync(hdev);
417 }
418 
419 static void le_scan_restart(struct work_struct *work)
420 {
421 	struct hci_dev *hdev = container_of(work, struct hci_dev,
422 					    le_scan_restart.work);
423 	unsigned long timeout, duration, scan_start, now;
424 	int status;
425 
426 	bt_dev_dbg(hdev, "");
427 
428 	hci_dev_lock(hdev);
429 
430 	status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
431 	if (status) {
432 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
433 			   status);
434 		goto unlock;
435 	}
436 
437 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
438 	    !hdev->discovery.scan_start)
439 		goto unlock;
440 
441 	/* When the scan was started, hdev->le_scan_disable has been queued
442 	 * after duration from scan_start. During scan restart this job
443 	 * has been canceled, and we need to queue it again after proper
444 	 * timeout, to make sure that scan does not run indefinitely.
445 	 */
446 	duration = hdev->discovery.scan_duration;
447 	scan_start = hdev->discovery.scan_start;
448 	now = jiffies;
449 	if (now - scan_start <= duration) {
450 		int elapsed;
451 
452 		if (now >= scan_start)
453 			elapsed = now - scan_start;
454 		else
455 			elapsed = ULONG_MAX - scan_start + now;
456 
457 		timeout = duration - elapsed;
458 	} else {
459 		timeout = 0;
460 	}
461 
462 	queue_delayed_work(hdev->req_workqueue,
463 			   &hdev->le_scan_disable, timeout);
464 
465 unlock:
466 	hci_dev_unlock(hdev);
467 }
468 
469 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
470 {
471 	bt_dev_dbg(hdev, "");
472 
473 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
474 	    list_empty(&hdev->adv_instances))
475 		return 0;
476 
477 	if (hdev->cur_adv_instance) {
478 		return hci_schedule_adv_instance_sync(hdev,
479 						      hdev->cur_adv_instance,
480 						      true);
481 	} else {
482 		if (ext_adv_capable(hdev)) {
483 			hci_start_ext_adv_sync(hdev, 0x00);
484 		} else {
485 			hci_update_adv_data_sync(hdev, 0x00);
486 			hci_update_scan_rsp_data_sync(hdev, 0x00);
487 			hci_enable_advertising_sync(hdev);
488 		}
489 	}
490 
491 	return 0;
492 }
493 
494 static void reenable_adv(struct work_struct *work)
495 {
496 	struct hci_dev *hdev = container_of(work, struct hci_dev,
497 					    reenable_adv_work);
498 	int status;
499 
500 	bt_dev_dbg(hdev, "");
501 
502 	hci_dev_lock(hdev);
503 
504 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
505 	if (status)
506 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
507 
508 	hci_dev_unlock(hdev);
509 }
510 
511 static void cancel_adv_timeout(struct hci_dev *hdev)
512 {
513 	if (hdev->adv_instance_timeout) {
514 		hdev->adv_instance_timeout = 0;
515 		cancel_delayed_work(&hdev->adv_instance_expire);
516 	}
517 }
518 
519 /* For a single instance:
520  * - force == true: The instance will be removed even when its remaining
521  *   lifetime is not zero.
522  * - force == false: the instance will be deactivated but kept stored unless
523  *   the remaining lifetime is zero.
524  *
525  * For instance == 0x00:
526  * - force == true: All instances will be removed regardless of their timeout
527  *   setting.
528  * - force == false: Only instances that have a timeout will be removed.
529  */
530 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
531 				u8 instance, bool force)
532 {
533 	struct adv_info *adv_instance, *n, *next_instance = NULL;
534 	int err;
535 	u8 rem_inst;
536 
537 	/* Cancel any timeout concerning the removed instance(s). */
538 	if (!instance || hdev->cur_adv_instance == instance)
539 		cancel_adv_timeout(hdev);
540 
541 	/* Get the next instance to advertise BEFORE we remove
542 	 * the current one. This can be the same instance again
543 	 * if there is only one instance.
544 	 */
545 	if (instance && hdev->cur_adv_instance == instance)
546 		next_instance = hci_get_next_instance(hdev, instance);
547 
548 	if (instance == 0x00) {
549 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
550 					 list) {
551 			if (!(force || adv_instance->timeout))
552 				continue;
553 
554 			rem_inst = adv_instance->instance;
555 			err = hci_remove_adv_instance(hdev, rem_inst);
556 			if (!err)
557 				mgmt_advertising_removed(sk, hdev, rem_inst);
558 		}
559 	} else {
560 		adv_instance = hci_find_adv_instance(hdev, instance);
561 
562 		if (force || (adv_instance && adv_instance->timeout &&
563 			      !adv_instance->remaining_time)) {
564 			/* Don't advertise a removed instance. */
565 			if (next_instance &&
566 			    next_instance->instance == instance)
567 				next_instance = NULL;
568 
569 			err = hci_remove_adv_instance(hdev, instance);
570 			if (!err)
571 				mgmt_advertising_removed(sk, hdev, instance);
572 		}
573 	}
574 
575 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
576 		return 0;
577 
578 	if (next_instance && !ext_adv_capable(hdev))
579 		return hci_schedule_adv_instance_sync(hdev,
580 						      next_instance->instance,
581 						      false);
582 
583 	return 0;
584 }
585 
586 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
587 {
588 	u8 instance = *(u8 *)data;
589 
590 	kfree(data);
591 
592 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
593 
594 	if (list_empty(&hdev->adv_instances))
595 		return hci_disable_advertising_sync(hdev);
596 
597 	return 0;
598 }
599 
600 static void adv_timeout_expire(struct work_struct *work)
601 {
602 	u8 *inst_ptr;
603 	struct hci_dev *hdev = container_of(work, struct hci_dev,
604 					    adv_instance_expire.work);
605 
606 	bt_dev_dbg(hdev, "");
607 
608 	hci_dev_lock(hdev);
609 
610 	hdev->adv_instance_timeout = 0;
611 
612 	if (hdev->cur_adv_instance == 0x00)
613 		goto unlock;
614 
615 	inst_ptr = kmalloc(1, GFP_KERNEL);
616 	if (!inst_ptr)
617 		goto unlock;
618 
619 	*inst_ptr = hdev->cur_adv_instance;
620 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
621 
622 unlock:
623 	hci_dev_unlock(hdev);
624 }
625 
626 void hci_cmd_sync_init(struct hci_dev *hdev)
627 {
628 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
629 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
630 	mutex_init(&hdev->cmd_sync_work_lock);
631 
632 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
633 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
634 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
635 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
636 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
637 }
638 
639 void hci_cmd_sync_clear(struct hci_dev *hdev)
640 {
641 	struct hci_cmd_sync_work_entry *entry, *tmp;
642 
643 	cancel_work_sync(&hdev->cmd_sync_work);
644 	cancel_work_sync(&hdev->reenable_adv_work);
645 
646 	mutex_lock(&hdev->cmd_sync_work_lock);
647 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
648 		if (entry->destroy)
649 			entry->destroy(hdev, entry->data, -ECANCELED);
650 
651 		list_del(&entry->list);
652 		kfree(entry);
653 	}
654 	mutex_unlock(&hdev->cmd_sync_work_lock);
655 }
656 
657 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
658 {
659 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
660 
661 	if (hdev->req_status == HCI_REQ_PEND) {
662 		hdev->req_result = err;
663 		hdev->req_status = HCI_REQ_CANCELED;
664 
665 		cancel_delayed_work_sync(&hdev->cmd_timer);
666 		cancel_delayed_work_sync(&hdev->ncmd_timer);
667 		atomic_set(&hdev->cmd_cnt, 1);
668 
669 		wake_up_interruptible(&hdev->req_wait_q);
670 	}
671 }
672 
673 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
674 {
675 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
676 
677 	if (hdev->req_status == HCI_REQ_PEND) {
678 		hdev->req_result = err;
679 		hdev->req_status = HCI_REQ_CANCELED;
680 
681 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
682 	}
683 }
684 EXPORT_SYMBOL(hci_cmd_sync_cancel);
685 
686 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
687 		       void *data, hci_cmd_sync_work_destroy_t destroy)
688 {
689 	struct hci_cmd_sync_work_entry *entry;
690 
691 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
692 		return -ENODEV;
693 
694 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
695 	if (!entry)
696 		return -ENOMEM;
697 
698 	entry->func = func;
699 	entry->data = data;
700 	entry->destroy = destroy;
701 
702 	mutex_lock(&hdev->cmd_sync_work_lock);
703 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
704 	mutex_unlock(&hdev->cmd_sync_work_lock);
705 
706 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
707 
708 	return 0;
709 }
710 EXPORT_SYMBOL(hci_cmd_sync_queue);
711 
712 int hci_update_eir_sync(struct hci_dev *hdev)
713 {
714 	struct hci_cp_write_eir cp;
715 
716 	bt_dev_dbg(hdev, "");
717 
718 	if (!hdev_is_powered(hdev))
719 		return 0;
720 
721 	if (!lmp_ext_inq_capable(hdev))
722 		return 0;
723 
724 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
725 		return 0;
726 
727 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
728 		return 0;
729 
730 	memset(&cp, 0, sizeof(cp));
731 
732 	eir_create(hdev, cp.data);
733 
734 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
735 		return 0;
736 
737 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
738 
739 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
740 				     HCI_CMD_TIMEOUT);
741 }
742 
743 static u8 get_service_classes(struct hci_dev *hdev)
744 {
745 	struct bt_uuid *uuid;
746 	u8 val = 0;
747 
748 	list_for_each_entry(uuid, &hdev->uuids, list)
749 		val |= uuid->svc_hint;
750 
751 	return val;
752 }
753 
754 int hci_update_class_sync(struct hci_dev *hdev)
755 {
756 	u8 cod[3];
757 
758 	bt_dev_dbg(hdev, "");
759 
760 	if (!hdev_is_powered(hdev))
761 		return 0;
762 
763 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
764 		return 0;
765 
766 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
767 		return 0;
768 
769 	cod[0] = hdev->minor_class;
770 	cod[1] = hdev->major_class;
771 	cod[2] = get_service_classes(hdev);
772 
773 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
774 		cod[1] |= 0x20;
775 
776 	if (memcmp(cod, hdev->dev_class, 3) == 0)
777 		return 0;
778 
779 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
780 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
781 }
782 
783 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
784 {
785 	/* If there is no connection we are OK to advertise. */
786 	if (hci_conn_num(hdev, LE_LINK) == 0)
787 		return true;
788 
789 	/* Check le_states if there is any connection in peripheral role. */
790 	if (hdev->conn_hash.le_num_peripheral > 0) {
791 		/* Peripheral connection state and non connectable mode
792 		 * bit 20.
793 		 */
794 		if (!connectable && !(hdev->le_states[2] & 0x10))
795 			return false;
796 
797 		/* Peripheral connection state and connectable mode bit 38
798 		 * and scannable bit 21.
799 		 */
800 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
801 				    !(hdev->le_states[2] & 0x20)))
802 			return false;
803 	}
804 
805 	/* Check le_states if there is any connection in central role. */
806 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
807 		/* Central connection state and non connectable mode bit 18. */
808 		if (!connectable && !(hdev->le_states[2] & 0x02))
809 			return false;
810 
811 		/* Central connection state and connectable mode bit 35 and
812 		 * scannable 19.
813 		 */
814 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
815 				    !(hdev->le_states[2] & 0x08)))
816 			return false;
817 	}
818 
819 	return true;
820 }
821 
822 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
823 {
824 	/* If privacy is not enabled don't use RPA */
825 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
826 		return false;
827 
828 	/* If basic privacy mode is enabled use RPA */
829 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
830 		return true;
831 
832 	/* If limited privacy mode is enabled don't use RPA if we're
833 	 * both discoverable and bondable.
834 	 */
835 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
836 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
837 		return false;
838 
839 	/* We're neither bondable nor discoverable in the limited
840 	 * privacy mode, therefore use RPA.
841 	 */
842 	return true;
843 }
844 
845 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
846 {
847 	/* If we're advertising or initiating an LE connection we can't
848 	 * go ahead and change the random address at this time. This is
849 	 * because the eventual initiator address used for the
850 	 * subsequently created connection will be undefined (some
851 	 * controllers use the new address and others the one we had
852 	 * when the operation started).
853 	 *
854 	 * In this kind of scenario skip the update and let the random
855 	 * address be updated at the next cycle.
856 	 */
857 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
858 	    hci_lookup_le_connect(hdev)) {
859 		bt_dev_dbg(hdev, "Deferring random address update");
860 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
861 		return 0;
862 	}
863 
864 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
865 				     6, rpa, HCI_CMD_TIMEOUT);
866 }
867 
868 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
869 				   bool rpa, u8 *own_addr_type)
870 {
871 	int err;
872 
873 	/* If privacy is enabled use a resolvable private address. If
874 	 * current RPA has expired or there is something else than
875 	 * the current RPA in use, then generate a new one.
876 	 */
877 	if (rpa) {
878 		/* If Controller supports LL Privacy use own address type is
879 		 * 0x03
880 		 */
881 		if (use_ll_privacy(hdev))
882 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
883 		else
884 			*own_addr_type = ADDR_LE_DEV_RANDOM;
885 
886 		/* Check if RPA is valid */
887 		if (rpa_valid(hdev))
888 			return 0;
889 
890 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
891 		if (err < 0) {
892 			bt_dev_err(hdev, "failed to generate new RPA");
893 			return err;
894 		}
895 
896 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
897 		if (err)
898 			return err;
899 
900 		return 0;
901 	}
902 
903 	/* In case of required privacy without resolvable private address,
904 	 * use an non-resolvable private address. This is useful for active
905 	 * scanning and non-connectable advertising.
906 	 */
907 	if (require_privacy) {
908 		bdaddr_t nrpa;
909 
910 		while (true) {
911 			/* The non-resolvable private address is generated
912 			 * from random six bytes with the two most significant
913 			 * bits cleared.
914 			 */
915 			get_random_bytes(&nrpa, 6);
916 			nrpa.b[5] &= 0x3f;
917 
918 			/* The non-resolvable private address shall not be
919 			 * equal to the public address.
920 			 */
921 			if (bacmp(&hdev->bdaddr, &nrpa))
922 				break;
923 		}
924 
925 		*own_addr_type = ADDR_LE_DEV_RANDOM;
926 
927 		return hci_set_random_addr_sync(hdev, &nrpa);
928 	}
929 
930 	/* If forcing static address is in use or there is no public
931 	 * address use the static address as random address (but skip
932 	 * the HCI command if the current random address is already the
933 	 * static one.
934 	 *
935 	 * In case BR/EDR has been disabled on a dual-mode controller
936 	 * and a static address has been configured, then use that
937 	 * address instead of the public BR/EDR address.
938 	 */
939 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
940 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
941 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
942 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
943 		*own_addr_type = ADDR_LE_DEV_RANDOM;
944 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
945 			return hci_set_random_addr_sync(hdev,
946 							&hdev->static_addr);
947 		return 0;
948 	}
949 
950 	/* Neither privacy nor static address is being used so use a
951 	 * public address.
952 	 */
953 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
954 
955 	return 0;
956 }
957 
958 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
959 {
960 	struct hci_cp_le_set_ext_adv_enable *cp;
961 	struct hci_cp_ext_adv_set *set;
962 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
963 	u8 size;
964 
965 	/* If request specifies an instance that doesn't exist, fail */
966 	if (instance > 0) {
967 		struct adv_info *adv;
968 
969 		adv = hci_find_adv_instance(hdev, instance);
970 		if (!adv)
971 			return -EINVAL;
972 
973 		/* If not enabled there is nothing to do */
974 		if (!adv->enabled)
975 			return 0;
976 	}
977 
978 	memset(data, 0, sizeof(data));
979 
980 	cp = (void *)data;
981 	set = (void *)cp->data;
982 
983 	/* Instance 0x00 indicates all advertising instances will be disabled */
984 	cp->num_of_sets = !!instance;
985 	cp->enable = 0x00;
986 
987 	set->handle = instance;
988 
989 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
990 
991 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
992 				     size, data, HCI_CMD_TIMEOUT);
993 }
994 
995 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
996 					    bdaddr_t *random_addr)
997 {
998 	struct hci_cp_le_set_adv_set_rand_addr cp;
999 	int err;
1000 
1001 	if (!instance) {
1002 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1003 		 * hdev->random_addr to track its address so whenever it needs
1004 		 * to be updated this also set the random address since
1005 		 * hdev->random_addr is shared with scan state machine.
1006 		 */
1007 		err = hci_set_random_addr_sync(hdev, random_addr);
1008 		if (err)
1009 			return err;
1010 	}
1011 
1012 	memset(&cp, 0, sizeof(cp));
1013 
1014 	cp.handle = instance;
1015 	bacpy(&cp.bdaddr, random_addr);
1016 
1017 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1018 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1019 }
1020 
1021 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1022 {
1023 	struct hci_cp_le_set_ext_adv_params cp;
1024 	bool connectable;
1025 	u32 flags;
1026 	bdaddr_t random_addr;
1027 	u8 own_addr_type;
1028 	int err;
1029 	struct adv_info *adv;
1030 	bool secondary_adv;
1031 
1032 	if (instance > 0) {
1033 		adv = hci_find_adv_instance(hdev, instance);
1034 		if (!adv)
1035 			return -EINVAL;
1036 	} else {
1037 		adv = NULL;
1038 	}
1039 
1040 	/* Updating parameters of an active instance will return a
1041 	 * Command Disallowed error, so we must first disable the
1042 	 * instance if it is active.
1043 	 */
1044 	if (adv && !adv->pending) {
1045 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1046 		if (err)
1047 			return err;
1048 	}
1049 
1050 	flags = hci_adv_instance_flags(hdev, instance);
1051 
1052 	/* If the "connectable" instance flag was not set, then choose between
1053 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1054 	 */
1055 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1056 		      mgmt_get_connectable(hdev);
1057 
1058 	if (!is_advertising_allowed(hdev, connectable))
1059 		return -EPERM;
1060 
1061 	/* Set require_privacy to true only when non-connectable
1062 	 * advertising is used. In that case it is fine to use a
1063 	 * non-resolvable private address.
1064 	 */
1065 	err = hci_get_random_address(hdev, !connectable,
1066 				     adv_use_rpa(hdev, flags), adv,
1067 				     &own_addr_type, &random_addr);
1068 	if (err < 0)
1069 		return err;
1070 
1071 	memset(&cp, 0, sizeof(cp));
1072 
1073 	if (adv) {
1074 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1075 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1076 		cp.tx_power = adv->tx_power;
1077 	} else {
1078 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1079 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1080 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1081 	}
1082 
1083 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1084 
1085 	if (connectable) {
1086 		if (secondary_adv)
1087 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1088 		else
1089 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1090 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1091 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1092 		if (secondary_adv)
1093 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1094 		else
1095 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1096 	} else {
1097 		if (secondary_adv)
1098 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1099 		else
1100 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1101 	}
1102 
1103 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1104 	 * contains the peer’s Identity Address and the Peer_Address_Type
1105 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1106 	 * These parameters are used to locate the corresponding local IRK in
1107 	 * the resolving list; this IRK is used to generate their own address
1108 	 * used in the advertisement.
