1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 hci_skb_event(skb) = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 struct hci_cmd_sync_work_entry *entry; 280 hci_cmd_sync_work_func_t func; 281 hci_cmd_sync_work_destroy_t destroy; 282 void *data; 283 284 bt_dev_dbg(hdev, ""); 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, list); 289 if (entry) { 290 list_del(&entry->list); 291 func = entry->func; 292 data = entry->data; 293 destroy = entry->destroy; 294 kfree(entry); 295 } else { 296 func = NULL; 297 data = NULL; 298 destroy = NULL; 299 } 300 mutex_unlock(&hdev->cmd_sync_work_lock); 301 302 if (func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 307 err = func(hdev, data); 308 309 if (destroy) 310 destroy(hdev, data, err); 311 312 hci_req_sync_unlock(hdev); 313 } 314 } 315 316 static void hci_cmd_sync_cancel_work(struct work_struct *work) 317 { 318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 319 320 cancel_delayed_work_sync(&hdev->cmd_timer); 321 cancel_delayed_work_sync(&hdev->ncmd_timer); 322 atomic_set(&hdev->cmd_cnt, 1); 323 324 wake_up_interruptible(&hdev->req_wait_q); 325 } 326 327 void hci_cmd_sync_init(struct hci_dev *hdev) 328 { 329 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 330 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 331 mutex_init(&hdev->cmd_sync_work_lock); 332 333 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 334 } 335 336 void hci_cmd_sync_clear(struct hci_dev *hdev) 337 { 338 struct hci_cmd_sync_work_entry *entry, *tmp; 339 340 cancel_work_sync(&hdev->cmd_sync_work); 341 342 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 343 if (entry->destroy) 344 entry->destroy(hdev, entry->data, -ECANCELED); 345 346 list_del(&entry->list); 347 kfree(entry); 348 } 349 } 350 351 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 352 { 353 bt_dev_dbg(hdev, "err 0x%2.2x", err); 354 355 if (hdev->req_status == HCI_REQ_PEND) { 356 hdev->req_result = err; 357 hdev->req_status = HCI_REQ_CANCELED; 358 359 cancel_delayed_work_sync(&hdev->cmd_timer); 360 cancel_delayed_work_sync(&hdev->ncmd_timer); 361 atomic_set(&hdev->cmd_cnt, 1); 362 363 wake_up_interruptible(&hdev->req_wait_q); 364 } 365 } 366 367 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 368 { 369 bt_dev_dbg(hdev, "err 0x%2.2x", err); 370 371 if (hdev->req_status == HCI_REQ_PEND) { 372 hdev->req_result = err; 373 hdev->req_status = HCI_REQ_CANCELED; 374 375 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 376 } 377 } 378 EXPORT_SYMBOL(hci_cmd_sync_cancel); 379 380 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 381 void *data, hci_cmd_sync_work_destroy_t destroy) 382 { 383 struct hci_cmd_sync_work_entry *entry; 384 385 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 386 if (!entry) 387 return -ENOMEM; 388 389 entry->func = func; 390 entry->data = data; 391 entry->destroy = destroy; 392 393 mutex_lock(&hdev->cmd_sync_work_lock); 394 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 395 mutex_unlock(&hdev->cmd_sync_work_lock); 396 397 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 398 399 return 0; 400 } 401 EXPORT_SYMBOL(hci_cmd_sync_queue); 402 403 int hci_update_eir_sync(struct hci_dev *hdev) 404 { 405 struct hci_cp_write_eir cp; 406 407 bt_dev_dbg(hdev, ""); 408 409 if (!hdev_is_powered(hdev)) 410 return 0; 411 412 if (!lmp_ext_inq_capable(hdev)) 413 return 0; 414 415 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 416 return 0; 417 418 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 419 return 0; 420 421 memset(&cp, 0, sizeof(cp)); 422 423 eir_create(hdev, cp.data); 424 425 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 426 return 0; 427 428 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 429 430 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 431 HCI_CMD_TIMEOUT); 432 } 433 434 static u8 get_service_classes(struct hci_dev *hdev) 435 { 436 struct bt_uuid *uuid; 437 u8 val = 0; 438 439 list_for_each_entry(uuid, &hdev->uuids, list) 440 val |= uuid->svc_hint; 441 442 return val; 443 } 444 445 int hci_update_class_sync(struct hci_dev *hdev) 446 { 447 u8 cod[3]; 448 449 bt_dev_dbg(hdev, ""); 450 451 if (!hdev_is_powered(hdev)) 452 return 0; 453 454 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 455 return 0; 456 457 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 458 return 0; 459 460 cod[0] = hdev->minor_class; 461 cod[1] = hdev->major_class; 462 cod[2] = get_service_classes(hdev); 463 464 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 465 cod[1] |= 0x20; 466 467 if (memcmp(cod, hdev->dev_class, 3) == 0) 468 return 0; 469 470 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 471 sizeof(cod), cod, HCI_CMD_TIMEOUT); 472 } 473 474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 475 { 476 /* If there is no connection we are OK to advertise. */ 477 if (hci_conn_num(hdev, LE_LINK) == 0) 478 return true; 479 480 /* Check le_states if there is any connection in peripheral role. */ 481 if (hdev->conn_hash.le_num_peripheral > 0) { 482 /* Peripheral connection state and non connectable mode 483 * bit 20. 484 */ 485 if (!connectable && !(hdev->le_states[2] & 0x10)) 486 return false; 487 488 /* Peripheral connection state and connectable mode bit 38 489 * and scannable bit 21. 490 */ 491 if (connectable && (!(hdev->le_states[4] & 0x40) || 492 !(hdev->le_states[2] & 0x20))) 493 return false; 494 } 495 496 /* Check le_states if there is any connection in central role. */ 497 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 498 /* Central connection state and non connectable mode bit 18. */ 499 if (!connectable && !(hdev->le_states[2] & 0x02)) 500 return false; 501 502 /* Central connection state and connectable mode bit 35 and 503 * scannable 19. 504 */ 505 if (connectable && (!(hdev->le_states[4] & 0x08) || 506 !(hdev->le_states[2] & 0x08))) 507 return false; 508 } 509 510 return true; 511 } 512 513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 514 { 515 /* If privacy is not enabled don't use RPA */ 516 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 517 return false; 518 519 /* If basic privacy mode is enabled use RPA */ 520 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 521 return true; 522 523 /* If limited privacy mode is enabled don't use RPA if we're 524 * both discoverable and bondable. 525 */ 526 if ((flags & MGMT_ADV_FLAG_DISCOV) && 527 hci_dev_test_flag(hdev, HCI_BONDABLE)) 528 return false; 529 530 /* We're neither bondable nor discoverable in the limited 531 * privacy mode, therefore use RPA. 532 */ 533 return true; 534 } 535 536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 537 { 538 /* If we're advertising or initiating an LE connection we can't 539 * go ahead and change the random address at this time. This is 540 * because the eventual initiator address used for the 541 * subsequently created connection will be undefined (some 542 * controllers use the new address and others the one we had 543 * when the operation started). 544 * 545 * In this kind of scenario skip the update and let the random 546 * address be updated at the next cycle. 547 */ 548 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 549 hci_lookup_le_connect(hdev)) { 550 bt_dev_dbg(hdev, "Deferring random address update"); 551 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 552 return 0; 553 } 554 555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 556 6, rpa, HCI_CMD_TIMEOUT); 557 } 558 559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 560 bool rpa, u8 *own_addr_type) 561 { 562 int err; 563 564 /* If privacy is enabled use a resolvable private address. If 565 * current RPA has expired or there is something else than 566 * the current RPA in use, then generate a new one. 567 */ 568 if (rpa) { 569 /* If Controller supports LL Privacy use own address type is 570 * 0x03 571 */ 572 if (use_ll_privacy(hdev)) 573 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 574 else 575 *own_addr_type = ADDR_LE_DEV_RANDOM; 576 577 /* Check if RPA is valid */ 578 if (rpa_valid(hdev)) 579 return 0; 580 581 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 582 if (err < 0) { 583 bt_dev_err(hdev, "failed to generate new RPA"); 584 return err; 585 } 586 587 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 588 if (err) 589 return err; 590 591 return 0; 592 } 593 594 /* In case of required privacy without resolvable private address, 595 * use an non-resolvable private address. This is useful for active 596 * scanning and non-connectable advertising. 597 */ 598 if (require_privacy) { 599 bdaddr_t nrpa; 600 601 while (true) { 602 /* The non-resolvable private address is generated 603 * from random six bytes with the two most significant 604 * bits cleared. 605 */ 606 get_random_bytes(&nrpa, 6); 607 nrpa.b[5] &= 0x3f; 608 609 /* The non-resolvable private address shall not be 610 * equal to the public address. 611 */ 612 if (bacmp(&hdev->bdaddr, &nrpa)) 613 break; 614 } 615 616 *own_addr_type = ADDR_LE_DEV_RANDOM; 617 618 return hci_set_random_addr_sync(hdev, &nrpa); 619 } 620 621 /* If forcing static address is in use or there is no public 622 * address use the static address as random address (but skip 623 * the HCI command if the current random address is already the 624 * static one. 625 * 626 * In case BR/EDR has been disabled on a dual-mode controller 627 * and a static address has been configured, then use that 628 * address instead of the public BR/EDR address. 629 */ 630 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 631 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 632 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 633 bacmp(&hdev->static_addr, BDADDR_ANY))) { 634 *own_addr_type = ADDR_LE_DEV_RANDOM; 635 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 636 return hci_set_random_addr_sync(hdev, 637 &hdev->static_addr); 638 return 0; 639 } 640 641 /* Neither privacy nor static address is being used so use a 642 * public address. 643 */ 644 *own_addr_type = ADDR_LE_DEV_PUBLIC; 645 646 return 0; 647 } 648 649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 650 { 651 struct hci_cp_le_set_ext_adv_enable *cp; 652 struct hci_cp_ext_adv_set *set; 653 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 654 u8 size; 655 656 /* If request specifies an instance that doesn't exist, fail */ 657 if (instance > 0) { 658 struct adv_info *adv; 659 660 adv = hci_find_adv_instance(hdev, instance); 661 if (!adv) 662 return -EINVAL; 663 664 /* If not enabled there is nothing to do */ 665 if (!adv->enabled) 666 return 0; 667 } 668 669 memset(data, 0, sizeof(data)); 670 671 cp = (void *)data; 672 set = (void *)cp->data; 673 674 /* Instance 0x00 indicates all advertising instances will be disabled */ 675 cp->num_of_sets = !!instance; 676 cp->enable = 0x00; 677 678 set->handle = instance; 679 680 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 681 682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 683 size, data, HCI_CMD_TIMEOUT); 684 } 685 686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 687 bdaddr_t *random_addr) 688 { 689 struct hci_cp_le_set_adv_set_rand_addr cp; 690 int err; 691 692 if (!instance) { 693 /* Instance 0x00 doesn't have an adv_info, instead it uses 694 * hdev->random_addr to track its address so whenever it needs 695 * to be updated this also set the random address since 696 * hdev->random_addr is shared with scan state machine. 697 */ 698 err = hci_set_random_addr_sync(hdev, random_addr); 699 if (err) 700 return err; 701 } 702 703 memset(&cp, 0, sizeof(cp)); 704 705 cp.handle = instance; 706 bacpy(&cp.bdaddr, random_addr); 707 708 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 710 } 711 712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 713 { 714 struct hci_cp_le_set_ext_adv_params cp; 715 bool connectable; 716 u32 flags; 717 bdaddr_t random_addr; 718 u8 own_addr_type; 719 int err; 720 struct adv_info *adv; 721 bool secondary_adv; 722 723 if (instance > 0) { 724 adv = hci_find_adv_instance(hdev, instance); 725 if (!adv) 726 return -EINVAL; 727 } else { 728 adv = NULL; 729 } 730 731 /* Updating parameters of an active instance will return a 732 * Command Disallowed error, so we must first disable the 733 * instance if it is active. 