1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 if (skb) { 35 struct sock *sk = hci_skb_sk(skb); 36 37 /* Drop sk reference if set */ 38 if (sk) 39 sock_put(sk); 40 41 hdev->req_skb = skb_get(skb); 42 } 43 44 wake_up_interruptible(&hdev->req_wait_q); 45 } 46 47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 48 u32 plen, const void *param, 49 struct sock *sk) 50 { 51 int len = HCI_COMMAND_HDR_SIZE + plen; 52 struct hci_command_hdr *hdr; 53 struct sk_buff *skb; 54 55 skb = bt_skb_alloc(len, GFP_ATOMIC); 56 if (!skb) 57 return NULL; 58 59 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 60 hdr->opcode = cpu_to_le16(opcode); 61 hdr->plen = plen; 62 63 if (plen) 64 skb_put_data(skb, param, plen); 65 66 bt_dev_dbg(hdev, "skb len %d", skb->len); 67 68 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 69 hci_skb_opcode(skb) = opcode; 70 71 /* Grab a reference if command needs to be associated with a sock (e.g. 72 * likely mgmt socket that initiated the command). 73 */ 74 if (sk) { 75 hci_skb_sk(skb) = sk; 76 sock_hold(sk); 77 } 78 79 return skb; 80 } 81 82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 83 const void *param, u8 event, struct sock *sk) 84 { 85 struct hci_dev *hdev = req->hdev; 86 struct sk_buff *skb; 87 88 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 89 90 /* If an error occurred during request building, there is no point in 91 * queueing the HCI command. We can simply return. 92 */ 93 if (req->err) 94 return; 95 96 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 97 if (!skb) { 98 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 99 opcode); 100 req->err = -ENOMEM; 101 return; 102 } 103 104 if (skb_queue_empty(&req->cmd_q)) 105 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 106 107 hci_skb_event(skb) = event; 108 109 skb_queue_tail(&req->cmd_q, skb); 110 } 111 112 static int hci_cmd_sync_run(struct hci_request *req) 113 { 114 struct hci_dev *hdev = req->hdev; 115 struct sk_buff *skb; 116 unsigned long flags; 117 118 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 119 120 /* If an error occurred during request building, remove all HCI 121 * commands queued on the HCI request queue. 122 */ 123 if (req->err) { 124 skb_queue_purge(&req->cmd_q); 125 return req->err; 126 } 127 128 /* Do not allow empty requests */ 129 if (skb_queue_empty(&req->cmd_q)) 130 return -ENODATA; 131 132 skb = skb_peek_tail(&req->cmd_q); 133 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 134 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 135 136 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 137 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 138 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 139 140 queue_work(hdev->workqueue, &hdev->cmd_work); 141 142 return 0; 143 } 144 145 /* This function requires the caller holds hdev->req_lock. */ 146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 147 const void *param, u8 event, u32 timeout, 148 struct sock *sk) 149 { 150 struct hci_request req; 151 struct sk_buff *skb; 152 int err = 0; 153 154 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 155 156 hci_req_init(&req, hdev); 157 158 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 159 160 hdev->req_status = HCI_REQ_PEND; 161 162 err = hci_cmd_sync_run(&req); 163 if (err < 0) 164 return ERR_PTR(err); 165 166 err = wait_event_interruptible_timeout(hdev->req_wait_q, 167 hdev->req_status != HCI_REQ_PEND, 168 timeout); 169 170 if (err == -ERESTARTSYS) 171 return ERR_PTR(-EINTR); 172 173 switch (hdev->req_status) { 174 case HCI_REQ_DONE: 175 err = -bt_to_errno(hdev->req_result); 176 break; 177 178 case HCI_REQ_CANCELED: 179 err = -hdev->req_result; 180 break; 181 182 default: 183 err = -ETIMEDOUT; 184 break; 185 } 186 187 hdev->req_status = 0; 188 hdev->req_result = 0; 189 skb = hdev->req_skb; 190 hdev->req_skb = NULL; 191 192 bt_dev_dbg(hdev, "end: err %d", err); 193 194 if (err < 0) { 195 kfree_skb(skb); 196 return ERR_PTR(err); 197 } 198 199 return skb; 200 } 201 EXPORT_SYMBOL(__hci_cmd_sync_sk); 202 203 /* This function requires the caller holds hdev->req_lock. */ 204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 205 const void *param, u32 timeout) 206 { 207 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 208 } 209 EXPORT_SYMBOL(__hci_cmd_sync); 210 211 /* Send HCI command and wait for command complete event */ 212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 213 const void *param, u32 timeout) 214 { 215 struct sk_buff *skb; 216 217 if (!test_bit(HCI_UP, &hdev->flags)) 218 return ERR_PTR(-ENETDOWN); 219 220 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 221 222 hci_req_sync_lock(hdev); 223 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 224 hci_req_sync_unlock(hdev); 225 226 return skb; 227 } 228 EXPORT_SYMBOL(hci_cmd_sync); 229 230 /* This function requires the caller holds hdev->req_lock. */ 231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 232 const void *param, u8 event, u32 timeout) 233 { 234 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 235 NULL); 236 } 237 EXPORT_SYMBOL(__hci_cmd_sync_ev); 238 239 /* This function requires the caller holds hdev->req_lock. */ 240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 241 const void *param, u8 event, u32 timeout, 242 struct sock *sk) 243 { 244 struct sk_buff *skb; 245 u8 status; 246 247 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 248 if (IS_ERR(skb)) { 249 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 250 PTR_ERR(skb)); 251 return PTR_ERR(skb); 252 } 253 254 /* If command return a status event skb will be set to NULL as there are 255 * no parameters, in case of failure IS_ERR(skb) would have be set to 256 * the actual error would be found with PTR_ERR(skb). 257 */ 258 if (!skb) 259 return 0; 260 261 status = skb->data[0]; 262 263 kfree_skb(skb); 264 265 return status; 266 } 267 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 268 269 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 270 const void *param, u32 timeout) 271 { 272 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 273 NULL); 274 } 275 EXPORT_SYMBOL(__hci_cmd_sync_status); 276 277 static void hci_cmd_sync_work(struct work_struct *work) 278 { 279 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 280 281 bt_dev_dbg(hdev, ""); 282 283 /* Dequeue all entries and run them */ 284 while (1) { 285 struct hci_cmd_sync_work_entry *entry; 286 287 mutex_lock(&hdev->cmd_sync_work_lock); 288 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 289 struct hci_cmd_sync_work_entry, 290 list); 291 if (entry) 292 list_del(&entry->list); 293 mutex_unlock(&hdev->cmd_sync_work_lock); 294 295 if (!entry) 296 break; 297 298 bt_dev_dbg(hdev, "entry %p", entry); 299 300 if (entry->func) { 301 int err; 302 303 hci_req_sync_lock(hdev); 304 err = entry->func(hdev, entry->data); 305 if (entry->destroy) 306 entry->destroy(hdev, entry->data, err); 307 hci_req_sync_unlock(hdev); 308 } 309 310 kfree(entry); 311 } 312 } 313 314 static void hci_cmd_sync_cancel_work(struct work_struct *work) 315 { 316 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 317 318 cancel_delayed_work_sync(&hdev->cmd_timer); 319 cancel_delayed_work_sync(&hdev->ncmd_timer); 320 atomic_set(&hdev->cmd_cnt, 1); 321 322 wake_up_interruptible(&hdev->req_wait_q); 323 } 324 325 static int hci_scan_disable_sync(struct hci_dev *hdev); 326 static int scan_disable_sync(struct hci_dev *hdev, void *data) 327 { 328 return hci_scan_disable_sync(hdev); 329 } 330 331 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 332 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 333 { 334 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 335 } 336 337 static void le_scan_disable(struct work_struct *work) 338 { 339 struct hci_dev *hdev = container_of(work, struct hci_dev, 340 le_scan_disable.work); 341 int status; 342 343 bt_dev_dbg(hdev, ""); 344 hci_dev_lock(hdev); 345 346 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 347 goto _return; 348 349 cancel_delayed_work(&hdev->le_scan_restart); 350 351 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 352 if (status) { 353 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 354 goto _return; 355 } 356 357 hdev->discovery.scan_start = 0; 358 359 /* If we were running LE only scan, change discovery state. If 360 * we were running both LE and BR/EDR inquiry simultaneously, 361 * and BR/EDR inquiry is already finished, stop discovery, 362 * otherwise BR/EDR inquiry will stop discovery when finished. 363 * If we will resolve remote device name, do not change 364 * discovery state. 365 */ 366 367 if (hdev->discovery.type == DISCOV_TYPE_LE) 368 goto discov_stopped; 369 370 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 371 goto _return; 372 373 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 374 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 375 hdev->discovery.state != DISCOVERY_RESOLVING) 376 goto discov_stopped; 377 378 goto _return; 379 } 380 381 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 382 if (status) { 383 bt_dev_err(hdev, "inquiry failed: status %d", status); 384 goto discov_stopped; 385 } 386 387 goto _return; 388 389 discov_stopped: 390 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 391 392 _return: 393 hci_dev_unlock(hdev); 394 } 395 396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 397 u8 filter_dup); 398 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 399 { 400 /* If controller is not scanning we are done. */ 401 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 402 return 0; 403 404 if (hdev->scanning_paused) { 405 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 406 return 0; 407 } 408 409 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 410 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 411 LE_SCAN_FILTER_DUP_ENABLE); 412 } 413 414 static int le_scan_restart_sync(struct hci_dev *hdev, void *data) 415 { 416 return hci_le_scan_restart_sync(hdev); 417 } 418 419 static void le_scan_restart(struct work_struct *work) 420 { 421 struct hci_dev *hdev = container_of(work, struct hci_dev, 422 le_scan_restart.work); 423 unsigned long timeout, duration, scan_start, now; 424 int status; 425 426 bt_dev_dbg(hdev, ""); 427 428 hci_dev_lock(hdev); 429 430 status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL); 431 if (status) { 432 bt_dev_err(hdev, "failed to restart LE scan: status %d", 433 status); 434 goto unlock; 435 } 436 437 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 438 !hdev->discovery.scan_start) 439 goto unlock; 440 441 /* When the scan was started, hdev->le_scan_disable has been queued 442 * after duration from scan_start. During scan restart this job 443 * has been canceled, and we need to queue it again after proper 444 * timeout, to make sure that scan does not run indefinitely. 445 */ 446 duration = hdev->discovery.scan_duration; 447 scan_start = hdev->discovery.scan_start; 448 now = jiffies; 449 if (now - scan_start <= duration) { 450 int elapsed; 451 452 if (now >= scan_start) 453 elapsed = now - scan_start; 454 else 455 elapsed = ULONG_MAX - scan_start + now; 456 457 timeout = duration - elapsed; 458 } else { 459 timeout = 0; 460 } 461 462 queue_delayed_work(hdev->req_workqueue, 463 &hdev->le_scan_disable, timeout); 464 465 unlock: 466 hci_dev_unlock(hdev); 467 } 468 469 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 470 { 471 bt_dev_dbg(hdev, ""); 472 473 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 474 list_empty(&hdev->adv_instances)) 475 return 0; 476 477 if (hdev->cur_adv_instance) { 478 return hci_schedule_adv_instance_sync(hdev, 479 hdev->cur_adv_instance, 480 true); 481 } else { 482 if (ext_adv_capable(hdev)) { 483 hci_start_ext_adv_sync(hdev, 0x00); 484 } else { 485 hci_update_adv_data_sync(hdev, 0x00); 486 hci_update_scan_rsp_data_sync(hdev, 0x00); 487 hci_enable_advertising_sync(hdev); 488 } 489 } 490 491 return 0; 492 } 493 494 static void reenable_adv(struct work_struct *work) 495 { 496 struct hci_dev *hdev = container_of(work, struct hci_dev, 497 reenable_adv_work); 498 int status; 499 500 bt_dev_dbg(hdev, ""); 501 502 hci_dev_lock(hdev); 503 504 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 505 if (status) 506 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 507 508 hci_dev_unlock(hdev); 509 } 510 511 static void cancel_adv_timeout(struct hci_dev *hdev) 512 { 513 if (hdev->adv_instance_timeout) { 514 hdev->adv_instance_timeout = 0; 515 cancel_delayed_work(&hdev->adv_instance_expire); 516 } 517 } 518 519 /* For a single instance: 520 * - force == true: The instance will be removed even when its remaining 521 * lifetime is not zero. 522 * - force == false: the instance will be deactivated but kept stored unless 523 * the remaining lifetime is zero. 524 * 525 * For instance == 0x00: 526 * - force == true: All instances will be removed regardless of their timeout 527 * setting. 528 * - force == false: Only instances that have a timeout will be removed. 529 */ 530 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 531 u8 instance, bool force) 532 { 533 struct adv_info *adv_instance, *n, *next_instance = NULL; 534 int err; 535 u8 rem_inst; 536 537 /* Cancel any timeout concerning the removed instance(s). */ 538 if (!instance || hdev->cur_adv_instance == instance) 539 cancel_adv_timeout(hdev); 540 541 /* Get the next instance to advertise BEFORE we remove 542 * the current one. This can be the same instance again 543 * if there is only one instance. 544 */ 545 if (instance && hdev->cur_adv_instance == instance) 546 next_instance = hci_get_next_instance(hdev, instance); 547 548 if (instance == 0x00) { 549 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 550 list) { 551 if (!(force || adv_instance->timeout)) 552 continue; 553 554 rem_inst = adv_instance->instance; 555 err = hci_remove_adv_instance(hdev, rem_inst); 556 if (!err) 557 mgmt_advertising_removed(sk, hdev, rem_inst); 558 } 559 } else { 560 adv_instance = hci_find_adv_instance(hdev, instance); 561 562 if (force || (adv_instance && adv_instance->timeout && 563 !adv_instance->remaining_time)) { 564 /* Don't advertise a removed instance. */ 565 if (next_instance && 566 next_instance->instance == instance) 567 next_instance = NULL; 568 569 err = hci_remove_adv_instance(hdev, instance); 570 if (!err) 571 mgmt_advertising_removed(sk, hdev, instance); 572 } 573 } 574 575 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 576 return 0; 577 578 if (next_instance && !ext_adv_capable(hdev)) 579 return hci_schedule_adv_instance_sync(hdev, 580 next_instance->instance, 581 false); 582 583 return 0; 584 } 585 586 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 587 { 588 u8 instance = *(u8 *)data; 589 590 kfree(data); 591 592 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 593 594 if (list_empty(&hdev->adv_instances)) 595 return hci_disable_advertising_sync(hdev); 596 597 return 0; 598 } 599 600 static void adv_timeout_expire(struct work_struct *work) 601 { 602 u8 *inst_ptr; 603 struct hci_dev *hdev = container_of(work, struct hci_dev, 604 adv_instance_expire.work); 605 606 bt_dev_dbg(hdev, ""); 607 608 hci_dev_lock(hdev); 609 610 hdev->adv_instance_timeout = 0; 611 612 if (hdev->cur_adv_instance == 0x00) 613 goto unlock; 614 615 inst_ptr = kmalloc(1, GFP_KERNEL); 616 if (!inst_ptr) 617 goto unlock; 618 619 *inst_ptr = hdev->cur_adv_instance; 620 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 621 622 unlock: 623 hci_dev_unlock(hdev); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 632 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 633 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 634 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 635 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 } 638 639 void hci_cmd_sync_clear(struct hci_dev *hdev) 640 { 641 struct hci_cmd_sync_work_entry *entry, *tmp; 642 643 cancel_work_sync(&hdev->cmd_sync_work); 644 cancel_work_sync(&hdev->reenable_adv_work); 645 646 mutex_lock(&hdev->cmd_sync_work_lock); 647 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 648 if (entry->destroy) 649 entry->destroy(hdev, entry->data, -ECANCELED); 650 651 list_del(&entry->list); 652 kfree(entry); 653 } 654 mutex_unlock(&hdev->cmd_sync_work_lock); 655 } 656 657 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 658 { 659 bt_dev_dbg(hdev, "err 0x%2.2x", err); 660 661 if (hdev->req_status == HCI_REQ_PEND) { 662 hdev->req_result = err; 663 hdev->req_status = HCI_REQ_CANCELED; 664 665 cancel_delayed_work_sync(&hdev->cmd_timer); 666 cancel_delayed_work_sync(&hdev->ncmd_timer); 667 atomic_set(&hdev->cmd_cnt, 1); 668 669 wake_up_interruptible(&hdev->req_wait_q); 670 } 671 } 672 673 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 674 { 675 bt_dev_dbg(hdev, "err 0x%2.2x", err); 676 677 if (hdev->req_status == HCI_REQ_PEND) { 678 hdev->req_result = err; 679 hdev->req_status = HCI_REQ_CANCELED; 680 681 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 682 } 683 } 684 EXPORT_SYMBOL(hci_cmd_sync_cancel); 685 686 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 687 void *data, hci_cmd_sync_work_destroy_t destroy) 688 { 689 struct hci_cmd_sync_work_entry *entry; 690 691 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 692 return -ENODEV; 693 694 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 695 if (!entry) 696 return -ENOMEM; 697 698 entry->func = func; 699 entry->data = data; 700 entry->destroy = destroy; 701 702 mutex_lock(&hdev->cmd_sync_work_lock); 703 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 704 mutex_unlock(&hdev->cmd_sync_work_lock); 705 706 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 707 708 return 0; 709 } 710 EXPORT_SYMBOL(hci_cmd_sync_queue); 711 712 int hci_update_eir_sync(struct hci_dev *hdev) 713 { 714 struct hci_cp_write_eir cp; 715 716 bt_dev_dbg(hdev, ""); 717 718 if (!hdev_is_powered(hdev)) 719 return 0; 720 721 if (!lmp_ext_inq_capable(hdev)) 722 return 0; 723 724 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 725 return 0; 726 727 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 728 return 0; 729 730 memset(&cp, 0, sizeof(cp)); 731 732 eir_create(hdev, cp.data); 733 734 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 735 return 0; 736 737 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 738 739 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 740 HCI_CMD_TIMEOUT); 741 } 742 743 static u8 get_service_classes(struct hci_dev *hdev) 744 { 745 struct bt_uuid *uuid; 746 u8 val = 0; 747 748 list_for_each_entry(uuid, &hdev->uuids, list) 749 val |= uuid->svc_hint; 750 751 return val; 752 } 753 754 int hci_update_class_sync(struct hci_dev *hdev) 755 { 756 u8 cod[3]; 757 758 bt_dev_dbg(hdev, ""); 759 760 if (!hdev_is_powered(hdev)) 761 return 0; 762 763 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 764 return 0; 765 766 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 767 return 0; 768 769 cod[0] = hdev->minor_class; 770 cod[1] = hdev->major_class; 771 cod[2] = get_service_classes(hdev); 772 773 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 774 cod[1] |= 0x20; 775 776 if (memcmp(cod, hdev->dev_class, 3) == 0) 777 return 0; 778 779 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 780 sizeof(cod), cod, HCI_CMD_TIMEOUT); 781 } 782 783 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 784 { 785 /* If there is no connection we are OK to advertise. */ 786 if (hci_conn_num(hdev, LE_LINK) == 0) 787 return true; 788 789 /* Check le_states if there is any connection in peripheral role. */ 790 if (hdev->conn_hash.le_num_peripheral > 0) { 791 /* Peripheral connection state and non connectable mode 792 * bit 20. 793 */ 794 if (!connectable && !(hdev->le_states[2] & 0x10)) 795 return false; 796 797 /* Peripheral connection state and connectable mode bit 38 798 * and scannable bit 21. 799 */ 800 if (connectable && (!(hdev->le_states[4] & 0x40) || 801 !(hdev->le_states[2] & 0x20))) 802 return false; 803 } 804 805 /* Check le_states if there is any connection in central role. */ 806 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 807 /* Central connection state and non connectable mode bit 18. */ 808 if (!connectable && !(hdev->le_states[2] & 0x02)) 809 return false; 810 811 /* Central connection state and connectable mode bit 35 and 812 * scannable 19. 813 */ 814 if (connectable && (!(hdev->le_states[4] & 0x08) || 815 !(hdev->le_states[2] & 0x08))) 816 return false; 817 } 818 819 return true; 820 } 821 822 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 823 { 824 /* If privacy is not enabled don't use RPA */ 825 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 826 return false; 827 828 /* If basic privacy mode is enabled use RPA */ 829 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 830 return true; 831 832 /* If limited privacy mode is enabled don't use RPA if we're 833 * both discoverable and bondable. 834 */ 835 if ((flags & MGMT_ADV_FLAG_DISCOV) && 836 hci_dev_test_flag(hdev, HCI_BONDABLE)) 837 return false; 838 839 /* We're neither bondable nor discoverable in the limited 840 * privacy mode, therefore use RPA. 841 */ 842 return true; 843 } 844 845 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 846 { 847 /* If we're advertising or initiating an LE connection we can't 848 * go ahead and change the random address at this time. This is 849 * because the eventual initiator address used for the 850 * subsequently created connection will be undefined (some 851 * controllers use the new address and others the one we had 852 * when the operation started). 853 * 854 * In this kind of scenario skip the update and let the random 855 * address be updated at the next cycle. 856 */ 857 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 858 hci_lookup_le_connect(hdev)) { 859 bt_dev_dbg(hdev, "Deferring random address update"); 860 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 861 return 0; 862 } 863 864 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 865 6, rpa, HCI_CMD_TIMEOUT); 866 } 867 868 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 869 bool rpa, u8 *own_addr_type) 870 { 871 int err; 872 873 /* If privacy is enabled use a resolvable private address. If 874 * current RPA has expired or there is something else than 875 * the current RPA in use, then generate a new one. 876 */ 877 if (rpa) { 878 /* If Controller supports LL Privacy use own address type is 879 * 0x03 880 */ 881 if (use_ll_privacy(hdev)) 882 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 883 else 884 *own_addr_type = ADDR_LE_DEV_RANDOM; 885 886 /* Check if RPA is valid */ 887 if (rpa_valid(hdev)) 888 return 0; 889 890 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 891 if (err < 0) { 892 bt_dev_err(hdev, "failed to generate new RPA"); 893 return err; 894 } 895 896 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 897 if (err) 898 return err; 899 900 return 0; 901 } 902 903 /* In case of required privacy without resolvable private address, 904 * use an non-resolvable private address. This is useful for active 905 * scanning and non-connectable advertising. 