1109 	 */
1110 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1111 		hci_copy_identity_address(hdev, &cp.peer_addr,
1112 					  &cp.peer_addr_type);
1113 
1114 	cp.own_addr_type = own_addr_type;
1115 	cp.channel_map = hdev->le_adv_channel_map;
1116 	cp.handle = instance;
1117 
1118 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1119 		cp.primary_phy = HCI_ADV_PHY_1M;
1120 		cp.secondary_phy = HCI_ADV_PHY_2M;
1121 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1122 		cp.primary_phy = HCI_ADV_PHY_CODED;
1123 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1124 	} else {
1125 		/* In all other cases use 1M */
1126 		cp.primary_phy = HCI_ADV_PHY_1M;
1127 		cp.secondary_phy = HCI_ADV_PHY_1M;
1128 	}
1129 
1130 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1131 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1132 	if (err)
1133 		return err;
1134 
1135 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1136 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1137 	    bacmp(&random_addr, BDADDR_ANY)) {
1138 		/* Check if random address need to be updated */
1139 		if (adv) {
1140 			if (!bacmp(&random_addr, &adv->random_addr))
1141 				return 0;
1142 		} else {
1143 			if (!bacmp(&random_addr, &hdev->random_addr))
1144 				return 0;
1145 		}
1146 
1147 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1148 							&random_addr);
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1155 {
1156 	struct {
1157 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1158 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1159 	} pdu;
1160 	u8 len;
1161 	struct adv_info *adv = NULL;
1162 	int err;
1163 
1164 	memset(&pdu, 0, sizeof(pdu));
1165 
1166 	if (instance) {
1167 		adv = hci_find_adv_instance(hdev, instance);
1168 		if (!adv || !adv->scan_rsp_changed)
1169 			return 0;
1170 	}
1171 
1172 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1173 
1174 	pdu.cp.handle = instance;
1175 	pdu.cp.length = len;
1176 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1177 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1178 
1179 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1180 				    sizeof(pdu.cp) + len, &pdu.cp,
1181 				    HCI_CMD_TIMEOUT);
1182 	if (err)
1183 		return err;
1184 
1185 	if (adv) {
1186 		adv->scan_rsp_changed = false;
1187 	} else {
1188 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1189 		hdev->scan_rsp_data_len = len;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1196 {
1197 	struct hci_cp_le_set_scan_rsp_data cp;
1198 	u8 len;
1199 
1200 	memset(&cp, 0, sizeof(cp));
1201 
1202 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1203 
1204 	if (hdev->scan_rsp_data_len == len &&
1205 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1206 		return 0;
1207 
1208 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1209 	hdev->scan_rsp_data_len = len;
1210 
1211 	cp.length = len;
1212 
1213 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1214 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1215 }
1216 
1217 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1218 {
1219 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1220 		return 0;
1221 
1222 	if (ext_adv_capable(hdev))
1223 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1224 
1225 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1226 }
1227 
1228 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1229 {
1230 	struct hci_cp_le_set_ext_adv_enable *cp;
1231 	struct hci_cp_ext_adv_set *set;
1232 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1233 	struct adv_info *adv;
1234 
1235 	if (instance > 0) {
1236 		adv = hci_find_adv_instance(hdev, instance);
1237 		if (!adv)
1238 			return -EINVAL;
1239 		/* If already enabled there is nothing to do */
1240 		if (adv->enabled)
1241 			return 0;
1242 	} else {
1243 		adv = NULL;
1244 	}
1245 
1246 	cp = (void *)data;
1247 	set = (void *)cp->data;
1248 
1249 	memset(cp, 0, sizeof(*cp));
1250 
1251 	cp->enable = 0x01;
1252 	cp->num_of_sets = 0x01;
1253 
1254 	memset(set, 0, sizeof(*set));
1255 
1256 	set->handle = instance;
1257 
1258 	/* Set duration per instance since controller is responsible for
1259 	 * scheduling it.
1260 	 */
1261 	if (adv && adv->timeout) {
1262 		u16 duration = adv->timeout * MSEC_PER_SEC;
1263 
1264 		/* Time = N * 10 ms */
1265 		set->duration = cpu_to_le16(duration / 10);
1266 	}
1267 
1268 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1269 				     sizeof(*cp) +
1270 				     sizeof(*set) * cp->num_of_sets,
1271 				     data, HCI_CMD_TIMEOUT);
1272 }
1273 
1274 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1275 {
1276 	int err;
1277 
1278 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1279 	if (err)
1280 		return err;
1281 
1282 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1283 	if (err)
1284 		return err;
1285 
1286 	return hci_enable_ext_advertising_sync(hdev, instance);
1287 }
1288 
1289 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1290 {
1291 	struct hci_cp_le_set_per_adv_enable cp;
1292 
1293 	/* If periodic advertising already disabled there is nothing to do. */
1294 	if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1295 		return 0;
1296 
1297 	memset(&cp, 0, sizeof(cp));
1298 
1299 	cp.enable = 0x00;
1300 	cp.handle = instance;
1301 
1302 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1303 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1304 }
1305 
1306 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1307 				       u16 min_interval, u16 max_interval)
1308 {
1309 	struct hci_cp_le_set_per_adv_params cp;
1310 
1311 	memset(&cp, 0, sizeof(cp));
1312 
1313 	if (!min_interval)
1314 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1315 
1316 	if (!max_interval)
1317 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1318 
1319 	cp.handle = instance;
1320 	cp.min_interval = cpu_to_le16(min_interval);
1321 	cp.max_interval = cpu_to_le16(max_interval);
1322 	cp.periodic_properties = 0x0000;
1323 
1324 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1325 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1326 }
1327 
1328 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1329 {
1330 	struct {
1331 		struct hci_cp_le_set_per_adv_data cp;
1332 		u8 data[HCI_MAX_PER_AD_LENGTH];
1333 	} pdu;
1334 	u8 len;
1335 
1336 	memset(&pdu, 0, sizeof(pdu));
1337 
1338 	if (instance) {
1339 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1340 
1341 		if (!adv || !adv->periodic)
1342 			return 0;
1343 	}
1344 
1345 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1346 
1347 	pdu.cp.length = len;
1348 	pdu.cp.handle = instance;
1349 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1350 
1351 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1352 				     sizeof(pdu.cp) + len, &pdu,
1353 				     HCI_CMD_TIMEOUT);
1354 }
1355 
1356 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1357 {
1358 	struct hci_cp_le_set_per_adv_enable cp;
1359 
1360 	/* If periodic advertising already enabled there is nothing to do. */
1361 	if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV))
1362 		return 0;
1363 
1364 	memset(&cp, 0, sizeof(cp));
1365 
1366 	cp.enable = 0x01;
1367 	cp.handle = instance;
1368 
1369 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1370 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1371 }
1372 
1373 /* Checks if periodic advertising data contains a Basic Announcement and if it
1374  * does generates a Broadcast ID and add Broadcast Announcement.
1375  */
1376 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1377 {
1378 	u8 bid[3];
1379 	u8 ad[4 + 3];
1380 
1381 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1382 	 * advertising so it cannot used for the likes of Broadcast Announcement
1383 	 * as it can be overwritten at any point.
1384 	 */
1385 	if (!adv)
1386 		return 0;
1387 
1388 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1389 	 * there is nothing to do.
1390 	 */
1391 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1392 				  0x1851, NULL))
1393 		return 0;
1394 
1395 	/* Check if advertising data already has a Broadcast Announcement since
1396 	 * the process may want to control the Broadcast ID directly and in that
1397 	 * case the kernel shall no interfere.
1398 	 */
1399 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1400 				 NULL))
1401 		return 0;
1402 
1403 	/* Generate Broadcast ID */
1404 	get_random_bytes(bid, sizeof(bid));
1405 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1406 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1407 
1408 	return hci_update_adv_data_sync(hdev, adv->instance);
1409 }
1410 
1411 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1412 			   u8 *data, u32 flags, u16 min_interval,
1413 			   u16 max_interval, u16 sync_interval)
1414 {
1415 	struct adv_info *adv = NULL;
1416 	int err;
1417 	bool added = false;
1418 
1419 	hci_disable_per_advertising_sync(hdev, instance);
1420 
1421 	if (instance) {
1422 		adv = hci_find_adv_instance(hdev, instance);
1423 		/* Create an instance if that could not be found */
1424 		if (!adv) {
1425 			adv = hci_add_per_instance(hdev, instance, flags,
1426 						   data_len, data,
1427 						   sync_interval,
1428 						   sync_interval);
1429 			if (IS_ERR(adv))
1430 				return PTR_ERR(adv);
1431 			added = true;
1432 		}
1433 	}
1434 
1435 	/* Only start advertising if instance 0 or if a dedicated instance has
1436 	 * been added.
1437 	 */
1438 	if (!adv || added) {
1439 		err = hci_start_ext_adv_sync(hdev, instance);
1440 		if (err < 0)
1441 			goto fail;
1442 
1443 		err = hci_adv_bcast_annoucement(hdev, adv);
1444 		if (err < 0)
1445 			goto fail;
1446 	}
1447 
1448 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1449 					  max_interval);
1450 	if (err < 0)
1451 		goto fail;
1452 
1453 	err = hci_set_per_adv_data_sync(hdev, instance);
1454 	if (err < 0)
1455 		goto fail;
1456 
1457 	err = hci_enable_per_advertising_sync(hdev, instance);
1458 	if (err < 0)
1459 		goto fail;
1460 
1461 	return 0;
1462 
1463 fail:
1464 	if (added)
1465 		hci_remove_adv_instance(hdev, instance);
1466 
1467 	return err;
1468 }
1469 
1470 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1471 {
1472 	int err;
1473 
1474 	if (ext_adv_capable(hdev))
1475 		return hci_start_ext_adv_sync(hdev, instance);
1476 
1477 	err = hci_update_adv_data_sync(hdev, instance);
1478 	if (err)
1479 		return err;
1480 
1481 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1482 	if (err)
1483 		return err;
1484 
1485 	return hci_enable_advertising_sync(hdev);
1486 }
1487 
1488 int hci_enable_advertising_sync(struct hci_dev *hdev)
1489 {
1490 	struct adv_info *adv_instance;
1491 	struct hci_cp_le_set_adv_param cp;
1492 	u8 own_addr_type, enable = 0x01;
1493 	bool connectable;
1494 	u16 adv_min_interval, adv_max_interval;
1495 	u32 flags;
1496 	u8 status;
1497 
1498 	if (ext_adv_capable(hdev))
1499 		return hci_enable_ext_advertising_sync(hdev,
1500 						       hdev->cur_adv_instance);
1501 
1502 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1503 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1504 
1505 	/* If the "connectable" instance flag was not set, then choose between
1506 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1507 	 */
1508 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1509 		      mgmt_get_connectable(hdev);
1510 
1511 	if (!is_advertising_allowed(hdev, connectable))
1512 		return -EINVAL;
1513 
1514 	status = hci_disable_advertising_sync(hdev);
1515 	if (status)
1516 		return status;
1517 
1518 	/* Clear the HCI_LE_ADV bit temporarily so that the
1519 	 * hci_update_random_address knows that it's safe to go ahead
1520 	 * and write a new random address. The flag will be set back on
1521 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1522 	 */
1523 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1524 
1525 	/* Set require_privacy to true only when non-connectable
1526 	 * advertising is used. In that case it is fine to use a
1527 	 * non-resolvable private address.
1528 	 */
1529 	status = hci_update_random_address_sync(hdev, !connectable,
1530 						adv_use_rpa(hdev, flags),
1531 						&own_addr_type);
1532 	if (status)
1533 		return status;
1534 
1535 	memset(&cp, 0, sizeof(cp));
1536 
1537 	if (adv_instance) {
1538 		adv_min_interval = adv_instance->min_interval;
1539 		adv_max_interval = adv_instance->max_interval;
1540 	} else {
1541 		adv_min_interval = hdev->le_adv_min_interval;
1542 		adv_max_interval = hdev->le_adv_max_interval;
1543 	}
1544 
1545 	if (connectable) {
1546 		cp.type = LE_ADV_IND;
1547 	} else {
1548 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1549 			cp.type = LE_ADV_SCAN_IND;
1550 		else
1551 			cp.type = LE_ADV_NONCONN_IND;
1552 
1553 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1554 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1555 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1556 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1557 		}
1558 	}
1559 
1560 	cp.min_interval = cpu_to_le16(adv_min_interval);
1561 	cp.max_interval = cpu_to_le16(adv_max_interval);
1562 	cp.own_address_type = own_addr_type;
1563 	cp.channel_map = hdev->le_adv_channel_map;
1564 
1565 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1566 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1567 	if (status)
1568 		return status;
1569 
1570 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1571 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1572 }
1573 
1574 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1575 {
1576 	return hci_enable_advertising_sync(hdev);
1577 }
1578 
1579 int hci_enable_advertising(struct hci_dev *hdev)
1580 {
1581 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1582 	    list_empty(&hdev->adv_instances))
1583 		return 0;
1584 
1585 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1586 }
1587 
1588 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1589 				     struct sock *sk)
1590 {
1591 	int err;
1592 
1593 	if (!ext_adv_capable(hdev))
1594 		return 0;
1595 
1596 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1597 	if (err)
1598 		return err;
1599 
1600 	/* If request specifies an instance that doesn't exist, fail */
1601 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1602 		return -EINVAL;
1603 
1604 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1605 					sizeof(instance), &instance, 0,
1606 					HCI_CMD_TIMEOUT, sk);
1607 }
1608 
1609 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1610 {
1611 	struct adv_info *adv = data;
1612 	u8 instance = 0;
1613 
1614 	if (adv)
1615 		instance = adv->instance;
1616 
1617 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1618 }
1619 
1620 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1621 {
1622 	struct adv_info *adv = NULL;
1623 
1624 	if (instance) {
1625 		adv = hci_find_adv_instance(hdev, instance);
1626 		if (!adv)
1627 			return -EINVAL;
1628 	}
1629 
1630 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1631 }
1632 
1633 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1634 {
1635 	struct hci_cp_le_term_big cp;
1636 
1637 	memset(&cp, 0, sizeof(cp));
1638 	cp.handle = handle;
1639 	cp.reason = reason;
1640 
1641 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1642 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1643 }
1644 
1645 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1646 {
1647 	struct {
1648 		struct hci_cp_le_set_ext_adv_data cp;
1649 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1650 	} pdu;
1651 	u8 len;
1652 	struct adv_info *adv = NULL;
1653 	int err;
1654 
1655 	memset(&pdu, 0, sizeof(pdu));
1656 
1657 	if (instance) {
1658 		adv = hci_find_adv_instance(hdev, instance);
1659 		if (!adv || !adv->adv_data_changed)
1660 			return 0;
1661 	}
1662 
1663 	len = eir_create_adv_data(hdev, instance, pdu.data);
1664 
1665 	pdu.cp.length = len;
1666 	pdu.cp.handle = instance;
1667 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1668 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1669 
1670 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1671 				    sizeof(pdu.cp) + len, &pdu.cp,
1672 				    HCI_CMD_TIMEOUT);
1673 	if (err)
1674 		return err;
1675 
1676 	/* Update data if the command succeed */
1677 	if (adv) {
1678 		adv->adv_data_changed = false;
1679 	} else {
1680 		memcpy(hdev->adv_data, pdu.data, len);
1681 		hdev->adv_data_len = len;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1688 {
1689 	struct hci_cp_le_set_adv_data cp;
1690 	u8 len;
1691 
1692 	memset(&cp, 0, sizeof(cp));
1693 
1694 	len = eir_create_adv_data(hdev, instance, cp.data);
1695 
1696 	/* There's nothing to do if the data hasn't changed */
1697 	if (hdev->adv_data_len == len &&
1698 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1699 		return 0;
1700 
1701 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1702 	hdev->adv_data_len = len;
1703 
1704 	cp.length = len;
1705 
1706 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1707 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1708 }
1709 
1710 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1711 {
1712 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1713 		return 0;
1714 
1715 	if (ext_adv_capable(hdev))
1716 		return hci_set_ext_adv_data_sync(hdev, instance);
1717 
1718 	return hci_set_adv_data_sync(hdev, instance);
1719 }
1720 
1721 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1722 				   bool force)
1723 {
1724 	struct adv_info *adv = NULL;
1725 	u16 timeout;
1726 
1727 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1728 		return -EPERM;
1729 
1730 	if (hdev->adv_instance_timeout)
1731 		return -EBUSY;
1732 
1733 	adv = hci_find_adv_instance(hdev, instance);
1734 	if (!adv)
1735 		return -ENOENT;
1736 
1737 	/* A zero timeout means unlimited advertising. As long as there is
1738 	 * only one instance, duration should be ignored. We still set a timeout
1739 	 * in case further instances are being added later on.
1740 	 *
1741 	 * If the remaining lifetime of the instance is more than the duration
1742 	 * then the timeout corresponds to the duration, otherwise it will be
1743 	 * reduced to the remaining instance lifetime.
1744 	 */
1745 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1746 		timeout = adv->duration;
1747 	else
1748 		timeout = adv->remaining_time;
1749 
1750 	/* The remaining time is being reduced unless the instance is being
1751 	 * advertised without time limit.
1752 	 */
1753 	if (adv->timeout)
1754 		adv->remaining_time = adv->remaining_time - timeout;
1755 
1756 	/* Only use work for scheduling instances with legacy advertising */
1757 	if (!ext_adv_capable(hdev)) {
1758 		hdev->adv_instance_timeout = timeout;
1759 		queue_delayed_work(hdev->req_workqueue,
1760 				   &hdev->adv_instance_expire,
1761 				   msecs_to_jiffies(timeout * 1000));
1762 	}
1763 
1764 	/* If we're just re-scheduling the same instance again then do not
1765 	 * execute any HCI commands. This happens when a single instance is
1766 	 * being advertised.
1767 	 */
1768 	if (!force && hdev->cur_adv_instance == instance &&
1769 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1770 		return 0;
1771 
1772 	hdev->cur_adv_instance = instance;
1773 
1774 	return hci_start_adv_sync(hdev, instance);
1775 }
1776 
1777 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1778 {
1779 	int err;
1780 
1781 	if (!ext_adv_capable(hdev))
1782 		return 0;
1783 
1784 	/* Disable instance 0x00 to disable all instances */
1785 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1786 	if (err)
1787 		return err;
1788 
1789 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1790 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1791 }
1792 
1793 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1794 {
1795 	struct adv_info *adv, *n;
1796 	int err = 0;
1797 
1798 	if (ext_adv_capable(hdev))
1799 		/* Remove all existing sets */
1800 		err = hci_clear_adv_sets_sync(hdev, sk);
1801 	if (ext_adv_capable(hdev))
1802 		return err;
1803 
1804 	/* This is safe as long as there is no command send while the lock is
1805 	 * held.
1806 	 */
1807 	hci_dev_lock(hdev);
1808 
1809 	/* Cleanup non-ext instances */
1810 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1811 		u8 instance = adv->instance;
1812 		int err;
1813 
1814 		if (!(force || adv->timeout))
1815 			continue;
1816 
1817 		err = hci_remove_adv_instance(hdev, instance);
1818 		if (!err)
1819 			mgmt_advertising_removed(sk, hdev, instance);
1820 	}
1821 
1822 	hci_dev_unlock(hdev);
1823 
1824 	return 0;
1825 }
1826 
1827 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1828 			       struct sock *sk)
1829 {
1830 	int err = 0;
1831 
1832 	/* If we use extended advertising, instance has to be removed first. */
1833 	if (ext_adv_capable(hdev))
1834 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1835 	if (ext_adv_capable(hdev))
1836 		return err;
1837 
1838 	/* This is safe as long as there is no command send while the lock is
1839 	 * held.
1840 	 */
1841 	hci_dev_lock(hdev);
1842 
1843 	err = hci_remove_adv_instance(hdev, instance);
1844 	if (!err)
1845 		mgmt_advertising_removed(sk, hdev, instance);
1846 
1847 	hci_dev_unlock(hdev);
1848 
1849 	return err;
1850 }
1851 
1852 /* For a single instance:
1853  * - force == true: The instance will be removed even when its remaining
1854  *   lifetime is not zero.
1855  * - force == false: the instance will be deactivated but kept stored unless
1856  *   the remaining lifetime is zero.
1857  *
1858  * For instance == 0x00:
1859  * - force == true: All instances will be removed regardless of their timeout
1860  *   setting.
1861  * - force == false: Only instances that have a timeout will be removed.
1862  */
1863 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1864 				u8 instance, bool force)
1865 {
1866 	struct adv_info *next = NULL;
1867 	int err;
1868 
1869 	/* Cancel any timeout concerning the removed instance(s). */
1870 	if (!instance || hdev->cur_adv_instance == instance)
1871 		cancel_adv_timeout(hdev);
1872 
1873 	/* Get the next instance to advertise BEFORE we remove
1874 	 * the current one. This can be the same instance again
1875 	 * if there is only one instance.