734 */ 735 if (adv && !adv->pending) { 736 err = hci_disable_ext_adv_instance_sync(hdev, instance); 737 if (err) 738 return err; 739 } 740 741 flags = hci_adv_instance_flags(hdev, instance); 742 743 /* If the "connectable" instance flag was not set, then choose between 744 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 745 */ 746 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 747 mgmt_get_connectable(hdev); 748 749 if (!is_advertising_allowed(hdev, connectable)) 750 return -EPERM; 751 752 /* Set require_privacy to true only when non-connectable 753 * advertising is used. In that case it is fine to use a 754 * non-resolvable private address. 755 */ 756 err = hci_get_random_address(hdev, !connectable, 757 adv_use_rpa(hdev, flags), adv, 758 &own_addr_type, &random_addr); 759 if (err < 0) 760 return err; 761 762 memset(&cp, 0, sizeof(cp)); 763 764 if (adv) { 765 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 766 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 767 cp.tx_power = adv->tx_power; 768 } else { 769 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 770 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 771 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 772 } 773 774 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 775 776 if (connectable) { 777 if (secondary_adv) 778 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 779 else 780 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 781 } else if (hci_adv_instance_is_scannable(hdev, instance) || 782 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 783 if (secondary_adv) 784 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 785 else 786 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 787 } else { 788 if (secondary_adv) 789 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 790 else 791 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 792 } 793 794 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 795 * contains the peer’s Identity Address and the Peer_Address_Type 796 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 797 * These parameters are used to locate the corresponding local IRK in 798 * the resolving list; this IRK is used to generate their own address 799 * used in the advertisement. 800 */ 801 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 802 hci_copy_identity_address(hdev, &cp.peer_addr, 803 &cp.peer_addr_type); 804 805 cp.own_addr_type = own_addr_type; 806 cp.channel_map = hdev->le_adv_channel_map; 807 cp.handle = instance; 808 809 if (flags & MGMT_ADV_FLAG_SEC_2M) { 810 cp.primary_phy = HCI_ADV_PHY_1M; 811 cp.secondary_phy = HCI_ADV_PHY_2M; 812 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 813 cp.primary_phy = HCI_ADV_PHY_CODED; 814 cp.secondary_phy = HCI_ADV_PHY_CODED; 815 } else { 816 /* In all other cases use 1M */ 817 cp.primary_phy = HCI_ADV_PHY_1M; 818 cp.secondary_phy = HCI_ADV_PHY_1M; 819 } 820 821 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 823 if (err) 824 return err; 825 826 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 827 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 828 bacmp(&random_addr, BDADDR_ANY)) { 829 /* Check if random address need to be updated */ 830 if (adv) { 831 if (!bacmp(&random_addr, &adv->random_addr)) 832 return 0; 833 } else { 834 if (!bacmp(&random_addr, &hdev->random_addr)) 835 return 0; 836 } 837 838 return hci_set_adv_set_random_addr_sync(hdev, instance, 839 &random_addr); 840 } 841 842 return 0; 843 } 844 845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 846 { 847 struct { 848 struct hci_cp_le_set_ext_scan_rsp_data cp; 849 u8 data[HCI_MAX_EXT_AD_LENGTH]; 850 } pdu; 851 u8 len; 852 853 memset(&pdu, 0, sizeof(pdu)); 854 855 len = eir_create_scan_rsp(hdev, instance, pdu.data); 856 857 if (hdev->scan_rsp_data_len == len && 858 !memcmp(pdu.data, hdev->scan_rsp_data, len)) 859 return 0; 860 861 memcpy(hdev->scan_rsp_data, pdu.data, len); 862 hdev->scan_rsp_data_len = len; 863 864 pdu.cp.handle = instance; 865 pdu.cp.length = len; 866 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 867 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 868 869 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 870 sizeof(pdu.cp) + len, &pdu.cp, 871 HCI_CMD_TIMEOUT); 872 } 873 874 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 875 { 876 struct hci_cp_le_set_scan_rsp_data cp; 877 u8 len; 878 879 memset(&cp, 0, sizeof(cp)); 880 881 len = eir_create_scan_rsp(hdev, instance, cp.data); 882 883 if (hdev->scan_rsp_data_len == len && 884 !memcmp(cp.data, hdev->scan_rsp_data, len)) 885 return 0; 886 887 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 888 hdev->scan_rsp_data_len = len; 889 890 cp.length = len; 891 892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 893 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 894 } 895 896 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 897 { 898 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 899 return 0; 900 901 if (ext_adv_capable(hdev)) 902 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 903 904 return __hci_set_scan_rsp_data_sync(hdev, instance); 905 } 906 907 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 908 { 909 struct hci_cp_le_set_ext_adv_enable *cp; 910 struct hci_cp_ext_adv_set *set; 911 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 912 struct adv_info *adv; 913 914 if (instance > 0) { 915 adv = hci_find_adv_instance(hdev, instance); 916 if (!adv) 917 return -EINVAL; 918 /* If already enabled there is nothing to do */ 919 if (adv->enabled) 920 return 0; 921 } else { 922 adv = NULL; 923 } 924 925 cp = (void *)data; 926 set = (void *)cp->data; 927 928 memset(cp, 0, sizeof(*cp)); 929 930 cp->enable = 0x01; 931 cp->num_of_sets = 0x01; 932 933 memset(set, 0, sizeof(*set)); 934 935 set->handle = instance; 936 937 /* Set duration per instance since controller is responsible for 938 * scheduling it. 939 */ 940 if (adv && adv->timeout) { 941 u16 duration = adv->timeout * MSEC_PER_SEC; 942 943 /* Time = N * 10 ms */ 944 set->duration = cpu_to_le16(duration / 10); 945 } 946 947 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 948 sizeof(*cp) + 949 sizeof(*set) * cp->num_of_sets, 950 data, HCI_CMD_TIMEOUT); 951 } 952 953 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 954 { 955 int err; 956 957 err = hci_setup_ext_adv_instance_sync(hdev, instance); 958 if (err) 959 return err; 960 961 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 962 if (err) 963 return err; 964 965 return hci_enable_ext_advertising_sync(hdev, instance); 966 } 967 968 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 969 { 970 int err; 971 972 if (ext_adv_capable(hdev)) 973 return hci_start_ext_adv_sync(hdev, instance); 974 975 err = hci_update_adv_data_sync(hdev, instance); 976 if (err) 977 return err; 978 979 err = hci_update_scan_rsp_data_sync(hdev, instance); 980 if (err) 981 return err; 982 983 return hci_enable_advertising_sync(hdev); 984 } 985 986 int hci_enable_advertising_sync(struct hci_dev *hdev) 987 { 988 struct adv_info *adv_instance; 989 struct hci_cp_le_set_adv_param cp; 990 u8 own_addr_type, enable = 0x01; 991 bool connectable; 992 u16 adv_min_interval, adv_max_interval; 993 u32 flags; 994 u8 status; 995 996 if (ext_adv_capable(hdev)) 997 return hci_enable_ext_advertising_sync(hdev, 998 hdev->cur_adv_instance); 999 1000 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1001 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1002 1003 /* If the "connectable" instance flag was not set, then choose between 1004 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1005 */ 1006 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1007 mgmt_get_connectable(hdev); 1008 1009 if (!is_advertising_allowed(hdev, connectable)) 1010 return -EINVAL; 1011 1012 status = hci_disable_advertising_sync(hdev); 1013 if (status) 1014 return status; 1015 1016 /* Clear the HCI_LE_ADV bit temporarily so that the 1017 * hci_update_random_address knows that it's safe to go ahead 1018 * and write a new random address. The flag will be set back on 1019 * as soon as the SET_ADV_ENABLE HCI command completes. 1020 */ 1021 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1022 1023 /* Set require_privacy to true only when non-connectable 1024 * advertising is used. In that case it is fine to use a 1025 * non-resolvable private address. 1026 */ 1027 status = hci_update_random_address_sync(hdev, !connectable, 1028 adv_use_rpa(hdev, flags), 1029 &own_addr_type); 1030 if (status) 1031 return status; 1032 1033 memset(&cp, 0, sizeof(cp)); 1034 1035 if (adv_instance) { 1036 adv_min_interval = adv_instance->min_interval; 1037 adv_max_interval = adv_instance->max_interval; 1038 } else { 1039 adv_min_interval = hdev->le_adv_min_interval; 1040 adv_max_interval = hdev->le_adv_max_interval; 1041 } 1042 1043 if (connectable) { 1044 cp.type = LE_ADV_IND; 1045 } else { 1046 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1047 cp.type = LE_ADV_SCAN_IND; 1048 else 1049 cp.type = LE_ADV_NONCONN_IND; 1050 1051 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1052 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1053 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1054 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1055 } 1056 } 1057 1058 cp.min_interval = cpu_to_le16(adv_min_interval); 1059 cp.max_interval = cpu_to_le16(adv_max_interval); 1060 cp.own_address_type = own_addr_type; 1061 cp.channel_map = hdev->le_adv_channel_map; 1062 1063 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1064 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1065 if (status) 1066 return status; 1067 1068 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1069 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1070 } 1071 1072 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1073 { 1074 return hci_enable_advertising_sync(hdev); 1075 } 1076 1077 int hci_enable_advertising(struct hci_dev *hdev) 1078 { 1079 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1080 list_empty(&hdev->adv_instances)) 1081 return 0; 1082 1083 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1084 } 1085 1086 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1087 struct sock *sk) 1088 { 1089 int err; 1090 1091 if (!ext_adv_capable(hdev)) 1092 return 0; 1093 1094 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1095 if (err) 1096 return err; 1097 1098 /* If request specifies an instance that doesn't exist, fail */ 1099 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1100 return -EINVAL; 1101 1102 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1103 sizeof(instance), &instance, 0, 1104 HCI_CMD_TIMEOUT, sk); 1105 } 1106 1107 static void cancel_adv_timeout(struct hci_dev *hdev) 1108 { 1109 if (hdev->adv_instance_timeout) { 1110 hdev->adv_instance_timeout = 0; 1111 cancel_delayed_work(&hdev->adv_instance_expire); 1112 } 1113 } 1114 1115 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1116 { 1117 struct { 1118 struct hci_cp_le_set_ext_adv_data cp; 1119 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1120 } pdu; 1121 u8 len; 1122 1123 memset(&pdu, 0, sizeof(pdu)); 1124 1125 len = eir_create_adv_data(hdev, instance, pdu.data); 1126 1127 /* There's nothing to do if the data hasn't changed */ 1128 if (hdev->adv_data_len == len && 1129 memcmp(pdu.data, hdev->adv_data, len) == 0) 1130 return 0; 1131 1132 memcpy(hdev->adv_data, pdu.data, len); 1133 hdev->adv_data_len = len; 1134 1135 pdu.cp.length = len; 1136 pdu.cp.handle = instance; 1137 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1138 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1139 1140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1141 sizeof(pdu.cp) + len, &pdu.cp, 1142 HCI_CMD_TIMEOUT); 1143 } 1144 1145 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1146 { 1147 struct hci_cp_le_set_adv_data cp; 1148 u8 len; 1149 1150 memset(&cp, 0, sizeof(cp)); 1151 1152 len = eir_create_adv_data(hdev, instance, cp.data); 1153 1154 /* There's nothing to do if the data hasn't changed */ 1155 if (hdev->adv_data_len == len && 1156 memcmp(cp.data, hdev->adv_data, len) == 0) 1157 return 0; 1158 1159 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1160 hdev->adv_data_len = len; 1161 1162 cp.length = len; 1163 1164 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1165 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1166 } 1167 1168 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1169 { 1170 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1171 return 0; 1172 1173 if (ext_adv_capable(hdev)) 1174 return hci_set_ext_adv_data_sync(hdev, instance); 1175 1176 return hci_set_adv_data_sync(hdev, instance); 1177 } 1178 1179 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1180 bool force) 1181 { 1182 struct adv_info *adv = NULL; 1183 u16 timeout; 1184 1185 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1186 return -EPERM; 1187 1188 if (hdev->adv_instance_timeout) 1189 return -EBUSY; 1190 1191 adv = hci_find_adv_instance(hdev, instance); 1192 if (!adv) 1193 return -ENOENT; 1194 1195 /* A zero timeout means unlimited advertising. As long as there is 1196 * only one instance, duration should be ignored. We still set a timeout 1197 * in case further instances are being added later on. 1198 * 1199 * If the remaining lifetime of the instance is more than the duration 1200 * then the timeout corresponds to the duration, otherwise it will be 1201 * reduced to the remaining instance lifetime. 