906 */ 907 if (require_privacy) { 908 bdaddr_t nrpa; 909 910 while (true) { 911 /* The non-resolvable private address is generated 912 * from random six bytes with the two most significant 913 * bits cleared. 914 */ 915 get_random_bytes(&nrpa, 6); 916 nrpa.b[5] &= 0x3f; 917 918 /* The non-resolvable private address shall not be 919 * equal to the public address. 920 */ 921 if (bacmp(&hdev->bdaddr, &nrpa)) 922 break; 923 } 924 925 *own_addr_type = ADDR_LE_DEV_RANDOM; 926 927 return hci_set_random_addr_sync(hdev, &nrpa); 928 } 929 930 /* If forcing static address is in use or there is no public 931 * address use the static address as random address (but skip 932 * the HCI command if the current random address is already the 933 * static one. 934 * 935 * In case BR/EDR has been disabled on a dual-mode controller 936 * and a static address has been configured, then use that 937 * address instead of the public BR/EDR address. 938 */ 939 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 940 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 941 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 942 bacmp(&hdev->static_addr, BDADDR_ANY))) { 943 *own_addr_type = ADDR_LE_DEV_RANDOM; 944 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 945 return hci_set_random_addr_sync(hdev, 946 &hdev->static_addr); 947 return 0; 948 } 949 950 /* Neither privacy nor static address is being used so use a 951 * public address. 952 */ 953 *own_addr_type = ADDR_LE_DEV_PUBLIC; 954 955 return 0; 956 } 957 958 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 959 { 960 struct hci_cp_le_set_ext_adv_enable *cp; 961 struct hci_cp_ext_adv_set *set; 962 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 963 u8 size; 964 965 /* If request specifies an instance that doesn't exist, fail */ 966 if (instance > 0) { 967 struct adv_info *adv; 968 969 adv = hci_find_adv_instance(hdev, instance); 970 if (!adv) 971 return -EINVAL; 972 973 /* If not enabled there is nothing to do */ 974 if (!adv->enabled) 975 return 0; 976 } 977 978 memset(data, 0, sizeof(data)); 979 980 cp = (void *)data; 981 set = (void *)cp->data; 982 983 /* Instance 0x00 indicates all advertising instances will be disabled */ 984 cp->num_of_sets = !!instance; 985 cp->enable = 0x00; 986 987 set->handle = instance; 988 989 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 990 991 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 992 size, data, HCI_CMD_TIMEOUT); 993 } 994 995 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 996 bdaddr_t *random_addr) 997 { 998 struct hci_cp_le_set_adv_set_rand_addr cp; 999 int err; 1000 1001 if (!instance) { 1002 /* Instance 0x00 doesn't have an adv_info, instead it uses 1003 * hdev->random_addr to track its address so whenever it needs 1004 * to be updated this also set the random address since 1005 * hdev->random_addr is shared with scan state machine. 1006 */ 1007 err = hci_set_random_addr_sync(hdev, random_addr); 1008 if (err) 1009 return err; 1010 } 1011 1012 memset(&cp, 0, sizeof(cp)); 1013 1014 cp.handle = instance; 1015 bacpy(&cp.bdaddr, random_addr); 1016 1017 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1018 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1019 } 1020 1021 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1022 { 1023 struct hci_cp_le_set_ext_adv_params cp; 1024 bool connectable; 1025 u32 flags; 1026 bdaddr_t random_addr; 1027 u8 own_addr_type; 1028 int err; 1029 struct adv_info *adv; 1030 bool secondary_adv; 1031 1032 if (instance > 0) { 1033 adv = hci_find_adv_instance(hdev, instance); 1034 if (!adv) 1035 return -EINVAL; 1036 } else { 1037 adv = NULL; 1038 } 1039 1040 /* Updating parameters of an active instance will return a 1041 * Command Disallowed error, so we must first disable the 1042 * instance if it is active. 1043 */ 1044 if (adv && !adv->pending) { 1045 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1046 if (err) 1047 return err; 1048 } 1049 1050 flags = hci_adv_instance_flags(hdev, instance); 1051 1052 /* If the "connectable" instance flag was not set, then choose between 1053 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1054 */ 1055 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1056 mgmt_get_connectable(hdev); 1057 1058 if (!is_advertising_allowed(hdev, connectable)) 1059 return -EPERM; 1060 1061 /* Set require_privacy to true only when non-connectable 1062 * advertising is used. In that case it is fine to use a 1063 * non-resolvable private address. 1064 */ 1065 err = hci_get_random_address(hdev, !connectable, 1066 adv_use_rpa(hdev, flags), adv, 1067 &own_addr_type, &random_addr); 1068 if (err < 0) 1069 return err; 1070 1071 memset(&cp, 0, sizeof(cp)); 1072 1073 if (adv) { 1074 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1075 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1076 cp.tx_power = adv->tx_power; 1077 } else { 1078 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1079 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1080 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1081 } 1082 1083 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1084 1085 if (connectable) { 1086 if (secondary_adv) 1087 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1088 else 1089 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1090 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1091 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1092 if (secondary_adv) 1093 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1094 else 1095 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1096 } else { 1097 if (secondary_adv) 1098 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1099 else 1100 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1101 } 1102 1103 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1104 * contains the peer’s Identity Address and the Peer_Address_Type 1105 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1106 * These parameters are used to locate the corresponding local IRK in 1107 * the resolving list; this IRK is used to generate their own address 1108 * used in the advertisement. 1109 */ 1110 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1111 hci_copy_identity_address(hdev, &cp.peer_addr, 1112 &cp.peer_addr_type); 1113 1114 cp.own_addr_type = own_addr_type; 1115 cp.channel_map = hdev->le_adv_channel_map; 1116 cp.handle = instance; 1117 1118 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1119 cp.primary_phy = HCI_ADV_PHY_1M; 1120 cp.secondary_phy = HCI_ADV_PHY_2M; 1121 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1122 cp.primary_phy = HCI_ADV_PHY_CODED; 1123 cp.secondary_phy = HCI_ADV_PHY_CODED; 1124 } else { 1125 /* In all other cases use 1M */ 1126 cp.primary_phy = HCI_ADV_PHY_1M; 1127 cp.secondary_phy = HCI_ADV_PHY_1M; 1128 } 1129 1130 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1131 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1132 if (err) 1133 return err; 1134 1135 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1136 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1137 bacmp(&random_addr, BDADDR_ANY)) { 1138 /* Check if random address need to be updated */ 1139 if (adv) { 1140 if (!bacmp(&random_addr, &adv->random_addr)) 1141 return 0; 1142 } else { 1143 if (!bacmp(&random_addr, &hdev->random_addr)) 1144 return 0; 1145 } 1146 1147 return hci_set_adv_set_random_addr_sync(hdev, instance, 1148 &random_addr); 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1155 { 1156 struct { 1157 struct hci_cp_le_set_ext_scan_rsp_data cp; 1158 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1159 } pdu; 1160 u8 len; 1161 struct adv_info *adv = NULL; 1162 int err; 1163 1164 memset(&pdu, 0, sizeof(pdu)); 1165 1166 if (instance) { 1167 adv = hci_find_adv_instance(hdev, instance); 1168 if (!adv || !adv->scan_rsp_changed) 1169 return 0; 1170 } 1171 1172 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1173 1174 pdu.cp.handle = instance; 1175 pdu.cp.length = len; 1176 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1177 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1178 1179 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1180 sizeof(pdu.cp) + len, &pdu.cp, 1181 HCI_CMD_TIMEOUT); 1182 if (err) 1183 return err; 1184 1185 if (adv) { 1186 adv->scan_rsp_changed = false; 1187 } else { 1188 memcpy(hdev->scan_rsp_data, pdu.data, len); 1189 hdev->scan_rsp_data_len = len; 1190 } 1191 1192 return 0; 1193 } 1194 1195 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1196 { 1197 struct hci_cp_le_set_scan_rsp_data cp; 1198 u8 len; 1199 1200 memset(&cp, 0, sizeof(cp)); 1201 1202 len = eir_create_scan_rsp(hdev, instance, cp.data); 1203 1204 if (hdev->scan_rsp_data_len == len && 1205 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1206 return 0; 1207 1208 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1209 hdev->scan_rsp_data_len = len; 1210 1211 cp.length = len; 1212 1213 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1214 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1215 } 1216 1217 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1218 { 1219 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1220 return 0; 1221 1222 if (ext_adv_capable(hdev)) 1223 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1224 1225 return __hci_set_scan_rsp_data_sync(hdev, instance); 1226 } 1227 1228 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1229 { 1230 struct hci_cp_le_set_ext_adv_enable *cp; 1231 struct hci_cp_ext_adv_set *set; 1232 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1233 struct adv_info *adv; 1234 1235 if (instance > 0) { 1236 adv = hci_find_adv_instance(hdev, instance); 1237 if (!adv) 1238 return -EINVAL; 1239 /* If already enabled there is nothing to do */ 1240 if (adv->enabled) 1241 return 0; 1242 } else { 1243 adv = NULL; 1244 } 1245 1246 cp = (void *)data; 1247 set = (void *)cp->data; 1248 1249 memset(cp, 0, sizeof(*cp)); 1250 1251 cp->enable = 0x01; 1252 cp->num_of_sets = 0x01; 1253 1254 memset(set, 0, sizeof(*set)); 1255 1256 set->handle = instance; 1257 1258 /* Set duration per instance since controller is responsible for 1259 * scheduling it. 1260 */ 1261 if (adv && adv->timeout) { 1262 u16 duration = adv->timeout * MSEC_PER_SEC; 1263 1264 /* Time = N * 10 ms */ 1265 set->duration = cpu_to_le16(duration / 10); 1266 } 1267 1268 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1269 sizeof(*cp) + 1270 sizeof(*set) * cp->num_of_sets, 1271 data, HCI_CMD_TIMEOUT); 1272 } 1273 1274 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1275 { 1276 int err; 1277 1278 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1279 if (err) 1280 return err; 1281 1282 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1283 if (err) 1284 return err; 1285 1286 return hci_enable_ext_advertising_sync(hdev, instance); 1287 } 1288 1289 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1290 { 1291 struct hci_cp_le_set_per_adv_enable cp; 1292 1293 /* If periodic advertising already disabled there is nothing to do. */ 1294 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1295 return 0; 1296 1297 memset(&cp, 0, sizeof(cp)); 1298 1299 cp.enable = 0x00; 1300 cp.handle = instance; 1301 1302 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1303 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1304 } 1305 1306 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1307 u16 min_interval, u16 max_interval) 1308 { 1309 struct hci_cp_le_set_per_adv_params cp; 1310 1311 memset(&cp, 0, sizeof(cp)); 1312 1313 if (!min_interval) 1314 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1315 1316 if (!max_interval) 1317 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1318 1319 cp.handle = instance; 1320 cp.min_interval = cpu_to_le16(min_interval); 1321 cp.max_interval = cpu_to_le16(max_interval); 1322 cp.periodic_properties = 0x0000; 1323 1324 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1325 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1326 } 1327 1328 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1329 { 1330 struct { 1331 struct hci_cp_le_set_per_adv_data cp; 1332 u8 data[HCI_MAX_PER_AD_LENGTH]; 1333 } pdu; 1334 u8 len; 1335 1336 memset(&pdu, 0, sizeof(pdu)); 1337 1338 if (instance) { 1339 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1340 1341 if (!adv || !adv->periodic) 1342 return 0; 1343 } 1344 1345 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1346 1347 pdu.cp.length = len; 1348 pdu.cp.handle = instance; 1349 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1350 1351 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1352 sizeof(pdu.cp) + len, &pdu, 1353 HCI_CMD_TIMEOUT); 1354 } 1355 1356 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1357 { 1358 struct hci_cp_le_set_per_adv_enable cp; 1359 1360 /* If periodic advertising already enabled there is nothing to do. */ 1361 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1362 return 0; 1363 1364 memset(&cp, 0, sizeof(cp)); 1365 1366 cp.enable = 0x01; 1367 cp.handle = instance; 1368 1369 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1370 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1371 } 1372 1373 /* Checks if periodic advertising data contains a Basic Announcement and if it 1374 * does generates a Broadcast ID and add Broadcast Announcement. 1375 */ 1376 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1377 { 1378 u8 bid[3]; 1379 u8 ad[4 + 3]; 1380 1381 /* Skip if NULL adv as instance 0x00 is used for general purpose 1382 * advertising so it cannot used for the likes of Broadcast Announcement 1383 * as it can be overwritten at any point. 1384 */ 1385 if (!adv) 1386 return 0; 1387 1388 /* Check if PA data doesn't contains a Basic Audio Announcement then 1389 * there is nothing to do. 1390 */ 1391 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1392 0x1851, NULL)) 1393 return 0; 1394 1395 /* Check if advertising data already has a Broadcast Announcement since 1396 * the process may want to control the Broadcast ID directly and in that 1397 * case the kernel shall no interfere. 1398 */ 1399 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1400 NULL)) 1401 return 0; 1402 1403 /* Generate Broadcast ID */ 1404 get_random_bytes(bid, sizeof(bid)); 1405 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1406 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1407 1408 return hci_update_adv_data_sync(hdev, adv->instance); 1409 } 1410 1411 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1412 u8 *data, u32 flags, u16 min_interval, 1413 u16 max_interval, u16 sync_interval) 1414 { 1415 struct adv_info *adv = NULL; 1416 int err; 1417 bool added = false; 1418 1419 hci_disable_per_advertising_sync(hdev, instance); 1420 1421 if (instance) { 1422 adv = hci_find_adv_instance(hdev, instance); 1423 /* Create an instance if that could not be found */ 1424 if (!adv) { 1425 adv = hci_add_per_instance(hdev, instance, flags, 1426 data_len, data, 1427 sync_interval, 1428 sync_interval); 1429 if (IS_ERR(adv)) 1430 return PTR_ERR(adv); 1431 added = true; 1432 } 1433 } 1434 1435 /* Only start advertising if instance 0 or if a dedicated instance has 1436 * been added. 1437 */ 1438 if (!adv || added) { 1439 err = hci_start_ext_adv_sync(hdev, instance); 1440 if (err < 0) 1441 goto fail; 1442 1443 err = hci_adv_bcast_annoucement(hdev, adv); 1444 if (err < 0) 1445 goto fail; 1446 } 1447 1448 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1449 max_interval); 1450 if (err < 0) 1451 goto fail; 1452 1453 err = hci_set_per_adv_data_sync(hdev, instance); 1454 if (err < 0) 1455 goto fail; 1456 1457 err = hci_enable_per_advertising_sync(hdev, instance); 1458 if (err < 0) 1459 goto fail; 1460 1461 return 0; 1462 1463 fail: 1464 if (added) 1465 hci_remove_adv_instance(hdev, instance); 1466 1467 return err; 1468 } 1469 1470 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1471 { 1472 int err; 1473 1474 if (ext_adv_capable(hdev)) 1475 return hci_start_ext_adv_sync(hdev, instance); 1476 1477 err = hci_update_adv_data_sync(hdev, instance); 1478 if (err) 1479 return err; 1480 1481 err = hci_update_scan_rsp_data_sync(hdev, instance); 1482 if (err) 1483 return err; 1484 1485 return hci_enable_advertising_sync(hdev); 1486 } 1487 1488 int hci_enable_advertising_sync(struct hci_dev *hdev) 1489 { 1490 struct adv_info *adv_instance; 1491 struct hci_cp_le_set_adv_param cp; 1492 u8 own_addr_type, enable = 0x01; 1493 bool connectable; 1494 u16 adv_min_interval, adv_max_interval; 1495 u32 flags; 1496 u8 status; 1497 1498 if (ext_adv_capable(hdev)) 1499 return hci_enable_ext_advertising_sync(hdev, 1500 hdev->cur_adv_instance); 1501 1502 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1503 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1504 1505 /* If the "connectable" instance flag was not set, then choose between 1506 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1507 */ 1508 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1509 mgmt_get_connectable(hdev); 1510 1511 if (!is_advertising_allowed(hdev, connectable)) 1512 return -EINVAL; 1513 1514 status = hci_disable_advertising_sync(hdev); 1515 if (status) 1516 return status; 1517 1518 /* Clear the HCI_LE_ADV bit temporarily so that the 1519 * hci_update_random_address knows that it's safe to go ahead 1520 * and write a new random address. The flag will be set back on 1521 * as soon as the SET_ADV_ENABLE HCI command completes. 1522 */ 1523 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1524 1525 /* Set require_privacy to true only when non-connectable 1526 * advertising is used. In that case it is fine to use a 1527 * non-resolvable private address. 1528 */ 1529 status = hci_update_random_address_sync(hdev, !connectable, 1530 adv_use_rpa(hdev, flags), 1531 &own_addr_type); 1532 if (status) 1533 return status; 1534 1535 memset(&cp, 0, sizeof(cp)); 1536 1537 if (adv_instance) { 1538 adv_min_interval = adv_instance->min_interval; 1539 adv_max_interval = adv_instance->max_interval; 1540 } else { 1541 adv_min_interval = hdev->le_adv_min_interval; 1542 adv_max_interval = hdev->le_adv_max_interval; 1543 } 1544 1545 if (connectable) { 1546 cp.type = LE_ADV_IND; 1547 } else { 1548 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1549 cp.type = LE_ADV_SCAN_IND; 1550 else 1551 cp.type = LE_ADV_NONCONN_IND; 1552 1553 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1554 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1555 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1556 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1557 } 1558 } 1559 1560 cp.min_interval = cpu_to_le16(adv_min_interval); 1561 cp.max_interval = cpu_to_le16(adv_max_interval); 1562 cp.own_address_type = own_addr_type; 1563 cp.channel_map = hdev->le_adv_channel_map; 1564 1565 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1566 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1567 if (status) 1568 return status; 1569 1570 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1571 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1572 } 1573 1574 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1575 { 1576 return hci_enable_advertising_sync(hdev); 1577 } 1578 1579 int hci_enable_advertising(struct hci_dev *hdev) 1580 { 1581 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1582 list_empty(&hdev->adv_instances)) 1583 return 0; 1584 1585 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1586 } 1587 1588 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1589 struct sock *sk) 1590 { 1591 int err; 1592 1593 if (!ext_adv_capable(hdev)) 1594 return 0; 1595 1596 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1597 if (err) 1598 return err; 1599 1600 /* If request specifies an instance that doesn't exist, fail */ 1601 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1602 return -EINVAL; 1603 1604 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1605 sizeof(instance), &instance, 0, 1606 HCI_CMD_TIMEOUT, sk); 1607 } 1608 1609 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1610 { 1611 struct adv_info *adv = data; 1612 u8 instance = 0; 1613 1614 if (adv) 1615 instance = adv->instance; 1616 1617 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1618 } 1619 1620 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1621 { 1622 struct adv_info *adv = NULL; 1623 1624 if (instance) { 1625 adv = hci_find_adv_instance(hdev, instance); 1626 if (!adv) 1627 return -EINVAL; 1628 } 1629 1630 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1631 } 1632 1633 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1634 { 1635 struct hci_cp_le_term_big cp; 1636 1637 memset(&cp, 0, sizeof(cp)); 1638 cp.handle = handle; 1639 cp.reason = reason; 1640 1641 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1642 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1643 } 1644 1645 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1646 { 1647 struct { 1648 struct hci_cp_le_set_ext_adv_data cp; 1649 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1650 } pdu; 1651 u8 len; 1652 struct adv_info *adv = NULL; 1653 int err; 1654 1655 memset(&pdu, 0, sizeof(pdu)); 1656 1657 if (instance) { 1658 adv = hci_find_adv_instance(hdev, instance); 1659 if (!adv || !adv->adv_data_changed) 1660 return 0; 1661 } 1662 1663 len = eir_create_adv_data(hdev, instance, pdu.data); 1664 1665 pdu.cp.length = len; 1666 pdu.cp.handle = instance; 1667 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1668 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1669 1670 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1671 sizeof(pdu.cp) + len, &pdu.cp, 1672 HCI_CMD_TIMEOUT); 1673 if (err) 1674 return err; 1675 1676 /* Update data if the command succeed */ 1677 if (adv) { 1678 adv->adv_data_changed = false; 1679 } else { 1680 memcpy(hdev->adv_data, pdu.data, len); 1681 hdev->adv_data_len = len; 1682 } 1683 1684 return 0; 1685 } 1686 1687 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1688 { 1689 struct hci_cp_le_set_adv_data cp; 1690 u8 len; 1691 1692 memset(&cp, 0, sizeof(cp)); 1693 1694 len = eir_create_adv_data(hdev, instance, cp.data); 1695 1696 /* There's nothing to do if the data hasn't changed */ 1697 if (hdev->adv_data_len == len && 1698 memcmp(cp.data, hdev->adv_data, len) == 0) 1699 return 0; 1700 1701 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1702 hdev->adv_data_len = len; 1703 1704 cp.length = len; 1705 1706 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1707 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1708 } 1709 1710 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1711 { 1712 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1713 return 0; 1714 1715 if (ext_adv_capable(hdev)) 1716 return hci_set_ext_adv_data_sync(hdev, instance); 1717 1718 return hci_set_adv_data_sync(hdev, instance); 1719 } 1720 1721 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1722 bool force) 1723 { 1724 struct adv_info *adv = NULL; 1725 u16 timeout; 1726 1727 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1728 return -EPERM; 1729 1730 if (hdev->adv_instance_timeout) 1731 return -EBUSY; 1732 1733 adv = hci_find_adv_instance(hdev, instance); 1734 if (!adv) 1735 return -ENOENT; 1736 1737 /* A zero timeout means unlimited advertising. As long as there is 1738 * only one instance, duration should be ignored. We still set a timeout 1739 * in case further instances are being added later on. 1740 * 1741 * If the remaining lifetime of the instance is more than the duration 1742 * then the timeout corresponds to the duration, otherwise it will be 1743 * reduced to the remaining instance lifetime. 