1876 	 */
1877 	if (hdev->cur_adv_instance == instance)
1878 		next = hci_get_next_instance(hdev, instance);
1879 
1880 	if (!instance) {
1881 		err = hci_clear_adv_sync(hdev, sk, force);
1882 		if (err)
1883 			return err;
1884 	} else {
1885 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1886 
1887 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1888 			/* Don't advertise a removed instance. */
1889 			if (next && next->instance == instance)
1890 				next = NULL;
1891 
1892 			err = hci_remove_adv_sync(hdev, instance, sk);
1893 			if (err)
1894 				return err;
1895 		}
1896 	}
1897 
1898 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1899 		return 0;
1900 
1901 	if (next && !ext_adv_capable(hdev))
1902 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1903 
1904 	return 0;
1905 }
1906 
1907 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1908 {
1909 	struct hci_cp_read_rssi cp;
1910 
1911 	cp.handle = handle;
1912 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1913 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1914 }
1915 
1916 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1917 {
1918 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1919 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1920 }
1921 
1922 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1923 {
1924 	struct hci_cp_read_tx_power cp;
1925 
1926 	cp.handle = handle;
1927 	cp.type = type;
1928 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1929 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1930 }
1931 
1932 int hci_disable_advertising_sync(struct hci_dev *hdev)
1933 {
1934 	u8 enable = 0x00;
1935 	int err = 0;
1936 
1937 	/* If controller is not advertising we are done. */
1938 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1939 		return 0;
1940 
1941 	if (ext_adv_capable(hdev))
1942 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1943 	if (ext_adv_capable(hdev))
1944 		return err;
1945 
1946 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1947 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1948 }
1949 
1950 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1951 					   u8 filter_dup)
1952 {
1953 	struct hci_cp_le_set_ext_scan_enable cp;
1954 
1955 	memset(&cp, 0, sizeof(cp));
1956 	cp.enable = val;
1957 
1958 	if (hci_dev_test_flag(hdev, HCI_MESH))
1959 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1960 	else
1961 		cp.filter_dup = filter_dup;
1962 
1963 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1964 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1965 }
1966 
1967 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1968 				       u8 filter_dup)
1969 {
1970 	struct hci_cp_le_set_scan_enable cp;
1971 
1972 	if (use_ext_scan(hdev))
1973 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1974 
1975 	memset(&cp, 0, sizeof(cp));
1976 	cp.enable = val;
1977 
1978 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
1979 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1980 	else
1981 		cp.filter_dup = filter_dup;
1982 
1983 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1984 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1985 }
1986 
1987 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1988 {
1989 	if (!use_ll_privacy(hdev))
1990 		return 0;
1991 
1992 	/* If controller is not/already resolving we are done. */
1993 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1994 		return 0;
1995 
1996 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1997 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1998 }
1999 
2000 static int hci_scan_disable_sync(struct hci_dev *hdev)
2001 {
2002 	int err;
2003 
2004 	/* If controller is not scanning we are done. */
2005 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2006 		return 0;
2007 
2008 	if (hdev->scanning_paused) {
2009 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2010 		return 0;
2011 	}
2012 
2013 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2014 	if (err) {
2015 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2016 		return err;
2017 	}
2018 
2019 	return err;
2020 }
2021 
2022 static bool scan_use_rpa(struct hci_dev *hdev)
2023 {
2024 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2025 }
2026 
2027 static void hci_start_interleave_scan(struct hci_dev *hdev)
2028 {
2029 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2030 	queue_delayed_work(hdev->req_workqueue,
2031 			   &hdev->interleave_scan, 0);
2032 }
2033 
2034 static bool is_interleave_scanning(struct hci_dev *hdev)
2035 {
2036 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2037 }
2038 
2039 static void cancel_interleave_scan(struct hci_dev *hdev)
2040 {
2041 	bt_dev_dbg(hdev, "cancelling interleave scan");
2042 
2043 	cancel_delayed_work_sync(&hdev->interleave_scan);
2044 
2045 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2046 }
2047 
2048 /* Return true if interleave_scan wasn't started until exiting this function,
2049  * otherwise, return false
2050  */
2051 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2052 {
2053 	/* Do interleaved scan only if all of the following are true:
2054 	 * - There is at least one ADV monitor
2055 	 * - At least one pending LE connection or one device to be scanned for
2056 	 * - Monitor offloading is not supported
2057 	 * If so, we should alternate between allowlist scan and one without
2058 	 * any filters to save power.
2059 	 */
2060 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2061 				!(list_empty(&hdev->pend_le_conns) &&
2062 				  list_empty(&hdev->pend_le_reports)) &&
2063 				hci_get_adv_monitor_offload_ext(hdev) ==
2064 				    HCI_ADV_MONITOR_EXT_NONE;
2065 	bool is_interleaving = is_interleave_scanning(hdev);
2066 
2067 	if (use_interleaving && !is_interleaving) {
2068 		hci_start_interleave_scan(hdev);
2069 		bt_dev_dbg(hdev, "starting interleave scan");
2070 		return true;
2071 	}
2072 
2073 	if (!use_interleaving && is_interleaving)
2074 		cancel_interleave_scan(hdev);
2075 
2076 	return false;
2077 }
2078 
2079 /* Removes connection to resolve list if needed.*/
2080 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2081 					bdaddr_t *bdaddr, u8 bdaddr_type)
2082 {
2083 	struct hci_cp_le_del_from_resolv_list cp;
2084 	struct bdaddr_list_with_irk *entry;
2085 
2086 	if (!use_ll_privacy(hdev))
2087 		return 0;
2088 
2089 	/* Check if the IRK has been programmed */
2090 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2091 						bdaddr_type);
2092 	if (!entry)
2093 		return 0;
2094 
2095 	cp.bdaddr_type = bdaddr_type;
2096 	bacpy(&cp.bdaddr, bdaddr);
2097 
2098 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2099 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2100 }
2101 
2102 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2103 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2104 {
2105 	struct hci_cp_le_del_from_accept_list cp;
2106 	int err;
2107 
2108 	/* Check if device is on accept list before removing it */
2109 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2110 		return 0;
2111 
2112 	cp.bdaddr_type = bdaddr_type;
2113 	bacpy(&cp.bdaddr, bdaddr);
2114 
2115 	/* Ignore errors when removing from resolving list as that is likely
2116 	 * that the device was never added.
2117 	 */
2118 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2119 
2120 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2121 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2122 	if (err) {
2123 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2124 		return err;
2125 	}
2126 
2127 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2128 		   cp.bdaddr_type);
2129 
2130 	return 0;
2131 }
2132 
2133 /* Adds connection to resolve list if needed.
2134  * Setting params to NULL programs local hdev->irk
2135  */
2136 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2137 					struct hci_conn_params *params)
2138 {
2139 	struct hci_cp_le_add_to_resolv_list cp;
2140 	struct smp_irk *irk;
2141 	struct bdaddr_list_with_irk *entry;
2142 
2143 	if (!use_ll_privacy(hdev))
2144 		return 0;
2145 
2146 	/* Attempt to program local identity address, type and irk if params is
2147 	 * NULL.
2148 	 */
2149 	if (!params) {
2150 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2151 			return 0;
2152 
2153 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2154 		memcpy(cp.peer_irk, hdev->irk, 16);
2155 		goto done;
2156 	}
2157 
2158 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2159 	if (!irk)
2160 		return 0;
2161 
2162 	/* Check if the IK has _not_ been programmed yet. */
2163 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2164 						&params->addr,
2165 						params->addr_type);
2166 	if (entry)
2167 		return 0;
2168 
2169 	cp.bdaddr_type = params->addr_type;
2170 	bacpy(&cp.bdaddr, &params->addr);
2171 	memcpy(cp.peer_irk, irk->val, 16);
2172 
2173 	/* Default privacy mode is always Network */
2174 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2175 
2176 done:
2177 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2178 		memcpy(cp.local_irk, hdev->irk, 16);
2179 	else
2180 		memset(cp.local_irk, 0, 16);
2181 
2182 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2183 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2184 }
2185 
2186 /* Set Device Privacy Mode. */
2187 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2188 					struct hci_conn_params *params)
2189 {
2190 	struct hci_cp_le_set_privacy_mode cp;
2191 	struct smp_irk *irk;
2192 
2193 	/* If device privacy mode has already been set there is nothing to do */
2194 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2195 		return 0;
2196 
2197 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2198 	 * indicates that LL Privacy has been enabled and
2199 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2200 	 */
2201 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2202 		return 0;
2203 
2204 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2205 	if (!irk)
2206 		return 0;
2207 
2208 	memset(&cp, 0, sizeof(cp));
2209 	cp.bdaddr_type = irk->addr_type;
2210 	bacpy(&cp.bdaddr, &irk->bdaddr);
2211 	cp.mode = HCI_DEVICE_PRIVACY;
2212 
2213 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2214 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2215 }
2216 
2217 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2218  * this attempts to program the device in the resolving list as well and
2219  * properly set the privacy mode.
2220  */
2221 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2222 				       struct hci_conn_params *params,
2223 				       u8 *num_entries)
2224 {
2225 	struct hci_cp_le_add_to_accept_list cp;
2226 	int err;
2227 
2228 	/* During suspend, only wakeable devices can be in acceptlist */
2229 	if (hdev->suspended &&
2230 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2231 		return 0;
2232 
2233 	/* Select filter policy to accept all advertising */
2234 	if (*num_entries >= hdev->le_accept_list_size)
2235 		return -ENOSPC;
2236 
2237 	/* Accept list can not be used with RPAs */
2238 	if (!use_ll_privacy(hdev) &&
2239 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2240 		return -EINVAL;
2241 
2242 	/* Attempt to program the device in the resolving list first to avoid
2243 	 * having to rollback in case it fails since the resolving list is
2244 	 * dynamic it can probably be smaller than the accept list.
2245 	 */
2246 	err = hci_le_add_resolve_list_sync(hdev, params);
2247 	if (err) {
2248 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2249 		return err;
2250 	}
2251 
2252 	/* Set Privacy Mode */
2253 	err = hci_le_set_privacy_mode_sync(hdev, params);
2254 	if (err) {
2255 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2256 		return err;
2257 	}
2258 
2259 	/* Check if already in accept list */
2260 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2261 				   params->addr_type))
2262 		return 0;
2263 
2264 	*num_entries += 1;
2265 	cp.bdaddr_type = params->addr_type;
2266 	bacpy(&cp.bdaddr, &params->addr);
2267 
2268 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2269 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2270 	if (err) {
2271 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2272 		/* Rollback the device from the resolving list */
2273 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2274 		return err;
2275 	}
2276 
2277 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2278 		   cp.bdaddr_type);
2279 
2280 	return 0;
2281 }
2282 
2283 /* This function disables/pause all advertising instances */
2284 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2285 {
2286 	int err;
2287 	int old_state;
2288 
2289 	/* If already been paused there is nothing to do. */
2290 	if (hdev->advertising_paused)
2291 		return 0;
2292 
2293 	bt_dev_dbg(hdev, "Pausing directed advertising");
2294 
2295 	/* Stop directed advertising */
2296 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2297 	if (old_state) {
2298 		/* When discoverable timeout triggers, then just make sure
2299 		 * the limited discoverable flag is cleared. Even in the case
2300 		 * of a timeout triggered from general discoverable, it is
2301 		 * safe to unconditionally clear the flag.
2302 		 */
2303 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2304 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2305 		hdev->discov_timeout = 0;
2306 	}
2307 
2308 	bt_dev_dbg(hdev, "Pausing advertising instances");
2309 
2310 	/* Call to disable any advertisements active on the controller.
2311 	 * This will succeed even if no advertisements are configured.
2312 	 */
2313 	err = hci_disable_advertising_sync(hdev);
2314 	if (err)
2315 		return err;
2316 
2317 	/* If we are using software rotation, pause the loop */
2318 	if (!ext_adv_capable(hdev))
2319 		cancel_adv_timeout(hdev);
2320 
2321 	hdev->advertising_paused = true;
2322 	hdev->advertising_old_state = old_state;
2323 
2324 	return 0;
2325 }
2326 
2327 /* This function enables all user advertising instances */
2328 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2329 {
2330 	struct adv_info *adv, *tmp;
2331 	int err;
2332 
2333 	/* If advertising has not been paused there is nothing  to do. */
2334 	if (!hdev->advertising_paused)
2335 		return 0;
2336 
2337 	/* Resume directed advertising */
2338 	hdev->advertising_paused = false;
2339 	if (hdev->advertising_old_state) {
2340 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2341 		hdev->advertising_old_state = 0;
2342 	}
2343 
2344 	bt_dev_dbg(hdev, "Resuming advertising instances");
2345 
2346 	if (ext_adv_capable(hdev)) {
2347 		/* Call for each tracked instance to be re-enabled */
2348 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2349 			err = hci_enable_ext_advertising_sync(hdev,
2350 							      adv->instance);
2351 			if (!err)
2352 				continue;
2353 
2354 			/* If the instance cannot be resumed remove it */
2355 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2356 							 NULL);
2357 		}
2358 	} else {
2359 		/* Schedule for most recent instance to be restarted and begin
2360 		 * the software rotation loop
2361 		 */
2362 		err = hci_schedule_adv_instance_sync(hdev,
2363 						     hdev->cur_adv_instance,
2364 						     true);
2365 	}
2366 
2367 	hdev->advertising_paused = false;
2368 
2369 	return err;
2370 }
2371 
2372 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2373 {
2374 	int err;
2375 
2376 	if (!use_ll_privacy(hdev))
2377 		return 0;
2378 
2379 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2380 		return 0;
2381 
2382 	/* Cannot disable addr resolution if scanning is enabled or
2383 	 * when initiating an LE connection.
2384 	 */
2385 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2386 	    hci_lookup_le_connect(hdev)) {
2387 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2388 		return -EPERM;
2389 	}
2390 
2391 	/* Cannot disable addr resolution if advertising is enabled. */
2392 	err = hci_pause_advertising_sync(hdev);
2393 	if (err) {
2394 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2395 		return err;
2396 	}
2397 
2398 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2399 	if (err)
2400 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2401 			   err);
2402 
2403 	/* Return if address resolution is disabled and RPA is not used. */
2404 	if (!err && scan_use_rpa(hdev))
2405 		return err;
2406 
2407 	hci_resume_advertising_sync(hdev);
2408 	return err;
2409 }
2410 
2411 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2412 					     bool extended, struct sock *sk)
2413 {
2414 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2415 					HCI_OP_READ_LOCAL_OOB_DATA;
2416 
2417 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2418 }
2419 
2420 /* Device must not be scanning when updating the accept list.
2421  *
2422  * Update is done using the following sequence:
2423  *
2424  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2425  * Remove Devices From Accept List ->
2426  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2427  * Add Devices to Accept List ->
2428  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2429  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2430  * Enable Scanning
2431  *
2432  * In case of failure advertising shall be restored to its original state and
2433  * return would disable accept list since either accept or resolving list could
2434  * not be programmed.
2435  *
2436  */
2437 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2438 {
2439 	struct hci_conn_params *params;
2440 	struct bdaddr_list *b, *t;
2441 	u8 num_entries = 0;
2442 	bool pend_conn, pend_report;
2443 	u8 filter_policy;
2444 	int err;
2445 
2446 	/* Pause advertising if resolving list can be used as controllers
2447 	 * cannot accept resolving list modifications while advertising.
2448 	 */
2449 	if (use_ll_privacy(hdev)) {
2450 		err = hci_pause_advertising_sync(hdev);
2451 		if (err) {
2452 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2453 			return 0x00;
2454 		}
2455 	}
2456 
2457 	/* Disable address resolution while reprogramming accept list since
2458 	 * devices that do have an IRK will be programmed in the resolving list
2459 	 * when LL Privacy is enabled.
2460 	 */
2461 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2462 	if (err) {
2463 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2464 		goto done;
2465 	}
2466 
2467 	/* Go through the current accept list programmed into the
2468 	 * controller one by one and check if that address is connected or is
2469 	 * still in the list of pending connections or list of devices to
2470 	 * report. If not present in either list, then remove it from
2471 	 * the controller.
2472 	 */
2473 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2474 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2475 			continue;
2476 
2477 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2478 						      &b->bdaddr,
2479 						      b->bdaddr_type);
2480 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2481 							&b->bdaddr,
2482 							b->bdaddr_type);
2483 
2484 		/* If the device is not likely to connect or report,
2485 		 * remove it from the acceptlist.
2486 		 */
2487 		if (!pend_conn && !pend_report) {
2488 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2489 						    b->bdaddr_type);
2490 			continue;
2491 		}
2492 
2493 		num_entries++;
2494 	}
2495 
2496 	/* Since all no longer valid accept list entries have been
2497 	 * removed, walk through the list of pending connections
2498 	 * and ensure that any new device gets programmed into
2499 	 * the controller.
2500 	 *
2501 	 * If the list of the devices is larger than the list of
2502 	 * available accept list entries in the controller, then
2503 	 * just abort and return filer policy value to not use the
2504 	 * accept list.
2505 	 */
2506 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
2507 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2508 		if (err)
2509 			goto done;
2510 	}
2511 
2512 	/* After adding all new pending connections, walk through
2513 	 * the list of pending reports and also add these to the
2514 	 * accept list if there is still space. Abort if space runs out.
2515 	 */
2516 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
2517 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
2518 		if (err)
2519 			goto done;
2520 	}
2521 
2522 	/* Use the allowlist unless the following conditions are all true:
2523 	 * - We are not currently suspending
2524 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2525 	 * - Interleaved scanning is not currently using the allowlist
2526 	 */
2527 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2528 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2529 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2530 		err = -EINVAL;
2531 
2532 done:
2533 	filter_policy = err ? 0x00 : 0x01;
2534 
2535 	/* Enable address resolution when LL Privacy is enabled. */
2536 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2537 	if (err)
2538 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2539 
2540 	/* Resume advertising if it was paused */
2541 	if (use_ll_privacy(hdev))
2542 		hci_resume_advertising_sync(hdev);
2543 
2544 	/* Select filter policy to use accept list */
2545 	return filter_policy;
2546 }
2547 
2548 /* Returns true if an le connection is in the scanning state */
2549 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
2550 {
2551 	struct hci_conn_hash *h = &hdev->conn_hash;
2552 	struct hci_conn  *c;
2553 
2554 	rcu_read_lock();
2555 
2556 	list_for_each_entry_rcu(c, &h->list, list) {
2557 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
2558 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
2559 			rcu_read_unlock();
2560 			return true;
2561 		}
2562 	}
2563 
2564 	rcu_read_unlock();
2565 
2566 	return false;
2567 }
2568 
2569 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2570 					  u16 interval, u16 window,
2571 					  u8 own_addr_type, u8 filter_policy)
2572 {
2573 	struct hci_cp_le_set_ext_scan_params *cp;
2574 	struct hci_cp_le_scan_phy_params *phy;
2575 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2576 	u8 num_phy = 0;
2577 
2578 	cp = (void *)data;
2579 	phy = (void *)cp->data;
2580 
2581 	memset(data, 0, sizeof(data));
2582 
2583 	cp->own_addr_type = own_addr_type;
2584 	cp->filter_policy = filter_policy;
2585 
2586 	if (scan_1m(hdev) || scan_2m(hdev)) {
2587 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2588 
2589 		phy->type = type;
2590 		phy->interval = cpu_to_le16(interval);
2591 		phy->window = cpu_to_le16(window);
2592 
2593 		num_phy++;
2594 		phy++;
2595 	}
2596 
2597 	if (scan_coded(hdev)) {
2598 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2599 
2600 		phy->type = type;
2601 		phy->interval = cpu_to_le16(interval);
2602 		phy->window = cpu_to_le16(window);
2603 
2604 		num_phy++;
2605 		phy++;
2606 	}
2607 
2608 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2609 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2610 				     data, HCI_CMD_TIMEOUT);
2611 }
2612 
2613 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2614 				      u16 interval, u16 window,
2615 				      u8 own_addr_type, u8 filter_policy)
2616 {
2617 	struct hci_cp_le_set_scan_param cp;
2618 
2619 	if (use_ext_scan(hdev))
2620 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2621 						      window, own_addr_type,
2622 						      filter_policy);
2623 
2624 	memset(&cp, 0, sizeof(cp));
2625 	cp.type = type;
2626 	cp.interval = cpu_to_le16(interval);
2627 	cp.window = cpu_to_le16(window);
2628 	cp.own_address_type = own_addr_type;
2629 	cp.filter_policy = filter_policy;
2630 
2631 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2632 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2633 }
2634 
2635 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2636 			       u16 window, u8 own_addr_type, u8 filter_policy,
2637 			       u8 filter_dup)
2638 {
2639 	int err;
2640 
2641 	if (hdev->scanning_paused) {
2642 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2643 		return 0;
2644 	}
2645 
2646 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2647 					 own_addr_type, filter_policy);
2648 	if (err)
2649 		return err;
2650 
2651 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2652 }
2653 
2654 static int hci_passive_scan_sync(struct hci_dev *hdev)
2655 {
2656 	u8 own_addr_type;
2657 	u8 filter_policy;
2658 	u16 window, interval;
2659 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2660 	int err;
2661 
2662 	if (hdev->scanning_paused) {
2663 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2664 		return 0;
2665 	}
2666 
2667 	err = hci_scan_disable_sync(hdev);
2668 	if (err) {
2669 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2670 		return err;
2671 	}
2672 
2673 	/* Set require_privacy to false since no SCAN_REQ are send
2674 	 * during passive scanning. Not using an non-resolvable address
2675 	 * here is important so that peer devices using direct
2676 	 * advertising with our address will be correctly reported
2677 	 * by the controller.