1202 */ 1203 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1204 timeout = adv->duration; 1205 else 1206 timeout = adv->remaining_time; 1207 1208 /* The remaining time is being reduced unless the instance is being 1209 * advertised without time limit. 1210 */ 1211 if (adv->timeout) 1212 adv->remaining_time = adv->remaining_time - timeout; 1213 1214 /* Only use work for scheduling instances with legacy advertising */ 1215 if (!ext_adv_capable(hdev)) { 1216 hdev->adv_instance_timeout = timeout; 1217 queue_delayed_work(hdev->req_workqueue, 1218 &hdev->adv_instance_expire, 1219 msecs_to_jiffies(timeout * 1000)); 1220 } 1221 1222 /* If we're just re-scheduling the same instance again then do not 1223 * execute any HCI commands. This happens when a single instance is 1224 * being advertised. 1225 */ 1226 if (!force && hdev->cur_adv_instance == instance && 1227 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1228 return 0; 1229 1230 hdev->cur_adv_instance = instance; 1231 1232 return hci_start_adv_sync(hdev, instance); 1233 } 1234 1235 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1236 { 1237 int err; 1238 1239 if (!ext_adv_capable(hdev)) 1240 return 0; 1241 1242 /* Disable instance 0x00 to disable all instances */ 1243 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1244 if (err) 1245 return err; 1246 1247 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1248 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1249 } 1250 1251 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1252 { 1253 struct adv_info *adv, *n; 1254 1255 if (ext_adv_capable(hdev)) 1256 /* Remove all existing sets */ 1257 return hci_clear_adv_sets_sync(hdev, sk); 1258 1259 /* This is safe as long as there is no command send while the lock is 1260 * held. 1261 */ 1262 hci_dev_lock(hdev); 1263 1264 /* Cleanup non-ext instances */ 1265 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1266 u8 instance = adv->instance; 1267 int err; 1268 1269 if (!(force || adv->timeout)) 1270 continue; 1271 1272 err = hci_remove_adv_instance(hdev, instance); 1273 if (!err) 1274 mgmt_advertising_removed(sk, hdev, instance); 1275 } 1276 1277 hci_dev_unlock(hdev); 1278 1279 return 0; 1280 } 1281 1282 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1283 struct sock *sk) 1284 { 1285 int err; 1286 1287 /* If we use extended advertising, instance has to be removed first. */ 1288 if (ext_adv_capable(hdev)) 1289 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1290 1291 /* This is safe as long as there is no command send while the lock is 1292 * held. 1293 */ 1294 hci_dev_lock(hdev); 1295 1296 err = hci_remove_adv_instance(hdev, instance); 1297 if (!err) 1298 mgmt_advertising_removed(sk, hdev, instance); 1299 1300 hci_dev_unlock(hdev); 1301 1302 return err; 1303 } 1304 1305 /* For a single instance: 1306 * - force == true: The instance will be removed even when its remaining 1307 * lifetime is not zero. 1308 * - force == false: the instance will be deactivated but kept stored unless 1309 * the remaining lifetime is zero. 1310 * 1311 * For instance == 0x00: 1312 * - force == true: All instances will be removed regardless of their timeout 1313 * setting. 1314 * - force == false: Only instances that have a timeout will be removed. 1315 */ 1316 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1317 u8 instance, bool force) 1318 { 1319 struct adv_info *next = NULL; 1320 int err; 1321 1322 /* Cancel any timeout concerning the removed instance(s). */ 1323 if (!instance || hdev->cur_adv_instance == instance) 1324 cancel_adv_timeout(hdev); 1325 1326 /* Get the next instance to advertise BEFORE we remove 1327 * the current one. This can be the same instance again 1328 * if there is only one instance. 1329 */ 1330 if (hdev->cur_adv_instance == instance) 1331 next = hci_get_next_instance(hdev, instance); 1332 1333 if (!instance) { 1334 err = hci_clear_adv_sync(hdev, sk, force); 1335 if (err) 1336 return err; 1337 } else { 1338 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1339 1340 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1341 /* Don't advertise a removed instance. */ 1342 if (next && next->instance == instance) 1343 next = NULL; 1344 1345 err = hci_remove_adv_sync(hdev, instance, sk); 1346 if (err) 1347 return err; 1348 } 1349 } 1350 1351 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1352 return 0; 1353 1354 if (next && !ext_adv_capable(hdev)) 1355 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1356 1357 return 0; 1358 } 1359 1360 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1361 { 1362 struct hci_cp_read_rssi cp; 1363 1364 cp.handle = handle; 1365 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1366 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1367 } 1368 1369 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1370 { 1371 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1372 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1373 } 1374 1375 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1376 { 1377 struct hci_cp_read_tx_power cp; 1378 1379 cp.handle = handle; 1380 cp.type = type; 1381 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1382 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1383 } 1384 1385 int hci_disable_advertising_sync(struct hci_dev *hdev) 1386 { 1387 u8 enable = 0x00; 1388 1389 /* If controller is not advertising we are done. */ 1390 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1391 return 0; 1392 1393 if (ext_adv_capable(hdev)) 1394 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1395 1396 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1397 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1398 } 1399 1400 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1401 u8 filter_dup) 1402 { 1403 struct hci_cp_le_set_ext_scan_enable cp; 1404 1405 memset(&cp, 0, sizeof(cp)); 1406 cp.enable = val; 1407 cp.filter_dup = filter_dup; 1408 1409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1410 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1411 } 1412 1413 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1414 u8 filter_dup) 1415 { 1416 struct hci_cp_le_set_scan_enable cp; 1417 1418 if (use_ext_scan(hdev)) 1419 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1420 1421 memset(&cp, 0, sizeof(cp)); 1422 cp.enable = val; 1423 cp.filter_dup = filter_dup; 1424 1425 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1426 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1427 } 1428 1429 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1430 { 1431 if (!use_ll_privacy(hdev)) 1432 return 0; 1433 1434 /* If controller is not/already resolving we are done. */ 1435 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1436 return 0; 1437 1438 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1439 sizeof(val), &val, HCI_CMD_TIMEOUT); 1440 } 1441 1442 static int hci_scan_disable_sync(struct hci_dev *hdev) 1443 { 1444 int err; 1445 1446 /* If controller is not scanning we are done. */ 1447 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1448 return 0; 1449 1450 if (hdev->scanning_paused) { 1451 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1452 return 0; 1453 } 1454 1455 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1456 if (err) { 1457 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1458 return err; 1459 } 1460 1461 return err; 1462 } 1463 1464 static bool scan_use_rpa(struct hci_dev *hdev) 1465 { 1466 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1467 } 1468 1469 static void hci_start_interleave_scan(struct hci_dev *hdev) 1470 { 1471 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1472 queue_delayed_work(hdev->req_workqueue, 1473 &hdev->interleave_scan, 0); 1474 } 1475 1476 static bool is_interleave_scanning(struct hci_dev *hdev) 1477 { 1478 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1479 } 1480 1481 static void cancel_interleave_scan(struct hci_dev *hdev) 1482 { 1483 bt_dev_dbg(hdev, "cancelling interleave scan"); 1484 1485 cancel_delayed_work_sync(&hdev->interleave_scan); 1486 1487 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1488 } 1489 1490 /* Return true if interleave_scan wasn't started until exiting this function, 1491 * otherwise, return false 1492 */ 1493 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1494 { 1495 /* Do interleaved scan only if all of the following are true: 1496 * - There is at least one ADV monitor 1497 * - At least one pending LE connection or one device to be scanned for 1498 * - Monitor offloading is not supported 1499 * If so, we should alternate between allowlist scan and one without 1500 * any filters to save power. 1501 */ 1502 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1503 !(list_empty(&hdev->pend_le_conns) && 1504 list_empty(&hdev->pend_le_reports)) && 1505 hci_get_adv_monitor_offload_ext(hdev) == 1506 HCI_ADV_MONITOR_EXT_NONE; 1507 bool is_interleaving = is_interleave_scanning(hdev); 1508 1509 if (use_interleaving && !is_interleaving) { 1510 hci_start_interleave_scan(hdev); 1511 bt_dev_dbg(hdev, "starting interleave scan"); 1512 return true; 1513 } 1514 1515 if (!use_interleaving && is_interleaving) 1516 cancel_interleave_scan(hdev); 1517 1518 return false; 1519 } 1520 1521 /* Removes connection to resolve list if needed.*/ 1522 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1523 bdaddr_t *bdaddr, u8 bdaddr_type) 1524 { 1525 struct hci_cp_le_del_from_resolv_list cp; 1526 struct bdaddr_list_with_irk *entry; 1527 1528 if (!use_ll_privacy(hdev)) 1529 return 0; 1530 1531 /* Check if the IRK has been programmed */ 1532 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1533 bdaddr_type); 1534 if (!entry) 1535 return 0; 1536 1537 cp.bdaddr_type = bdaddr_type; 1538 bacpy(&cp.bdaddr, bdaddr); 1539 1540 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1541 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1542 } 1543 1544 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1545 bdaddr_t *bdaddr, u8 bdaddr_type) 1546 { 1547 struct hci_cp_le_del_from_accept_list cp; 1548 int err; 1549 1550 /* Check if device is on accept list before removing it */ 1551 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1552 return 0; 1553 1554 cp.bdaddr_type = bdaddr_type; 1555 bacpy(&cp.bdaddr, bdaddr); 1556 1557 /* Ignore errors when removing from resolving list as that is likely 1558 * that the device was never added. 1559 */ 1560 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1561 1562 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1563 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1564 if (err) { 1565 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1566 return err; 1567 } 1568 1569 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1570 cp.bdaddr_type); 1571 1572 return 0; 1573 } 1574 1575 /* Adds connection to resolve list if needed. 