1744 */ 1745 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1746 timeout = adv->duration; 1747 else 1748 timeout = adv->remaining_time; 1749 1750 /* The remaining time is being reduced unless the instance is being 1751 * advertised without time limit. 1752 */ 1753 if (adv->timeout) 1754 adv->remaining_time = adv->remaining_time - timeout; 1755 1756 /* Only use work for scheduling instances with legacy advertising */ 1757 if (!ext_adv_capable(hdev)) { 1758 hdev->adv_instance_timeout = timeout; 1759 queue_delayed_work(hdev->req_workqueue, 1760 &hdev->adv_instance_expire, 1761 msecs_to_jiffies(timeout * 1000)); 1762 } 1763 1764 /* If we're just re-scheduling the same instance again then do not 1765 * execute any HCI commands. This happens when a single instance is 1766 * being advertised. 1767 */ 1768 if (!force && hdev->cur_adv_instance == instance && 1769 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1770 return 0; 1771 1772 hdev->cur_adv_instance = instance; 1773 1774 return hci_start_adv_sync(hdev, instance); 1775 } 1776 1777 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1778 { 1779 int err; 1780 1781 if (!ext_adv_capable(hdev)) 1782 return 0; 1783 1784 /* Disable instance 0x00 to disable all instances */ 1785 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1786 if (err) 1787 return err; 1788 1789 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1790 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1791 } 1792 1793 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1794 { 1795 struct adv_info *adv, *n; 1796 int err = 0; 1797 1798 if (ext_adv_capable(hdev)) 1799 /* Remove all existing sets */ 1800 err = hci_clear_adv_sets_sync(hdev, sk); 1801 if (ext_adv_capable(hdev)) 1802 return err; 1803 1804 /* This is safe as long as there is no command send while the lock is 1805 * held. 1806 */ 1807 hci_dev_lock(hdev); 1808 1809 /* Cleanup non-ext instances */ 1810 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1811 u8 instance = adv->instance; 1812 int err; 1813 1814 if (!(force || adv->timeout)) 1815 continue; 1816 1817 err = hci_remove_adv_instance(hdev, instance); 1818 if (!err) 1819 mgmt_advertising_removed(sk, hdev, instance); 1820 } 1821 1822 hci_dev_unlock(hdev); 1823 1824 return 0; 1825 } 1826 1827 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1828 struct sock *sk) 1829 { 1830 int err = 0; 1831 1832 /* If we use extended advertising, instance has to be removed first. */ 1833 if (ext_adv_capable(hdev)) 1834 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1835 if (ext_adv_capable(hdev)) 1836 return err; 1837 1838 /* This is safe as long as there is no command send while the lock is 1839 * held. 1840 */ 1841 hci_dev_lock(hdev); 1842 1843 err = hci_remove_adv_instance(hdev, instance); 1844 if (!err) 1845 mgmt_advertising_removed(sk, hdev, instance); 1846 1847 hci_dev_unlock(hdev); 1848 1849 return err; 1850 } 1851 1852 /* For a single instance: 1853 * - force == true: The instance will be removed even when its remaining 1854 * lifetime is not zero. 1855 * - force == false: the instance will be deactivated but kept stored unless 1856 * the remaining lifetime is zero. 1857 * 1858 * For instance == 0x00: 1859 * - force == true: All instances will be removed regardless of their timeout 1860 * setting. 1861 * - force == false: Only instances that have a timeout will be removed. 1862 */ 1863 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1864 u8 instance, bool force) 1865 { 1866 struct adv_info *next = NULL; 1867 int err; 1868 1869 /* Cancel any timeout concerning the removed instance(s). */ 1870 if (!instance || hdev->cur_adv_instance == instance) 1871 cancel_adv_timeout(hdev); 1872 1873 /* Get the next instance to advertise BEFORE we remove 1874 * the current one. This can be the same instance again 1875 * if there is only one instance. 1876 */ 1877 if (hdev->cur_adv_instance == instance) 1878 next = hci_get_next_instance(hdev, instance); 1879 1880 if (!instance) { 1881 err = hci_clear_adv_sync(hdev, sk, force); 1882 if (err) 1883 return err; 1884 } else { 1885 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1886 1887 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1888 /* Don't advertise a removed instance. */ 1889 if (next && next->instance == instance) 1890 next = NULL; 1891 1892 err = hci_remove_adv_sync(hdev, instance, sk); 1893 if (err) 1894 return err; 1895 } 1896 } 1897 1898 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1899 return 0; 1900 1901 if (next && !ext_adv_capable(hdev)) 1902 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1903 1904 return 0; 1905 } 1906 1907 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1908 { 1909 struct hci_cp_read_rssi cp; 1910 1911 cp.handle = handle; 1912 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1913 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1914 } 1915 1916 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1917 { 1918 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1919 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1920 } 1921 1922 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1923 { 1924 struct hci_cp_read_tx_power cp; 1925 1926 cp.handle = handle; 1927 cp.type = type; 1928 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1929 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1930 } 1931 1932 int hci_disable_advertising_sync(struct hci_dev *hdev) 1933 { 1934 u8 enable = 0x00; 1935 int err = 0; 1936 1937 /* If controller is not advertising we are done. */ 1938 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1939 return 0; 1940 1941 if (ext_adv_capable(hdev)) 1942 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1943 if (ext_adv_capable(hdev)) 1944 return err; 1945 1946 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1947 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1948 } 1949 1950 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1951 u8 filter_dup) 1952 { 1953 struct hci_cp_le_set_ext_scan_enable cp; 1954 1955 memset(&cp, 0, sizeof(cp)); 1956 cp.enable = val; 1957 1958 if (hci_dev_test_flag(hdev, HCI_MESH)) 1959 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1960 else 1961 cp.filter_dup = filter_dup; 1962 1963 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1964 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1965 } 1966 1967 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1968 u8 filter_dup) 1969 { 1970 struct hci_cp_le_set_scan_enable cp; 1971 1972 if (use_ext_scan(hdev)) 1973 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1974 1975 memset(&cp, 0, sizeof(cp)); 1976 cp.enable = val; 1977 1978 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 1979 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1980 else 1981 cp.filter_dup = filter_dup; 1982 1983 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1984 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1985 } 1986 1987 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1988 { 1989 if (!use_ll_privacy(hdev)) 1990 return 0; 1991 1992 /* If controller is not/already resolving we are done. */ 1993 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1994 return 0; 1995 1996 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1997 sizeof(val), &val, HCI_CMD_TIMEOUT); 1998 } 1999 2000 static int hci_scan_disable_sync(struct hci_dev *hdev) 2001 { 2002 int err; 2003 2004 /* If controller is not scanning we are done. */ 2005 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2006 return 0; 2007 2008 if (hdev->scanning_paused) { 2009 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2010 return 0; 2011 } 2012 2013 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2014 if (err) { 2015 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2016 return err; 2017 } 2018 2019 return err; 2020 } 2021 2022 static bool scan_use_rpa(struct hci_dev *hdev) 2023 { 2024 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2025 } 2026 2027 static void hci_start_interleave_scan(struct hci_dev *hdev) 2028 { 2029 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2030 queue_delayed_work(hdev->req_workqueue, 2031 &hdev->interleave_scan, 0); 2032 } 2033 2034 static bool is_interleave_scanning(struct hci_dev *hdev) 2035 { 2036 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2037 } 2038 2039 static void cancel_interleave_scan(struct hci_dev *hdev) 2040 { 2041 bt_dev_dbg(hdev, "cancelling interleave scan"); 2042 2043 cancel_delayed_work_sync(&hdev->interleave_scan); 2044 2045 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2046 } 2047 2048 /* Return true if interleave_scan wasn't started until exiting this function, 2049 * otherwise, return false 2050 */ 2051 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2052 { 2053 /* Do interleaved scan only if all of the following are true: 2054 * - There is at least one ADV monitor 2055 * - At least one pending LE connection or one device to be scanned for 2056 * - Monitor offloading is not supported 2057 * If so, we should alternate between allowlist scan and one without 2058 * any filters to save power. 2059 */ 2060 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2061 !(list_empty(&hdev->pend_le_conns) && 2062 list_empty(&hdev->pend_le_reports)) && 2063 hci_get_adv_monitor_offload_ext(hdev) == 2064 HCI_ADV_MONITOR_EXT_NONE; 2065 bool is_interleaving = is_interleave_scanning(hdev); 2066 2067 if (use_interleaving && !is_interleaving) { 2068 hci_start_interleave_scan(hdev); 2069 bt_dev_dbg(hdev, "starting interleave scan"); 2070 return true; 2071 } 2072 2073 if (!use_interleaving && is_interleaving) 2074 cancel_interleave_scan(hdev); 2075 2076 return false; 2077 } 2078 2079 /* Removes connection to resolve list if needed.*/ 2080 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2081 bdaddr_t *bdaddr, u8 bdaddr_type) 2082 { 2083 struct hci_cp_le_del_from_resolv_list cp; 2084 struct bdaddr_list_with_irk *entry; 2085 2086 if (!use_ll_privacy(hdev)) 2087 return 0; 2088 2089 /* Check if the IRK has been programmed */ 2090 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2091 bdaddr_type); 2092 if (!entry) 2093 return 0; 2094 2095 cp.bdaddr_type = bdaddr_type; 2096 bacpy(&cp.bdaddr, bdaddr); 2097 2098 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2099 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2100 } 2101 2102 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2103 bdaddr_t *bdaddr, u8 bdaddr_type) 2104 { 2105 struct hci_cp_le_del_from_accept_list cp; 2106 int err; 2107 2108 /* Check if device is on accept list before removing it */ 2109 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2110 return 0; 2111 2112 cp.bdaddr_type = bdaddr_type; 2113 bacpy(&cp.bdaddr, bdaddr); 2114 2115 /* Ignore errors when removing from resolving list as that is likely 2116 * that the device was never added. 2117 */ 2118 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2119 2120 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2121 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2122 if (err) { 2123 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2124 return err; 2125 } 2126 2127 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2128 cp.bdaddr_type); 2129 2130 return 0; 2131 } 2132 2133 /* Adds connection to resolve list if needed. 2134 * Setting params to NULL programs local hdev->irk 2135 */ 2136 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2137 struct hci_conn_params *params) 2138 { 2139 struct hci_cp_le_add_to_resolv_list cp; 2140 struct smp_irk *irk; 2141 struct bdaddr_list_with_irk *entry; 2142 2143 if (!use_ll_privacy(hdev)) 2144 return 0; 2145 2146 /* Attempt to program local identity address, type and irk if params is 2147 * NULL. 2148 */ 2149 if (!params) { 2150 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2151 return 0; 2152 2153 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2154 memcpy(cp.peer_irk, hdev->irk, 16); 2155 goto done; 2156 } 2157 2158 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2159 if (!irk) 2160 return 0; 2161 2162 /* Check if the IK has _not_ been programmed yet. */ 2163 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2164 ¶ms->addr, 2165 params->addr_type); 2166 if (entry) 2167 return 0; 2168 2169 cp.bdaddr_type = params->addr_type; 2170 bacpy(&cp.bdaddr, ¶ms->addr); 2171 memcpy(cp.peer_irk, irk->val, 16); 2172 2173 /* Default privacy mode is always Network */ 2174 params->privacy_mode = HCI_NETWORK_PRIVACY; 2175 2176 done: 2177 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2178 memcpy(cp.local_irk, hdev->irk, 16); 2179 else 2180 memset(cp.local_irk, 0, 16); 2181 2182 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2183 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2184 } 2185 2186 /* Set Device Privacy Mode. */ 2187 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2188 struct hci_conn_params *params) 2189 { 2190 struct hci_cp_le_set_privacy_mode cp; 2191 struct smp_irk *irk; 2192 2193 /* If device privacy mode has already been set there is nothing to do */ 2194 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2195 return 0; 2196 2197 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2198 * indicates that LL Privacy has been enabled and 2199 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2200 */ 2201 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2202 return 0; 2203 2204 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2205 if (!irk) 2206 return 0; 2207 2208 memset(&cp, 0, sizeof(cp)); 2209 cp.bdaddr_type = irk->addr_type; 2210 bacpy(&cp.bdaddr, &irk->bdaddr); 2211 cp.mode = HCI_DEVICE_PRIVACY; 2212 2213 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2214 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2215 } 2216 2217 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2218 * this attempts to program the device in the resolving list as well and 2219 * properly set the privacy mode. 2220 */ 2221 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2222 struct hci_conn_params *params, 2223 u8 *num_entries) 2224 { 2225 struct hci_cp_le_add_to_accept_list cp; 2226 int err; 2227 2228 /* During suspend, only wakeable devices can be in acceptlist */ 2229 if (hdev->suspended && 2230 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2231 return 0; 2232 2233 /* Select filter policy to accept all advertising */ 2234 if (*num_entries >= hdev->le_accept_list_size) 2235 return -ENOSPC; 2236 2237 /* Accept list can not be used with RPAs */ 2238 if (!use_ll_privacy(hdev) && 2239 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2240 return -EINVAL; 2241 2242 /* Attempt to program the device in the resolving list first to avoid 2243 * having to rollback in case it fails since the resolving list is 2244 * dynamic it can probably be smaller than the accept list. 2245 */ 2246 err = hci_le_add_resolve_list_sync(hdev, params); 2247 if (err) { 2248 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2249 return err; 2250 } 2251 2252 /* Set Privacy Mode */ 2253 err = hci_le_set_privacy_mode_sync(hdev, params); 2254 if (err) { 2255 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2256 return err; 2257 } 2258 2259 /* Check if already in accept list */ 2260 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2261 params->addr_type)) 2262 return 0; 2263 2264 *num_entries += 1; 2265 cp.bdaddr_type = params->addr_type; 2266 bacpy(&cp.bdaddr, ¶ms->addr); 2267 2268 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2269 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2270 if (err) { 2271 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2272 /* Rollback the device from the resolving list */ 2273 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2274 return err; 2275 } 2276 2277 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2278 cp.bdaddr_type); 2279 2280 return 0; 2281 } 2282 2283 /* This function disables/pause all advertising instances */ 2284 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2285 { 2286 int err; 2287 int old_state; 2288 2289 /* If already been paused there is nothing to do. */ 2290 if (hdev->advertising_paused) 2291 return 0; 2292 2293 bt_dev_dbg(hdev, "Pausing directed advertising"); 2294 2295 /* Stop directed advertising */ 2296 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2297 if (old_state) { 2298 /* When discoverable timeout triggers, then just make sure 2299 * the limited discoverable flag is cleared. Even in the case 2300 * of a timeout triggered from general discoverable, it is 2301 * safe to unconditionally clear the flag. 2302 */ 2303 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2304 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2305 hdev->discov_timeout = 0; 2306 } 2307 2308 bt_dev_dbg(hdev, "Pausing advertising instances"); 2309 2310 /* Call to disable any advertisements active on the controller. 2311 * This will succeed even if no advertisements are configured. 2312 */ 2313 err = hci_disable_advertising_sync(hdev); 2314 if (err) 2315 return err; 2316 2317 /* If we are using software rotation, pause the loop */ 2318 if (!ext_adv_capable(hdev)) 2319 cancel_adv_timeout(hdev); 2320 2321 hdev->advertising_paused = true; 2322 hdev->advertising_old_state = old_state; 2323 2324 return 0; 2325 } 2326 2327 /* This function enables all user advertising instances */ 2328 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2329 { 2330 struct adv_info *adv, *tmp; 2331 int err; 2332 2333 /* If advertising has not been paused there is nothing to do. */ 2334 if (!hdev->advertising_paused) 2335 return 0; 2336 2337 /* Resume directed advertising */ 2338 hdev->advertising_paused = false; 2339 if (hdev->advertising_old_state) { 2340 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2341 hdev->advertising_old_state = 0; 2342 } 2343 2344 bt_dev_dbg(hdev, "Resuming advertising instances"); 2345 2346 if (ext_adv_capable(hdev)) { 2347 /* Call for each tracked instance to be re-enabled */ 2348 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2349 err = hci_enable_ext_advertising_sync(hdev, 2350 adv->instance); 2351 if (!err) 2352 continue; 2353 2354 /* If the instance cannot be resumed remove it */ 2355 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2356 NULL); 2357 } 2358 } else { 2359 /* Schedule for most recent instance to be restarted and begin 2360 * the software rotation loop 2361 */ 2362 err = hci_schedule_adv_instance_sync(hdev, 2363 hdev->cur_adv_instance, 2364 true); 2365 } 2366 2367 hdev->advertising_paused = false; 2368 2369 return err; 2370 } 2371 2372 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2373 { 2374 int err; 2375 2376 if (!use_ll_privacy(hdev)) 2377 return 0; 2378 2379 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2380 return 0; 2381 2382 /* Cannot disable addr resolution if scanning is enabled or 2383 * when initiating an LE connection. 2384 */ 2385 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2386 hci_lookup_le_connect(hdev)) { 2387 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2388 return -EPERM; 2389 } 2390 2391 /* Cannot disable addr resolution if advertising is enabled. */ 2392 err = hci_pause_advertising_sync(hdev); 2393 if (err) { 2394 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2395 return err; 2396 } 2397 2398 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2399 if (err) 2400 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2401 err); 2402 2403 /* Return if address resolution is disabled and RPA is not used. */ 2404 if (!err && scan_use_rpa(hdev)) 2405 return err; 2406 2407 hci_resume_advertising_sync(hdev); 2408 return err; 2409 } 2410 2411 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2412 bool extended, struct sock *sk) 2413 { 2414 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2415 HCI_OP_READ_LOCAL_OOB_DATA; 2416 2417 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2418 } 2419 2420 /* Device must not be scanning when updating the accept list. 2421 * 2422 * Update is done using the following sequence: 2423 * 2424 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2425 * Remove Devices From Accept List -> 2426 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2427 * Add Devices to Accept List -> 2428 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2429 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2430 * Enable Scanning 2431 * 2432 * In case of failure advertising shall be restored to its original state and 2433 * return would disable accept list since either accept or resolving list could 2434 * not be programmed. 2435 * 2436 */ 2437 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2438 { 2439 struct hci_conn_params *params; 2440 struct bdaddr_list *b, *t; 2441 u8 num_entries = 0; 2442 bool pend_conn, pend_report; 2443 u8 filter_policy; 2444 int err; 2445 2446 /* Pause advertising if resolving list can be used as controllers 2447 * cannot accept resolving list modifications while advertising. 2448 */ 2449 if (use_ll_privacy(hdev)) { 2450 err = hci_pause_advertising_sync(hdev); 2451 if (err) { 2452 bt_dev_err(hdev, "pause advertising failed: %d", err); 2453 return 0x00; 2454 } 2455 } 2456 2457 /* Disable address resolution while reprogramming accept list since 2458 * devices that do have an IRK will be programmed in the resolving list 2459 * when LL Privacy is enabled. 