2678 	 */
2679 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2680 					   &own_addr_type))
2681 		return 0;
2682 
2683 	if (hdev->enable_advmon_interleave_scan &&
2684 	    hci_update_interleaved_scan_sync(hdev))
2685 		return 0;
2686 
2687 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2688 
2689 	/* Adding or removing entries from the accept list must
2690 	 * happen before enabling scanning. The controller does
2691 	 * not allow accept list modification while scanning.
2692 	 */
2693 	filter_policy = hci_update_accept_list_sync(hdev);
2694 
2695 	/* When the controller is using random resolvable addresses and
2696 	 * with that having LE privacy enabled, then controllers with
2697 	 * Extended Scanner Filter Policies support can now enable support
2698 	 * for handling directed advertising.
2699 	 *
2700 	 * So instead of using filter polices 0x00 (no acceptlist)
2701 	 * and 0x01 (acceptlist enabled) use the new filter policies
2702 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2703 	 */
2704 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2705 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2706 		filter_policy |= 0x02;
2707 
2708 	if (hdev->suspended) {
2709 		window = hdev->le_scan_window_suspend;
2710 		interval = hdev->le_scan_int_suspend;
2711 	} else if (hci_is_le_conn_scanning(hdev)) {
2712 		window = hdev->le_scan_window_connect;
2713 		interval = hdev->le_scan_int_connect;
2714 	} else if (hci_is_adv_monitoring(hdev)) {
2715 		window = hdev->le_scan_window_adv_monitor;
2716 		interval = hdev->le_scan_int_adv_monitor;
2717 	} else {
2718 		window = hdev->le_scan_window;
2719 		interval = hdev->le_scan_interval;
2720 	}
2721 
2722 	/* Disable all filtering for Mesh */
2723 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2724 		filter_policy = 0;
2725 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2726 	}
2727 
2728 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2729 
2730 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2731 				   own_addr_type, filter_policy, filter_dups);
2732 }
2733 
2734 /* This function controls the passive scanning based on hdev->pend_le_conns
2735  * list. If there are pending LE connection we start the background scanning,
2736  * otherwise we stop it in the following sequence:
2737  *
2738  * If there are devices to scan:
2739  *
2740  * Disable Scanning -> Update Accept List ->
2741  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2742  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2743  * Enable Scanning
2744  *
2745  * Otherwise:
2746  *
2747  * Disable Scanning
2748  */
2749 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2750 {
2751 	int err;
2752 
2753 	if (!test_bit(HCI_UP, &hdev->flags) ||
2754 	    test_bit(HCI_INIT, &hdev->flags) ||
2755 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2756 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2757 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2758 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2759 		return 0;
2760 
2761 	/* No point in doing scanning if LE support hasn't been enabled */
2762 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2763 		return 0;
2764 
2765 	/* If discovery is active don't interfere with it */
2766 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2767 		return 0;
2768 
2769 	/* Reset RSSI and UUID filters when starting background scanning
2770 	 * since these filters are meant for service discovery only.
2771 	 *
2772 	 * The Start Discovery and Start Service Discovery operations
2773 	 * ensure to set proper values for RSSI threshold and UUID
2774 	 * filter list. So it is safe to just reset them here.
2775 	 */
2776 	hci_discovery_filter_clear(hdev);
2777 
2778 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2779 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2780 
2781 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2782 	    list_empty(&hdev->pend_le_conns) &&
2783 	    list_empty(&hdev->pend_le_reports) &&
2784 	    !hci_is_adv_monitoring(hdev) &&
2785 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2786 		/* If there is no pending LE connections or devices
2787 		 * to be scanned for or no ADV monitors, we should stop the
2788 		 * background scanning.
2789 		 */
2790 
2791 		bt_dev_dbg(hdev, "stopping background scanning");
2792 
2793 		err = hci_scan_disable_sync(hdev);
2794 		if (err)
2795 			bt_dev_err(hdev, "stop background scanning failed: %d",
2796 				   err);
2797 	} else {
2798 		/* If there is at least one pending LE connection, we should
2799 		 * keep the background scan running.
2800 		 */
2801 
2802 		/* If controller is connecting, we should not start scanning
2803 		 * since some controllers are not able to scan and connect at
2804 		 * the same time.
2805 		 */
2806 		if (hci_lookup_le_connect(hdev))
2807 			return 0;
2808 
2809 		bt_dev_dbg(hdev, "start background scanning");
2810 
2811 		err = hci_passive_scan_sync(hdev);
2812 		if (err)
2813 			bt_dev_err(hdev, "start background scanning failed: %d",
2814 				   err);
2815 	}
2816 
2817 	return err;
2818 }
2819 
2820 static int update_scan_sync(struct hci_dev *hdev, void *data)
2821 {
2822 	return hci_update_scan_sync(hdev);
2823 }
2824 
2825 int hci_update_scan(struct hci_dev *hdev)
2826 {
2827 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2828 }
2829 
2830 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2831 {
2832 	return hci_update_passive_scan_sync(hdev);
2833 }
2834 
2835 int hci_update_passive_scan(struct hci_dev *hdev)
2836 {
2837 	/* Only queue if it would have any effect */
2838 	if (!test_bit(HCI_UP, &hdev->flags) ||
2839 	    test_bit(HCI_INIT, &hdev->flags) ||
2840 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2841 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2842 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2843 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2844 		return 0;
2845 
2846 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2847 }
2848 
2849 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2850 {
2851 	int err;
2852 
2853 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2854 		return 0;
2855 
2856 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2857 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2858 
2859 	if (!err) {
2860 		if (val) {
2861 			hdev->features[1][0] |= LMP_HOST_SC;
2862 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2863 		} else {
2864 			hdev->features[1][0] &= ~LMP_HOST_SC;
2865 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2866 		}
2867 	}
2868 
2869 	return err;
2870 }
2871 
2872 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2873 {
2874 	int err;
2875 
2876 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2877 	    lmp_host_ssp_capable(hdev))
2878 		return 0;
2879 
2880 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2881 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2882 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2883 	}
2884 
2885 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2886 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2887 	if (err)
2888 		return err;
2889 
2890 	return hci_write_sc_support_sync(hdev, 0x01);
2891 }
2892 
2893 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2894 {
2895 	struct hci_cp_write_le_host_supported cp;
2896 
2897 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2898 	    !lmp_bredr_capable(hdev))
2899 		return 0;
2900 
2901 	/* Check first if we already have the right host state
2902 	 * (host features set)
2903 	 */
2904 	if (le == lmp_host_le_capable(hdev) &&
2905 	    simul == lmp_host_le_br_capable(hdev))
2906 		return 0;
2907 
2908 	memset(&cp, 0, sizeof(cp));
2909 
2910 	cp.le = le;
2911 	cp.simul = simul;
2912 
2913 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2914 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2915 }
2916 
2917 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2918 {
2919 	struct adv_info *adv, *tmp;
2920 	int err;
2921 
2922 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2923 		return 0;
2924 
2925 	/* If RPA Resolution has not been enable yet it means the
2926 	 * resolving list is empty and we should attempt to program the
2927 	 * local IRK in order to support using own_addr_type
2928 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2929 	 */
2930 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2931 		hci_le_add_resolve_list_sync(hdev, NULL);
2932 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2933 	}
2934 
2935 	/* Make sure the controller has a good default for
2936 	 * advertising data. This also applies to the case
2937 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2938 	 */
2939 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2940 	    list_empty(&hdev->adv_instances)) {
2941 		if (ext_adv_capable(hdev)) {
2942 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2943 			if (!err)
2944 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2945 		} else {
2946 			err = hci_update_adv_data_sync(hdev, 0x00);
2947 			if (!err)
2948 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2949 		}
2950 
2951 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2952 			hci_enable_advertising_sync(hdev);
2953 	}
2954 
2955 	/* Call for each tracked instance to be scheduled */
2956 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2957 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2958 
2959 	return 0;
2960 }
2961 
2962 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2963 {
2964 	u8 link_sec;
2965 
2966 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2967 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2968 		return 0;
2969 
2970 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2971 				     sizeof(link_sec), &link_sec,
2972 				     HCI_CMD_TIMEOUT);
2973 }
2974 
2975 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2976 {
2977 	struct hci_cp_write_page_scan_activity cp;
2978 	u8 type;
2979 	int err = 0;
2980 
2981 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2982 		return 0;
2983 
2984 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2985 		return 0;
2986 
2987 	memset(&cp, 0, sizeof(cp));
2988 
2989 	if (enable) {
2990 		type = PAGE_SCAN_TYPE_INTERLACED;
2991 
2992 		/* 160 msec page scan interval */
2993 		cp.interval = cpu_to_le16(0x0100);
2994 	} else {
2995 		type = hdev->def_page_scan_type;
2996 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2997 	}
2998 
2999 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3000 
3001 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3002 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3003 		err = __hci_cmd_sync_status(hdev,
3004 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3005 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3006 		if (err)
3007 			return err;
3008 	}
3009 
3010 	if (hdev->page_scan_type != type)
3011 		err = __hci_cmd_sync_status(hdev,
3012 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3013 					    sizeof(type), &type,
3014 					    HCI_CMD_TIMEOUT);
3015 
3016 	return err;
3017 }
3018 
3019 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3020 {
3021 	struct bdaddr_list *b;
3022 
3023 	list_for_each_entry(b, &hdev->accept_list, list) {
3024 		struct hci_conn *conn;
3025 
3026 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3027 		if (!conn)
3028 			return true;
3029 
3030 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3031 			return true;
3032 	}
3033 
3034 	return false;
3035 }
3036 
3037 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3038 {
3039 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3040 					    sizeof(val), &val,
3041 					    HCI_CMD_TIMEOUT);
3042 }
3043 
3044 int hci_update_scan_sync(struct hci_dev *hdev)
3045 {
3046 	u8 scan;
3047 
3048 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3049 		return 0;
3050 
3051 	if (!hdev_is_powered(hdev))
3052 		return 0;
3053 
3054 	if (mgmt_powering_down(hdev))
3055 		return 0;
3056 
3057 	if (hdev->scanning_paused)
3058 		return 0;
3059 
3060 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3061 	    disconnected_accept_list_entries(hdev))
3062 		scan = SCAN_PAGE;
3063 	else
3064 		scan = SCAN_DISABLED;
3065 
3066 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3067 		scan |= SCAN_INQUIRY;
3068 
3069 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3070 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3071 		return 0;
3072 
3073 	return hci_write_scan_enable_sync(hdev, scan);
3074 }
3075 
3076 int hci_update_name_sync(struct hci_dev *hdev)
3077 {
3078 	struct hci_cp_write_local_name cp;
3079 
3080 	memset(&cp, 0, sizeof(cp));
3081 
3082 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3083 
3084 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3085 					    sizeof(cp), &cp,
3086 					    HCI_CMD_TIMEOUT);
3087 }
3088 
3089 /* This function perform powered update HCI command sequence after the HCI init
3090  * sequence which end up resetting all states, the sequence is as follows:
3091  *
3092  * HCI_SSP_ENABLED(Enable SSP)
3093  * HCI_LE_ENABLED(Enable LE)
3094  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3095  * Update adv data)
3096  * Enable Authentication
3097  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3098  * Set Name -> Set EIR)
3099  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3100  */
3101 int hci_powered_update_sync(struct hci_dev *hdev)
3102 {
3103 	int err;
3104 
3105 	/* Register the available SMP channels (BR/EDR and LE) only when
3106 	 * successfully powering on the controller. This late
3107 	 * registration is required so that LE SMP can clearly decide if
3108 	 * the public address or static address is used.
3109 	 */
3110 	smp_register(hdev);
3111 
3112 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3113 	if (err)
3114 		return err;
3115 
3116 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3117 	if (err)
3118 		return err;
3119 
3120 	err = hci_powered_update_adv_sync(hdev);
3121 	if (err)
3122 		return err;
3123 
3124 	err = hci_write_auth_enable_sync(hdev);
3125 	if (err)
3126 		return err;
3127 
3128 	if (lmp_bredr_capable(hdev)) {
3129 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3130 			hci_write_fast_connectable_sync(hdev, true);
3131 		else
3132 			hci_write_fast_connectable_sync(hdev, false);
3133 		hci_update_scan_sync(hdev);
3134 		hci_update_class_sync(hdev);
3135 		hci_update_name_sync(hdev);
3136 		hci_update_eir_sync(hdev);
3137 	}
3138 
3139 	/* If forcing static address is in use or there is no public
3140 	 * address use the static address as random address (but skip
3141 	 * the HCI command if the current random address is already the
3142 	 * static one.
3143 	 *
3144 	 * In case BR/EDR has been disabled on a dual-mode controller
3145 	 * and a static address has been configured, then use that
3146 	 * address instead of the public BR/EDR address.
3147 	 */
3148 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3149 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3150 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3151 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3152 			return hci_set_random_addr_sync(hdev,
3153 							&hdev->static_addr);
3154 	}
3155 
3156 	return 0;
3157 }
3158 
3159 /**
3160  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3161  *				       (BD_ADDR) for a HCI device from
3162  *				       a firmware node property.
3163  * @hdev:	The HCI device
3164  *
3165  * Search the firmware node for 'local-bd-address'.
3166  *
3167  * All-zero BD addresses are rejected, because those could be properties
3168  * that exist in the firmware tables, but were not updated by the firmware. For
3169  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3170  */
3171 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3172 {
3173 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3174 	bdaddr_t ba;
3175 	int ret;
3176 
3177 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3178 					    (u8 *)&ba, sizeof(ba));
3179 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3180 		return;
3181 
3182 	bacpy(&hdev->public_addr, &ba);
3183 }
3184 
3185 struct hci_init_stage {
3186 	int (*func)(struct hci_dev *hdev);
3187 };
3188 
3189 /* Run init stage NULL terminated function table */
3190 static int hci_init_stage_sync(struct hci_dev *hdev,
3191 			       const struct hci_init_stage *stage)
3192 {
3193 	size_t i;
3194 
3195 	for (i = 0; stage[i].func; i++) {
3196 		int err;
3197 
3198 		err = stage[i].func(hdev);
3199 		if (err)
3200 			return err;
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 /* Read Local Version */
3207 static int hci_read_local_version_sync(struct hci_dev *hdev)
3208 {
3209 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3210 				     0, NULL, HCI_CMD_TIMEOUT);
3211 }
3212 
3213 /* Read BD Address */
3214 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3215 {
3216 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3217 				     0, NULL, HCI_CMD_TIMEOUT);
3218 }
3219 
3220 #define HCI_INIT(_func) \
3221 { \
3222 	.func = _func, \
3223 }
3224 
3225 static const struct hci_init_stage hci_init0[] = {
3226 	/* HCI_OP_READ_LOCAL_VERSION */
3227 	HCI_INIT(hci_read_local_version_sync),
3228 	/* HCI_OP_READ_BD_ADDR */
3229 	HCI_INIT(hci_read_bd_addr_sync),
3230 	{}
3231 };
3232 
3233 int hci_reset_sync(struct hci_dev *hdev)
3234 {
3235 	int err;
3236 
3237 	set_bit(HCI_RESET, &hdev->flags);
3238 
3239 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3240 				    HCI_CMD_TIMEOUT);
3241 	if (err)
3242 		return err;
3243 
3244 	return 0;
3245 }
3246 
3247 static int hci_init0_sync(struct hci_dev *hdev)
3248 {
3249 	int err;
3250 
3251 	bt_dev_dbg(hdev, "");
3252 
3253 	/* Reset */
3254 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3255 		err = hci_reset_sync(hdev);
3256 		if (err)
3257 			return err;
3258 	}
3259 
3260 	return hci_init_stage_sync(hdev, hci_init0);
3261 }
3262 
3263 static int hci_unconf_init_sync(struct hci_dev *hdev)
3264 {
3265 	int err;
3266 
3267 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3268 		return 0;
3269 
3270 	err = hci_init0_sync(hdev);
3271 	if (err < 0)
3272 		return err;
3273 
3274 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3275 		hci_debugfs_create_basic(hdev);
3276 
3277 	return 0;
3278 }
3279 
3280 /* Read Local Supported Features. */
3281 static int hci_read_local_features_sync(struct hci_dev *hdev)
3282 {
3283 	 /* Not all AMP controllers support this command */
3284 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3285 		return 0;
3286 
3287 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3288 				     0, NULL, HCI_CMD_TIMEOUT);
3289 }
3290 
3291 /* BR Controller init stage 1 command sequence */
3292 static const struct hci_init_stage br_init1[] = {
3293 	/* HCI_OP_READ_LOCAL_FEATURES */
3294 	HCI_INIT(hci_read_local_features_sync),
3295 	/* HCI_OP_READ_LOCAL_VERSION */
3296 	HCI_INIT(hci_read_local_version_sync),
3297 	/* HCI_OP_READ_BD_ADDR */
3298 	HCI_INIT(hci_read_bd_addr_sync),
3299 	{}
3300 };
3301 
3302 /* Read Local Commands */
3303 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3304 {
3305 	/* All Bluetooth 1.2 and later controllers should support the
3306 	 * HCI command for reading the local supported commands.
3307 	 *
3308 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3309 	 * but do not have support for this command. If that is the case,
3310 	 * the driver can quirk the behavior and skip reading the local
3311 	 * supported commands.
3312 	 */
3313 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3314 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3315 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3316 					     0, NULL, HCI_CMD_TIMEOUT);
3317 
3318 	return 0;
3319 }
3320 
3321 /* Read Local AMP Info */
3322 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3323 {
3324 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3325 				     0, NULL, HCI_CMD_TIMEOUT);
3326 }
3327 
3328 /* Read Data Blk size */
3329 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3330 {
3331 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3332 				     0, NULL, HCI_CMD_TIMEOUT);
3333 }
3334 
3335 /* Read Flow Control Mode */
3336 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3337 {
3338 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3339 				     0, NULL, HCI_CMD_TIMEOUT);
3340 }
3341 
3342 /* Read Location Data */
3343 static int hci_read_location_data_sync(struct hci_dev *hdev)
3344 {
3345 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3346 				     0, NULL, HCI_CMD_TIMEOUT);
3347 }
3348 
3349 /* AMP Controller init stage 1 command sequence */
3350 static const struct hci_init_stage amp_init1[] = {
3351 	/* HCI_OP_READ_LOCAL_VERSION */
3352 	HCI_INIT(hci_read_local_version_sync),
3353 	/* HCI_OP_READ_LOCAL_COMMANDS */
3354 	HCI_INIT(hci_read_local_cmds_sync),
3355 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3356 	HCI_INIT(hci_read_local_amp_info_sync),
3357 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3358 	HCI_INIT(hci_read_data_block_size_sync),
3359 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3360 	HCI_INIT(hci_read_flow_control_mode_sync),
3361 	/* HCI_OP_READ_LOCATION_DATA */
3362 	HCI_INIT(hci_read_location_data_sync),
3363 	{}
3364 };
3365 
3366 static int hci_init1_sync(struct hci_dev *hdev)
3367 {
3368 	int err;
3369 
3370 	bt_dev_dbg(hdev, "");
3371 
3372 	/* Reset */
3373 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3374 		err = hci_reset_sync(hdev);
3375 		if (err)
3376 			return err;
3377 	}
3378 
3379 	switch (hdev->dev_type) {
3380 	case HCI_PRIMARY:
3381 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3382 		return hci_init_stage_sync(hdev, br_init1);
3383 	case HCI_AMP:
3384 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3385 		return hci_init_stage_sync(hdev, amp_init1);
3386 	default:
3387 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3388 		break;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 /* AMP Controller init stage 2 command sequence */
3395 static const struct hci_init_stage amp_init2[] = {
3396 	/* HCI_OP_READ_LOCAL_FEATURES */
3397 	HCI_INIT(hci_read_local_features_sync),
3398 	{}
3399 };
3400 
3401 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3402 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3403 {
3404 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3405 				     0, NULL, HCI_CMD_TIMEOUT);
3406 }
3407 
3408 /* Read Class of Device */
3409 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3410 {
3411 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3412 				     0, NULL, HCI_CMD_TIMEOUT);
3413 }
3414 
3415 /* Read Local Name */
3416 static int hci_read_local_name_sync(struct hci_dev *hdev)
3417 {
3418 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3419 				     0, NULL, HCI_CMD_TIMEOUT);
3420 }
3421 
3422 /* Read Voice Setting */
3423 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3424 {
3425 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3426 				     0, NULL, HCI_CMD_TIMEOUT);
3427 }
3428 
3429 /* Read Number of Supported IAC */
3430 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3431 {
3432 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3433 				     0, NULL, HCI_CMD_TIMEOUT);
3434 }
3435 
3436 /* Read Current IAC LAP */
3437 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3438 {
3439 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3440 				     0, NULL, HCI_CMD_TIMEOUT);
3441 }
3442 
3443 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3444 				     u8 cond_type, bdaddr_t *bdaddr,
3445 				     u8 auto_accept)
3446 {
3447 	struct hci_cp_set_event_filter cp;
3448 
3449 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3450 		return 0;
3451 
3452 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3453 		return 0;
3454 
3455 	memset(&cp, 0, sizeof(cp));
3456 	cp.flt_type = flt_type;
3457 
3458 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3459 		cp.cond_type = cond_type;
3460 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3461 		cp.addr_conn_flt.auto_accept = auto_accept;
3462 	}
3463 
3464 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3465 				     flt_type == HCI_FLT_CLEAR_ALL ?