1576 * Setting params to NULL programs local hdev->irk 1577 */ 1578 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1579 struct hci_conn_params *params) 1580 { 1581 struct hci_cp_le_add_to_resolv_list cp; 1582 struct smp_irk *irk; 1583 struct bdaddr_list_with_irk *entry; 1584 1585 if (!use_ll_privacy(hdev)) 1586 return 0; 1587 1588 /* Attempt to program local identity address, type and irk if params is 1589 * NULL. 1590 */ 1591 if (!params) { 1592 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1593 return 0; 1594 1595 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1596 memcpy(cp.peer_irk, hdev->irk, 16); 1597 goto done; 1598 } 1599 1600 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1601 if (!irk) 1602 return 0; 1603 1604 /* Check if the IK has _not_ been programmed yet. */ 1605 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1606 ¶ms->addr, 1607 params->addr_type); 1608 if (entry) 1609 return 0; 1610 1611 cp.bdaddr_type = params->addr_type; 1612 bacpy(&cp.bdaddr, ¶ms->addr); 1613 memcpy(cp.peer_irk, irk->val, 16); 1614 1615 done: 1616 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1617 memcpy(cp.local_irk, hdev->irk, 16); 1618 else 1619 memset(cp.local_irk, 0, 16); 1620 1621 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1622 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1623 } 1624 1625 /* Set Device Privacy Mode. */ 1626 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 1627 struct hci_conn_params *params) 1628 { 1629 struct hci_cp_le_set_privacy_mode cp; 1630 struct smp_irk *irk; 1631 1632 /* If device privacy mode has already been set there is nothing to do */ 1633 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 1634 return 0; 1635 1636 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 1637 * indicates that LL Privacy has been enabled and 1638 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 1639 */ 1640 if (!test_bit(HCI_CONN_FLAG_DEVICE_PRIVACY, params->flags)) 1641 return 0; 1642 1643 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1644 if (!irk) 1645 return 0; 1646 1647 memset(&cp, 0, sizeof(cp)); 1648 cp.bdaddr_type = irk->addr_type; 1649 bacpy(&cp.bdaddr, &irk->bdaddr); 1650 cp.mode = HCI_DEVICE_PRIVACY; 1651 1652 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 1653 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1654 } 1655 1656 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1657 * this attempts to program the device in the resolving list as well and 1658 * properly set the privacy mode. 1659 */ 1660 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1661 struct hci_conn_params *params, 1662 u8 *num_entries) 1663 { 1664 struct hci_cp_le_add_to_accept_list cp; 1665 int err; 1666 1667 /* Select filter policy to accept all advertising */ 1668 if (*num_entries >= hdev->le_accept_list_size) 1669 return -ENOSPC; 1670 1671 /* Accept list can not be used with RPAs */ 1672 if (!use_ll_privacy(hdev) && 1673 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 1674 return -EINVAL; 1675 } 1676 1677 /* During suspend, only wakeable devices can be in acceptlist */ 1678 if (hdev->suspended && 1679 !test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, params->flags)) 1680 return 0; 1681 1682 /* Attempt to program the device in the resolving list first to avoid 1683 * having to rollback in case it fails since the resolving list is 1684 * dynamic it can probably be smaller than the accept list. 1685 */ 1686 err = hci_le_add_resolve_list_sync(hdev, params); 1687 if (err) { 1688 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1689 return err; 1690 } 1691 1692 /* Set Privacy Mode */ 1693 err = hci_le_set_privacy_mode_sync(hdev, params); 1694 if (err) { 1695 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 1696 return err; 1697 } 1698 1699 /* Check if already in accept list */ 1700 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1701 params->addr_type)) 1702 return 0; 1703 1704 *num_entries += 1; 1705 cp.bdaddr_type = params->addr_type; 1706 bacpy(&cp.bdaddr, ¶ms->addr); 1707 1708 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1710 if (err) { 1711 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1712 /* Rollback the device from the resolving list */ 1713 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1714 return err; 1715 } 1716 1717 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1718 cp.bdaddr_type); 1719 1720 return 0; 1721 } 1722 1723 /* This function disables/pause all advertising instances */ 1724 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1725 { 1726 int err; 1727 int old_state; 1728 1729 /* If already been paused there is nothing to do. */ 1730 if (hdev->advertising_paused) 1731 return 0; 1732 1733 bt_dev_dbg(hdev, "Pausing directed advertising"); 1734 1735 /* Stop directed advertising */ 1736 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1737 if (old_state) { 1738 /* When discoverable timeout triggers, then just make sure 1739 * the limited discoverable flag is cleared. Even in the case 1740 * of a timeout triggered from general discoverable, it is 1741 * safe to unconditionally clear the flag. 1742 */ 1743 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1744 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1745 hdev->discov_timeout = 0; 1746 } 1747 1748 bt_dev_dbg(hdev, "Pausing advertising instances"); 1749 1750 /* Call to disable any advertisements active on the controller. 1751 * This will succeed even if no advertisements are configured. 1752 */ 1753 err = hci_disable_advertising_sync(hdev); 1754 if (err) 1755 return err; 1756 1757 /* If we are using software rotation, pause the loop */ 1758 if (!ext_adv_capable(hdev)) 1759 cancel_adv_timeout(hdev); 1760 1761 hdev->advertising_paused = true; 1762 hdev->advertising_old_state = old_state; 1763 1764 return 0; 1765 } 1766 1767 /* This function enables all user advertising instances */ 1768 static int hci_resume_advertising_sync(struct hci_dev *hdev) 1769 { 1770 struct adv_info *adv, *tmp; 1771 int err; 1772 1773 /* If advertising has not been paused there is nothing to do. */ 1774 if (!hdev->advertising_paused) 1775 return 0; 1776 1777 /* Resume directed advertising */ 1778 hdev->advertising_paused = false; 1779 if (hdev->advertising_old_state) { 1780 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1781 hdev->advertising_old_state = 0; 1782 } 1783 1784 bt_dev_dbg(hdev, "Resuming advertising instances"); 1785 1786 if (ext_adv_capable(hdev)) { 1787 /* Call for each tracked instance to be re-enabled */ 1788 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 1789 err = hci_enable_ext_advertising_sync(hdev, 1790 adv->instance); 1791 if (!err) 1792 continue; 1793 1794 /* If the instance cannot be resumed remove it */ 1795 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 1796 NULL); 1797 } 1798 } else { 1799 /* Schedule for most recent instance to be restarted and begin 1800 * the software rotation loop 1801 */ 1802 err = hci_schedule_adv_instance_sync(hdev, 1803 hdev->cur_adv_instance, 1804 true); 1805 } 1806 1807 hdev->advertising_paused = false; 1808 1809 return err; 1810 } 1811 1812 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 1813 bool extended, struct sock *sk) 1814 { 1815 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 1816 HCI_OP_READ_LOCAL_OOB_DATA; 1817 1818 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1819 } 1820 1821 /* Device must not be scanning when updating the accept list. 1822 * 1823 * Update is done using the following sequence: 1824 * 1825 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 1826 * Remove Devices From Accept List -> 1827 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 1828 * Add Devices to Accept List -> 1829 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 1830 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 1831 * Enable Scanning 1832 * 1833 * In case of failure advertising shall be restored to its original state and 1834 * return would disable accept list since either accept or resolving list could 1835 * not be programmed. 1836 * 1837 */ 1838 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 1839 { 1840 struct hci_conn_params *params; 1841 struct bdaddr_list *b, *t; 1842 u8 num_entries = 0; 1843 bool pend_conn, pend_report; 1844 int err; 1845 1846 /* Pause advertising if resolving list can be used as controllers are 1847 * cannot accept resolving list modifications while advertising. 1848 */ 1849 if (use_ll_privacy(hdev)) { 1850 err = hci_pause_advertising_sync(hdev); 1851 if (err) { 1852 bt_dev_err(hdev, "pause advertising failed: %d", err); 1853 return 0x00; 1854 } 1855 } 1856 1857 /* Disable address resolution while reprogramming accept list since 1858 * devices that do have an IRK will be programmed in the resolving list 1859 * when LL Privacy is enabled. 1860 */ 1861 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 1862 if (err) { 1863 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 1864 goto done; 1865 } 1866 1867 /* Go through the current accept list programmed into the 1868 * controller one by one and check if that address is still 1869 * in the list of pending connections or list of devices to 1870 * report. If not present in either list, then remove it from 1871 * the controller. 1872 */ 1873 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 1874 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 1875 &b->bdaddr, 1876 b->bdaddr_type); 1877 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 1878 &b->bdaddr, 1879 b->bdaddr_type); 1880 1881 /* If the device is not likely to connect or report, 1882 * remove it from the acceptlist. 1883 */ 1884 if (!pend_conn && !pend_report) { 1885 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 1886 b->bdaddr_type); 1887 continue; 1888 } 1889 1890 num_entries++; 1891 } 1892 1893 /* Since all no longer valid accept list entries have been 1894 * removed, walk through the list of pending connections 1895 * and ensure that any new device gets programmed into 1896 * the controller. 1897 * 1898 * If the list of the devices is larger than the list of 1899 * available accept list entries in the controller, then 1900 * just abort and return filer policy value to not use the 1901 * accept list. 1902 */ 1903 list_for_each_entry(params, &hdev->pend_le_conns, action) { 1904 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1905 if (err) 1906 goto done; 1907 } 1908 1909 /* After adding all new pending connections, walk through 1910 * the list of pending reports and also add these to the 1911 * accept list if there is still space. Abort if space runs out. 1912 */ 1913 list_for_each_entry(params, &hdev->pend_le_reports, action) { 1914 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1915 if (err) 1916 goto done; 1917 } 1918 1919 /* Use the allowlist unless the following conditions are all true: 1920 * - We are not currently suspending 1921 * - There are 1 or more ADV monitors registered and it's not offloaded 1922 * - Interleaved scanning is not currently using the allowlist 1923 */ 1924 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 1925 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 1926 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 1927 err = -EINVAL; 1928 1929 done: 1930 /* Enable address resolution when LL Privacy is enabled. */ 1931 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 1932 if (err) 1933 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 1934 1935 /* Resume advertising if it was paused */ 1936 if (use_ll_privacy(hdev)) 1937 hci_resume_advertising_sync(hdev); 1938 1939 /* Select filter policy to use accept list */ 1940 return err ? 