2460 */ 2461 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2462 if (err) { 2463 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2464 goto done; 2465 } 2466 2467 /* Go through the current accept list programmed into the 2468 * controller one by one and check if that address is connected or is 2469 * still in the list of pending connections or list of devices to 2470 * report. If not present in either list, then remove it from 2471 * the controller. 2472 */ 2473 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2474 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2475 continue; 2476 2477 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2478 &b->bdaddr, 2479 b->bdaddr_type); 2480 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2481 &b->bdaddr, 2482 b->bdaddr_type); 2483 2484 /* If the device is not likely to connect or report, 2485 * remove it from the acceptlist. 2486 */ 2487 if (!pend_conn && !pend_report) { 2488 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2489 b->bdaddr_type); 2490 continue; 2491 } 2492 2493 num_entries++; 2494 } 2495 2496 /* Since all no longer valid accept list entries have been 2497 * removed, walk through the list of pending connections 2498 * and ensure that any new device gets programmed into 2499 * the controller. 2500 * 2501 * If the list of the devices is larger than the list of 2502 * available accept list entries in the controller, then 2503 * just abort and return filer policy value to not use the 2504 * accept list. 2505 */ 2506 list_for_each_entry(params, &hdev->pend_le_conns, action) { 2507 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2508 if (err) 2509 goto done; 2510 } 2511 2512 /* After adding all new pending connections, walk through 2513 * the list of pending reports and also add these to the 2514 * accept list if there is still space. Abort if space runs out. 2515 */ 2516 list_for_each_entry(params, &hdev->pend_le_reports, action) { 2517 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2518 if (err) 2519 goto done; 2520 } 2521 2522 /* Use the allowlist unless the following conditions are all true: 2523 * - We are not currently suspending 2524 * - There are 1 or more ADV monitors registered and it's not offloaded 2525 * - Interleaved scanning is not currently using the allowlist 2526 */ 2527 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2528 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2529 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2530 err = -EINVAL; 2531 2532 done: 2533 filter_policy = err ? 0x00 : 0x01; 2534 2535 /* Enable address resolution when LL Privacy is enabled. */ 2536 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2537 if (err) 2538 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2539 2540 /* Resume advertising if it was paused */ 2541 if (use_ll_privacy(hdev)) 2542 hci_resume_advertising_sync(hdev); 2543 2544 /* Select filter policy to use accept list */ 2545 return filter_policy; 2546 } 2547 2548 /* Returns true if an le connection is in the scanning state */ 2549 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2550 { 2551 struct hci_conn_hash *h = &hdev->conn_hash; 2552 struct hci_conn *c; 2553 2554 rcu_read_lock(); 2555 2556 list_for_each_entry_rcu(c, &h->list, list) { 2557 if (c->type == LE_LINK && c->state == BT_CONNECT && 2558 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2559 rcu_read_unlock(); 2560 return true; 2561 } 2562 } 2563 2564 rcu_read_unlock(); 2565 2566 return false; 2567 } 2568 2569 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2570 u16 interval, u16 window, 2571 u8 own_addr_type, u8 filter_policy) 2572 { 2573 struct hci_cp_le_set_ext_scan_params *cp; 2574 struct hci_cp_le_scan_phy_params *phy; 2575 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2576 u8 num_phy = 0; 2577 2578 cp = (void *)data; 2579 phy = (void *)cp->data; 2580 2581 memset(data, 0, sizeof(data)); 2582 2583 cp->own_addr_type = own_addr_type; 2584 cp->filter_policy = filter_policy; 2585 2586 if (scan_1m(hdev) || scan_2m(hdev)) { 2587 cp->scanning_phys |= LE_SCAN_PHY_1M; 2588 2589 phy->type = type; 2590 phy->interval = cpu_to_le16(interval); 2591 phy->window = cpu_to_le16(window); 2592 2593 num_phy++; 2594 phy++; 2595 } 2596 2597 if (scan_coded(hdev)) { 2598 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2599 2600 phy->type = type; 2601 phy->interval = cpu_to_le16(interval); 2602 phy->window = cpu_to_le16(window); 2603 2604 num_phy++; 2605 phy++; 2606 } 2607 2608 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2609 sizeof(*cp) + sizeof(*phy) * num_phy, 2610 data, HCI_CMD_TIMEOUT); 2611 } 2612 2613 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2614 u16 interval, u16 window, 2615 u8 own_addr_type, u8 filter_policy) 2616 { 2617 struct hci_cp_le_set_scan_param cp; 2618 2619 if (use_ext_scan(hdev)) 2620 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2621 window, own_addr_type, 2622 filter_policy); 2623 2624 memset(&cp, 0, sizeof(cp)); 2625 cp.type = type; 2626 cp.interval = cpu_to_le16(interval); 2627 cp.window = cpu_to_le16(window); 2628 cp.own_address_type = own_addr_type; 2629 cp.filter_policy = filter_policy; 2630 2631 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2632 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2633 } 2634 2635 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2636 u16 window, u8 own_addr_type, u8 filter_policy, 2637 u8 filter_dup) 2638 { 2639 int err; 2640 2641 if (hdev->scanning_paused) { 2642 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2643 return 0; 2644 } 2645 2646 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2647 own_addr_type, filter_policy); 2648 if (err) 2649 return err; 2650 2651 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2652 } 2653 2654 static int hci_passive_scan_sync(struct hci_dev *hdev) 2655 { 2656 u8 own_addr_type; 2657 u8 filter_policy; 2658 u16 window, interval; 2659 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2660 int err; 2661 2662 if (hdev->scanning_paused) { 2663 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2664 return 0; 2665 } 2666 2667 err = hci_scan_disable_sync(hdev); 2668 if (err) { 2669 bt_dev_err(hdev, "disable scanning failed: %d", err); 2670 return err; 2671 } 2672 2673 /* Set require_privacy to false since no SCAN_REQ are send 2674 * during passive scanning. Not using an non-resolvable address 2675 * here is important so that peer devices using direct 2676 * advertising with our address will be correctly reported 2677 * by the controller. 2678 */ 2679 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2680 &own_addr_type)) 2681 return 0; 2682 2683 if (hdev->enable_advmon_interleave_scan && 2684 hci_update_interleaved_scan_sync(hdev)) 2685 return 0; 2686 2687 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2688 2689 /* Adding or removing entries from the accept list must 2690 * happen before enabling scanning. The controller does 2691 * not allow accept list modification while scanning. 2692 */ 2693 filter_policy = hci_update_accept_list_sync(hdev); 2694 2695 /* When the controller is using random resolvable addresses and 2696 * with that having LE privacy enabled, then controllers with 2697 * Extended Scanner Filter Policies support can now enable support 2698 * for handling directed advertising. 2699 * 2700 * So instead of using filter polices 0x00 (no acceptlist) 2701 * and 0x01 (acceptlist enabled) use the new filter policies 2702 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2703 */ 2704 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2705 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2706 filter_policy |= 0x02; 2707 2708 if (hdev->suspended) { 2709 window = hdev->le_scan_window_suspend; 2710 interval = hdev->le_scan_int_suspend; 2711 } else if (hci_is_le_conn_scanning(hdev)) { 2712 window = hdev->le_scan_window_connect; 2713 interval = hdev->le_scan_int_connect; 2714 } else if (hci_is_adv_monitoring(hdev)) { 2715 window = hdev->le_scan_window_adv_monitor; 2716 interval = hdev->le_scan_int_adv_monitor; 2717 } else { 2718 window = hdev->le_scan_window; 2719 interval = hdev->le_scan_interval; 2720 } 2721 2722 /* Disable all filtering for Mesh */ 2723 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2724 filter_policy = 0; 2725 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2726 } 2727 2728 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2729 2730 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2731 own_addr_type, filter_policy, filter_dups); 2732 } 2733 2734 /* This function controls the passive scanning based on hdev->pend_le_conns 2735 * list. If there are pending LE connection we start the background scanning, 2736 * otherwise we stop it in the following sequence: 2737 * 2738 * If there are devices to scan: 2739 * 2740 * Disable Scanning -> Update Accept List -> 2741 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2742 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2743 * Enable Scanning 2744 * 2745 * Otherwise: 2746 * 2747 * Disable Scanning 2748 */ 2749 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2750 { 2751 int err; 2752 2753 if (!test_bit(HCI_UP, &hdev->flags) || 2754 test_bit(HCI_INIT, &hdev->flags) || 2755 hci_dev_test_flag(hdev, HCI_SETUP) || 2756 hci_dev_test_flag(hdev, HCI_CONFIG) || 2757 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2758 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2759 return 0; 2760 2761 /* No point in doing scanning if LE support hasn't been enabled */ 2762 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2763 return 0; 2764 2765 /* If discovery is active don't interfere with it */ 2766 if (hdev->discovery.state != DISCOVERY_STOPPED) 2767 return 0; 2768 2769 /* Reset RSSI and UUID filters when starting background scanning 2770 * since these filters are meant for service discovery only. 2771 * 2772 * The Start Discovery and Start Service Discovery operations 2773 * ensure to set proper values for RSSI threshold and UUID 2774 * filter list. So it is safe to just reset them here. 2775 */ 2776 hci_discovery_filter_clear(hdev); 2777 2778 bt_dev_dbg(hdev, "ADV monitoring is %s", 2779 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2780 2781 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2782 list_empty(&hdev->pend_le_conns) && 2783 list_empty(&hdev->pend_le_reports) && 2784 !hci_is_adv_monitoring(hdev) && 2785 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2786 /* If there is no pending LE connections or devices 2787 * to be scanned for or no ADV monitors, we should stop the 2788 * background scanning. 2789 */ 2790 2791 bt_dev_dbg(hdev, "stopping background scanning"); 2792 2793 err = hci_scan_disable_sync(hdev); 2794 if (err) 2795 bt_dev_err(hdev, "stop background scanning failed: %d", 2796 err); 2797 } else { 2798 /* If there is at least one pending LE connection, we should 2799 * keep the background scan running. 2800 */ 2801 2802 /* If controller is connecting, we should not start scanning 2803 * since some controllers are not able to scan and connect at 2804 * the same time. 2805 */ 2806 if (hci_lookup_le_connect(hdev)) 2807 return 0; 2808 2809 bt_dev_dbg(hdev, "start background scanning"); 2810 2811 err = hci_passive_scan_sync(hdev); 2812 if (err) 2813 bt_dev_err(hdev, "start background scanning failed: %d", 2814 err); 2815 } 2816 2817 return err; 2818 } 2819 2820 static int update_scan_sync(struct hci_dev *hdev, void *data) 2821 { 2822 return hci_update_scan_sync(hdev); 2823 } 2824 2825 int hci_update_scan(struct hci_dev *hdev) 2826 { 2827 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2828 } 2829 2830 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2831 { 2832 return hci_update_passive_scan_sync(hdev); 2833 } 2834 2835 int hci_update_passive_scan(struct hci_dev *hdev) 2836 { 2837 /* Only queue if it would have any effect */ 2838 if (!test_bit(HCI_UP, &hdev->flags) || 2839 test_bit(HCI_INIT, &hdev->flags) || 2840 hci_dev_test_flag(hdev, HCI_SETUP) || 2841 hci_dev_test_flag(hdev, HCI_CONFIG) || 2842 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2843 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2844 return 0; 2845 2846 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2847 } 2848 2849 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2850 { 2851 int err; 2852 2853 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2854 return 0; 2855 2856 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2857 sizeof(val), &val, HCI_CMD_TIMEOUT); 2858 2859 if (!err) { 2860 if (val) { 2861 hdev->features[1][0] |= LMP_HOST_SC; 2862 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2863 } else { 2864 hdev->features[1][0] &= ~LMP_HOST_SC; 2865 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2866 } 2867 } 2868 2869 return err; 2870 } 2871 2872 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2873 { 2874 int err; 2875 2876 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2877 lmp_host_ssp_capable(hdev)) 2878 return 0; 2879 2880 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2881 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2882 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2883 } 2884 2885 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2886 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2887 if (err) 2888 return err; 2889 2890 return hci_write_sc_support_sync(hdev, 0x01); 2891 } 2892 2893 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2894 { 2895 struct hci_cp_write_le_host_supported cp; 2896 2897 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2898 !lmp_bredr_capable(hdev)) 2899 return 0; 2900 2901 /* Check first if we already have the right host state 2902 * (host features set) 2903 */ 2904 if (le == lmp_host_le_capable(hdev) && 2905 simul == lmp_host_le_br_capable(hdev)) 2906 return 0; 2907 2908 memset(&cp, 0, sizeof(cp)); 2909 2910 cp.le = le; 2911 cp.simul = simul; 2912 2913 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2914 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2915 } 2916 2917 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2918 { 2919 struct adv_info *adv, *tmp; 2920 int err; 2921 2922 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2923 return 0; 2924 2925 /* If RPA Resolution has not been enable yet it means the 2926 * resolving list is empty and we should attempt to program the 2927 * local IRK in order to support using own_addr_type 2928 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2929 */ 2930 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2931 hci_le_add_resolve_list_sync(hdev, NULL); 2932 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2933 } 2934 2935 /* Make sure the controller has a good default for 2936 * advertising data. This also applies to the case 2937 * where BR/EDR was toggled during the AUTO_OFF phase. 2938 */ 2939 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2940 list_empty(&hdev->adv_instances)) { 2941 if (ext_adv_capable(hdev)) { 2942 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2943 if (!err) 2944 hci_update_scan_rsp_data_sync(hdev, 0x00); 2945 } else { 2946 err = hci_update_adv_data_sync(hdev, 0x00); 2947 if (!err) 2948 hci_update_scan_rsp_data_sync(hdev, 0x00); 2949 } 2950 2951 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2952 hci_enable_advertising_sync(hdev); 2953 } 2954 2955 /* Call for each tracked instance to be scheduled */ 2956 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2957 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2958 2959 return 0; 2960 } 2961 2962 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2963 { 2964 u8 link_sec; 2965 2966 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2967 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2968 return 0; 2969 2970 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2971 sizeof(link_sec), &link_sec, 2972 HCI_CMD_TIMEOUT); 2973 } 2974 2975 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2976 { 2977 struct hci_cp_write_page_scan_activity cp; 2978 u8 type; 2979 int err = 0; 2980 2981 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2982 return 0; 2983 2984 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2985 return 0; 2986 2987 memset(&cp, 0, sizeof(cp)); 2988 2989 if (enable) { 2990 type = PAGE_SCAN_TYPE_INTERLACED; 2991 2992 /* 160 msec page scan interval */ 2993 cp.interval = cpu_to_le16(0x0100); 2994 } else { 2995 type = hdev->def_page_scan_type; 2996 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2997 } 2998 2999 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3000 3001 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3002 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3003 err = __hci_cmd_sync_status(hdev, 3004 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3005 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3006 if (err) 3007 return err; 3008 } 3009 3010 if (hdev->page_scan_type != type) 3011 err = __hci_cmd_sync_status(hdev, 3012 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3013 sizeof(type), &type, 3014 HCI_CMD_TIMEOUT); 3015 3016 return err; 3017 } 3018 3019 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3020 { 3021 struct bdaddr_list *b; 3022 3023 list_for_each_entry(b, &hdev->accept_list, list) { 3024 struct hci_conn *conn; 3025 3026 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3027 if (!conn) 3028 return true; 3029 3030 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3031 return true; 3032 } 3033 3034 return false; 3035 } 3036 3037 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3038 { 3039 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3040 sizeof(val), &val, 3041 HCI_CMD_TIMEOUT); 3042 } 3043 3044 int hci_update_scan_sync(struct hci_dev *hdev) 3045 { 3046 u8 scan; 3047 3048 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3049 return 0; 3050 3051 if (!hdev_is_powered(hdev)) 3052 return 0; 3053 3054 if (mgmt_powering_down(hdev)) 3055 return 0; 3056 3057 if (hdev->scanning_paused) 3058 return 0; 3059 3060 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3061 disconnected_accept_list_entries(hdev)) 3062 scan = SCAN_PAGE; 3063 else 3064 scan = SCAN_DISABLED; 3065 3066 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3067 scan |= SCAN_INQUIRY; 3068 3069 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3070 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3071 return 0; 3072 3073 return hci_write_scan_enable_sync(hdev, scan); 3074 } 3075 3076 int hci_update_name_sync(struct hci_dev *hdev) 3077 { 3078 struct hci_cp_write_local_name cp; 3079 3080 memset(&cp, 0, sizeof(cp)); 3081 3082 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3083 3084 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3085 sizeof(cp), &cp, 3086 HCI_CMD_TIMEOUT); 3087 } 3088 3089 /* This function perform powered update HCI command sequence after the HCI init 3090 * sequence which end up resetting all states, the sequence is as follows: 3091 * 3092 * HCI_SSP_ENABLED(Enable SSP) 3093 * HCI_LE_ENABLED(Enable LE) 3094 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3095 * Update adv data) 3096 * Enable Authentication 3097 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3098 * Set Name -> Set EIR) 3099 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3100 */ 3101 int hci_powered_update_sync(struct hci_dev *hdev) 3102 { 3103 int err; 3104 3105 /* Register the available SMP channels (BR/EDR and LE) only when 3106 * successfully powering on the controller. This late 3107 * registration is required so that LE SMP can clearly decide if 3108 * the public address or static address is used. 3109 */ 3110 smp_register(hdev); 3111 3112 err = hci_write_ssp_mode_sync(hdev, 0x01); 3113 if (err) 3114 return err; 3115 3116 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3117 if (err) 3118 return err; 3119 3120 err = hci_powered_update_adv_sync(hdev); 3121 if (err) 3122 return err; 3123 3124 err = hci_write_auth_enable_sync(hdev); 3125 if (err) 3126 return err; 3127 3128 if (lmp_bredr_capable(hdev)) { 3129 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3130 hci_write_fast_connectable_sync(hdev, true); 3131 else 3132 hci_write_fast_connectable_sync(hdev, false); 3133 hci_update_scan_sync(hdev); 3134 hci_update_class_sync(hdev); 3135 hci_update_name_sync(hdev); 3136 hci_update_eir_sync(hdev); 3137 } 3138 3139 /* If forcing static address is in use or there is no public 3140 * address use the static address as random address (but skip 3141 * the HCI command if the current random address is already the 3142 * static one. 3143 * 3144 * In case BR/EDR has been disabled on a dual-mode controller 3145 * and a static address has been configured, then use that 3146 * address instead of the public BR/EDR address. 3147 */ 3148 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3149 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3150 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3151 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3152 return hci_set_random_addr_sync(hdev, 3153 &hdev->static_addr); 3154 } 3155 3156 return 0; 3157 } 3158 3159 /** 3160 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3161 * (BD_ADDR) for a HCI device from 3162 * a firmware node property. 3163 * @hdev: The HCI device 3164 * 3165 * Search the firmware node for 'local-bd-address'. 