3466 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3467 				     HCI_CMD_TIMEOUT);
3468 }
3469 
3470 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3471 {
3472 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3473 		return 0;
3474 
3475 	/* In theory the state machine should not reach here unless
3476 	 * a hci_set_event_filter_sync() call succeeds, but we do
3477 	 * the check both for parity and as a future reminder.
3478 	 */
3479 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3480 		return 0;
3481 
3482 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3483 					 BDADDR_ANY, 0x00);
3484 }
3485 
3486 /* Connection accept timeout ~20 secs */
3487 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3488 {
3489 	__le16 param = cpu_to_le16(0x7d00);
3490 
3491 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3492 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3493 }
3494 
3495 /* BR Controller init stage 2 command sequence */
3496 static const struct hci_init_stage br_init2[] = {
3497 	/* HCI_OP_READ_BUFFER_SIZE */
3498 	HCI_INIT(hci_read_buffer_size_sync),
3499 	/* HCI_OP_READ_CLASS_OF_DEV */
3500 	HCI_INIT(hci_read_dev_class_sync),
3501 	/* HCI_OP_READ_LOCAL_NAME */
3502 	HCI_INIT(hci_read_local_name_sync),
3503 	/* HCI_OP_READ_VOICE_SETTING */
3504 	HCI_INIT(hci_read_voice_setting_sync),
3505 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3506 	HCI_INIT(hci_read_num_supported_iac_sync),
3507 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3508 	HCI_INIT(hci_read_current_iac_lap_sync),
3509 	/* HCI_OP_SET_EVENT_FLT */
3510 	HCI_INIT(hci_clear_event_filter_sync),
3511 	/* HCI_OP_WRITE_CA_TIMEOUT */
3512 	HCI_INIT(hci_write_ca_timeout_sync),
3513 	{}
3514 };
3515 
3516 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3517 {
3518 	u8 mode = 0x01;
3519 
3520 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3521 		return 0;
3522 
3523 	/* When SSP is available, then the host features page
3524 	 * should also be available as well. However some
3525 	 * controllers list the max_page as 0 as long as SSP
3526 	 * has not been enabled. To achieve proper debugging
3527 	 * output, force the minimum max_page to 1 at least.
3528 	 */
3529 	hdev->max_page = 0x01;
3530 
3531 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3532 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3533 }
3534 
3535 static int hci_write_eir_sync(struct hci_dev *hdev)
3536 {
3537 	struct hci_cp_write_eir cp;
3538 
3539 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3540 		return 0;
3541 
3542 	memset(hdev->eir, 0, sizeof(hdev->eir));
3543 	memset(&cp, 0, sizeof(cp));
3544 
3545 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3546 				     HCI_CMD_TIMEOUT);
3547 }
3548 
3549 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3550 {
3551 	u8 mode;
3552 
3553 	if (!lmp_inq_rssi_capable(hdev) &&
3554 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3555 		return 0;
3556 
3557 	/* If Extended Inquiry Result events are supported, then
3558 	 * they are clearly preferred over Inquiry Result with RSSI
3559 	 * events.
3560 	 */
3561 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3562 
3563 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3564 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3565 }
3566 
3567 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3568 {
3569 	if (!lmp_inq_tx_pwr_capable(hdev))
3570 		return 0;
3571 
3572 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3573 				     0, NULL, HCI_CMD_TIMEOUT);
3574 }
3575 
3576 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3577 {
3578 	struct hci_cp_read_local_ext_features cp;
3579 
3580 	if (!lmp_ext_feat_capable(hdev))
3581 		return 0;
3582 
3583 	memset(&cp, 0, sizeof(cp));
3584 	cp.page = page;
3585 
3586 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3587 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3588 }
3589 
3590 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3591 {
3592 	return hci_read_local_ext_features_sync(hdev, 0x01);
3593 }
3594 
3595 /* HCI Controller init stage 2 command sequence */
3596 static const struct hci_init_stage hci_init2[] = {
3597 	/* HCI_OP_READ_LOCAL_COMMANDS */
3598 	HCI_INIT(hci_read_local_cmds_sync),
3599 	/* HCI_OP_WRITE_SSP_MODE */
3600 	HCI_INIT(hci_write_ssp_mode_1_sync),
3601 	/* HCI_OP_WRITE_EIR */
3602 	HCI_INIT(hci_write_eir_sync),
3603 	/* HCI_OP_WRITE_INQUIRY_MODE */
3604 	HCI_INIT(hci_write_inquiry_mode_sync),
3605 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3606 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3607 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3608 	HCI_INIT(hci_read_local_ext_features_1_sync),
3609 	/* HCI_OP_WRITE_AUTH_ENABLE */
3610 	HCI_INIT(hci_write_auth_enable_sync),
3611 	{}
3612 };
3613 
3614 /* Read LE Buffer Size */
3615 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3616 {
3617 	/* Use Read LE Buffer Size V2 if supported */
3618 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3619 		return __hci_cmd_sync_status(hdev,
3620 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3621 					     0, NULL, HCI_CMD_TIMEOUT);
3622 
3623 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3624 				     0, NULL, HCI_CMD_TIMEOUT);
3625 }
3626 
3627 /* Read LE Local Supported Features */
3628 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3629 {
3630 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3631 				     0, NULL, HCI_CMD_TIMEOUT);
3632 }
3633 
3634 /* Read LE Supported States */
3635 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3636 {
3637 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3638 				     0, NULL, HCI_CMD_TIMEOUT);
3639 }
3640 
3641 /* LE Controller init stage 2 command sequence */
3642 static const struct hci_init_stage le_init2[] = {
3643 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3644 	HCI_INIT(hci_le_read_local_features_sync),
3645 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3646 	HCI_INIT(hci_le_read_buffer_size_sync),
3647 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3648 	HCI_INIT(hci_le_read_supported_states_sync),
3649 	{}
3650 };
3651 
3652 static int hci_init2_sync(struct hci_dev *hdev)
3653 {
3654 	int err;
3655 
3656 	bt_dev_dbg(hdev, "");
3657 
3658 	if (hdev->dev_type == HCI_AMP)
3659 		return hci_init_stage_sync(hdev, amp_init2);
3660 
3661 	err = hci_init_stage_sync(hdev, hci_init2);
3662 	if (err)
3663 		return err;
3664 
3665 	if (lmp_bredr_capable(hdev)) {
3666 		err = hci_init_stage_sync(hdev, br_init2);
3667 		if (err)
3668 			return err;
3669 	} else {
3670 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3671 	}
3672 
3673 	if (lmp_le_capable(hdev)) {
3674 		err = hci_init_stage_sync(hdev, le_init2);
3675 		if (err)
3676 			return err;
3677 		/* LE-only controllers have LE implicitly enabled */
3678 		if (!lmp_bredr_capable(hdev))
3679 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3686 {
3687 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3688 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3689 	 * command otherwise.
3690 	 */
3691 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3692 
3693 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3694 	 * any event mask for pre 1.2 devices.
3695 	 */
3696 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3697 		return 0;
3698 
3699 	if (lmp_bredr_capable(hdev)) {
3700 		events[4] |= 0x01; /* Flow Specification Complete */
3701 
3702 		/* Don't set Disconnect Complete when suspended as that
3703 		 * would wakeup the host when disconnecting due to
3704 		 * suspend.
3705 		 */
3706 		if (hdev->suspended)
3707 			events[0] &= 0xef;
3708 	} else {
3709 		/* Use a different default for LE-only devices */
3710 		memset(events, 0, sizeof(events));
3711 		events[1] |= 0x20; /* Command Complete */
3712 		events[1] |= 0x40; /* Command Status */
3713 		events[1] |= 0x80; /* Hardware Error */
3714 
3715 		/* If the controller supports the Disconnect command, enable
3716 		 * the corresponding event. In addition enable packet flow
3717 		 * control related events.
3718 		 */
3719 		if (hdev->commands[0] & 0x20) {
3720 			/* Don't set Disconnect Complete when suspended as that
3721 			 * would wakeup the host when disconnecting due to
3722 			 * suspend.
3723 			 */
3724 			if (!hdev->suspended)
3725 				events[0] |= 0x10; /* Disconnection Complete */
3726 			events[2] |= 0x04; /* Number of Completed Packets */
3727 			events[3] |= 0x02; /* Data Buffer Overflow */
3728 		}
3729 
3730 		/* If the controller supports the Read Remote Version
3731 		 * Information command, enable the corresponding event.
3732 		 */
3733 		if (hdev->commands[2] & 0x80)
3734 			events[1] |= 0x08; /* Read Remote Version Information
3735 					    * Complete
3736 					    */
3737 
3738 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3739 			events[0] |= 0x80; /* Encryption Change */
3740 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3741 		}
3742 	}
3743 
3744 	if (lmp_inq_rssi_capable(hdev) ||
3745 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3746 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3747 
3748 	if (lmp_ext_feat_capable(hdev))
3749 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3750 
3751 	if (lmp_esco_capable(hdev)) {
3752 		events[5] |= 0x08; /* Synchronous Connection Complete */
3753 		events[5] |= 0x10; /* Synchronous Connection Changed */
3754 	}
3755 
3756 	if (lmp_sniffsubr_capable(hdev))
3757 		events[5] |= 0x20; /* Sniff Subrating */
3758 
3759 	if (lmp_pause_enc_capable(hdev))
3760 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3761 
3762 	if (lmp_ext_inq_capable(hdev))
3763 		events[5] |= 0x40; /* Extended Inquiry Result */
3764 
3765 	if (lmp_no_flush_capable(hdev))
3766 		events[7] |= 0x01; /* Enhanced Flush Complete */
3767 
3768 	if (lmp_lsto_capable(hdev))
3769 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3770 
3771 	if (lmp_ssp_capable(hdev)) {
3772 		events[6] |= 0x01;	/* IO Capability Request */
3773 		events[6] |= 0x02;	/* IO Capability Response */
3774 		events[6] |= 0x04;	/* User Confirmation Request */
3775 		events[6] |= 0x08;	/* User Passkey Request */
3776 		events[6] |= 0x10;	/* Remote OOB Data Request */
3777 		events[6] |= 0x20;	/* Simple Pairing Complete */
3778 		events[7] |= 0x04;	/* User Passkey Notification */
3779 		events[7] |= 0x08;	/* Keypress Notification */
3780 		events[7] |= 0x10;	/* Remote Host Supported
3781 					 * Features Notification
3782 					 */
3783 	}
3784 
3785 	if (lmp_le_capable(hdev))
3786 		events[7] |= 0x20;	/* LE Meta-Event */
3787 
3788 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3789 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3790 }
3791 
3792 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3793 {
3794 	struct hci_cp_read_stored_link_key cp;
3795 
3796 	if (!(hdev->commands[6] & 0x20) ||
3797 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3798 		return 0;
3799 
3800 	memset(&cp, 0, sizeof(cp));
3801 	bacpy(&cp.bdaddr, BDADDR_ANY);
3802 	cp.read_all = 0x01;
3803 
3804 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3805 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3806 }
3807 
3808 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3809 {
3810 	struct hci_cp_write_def_link_policy cp;
3811 	u16 link_policy = 0;
3812 
3813 	if (!(hdev->commands[5] & 0x10))
3814 		return 0;
3815 
3816 	memset(&cp, 0, sizeof(cp));
3817 
3818 	if (lmp_rswitch_capable(hdev))
3819 		link_policy |= HCI_LP_RSWITCH;
3820 	if (lmp_hold_capable(hdev))
3821 		link_policy |= HCI_LP_HOLD;
3822 	if (lmp_sniff_capable(hdev))
3823 		link_policy |= HCI_LP_SNIFF;
3824 	if (lmp_park_capable(hdev))
3825 		link_policy |= HCI_LP_PARK;
3826 
3827 	cp.policy = cpu_to_le16(link_policy);
3828 
3829 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3830 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3831 }
3832 
3833 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3834 {
3835 	if (!(hdev->commands[8] & 0x01))
3836 		return 0;
3837 
3838 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3839 				     0, NULL, HCI_CMD_TIMEOUT);
3840 }
3841 
3842 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3843 {
3844 	if (!(hdev->commands[18] & 0x04) ||
3845 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3846 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3847 		return 0;
3848 
3849 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3850 				     0, NULL, HCI_CMD_TIMEOUT);
3851 }
3852 
3853 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3854 {
3855 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3856 	 * support the Read Page Scan Type command. Check support for
3857 	 * this command in the bit mask of supported commands.
3858 	 */
3859 	if (!(hdev->commands[13] & 0x01))
3860 		return 0;
3861 
3862 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3863 				     0, NULL, HCI_CMD_TIMEOUT);
3864 }
3865 
3866 /* Read features beyond page 1 if available */
3867 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3868 {
3869 	u8 page;
3870 	int err;
3871 
3872 	if (!lmp_ext_feat_capable(hdev))
3873 		return 0;
3874 
3875 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3876 	     page++) {
3877 		err = hci_read_local_ext_features_sync(hdev, page);
3878 		if (err)
3879 			return err;
3880 	}
3881 
3882 	return 0;
3883 }
3884 
3885 /* HCI Controller init stage 3 command sequence */
3886 static const struct hci_init_stage hci_init3[] = {
3887 	/* HCI_OP_SET_EVENT_MASK */
3888 	HCI_INIT(hci_set_event_mask_sync),
3889 	/* HCI_OP_READ_STORED_LINK_KEY */
3890 	HCI_INIT(hci_read_stored_link_key_sync),
3891 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3892 	HCI_INIT(hci_setup_link_policy_sync),
3893 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3894 	HCI_INIT(hci_read_page_scan_activity_sync),
3895 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3896 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3897 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3898 	HCI_INIT(hci_read_page_scan_type_sync),
3899 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3900 	HCI_INIT(hci_read_local_ext_features_all_sync),
3901 	{}
3902 };
3903 
3904 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3905 {
3906 	u8 events[8];
3907 
3908 	if (!lmp_le_capable(hdev))
3909 		return 0;
3910 
3911 	memset(events, 0, sizeof(events));
3912 
3913 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3914 		events[0] |= 0x10;	/* LE Long Term Key Request */
3915 
3916 	/* If controller supports the Connection Parameters Request
3917 	 * Link Layer Procedure, enable the corresponding event.
3918 	 */
3919 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3920 		/* LE Remote Connection Parameter Request */
3921 		events[0] |= 0x20;
3922 
3923 	/* If the controller supports the Data Length Extension
3924 	 * feature, enable the corresponding event.
3925 	 */
3926 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3927 		events[0] |= 0x40;	/* LE Data Length Change */
3928 
3929 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3930 	 * enable the corresponding event.
3931 	 */
3932 	if (use_enhanced_conn_complete(hdev))
3933 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3934 
3935 	/* If the controller supports Extended Scanner Filter
3936 	 * Policies, enable the corresponding event.
3937 	 */
3938 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3939 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3940 
3941 	/* If the controller supports Channel Selection Algorithm #2
3942 	 * feature, enable the corresponding event.
3943 	 */
3944 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3945 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3946 
3947 	/* If the controller supports the LE Set Scan Enable command,
3948 	 * enable the corresponding advertising report event.
3949 	 */
3950 	if (hdev->commands[26] & 0x08)
3951 		events[0] |= 0x02;	/* LE Advertising Report */
3952 
3953 	/* If the controller supports the LE Create Connection
3954 	 * command, enable the corresponding event.
3955 	 */
3956 	if (hdev->commands[26] & 0x10)
3957 		events[0] |= 0x01;	/* LE Connection Complete */
3958 
3959 	/* If the controller supports the LE Connection Update
3960 	 * command, enable the corresponding event.
3961 	 */
3962 	if (hdev->commands[27] & 0x04)
3963 		events[0] |= 0x04;	/* LE Connection Update Complete */
3964 
3965 	/* If the controller supports the LE Read Remote Used Features
3966 	 * command, enable the corresponding event.
3967 	 */
3968 	if (hdev->commands[27] & 0x20)
3969 		/* LE Read Remote Used Features Complete */
3970 		events[0] |= 0x08;
3971 
3972 	/* If the controller supports the LE Read Local P-256
3973 	 * Public Key command, enable the corresponding event.
3974 	 */
3975 	if (hdev->commands[34] & 0x02)
3976 		/* LE Read Local P-256 Public Key Complete */
3977 		events[0] |= 0x80;
3978 
3979 	/* If the controller supports the LE Generate DHKey
3980 	 * command, enable the corresponding event.
3981 	 */
3982 	if (hdev->commands[34] & 0x04)
3983 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3984 
3985 	/* If the controller supports the LE Set Default PHY or
3986 	 * LE Set PHY commands, enable the corresponding event.
3987 	 */
3988 	if (hdev->commands[35] & (0x20 | 0x40))
3989 		events[1] |= 0x08;        /* LE PHY Update Complete */
3990 
3991 	/* If the controller supports LE Set Extended Scan Parameters
3992 	 * and LE Set Extended Scan Enable commands, enable the
3993 	 * corresponding event.
3994 	 */
3995 	if (use_ext_scan(hdev))
3996 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3997 
3998 	/* If the controller supports the LE Extended Advertising
3999 	 * command, enable the corresponding event.
4000 	 */
4001 	if (ext_adv_capable(hdev))
4002 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4003 
4004 	if (cis_capable(hdev)) {
4005 		events[3] |= 0x01;	/* LE CIS Established */
4006 		if (cis_peripheral_capable(hdev))
4007 			events[3] |= 0x02; /* LE CIS Request */
4008 	}
4009 
4010 	if (bis_capable(hdev)) {
4011 		events[3] |= 0x04;	/* LE Create BIG Complete */
4012 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4013 		events[3] |= 0x10;	/* LE BIG Sync Established */
4014 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4015 	}
4016 
4017 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4018 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4019 }
4020 
4021 /* Read LE Advertising Channel TX Power */
4022 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4023 {
4024 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4025 		/* HCI TS spec forbids mixing of legacy and extended
4026 		 * advertising commands wherein READ_ADV_TX_POWER is
4027 		 * also included. So do not call it if extended adv
4028 		 * is supported otherwise controller will return
4029 		 * COMMAND_DISALLOWED for extended commands.