0x00 : 0x01; 1941 } 1942 1943 /* Returns true if an le connection is in the scanning state */ 1944 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1945 { 1946 struct hci_conn_hash *h = &hdev->conn_hash; 1947 struct hci_conn *c; 1948 1949 rcu_read_lock(); 1950 1951 list_for_each_entry_rcu(c, &h->list, list) { 1952 if (c->type == LE_LINK && c->state == BT_CONNECT && 1953 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1954 rcu_read_unlock(); 1955 return true; 1956 } 1957 } 1958 1959 rcu_read_unlock(); 1960 1961 return false; 1962 } 1963 1964 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 1965 u16 interval, u16 window, 1966 u8 own_addr_type, u8 filter_policy) 1967 { 1968 struct hci_cp_le_set_ext_scan_params *cp; 1969 struct hci_cp_le_scan_phy_params *phy; 1970 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 1971 u8 num_phy = 0; 1972 1973 cp = (void *)data; 1974 phy = (void *)cp->data; 1975 1976 memset(data, 0, sizeof(data)); 1977 1978 cp->own_addr_type = own_addr_type; 1979 cp->filter_policy = filter_policy; 1980 1981 if (scan_1m(hdev) || scan_2m(hdev)) { 1982 cp->scanning_phys |= LE_SCAN_PHY_1M; 1983 1984 phy->type = type; 1985 phy->interval = cpu_to_le16(interval); 1986 phy->window = cpu_to_le16(window); 1987 1988 num_phy++; 1989 phy++; 1990 } 1991 1992 if (scan_coded(hdev)) { 1993 cp->scanning_phys |= LE_SCAN_PHY_CODED; 1994 1995 phy->type = type; 1996 phy->interval = cpu_to_le16(interval); 1997 phy->window = cpu_to_le16(window); 1998 1999 num_phy++; 2000 phy++; 2001 } 2002 2003 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2004 sizeof(*cp) + sizeof(*phy) * num_phy, 2005 data, HCI_CMD_TIMEOUT); 2006 } 2007 2008 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2009 u16 interval, u16 window, 2010 u8 own_addr_type, u8 filter_policy) 2011 { 2012 struct hci_cp_le_set_scan_param cp; 2013 2014 if (use_ext_scan(hdev)) 2015 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2016 window, own_addr_type, 2017 filter_policy); 2018 2019 memset(&cp, 0, sizeof(cp)); 2020 cp.type = type; 2021 cp.interval = cpu_to_le16(interval); 2022 cp.window = cpu_to_le16(window); 2023 cp.own_address_type = own_addr_type; 2024 cp.filter_policy = filter_policy; 2025 2026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2027 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2028 } 2029 2030 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2031 u16 window, u8 own_addr_type, u8 filter_policy, 2032 u8 filter_dup) 2033 { 2034 int err; 2035 2036 if (hdev->scanning_paused) { 2037 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2038 return 0; 2039 } 2040 2041 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2042 own_addr_type, filter_policy); 2043 if (err) 2044 return err; 2045 2046 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2047 } 2048 2049 static int hci_passive_scan_sync(struct hci_dev *hdev) 2050 { 2051 u8 own_addr_type; 2052 u8 filter_policy; 2053 u16 window, interval; 2054 int err; 2055 2056 if (hdev->scanning_paused) { 2057 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2058 return 0; 2059 } 2060 2061 err = hci_scan_disable_sync(hdev); 2062 if (err) { 2063 bt_dev_err(hdev, "disable scanning failed: %d", err); 2064 return err; 2065 } 2066 2067 /* Set require_privacy to false since no SCAN_REQ are send 2068 * during passive scanning. Not using an non-resolvable address 2069 * here is important so that peer devices using direct 2070 * advertising with our address will be correctly reported 2071 * by the controller. 2072 */ 2073 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2074 &own_addr_type)) 2075 return 0; 2076 2077 if (hdev->enable_advmon_interleave_scan && 2078 hci_update_interleaved_scan_sync(hdev)) 2079 return 0; 2080 2081 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2082 2083 /* Adding or removing entries from the accept list must 2084 * happen before enabling scanning. The controller does 2085 * not allow accept list modification while scanning. 2086 */ 2087 filter_policy = hci_update_accept_list_sync(hdev); 2088 2089 /* When the controller is using random resolvable addresses and 2090 * with that having LE privacy enabled, then controllers with 2091 * Extended Scanner Filter Policies support can now enable support 2092 * for handling directed advertising. 2093 * 2094 * So instead of using filter polices 0x00 (no acceptlist) 2095 * and 0x01 (acceptlist enabled) use the new filter policies 2096 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2097 */ 2098 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2099 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2100 filter_policy |= 0x02; 2101 2102 if (hdev->suspended) { 2103 window = hdev->le_scan_window_suspend; 2104 interval = hdev->le_scan_int_suspend; 2105 } else if (hci_is_le_conn_scanning(hdev)) { 2106 window = hdev->le_scan_window_connect; 2107 interval = hdev->le_scan_int_connect; 2108 } else if (hci_is_adv_monitoring(hdev)) { 2109 window = hdev->le_scan_window_adv_monitor; 2110 interval = hdev->le_scan_int_adv_monitor; 2111 } else { 2112 window = hdev->le_scan_window; 2113 interval = hdev->le_scan_interval; 2114 } 2115 2116 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2117 2118 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2119 own_addr_type, filter_policy, 2120 LE_SCAN_FILTER_DUP_ENABLE); 2121 } 2122 2123 /* This function controls the passive scanning based on hdev->pend_le_conns 2124 * list. If there are pending LE connection we start the background scanning, 2125 * otherwise we stop it in the following sequence: 2126 * 2127 * If there are devices to scan: 2128 * 2129 * Disable Scanning -> Update Accept List -> 2130 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2131 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2132 * Enable Scanning 2133 * 2134 * Otherwise: 2135 * 2136 * Disable Scanning 2137 */ 2138 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2139 { 2140 int err; 2141 2142 if (!test_bit(HCI_UP, &hdev->flags) || 2143 test_bit(HCI_INIT, &hdev->flags) || 2144 hci_dev_test_flag(hdev, HCI_SETUP) || 2145 hci_dev_test_flag(hdev, HCI_CONFIG) || 2146 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2147 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2148 return 0; 2149 2150 /* No point in doing scanning if LE support hasn't been enabled */ 2151 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2152 return 0; 2153 2154 /* If discovery is active don't interfere with it */ 2155 if (hdev->discovery.state != DISCOVERY_STOPPED) 2156 return 0; 2157 2158 /* Reset RSSI and UUID filters when starting background scanning 2159 * since these filters are meant for service discovery only. 2160 * 2161 * The Start Discovery and Start Service Discovery operations 2162 * ensure to set proper values for RSSI threshold and UUID 2163 * filter list. So it is safe to just reset them here. 2164 */ 2165 hci_discovery_filter_clear(hdev); 2166 2167 bt_dev_dbg(hdev, "ADV monitoring is %s", 2168 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2169 2170 if (list_empty(&hdev->pend_le_conns) && 2171 list_empty(&hdev->pend_le_reports) && 2172 !hci_is_adv_monitoring(hdev)) { 2173 /* If there is no pending LE connections or devices 2174 * to be scanned for or no ADV monitors, we should stop the 2175 * background scanning. 2176 */ 2177 2178 bt_dev_dbg(hdev, "stopping background scanning"); 2179 2180 err = hci_scan_disable_sync(hdev); 2181 if (err) 2182 bt_dev_err(hdev, "stop background scanning failed: %d", 2183 err); 2184 } else { 2185 /* If there is at least one pending LE connection, we should 2186 * keep the background scan running. 2187 */ 2188 2189 /* If controller is connecting, we should not start scanning 2190 * since some controllers are not able to scan and connect at 2191 * the same time. 2192 */ 2193 if (hci_lookup_le_connect(hdev)) 2194 return 0; 2195 2196 bt_dev_dbg(hdev, "start background scanning"); 2197 2198 err = hci_passive_scan_sync(hdev); 2199 if (err) 2200 bt_dev_err(hdev, "start background scanning failed: %d", 2201 err); 2202 } 2203 2204 return err; 2205 } 2206 2207 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2208 { 2209 return hci_update_passive_scan_sync(hdev); 2210 } 2211 2212 int hci_update_passive_scan(struct hci_dev *hdev) 2213 { 2214 /* Only queue if it would have any effect */ 2215 if (!test_bit(HCI_UP, &hdev->flags) || 2216 test_bit(HCI_INIT, &hdev->flags) || 2217 hci_dev_test_flag(hdev, HCI_SETUP) || 2218 hci_dev_test_flag(hdev, HCI_CONFIG) || 2219 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2220 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2221 return 0; 2222 2223 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2224 } 2225 2226 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2227 { 2228 int err; 2229 2230 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2231 return 0; 2232 2233 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2234 sizeof(val), &val, HCI_CMD_TIMEOUT); 2235 2236 if (!err) { 2237 if (val) { 2238 hdev->features[1][0] |= LMP_HOST_SC; 2239 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2240 } else { 2241 hdev->features[1][0] &= ~LMP_HOST_SC; 2242 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2243 } 2244 } 2245 2246 return err; 2247 } 2248 2249 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2250 { 2251 int err; 2252 2253 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2254 lmp_host_ssp_capable(hdev)) 2255 return 0; 2256 2257 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2258 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2259 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2260 } 2261 2262 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2263 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2264 if (err) 2265 return err; 2266 2267 return hci_write_sc_support_sync(hdev, 0x01); 2268 } 2269 2270 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2271 { 2272 struct hci_cp_write_le_host_supported cp; 2273 2274 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2275 !lmp_bredr_capable(hdev)) 2276 return 0; 2277 2278 /* Check first if we already have the right host state 2279 * (host features set) 2280 */ 2281 if (le == lmp_host_le_capable(hdev) && 2282 simul == lmp_host_le_br_capable(hdev)) 2283 return 0; 2284 2285 memset(&cp, 0, sizeof(cp)); 2286 2287 cp.le = le; 2288 cp.simul = simul; 2289 2290 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2291 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2292 } 2293 2294 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2295 { 2296 struct adv_info *adv, *tmp; 2297 int err; 2298 2299 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2300 return 0; 2301 2302 /* If RPA Resolution has not been enable yet it means the 2303 * resolving list is empty and we should attempt to program the 2304 * local IRK in order to support using own_addr_type 2305 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2306 */ 2307 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2308 hci_le_add_resolve_list_sync(hdev, NULL); 2309 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2310 } 2311 2312 /* Make sure the controller has a good default for 2313 * advertising data. This also applies to the case 2314 * where BR/EDR was toggled during the AUTO_OFF phase. 