3166 * 3167 * All-zero BD addresses are rejected, because those could be properties 3168 * that exist in the firmware tables, but were not updated by the firmware. For 3169 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3170 */ 3171 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3172 { 3173 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3174 bdaddr_t ba; 3175 int ret; 3176 3177 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3178 (u8 *)&ba, sizeof(ba)); 3179 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3180 return; 3181 3182 bacpy(&hdev->public_addr, &ba); 3183 } 3184 3185 struct hci_init_stage { 3186 int (*func)(struct hci_dev *hdev); 3187 }; 3188 3189 /* Run init stage NULL terminated function table */ 3190 static int hci_init_stage_sync(struct hci_dev *hdev, 3191 const struct hci_init_stage *stage) 3192 { 3193 size_t i; 3194 3195 for (i = 0; stage[i].func; i++) { 3196 int err; 3197 3198 err = stage[i].func(hdev); 3199 if (err) 3200 return err; 3201 } 3202 3203 return 0; 3204 } 3205 3206 /* Read Local Version */ 3207 static int hci_read_local_version_sync(struct hci_dev *hdev) 3208 { 3209 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3210 0, NULL, HCI_CMD_TIMEOUT); 3211 } 3212 3213 /* Read BD Address */ 3214 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3215 { 3216 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3217 0, NULL, HCI_CMD_TIMEOUT); 3218 } 3219 3220 #define HCI_INIT(_func) \ 3221 { \ 3222 .func = _func, \ 3223 } 3224 3225 static const struct hci_init_stage hci_init0[] = { 3226 /* HCI_OP_READ_LOCAL_VERSION */ 3227 HCI_INIT(hci_read_local_version_sync), 3228 /* HCI_OP_READ_BD_ADDR */ 3229 HCI_INIT(hci_read_bd_addr_sync), 3230 {} 3231 }; 3232 3233 int hci_reset_sync(struct hci_dev *hdev) 3234 { 3235 int err; 3236 3237 set_bit(HCI_RESET, &hdev->flags); 3238 3239 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3240 HCI_CMD_TIMEOUT); 3241 if (err) 3242 return err; 3243 3244 return 0; 3245 } 3246 3247 static int hci_init0_sync(struct hci_dev *hdev) 3248 { 3249 int err; 3250 3251 bt_dev_dbg(hdev, ""); 3252 3253 /* Reset */ 3254 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3255 err = hci_reset_sync(hdev); 3256 if (err) 3257 return err; 3258 } 3259 3260 return hci_init_stage_sync(hdev, hci_init0); 3261 } 3262 3263 static int hci_unconf_init_sync(struct hci_dev *hdev) 3264 { 3265 int err; 3266 3267 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3268 return 0; 3269 3270 err = hci_init0_sync(hdev); 3271 if (err < 0) 3272 return err; 3273 3274 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3275 hci_debugfs_create_basic(hdev); 3276 3277 return 0; 3278 } 3279 3280 /* Read Local Supported Features. */ 3281 static int hci_read_local_features_sync(struct hci_dev *hdev) 3282 { 3283 /* Not all AMP controllers support this command */ 3284 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3285 return 0; 3286 3287 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3288 0, NULL, HCI_CMD_TIMEOUT); 3289 } 3290 3291 /* BR Controller init stage 1 command sequence */ 3292 static const struct hci_init_stage br_init1[] = { 3293 /* HCI_OP_READ_LOCAL_FEATURES */ 3294 HCI_INIT(hci_read_local_features_sync), 3295 /* HCI_OP_READ_LOCAL_VERSION */ 3296 HCI_INIT(hci_read_local_version_sync), 3297 /* HCI_OP_READ_BD_ADDR */ 3298 HCI_INIT(hci_read_bd_addr_sync), 3299 {} 3300 }; 3301 3302 /* Read Local Commands */ 3303 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3304 { 3305 /* All Bluetooth 1.2 and later controllers should support the 3306 * HCI command for reading the local supported commands. 3307 * 3308 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3309 * but do not have support for this command. If that is the case, 3310 * the driver can quirk the behavior and skip reading the local 3311 * supported commands. 3312 */ 3313 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3314 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3315 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3316 0, NULL, HCI_CMD_TIMEOUT); 3317 3318 return 0; 3319 } 3320 3321 /* Read Local AMP Info */ 3322 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3323 { 3324 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3325 0, NULL, HCI_CMD_TIMEOUT); 3326 } 3327 3328 /* Read Data Blk size */ 3329 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3330 { 3331 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3332 0, NULL, HCI_CMD_TIMEOUT); 3333 } 3334 3335 /* Read Flow Control Mode */ 3336 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3337 { 3338 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3339 0, NULL, HCI_CMD_TIMEOUT); 3340 } 3341 3342 /* Read Location Data */ 3343 static int hci_read_location_data_sync(struct hci_dev *hdev) 3344 { 3345 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3346 0, NULL, HCI_CMD_TIMEOUT); 3347 } 3348 3349 /* AMP Controller init stage 1 command sequence */ 3350 static const struct hci_init_stage amp_init1[] = { 3351 /* HCI_OP_READ_LOCAL_VERSION */ 3352 HCI_INIT(hci_read_local_version_sync), 3353 /* HCI_OP_READ_LOCAL_COMMANDS */ 3354 HCI_INIT(hci_read_local_cmds_sync), 3355 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3356 HCI_INIT(hci_read_local_amp_info_sync), 3357 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3358 HCI_INIT(hci_read_data_block_size_sync), 3359 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3360 HCI_INIT(hci_read_flow_control_mode_sync), 3361 /* HCI_OP_READ_LOCATION_DATA */ 3362 HCI_INIT(hci_read_location_data_sync), 3363 {} 3364 }; 3365 3366 static int hci_init1_sync(struct hci_dev *hdev) 3367 { 3368 int err; 3369 3370 bt_dev_dbg(hdev, ""); 3371 3372 /* Reset */ 3373 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3374 err = hci_reset_sync(hdev); 3375 if (err) 3376 return err; 3377 } 3378 3379 switch (hdev->dev_type) { 3380 case HCI_PRIMARY: 3381 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3382 return hci_init_stage_sync(hdev, br_init1); 3383 case HCI_AMP: 3384 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3385 return hci_init_stage_sync(hdev, amp_init1); 3386 default: 3387 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3388 break; 3389 } 3390 3391 return 0; 3392 } 3393 3394 /* AMP Controller init stage 2 command sequence */ 3395 static const struct hci_init_stage amp_init2[] = { 3396 /* HCI_OP_READ_LOCAL_FEATURES */ 3397 HCI_INIT(hci_read_local_features_sync), 3398 {} 3399 }; 3400 3401 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3402 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3403 { 3404 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3405 0, NULL, HCI_CMD_TIMEOUT); 3406 } 3407 3408 /* Read Class of Device */ 3409 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3410 { 3411 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3412 0, NULL, HCI_CMD_TIMEOUT); 3413 } 3414 3415 /* Read Local Name */ 3416 static int hci_read_local_name_sync(struct hci_dev *hdev) 3417 { 3418 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3419 0, NULL, HCI_CMD_TIMEOUT); 3420 } 3421 3422 /* Read Voice Setting */ 3423 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3424 { 3425 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3426 0, NULL, HCI_CMD_TIMEOUT); 3427 } 3428 3429 /* Read Number of Supported IAC */ 3430 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3431 { 3432 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3433 0, NULL, HCI_CMD_TIMEOUT); 3434 } 3435 3436 /* Read Current IAC LAP */ 3437 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3438 { 3439 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3440 0, NULL, HCI_CMD_TIMEOUT); 3441 } 3442 3443 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3444 u8 cond_type, bdaddr_t *bdaddr, 3445 u8 auto_accept) 3446 { 3447 struct hci_cp_set_event_filter cp; 3448 3449 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3450 return 0; 3451 3452 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3453 return 0; 3454 3455 memset(&cp, 0, sizeof(cp)); 3456 cp.flt_type = flt_type; 3457 3458 if (flt_type != HCI_FLT_CLEAR_ALL) { 3459 cp.cond_type = cond_type; 3460 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3461 cp.addr_conn_flt.auto_accept = auto_accept; 3462 } 3463 3464 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3465 flt_type == HCI_FLT_CLEAR_ALL ? 3466 sizeof(cp.flt_type) : sizeof(cp), &cp, 3467 HCI_CMD_TIMEOUT); 3468 } 3469 3470 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3471 { 3472 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3473 return 0; 3474 3475 /* In theory the state machine should not reach here unless 3476 * a hci_set_event_filter_sync() call succeeds, but we do 3477 * the check both for parity and as a future reminder. 3478 */ 3479 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3480 return 0; 3481 3482 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3483 BDADDR_ANY, 0x00); 3484 } 3485 3486 /* Connection accept timeout ~20 secs */ 3487 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3488 { 3489 __le16 param = cpu_to_le16(0x7d00); 3490 3491 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3492 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3493 } 3494 3495 /* BR Controller init stage 2 command sequence */ 3496 static const struct hci_init_stage br_init2[] = { 3497 /* HCI_OP_READ_BUFFER_SIZE */ 3498 HCI_INIT(hci_read_buffer_size_sync), 3499 /* HCI_OP_READ_CLASS_OF_DEV */ 3500 HCI_INIT(hci_read_dev_class_sync), 3501 /* HCI_OP_READ_LOCAL_NAME */ 3502 HCI_INIT(hci_read_local_name_sync), 3503 /* HCI_OP_READ_VOICE_SETTING */ 3504 HCI_INIT(hci_read_voice_setting_sync), 3505 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3506 HCI_INIT(hci_read_num_supported_iac_sync), 3507 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3508 HCI_INIT(hci_read_current_iac_lap_sync), 3509 /* HCI_OP_SET_EVENT_FLT */ 3510 HCI_INIT(hci_clear_event_filter_sync), 3511 /* HCI_OP_WRITE_CA_TIMEOUT */ 3512 HCI_INIT(hci_write_ca_timeout_sync), 3513 {} 3514 }; 3515 3516 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3517 { 3518 u8 mode = 0x01; 3519 3520 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3521 return 0; 3522 3523 /* When SSP is available, then the host features page 3524 * should also be available as well. However some 3525 * controllers list the max_page as 0 as long as SSP 3526 * has not been enabled. To achieve proper debugging 3527 * output, force the minimum max_page to 1 at least. 3528 */ 3529 hdev->max_page = 0x01; 3530 3531 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3532 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3533 } 3534 3535 static int hci_write_eir_sync(struct hci_dev *hdev) 3536 { 3537 struct hci_cp_write_eir cp; 3538 3539 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3540 return 0; 3541 3542 memset(hdev->eir, 0, sizeof(hdev->eir)); 3543 memset(&cp, 0, sizeof(cp)); 3544 3545 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3546 HCI_CMD_TIMEOUT); 3547 } 3548 3549 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3550 { 3551 u8 mode; 3552 3553 if (!lmp_inq_rssi_capable(hdev) && 3554 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3555 return 0; 3556 3557 /* If Extended Inquiry Result events are supported, then 3558 * they are clearly preferred over Inquiry Result with RSSI 3559 * events. 3560 */ 3561 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3562 3563 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3564 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3565 } 3566 3567 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3568 { 3569 if (!lmp_inq_tx_pwr_capable(hdev)) 3570 return 0; 3571 3572 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3573 0, NULL, HCI_CMD_TIMEOUT); 3574 } 3575 3576 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3577 { 3578 struct hci_cp_read_local_ext_features cp; 3579 3580 if (!lmp_ext_feat_capable(hdev)) 3581 return 0; 3582 3583 memset(&cp, 0, sizeof(cp)); 3584 cp.page = page; 3585 3586 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3587 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3588 } 3589 3590 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3591 { 3592 return hci_read_local_ext_features_sync(hdev, 0x01); 3593 } 3594 3595 /* HCI Controller init stage 2 command sequence */ 3596 static const struct hci_init_stage hci_init2[] = { 3597 /* HCI_OP_READ_LOCAL_COMMANDS */ 3598 HCI_INIT(hci_read_local_cmds_sync), 3599 /* HCI_OP_WRITE_SSP_MODE */ 3600 HCI_INIT(hci_write_ssp_mode_1_sync), 3601 /* HCI_OP_WRITE_EIR */ 3602 HCI_INIT(hci_write_eir_sync), 3603 /* HCI_OP_WRITE_INQUIRY_MODE */ 3604 HCI_INIT(hci_write_inquiry_mode_sync), 3605 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3606 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3607 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3608 HCI_INIT(hci_read_local_ext_features_1_sync), 3609 /* HCI_OP_WRITE_AUTH_ENABLE */ 3610 HCI_INIT(hci_write_auth_enable_sync), 3611 {} 3612 }; 3613 3614 /* Read LE Buffer Size */ 3615 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3616 { 3617 /* Use Read LE Buffer Size V2 if supported */ 3618 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3619 return __hci_cmd_sync_status(hdev, 3620 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3621 0, NULL, HCI_CMD_TIMEOUT); 3622 3623 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3624 0, NULL, HCI_CMD_TIMEOUT); 3625 } 3626 3627 /* Read LE Local Supported Features */ 3628 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3629 { 3630 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3631 0, NULL, HCI_CMD_TIMEOUT); 3632 } 3633 3634 /* Read LE Supported States */ 3635 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3636 { 3637 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3638 0, NULL, HCI_CMD_TIMEOUT); 3639 } 3640 3641 /* LE Controller init stage 2 command sequence */ 3642 static const struct hci_init_stage le_init2[] = { 3643 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3644 HCI_INIT(hci_le_read_local_features_sync), 3645 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3646 HCI_INIT(hci_le_read_buffer_size_sync), 3647 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3648 HCI_INIT(hci_le_read_supported_states_sync), 3649 {} 3650 }; 3651 3652 static int hci_init2_sync(struct hci_dev *hdev) 3653 { 3654 int err; 3655 3656 bt_dev_dbg(hdev, ""); 3657 3658 if (hdev->dev_type == HCI_AMP) 3659 return hci_init_stage_sync(hdev, amp_init2); 3660 3661 err = hci_init_stage_sync(hdev, hci_init2); 3662 if (err) 3663 return err; 3664 3665 if (lmp_bredr_capable(hdev)) { 3666 err = hci_init_stage_sync(hdev, br_init2); 3667 if (err) 3668 return err; 3669 } else { 3670 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3671 } 3672 3673 if (lmp_le_capable(hdev)) { 3674 err = hci_init_stage_sync(hdev, le_init2); 3675 if (err) 3676 return err; 3677 /* LE-only controllers have LE implicitly enabled */ 3678 if (!lmp_bredr_capable(hdev)) 3679 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3680 } 3681 3682 return 0; 3683 } 3684 3685 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3686 { 3687 /* The second byte is 0xff instead of 0x9f (two reserved bits 3688 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3689 * command otherwise. 3690 */ 3691 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3692 3693 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3694 * any event mask for pre 1.2 devices. 3695 */ 3696 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3697 return 0; 3698 3699 if (lmp_bredr_capable(hdev)) { 3700 events[4] |= 0x01; /* Flow Specification Complete */ 3701 3702 /* Don't set Disconnect Complete when suspended as that 3703 * would wakeup the host when disconnecting due to 3704 * suspend. 3705 */ 3706 if (hdev->suspended) 3707 events[0] &= 0xef; 3708 } else { 3709 /* Use a different default for LE-only devices */ 3710 memset(events, 0, sizeof(events)); 3711 events[1] |= 0x20; /* Command Complete */ 3712 events[1] |= 0x40; /* Command Status */ 3713 events[1] |= 0x80; /* Hardware Error */ 3714 3715 /* If the controller supports the Disconnect command, enable 3716 * the corresponding event. In addition enable packet flow 3717 * control related events. 3718 */ 3719 if (hdev->commands[0] & 0x20) { 3720 /* Don't set Disconnect Complete when suspended as that 3721 * would wakeup the host when disconnecting due to 3722 * suspend. 3723 */ 3724 if (!hdev->suspended) 3725 events[0] |= 0x10; /* Disconnection Complete */ 3726 events[2] |= 0x04; /* Number of Completed Packets */ 3727 events[3] |= 0x02; /* Data Buffer Overflow */ 3728 } 3729 3730 /* If the controller supports the Read Remote Version 3731 * Information command, enable the corresponding event. 3732 */ 3733 if (hdev->commands[2] & 0x80) 3734 events[1] |= 0x08; /* Read Remote Version Information 3735 * Complete 3736 */ 3737 3738 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3739 events[0] |= 0x80; /* Encryption Change */ 3740 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3741 } 3742 } 3743 3744 if (lmp_inq_rssi_capable(hdev) || 3745 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3746 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3747 3748 if (lmp_ext_feat_capable(hdev)) 3749 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3750 3751 if (lmp_esco_capable(hdev)) { 3752 events[5] |= 0x08; /* Synchronous Connection Complete */ 3753 events[5] |= 0x10; /* Synchronous Connection Changed */ 3754 } 3755 3756 if (lmp_sniffsubr_capable(hdev)) 3757 events[5] |= 0x20; /* Sniff Subrating */ 3758 3759 if (lmp_pause_enc_capable(hdev)) 3760 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3761 3762 if (lmp_ext_inq_capable(hdev)) 3763 events[5] |= 0x40; /* Extended Inquiry Result */ 3764 3765 if (lmp_no_flush_capable(hdev)) 3766 events[7] |= 0x01; /* Enhanced Flush Complete */ 3767 3768 if (lmp_lsto_capable(hdev)) 3769 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3770 3771 if (lmp_ssp_capable(hdev)) { 3772 events[6] |= 0x01; /* IO Capability Request */ 3773 events[6] |= 0x02; /* IO Capability Response */ 3774 events[6] |= 0x04; /* User Confirmation Request */ 3775 events[6] |= 0x08; /* User Passkey Request */ 3776 events[6] |= 0x10; /* Remote OOB Data Request */ 3777 events[6] |= 0x20; /* Simple Pairing Complete */ 3778 events[7] |= 0x04; /* User Passkey Notification */ 3779 events[7] |= 0x08; /* Keypress Notification */ 3780 events[7] |= 0x10; /* Remote Host Supported 3781 * Features Notification 3782 */ 3783 } 3784 3785 if (lmp_le_capable(hdev)) 3786 events[7] |= 0x20; /* LE Meta-Event */ 3787 3788 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3789 sizeof(events), events, HCI_CMD_TIMEOUT); 3790 } 3791 3792 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3793 { 3794 struct hci_cp_read_stored_link_key cp; 3795 3796 if (!(hdev->commands[6] & 0x20) || 3797 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3798 return 0; 3799 3800 memset(&cp, 0, sizeof(cp)); 3801 bacpy(&cp.bdaddr, BDADDR_ANY); 3802 cp.read_all = 0x01; 3803 3804 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3805 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3806 } 3807 3808 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3809 { 3810 struct hci_cp_write_def_link_policy cp; 3811 u16 link_policy = 0; 3812 3813 if (!(hdev->commands[5] & 0x10)) 3814 return 0; 3815 3816 memset(&cp, 0, sizeof(cp)); 3817 3818 if (lmp_rswitch_capable(hdev)) 3819 link_policy |= HCI_LP_RSWITCH; 3820 if (lmp_hold_capable(hdev)) 3821 link_policy |= HCI_LP_HOLD; 3822 if (lmp_sniff_capable(hdev)) 3823 link_policy |= HCI_LP_SNIFF; 3824 if (lmp_park_capable(hdev)) 3825 link_policy |= HCI_LP_PARK; 3826 3827 cp.policy = cpu_to_le16(link_policy); 3828 3829 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3830 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3831 } 3832 3833 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3834 { 3835 if (!(hdev->commands[8] & 0x01)) 3836 return 0; 3837 3838 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3839 0, NULL, HCI_CMD_TIMEOUT); 3840 } 3841 3842 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3843 { 3844 if (!(hdev->commands[18] & 0x04) || 3845 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3846 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3847 return 0; 3848 3849 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3850 0, NULL, HCI_CMD_TIMEOUT); 3851 } 3852 3853 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3854 { 3855 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3856 * support the Read Page Scan Type command. Check support for 3857 * this command in the bit mask of supported commands. 3858 */ 3859 if (!(hdev->commands[13] & 0x01)) 3860 return 0; 3861 3862 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3863 0, NULL, HCI_CMD_TIMEOUT); 3864 } 3865 3866 /* Read features beyond page 1 if available */ 3867 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3868 { 3869 u8 page; 3870 int err; 3871 3872 if (!lmp_ext_feat_capable(hdev)) 3873 return 0; 3874 3875 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3876 page++) { 3877 err = hci_read_local_ext_features_sync(hdev, page); 3878 if (err) 3879 return err; 3880 } 3881 3882 return 0; 3883 } 3884 3885 /* HCI Controller init stage 3 command sequence */ 3886 static const struct hci_init_stage hci_init3[] = { 3887 /* HCI_OP_SET_EVENT_MASK */ 3888 HCI_INIT(hci_set_event_mask_sync), 3889 /* HCI_OP_READ_STORED_LINK_KEY */ 3890 HCI_INIT(hci_read_stored_link_key_sync), 3891 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3892 HCI_INIT(hci_setup_link_policy_sync), 3893 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3894 HCI_INIT(hci_read_page_scan_activity_sync), 3895 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3896 HCI_INIT(hci_read_def_err_data_reporting_sync), 3897 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3898 HCI_INIT(hci_read_page_scan_type_sync), 3899 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3900 HCI_INIT(hci_read_local_ext_features_all_sync), 3901 {} 3902 }; 3903 3904 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3905 { 3906 u8 events[8]; 3907 3908 if (!lmp_le_capable(hdev)) 3909 return 0; 3910 3911 memset(events, 0, sizeof(events)); 3912 3913 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3914 events[0] |= 0x10; /* LE Long Term Key Request */ 3915 3916 /* If controller supports the Connection Parameters Request 3917 * Link Layer Procedure, enable the corresponding event. 3918 */ 3919 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3920 /* LE Remote Connection Parameter Request */ 3921 events[0] |= 0x20; 3922 3923 /* If the controller supports the Data Length Extension 3924 * feature, enable the corresponding event. 3925 */ 3926 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3927 events[0] |= 0x40; /* LE Data Length Change */ 3928 3929 /* If the controller supports LL Privacy feature or LE Extended Adv, 3930 * enable the corresponding event. 3931 */ 3932 if (use_enhanced_conn_complete(hdev)) 3933 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3934 3935 /* If the controller supports Extended Scanner Filter 3936 * Policies, enable the corresponding event. 3937 */ 3938 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3939 events[1] |= 0x04; /* LE Direct Advertising Report */ 3940 3941 /* If the controller supports Channel Selection Algorithm #2 3942 * feature, enable the corresponding event. 3943 */ 3944 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3945 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3946 3947 /* If the controller supports the LE Set Scan Enable command, 3948 * enable the corresponding advertising report event. 3949 */ 3950 if (hdev->commands[26] & 0x08) 3951 events[0] |= 0x02; /* LE Advertising Report */ 3952 3953 /* If the controller supports the LE Create Connection 3954 * command, enable the corresponding event. 3955 */ 3956 if (hdev->commands[26] & 0x10) 3957 events[0] |= 0x01; /* LE Connection Complete */ 3958 3959 /* If the controller supports the LE Connection Update 3960 * command, enable the corresponding event. 