4030 		 */
4031 		return __hci_cmd_sync_status(hdev,
4032 					       HCI_OP_LE_READ_ADV_TX_POWER,
4033 					       0, NULL, HCI_CMD_TIMEOUT);
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 /* Read LE Min/Max Tx Power*/
4040 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4041 {
4042 	if (!(hdev->commands[38] & 0x80) ||
4043 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4044 		return 0;
4045 
4046 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4047 				     0, NULL, HCI_CMD_TIMEOUT);
4048 }
4049 
4050 /* Read LE Accept List Size */
4051 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4052 {
4053 	if (!(hdev->commands[26] & 0x40))
4054 		return 0;
4055 
4056 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4057 				     0, NULL, HCI_CMD_TIMEOUT);
4058 }
4059 
4060 /* Clear LE Accept List */
4061 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4062 {
4063 	if (!(hdev->commands[26] & 0x80))
4064 		return 0;
4065 
4066 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4067 				     HCI_CMD_TIMEOUT);
4068 }
4069 
4070 /* Read LE Resolving List Size */
4071 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4072 {
4073 	if (!(hdev->commands[34] & 0x40))
4074 		return 0;
4075 
4076 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4077 				     0, NULL, HCI_CMD_TIMEOUT);
4078 }
4079 
4080 /* Clear LE Resolving List */
4081 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4082 {
4083 	if (!(hdev->commands[34] & 0x20))
4084 		return 0;
4085 
4086 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4087 				     HCI_CMD_TIMEOUT);
4088 }
4089 
4090 /* Set RPA timeout */
4091 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4092 {
4093 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4094 
4095 	if (!(hdev->commands[35] & 0x04))
4096 		return 0;
4097 
4098 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4099 				     sizeof(timeout), &timeout,
4100 				     HCI_CMD_TIMEOUT);
4101 }
4102 
4103 /* Read LE Maximum Data Length */
4104 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4105 {
4106 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4107 		return 0;
4108 
4109 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4110 				     HCI_CMD_TIMEOUT);
4111 }
4112 
4113 /* Read LE Suggested Default Data Length */
4114 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4115 {
4116 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4117 		return 0;
4118 
4119 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4120 				     HCI_CMD_TIMEOUT);
4121 }
4122 
4123 /* Read LE Number of Supported Advertising Sets */
4124 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4125 {
4126 	if (!ext_adv_capable(hdev))
4127 		return 0;
4128 
4129 	return __hci_cmd_sync_status(hdev,
4130 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4131 				     0, NULL, HCI_CMD_TIMEOUT);
4132 }
4133 
4134 /* Write LE Host Supported */
4135 static int hci_set_le_support_sync(struct hci_dev *hdev)
4136 {
4137 	struct hci_cp_write_le_host_supported cp;
4138 
4139 	/* LE-only devices do not support explicit enablement */
4140 	if (!lmp_bredr_capable(hdev))
4141 		return 0;
4142 
4143 	memset(&cp, 0, sizeof(cp));
4144 
4145 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4146 		cp.le = 0x01;
4147 		cp.simul = 0x00;
4148 	}
4149 
4150 	if (cp.le == lmp_host_le_capable(hdev))
4151 		return 0;
4152 
4153 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4154 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4155 }
4156 
4157 /* LE Set Host Feature */
4158 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4159 {
4160 	struct hci_cp_le_set_host_feature cp;
4161 
4162 	if (!iso_capable(hdev))
4163 		return 0;
4164 
4165 	memset(&cp, 0, sizeof(cp));
4166 
4167 	/* Isochronous Channels (Host Support) */
4168 	cp.bit_number = 32;
4169 	cp.bit_value = 1;
4170 
4171 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4172 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4173 }
4174 
4175 /* LE Controller init stage 3 command sequence */
4176 static const struct hci_init_stage le_init3[] = {
4177 	/* HCI_OP_LE_SET_EVENT_MASK */
4178 	HCI_INIT(hci_le_set_event_mask_sync),
4179 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4180 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4181 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4182 	HCI_INIT(hci_le_read_tx_power_sync),
4183 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4184 	HCI_INIT(hci_le_read_accept_list_size_sync),
4185 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4186 	HCI_INIT(hci_le_clear_accept_list_sync),
4187 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4188 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4189 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4190 	HCI_INIT(hci_le_clear_resolv_list_sync),
4191 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4192 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4193 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4194 	HCI_INIT(hci_le_read_max_data_len_sync),
4195 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4196 	HCI_INIT(hci_le_read_def_data_len_sync),
4197 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4198 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4199 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4200 	HCI_INIT(hci_set_le_support_sync),
4201 	/* HCI_OP_LE_SET_HOST_FEATURE */
4202 	HCI_INIT(hci_le_set_host_feature_sync),
4203 	{}
4204 };
4205 
4206 static int hci_init3_sync(struct hci_dev *hdev)
4207 {
4208 	int err;
4209 
4210 	bt_dev_dbg(hdev, "");
4211 
4212 	err = hci_init_stage_sync(hdev, hci_init3);
4213 	if (err)
4214 		return err;
4215 
4216 	if (lmp_le_capable(hdev))
4217 		return hci_init_stage_sync(hdev, le_init3);
4218 
4219 	return 0;
4220 }
4221 
4222 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4223 {
4224 	struct hci_cp_delete_stored_link_key cp;
4225 
4226 	/* Some Broadcom based Bluetooth controllers do not support the
4227 	 * Delete Stored Link Key command. They are clearly indicating its
4228 	 * absence in the bit mask of supported commands.
4229 	 *
4230 	 * Check the supported commands and only if the command is marked
4231 	 * as supported send it. If not supported assume that the controller
4232 	 * does not have actual support for stored link keys which makes this
4233 	 * command redundant anyway.
4234 	 *
4235 	 * Some controllers indicate that they support handling deleting
4236 	 * stored link keys, but they don't. The quirk lets a driver
4237 	 * just disable this command.
4238 	 */
4239 	if (!(hdev->commands[6] & 0x80) ||
4240 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4241 		return 0;
4242 
4243 	memset(&cp, 0, sizeof(cp));
4244 	bacpy(&cp.bdaddr, BDADDR_ANY);
4245 	cp.delete_all = 0x01;
4246 
4247 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4248 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4249 }
4250 
4251 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4252 {
4253 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4254 	bool changed = false;
4255 
4256 	/* Set event mask page 2 if the HCI command for it is supported */
4257 	if (!(hdev->commands[22] & 0x04))
4258 		return 0;
4259 
4260 	/* If Connectionless Peripheral Broadcast central role is supported
4261 	 * enable all necessary events for it.
4262 	 */
4263 	if (lmp_cpb_central_capable(hdev)) {
4264 		events[1] |= 0x40;	/* Triggered Clock Capture */
4265 		events[1] |= 0x80;	/* Synchronization Train Complete */
4266 		events[2] |= 0x08;	/* Truncated Page Complete */
4267 		events[2] |= 0x20;	/* CPB Channel Map Change */
4268 		changed = true;
4269 	}
4270 
4271 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4272 	 * enable all necessary events for it.
4273 	 */
4274 	if (lmp_cpb_peripheral_capable(hdev)) {
4275 		events[2] |= 0x01;	/* Synchronization Train Received */
4276 		events[2] |= 0x02;	/* CPB Receive */
4277 		events[2] |= 0x04;	/* CPB Timeout */
4278 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4279 		changed = true;
4280 	}
4281 
4282 	/* Enable Authenticated Payload Timeout Expired event if supported */
4283 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4284 		events[2] |= 0x80;
4285 		changed = true;
4286 	}
4287 
4288 	/* Some Broadcom based controllers indicate support for Set Event
4289 	 * Mask Page 2 command, but then actually do not support it. Since
4290 	 * the default value is all bits set to zero, the command is only
4291 	 * required if the event mask has to be changed. In case no change
4292 	 * to the event mask is needed, skip this command.
4293 	 */
4294 	if (!changed)
4295 		return 0;
4296 
4297 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4298 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4299 }
4300 
4301 /* Read local codec list if the HCI command is supported */
4302 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4303 {
4304 	if (hdev->commands[45] & 0x04)
4305 		hci_read_supported_codecs_v2(hdev);
4306 	else if (hdev->commands[29] & 0x20)
4307 		hci_read_supported_codecs(hdev);
4308 
4309 	return 0;
4310 }
4311 
4312 /* Read local pairing options if the HCI command is supported */
4313 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4314 {
4315 	if (!(hdev->commands[41] & 0x08))
4316 		return 0;
4317 
4318 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4319 				     0, NULL, HCI_CMD_TIMEOUT);
4320 }
4321 
4322 /* Get MWS transport configuration if the HCI command is supported */
4323 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4324 {
4325 	if (!mws_transport_config_capable(hdev))
4326 		return 0;
4327 
4328 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4329 				     0, NULL, HCI_CMD_TIMEOUT);
4330 }
4331 
4332 /* Check for Synchronization Train support */
4333 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4334 {
4335 	if (!lmp_sync_train_capable(hdev))
4336 		return 0;
4337 
4338 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4339 				     0, NULL, HCI_CMD_TIMEOUT);
4340 }
4341 
4342 /* Enable Secure Connections if supported and configured */
4343 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4344 {
4345 	u8 support = 0x01;
4346 
4347 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4348 	    !bredr_sc_enabled(hdev))
4349 		return 0;
4350 
4351 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4352 				     sizeof(support), &support,
4353 				     HCI_CMD_TIMEOUT);
4354 }
4355 
4356 /* Set erroneous data reporting if supported to the wideband speech
4357  * setting value
4358  */
4359 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4360 {
4361 	struct hci_cp_write_def_err_data_reporting cp;
4362 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4363 
4364 	if (!(hdev->commands[18] & 0x08) ||
4365 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4366 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4367 		return 0;
4368 
4369 	if (enabled == hdev->err_data_reporting)
4370 		return 0;
4371 
4372 	memset(&cp, 0, sizeof(cp));
4373 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4374 				ERR_DATA_REPORTING_DISABLED;
4375 
4376 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4377 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4378 }
4379 
4380 static const struct hci_init_stage hci_init4[] = {
4381 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4382 	HCI_INIT(hci_delete_stored_link_key_sync),
4383 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4384 	HCI_INIT(hci_set_event_mask_page_2_sync),
4385 	/* HCI_OP_READ_LOCAL_CODECS */
4386 	HCI_INIT(hci_read_local_codecs_sync),
4387 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4388 	HCI_INIT(hci_read_local_pairing_opts_sync),
4389 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4390 	HCI_INIT(hci_get_mws_transport_config_sync),
4391 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4392 	HCI_INIT(hci_read_sync_train_params_sync),
4393 	/* HCI_OP_WRITE_SC_SUPPORT */
4394 	HCI_INIT(hci_write_sc_support_1_sync),
4395 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4396 	HCI_INIT(hci_set_err_data_report_sync),
4397 	{}
4398 };
4399 
4400 /* Set Suggested Default Data Length to maximum if supported */
4401 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4402 {
4403 	struct hci_cp_le_write_def_data_len cp;
4404 
4405 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4406 		return 0;
4407 
4408 	memset(&cp, 0, sizeof(cp));
4409 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4410 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4411 
4412 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4413 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4414 }
4415 
4416 /* Set Default PHY parameters if command is supported */
4417 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4418 {
4419 	struct hci_cp_le_set_default_phy cp;
4420 
4421 	if (!(hdev->commands[35] & 0x20))
4422 		return 0;
4423 
4424 	memset(&cp, 0, sizeof(cp));
4425 	cp.all_phys = 0x00;
4426 	cp.tx_phys = hdev->le_tx_def_phys;
4427 	cp.rx_phys = hdev->le_rx_def_phys;
4428 
4429 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4430 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4431 }
4432 
4433 static const struct hci_init_stage le_init4[] = {
4434 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4435 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4436 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4437 	HCI_INIT(hci_le_set_default_phy_sync),
4438 	{}
4439 };
4440 
4441 static int hci_init4_sync(struct hci_dev *hdev)
4442 {
4443 	int err;
4444 
4445 	bt_dev_dbg(hdev, "");
4446 
4447 	err = hci_init_stage_sync(hdev, hci_init4);
4448 	if (err)
4449 		return err;
4450 
4451 	if (lmp_le_capable(hdev))
4452 		return hci_init_stage_sync(hdev, le_init4);
4453 
4454 	return 0;
4455 }
4456 
4457 static int hci_init_sync(struct hci_dev *hdev)
4458 {
4459 	int err;
4460 
4461 	err = hci_init1_sync(hdev);
4462 	if (err < 0)
4463 		return err;
4464 
4465 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4466 		hci_debugfs_create_basic(hdev);
4467 
4468 	err = hci_init2_sync(hdev);
4469 	if (err < 0)
4470 		return err;
4471 
4472 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4473 	 * BR/EDR/LE type controllers. AMP controllers only need the
4474 	 * first two stages of init.
4475 	 */
4476 	if (hdev->dev_type != HCI_PRIMARY)
4477 		return 0;
4478 
4479 	err = hci_init3_sync(hdev);
4480 	if (err < 0)
4481 		return err;
4482 
4483 	err = hci_init4_sync(hdev);
4484 	if (err < 0)
4485 		return err;
4486 
4487 	/* This function is only called when the controller is actually in
4488 	 * configured state. When the controller is marked as unconfigured,
4489 	 * this initialization procedure is not run.
4490 	 *
4491 	 * It means that it is possible that a controller runs through its
4492 	 * setup phase and then discovers missing settings. If that is the
4493 	 * case, then this function will not be called. It then will only
4494 	 * be called during the config phase.
4495 	 *
4496 	 * So only when in setup phase or config phase, create the debugfs
4497 	 * entries and register the SMP channels.
4498 	 */
4499 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4500 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4501 		return 0;
4502 
4503 	hci_debugfs_create_common(hdev);
4504 
4505 	if (lmp_bredr_capable(hdev))
4506 		hci_debugfs_create_bredr(hdev);
4507 
4508 	if (lmp_le_capable(hdev))
4509 		hci_debugfs_create_le(hdev);
4510 
4511 	return 0;
4512 }
4513 
4514 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4515 
4516 static const struct {
4517 	unsigned long quirk;
4518 	const char *desc;
4519 } hci_broken_table[] = {
4520 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4521 			 "HCI Read Local Supported Commands not supported"),
4522 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4523 			 "HCI Delete Stored Link Key command is advertised, "
4524 			 "but not supported."),
4525 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4526 			 "HCI Read Default Erroneous Data Reporting command is "
4527 			 "advertised, but not supported."),
4528 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4529 			 "HCI Read Transmit Power Level command is advertised, "
4530 			 "but not supported."),
4531 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4532 			 "HCI Set Event Filter command not supported."),
4533 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4534 			 "HCI Enhanced Setup Synchronous Connection command is "
4535 			 "advertised, but not supported.")
4536 };
4537 
4538 /* This function handles hdev setup stage:
4539  *
4540  * Calls hdev->setup
4541  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4542  */
4543 static int hci_dev_setup_sync(struct hci_dev *hdev)
4544 {
4545 	int ret = 0;
4546 	bool invalid_bdaddr;
4547 	size_t i;
4548 
4549 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4550 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4551 		return 0;
4552 
4553 	bt_dev_dbg(hdev, "");
4554 
4555 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4556 
4557 	if (hdev->setup)
4558 		ret = hdev->setup(hdev);
4559 
4560 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4561 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4562 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4563 	}
4564 
4565 	/* The transport driver can set the quirk to mark the
4566 	 * BD_ADDR invalid before creating the HCI device or in
4567 	 * its setup callback.
4568 	 */
4569 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
4570 
4571 	if (!ret) {
4572 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
4573 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
4574 				hci_dev_get_bd_addr_from_property(hdev);
4575 
4576 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4577 			    hdev->set_bdaddr) {
4578 				ret = hdev->set_bdaddr(hdev,
4579 						       &hdev->public_addr);
4580 
4581 				/* If setting of the BD_ADDR from the device
4582 				 * property succeeds, then treat the address
4583 				 * as valid even if the invalid BD_ADDR
4584 				 * quirk indicates otherwise.
4585 				 */
4586 				if (!ret)
4587 					invalid_bdaddr = false;
4588 			}
4589 		}
4590 	}
4591 
4592 	/* The transport driver can set these quirks before
4593 	 * creating the HCI device or in its setup callback.
4594 	 *
4595 	 * For the invalid BD_ADDR quirk it is possible that
4596 	 * it becomes a valid address if the bootloader does
4597 	 * provide it (see above).
4598 	 *
4599 	 * In case any of them is set, the controller has to
4600 	 * start up as unconfigured.
4601 	 */
4602 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4603 	    invalid_bdaddr)
4604 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4605 
4606 	/* For an unconfigured controller it is required to
4607 	 * read at least the version information provided by
4608 	 * the Read Local Version Information command.
4609 	 *
4610 	 * If the set_bdaddr driver callback is provided, then
4611 	 * also the original Bluetooth public device address
4612 	 * will be read using the Read BD Address command.
4613 	 */
4614 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4615 		return hci_unconf_init_sync(hdev);
4616 
4617 	return ret;
4618 }
4619 
4620 /* This function handles hdev init stage:
4621  *
4622  * Calls hci_dev_setup_sync to perform setup stage
4623  * Calls hci_init_sync to perform HCI command init sequence
4624  */
4625 static int hci_dev_init_sync(struct hci_dev *hdev)
4626 {
4627 	int ret;
4628 
4629 	bt_dev_dbg(hdev, "");
4630 
4631 	atomic_set(&hdev->cmd_cnt, 1);
4632 	set_bit(HCI_INIT, &hdev->flags);
4633 
4634 	ret = hci_dev_setup_sync(hdev);
4635 
4636 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4637 		/* If public address change is configured, ensure that
4638 		 * the address gets programmed. If the driver does not
4639 		 * support changing the public address, fail the power
4640 		 * on procedure.
4641 		 */
4642 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4643 		    hdev->set_bdaddr)
4644 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4645 		else
4646 			ret = -EADDRNOTAVAIL;
4647 	}
4648 
4649 	if (!ret) {
4650 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4651 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4652 			ret = hci_init_sync(hdev);
4653 			if (!ret && hdev->post_init)
4654 				ret = hdev->post_init(hdev);
4655 		}
4656 	}
4657 
4658 	/* If the HCI Reset command is clearing all diagnostic settings,
4659 	 * then they need to be reprogrammed after the init procedure
4660 	 * completed.
4661 	 */
4662 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4663 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4664 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4665 		ret = hdev->set_diag(hdev, true);
4666 
4667 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4668 		msft_do_open(hdev);
4669 		aosp_do_open(hdev);
4670 	}
4671 
4672 	clear_bit(HCI_INIT, &hdev->flags);
4673 
4674 	return ret;
4675 }
4676 
4677 int hci_dev_open_sync(struct hci_dev *hdev)
4678 {
4679 	int ret;
4680 
4681 	bt_dev_dbg(hdev, "");
4682 
4683 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4684 		ret = -ENODEV;
4685 		goto done;
4686 	}
4687 
4688 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4689 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4690 		/* Check for rfkill but allow the HCI setup stage to
4691 		 * proceed (which in itself doesn't cause any RF activity).
4692 		 */
4693 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4694 			ret = -ERFKILL;
4695 			goto done;
4696 		}
4697 
4698 		/* Check for valid public address or a configured static
4699 		 * random address, but let the HCI setup proceed to
4700 		 * be able to determine if there is a public address
4701 		 * or not.
4702 		 *
4703 		 * In case of user channel usage, it is not important
4704 		 * if a public address or static random address is
4705 		 * available.
4706 		 *
4707 		 * This check is only valid for BR/EDR controllers
4708 		 * since AMP controllers do not have an address.
4709 		 */
4710 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4711 		    hdev->dev_type == HCI_PRIMARY &&
4712 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4713 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4714 			ret = -EADDRNOTAVAIL;
4715 			goto done;
4716 		}
4717 	}
4718 
4719 	if (test_bit(HCI_UP, &hdev->flags)) {
4720 		ret = -EALREADY;
4721 		goto done;
4722 	}
4723 
4724 	if (hdev->open(hdev)) {
4725 		ret = -EIO;
4726 		goto done;
4727 	}
4728 
4729 	set_bit(HCI_RUNNING, &hdev->flags);
4730 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4731 
4732 	ret = hci_dev_init_sync(hdev);
4733 	if (!ret) {
4734 		hci_dev_hold(hdev);
4735 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4736 		hci_adv_instances_set_rpa_expired(hdev, true);
4737 		set_bit(HCI_UP, &hdev->flags);
4738 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4739 		hci_leds_update_powered(hdev, true);
4740 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4741 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4742 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4743 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4744 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4745 		    hdev->dev_type == HCI_PRIMARY) {
4746 			ret = hci_powered_update_sync(hdev);
4747 			mgmt_power_on(hdev, ret);
4748 		}
4749 	} else {
4750 		/* Init failed, cleanup */
4751 		flush_work(&hdev->tx_work);
4752 
4753 		/* Since hci_rx_work() is possible to awake new cmd_work
4754 		 * it should be flushed first to avoid unexpected call of
4755 		 * hci_cmd_work()
4756 		 */
4757 		flush_work(&hdev->rx_work);
4758 		flush_work(&hdev->cmd_work);
4759 
4760 		skb_queue_purge(&hdev->cmd_q);
4761 		skb_queue_purge(&hdev->rx_q);
4762 
4763 		if (hdev->flush)
4764 			hdev->flush(hdev);
4765 
4766 		if (hdev->sent_cmd) {
4767 			cancel_delayed_work_sync(&hdev->cmd_timer);
4768 			kfree_skb(hdev->sent_cmd);
4769 			hdev->sent_cmd = NULL;
4770 		}
4771 
4772 		clear_bit(HCI_RUNNING, &hdev->flags);
4773 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4774 
4775 		hdev->close(hdev);
4776 		hdev->flags &= BIT(HCI_RAW);
4777 	}
4778 
4779 done:
4780 	return ret;
4781 }
4782 
4783 /* This function requires the caller holds hdev->lock */
4784 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4785 {
4786 	struct hci_conn_params *p;
4787 
4788 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4789 		if (p->conn) {
4790 			hci_conn_drop(p->conn);
4791 			hci_conn_put(p->conn);
4792 			p->conn = NULL;
4793 		}
4794 		list_del_init(&p->action);
4795 	}
4796 
4797 	BT_DBG("All LE pending actions cleared");
4798 }
4799 
4800 static int hci_dev_shutdown(struct hci_dev *hdev)
4801 {
4802 	int err = 0;
4803 	/* Similar to how we first do setup and then set the exclusive access
4804 	 * bit for userspace, we must first unset userchannel and then clean up.