2315 */ 2316 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2317 list_empty(&hdev->adv_instances)) { 2318 if (ext_adv_capable(hdev)) { 2319 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2320 if (!err) 2321 hci_update_scan_rsp_data_sync(hdev, 0x00); 2322 } else { 2323 err = hci_update_adv_data_sync(hdev, 0x00); 2324 if (!err) 2325 hci_update_scan_rsp_data_sync(hdev, 0x00); 2326 } 2327 2328 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2329 hci_enable_advertising_sync(hdev); 2330 } 2331 2332 /* Call for each tracked instance to be scheduled */ 2333 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2334 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2335 2336 return 0; 2337 } 2338 2339 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2340 { 2341 u8 link_sec; 2342 2343 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2344 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2345 return 0; 2346 2347 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2348 sizeof(link_sec), &link_sec, 2349 HCI_CMD_TIMEOUT); 2350 } 2351 2352 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2353 { 2354 struct hci_cp_write_page_scan_activity cp; 2355 u8 type; 2356 int err = 0; 2357 2358 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2359 return 0; 2360 2361 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2362 return 0; 2363 2364 memset(&cp, 0, sizeof(cp)); 2365 2366 if (enable) { 2367 type = PAGE_SCAN_TYPE_INTERLACED; 2368 2369 /* 160 msec page scan interval */ 2370 cp.interval = cpu_to_le16(0x0100); 2371 } else { 2372 type = hdev->def_page_scan_type; 2373 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2374 } 2375 2376 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2377 2378 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2379 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2380 err = __hci_cmd_sync_status(hdev, 2381 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2382 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2383 if (err) 2384 return err; 2385 } 2386 2387 if (hdev->page_scan_type != type) 2388 err = __hci_cmd_sync_status(hdev, 2389 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2390 sizeof(type), &type, 2391 HCI_CMD_TIMEOUT); 2392 2393 return err; 2394 } 2395 2396 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2397 { 2398 struct bdaddr_list *b; 2399 2400 list_for_each_entry(b, &hdev->accept_list, list) { 2401 struct hci_conn *conn; 2402 2403 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2404 if (!conn) 2405 return true; 2406 2407 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2408 return true; 2409 } 2410 2411 return false; 2412 } 2413 2414 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2415 { 2416 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2417 sizeof(val), &val, 2418 HCI_CMD_TIMEOUT); 2419 } 2420 2421 int hci_update_scan_sync(struct hci_dev *hdev) 2422 { 2423 u8 scan; 2424 2425 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2426 return 0; 2427 2428 if (!hdev_is_powered(hdev)) 2429 return 0; 2430 2431 if (mgmt_powering_down(hdev)) 2432 return 0; 2433 2434 if (hdev->scanning_paused) 2435 return 0; 2436 2437 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2438 disconnected_accept_list_entries(hdev)) 2439 scan = SCAN_PAGE; 2440 else 2441 scan = SCAN_DISABLED; 2442 2443 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2444 scan |= SCAN_INQUIRY; 2445 2446 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2447 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2448 return 0; 2449 2450 return hci_write_scan_enable_sync(hdev, scan); 2451 } 2452 2453 int hci_update_name_sync(struct hci_dev *hdev) 2454 { 2455 struct hci_cp_write_local_name cp; 2456 2457 memset(&cp, 0, sizeof(cp)); 2458 2459 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2460 2461 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2462 sizeof(cp), &cp, 2463 HCI_CMD_TIMEOUT); 2464 } 2465 2466 /* This function perform powered update HCI command sequence after the HCI init 2467 * sequence which end up resetting all states, the sequence is as follows: 2468 * 2469 * HCI_SSP_ENABLED(Enable SSP) 2470 * HCI_LE_ENABLED(Enable LE) 2471 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2472 * Update adv data) 2473 * Enable Authentication 2474 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2475 * Set Name -> Set EIR) 2476 */ 2477 int hci_powered_update_sync(struct hci_dev *hdev) 2478 { 2479 int err; 2480 2481 /* Register the available SMP channels (BR/EDR and LE) only when 2482 * successfully powering on the controller. This late 2483 * registration is required so that LE SMP can clearly decide if 2484 * the public address or static address is used. 2485 */ 2486 smp_register(hdev); 2487 2488 err = hci_write_ssp_mode_sync(hdev, 0x01); 2489 if (err) 2490 return err; 2491 2492 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2493 if (err) 2494 return err; 2495 2496 err = hci_powered_update_adv_sync(hdev); 2497 if (err) 2498 return err; 2499 2500 err = hci_write_auth_enable_sync(hdev); 2501 if (err) 2502 return err; 2503 2504 if (lmp_bredr_capable(hdev)) { 2505 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2506 hci_write_fast_connectable_sync(hdev, true); 2507 else 2508 hci_write_fast_connectable_sync(hdev, false); 2509 hci_update_scan_sync(hdev); 2510 hci_update_class_sync(hdev); 2511 hci_update_name_sync(hdev); 2512 hci_update_eir_sync(hdev); 2513 } 2514 2515 return 0; 2516 } 2517 2518 /** 2519 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2520 * (BD_ADDR) for a HCI device from 2521 * a firmware node property. 2522 * @hdev: The HCI device 2523 * 2524 * Search the firmware node for 'local-bd-address'. 2525 * 2526 * All-zero BD addresses are rejected, because those could be properties 2527 * that exist in the firmware tables, but were not updated by the firmware. For 2528 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2529 */ 2530 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2531 { 2532 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2533 bdaddr_t ba; 2534 int ret; 2535 2536 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2537 (u8 *)&ba, sizeof(ba)); 2538 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2539 return; 2540 2541 bacpy(&hdev->public_addr, &ba); 2542 } 2543 2544 struct hci_init_stage { 2545 int (*func)(struct hci_dev *hdev); 2546 }; 2547 2548 /* Run init stage NULL terminated function table */ 2549 static int hci_init_stage_sync(struct hci_dev *hdev, 2550 const struct hci_init_stage *stage) 2551 { 2552 size_t i; 2553 2554 for (i = 0; stage[i].func; i++) { 2555 int err; 2556 2557 err = stage[i].func(hdev); 2558 if (err) 2559 return err; 2560 } 2561 2562 return 0; 2563 } 2564 2565 /* Read Local Version */ 2566 static int hci_read_local_version_sync(struct hci_dev *hdev) 2567 { 2568 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2569 0, NULL, HCI_CMD_TIMEOUT); 2570 } 2571 2572 /* Read BD Address */ 2573 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2574 { 2575 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2576 0, NULL, HCI_CMD_TIMEOUT); 2577 } 2578 2579 #define HCI_INIT(_func) \ 2580 { \ 2581 .func = _func, \ 2582 } 2583 2584 static const struct hci_init_stage hci_init0[] = { 2585 /* HCI_OP_READ_LOCAL_VERSION */ 2586 HCI_INIT(hci_read_local_version_sync), 2587 /* HCI_OP_READ_BD_ADDR */ 2588 HCI_INIT(hci_read_bd_addr_sync), 2589 {} 2590 }; 2591 2592 int hci_reset_sync(struct hci_dev *hdev) 2593 { 2594 int err; 2595 2596 set_bit(HCI_RESET, &hdev->flags); 2597 2598 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2599 HCI_CMD_TIMEOUT); 2600 if (err) 2601 return err; 2602 2603 return 0; 2604 } 2605 2606 static int hci_init0_sync(struct hci_dev *hdev) 2607 { 2608 int err; 2609 2610 bt_dev_dbg(hdev, ""); 2611 2612 /* Reset */ 2613 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2614 err = hci_reset_sync(hdev); 2615 if (err) 2616 return err; 2617 } 2618 2619 return hci_init_stage_sync(hdev, hci_init0); 2620 } 2621 2622 static int hci_unconf_init_sync(struct hci_dev *hdev) 2623 { 2624 int err; 2625 2626 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2627 return 0; 2628 2629 err = hci_init0_sync(hdev); 2630 if (err < 0) 2631 return err; 2632 2633 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2634 hci_debugfs_create_basic(hdev); 2635 2636 return 0; 2637 } 2638 2639 /* Read Local Supported Features. */ 2640 static int hci_read_local_features_sync(struct hci_dev *hdev) 2641 { 2642 /* Not all AMP controllers support this command */ 2643 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2644 return 0; 2645 2646 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2647 0, NULL, HCI_CMD_TIMEOUT); 2648 } 2649 2650 /* BR Controller init stage 1 command sequence */ 2651 static const struct hci_init_stage br_init1[] = { 2652 /* HCI_OP_READ_LOCAL_FEATURES */ 2653 HCI_INIT(hci_read_local_features_sync), 2654 /* HCI_OP_READ_LOCAL_VERSION */ 2655 HCI_INIT(hci_read_local_version_sync), 2656 /* HCI_OP_READ_BD_ADDR */ 2657 HCI_INIT(hci_read_bd_addr_sync), 2658 {} 2659 }; 2660 2661 /* Read Local Commands */ 2662 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2663 { 2664 /* All Bluetooth 1.2 and later controllers should support the 2665 * HCI command for reading the local supported commands. 2666 * 2667 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2668 * but do not have support for this command. If that is the case, 2669 * the driver can quirk the behavior and skip reading the local 2670 * supported commands. 2671 */ 2672 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2673 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2674 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2675 0, NULL, HCI_CMD_TIMEOUT); 2676 2677 return 0; 2678 } 2679 2680 /* Read Local AMP Info */ 2681 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2682 { 2683 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2684 0, NULL, HCI_CMD_TIMEOUT); 2685 } 2686 2687 /* Read Data Blk size */ 2688 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2689 { 2690 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2691 0, NULL, HCI_CMD_TIMEOUT); 2692 } 2693 2694 /* Read Flow Control Mode */ 2695 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2696 { 2697 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2698 0, NULL, HCI_CMD_TIMEOUT); 2699 } 2700 2701 /* Read Location Data */ 2702 static int hci_read_location_data_sync(struct hci_dev *hdev) 2703 { 2704 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2705 0, NULL, HCI_CMD_TIMEOUT); 2706 } 2707 2708 /* AMP Controller init stage 1 command sequence */ 2709 static const struct hci_init_stage amp_init1[] = { 2710 /* HCI_OP_READ_LOCAL_VERSION */ 2711 HCI_INIT(hci_read_local_version_sync), 2712 /* HCI_OP_READ_LOCAL_COMMANDS */ 2713 HCI_INIT(hci_read_local_cmds_sync), 2714 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2715 HCI_INIT(hci_read_local_amp_info_sync), 2716 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2717 HCI_INIT(hci_read_data_block_size_sync), 2718 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2719 HCI_INIT(hci_read_flow_control_mode_sync), 2720 /* HCI_OP_READ_LOCATION_DATA */ 2721 HCI_INIT(hci_read_location_data_sync), 2722 }; 2723 2724 static int hci_init1_sync(struct hci_dev *hdev) 2725 { 2726 int err; 2727 2728 bt_dev_dbg(hdev, ""); 2729 2730 /* Reset */ 2731 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2732 err = hci_reset_sync(hdev); 2733 if (err) 2734 return err; 2735 } 2736 2737 switch (hdev->dev_type) { 2738 case HCI_PRIMARY: 2739 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 2740 return hci_init_stage_sync(hdev, br_init1); 2741 case HCI_AMP: 2742 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 2743 return hci_init_stage_sync(hdev, amp_init1); 2744 default: 2745 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 2746 break; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /* AMP Controller init stage 2 command sequence */ 2753 static const struct hci_init_stage amp_init2[] = { 2754 /* HCI_OP_READ_LOCAL_FEATURES */ 2755 HCI_INIT(hci_read_local_features_sync), 2756 }; 2757 2758 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 2759 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 2760 { 2761 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 2762 0, NULL, HCI_CMD_TIMEOUT); 2763 } 2764 2765 /* Read Class of Device */ 2766 static int hci_read_dev_class_sync(struct hci_dev *hdev) 2767 { 2768 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 2769 0, NULL, HCI_CMD_TIMEOUT); 2770 } 2771 2772 /* Read Local Name */ 2773 static int hci_read_local_name_sync(struct hci_dev *hdev) 2774 { 2775 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 2776 0, NULL, HCI_CMD_TIMEOUT); 2777 } 2778 2779 /* Read Voice Setting */ 2780 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 2781 { 2782 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 2783 0, NULL, HCI_CMD_TIMEOUT); 2784 } 2785 2786 /* Read Number of Supported IAC */ 2787 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 2788 { 2789 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 2790 0, NULL, HCI_CMD_TIMEOUT); 2791 } 2792 2793 /* Read Current IAC LAP */ 2794 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 2795 { 2796 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 2797 0, NULL, HCI_CMD_TIMEOUT); 2798 } 2799 2800 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 2801 u8 cond_type, bdaddr_t *bdaddr, 2802 u8 auto_accept) 2803 { 2804 struct hci_cp_set_event_filter cp; 2805 2806 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2807 return 0; 2808 2809 memset(&cp, 0, sizeof(cp)); 2810 cp.flt_type = flt_type; 2811 2812 if (flt_type != HCI_FLT_CLEAR_ALL) { 2813 cp.cond_type = cond_type; 2814 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 2815 cp.addr_conn_flt.auto_accept = auto_accept; 2816 } 2817 2818 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 2819 flt_type == HCI_FLT_CLEAR_ALL ? 