3961 */ 3962 if (hdev->commands[27] & 0x04) 3963 events[0] |= 0x04; /* LE Connection Update Complete */ 3964 3965 /* If the controller supports the LE Read Remote Used Features 3966 * command, enable the corresponding event. 3967 */ 3968 if (hdev->commands[27] & 0x20) 3969 /* LE Read Remote Used Features Complete */ 3970 events[0] |= 0x08; 3971 3972 /* If the controller supports the LE Read Local P-256 3973 * Public Key command, enable the corresponding event. 3974 */ 3975 if (hdev->commands[34] & 0x02) 3976 /* LE Read Local P-256 Public Key Complete */ 3977 events[0] |= 0x80; 3978 3979 /* If the controller supports the LE Generate DHKey 3980 * command, enable the corresponding event. 3981 */ 3982 if (hdev->commands[34] & 0x04) 3983 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3984 3985 /* If the controller supports the LE Set Default PHY or 3986 * LE Set PHY commands, enable the corresponding event. 3987 */ 3988 if (hdev->commands[35] & (0x20 | 0x40)) 3989 events[1] |= 0x08; /* LE PHY Update Complete */ 3990 3991 /* If the controller supports LE Set Extended Scan Parameters 3992 * and LE Set Extended Scan Enable commands, enable the 3993 * corresponding event. 3994 */ 3995 if (use_ext_scan(hdev)) 3996 events[1] |= 0x10; /* LE Extended Advertising Report */ 3997 3998 /* If the controller supports the LE Extended Advertising 3999 * command, enable the corresponding event. 4000 */ 4001 if (ext_adv_capable(hdev)) 4002 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4003 4004 if (cis_capable(hdev)) { 4005 events[3] |= 0x01; /* LE CIS Established */ 4006 if (cis_peripheral_capable(hdev)) 4007 events[3] |= 0x02; /* LE CIS Request */ 4008 } 4009 4010 if (bis_capable(hdev)) { 4011 events[3] |= 0x04; /* LE Create BIG Complete */ 4012 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4013 events[3] |= 0x10; /* LE BIG Sync Established */ 4014 events[3] |= 0x20; /* LE BIG Sync Loss */ 4015 } 4016 4017 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4018 sizeof(events), events, HCI_CMD_TIMEOUT); 4019 } 4020 4021 /* Read LE Advertising Channel TX Power */ 4022 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4023 { 4024 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4025 /* HCI TS spec forbids mixing of legacy and extended 4026 * advertising commands wherein READ_ADV_TX_POWER is 4027 * also included. So do not call it if extended adv 4028 * is supported otherwise controller will return 4029 * COMMAND_DISALLOWED for extended commands. 4030 */ 4031 return __hci_cmd_sync_status(hdev, 4032 HCI_OP_LE_READ_ADV_TX_POWER, 4033 0, NULL, HCI_CMD_TIMEOUT); 4034 } 4035 4036 return 0; 4037 } 4038 4039 /* Read LE Min/Max Tx Power*/ 4040 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4041 { 4042 if (!(hdev->commands[38] & 0x80) || 4043 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4044 return 0; 4045 4046 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4047 0, NULL, HCI_CMD_TIMEOUT); 4048 } 4049 4050 /* Read LE Accept List Size */ 4051 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4052 { 4053 if (!(hdev->commands[26] & 0x40)) 4054 return 0; 4055 4056 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4057 0, NULL, HCI_CMD_TIMEOUT); 4058 } 4059 4060 /* Clear LE Accept List */ 4061 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4062 { 4063 if (!(hdev->commands[26] & 0x80)) 4064 return 0; 4065 4066 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4067 HCI_CMD_TIMEOUT); 4068 } 4069 4070 /* Read LE Resolving List Size */ 4071 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4072 { 4073 if (!(hdev->commands[34] & 0x40)) 4074 return 0; 4075 4076 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4077 0, NULL, HCI_CMD_TIMEOUT); 4078 } 4079 4080 /* Clear LE Resolving List */ 4081 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4082 { 4083 if (!(hdev->commands[34] & 0x20)) 4084 return 0; 4085 4086 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4087 HCI_CMD_TIMEOUT); 4088 } 4089 4090 /* Set RPA timeout */ 4091 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4092 { 4093 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4094 4095 if (!(hdev->commands[35] & 0x04)) 4096 return 0; 4097 4098 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4099 sizeof(timeout), &timeout, 4100 HCI_CMD_TIMEOUT); 4101 } 4102 4103 /* Read LE Maximum Data Length */ 4104 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4105 { 4106 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4107 return 0; 4108 4109 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4110 HCI_CMD_TIMEOUT); 4111 } 4112 4113 /* Read LE Suggested Default Data Length */ 4114 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4115 { 4116 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4117 return 0; 4118 4119 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4120 HCI_CMD_TIMEOUT); 4121 } 4122 4123 /* Read LE Number of Supported Advertising Sets */ 4124 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4125 { 4126 if (!ext_adv_capable(hdev)) 4127 return 0; 4128 4129 return __hci_cmd_sync_status(hdev, 4130 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4131 0, NULL, HCI_CMD_TIMEOUT); 4132 } 4133 4134 /* Write LE Host Supported */ 4135 static int hci_set_le_support_sync(struct hci_dev *hdev) 4136 { 4137 struct hci_cp_write_le_host_supported cp; 4138 4139 /* LE-only devices do not support explicit enablement */ 4140 if (!lmp_bredr_capable(hdev)) 4141 return 0; 4142 4143 memset(&cp, 0, sizeof(cp)); 4144 4145 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4146 cp.le = 0x01; 4147 cp.simul = 0x00; 4148 } 4149 4150 if (cp.le == lmp_host_le_capable(hdev)) 4151 return 0; 4152 4153 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4154 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4155 } 4156 4157 /* LE Set Host Feature */ 4158 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4159 { 4160 struct hci_cp_le_set_host_feature cp; 4161 4162 if (!iso_capable(hdev)) 4163 return 0; 4164 4165 memset(&cp, 0, sizeof(cp)); 4166 4167 /* Isochronous Channels (Host Support) */ 4168 cp.bit_number = 32; 4169 cp.bit_value = 1; 4170 4171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4172 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4173 } 4174 4175 /* LE Controller init stage 3 command sequence */ 4176 static const struct hci_init_stage le_init3[] = { 4177 /* HCI_OP_LE_SET_EVENT_MASK */ 4178 HCI_INIT(hci_le_set_event_mask_sync), 4179 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4180 HCI_INIT(hci_le_read_adv_tx_power_sync), 4181 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4182 HCI_INIT(hci_le_read_tx_power_sync), 4183 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4184 HCI_INIT(hci_le_read_accept_list_size_sync), 4185 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4186 HCI_INIT(hci_le_clear_accept_list_sync), 4187 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4188 HCI_INIT(hci_le_read_resolv_list_size_sync), 4189 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4190 HCI_INIT(hci_le_clear_resolv_list_sync), 4191 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4192 HCI_INIT(hci_le_set_rpa_timeout_sync), 4193 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4194 HCI_INIT(hci_le_read_max_data_len_sync), 4195 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4196 HCI_INIT(hci_le_read_def_data_len_sync), 4197 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4198 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4199 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4200 HCI_INIT(hci_set_le_support_sync), 4201 /* HCI_OP_LE_SET_HOST_FEATURE */ 4202 HCI_INIT(hci_le_set_host_feature_sync), 4203 {} 4204 }; 4205 4206 static int hci_init3_sync(struct hci_dev *hdev) 4207 { 4208 int err; 4209 4210 bt_dev_dbg(hdev, ""); 4211 4212 err = hci_init_stage_sync(hdev, hci_init3); 4213 if (err) 4214 return err; 4215 4216 if (lmp_le_capable(hdev)) 4217 return hci_init_stage_sync(hdev, le_init3); 4218 4219 return 0; 4220 } 4221 4222 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4223 { 4224 struct hci_cp_delete_stored_link_key cp; 4225 4226 /* Some Broadcom based Bluetooth controllers do not support the 4227 * Delete Stored Link Key command. They are clearly indicating its 4228 * absence in the bit mask of supported commands. 4229 * 4230 * Check the supported commands and only if the command is marked 4231 * as supported send it. If not supported assume that the controller 4232 * does not have actual support for stored link keys which makes this 4233 * command redundant anyway. 4234 * 4235 * Some controllers indicate that they support handling deleting 4236 * stored link keys, but they don't. The quirk lets a driver 4237 * just disable this command. 4238 */ 4239 if (!(hdev->commands[6] & 0x80) || 4240 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4241 return 0; 4242 4243 memset(&cp, 0, sizeof(cp)); 4244 bacpy(&cp.bdaddr, BDADDR_ANY); 4245 cp.delete_all = 0x01; 4246 4247 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4248 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4249 } 4250 4251 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4252 { 4253 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4254 bool changed = false; 4255 4256 /* Set event mask page 2 if the HCI command for it is supported */ 4257 if (!(hdev->commands[22] & 0x04)) 4258 return 0; 4259 4260 /* If Connectionless Peripheral Broadcast central role is supported 4261 * enable all necessary events for it. 4262 */ 4263 if (lmp_cpb_central_capable(hdev)) { 4264 events[1] |= 0x40; /* Triggered Clock Capture */ 4265 events[1] |= 0x80; /* Synchronization Train Complete */ 4266 events[2] |= 0x08; /* Truncated Page Complete */ 4267 events[2] |= 0x20; /* CPB Channel Map Change */ 4268 changed = true; 4269 } 4270 4271 /* If Connectionless Peripheral Broadcast peripheral role is supported 4272 * enable all necessary events for it. 4273 */ 4274 if (lmp_cpb_peripheral_capable(hdev)) { 4275 events[2] |= 0x01; /* Synchronization Train Received */ 4276 events[2] |= 0x02; /* CPB Receive */ 4277 events[2] |= 0x04; /* CPB Timeout */ 4278 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4279 changed = true; 4280 } 4281 4282 /* Enable Authenticated Payload Timeout Expired event if supported */ 4283 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4284 events[2] |= 0x80; 4285 changed = true; 4286 } 4287 4288 /* Some Broadcom based controllers indicate support for Set Event 4289 * Mask Page 2 command, but then actually do not support it. Since 4290 * the default value is all bits set to zero, the command is only 4291 * required if the event mask has to be changed. In case no change 4292 * to the event mask is needed, skip this command. 4293 */ 4294 if (!changed) 4295 return 0; 4296 4297 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4298 sizeof(events), events, HCI_CMD_TIMEOUT); 4299 } 4300 4301 /* Read local codec list if the HCI command is supported */ 4302 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4303 { 4304 if (hdev->commands[45] & 0x04) 4305 hci_read_supported_codecs_v2(hdev); 4306 else if (hdev->commands[29] & 0x20) 4307 hci_read_supported_codecs(hdev); 4308 4309 return 0; 4310 } 4311 4312 /* Read local pairing options if the HCI command is supported */ 4313 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4314 { 4315 if (!(hdev->commands[41] & 0x08)) 4316 return 0; 4317 4318 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4319 0, NULL, HCI_CMD_TIMEOUT); 4320 } 4321 4322 /* Get MWS transport configuration if the HCI command is supported */ 4323 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4324 { 4325 if (!mws_transport_config_capable(hdev)) 4326 return 0; 4327 4328 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4329 0, NULL, HCI_CMD_TIMEOUT); 4330 } 4331 4332 /* Check for Synchronization Train support */ 4333 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4334 { 4335 if (!lmp_sync_train_capable(hdev)) 4336 return 0; 4337 4338 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4339 0, NULL, HCI_CMD_TIMEOUT); 4340 } 4341 4342 /* Enable Secure Connections if supported and configured */ 4343 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4344 { 4345 u8 support = 0x01; 4346 4347 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4348 !bredr_sc_enabled(hdev)) 4349 return 0; 4350 4351 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4352 sizeof(support), &support, 4353 HCI_CMD_TIMEOUT); 4354 } 4355 4356 /* Set erroneous data reporting if supported to the wideband speech 4357 * setting value 4358 */ 4359 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4360 { 4361 struct hci_cp_write_def_err_data_reporting cp; 4362 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4363 4364 if (!(hdev->commands[18] & 0x08) || 4365 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4366 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4367 return 0; 4368 4369 if (enabled == hdev->err_data_reporting) 4370 return 0; 4371 4372 memset(&cp, 0, sizeof(cp)); 4373 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4374 ERR_DATA_REPORTING_DISABLED; 4375 4376 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4377 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4378 } 4379 4380 static const struct hci_init_stage hci_init4[] = { 4381 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4382 HCI_INIT(hci_delete_stored_link_key_sync), 4383 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4384 HCI_INIT(hci_set_event_mask_page_2_sync), 4385 /* HCI_OP_READ_LOCAL_CODECS */ 4386 HCI_INIT(hci_read_local_codecs_sync), 4387 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4388 HCI_INIT(hci_read_local_pairing_opts_sync), 4389 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4390 HCI_INIT(hci_get_mws_transport_config_sync), 4391 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4392 HCI_INIT(hci_read_sync_train_params_sync), 4393 /* HCI_OP_WRITE_SC_SUPPORT */ 4394 HCI_INIT(hci_write_sc_support_1_sync), 4395 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4396 HCI_INIT(hci_set_err_data_report_sync), 4397 {} 4398 }; 4399 4400 /* Set Suggested Default Data Length to maximum if supported */ 4401 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4402 { 4403 struct hci_cp_le_write_def_data_len cp; 4404 4405 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4406 return 0; 4407 4408 memset(&cp, 0, sizeof(cp)); 4409 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4410 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4411 4412 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4413 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4414 } 4415 4416 /* Set Default PHY parameters if command is supported */ 4417 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4418 { 4419 struct hci_cp_le_set_default_phy cp; 4420 4421 if (!(hdev->commands[35] & 0x20)) 4422 return 0; 4423 4424 memset(&cp, 0, sizeof(cp)); 4425 cp.all_phys = 0x00; 4426 cp.tx_phys = hdev->le_tx_def_phys; 4427 cp.rx_phys = hdev->le_rx_def_phys; 4428 4429 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4430 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4431 } 4432 4433 static const struct hci_init_stage le_init4[] = { 4434 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4435 HCI_INIT(hci_le_set_write_def_data_len_sync), 4436 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4437 HCI_INIT(hci_le_set_default_phy_sync), 4438 {} 4439 }; 4440 4441 static int hci_init4_sync(struct hci_dev *hdev) 4442 { 4443 int err; 4444 4445 bt_dev_dbg(hdev, ""); 4446 4447 err = hci_init_stage_sync(hdev, hci_init4); 4448 if (err) 4449 return err; 4450 4451 if (lmp_le_capable(hdev)) 4452 return hci_init_stage_sync(hdev, le_init4); 4453 4454 return 0; 4455 } 4456 4457 static int hci_init_sync(struct hci_dev *hdev) 4458 { 4459 int err; 4460 4461 err = hci_init1_sync(hdev); 4462 if (err < 0) 4463 return err; 4464 4465 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4466 hci_debugfs_create_basic(hdev); 4467 4468 err = hci_init2_sync(hdev); 4469 if (err < 0) 4470 return err; 4471 4472 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4473 * BR/EDR/LE type controllers. AMP controllers only need the 4474 * first two stages of init. 4475 */ 4476 if (hdev->dev_type != HCI_PRIMARY) 4477 return 0; 4478 4479 err = hci_init3_sync(hdev); 4480 if (err < 0) 4481 return err; 4482 4483 err = hci_init4_sync(hdev); 4484 if (err < 0) 4485 return err; 4486 4487 /* This function is only called when the controller is actually in 4488 * configured state. When the controller is marked as unconfigured, 4489 * this initialization procedure is not run. 4490 * 4491 * It means that it is possible that a controller runs through its 4492 * setup phase and then discovers missing settings. If that is the 4493 * case, then this function will not be called. It then will only 4494 * be called during the config phase. 4495 * 4496 * So only when in setup phase or config phase, create the debugfs 4497 * entries and register the SMP channels. 4498 */ 4499 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4500 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4501 return 0; 4502 4503 hci_debugfs_create_common(hdev); 4504 4505 if (lmp_bredr_capable(hdev)) 4506 hci_debugfs_create_bredr(hdev); 4507 4508 if (lmp_le_capable(hdev)) 4509 hci_debugfs_create_le(hdev); 4510 4511 return 0; 4512 } 4513 4514 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4515 4516 static const struct { 4517 unsigned long quirk; 4518 const char *desc; 4519 } hci_broken_table[] = { 4520 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4521 "HCI Read Local Supported Commands not supported"), 4522 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4523 "HCI Delete Stored Link Key command is advertised, " 4524 "but not supported."), 4525 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4526 "HCI Read Default Erroneous Data Reporting command is " 4527 "advertised, but not supported."), 4528 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4529 "HCI Read Transmit Power Level command is advertised, " 4530 "but not supported."), 4531 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4532 "HCI Set Event Filter command not supported."), 4533 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4534 "HCI Enhanced Setup Synchronous Connection command is " 4535 "advertised, but not supported.") 4536 }; 4537 4538 /* This function handles hdev setup stage: 4539 * 4540 * Calls hdev->setup 4541 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4542 */ 4543 static int hci_dev_setup_sync(struct hci_dev *hdev) 4544 { 4545 int ret = 0; 4546 bool invalid_bdaddr; 4547 size_t i; 4548 4549 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4550 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4551 return 0; 4552 4553 bt_dev_dbg(hdev, ""); 4554 4555 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4556 4557 if (hdev->setup) 4558 ret = hdev->setup(hdev); 4559 4560 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4561 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4562 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4563 } 4564 4565 /* The transport driver can set the quirk to mark the 4566 * BD_ADDR invalid before creating the HCI device or in 4567 * its setup callback. 4568 */ 4569 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 4570 4571 if (!ret) { 4572 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 4573 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 4574 hci_dev_get_bd_addr_from_property(hdev); 4575 4576 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4577 hdev->set_bdaddr) { 4578 ret = hdev->set_bdaddr(hdev, 4579 &hdev->public_addr); 4580 4581 /* If setting of the BD_ADDR from the device 4582 * property succeeds, then treat the address 4583 * as valid even if the invalid BD_ADDR 4584 * quirk indicates otherwise. 4585 */ 4586 if (!ret) 4587 invalid_bdaddr = false; 4588 } 4589 } 4590 } 4591 4592 /* The transport driver can set these quirks before 4593 * creating the HCI device or in its setup callback. 4594 * 4595 * For the invalid BD_ADDR quirk it is possible that 4596 * it becomes a valid address if the bootloader does 4597 * provide it (see above). 4598 * 4599 * In case any of them is set, the controller has to 4600 * start up as unconfigured. 4601 */ 4602 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4603 invalid_bdaddr) 4604 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4605 4606 /* For an unconfigured controller it is required to 4607 * read at least the version information provided by 4608 * the Read Local Version Information command. 4609 * 4610 * If the set_bdaddr driver callback is provided, then 4611 * also the original Bluetooth public device address 4612 * will be read using the Read BD Address command. 4613 */ 4614 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4615 return hci_unconf_init_sync(hdev); 4616 4617 return ret; 4618 } 4619 4620 /* This function handles hdev init stage: 4621 * 4622 * Calls hci_dev_setup_sync to perform setup stage 4623 * Calls hci_init_sync to perform HCI command init sequence 4624 */ 4625 static int hci_dev_init_sync(struct hci_dev *hdev) 4626 { 4627 int ret; 4628 4629 bt_dev_dbg(hdev, ""); 4630 4631 atomic_set(&hdev->cmd_cnt, 1); 4632 set_bit(HCI_INIT, &hdev->flags); 4633 4634 ret = hci_dev_setup_sync(hdev); 4635 4636 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4637 /* If public address change is configured, ensure that 4638 * the address gets programmed. If the driver does not 4639 * support changing the public address, fail the power 4640 * on procedure. 4641 */ 4642 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4643 hdev->set_bdaddr) 4644 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4645 else 4646 ret = -EADDRNOTAVAIL; 4647 } 4648 4649 if (!ret) { 4650 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4651 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4652 ret = hci_init_sync(hdev); 4653 if (!ret && hdev->post_init) 4654 ret = hdev->post_init(hdev); 4655 } 4656 } 4657 4658 /* If the HCI Reset command is clearing all diagnostic settings, 4659 * then they need to be reprogrammed after the init procedure 4660 * completed. 