4805 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4806 	 * the controller (some shutdown routines require sending additional
4807 	 * commands to the controller for example).
4808 	 */
4809 	bool was_userchannel =
4810 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4811 
4812 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4813 	    test_bit(HCI_UP, &hdev->flags)) {
4814 		/* Execute vendor specific shutdown routine */
4815 		if (hdev->shutdown)
4816 			err = hdev->shutdown(hdev);
4817 	}
4818 
4819 	if (was_userchannel)
4820 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4821 
4822 	return err;
4823 }
4824 
4825 int hci_dev_close_sync(struct hci_dev *hdev)
4826 {
4827 	bool auto_off;
4828 	int err = 0;
4829 
4830 	bt_dev_dbg(hdev, "");
4831 
4832 	cancel_delayed_work(&hdev->power_off);
4833 	cancel_delayed_work(&hdev->ncmd_timer);
4834 	cancel_delayed_work(&hdev->le_scan_disable);
4835 	cancel_delayed_work(&hdev->le_scan_restart);
4836 
4837 	hci_request_cancel_all(hdev);
4838 
4839 	if (hdev->adv_instance_timeout) {
4840 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4841 		hdev->adv_instance_timeout = 0;
4842 	}
4843 
4844 	err = hci_dev_shutdown(hdev);
4845 
4846 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4847 		cancel_delayed_work_sync(&hdev->cmd_timer);
4848 		return err;
4849 	}
4850 
4851 	hci_leds_update_powered(hdev, false);
4852 
4853 	/* Flush RX and TX works */
4854 	flush_work(&hdev->tx_work);
4855 	flush_work(&hdev->rx_work);
4856 
4857 	if (hdev->discov_timeout > 0) {
4858 		hdev->discov_timeout = 0;
4859 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4860 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4861 	}
4862 
4863 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4864 		cancel_delayed_work(&hdev->service_cache);
4865 
4866 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4867 		struct adv_info *adv_instance;
4868 
4869 		cancel_delayed_work_sync(&hdev->rpa_expired);
4870 
4871 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4872 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4873 	}
4874 
4875 	/* Avoid potential lockdep warnings from the *_flush() calls by
4876 	 * ensuring the workqueue is empty up front.
4877 	 */
4878 	drain_workqueue(hdev->workqueue);
4879 
4880 	hci_dev_lock(hdev);
4881 
4882 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4883 
4884 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4885 
4886 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4887 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4888 	    hci_dev_test_flag(hdev, HCI_MGMT))
4889 		__mgmt_power_off(hdev);
4890 
4891 	hci_inquiry_cache_flush(hdev);
4892 	hci_pend_le_actions_clear(hdev);
4893 	hci_conn_hash_flush(hdev);
4894 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4895 	smp_unregister(hdev);
4896 	hci_dev_unlock(hdev);
4897 
4898 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4899 
4900 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4901 		aosp_do_close(hdev);
4902 		msft_do_close(hdev);
4903 	}
4904 
4905 	if (hdev->flush)
4906 		hdev->flush(hdev);
4907 
4908 	/* Reset device */
4909 	skb_queue_purge(&hdev->cmd_q);
4910 	atomic_set(&hdev->cmd_cnt, 1);
4911 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4912 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4913 		set_bit(HCI_INIT, &hdev->flags);
4914 		hci_reset_sync(hdev);
4915 		clear_bit(HCI_INIT, &hdev->flags);
4916 	}
4917 
4918 	/* flush cmd  work */
4919 	flush_work(&hdev->cmd_work);
4920 
4921 	/* Drop queues */
4922 	skb_queue_purge(&hdev->rx_q);
4923 	skb_queue_purge(&hdev->cmd_q);
4924 	skb_queue_purge(&hdev->raw_q);
4925 
4926 	/* Drop last sent command */
4927 	if (hdev->sent_cmd) {
4928 		cancel_delayed_work_sync(&hdev->cmd_timer);
4929 		kfree_skb(hdev->sent_cmd);
4930 		hdev->sent_cmd = NULL;
4931 	}
4932 
4933 	clear_bit(HCI_RUNNING, &hdev->flags);
4934 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4935 
4936 	/* After this point our queues are empty and no tasks are scheduled. */
4937 	hdev->close(hdev);
4938 
4939 	/* Clear flags */
4940 	hdev->flags &= BIT(HCI_RAW);
4941 	hci_dev_clear_volatile_flags(hdev);
4942 
4943 	/* Controller radio is available but is currently powered down */
4944 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4945 
4946 	memset(hdev->eir, 0, sizeof(hdev->eir));
4947 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4948 	bacpy(&hdev->random_addr, BDADDR_ANY);
4949 
4950 	hci_dev_put(hdev);
4951 	return err;
4952 }
4953 
4954 /* This function perform power on HCI command sequence as follows:
4955  *
4956  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4957  * sequence otherwise run hci_dev_open_sync which will follow with
4958  * hci_powered_update_sync after the init sequence is completed.
4959  */
4960 static int hci_power_on_sync(struct hci_dev *hdev)
4961 {
4962 	int err;
4963 
4964 	if (test_bit(HCI_UP, &hdev->flags) &&
4965 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4966 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4967 		cancel_delayed_work(&hdev->power_off);
4968 		return hci_powered_update_sync(hdev);
4969 	}
4970 
4971 	err = hci_dev_open_sync(hdev);
4972 	if (err < 0)
4973 		return err;
4974 
4975 	/* During the HCI setup phase, a few error conditions are
4976 	 * ignored and they need to be checked now. If they are still
4977 	 * valid, it is important to return the device back off.
4978 	 */
4979 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4980 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4981 	    (hdev->dev_type == HCI_PRIMARY &&
4982 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4983 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4984 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4985 		hci_dev_close_sync(hdev);
4986 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4987 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4988 				   HCI_AUTO_OFF_TIMEOUT);
4989 	}
4990 
4991 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4992 		/* For unconfigured devices, set the HCI_RAW flag
4993 		 * so that userspace can easily identify them.
4994 		 */
4995 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4996 			set_bit(HCI_RAW, &hdev->flags);
4997 
4998 		/* For fully configured devices, this will send
4999 		 * the Index Added event. For unconfigured devices,
5000 		 * it will send Unconfigued Index Added event.
5001 		 *
5002 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5003 		 * and no event will be send.
5004 		 */
5005 		mgmt_index_added(hdev);
5006 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5007 		/* When the controller is now configured, then it
5008 		 * is important to clear the HCI_RAW flag.
5009 		 */
5010 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5011 			clear_bit(HCI_RAW, &hdev->flags);
5012 
5013 		/* Powering on the controller with HCI_CONFIG set only
5014 		 * happens with the transition from unconfigured to
5015 		 * configured. This will send the Index Added event.
5016 		 */
5017 		mgmt_index_added(hdev);
5018 	}
5019 
5020 	return 0;
5021 }
5022 
5023 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5024 {
5025 	struct hci_cp_remote_name_req_cancel cp;
5026 
5027 	memset(&cp, 0, sizeof(cp));
5028 	bacpy(&cp.bdaddr, addr);
5029 
5030 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5031 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5032 }
5033 
5034 int hci_stop_discovery_sync(struct hci_dev *hdev)
5035 {
5036 	struct discovery_state *d = &hdev->discovery;
5037 	struct inquiry_entry *e;
5038 	int err;
5039 
5040 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5041 
5042 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5043 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5044 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5045 						    0, NULL, HCI_CMD_TIMEOUT);
5046 			if (err)
5047 				return err;
5048 		}
5049 
5050 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5051 			cancel_delayed_work(&hdev->le_scan_disable);
5052 			cancel_delayed_work(&hdev->le_scan_restart);
5053 
5054 			err = hci_scan_disable_sync(hdev);
5055 			if (err)
5056 				return err;
5057 		}
5058 
5059 	} else {
5060 		err = hci_scan_disable_sync(hdev);
5061 		if (err)
5062 			return err;
5063 	}
5064 
5065 	/* Resume advertising if it was paused */
5066 	if (use_ll_privacy(hdev))
5067 		hci_resume_advertising_sync(hdev);
5068 
5069 	/* No further actions needed for LE-only discovery */
5070 	if (d->type == DISCOV_TYPE_LE)
5071 		return 0;
5072 
5073 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5074 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5075 						     NAME_PENDING);
5076 		if (!e)
5077 			return 0;
5078 
5079 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5080 	}
5081 
5082 	return 0;
5083 }
5084 
5085 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5086 					u8 reason)
5087 {
5088 	struct hci_cp_disconn_phy_link cp;
5089 
5090 	memset(&cp, 0, sizeof(cp));
5091 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5092 	cp.reason = reason;
5093 
5094 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5095 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5096 }
5097 
5098 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5099 			       u8 reason)
5100 {
5101 	struct hci_cp_disconnect cp;
5102 
5103 	if (conn->type == AMP_LINK)
5104 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5105 
5106 	memset(&cp, 0, sizeof(cp));
5107 	cp.handle = cpu_to_le16(conn->handle);
5108 	cp.reason = reason;
5109 
5110 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
5111 	 * suspending.
5112 	 */
5113 	if (!hdev->suspended)
5114 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5115 						sizeof(cp), &cp,
5116 						HCI_EV_DISCONN_COMPLETE,
5117 						HCI_CMD_TIMEOUT, NULL);
5118 
5119 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5120 				     HCI_CMD_TIMEOUT);
5121 }
5122 
5123 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5124 				      struct hci_conn *conn)
5125 {
5126 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5127 		return 0;
5128 
5129 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5130 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5131 }
5132 
5133 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
5134 {
5135 	if (conn->type == LE_LINK)
5136 		return hci_le_connect_cancel_sync(hdev, conn);
5137 
5138 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5139 		return 0;
5140 
5141 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5142 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5143 }
5144 
5145 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5146 			       u8 reason)
5147 {
5148 	struct hci_cp_reject_sync_conn_req cp;
5149 
5150 	memset(&cp, 0, sizeof(cp));
5151 	bacpy(&cp.bdaddr, &conn->dst);
5152 	cp.reason = reason;
5153 
5154 	/* SCO rejection has its own limited set of
5155 	 * allowed error values (0x0D-0x0F).
5156 	 */
5157 	if (reason < 0x0d || reason > 0x0f)
5158 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5159 
5160 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5161 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5162 }
5163 
5164 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5165 				u8 reason)
5166 {
5167 	struct hci_cp_reject_conn_req cp;
5168 
5169 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5170 		return hci_reject_sco_sync(hdev, conn, reason);
5171 
5172 	memset(&cp, 0, sizeof(cp));
5173 	bacpy(&cp.bdaddr, &conn->dst);
5174 	cp.reason = reason;
5175 
5176 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5177 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5178 }
5179 
5180 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5181 {
5182 	int err;
5183 
5184 	switch (conn->state) {
5185 	case BT_CONNECTED:
5186 	case BT_CONFIG:
5187 		return hci_disconnect_sync(hdev, conn, reason);
5188 	case BT_CONNECT:
5189 		err = hci_connect_cancel_sync(hdev, conn);
5190 		/* Cleanup hci_conn object if it cannot be cancelled as it
5191 		 * likelly means the controller and host stack are out of sync.
5192 		 */
5193 		if (err) {
5194 			hci_dev_lock(hdev);
5195 			hci_conn_failed(conn, err);
5196 			hci_dev_unlock(hdev);
5197 		}
5198 		return err;
5199 	case BT_CONNECT2:
5200 		return hci_reject_conn_sync(hdev, conn, reason);
5201 	default:
5202 		conn->state = BT_CLOSED;
5203 		break;
5204 	}
5205 
5206 	return 0;
5207 }
5208 
5209 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5210 {
5211 	struct hci_conn *conn, *tmp;
5212 	int err;
5213 
5214 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
5215 		err = hci_abort_conn_sync(hdev, conn, reason);
5216 		if (err)
5217 			return err;
5218 	}
5219 
5220 	return 0;
5221 }
5222 
5223 /* This function perform power off HCI command sequence as follows:
5224  *
5225  * Clear Advertising
5226  * Stop Discovery
5227  * Disconnect all connections
5228  * hci_dev_close_sync
5229  */
5230 static int hci_power_off_sync(struct hci_dev *hdev)
5231 {
5232 	int err;
5233 
5234 	/* If controller is already down there is nothing to do */
5235 	if (!test_bit(HCI_UP, &hdev->flags))
5236 		return 0;
5237 
5238 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5239 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5240 		err = hci_write_scan_enable_sync(hdev, 0x00);
5241 		if (err)
5242 			return err;
5243 	}
5244 
5245 	err = hci_clear_adv_sync(hdev, NULL, false);
5246 	if (err)
5247 		return err;
5248 
5249 	err = hci_stop_discovery_sync(hdev);
5250 	if (err)
5251 		return err;
5252 
5253 	/* Terminated due to Power Off */
5254 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5255 	if (err)
5256 		return err;
5257 
5258 	return hci_dev_close_sync(hdev);
5259 }
5260 
5261 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5262 {
5263 	if (val)
5264 		return hci_power_on_sync(hdev);
5265 
5266 	return hci_power_off_sync(hdev);
5267 }
5268 
5269 static int hci_write_iac_sync(struct hci_dev *hdev)
5270 {
5271 	struct hci_cp_write_current_iac_lap cp;
5272 
5273 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5274 		return 0;
5275 
5276 	memset(&cp, 0, sizeof(cp));
5277 
5278 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5279 		/* Limited discoverable mode */
5280 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5281 		cp.iac_lap[0] = 0x00;	/* LIAC */
5282 		cp.iac_lap[1] = 0x8b;
5283 		cp.iac_lap[2] = 0x9e;
5284 		cp.iac_lap[3] = 0x33;	/* GIAC */
5285 		cp.iac_lap[4] = 0x8b;
5286 		cp.iac_lap[5] = 0x9e;
5287 	} else {
5288 		/* General discoverable mode */
5289 		cp.num_iac = 1;
5290 		cp.iac_lap[0] = 0x33;	/* GIAC */
5291 		cp.iac_lap[1] = 0x8b;
5292 		cp.iac_lap[2] = 0x9e;
5293 	}
5294 
5295 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5296 				     (cp.num_iac * 3) + 1, &cp,
5297 				     HCI_CMD_TIMEOUT);
5298 }
5299 
5300 int hci_update_discoverable_sync(struct hci_dev *hdev)
5301 {
5302 	int err = 0;
5303 
5304 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5305 		err = hci_write_iac_sync(hdev);
5306 		if (err)
5307 			return err;
5308 
5309 		err = hci_update_scan_sync(hdev);
5310 		if (err)
5311 			return err;
5312 
5313 		err = hci_update_class_sync(hdev);
5314 		if (err)
5315 			return err;
5316 	}
5317 
5318 	/* Advertising instances don't use the global discoverable setting, so
5319 	 * only update AD if advertising was enabled using Set Advertising.
5320 	 */
5321 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5322 		err = hci_update_adv_data_sync(hdev, 0x00);
5323 		if (err)
5324 			return err;
5325 
5326 		/* Discoverable mode affects the local advertising
5327 		 * address in limited privacy mode.
5328 		 */
5329 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5330 			if (ext_adv_capable(hdev))
5331 				err = hci_start_ext_adv_sync(hdev, 0x00);
5332 			else
5333 				err = hci_enable_advertising_sync(hdev);
5334 		}
5335 	}
5336 
5337 	return err;
5338 }
5339 
5340 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5341 {
5342 	return hci_update_discoverable_sync(hdev);
5343 }
5344 
5345 int hci_update_discoverable(struct hci_dev *hdev)
5346 {
5347 	/* Only queue if it would have any effect */
5348 	if (hdev_is_powered(hdev) &&
5349 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5350 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5351 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5352 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5353 					  NULL);
5354 
5355 	return 0;
5356 }
5357 
5358 int hci_update_connectable_sync(struct hci_dev *hdev)
5359 {
5360 	int err;
5361 
5362 	err = hci_update_scan_sync(hdev);
5363 	if (err)
5364 		return err;
5365 
5366 	/* If BR/EDR is not enabled and we disable advertising as a
5367 	 * by-product of disabling connectable, we need to update the
5368 	 * advertising flags.
5369 	 */
5370 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5371 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5372 
5373 	/* Update the advertising parameters if necessary */
5374 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5375 	    !list_empty(&hdev->adv_instances)) {
5376 		if (ext_adv_capable(hdev))
5377 			err = hci_start_ext_adv_sync(hdev,
5378 						     hdev->cur_adv_instance);
5379 		else
5380 			err = hci_enable_advertising_sync(hdev);
5381 
5382 		if (err)
5383 			return err;
5384 	}
5385 
5386 	return hci_update_passive_scan_sync(hdev);
5387 }
5388 
5389 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5390 {
5391 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5392 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5393 	struct hci_cp_inquiry cp;
5394 
5395 	bt_dev_dbg(hdev, "");
5396 
5397 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5398 		return 0;
5399 
5400 	hci_dev_lock(hdev);
5401 	hci_inquiry_cache_flush(hdev);
5402 	hci_dev_unlock(hdev);
5403 
5404 	memset(&cp, 0, sizeof(cp));
5405 
5406 	if (hdev->discovery.limited)
5407 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5408 	else
5409 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5410 
5411 	cp.length = length;
5412 
5413 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5414 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5415 }
5416 
5417 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5418 {
5419 	u8 own_addr_type;
5420 	/* Accept list is not used for discovery */
5421 	u8 filter_policy = 0x00;
5422 	/* Default is to enable duplicates filter */
5423 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5424 	int err;
5425 
5426 	bt_dev_dbg(hdev, "");
5427 
5428 	/* If controller is scanning, it means the passive scanning is
5429 	 * running. Thus, we should temporarily stop it in order to set the
5430 	 * discovery scanning parameters.
5431 	 */
5432 	err = hci_scan_disable_sync(hdev);
5433 	if (err) {
5434 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5435 		return err;
5436 	}
5437 
5438 	cancel_interleave_scan(hdev);
5439 
5440 	/* Pause address resolution for active scan and stop advertising if
5441 	 * privacy is enabled.
5442 	 */
5443 	err = hci_pause_addr_resolution(hdev);
5444 	if (err)
5445 		goto failed;
5446 
5447 	/* All active scans will be done with either a resolvable private
5448 	 * address (when privacy feature has been enabled) or non-resolvable
5449 	 * private address.
5450 	 */
5451 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5452 					     &own_addr_type);
5453 	if (err < 0)
5454 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5455 
5456 	if (hci_is_adv_monitoring(hdev)) {
5457 		/* Duplicate filter should be disabled when some advertisement
5458 		 * monitor is activated, otherwise AdvMon can only receive one
5459 		 * advertisement for one peer(*) during active scanning, and
5460 		 * might report loss to these peers.
5461 		 *
5462 		 * Note that different controllers have different meanings of
5463 		 * |duplicate|. Some of them consider packets with the same
5464 		 * address as duplicate, and others consider packets with the
5465 		 * same address and the same RSSI as duplicate. Although in the
5466 		 * latter case we don't need to disable duplicate filter, but
5467 		 * it is common to have active scanning for a short period of
5468 		 * time, the power impact should be neglectable.
5469 		 */
5470 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5471 	}
5472 
5473 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5474 				  hdev->le_scan_window_discovery,
5475 				  own_addr_type, filter_policy, filter_dup);
5476 	if (!err)
5477 		return err;
5478 
5479 failed:
5480 	/* Resume advertising if it was paused */
5481 	if (use_ll_privacy(hdev))
5482 		hci_resume_advertising_sync(hdev);
5483 
5484 	/* Resume passive scanning */
5485 	hci_update_passive_scan_sync(hdev);
5486 	return err;
5487 }
5488 
5489 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5490 {
5491 	int err;
5492 
5493 	bt_dev_dbg(hdev, "");
5494 
5495 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5496 	if (err)
5497 		return err;
5498 
5499 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5500 }
5501 
5502 int hci_start_discovery_sync(struct hci_dev *hdev)
5503 {
5504 	unsigned long timeout;
5505 	int err;
5506 
5507 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5508 
5509 	switch (hdev->discovery.type) {
5510 	case DISCOV_TYPE_BREDR:
5511 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5512 	case DISCOV_TYPE_INTERLEAVED:
5513 		/* When running simultaneous discovery, the LE scanning time
5514 		 * should occupy the whole discovery time sine BR/EDR inquiry
5515 		 * and LE scanning are scheduled by the controller.