2820 sizeof(cp.flt_type) : sizeof(cp), &cp, 2821 HCI_CMD_TIMEOUT); 2822 } 2823 2824 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 2825 { 2826 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 2827 return 0; 2828 2829 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 2830 BDADDR_ANY, 0x00); 2831 } 2832 2833 /* Connection accept timeout ~20 secs */ 2834 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 2835 { 2836 __le16 param = cpu_to_le16(0x7d00); 2837 2838 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2839 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 2840 } 2841 2842 /* BR Controller init stage 2 command sequence */ 2843 static const struct hci_init_stage br_init2[] = { 2844 /* HCI_OP_READ_BUFFER_SIZE */ 2845 HCI_INIT(hci_read_buffer_size_sync), 2846 /* HCI_OP_READ_CLASS_OF_DEV */ 2847 HCI_INIT(hci_read_dev_class_sync), 2848 /* HCI_OP_READ_LOCAL_NAME */ 2849 HCI_INIT(hci_read_local_name_sync), 2850 /* HCI_OP_READ_VOICE_SETTING */ 2851 HCI_INIT(hci_read_voice_setting_sync), 2852 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 2853 HCI_INIT(hci_read_num_supported_iac_sync), 2854 /* HCI_OP_READ_CURRENT_IAC_LAP */ 2855 HCI_INIT(hci_read_current_iac_lap_sync), 2856 /* HCI_OP_SET_EVENT_FLT */ 2857 HCI_INIT(hci_clear_event_filter_sync), 2858 /* HCI_OP_WRITE_CA_TIMEOUT */ 2859 HCI_INIT(hci_write_ca_timeout_sync), 2860 {} 2861 }; 2862 2863 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 2864 { 2865 u8 mode = 0x01; 2866 2867 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2868 return 0; 2869 2870 /* When SSP is available, then the host features page 2871 * should also be available as well. However some 2872 * controllers list the max_page as 0 as long as SSP 2873 * has not been enabled. To achieve proper debugging 2874 * output, force the minimum max_page to 1 at least. 2875 */ 2876 hdev->max_page = 0x01; 2877 2878 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2879 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2880 } 2881 2882 static int hci_write_eir_sync(struct hci_dev *hdev) 2883 { 2884 struct hci_cp_write_eir cp; 2885 2886 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2887 return 0; 2888 2889 memset(hdev->eir, 0, sizeof(hdev->eir)); 2890 memset(&cp, 0, sizeof(cp)); 2891 2892 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 2893 HCI_CMD_TIMEOUT); 2894 } 2895 2896 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 2897 { 2898 u8 mode; 2899 2900 if (!lmp_inq_rssi_capable(hdev) && 2901 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 2902 return 0; 2903 2904 /* If Extended Inquiry Result events are supported, then 2905 * they are clearly preferred over Inquiry Result with RSSI 2906 * events. 2907 */ 2908 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 2909 2910 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 2911 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2912 } 2913 2914 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 2915 { 2916 if (!lmp_inq_tx_pwr_capable(hdev)) 2917 return 0; 2918 2919 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 2920 0, NULL, HCI_CMD_TIMEOUT); 2921 } 2922 2923 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 2924 { 2925 struct hci_cp_read_local_ext_features cp; 2926 2927 if (!lmp_ext_feat_capable(hdev)) 2928 return 0; 2929 2930 memset(&cp, 0, sizeof(cp)); 2931 cp.page = page; 2932 2933 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 2934 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2935 } 2936 2937 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 2938 { 2939 return hci_read_local_ext_features_sync(hdev, 0x01); 2940 } 2941 2942 /* HCI Controller init stage 2 command sequence */ 2943 static const struct hci_init_stage hci_init2[] = { 2944 /* HCI_OP_READ_LOCAL_COMMANDS */ 2945 HCI_INIT(hci_read_local_cmds_sync), 2946 /* HCI_OP_WRITE_SSP_MODE */ 2947 HCI_INIT(hci_write_ssp_mode_1_sync), 2948 /* HCI_OP_WRITE_EIR */ 2949 HCI_INIT(hci_write_eir_sync), 2950 /* HCI_OP_WRITE_INQUIRY_MODE */ 2951 HCI_INIT(hci_write_inquiry_mode_sync), 2952 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 2953 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 2954 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 2955 HCI_INIT(hci_read_local_ext_features_1_sync), 2956 /* HCI_OP_WRITE_AUTH_ENABLE */ 2957 HCI_INIT(hci_write_auth_enable_sync), 2958 {} 2959 }; 2960 2961 /* Read LE Buffer Size */ 2962 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 2963 { 2964 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 2965 0, NULL, HCI_CMD_TIMEOUT); 2966 } 2967 2968 /* Read LE Local Supported Features */ 2969 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 2970 { 2971 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 2972 0, NULL, HCI_CMD_TIMEOUT); 2973 } 2974 2975 /* Read LE Supported States */ 2976 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 2977 { 2978 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 2979 0, NULL, HCI_CMD_TIMEOUT); 2980 } 2981 2982 /* LE Controller init stage 2 command sequence */ 2983 static const struct hci_init_stage le_init2[] = { 2984 /* HCI_OP_LE_READ_BUFFER_SIZE */ 2985 HCI_INIT(hci_le_read_buffer_size_sync), 2986 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 2987 HCI_INIT(hci_le_read_local_features_sync), 2988 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 2989 HCI_INIT(hci_le_read_supported_states_sync), 2990 {} 2991 }; 2992 2993 static int hci_init2_sync(struct hci_dev *hdev) 2994 { 2995 int err; 2996 2997 bt_dev_dbg(hdev, ""); 2998 2999 if (hdev->dev_type == HCI_AMP) 3000 return hci_init_stage_sync(hdev, amp_init2); 3001 3002 if (lmp_bredr_capable(hdev)) { 3003 err = hci_init_stage_sync(hdev, br_init2); 3004 if (err) 3005 return err; 3006 } else { 3007 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3008 } 3009 3010 if (lmp_le_capable(hdev)) { 3011 err = hci_init_stage_sync(hdev, le_init2); 3012 if (err) 3013 return err; 3014 /* LE-only controllers have LE implicitly enabled */ 3015 if (!lmp_bredr_capable(hdev)) 3016 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3017 } 3018 3019 return hci_init_stage_sync(hdev, hci_init2); 3020 } 3021 3022 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3023 { 3024 /* The second byte is 0xff instead of 0x9f (two reserved bits 3025 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3026 * command otherwise. 3027 */ 3028 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3029 3030 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3031 * any event mask for pre 1.2 devices. 3032 */ 3033 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3034 return 0; 3035 3036 if (lmp_bredr_capable(hdev)) { 3037 events[4] |= 0x01; /* Flow Specification Complete */ 3038 3039 /* Don't set Disconnect Complete when suspended as that 3040 * would wakeup the host when disconnecting due to 3041 * suspend. 3042 */ 3043 if (hdev->suspended) 3044 events[0] &= 0xef; 3045 } else { 3046 /* Use a different default for LE-only devices */ 3047 memset(events, 0, sizeof(events)); 3048 events[1] |= 0x20; /* Command Complete */ 3049 events[1] |= 0x40; /* Command Status */ 3050 events[1] |= 0x80; /* Hardware Error */ 3051 3052 /* If the controller supports the Disconnect command, enable 3053 * the corresponding event. In addition enable packet flow 3054 * control related events. 3055 */ 3056 if (hdev->commands[0] & 0x20) { 3057 /* Don't set Disconnect Complete when suspended as that 3058 * would wakeup the host when disconnecting due to 3059 * suspend. 3060 */ 3061 if (!hdev->suspended) 3062 events[0] |= 0x10; /* Disconnection Complete */ 3063 events[2] |= 0x04; /* Number of Completed Packets */ 3064 events[3] |= 0x02; /* Data Buffer Overflow */ 3065 } 3066 3067 /* If the controller supports the Read Remote Version 3068 * Information command, enable the corresponding event. 3069 */ 3070 if (hdev->commands[2] & 0x80) 3071 events[1] |= 0x08; /* Read Remote Version Information 3072 * Complete 3073 */ 3074 3075 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3076 events[0] |= 0x80; /* Encryption Change */ 3077 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3078 } 3079 } 3080 3081 if (lmp_inq_rssi_capable(hdev) || 3082 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3083 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3084 3085 if (lmp_ext_feat_capable(hdev)) 3086 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3087 3088 if (lmp_esco_capable(hdev)) { 3089 events[5] |= 0x08; /* Synchronous Connection Complete */ 3090 events[5] |= 0x10; /* Synchronous Connection Changed */ 3091 } 3092 3093 if (lmp_sniffsubr_capable(hdev)) 3094 events[5] |= 0x20; /* Sniff Subrating */ 3095 3096 if (lmp_pause_enc_capable(hdev)) 3097 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3098 3099 if (lmp_ext_inq_capable(hdev)) 3100 events[5] |= 0x40; /* Extended Inquiry Result */ 3101 3102 if (lmp_no_flush_capable(hdev)) 3103 events[7] |= 0x01; /* Enhanced Flush Complete */ 3104 3105 if (lmp_lsto_capable(hdev)) 3106 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3107 3108 if (lmp_ssp_capable(hdev)) { 3109 events[6] |= 0x01; /* IO Capability Request */ 3110 events[6] |= 0x02; /* IO Capability Response */ 3111 events[6] |= 0x04; /* User Confirmation Request */ 3112 events[6] |= 0x08; /* User Passkey Request */ 3113 events[6] |= 0x10; /* Remote OOB Data Request */ 3114 events[6] |= 0x20; /* Simple Pairing Complete */ 3115 events[7] |= 0x04; /* User Passkey Notification */ 3116 events[7] |= 0x08; /* Keypress Notification */ 3117 events[7] |= 0x10; /* Remote Host Supported 3118 * Features Notification 3119 */ 3120 } 3121 3122 if (lmp_le_capable(hdev)) 3123 events[7] |= 0x20; /* LE Meta-Event */ 3124 3125 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3126 sizeof(events), events, HCI_CMD_TIMEOUT); 3127 } 3128 3129 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3130 { 3131 struct hci_cp_read_stored_link_key cp; 3132 3133 if (!(hdev->commands[6] & 0x20) || 3134 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3135 return 0; 3136 3137 memset(&cp, 0, sizeof(cp)); 3138 bacpy(&cp.bdaddr, BDADDR_ANY); 3139 cp.read_all = 0x01; 3140 3141 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3142 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3143 } 3144 3145 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3146 { 3147 struct hci_cp_write_def_link_policy cp; 3148 u16 link_policy = 0; 3149 3150 if (!(hdev->commands[5] & 0x10)) 3151 return 0; 3152 3153 memset(&cp, 0, sizeof(cp)); 3154 3155 if (lmp_rswitch_capable(hdev)) 3156 link_policy |= HCI_LP_RSWITCH; 3157 if (lmp_hold_capable(hdev)) 3158 link_policy |= HCI_LP_HOLD; 3159 if (lmp_sniff_capable(hdev)) 3160 link_policy |= HCI_LP_SNIFF; 3161 if (lmp_park_capable(hdev)) 3162 link_policy |= HCI_LP_PARK; 3163 3164 cp.policy = cpu_to_le16(link_policy); 3165 3166 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3167 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3168 } 3169 3170 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3171 { 3172 if (!(hdev->commands[8] & 0x01)) 3173 return 0; 3174 3175 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3176 0, NULL, HCI_CMD_TIMEOUT); 3177 } 3178 3179 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3180 { 3181 if (!