4661 */ 4662 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4663 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4664 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4665 ret = hdev->set_diag(hdev, true); 4666 4667 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4668 msft_do_open(hdev); 4669 aosp_do_open(hdev); 4670 } 4671 4672 clear_bit(HCI_INIT, &hdev->flags); 4673 4674 return ret; 4675 } 4676 4677 int hci_dev_open_sync(struct hci_dev *hdev) 4678 { 4679 int ret; 4680 4681 bt_dev_dbg(hdev, ""); 4682 4683 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4684 ret = -ENODEV; 4685 goto done; 4686 } 4687 4688 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4689 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4690 /* Check for rfkill but allow the HCI setup stage to 4691 * proceed (which in itself doesn't cause any RF activity). 4692 */ 4693 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4694 ret = -ERFKILL; 4695 goto done; 4696 } 4697 4698 /* Check for valid public address or a configured static 4699 * random address, but let the HCI setup proceed to 4700 * be able to determine if there is a public address 4701 * or not. 4702 * 4703 * In case of user channel usage, it is not important 4704 * if a public address or static random address is 4705 * available. 4706 * 4707 * This check is only valid for BR/EDR controllers 4708 * since AMP controllers do not have an address. 4709 */ 4710 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4711 hdev->dev_type == HCI_PRIMARY && 4712 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4713 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4714 ret = -EADDRNOTAVAIL; 4715 goto done; 4716 } 4717 } 4718 4719 if (test_bit(HCI_UP, &hdev->flags)) { 4720 ret = -EALREADY; 4721 goto done; 4722 } 4723 4724 if (hdev->open(hdev)) { 4725 ret = -EIO; 4726 goto done; 4727 } 4728 4729 set_bit(HCI_RUNNING, &hdev->flags); 4730 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4731 4732 ret = hci_dev_init_sync(hdev); 4733 if (!ret) { 4734 hci_dev_hold(hdev); 4735 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4736 hci_adv_instances_set_rpa_expired(hdev, true); 4737 set_bit(HCI_UP, &hdev->flags); 4738 hci_sock_dev_event(hdev, HCI_DEV_UP); 4739 hci_leds_update_powered(hdev, true); 4740 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4741 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4742 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4743 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4744 hci_dev_test_flag(hdev, HCI_MGMT) && 4745 hdev->dev_type == HCI_PRIMARY) { 4746 ret = hci_powered_update_sync(hdev); 4747 mgmt_power_on(hdev, ret); 4748 } 4749 } else { 4750 /* Init failed, cleanup */ 4751 flush_work(&hdev->tx_work); 4752 4753 /* Since hci_rx_work() is possible to awake new cmd_work 4754 * it should be flushed first to avoid unexpected call of 4755 * hci_cmd_work() 4756 */ 4757 flush_work(&hdev->rx_work); 4758 flush_work(&hdev->cmd_work); 4759 4760 skb_queue_purge(&hdev->cmd_q); 4761 skb_queue_purge(&hdev->rx_q); 4762 4763 if (hdev->flush) 4764 hdev->flush(hdev); 4765 4766 if (hdev->sent_cmd) { 4767 cancel_delayed_work_sync(&hdev->cmd_timer); 4768 kfree_skb(hdev->sent_cmd); 4769 hdev->sent_cmd = NULL; 4770 } 4771 4772 clear_bit(HCI_RUNNING, &hdev->flags); 4773 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4774 4775 hdev->close(hdev); 4776 hdev->flags &= BIT(HCI_RAW); 4777 } 4778 4779 done: 4780 return ret; 4781 } 4782 4783 /* This function requires the caller holds hdev->lock */ 4784 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4785 { 4786 struct hci_conn_params *p; 4787 4788 list_for_each_entry(p, &hdev->le_conn_params, list) { 4789 if (p->conn) { 4790 hci_conn_drop(p->conn); 4791 hci_conn_put(p->conn); 4792 p->conn = NULL; 4793 } 4794 list_del_init(&p->action); 4795 } 4796 4797 BT_DBG("All LE pending actions cleared"); 4798 } 4799 4800 static int hci_dev_shutdown(struct hci_dev *hdev) 4801 { 4802 int err = 0; 4803 /* Similar to how we first do setup and then set the exclusive access 4804 * bit for userspace, we must first unset userchannel and then clean up. 4805 * Otherwise, the kernel can't properly use the hci channel to clean up 4806 * the controller (some shutdown routines require sending additional 4807 * commands to the controller for example). 4808 */ 4809 bool was_userchannel = 4810 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4811 4812 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4813 test_bit(HCI_UP, &hdev->flags)) { 4814 /* Execute vendor specific shutdown routine */ 4815 if (hdev->shutdown) 4816 err = hdev->shutdown(hdev); 4817 } 4818 4819 if (was_userchannel) 4820 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4821 4822 return err; 4823 } 4824 4825 int hci_dev_close_sync(struct hci_dev *hdev) 4826 { 4827 bool auto_off; 4828 int err = 0; 4829 4830 bt_dev_dbg(hdev, ""); 4831 4832 cancel_delayed_work(&hdev->power_off); 4833 cancel_delayed_work(&hdev->ncmd_timer); 4834 cancel_delayed_work(&hdev->le_scan_disable); 4835 cancel_delayed_work(&hdev->le_scan_restart); 4836 4837 hci_request_cancel_all(hdev); 4838 4839 if (hdev->adv_instance_timeout) { 4840 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4841 hdev->adv_instance_timeout = 0; 4842 } 4843 4844 err = hci_dev_shutdown(hdev); 4845 4846 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4847 cancel_delayed_work_sync(&hdev->cmd_timer); 4848 return err; 4849 } 4850 4851 hci_leds_update_powered(hdev, false); 4852 4853 /* Flush RX and TX works */ 4854 flush_work(&hdev->tx_work); 4855 flush_work(&hdev->rx_work); 4856 4857 if (hdev->discov_timeout > 0) { 4858 hdev->discov_timeout = 0; 4859 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4860 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4861 } 4862 4863 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4864 cancel_delayed_work(&hdev->service_cache); 4865 4866 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4867 struct adv_info *adv_instance; 4868 4869 cancel_delayed_work_sync(&hdev->rpa_expired); 4870 4871 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4872 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4873 } 4874 4875 /* Avoid potential lockdep warnings from the *_flush() calls by 4876 * ensuring the workqueue is empty up front. 4877 */ 4878 drain_workqueue(hdev->workqueue); 4879 4880 hci_dev_lock(hdev); 4881 4882 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4883 4884 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4885 4886 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4887 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4888 hci_dev_test_flag(hdev, HCI_MGMT)) 4889 __mgmt_power_off(hdev); 4890 4891 hci_inquiry_cache_flush(hdev); 4892 hci_pend_le_actions_clear(hdev); 4893 hci_conn_hash_flush(hdev); 4894 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4895 smp_unregister(hdev); 4896 hci_dev_unlock(hdev); 4897 4898 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4899 4900 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4901 aosp_do_close(hdev); 4902 msft_do_close(hdev); 4903 } 4904 4905 if (hdev->flush) 4906 hdev->flush(hdev); 4907 4908 /* Reset device */ 4909 skb_queue_purge(&hdev->cmd_q); 4910 atomic_set(&hdev->cmd_cnt, 1); 4911 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4912 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4913 set_bit(HCI_INIT, &hdev->flags); 4914 hci_reset_sync(hdev); 4915 clear_bit(HCI_INIT, &hdev->flags); 4916 } 4917 4918 /* flush cmd work */ 4919 flush_work(&hdev->cmd_work); 4920 4921 /* Drop queues */ 4922 skb_queue_purge(&hdev->rx_q); 4923 skb_queue_purge(&hdev->cmd_q); 4924 skb_queue_purge(&hdev->raw_q); 4925 4926 /* Drop last sent command */ 4927 if (hdev->sent_cmd) { 4928 cancel_delayed_work_sync(&hdev->cmd_timer); 4929 kfree_skb(hdev->sent_cmd); 4930 hdev->sent_cmd = NULL; 4931 } 4932 4933 clear_bit(HCI_RUNNING, &hdev->flags); 4934 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4935 4936 /* After this point our queues are empty and no tasks are scheduled. */ 4937 hdev->close(hdev); 4938 4939 /* Clear flags */ 4940 hdev->flags &= BIT(HCI_RAW); 4941 hci_dev_clear_volatile_flags(hdev); 4942 4943 /* Controller radio is available but is currently powered down */ 4944 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4945 4946 memset(hdev->eir, 0, sizeof(hdev->eir)); 4947 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4948 bacpy(&hdev->random_addr, BDADDR_ANY); 4949 4950 hci_dev_put(hdev); 4951 return err; 4952 } 4953 4954 /* This function perform power on HCI command sequence as follows: 4955 * 4956 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4957 * sequence otherwise run hci_dev_open_sync which will follow with 4958 * hci_powered_update_sync after the init sequence is completed. 4959 */ 4960 static int hci_power_on_sync(struct hci_dev *hdev) 4961 { 4962 int err; 4963 4964 if (test_bit(HCI_UP, &hdev->flags) && 4965 hci_dev_test_flag(hdev, HCI_MGMT) && 4966 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4967 cancel_delayed_work(&hdev->power_off); 4968 return hci_powered_update_sync(hdev); 4969 } 4970 4971 err = hci_dev_open_sync(hdev); 4972 if (err < 0) 4973 return err; 4974 4975 /* During the HCI setup phase, a few error conditions are 4976 * ignored and they need to be checked now. If they are still 4977 * valid, it is important to return the device back off. 4978 */ 4979 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4980 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4981 (hdev->dev_type == HCI_PRIMARY && 4982 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4983 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4984 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4985 hci_dev_close_sync(hdev); 4986 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4987 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4988 HCI_AUTO_OFF_TIMEOUT); 4989 } 4990 4991 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4992 /* For unconfigured devices, set the HCI_RAW flag 4993 * so that userspace can easily identify them. 4994 */ 4995 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4996 set_bit(HCI_RAW, &hdev->flags); 4997 4998 /* For fully configured devices, this will send 4999 * the Index Added event. For unconfigured devices, 5000 * it will send Unconfigued Index Added event. 5001 * 5002 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5003 * and no event will be send. 5004 */ 5005 mgmt_index_added(hdev); 5006 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5007 /* When the controller is now configured, then it 5008 * is important to clear the HCI_RAW flag. 5009 */ 5010 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5011 clear_bit(HCI_RAW, &hdev->flags); 5012 5013 /* Powering on the controller with HCI_CONFIG set only 5014 * happens with the transition from unconfigured to 5015 * configured. This will send the Index Added event. 5016 */ 5017 mgmt_index_added(hdev); 5018 } 5019 5020 return 0; 5021 } 5022 5023 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5024 { 5025 struct hci_cp_remote_name_req_cancel cp; 5026 5027 memset(&cp, 0, sizeof(cp)); 5028 bacpy(&cp.bdaddr, addr); 5029 5030 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5031 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5032 } 5033 5034 int hci_stop_discovery_sync(struct hci_dev *hdev) 5035 { 5036 struct discovery_state *d = &hdev->discovery; 5037 struct inquiry_entry *e; 5038 int err; 5039 5040 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5041 5042 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5043 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5044 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5045 0, NULL, HCI_CMD_TIMEOUT); 5046 if (err) 5047 return err; 5048 } 5049 5050 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5051 cancel_delayed_work(&hdev->le_scan_disable); 5052 cancel_delayed_work(&hdev->le_scan_restart); 5053 5054 err = hci_scan_disable_sync(hdev); 5055 if (err) 5056 return err; 5057 } 5058 5059 } else { 5060 err = hci_scan_disable_sync(hdev); 5061 if (err) 5062 return err; 5063 } 5064 5065 /* Resume advertising if it was paused */ 5066 if (use_ll_privacy(hdev)) 5067 hci_resume_advertising_sync(hdev); 5068 5069 /* No further actions needed for LE-only discovery */ 5070 if (d->type == DISCOV_TYPE_LE) 5071 return 0; 5072 5073 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5074 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5075 NAME_PENDING); 5076 if (!e) 5077 return 0; 5078 5079 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5080 } 5081 5082 return 0; 5083 } 5084 5085 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5086 u8 reason) 5087 { 5088 struct hci_cp_disconn_phy_link cp; 5089 5090 memset(&cp, 0, sizeof(cp)); 5091 cp.phy_handle = HCI_PHY_HANDLE(handle); 5092 cp.reason = reason; 5093 5094 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5095 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5096 } 5097 5098 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5099 u8 reason) 5100 { 5101 struct hci_cp_disconnect cp; 5102 5103 if (conn->type == AMP_LINK) 5104 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5105 5106 memset(&cp, 0, sizeof(cp)); 5107 cp.handle = cpu_to_le16(conn->handle); 5108 cp.reason = reason; 5109 5110 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 5111 * suspending. 5112 */ 5113 if (!hdev->suspended) 5114 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5115 sizeof(cp), &cp, 5116 HCI_EV_DISCONN_COMPLETE, 5117 HCI_CMD_TIMEOUT, NULL); 5118 5119 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5120 HCI_CMD_TIMEOUT); 5121 } 5122 5123 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5124 struct hci_conn *conn) 5125 { 5126 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5127 return 0; 5128 5129 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5130 6, &conn->dst, HCI_CMD_TIMEOUT); 5131 } 5132 5133 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 5134 { 5135 if (conn->type == LE_LINK) 5136 return hci_le_connect_cancel_sync(hdev, conn); 5137 5138 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5139 return 0; 5140 5141 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5142 6, &conn->dst, HCI_CMD_TIMEOUT); 5143 } 5144 5145 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5146 u8 reason) 5147 { 5148 struct hci_cp_reject_sync_conn_req cp; 5149 5150 memset(&cp, 0, sizeof(cp)); 5151 bacpy(&cp.bdaddr, &conn->dst); 5152 cp.reason = reason; 5153 5154 /* SCO rejection has its own limited set of 5155 * allowed error values (0x0D-0x0F). 5156 */ 5157 if (reason < 0x0d || reason > 0x0f) 5158 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5159 5160 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5161 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5162 } 5163 5164 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5165 u8 reason) 5166 { 5167 struct hci_cp_reject_conn_req cp; 5168 5169 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5170 return hci_reject_sco_sync(hdev, conn, reason); 5171 5172 memset(&cp, 0, sizeof(cp)); 5173 bacpy(&cp.bdaddr, &conn->dst); 5174 cp.reason = reason; 5175 5176 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5177 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5178 } 5179 5180 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5181 { 5182 int err; 5183 5184 switch (conn->state) { 5185 case BT_CONNECTED: 5186 case BT_CONFIG: 5187 return hci_disconnect_sync(hdev, conn, reason); 5188 case BT_CONNECT: 5189 err = hci_connect_cancel_sync(hdev, conn); 5190 /* Cleanup hci_conn object if it cannot be cancelled as it 5191 * likelly means the controller and host stack are out of sync. 5192 */ 5193 if (err) { 5194 hci_dev_lock(hdev); 5195 hci_conn_failed(conn, err); 5196 hci_dev_unlock(hdev); 5197 } 5198 return err; 5199 case BT_CONNECT2: 5200 return hci_reject_conn_sync(hdev, conn, reason); 5201 default: 5202 conn->state = BT_CLOSED; 5203 break; 5204 } 5205 5206 return 0; 5207 } 5208 5209 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5210 { 5211 struct hci_conn *conn, *tmp; 5212 int err; 5213 5214 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 5215 err = hci_abort_conn_sync(hdev, conn, reason); 5216 if (err) 5217 return err; 5218 } 5219 5220 return 0; 5221 } 5222 5223 /* This function perform power off HCI command sequence as follows: 5224 * 5225 * Clear Advertising 5226 * Stop Discovery 5227 * Disconnect all connections 5228 * hci_dev_close_sync 5229 */ 5230 static int hci_power_off_sync(struct hci_dev *hdev) 5231 { 5232 int err; 5233 5234 /* If controller is already down there is nothing to do */ 5235 if (!test_bit(HCI_UP, &hdev->flags)) 5236 return 0; 5237 5238 if (test_bit(HCI_ISCAN, &hdev->flags) || 5239 test_bit(HCI_PSCAN, &hdev->flags)) { 5240 err = hci_write_scan_enable_sync(hdev, 0x00); 5241 if (err) 5242 return err; 5243 } 5244 5245 err = hci_clear_adv_sync(hdev, NULL, false); 5246 if (err) 5247 return err; 5248 5249 err = hci_stop_discovery_sync(hdev); 5250 if (err) 5251 return err; 5252 5253 /* Terminated due to Power Off */ 5254 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5255 if (err) 5256 return err; 5257 5258 return hci_dev_close_sync(hdev); 5259 } 5260 5261 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5262 { 5263 if (val) 5264 return hci_power_on_sync(hdev); 5265 5266 return hci_power_off_sync(hdev); 5267 } 5268 5269 static int hci_write_iac_sync(struct hci_dev *hdev) 5270 { 5271 struct hci_cp_write_current_iac_lap cp; 5272 5273 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5274 return 0; 5275 5276 memset(&cp, 0, sizeof(cp)); 5277 5278 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5279 /* Limited discoverable mode */ 5280 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5281 cp.iac_lap[0] = 0x00; /* LIAC */ 5282 cp.iac_lap[1] = 0x8b; 5283 cp.iac_lap[2] = 0x9e; 5284 cp.iac_lap[3] = 0x33; /* GIAC */ 5285 cp.iac_lap[4] = 0x8b; 5286 cp.iac_lap[5] = 0x9e; 5287 } else { 5288 /* General discoverable mode */ 5289 cp.num_iac = 1; 5290 cp.iac_lap[0] = 0x33; /* GIAC */ 5291 cp.iac_lap[1] = 0x8b; 5292 cp.iac_lap[2] = 0x9e; 5293 } 5294 5295 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5296 (cp.num_iac * 3) + 1, &cp, 5297 HCI_CMD_TIMEOUT); 5298 } 5299 5300 int hci_update_discoverable_sync(struct hci_dev *hdev) 5301 { 5302 int err = 0; 5303 5304 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5305 err = hci_write_iac_sync(hdev); 5306 if (err) 5307 return err; 5308 5309 err = hci_update_scan_sync(hdev); 5310 if (err) 5311 return err; 5312 5313 err = hci_update_class_sync(hdev); 5314 if (err) 5315 return err; 5316 } 5317 5318 /* Advertising instances don't use the global discoverable setting, so 5319 * only update AD if advertising was enabled using Set Advertising. 5320 */ 5321 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5322 err = hci_update_adv_data_sync(hdev, 0x00); 5323 if (err) 5324 return err; 5325 5326 /* Discoverable mode affects the local advertising 5327 * address in limited privacy mode. 5328 */ 5329 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5330 if (ext_adv_capable(hdev)) 5331 err = hci_start_ext_adv_sync(hdev, 0x00); 5332 else 5333 err = hci_enable_advertising_sync(hdev); 5334 } 5335 } 5336 5337 return err; 5338 } 5339 5340 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5341 { 5342 return hci_update_discoverable_sync(hdev); 5343 } 5344 5345 int hci_update_discoverable(struct hci_dev *hdev) 5346 { 5347 /* Only queue if it would have any effect */ 5348 if (hdev_is_powered(hdev) && 5349 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5350 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5351 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5352 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5353 NULL); 5354 5355 return 0; 5356 } 5357 5358 int hci_update_connectable_sync(struct hci_dev *hdev) 5359 { 5360 int err; 5361 5362 err = hci_update_scan_sync(hdev); 5363 if (err) 5364 return err; 5365 5366 /* If BR/EDR is not enabled and we disable advertising as a 5367 * by-product of disabling connectable, we need to update the 5368 * advertising flags. 5369 */ 5370 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5371 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5372 5373 /* Update the advertising parameters if necessary */ 5374 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5375 !list_empty(&hdev->adv_instances)) { 5376 if (ext_adv_capable(hdev)) 5377 err = hci_start_ext_adv_sync(hdev, 5378 hdev->cur_adv_instance); 5379 else 5380 err = hci_enable_advertising_sync(hdev); 5381 5382 if (err) 5383 return err; 5384 } 5385 5386 return hci_update_passive_scan_sync(hdev); 5387 } 5388 5389 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5390 { 5391 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5392 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5393 struct hci_cp_inquiry cp; 5394 5395 bt_dev_dbg(hdev, ""); 5396 5397 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5398 return 0; 5399 5400 hci_dev_lock(hdev); 5401 hci_inquiry_cache_flush(hdev); 5402 hci_dev_unlock(hdev); 5403 5404 memset(&cp, 0, sizeof(cp)); 5405 5406 if (hdev->discovery.limited) 5407 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5408 else 5409 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5410 5411 cp.length = length; 5412 5413 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5414 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5415 } 5416 5417 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5418 { 5419 u8 own_addr_type; 5420 /* Accept list is not used for discovery */ 5421 u8 filter_policy = 0x00; 5422 /* Default is to enable duplicates filter */ 5423 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5424 int err; 5425 5426 bt_dev_dbg(hdev, ""); 5427 5428 /* If controller is scanning, it means the passive scanning is 5429 * running. Thus, we should temporarily stop it in order to set the 5430 * discovery scanning parameters. 5431 */ 5432 err = hci_scan_disable_sync(hdev); 5433 if (err) { 5434 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5435 return err; 5436 } 5437 5438 cancel_interleave_scan(hdev); 5439 5440 /* Pause address resolution for active scan and stop advertising if 5441 * privacy is enabled. 5442 */ 5443 err = hci_pause_addr_resolution(hdev); 5444 if (err) 5445 goto failed; 5446 5447 /* All active scans will be done with either a resolvable private 5448 * address (when privacy feature has been enabled) or non-resolvable 5449 * private address. 5450 */ 5451 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5452 &own_addr_type); 5453 if (err < 0) 5454 own_addr_type = ADDR_LE_DEV_PUBLIC; 5455 5456 if (hci_is_adv_monitoring(hdev)) { 5457 /* Duplicate filter should be disabled when some advertisement 5458 * monitor is activated, otherwise AdvMon can only receive one 5459 * advertisement for one peer(*) during active scanning, and 5460 * might report loss to these peers. 