5516 		 *
5517 		 * For interleaving discovery in comparison, BR/EDR inquiry
5518 		 * and LE scanning are done sequentially with separate
5519 		 * timeouts.
5520 		 */
5521 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5522 			     &hdev->quirks)) {
5523 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5524 			/* During simultaneous discovery, we double LE scan
5525 			 * interval. We must leave some time for the controller
5526 			 * to do BR/EDR inquiry.
5527 			 */
5528 			err = hci_start_interleaved_discovery_sync(hdev);
5529 			break;
5530 		}
5531 
5532 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5533 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5534 		break;
5535 	case DISCOV_TYPE_LE:
5536 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5537 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5538 		break;
5539 	default:
5540 		return -EINVAL;
5541 	}
5542 
5543 	if (err)
5544 		return err;
5545 
5546 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5547 
5548 	/* When service discovery is used and the controller has a
5549 	 * strict duplicate filter, it is important to remember the
5550 	 * start and duration of the scan. This is required for
5551 	 * restarting scanning during the discovery phase.
5552 	 */
5553 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5554 	    hdev->discovery.result_filtering) {
5555 		hdev->discovery.scan_start = jiffies;
5556 		hdev->discovery.scan_duration = timeout;
5557 	}
5558 
5559 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5560 			   timeout);
5561 	return 0;
5562 }
5563 
5564 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5565 {
5566 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5567 	case HCI_ADV_MONITOR_EXT_MSFT:
5568 		msft_suspend_sync(hdev);
5569 		break;
5570 	default:
5571 		return;
5572 	}
5573 }
5574 
5575 /* This function disables discovery and mark it as paused */
5576 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5577 {
5578 	int old_state = hdev->discovery.state;
5579 	int err;
5580 
5581 	/* If discovery already stopped/stopping/paused there nothing to do */
5582 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5583 	    hdev->discovery_paused)
5584 		return 0;
5585 
5586 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5587 	err = hci_stop_discovery_sync(hdev);
5588 	if (err)
5589 		return err;
5590 
5591 	hdev->discovery_paused = true;
5592 	hdev->discovery_old_state = old_state;
5593 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5594 
5595 	return 0;
5596 }
5597 
5598 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5599 {
5600 	struct bdaddr_list_with_flags *b;
5601 	u8 scan = SCAN_DISABLED;
5602 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5603 	int err;
5604 
5605 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5606 		return 0;
5607 
5608 	/* Some fake CSR controllers lock up after setting this type of
5609 	 * filter, so avoid sending the request altogether.
5610 	 */
5611 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5612 		return 0;
5613 
5614 	/* Always clear event filter when starting */
5615 	hci_clear_event_filter_sync(hdev);
5616 
5617 	list_for_each_entry(b, &hdev->accept_list, list) {
5618 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5619 			continue;
5620 
5621 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5622 
5623 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5624 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5625 						 &b->bdaddr,
5626 						 HCI_CONN_SETUP_AUTO_ON);
5627 		if (err)
5628 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5629 				   &b->bdaddr);
5630 		else
5631 			scan = SCAN_PAGE;
5632 	}
5633 
5634 	if (scan && !scanning)
5635 		hci_write_scan_enable_sync(hdev, scan);
5636 	else if (!scan && scanning)
5637 		hci_write_scan_enable_sync(hdev, scan);
5638 
5639 	return 0;
5640 }
5641 
5642 /* This function disables scan (BR and LE) and mark it as paused */
5643 static int hci_pause_scan_sync(struct hci_dev *hdev)
5644 {
5645 	if (hdev->scanning_paused)
5646 		return 0;
5647 
5648 	/* Disable page scan if enabled */
5649 	if (test_bit(HCI_PSCAN, &hdev->flags))
5650 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5651 
5652 	hci_scan_disable_sync(hdev);
5653 
5654 	hdev->scanning_paused = true;
5655 
5656 	return 0;
5657 }
5658 
5659 /* This function performs the HCI suspend procedures in the follow order:
5660  *
5661  * Pause discovery (active scanning/inquiry)
5662  * Pause Directed Advertising/Advertising
5663  * Pause Scanning (passive scanning in case discovery was not active)
5664  * Disconnect all connections
5665  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5666  * otherwise:
5667  * Update event mask (only set events that are allowed to wake up the host)
5668  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5669  * Update passive scanning (lower duty cycle)
5670  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5671  */
5672 int hci_suspend_sync(struct hci_dev *hdev)
5673 {
5674 	int err;
5675 
5676 	/* If marked as suspended there nothing to do */
5677 	if (hdev->suspended)
5678 		return 0;
5679 
5680 	/* Mark device as suspended */
5681 	hdev->suspended = true;
5682 
5683 	/* Pause discovery if not already stopped */
5684 	hci_pause_discovery_sync(hdev);
5685 
5686 	/* Pause other advertisements */
5687 	hci_pause_advertising_sync(hdev);
5688 
5689 	/* Suspend monitor filters */
5690 	hci_suspend_monitor_sync(hdev);
5691 
5692 	/* Prevent disconnects from causing scanning to be re-enabled */
5693 	hci_pause_scan_sync(hdev);
5694 
5695 	if (hci_conn_count(hdev)) {
5696 		/* Soft disconnect everything (power off) */
5697 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5698 		if (err) {
5699 			/* Set state to BT_RUNNING so resume doesn't notify */
5700 			hdev->suspend_state = BT_RUNNING;
5701 			hci_resume_sync(hdev);
5702 			return err;
5703 		}
5704 
5705 		/* Update event mask so only the allowed event can wakeup the
5706 		 * host.
5707 		 */
5708 		hci_set_event_mask_sync(hdev);
5709 	}
5710 
5711 	/* Only configure accept list if disconnect succeeded and wake
5712 	 * isn't being prevented.
5713 	 */
5714 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5715 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5716 		return 0;
5717 	}
5718 
5719 	/* Unpause to take care of updating scanning params */
5720 	hdev->scanning_paused = false;
5721 
5722 	/* Enable event filter for paired devices */
5723 	hci_update_event_filter_sync(hdev);
5724 
5725 	/* Update LE passive scan if enabled */
5726 	hci_update_passive_scan_sync(hdev);
5727 
5728 	/* Pause scan changes again. */
5729 	hdev->scanning_paused = true;
5730 
5731 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5732 
5733 	return 0;
5734 }
5735 
5736 /* This function resumes discovery */
5737 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5738 {
5739 	int err;
5740 
5741 	/* If discovery not paused there nothing to do */
5742 	if (!hdev->discovery_paused)
5743 		return 0;
5744 
5745 	hdev->discovery_paused = false;
5746 
5747 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5748 
5749 	err = hci_start_discovery_sync(hdev);
5750 
5751 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5752 				DISCOVERY_FINDING);
5753 
5754 	return err;
5755 }
5756 
5757 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5758 {
5759 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5760 	case HCI_ADV_MONITOR_EXT_MSFT:
5761 		msft_resume_sync(hdev);
5762 		break;
5763 	default:
5764 		return;
5765 	}
5766 }
5767 
5768 /* This function resume scan and reset paused flag */
5769 static int hci_resume_scan_sync(struct hci_dev *hdev)
5770 {
5771 	if (!hdev->scanning_paused)
5772 		return 0;
5773 
5774 	hdev->scanning_paused = false;
5775 
5776 	hci_update_scan_sync(hdev);
5777 
5778 	/* Reset passive scanning to normal */
5779 	hci_update_passive_scan_sync(hdev);
5780 
5781 	return 0;
5782 }
5783 
5784 /* This function performs the HCI suspend procedures in the follow order:
5785  *
5786  * Restore event mask
5787  * Clear event filter
5788  * Update passive scanning (normal duty cycle)
5789  * Resume Directed Advertising/Advertising
5790  * Resume discovery (active scanning/inquiry)
5791  */
5792 int hci_resume_sync(struct hci_dev *hdev)
5793 {
5794 	/* If not marked as suspended there nothing to do */
5795 	if (!hdev->suspended)
5796 		return 0;
5797 
5798 	hdev->suspended = false;
5799 
5800 	/* Restore event mask */
5801 	hci_set_event_mask_sync(hdev);
5802 
5803 	/* Clear any event filters and restore scan state */
5804 	hci_clear_event_filter_sync(hdev);
5805 
5806 	/* Resume scanning */
5807 	hci_resume_scan_sync(hdev);
5808 
5809 	/* Resume monitor filters */
5810 	hci_resume_monitor_sync(hdev);
5811 
5812 	/* Resume other advertisements */
5813 	hci_resume_advertising_sync(hdev);
5814 
5815 	/* Resume discovery */
5816 	hci_resume_discovery_sync(hdev);
5817 
5818 	return 0;
5819 }
5820 
5821 static bool conn_use_rpa(struct hci_conn *conn)
5822 {
5823 	struct hci_dev *hdev = conn->hdev;
5824 
5825 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5826 }
5827 
5828 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5829 						struct hci_conn *conn)
5830 {
5831 	struct hci_cp_le_set_ext_adv_params cp;
5832 	int err;
5833 	bdaddr_t random_addr;
5834 	u8 own_addr_type;
5835 
5836 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5837 					     &own_addr_type);
5838 	if (err)
5839 		return err;
5840 
5841 	/* Set require_privacy to false so that the remote device has a
5842 	 * chance of identifying us.
5843 	 */
5844 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5845 				     &own_addr_type, &random_addr);
5846 	if (err)
5847 		return err;
5848 
5849 	memset(&cp, 0, sizeof(cp));
5850 
5851 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5852 	cp.own_addr_type = own_addr_type;
5853 	cp.channel_map = hdev->le_adv_channel_map;
5854 	cp.tx_power = HCI_TX_POWER_INVALID;
5855 	cp.primary_phy = HCI_ADV_PHY_1M;
5856 	cp.secondary_phy = HCI_ADV_PHY_1M;
5857 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5858 	cp.own_addr_type = own_addr_type;
5859 	cp.peer_addr_type = conn->dst_type;
5860 	bacpy(&cp.peer_addr, &conn->dst);
5861 
5862 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5863 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5864 	 * does not supports advertising data when the advertising set already
5865 	 * contains some, the controller shall return erroc code 'Invalid
5866 	 * HCI Command Parameters(0x12).
5867 	 * So it is required to remove adv set for handle 0x00. since we use
5868 	 * instance 0 for directed adv.
5869 	 */
5870 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5871 	if (err)
5872 		return err;
5873 
5874 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5875 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5876 	if (err)
5877 		return err;
5878 
5879 	/* Check if random address need to be updated */
5880 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5881 	    bacmp(&random_addr, BDADDR_ANY) &&
5882 	    bacmp(&random_addr, &hdev->random_addr)) {
5883 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5884 						       &random_addr);
5885 		if (err)
5886 			return err;
5887 	}
5888 
5889 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5890 }
5891 
5892 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5893 					    struct hci_conn *conn)
5894 {
5895 	struct hci_cp_le_set_adv_param cp;
5896 	u8 status;
5897 	u8 own_addr_type;
5898 	u8 enable;
5899 
5900 	if (ext_adv_capable(hdev))
5901 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5902 
5903 	/* Clear the HCI_LE_ADV bit temporarily so that the
5904 	 * hci_update_random_address knows that it's safe to go ahead
5905 	 * and write a new random address. The flag will be set back on
5906 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5907 	 */
5908 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5909 
5910 	/* Set require_privacy to false so that the remote device has a
5911 	 * chance of identifying us.
5912 	 */
5913 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5914 						&own_addr_type);
5915 	if (status)
5916 		return status;
5917 
5918 	memset(&cp, 0, sizeof(cp));
5919 
5920 	/* Some controllers might reject command if intervals are not
5921 	 * within range for undirected advertising.
5922 	 * BCM20702A0 is known to be affected by this.
5923 	 */
5924 	cp.min_interval = cpu_to_le16(0x0020);
5925 	cp.max_interval = cpu_to_le16(0x0020);
5926 
5927 	cp.type = LE_ADV_DIRECT_IND;
5928 	cp.own_address_type = own_addr_type;
5929 	cp.direct_addr_type = conn->dst_type;
5930 	bacpy(&cp.direct_addr, &conn->dst);
5931 	cp.channel_map = hdev->le_adv_channel_map;
5932 
5933 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5934 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5935 	if (status)
5936 		return status;
5937 
5938 	enable = 0x01;
5939 
5940 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5941 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5942 }
5943 
5944 static void set_ext_conn_params(struct hci_conn *conn,
5945 				struct hci_cp_le_ext_conn_param *p)
5946 {
5947 	struct hci_dev *hdev = conn->hdev;
5948 
5949 	memset(p, 0, sizeof(*p));
5950 
5951 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5952 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5953 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5954 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5955 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5956 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5957 	p->min_ce_len = cpu_to_le16(0x0000);
5958 	p->max_ce_len = cpu_to_le16(0x0000);
5959 }
5960 
5961 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5962 				       struct hci_conn *conn, u8 own_addr_type)
5963 {
5964 	struct hci_cp_le_ext_create_conn *cp;
5965 	struct hci_cp_le_ext_conn_param *p;
5966 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5967 	u32 plen;
5968 
5969 	cp = (void *)data;
5970 	p = (void *)cp->data;
5971 
5972 	memset(cp, 0, sizeof(*cp));
5973 
5974 	bacpy(&cp->peer_addr, &conn->dst);
5975 	cp->peer_addr_type = conn->dst_type;
5976 	cp->own_addr_type = own_addr_type;
5977 
5978 	plen = sizeof(*cp);
5979 
5980 	if (scan_1m(hdev)) {
5981 		cp->phys |= LE_SCAN_PHY_1M;
5982 		set_ext_conn_params(conn, p);
5983 
5984 		p++;
5985 		plen += sizeof(*p);
5986 	}
5987 
5988 	if (scan_2m(hdev)) {
5989 		cp->phys |= LE_SCAN_PHY_2M;
5990 		set_ext_conn_params(conn, p);
5991 
5992 		p++;
5993 		plen += sizeof(*p);
5994 	}
5995 
5996 	if (scan_coded(hdev)) {
5997 		cp->phys |= LE_SCAN_PHY_CODED;
5998 		set_ext_conn_params(conn, p);
5999 
6000 		plen += sizeof(*p);
6001 	}
6002 
6003 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6004 					plen, data,
6005 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6006 					conn->conn_timeout, NULL);
6007 }
6008 
6009 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6010 {
6011 	struct hci_cp_le_create_conn cp;
6012 	struct hci_conn_params *params;
6013 	u8 own_addr_type;
6014 	int err;
6015 
6016 	/* If requested to connect as peripheral use directed advertising */
6017 	if (conn->role == HCI_ROLE_SLAVE) {
6018 		/* If we're active scanning and simultaneous roles is not
6019 		 * enabled simply reject the attempt.
6020 		 */
6021 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6022 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6023 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6024 			hci_conn_del(conn);
6025 			return -EBUSY;
6026 		}
6027 
6028 		/* Pause advertising while doing directed advertising. */
6029 		hci_pause_advertising_sync(hdev);
6030 
6031 		err = hci_le_directed_advertising_sync(hdev, conn);
6032 		goto done;
6033 	}
6034 
6035 	/* Disable advertising if simultaneous roles is not in use. */
6036 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6037 		hci_pause_advertising_sync(hdev);
6038 
6039 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6040 	if (params) {
6041 		conn->le_conn_min_interval = params->conn_min_interval;
6042 		conn->le_conn_max_interval = params->conn_max_interval;
6043 		conn->le_conn_latency = params->conn_latency;
6044 		conn->le_supv_timeout = params->supervision_timeout;
6045 	} else {
6046 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6047 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6048 		conn->le_conn_latency = hdev->le_conn_latency;
6049 		conn->le_supv_timeout = hdev->le_supv_timeout;
6050 	}
6051 
6052 	/* If controller is scanning, we stop it since some controllers are
6053 	 * not able to scan and connect at the same time. Also set the
6054 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6055 	 * handler for scan disabling knows to set the correct discovery
6056 	 * state.
6057 	 */
6058 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6059 		hci_scan_disable_sync(hdev);
6060 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6061 	}
6062 
6063 	/* Update random address, but set require_privacy to false so
6064 	 * that we never connect with an non-resolvable address.
6065 	 */
6066 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6067 					     &own_addr_type);
6068 	if (err)
6069 		goto done;
6070 
6071 	if (use_ext_conn(hdev)) {
6072 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6073 		goto done;
6074 	}
6075 
6076 	memset(&cp, 0, sizeof(cp));
6077 
6078 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6079 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6080 
6081 	bacpy(&cp.peer_addr, &conn->dst);
6082 	cp.peer_addr_type = conn->dst_type;
6083 	cp.own_address_type = own_addr_type;
6084 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6085 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6086 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6087 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6088 	cp.min_ce_len = cpu_to_le16(0x0000);
6089 	cp.max_ce_len = cpu_to_le16(0x0000);
6090 
6091 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6092 	 *
6093 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6094 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6095 	 * sent when a new connection has been created.
6096 	 */
6097 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6098 				       sizeof(cp), &cp,
6099 				       use_enhanced_conn_complete(hdev) ?
6100 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6101 				       HCI_EV_LE_CONN_COMPLETE,
6102 				       conn->conn_timeout, NULL);
6103 
6104 done:
6105 	/* Re-enable advertising after the connection attempt is finished. */
6106 	hci_resume_advertising_sync(hdev);
6107 	return err;
6108 }
6109 
6110 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6111 {
6112 	struct hci_cp_le_remove_cig cp;
6113 
6114 	memset(&cp, 0, sizeof(cp));
6115 	cp.cig_id = handle;
6116 
6117 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6118 				     &cp, HCI_CMD_TIMEOUT);
6119 }
6120 
6121 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6122 {
6123 	struct hci_cp_le_big_term_sync cp;
6124 
6125 	memset(&cp, 0, sizeof(cp));
6126 	cp.handle = handle;
6127 
6128 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6129 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6130 }
6131 
6132 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6133 {
6134 	struct hci_cp_le_pa_term_sync cp;
6135 
6136 	memset(&cp, 0, sizeof(cp));
6137 	cp.handle = cpu_to_le16(handle);
6138 
6139 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6140 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6141 }
6142 
6143 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6144 			   bool use_rpa, struct adv_info *adv_instance,
6145 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6146 {
6147 	int err;
6148 
6149 	bacpy(rand_addr, BDADDR_ANY);
6150 
6151 	/* If privacy is enabled use a resolvable private address. If
6152 	 * current RPA has expired then generate a new one.
6153 	 */
6154 	if (use_rpa) {
6155 		/* If Controller supports LL Privacy use own address type is
6156 		 * 0x03
6157 		 */
6158 		if (use_ll_privacy(hdev))
6159 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6160 		else
6161 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6162 
6163 		if (adv_instance) {
6164 			if (adv_rpa_valid(adv_instance))
6165 				return 0;
6166 		} else {
6167 			if (rpa_valid(hdev))
6168 				return 0;
6169 		}
6170 
6171 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6172 		if (err < 0) {
6173 			bt_dev_err(hdev, "failed to generate new RPA");
6174 			return err;
6175 		}
6176 
6177 		bacpy(rand_addr, &hdev->rpa);
6178 
6179 		return 0;
6180 	}
6181 
6182 	/* In case of required privacy without resolvable private address,
6183 	 * use an non-resolvable private address. This is useful for
6184 	 * non-connectable advertising.
6185 	 */
6186 	if (require_privacy) {
6187 		bdaddr_t nrpa;
6188 
6189 		while (true) {
6190 			/* The non-resolvable private address is generated
6191 			 * from random six bytes with the two most significant
6192 			 * bits cleared.
6193 			 */
6194 			get_random_bytes(&nrpa, 6);
6195 			nrpa.b[5] &= 0x3f;
6196 
6197 			/* The non-resolvable private address shall not be
6198 			 * equal to the public address.
6199 			 */
6200 			if (bacmp(&hdev->bdaddr, &nrpa))
6201 				break;
6202 		}
6203 
6204 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6205 		bacpy(rand_addr, &nrpa);
6206 
6207 		return 0;
6208 	}
6209 
6210 	/* No privacy so use a public address. */
6211 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6212 
6213 	return 0;
6214 }
6215 
6216 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6217 {
6218 	u8 instance = PTR_ERR(data);
6219 
6220 	return hci_update_adv_data_sync(hdev, instance);
6221 }
6222 
6223 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6224 {
6225 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6226 				  ERR_PTR(instance), NULL);
6227 }
6228