5461 * 5462 * Note that different controllers have different meanings of 5463 * |duplicate|. Some of them consider packets with the same 5464 * address as duplicate, and others consider packets with the 5465 * same address and the same RSSI as duplicate. Although in the 5466 * latter case we don't need to disable duplicate filter, but 5467 * it is common to have active scanning for a short period of 5468 * time, the power impact should be neglectable. 5469 */ 5470 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5471 } 5472 5473 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5474 hdev->le_scan_window_discovery, 5475 own_addr_type, filter_policy, filter_dup); 5476 if (!err) 5477 return err; 5478 5479 failed: 5480 /* Resume advertising if it was paused */ 5481 if (use_ll_privacy(hdev)) 5482 hci_resume_advertising_sync(hdev); 5483 5484 /* Resume passive scanning */ 5485 hci_update_passive_scan_sync(hdev); 5486 return err; 5487 } 5488 5489 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5490 { 5491 int err; 5492 5493 bt_dev_dbg(hdev, ""); 5494 5495 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5496 if (err) 5497 return err; 5498 5499 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5500 } 5501 5502 int hci_start_discovery_sync(struct hci_dev *hdev) 5503 { 5504 unsigned long timeout; 5505 int err; 5506 5507 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5508 5509 switch (hdev->discovery.type) { 5510 case DISCOV_TYPE_BREDR: 5511 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5512 case DISCOV_TYPE_INTERLEAVED: 5513 /* When running simultaneous discovery, the LE scanning time 5514 * should occupy the whole discovery time sine BR/EDR inquiry 5515 * and LE scanning are scheduled by the controller. 5516 * 5517 * For interleaving discovery in comparison, BR/EDR inquiry 5518 * and LE scanning are done sequentially with separate 5519 * timeouts. 5520 */ 5521 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5522 &hdev->quirks)) { 5523 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5524 /* During simultaneous discovery, we double LE scan 5525 * interval. We must leave some time for the controller 5526 * to do BR/EDR inquiry. 5527 */ 5528 err = hci_start_interleaved_discovery_sync(hdev); 5529 break; 5530 } 5531 5532 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5533 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5534 break; 5535 case DISCOV_TYPE_LE: 5536 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5537 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5538 break; 5539 default: 5540 return -EINVAL; 5541 } 5542 5543 if (err) 5544 return err; 5545 5546 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5547 5548 /* When service discovery is used and the controller has a 5549 * strict duplicate filter, it is important to remember the 5550 * start and duration of the scan. This is required for 5551 * restarting scanning during the discovery phase. 5552 */ 5553 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5554 hdev->discovery.result_filtering) { 5555 hdev->discovery.scan_start = jiffies; 5556 hdev->discovery.scan_duration = timeout; 5557 } 5558 5559 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5560 timeout); 5561 return 0; 5562 } 5563 5564 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5565 { 5566 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5567 case HCI_ADV_MONITOR_EXT_MSFT: 5568 msft_suspend_sync(hdev); 5569 break; 5570 default: 5571 return; 5572 } 5573 } 5574 5575 /* This function disables discovery and mark it as paused */ 5576 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5577 { 5578 int old_state = hdev->discovery.state; 5579 int err; 5580 5581 /* If discovery already stopped/stopping/paused there nothing to do */ 5582 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5583 hdev->discovery_paused) 5584 return 0; 5585 5586 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5587 err = hci_stop_discovery_sync(hdev); 5588 if (err) 5589 return err; 5590 5591 hdev->discovery_paused = true; 5592 hdev->discovery_old_state = old_state; 5593 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5594 5595 return 0; 5596 } 5597 5598 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5599 { 5600 struct bdaddr_list_with_flags *b; 5601 u8 scan = SCAN_DISABLED; 5602 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5603 int err; 5604 5605 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5606 return 0; 5607 5608 /* Some fake CSR controllers lock up after setting this type of 5609 * filter, so avoid sending the request altogether. 5610 */ 5611 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5612 return 0; 5613 5614 /* Always clear event filter when starting */ 5615 hci_clear_event_filter_sync(hdev); 5616 5617 list_for_each_entry(b, &hdev->accept_list, list) { 5618 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5619 continue; 5620 5621 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5622 5623 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5624 HCI_CONN_SETUP_ALLOW_BDADDR, 5625 &b->bdaddr, 5626 HCI_CONN_SETUP_AUTO_ON); 5627 if (err) 5628 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5629 &b->bdaddr); 5630 else 5631 scan = SCAN_PAGE; 5632 } 5633 5634 if (scan && !scanning) 5635 hci_write_scan_enable_sync(hdev, scan); 5636 else if (!scan && scanning) 5637 hci_write_scan_enable_sync(hdev, scan); 5638 5639 return 0; 5640 } 5641 5642 /* This function disables scan (BR and LE) and mark it as paused */ 5643 static int hci_pause_scan_sync(struct hci_dev *hdev) 5644 { 5645 if (hdev->scanning_paused) 5646 return 0; 5647 5648 /* Disable page scan if enabled */ 5649 if (test_bit(HCI_PSCAN, &hdev->flags)) 5650 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5651 5652 hci_scan_disable_sync(hdev); 5653 5654 hdev->scanning_paused = true; 5655 5656 return 0; 5657 } 5658 5659 /* This function performs the HCI suspend procedures in the follow order: 5660 * 5661 * Pause discovery (active scanning/inquiry) 5662 * Pause Directed Advertising/Advertising 5663 * Pause Scanning (passive scanning in case discovery was not active) 5664 * Disconnect all connections 5665 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5666 * otherwise: 5667 * Update event mask (only set events that are allowed to wake up the host) 5668 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5669 * Update passive scanning (lower duty cycle) 5670 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5671 */ 5672 int hci_suspend_sync(struct hci_dev *hdev) 5673 { 5674 int err; 5675 5676 /* If marked as suspended there nothing to do */ 5677 if (hdev->suspended) 5678 return 0; 5679 5680 /* Mark device as suspended */ 5681 hdev->suspended = true; 5682 5683 /* Pause discovery if not already stopped */ 5684 hci_pause_discovery_sync(hdev); 5685 5686 /* Pause other advertisements */ 5687 hci_pause_advertising_sync(hdev); 5688 5689 /* Suspend monitor filters */ 5690 hci_suspend_monitor_sync(hdev); 5691 5692 /* Prevent disconnects from causing scanning to be re-enabled */ 5693 hci_pause_scan_sync(hdev); 5694 5695 if (hci_conn_count(hdev)) { 5696 /* Soft disconnect everything (power off) */ 5697 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5698 if (err) { 5699 /* Set state to BT_RUNNING so resume doesn't notify */ 5700 hdev->suspend_state = BT_RUNNING; 5701 hci_resume_sync(hdev); 5702 return err; 5703 } 5704 5705 /* Update event mask so only the allowed event can wakeup the 5706 * host. 5707 */ 5708 hci_set_event_mask_sync(hdev); 5709 } 5710 5711 /* Only configure accept list if disconnect succeeded and wake 5712 * isn't being prevented. 5713 */ 5714 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5715 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5716 return 0; 5717 } 5718 5719 /* Unpause to take care of updating scanning params */ 5720 hdev->scanning_paused = false; 5721 5722 /* Enable event filter for paired devices */ 5723 hci_update_event_filter_sync(hdev); 5724 5725 /* Update LE passive scan if enabled */ 5726 hci_update_passive_scan_sync(hdev); 5727 5728 /* Pause scan changes again. */ 5729 hdev->scanning_paused = true; 5730 5731 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5732 5733 return 0; 5734 } 5735 5736 /* This function resumes discovery */ 5737 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5738 { 5739 int err; 5740 5741 /* If discovery not paused there nothing to do */ 5742 if (!hdev->discovery_paused) 5743 return 0; 5744 5745 hdev->discovery_paused = false; 5746 5747 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5748 5749 err = hci_start_discovery_sync(hdev); 5750 5751 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5752 DISCOVERY_FINDING); 5753 5754 return err; 5755 } 5756 5757 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5758 { 5759 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5760 case HCI_ADV_MONITOR_EXT_MSFT: 5761 msft_resume_sync(hdev); 5762 break; 5763 default: 5764 return; 5765 } 5766 } 5767 5768 /* This function resume scan and reset paused flag */ 5769 static int hci_resume_scan_sync(struct hci_dev *hdev) 5770 { 5771 if (!hdev->scanning_paused) 5772 return 0; 5773 5774 hdev->scanning_paused = false; 5775 5776 hci_update_scan_sync(hdev); 5777 5778 /* Reset passive scanning to normal */ 5779 hci_update_passive_scan_sync(hdev); 5780 5781 return 0; 5782 } 5783 5784 /* This function performs the HCI suspend procedures in the follow order: 5785 * 5786 * Restore event mask 5787 * Clear event filter 5788 * Update passive scanning (normal duty cycle) 5789 * Resume Directed Advertising/Advertising 5790 * Resume discovery (active scanning/inquiry) 5791 */ 5792 int hci_resume_sync(struct hci_dev *hdev) 5793 { 5794 /* If not marked as suspended there nothing to do */ 5795 if (!hdev->suspended) 5796 return 0; 5797 5798 hdev->suspended = false; 5799 5800 /* Restore event mask */ 5801 hci_set_event_mask_sync(hdev); 5802 5803 /* Clear any event filters and restore scan state */ 5804 hci_clear_event_filter_sync(hdev); 5805 5806 /* Resume scanning */ 5807 hci_resume_scan_sync(hdev); 5808 5809 /* Resume monitor filters */ 5810 hci_resume_monitor_sync(hdev); 5811 5812 /* Resume other advertisements */ 5813 hci_resume_advertising_sync(hdev); 5814 5815 /* Resume discovery */ 5816 hci_resume_discovery_sync(hdev); 5817 5818 return 0; 5819 } 5820 5821 static bool conn_use_rpa(struct hci_conn *conn) 5822 { 5823 struct hci_dev *hdev = conn->hdev; 5824 5825 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5826 } 5827 5828 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5829 struct hci_conn *conn) 5830 { 5831 struct hci_cp_le_set_ext_adv_params cp; 5832 int err; 5833 bdaddr_t random_addr; 5834 u8 own_addr_type; 5835 5836 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5837 &own_addr_type); 5838 if (err) 5839 return err; 5840 5841 /* Set require_privacy to false so that the remote device has a 5842 * chance of identifying us. 5843 */ 5844 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5845 &own_addr_type, &random_addr); 5846 if (err) 5847 return err; 5848 5849 memset(&cp, 0, sizeof(cp)); 5850 5851 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5852 cp.own_addr_type = own_addr_type; 5853 cp.channel_map = hdev->le_adv_channel_map; 5854 cp.tx_power = HCI_TX_POWER_INVALID; 5855 cp.primary_phy = HCI_ADV_PHY_1M; 5856 cp.secondary_phy = HCI_ADV_PHY_1M; 5857 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5858 cp.own_addr_type = own_addr_type; 5859 cp.peer_addr_type = conn->dst_type; 5860 bacpy(&cp.peer_addr, &conn->dst); 5861 5862 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5863 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5864 * does not supports advertising data when the advertising set already 5865 * contains some, the controller shall return erroc code 'Invalid 5866 * HCI Command Parameters(0x12). 5867 * So it is required to remove adv set for handle 0x00. since we use 5868 * instance 0 for directed adv. 5869 */ 5870 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5871 if (err) 5872 return err; 5873 5874 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5875 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5876 if (err) 5877 return err; 5878 5879 /* Check if random address need to be updated */ 5880 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5881 bacmp(&random_addr, BDADDR_ANY) && 5882 bacmp(&random_addr, &hdev->random_addr)) { 5883 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5884 &random_addr); 5885 if (err) 5886 return err; 5887 } 5888 5889 return hci_enable_ext_advertising_sync(hdev, 0x00); 5890 } 5891 5892 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5893 struct hci_conn *conn) 5894 { 5895 struct hci_cp_le_set_adv_param cp; 5896 u8 status; 5897 u8 own_addr_type; 5898 u8 enable; 5899 5900 if (ext_adv_capable(hdev)) 5901 return hci_le_ext_directed_advertising_sync(hdev, conn); 5902 5903 /* Clear the HCI_LE_ADV bit temporarily so that the 5904 * hci_update_random_address knows that it's safe to go ahead 5905 * and write a new random address. The flag will be set back on 5906 * as soon as the SET_ADV_ENABLE HCI command completes. 5907 */ 5908 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5909 5910 /* Set require_privacy to false so that the remote device has a 5911 * chance of identifying us. 5912 */ 5913 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5914 &own_addr_type); 5915 if (status) 5916 return status; 5917 5918 memset(&cp, 0, sizeof(cp)); 5919 5920 /* Some controllers might reject command if intervals are not 5921 * within range for undirected advertising. 5922 * BCM20702A0 is known to be affected by this. 5923 */ 5924 cp.min_interval = cpu_to_le16(0x0020); 5925 cp.max_interval = cpu_to_le16(0x0020); 5926 5927 cp.type = LE_ADV_DIRECT_IND; 5928 cp.own_address_type = own_addr_type; 5929 cp.direct_addr_type = conn->dst_type; 5930 bacpy(&cp.direct_addr, &conn->dst); 5931 cp.channel_map = hdev->le_adv_channel_map; 5932 5933 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5934 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5935 if (status) 5936 return status; 5937 5938 enable = 0x01; 5939 5940 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5941 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5942 } 5943 5944 static void set_ext_conn_params(struct hci_conn *conn, 5945 struct hci_cp_le_ext_conn_param *p) 5946 { 5947 struct hci_dev *hdev = conn->hdev; 5948 5949 memset(p, 0, sizeof(*p)); 5950 5951 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5952 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5953 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5954 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5955 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5956 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5957 p->min_ce_len = cpu_to_le16(0x0000); 5958 p->max_ce_len = cpu_to_le16(0x0000); 5959 } 5960 5961 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5962 struct hci_conn *conn, u8 own_addr_type) 5963 { 5964 struct hci_cp_le_ext_create_conn *cp; 5965 struct hci_cp_le_ext_conn_param *p; 5966 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5967 u32 plen; 5968 5969 cp = (void *)data; 5970 p = (void *)cp->data; 5971 5972 memset(cp, 0, sizeof(*cp)); 5973 5974 bacpy(&cp->peer_addr, &conn->dst); 5975 cp->peer_addr_type = conn->dst_type; 5976 cp->own_addr_type = own_addr_type; 5977 5978 plen = sizeof(*cp); 5979 5980 if (scan_1m(hdev)) { 5981 cp->phys |= LE_SCAN_PHY_1M; 5982 set_ext_conn_params(conn, p); 5983 5984 p++; 5985 plen += sizeof(*p); 5986 } 5987 5988 if (scan_2m(hdev)) { 5989 cp->phys |= LE_SCAN_PHY_2M; 5990 set_ext_conn_params(conn, p); 5991 5992 p++; 5993 plen += sizeof(*p); 5994 } 5995 5996 if (scan_coded(hdev)) { 5997 cp->phys |= LE_SCAN_PHY_CODED; 5998 set_ext_conn_params(conn, p); 5999 6000 plen += sizeof(*p); 6001 } 6002 6003 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6004 plen, data, 6005 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6006 conn->conn_timeout, NULL); 6007 } 6008 6009 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6010 { 6011 struct hci_cp_le_create_conn cp; 6012 struct hci_conn_params *params; 6013 u8 own_addr_type; 6014 int err; 6015 6016 /* If requested to connect as peripheral use directed advertising */ 6017 if (conn->role == HCI_ROLE_SLAVE) { 6018 /* If we're active scanning and simultaneous roles is not 6019 * enabled simply reject the attempt. 6020 */ 6021 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6022 hdev->le_scan_type == LE_SCAN_ACTIVE && 6023 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6024 hci_conn_del(conn); 6025 return -EBUSY; 6026 } 6027 6028 /* Pause advertising while doing directed advertising. */ 6029 hci_pause_advertising_sync(hdev); 6030 6031 err = hci_le_directed_advertising_sync(hdev, conn); 6032 goto done; 6033 } 6034 6035 /* Disable advertising if simultaneous roles is not in use. */ 6036 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6037 hci_pause_advertising_sync(hdev); 6038 6039 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6040 if (params) { 6041 conn->le_conn_min_interval = params->conn_min_interval; 6042 conn->le_conn_max_interval = params->conn_max_interval; 6043 conn->le_conn_latency = params->conn_latency; 6044 conn->le_supv_timeout = params->supervision_timeout; 6045 } else { 6046 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6047 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6048 conn->le_conn_latency = hdev->le_conn_latency; 6049 conn->le_supv_timeout = hdev->le_supv_timeout; 6050 } 6051 6052 /* If controller is scanning, we stop it since some controllers are 6053 * not able to scan and connect at the same time. Also set the 6054 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6055 * handler for scan disabling knows to set the correct discovery 6056 * state. 6057 */ 6058 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6059 hci_scan_disable_sync(hdev); 6060 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6061 } 6062 6063 /* Update random address, but set require_privacy to false so 6064 * that we never connect with an non-resolvable address. 6065 */ 6066 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6067 &own_addr_type); 6068 if (err) 6069 goto done; 6070 6071 if (use_ext_conn(hdev)) { 6072 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6073 goto done; 6074 } 6075 6076 memset(&cp, 0, sizeof(cp)); 6077 6078 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6079 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6080 6081 bacpy(&cp.peer_addr, &conn->dst); 6082 cp.peer_addr_type = conn->dst_type; 6083 cp.own_address_type = own_addr_type; 6084 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6085 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6086 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6087 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6088 cp.min_ce_len = cpu_to_le16(0x0000); 6089 cp.max_ce_len = cpu_to_le16(0x0000); 6090 6091 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6092 * 6093 * If this event is unmasked and the HCI_LE_Connection_Complete event 6094 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6095 * sent when a new connection has been created. 6096 */ 6097 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6098 sizeof(cp), &cp, 6099 use_enhanced_conn_complete(hdev) ? 6100 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6101 HCI_EV_LE_CONN_COMPLETE, 6102 conn->conn_timeout, NULL); 6103 6104 done: 6105 /* Re-enable advertising after the connection attempt is finished. */ 6106 hci_resume_advertising_sync(hdev); 6107 return err; 6108 } 6109 6110 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6111 { 6112 struct hci_cp_le_remove_cig cp; 6113 6114 memset(&cp, 0, sizeof(cp)); 6115 cp.cig_id = handle; 6116 6117 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6118 &cp, HCI_CMD_TIMEOUT); 6119 } 6120 6121 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6122 { 6123 struct hci_cp_le_big_term_sync cp; 6124 6125 memset(&cp, 0, sizeof(cp)); 6126 cp.handle = handle; 6127 6128 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6129 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6130 } 6131 6132 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6133 { 6134 struct hci_cp_le_pa_term_sync cp; 6135 6136 memset(&cp, 0, sizeof(cp)); 6137 cp.handle = cpu_to_le16(handle); 6138 6139 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6140 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6141 } 6142 6143 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6144 bool use_rpa, struct adv_info *adv_instance, 6145 u8 *own_addr_type, bdaddr_t *rand_addr) 6146 { 6147 int err; 6148 6149 bacpy(rand_addr, BDADDR_ANY); 6150 6151 /* If privacy is enabled use a resolvable private address. If 6152 * current RPA has expired then generate a new one. 6153 */ 6154 if (use_rpa) { 6155 /* If Controller supports LL Privacy use own address type is 6156 * 0x03 6157 */ 6158 if (use_ll_privacy(hdev)) 6159 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6160 else 6161 *own_addr_type = ADDR_LE_DEV_RANDOM; 6162 6163 if (adv_instance) { 6164 if (adv_rpa_valid(adv_instance)) 6165 return 0; 6166 } else { 6167 if (rpa_valid(hdev)) 6168 return 0; 6169 } 6170 6171 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6172 if (err < 0) { 6173 bt_dev_err(hdev, "failed to generate new RPA"); 6174 return err; 6175 } 6176 6177 bacpy(rand_addr, &hdev->rpa); 6178 6179 return 0; 6180 } 6181 6182 /* In case of required privacy without resolvable private address, 6183 * use an non-resolvable private address. This is useful for 6184 * non-connectable advertising. 6185 */ 6186 if (require_privacy) { 6187 bdaddr_t nrpa; 6188 6189 while (true) { 6190 /* The non-resolvable private address is generated 6191 * from random six bytes with the two most significant 6192 * bits cleared. 6193 */ 6194 get_random_bytes(&nrpa, 6); 6195 nrpa.b[5] &= 0x3f; 6196 6197 /* The non-resolvable private address shall not be 6198 * equal to the public address. 6199 */ 6200 if (bacmp(&hdev->bdaddr, &nrpa)) 6201 break; 6202 } 6203 6204 *own_addr_type = ADDR_LE_DEV_RANDOM; 6205 bacpy(rand_addr, &nrpa); 6206 6207 return 0; 6208 } 6209 6210 /* No privacy so use a public address. */ 6211 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6212 6213 return 0; 6214 } 6215 6216 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6217 { 6218 u8 instance = PTR_ERR(data); 6219 6220 return hci_update_adv_data_sync(hdev, instance); 6221 } 6222 6223 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6224 { 6225 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6226 ERR_PTR(instance), NULL); 6227 } 6228