(hdev->commands[18] & 0x04) || 3182 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3183 return 0; 3184 3185 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3186 0, NULL, HCI_CMD_TIMEOUT); 3187 } 3188 3189 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3190 { 3191 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3192 * support the Read Page Scan Type command. Check support for 3193 * this command in the bit mask of supported commands. 3194 */ 3195 if (!(hdev->commands[13] & 0x01)) 3196 return 0; 3197 3198 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3199 0, NULL, HCI_CMD_TIMEOUT); 3200 } 3201 3202 /* Read features beyond page 1 if available */ 3203 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3204 { 3205 u8 page; 3206 int err; 3207 3208 if (!lmp_ext_feat_capable(hdev)) 3209 return 0; 3210 3211 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3212 page++) { 3213 err = hci_read_local_ext_features_sync(hdev, page); 3214 if (err) 3215 return err; 3216 } 3217 3218 return 0; 3219 } 3220 3221 /* HCI Controller init stage 3 command sequence */ 3222 static const struct hci_init_stage hci_init3[] = { 3223 /* HCI_OP_SET_EVENT_MASK */ 3224 HCI_INIT(hci_set_event_mask_sync), 3225 /* HCI_OP_READ_STORED_LINK_KEY */ 3226 HCI_INIT(hci_read_stored_link_key_sync), 3227 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3228 HCI_INIT(hci_setup_link_policy_sync), 3229 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3230 HCI_INIT(hci_read_page_scan_activity_sync), 3231 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3232 HCI_INIT(hci_read_def_err_data_reporting_sync), 3233 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3234 HCI_INIT(hci_read_page_scan_type_sync), 3235 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3236 HCI_INIT(hci_read_local_ext_features_all_sync), 3237 {} 3238 }; 3239 3240 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3241 { 3242 u8 events[8]; 3243 3244 if (!lmp_le_capable(hdev)) 3245 return 0; 3246 3247 memset(events, 0, sizeof(events)); 3248 3249 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3250 events[0] |= 0x10; /* LE Long Term Key Request */ 3251 3252 /* If controller supports the Connection Parameters Request 3253 * Link Layer Procedure, enable the corresponding event. 3254 */ 3255 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3256 /* LE Remote Connection Parameter Request */ 3257 events[0] |= 0x20; 3258 3259 /* If the controller supports the Data Length Extension 3260 * feature, enable the corresponding event. 3261 */ 3262 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3263 events[0] |= 0x40; /* LE Data Length Change */ 3264 3265 /* If the controller supports LL Privacy feature, enable 3266 * the corresponding event. 3267 */ 3268 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY) 3269 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3270 3271 /* If the controller supports Extended Scanner Filter 3272 * Policies, enable the corresponding event. 3273 */ 3274 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3275 events[1] |= 0x04; /* LE Direct Advertising Report */ 3276 3277 /* If the controller supports Channel Selection Algorithm #2 3278 * feature, enable the corresponding event. 3279 */ 3280 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3281 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3282 3283 /* If the controller supports the LE Set Scan Enable command, 3284 * enable the corresponding advertising report event. 3285 */ 3286 if (hdev->commands[26] & 0x08) 3287 events[0] |= 0x02; /* LE Advertising Report */ 3288 3289 /* If the controller supports the LE Create Connection 3290 * command, enable the corresponding event. 3291 */ 3292 if (hdev->commands[26] & 0x10) 3293 events[0] |= 0x01; /* LE Connection Complete */ 3294 3295 /* If the controller supports the LE Connection Update 3296 * command, enable the corresponding event. 3297 */ 3298 if (hdev->commands[27] & 0x04) 3299 events[0] |= 0x04; /* LE Connection Update Complete */ 3300 3301 /* If the controller supports the LE Read Remote Used Features 3302 * command, enable the corresponding event. 3303 */ 3304 if (hdev->commands[27] & 0x20) 3305 /* LE Read Remote Used Features Complete */ 3306 events[0] |= 0x08; 3307 3308 /* If the controller supports the LE Read Local P-256 3309 * Public Key command, enable the corresponding event. 3310 */ 3311 if (hdev->commands[34] & 0x02) 3312 /* LE Read Local P-256 Public Key Complete */ 3313 events[0] |= 0x80; 3314 3315 /* If the controller supports the LE Generate DHKey 3316 * command, enable the corresponding event. 3317 */ 3318 if (hdev->commands[34] & 0x04) 3319 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3320 3321 /* If the controller supports the LE Set Default PHY or 3322 * LE Set PHY commands, enable the corresponding event. 3323 */ 3324 if (hdev->commands[35] & (0x20 | 0x40)) 3325 events[1] |= 0x08; /* LE PHY Update Complete */ 3326 3327 /* If the controller supports LE Set Extended Scan Parameters 3328 * and LE Set Extended Scan Enable commands, enable the 3329 * corresponding event. 3330 */ 3331 if (use_ext_scan(hdev)) 3332 events[1] |= 0x10; /* LE Extended Advertising Report */ 3333 3334 /* If the controller supports the LE Extended Advertising 3335 * command, enable the corresponding event. 3336 */ 3337 if (ext_adv_capable(hdev)) 3338 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3339 3340 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3341 sizeof(events), events, HCI_CMD_TIMEOUT); 3342 } 3343 3344 /* Read LE Advertising Channel TX Power */ 3345 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3346 { 3347 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3348 /* HCI TS spec forbids mixing of legacy and extended 3349 * advertising commands wherein READ_ADV_TX_POWER is 3350 * also included. So do not call it if extended adv 3351 * is supported otherwise controller will return 3352 * COMMAND_DISALLOWED for extended commands. 3353 */ 3354 return __hci_cmd_sync_status(hdev, 3355 HCI_OP_LE_READ_ADV_TX_POWER, 3356 0, NULL, HCI_CMD_TIMEOUT); 3357 } 3358 3359 return 0; 3360 } 3361 3362 /* Read LE Min/Max Tx Power*/ 3363 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3364 { 3365 if (!(hdev->commands[38] & 0x80) || 3366 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 3367 return 0; 3368 3369 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3370 0, NULL, HCI_CMD_TIMEOUT); 3371 } 3372 3373 /* Read LE Accept List Size */ 3374 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3375 { 3376 if (!(hdev->commands[26] & 0x40)) 3377 return 0; 3378 3379 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3380 0, NULL, HCI_CMD_TIMEOUT); 3381 } 3382 3383 /* Clear LE Accept List */ 3384 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3385 { 3386 if (!(hdev->commands[26] & 0x80)) 3387 return 0; 3388 3389 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3390 HCI_CMD_TIMEOUT); 3391 } 3392 3393 /* Read LE Resolving List Size */ 3394 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3395 { 3396 if (!(hdev->commands[34] & 0x40)) 3397 return 0; 3398 3399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3400 0, NULL, HCI_CMD_TIMEOUT); 3401 } 3402 3403 /* Clear LE Resolving List */ 3404 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3405 { 3406 if (!(hdev->commands[34] & 0x20)) 3407 return 0; 3408 3409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3410 HCI_CMD_TIMEOUT); 3411 } 3412 3413 /* Set RPA timeout */ 3414 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3415 { 3416 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3417 3418 if (!(hdev->commands[35] & 0x04)) 3419 return 0; 3420 3421 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3422 sizeof(timeout), &timeout, 3423 HCI_CMD_TIMEOUT); 3424 } 3425 3426 /* Read LE Maximum Data Length */ 3427 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3428 { 3429 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3430 return 0; 3431 3432 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3433 HCI_CMD_TIMEOUT); 3434 } 3435 3436 /* Read LE Suggested Default Data Length */ 3437 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3438 { 3439 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3440 return 0; 3441 3442 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3443 HCI_CMD_TIMEOUT); 3444 } 3445 3446 /* Read LE Number of Supported Advertising Sets */ 3447 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3448 { 3449 if (!ext_adv_capable(hdev)) 3450 return 0; 3451 3452 return __hci_cmd_sync_status(hdev, 3453 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3454 0, NULL, HCI_CMD_TIMEOUT); 3455 } 3456 3457 /* Write LE Host Supported */ 3458 static int hci_set_le_support_sync(struct hci_dev *hdev) 3459 { 3460 struct hci_cp_write_le_host_supported cp; 3461 3462 /* LE-only devices do not support explicit enablement */ 3463 if (!lmp_bredr_capable(hdev)) 3464 return 0; 3465 3466 memset(&cp, 0, sizeof(cp)); 3467 3468 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3469 cp.le = 0x01; 3470 cp.simul = 0x00; 3471 } 3472 3473 if (cp.le == lmp_host_le_capable(hdev)) 3474 return 0; 3475 3476 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3477 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3478 } 3479 3480 /* LE Controller init stage 3 command sequence */ 3481 static const struct hci_init_stage le_init3[] = { 3482 /* HCI_OP_LE_SET_EVENT_MASK */ 3483 HCI_INIT(hci_le_set_event_mask_sync), 3484 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3485 HCI_INIT(hci_le_read_adv_tx_power_sync), 3486 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3487 HCI_INIT(hci_le_read_tx_power_sync), 3488 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3489 HCI_INIT(hci_le_read_accept_list_size_sync), 3490 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3491 HCI_INIT(hci_le_clear_accept_list_sync), 3492 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3493 HCI_INIT(hci_le_read_resolv_list_size_sync), 3494 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3495 HCI_INIT(hci_le_clear_resolv_list_sync), 3496 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3497 HCI_INIT(hci_le_set_rpa_timeout_sync), 3498 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3499 HCI_INIT(hci_le_read_max_data_len_sync), 3500 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3501 HCI_INIT(hci_le_read_def_data_len_sync), 3502 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3503 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3504 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3505 HCI_INIT(hci_set_le_support_sync), 3506 {} 3507 }; 3508 3509 static int hci_init3_sync(struct hci_dev *hdev) 3510 { 3511 int err; 3512 3513 bt_dev_dbg(hdev, ""); 3514 3515 err = hci_init_stage_sync(hdev, hci_init3); 3516 if (err) 3517 return err; 3518 3519 if (lmp_le_capable(hdev)) 3520 return hci_init_stage_sync(hdev, le_init3); 3521 3522 return 0; 3523 } 3524 3525 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3526 { 3527 struct hci_cp_delete_stored_link_key cp; 3528 3529 /* Some Broadcom based Bluetooth controllers do not support the 3530 * Delete Stored Link Key command. They are clearly indicating its 3531 * absence in the bit mask of supported commands. 3532 * 3533 * Check the supported commands and only if the command is marked 3534 * as supported send it. If not supported assume that the controller 3535 * does not have actual support for stored link keys which makes this 3536 * command redundant anyway. 3537 * 3538 * Some controllers indicate that they support handling deleting 3539 * stored link keys, but they don't. The quirk lets a driver 3540 * just disable this command. 3541 */ 3542 if (!(hdev->commands[6] & 0x80) || 3543 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3544 return 0; 3545 3546 memset(&cp, 0, sizeof(cp)); 3547 bacpy(&cp.bdaddr, BDADDR_ANY); 3548 cp.delete_all = 0x01; 3549 3550 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3551 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3552 } 3553 3554 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3555 { 3556 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3557 bool changed = false; 3558 3559 /* Set event mask page 2 if the HCI command for it is supported */ 3560 if (!(hdev->commands[22] & 0x04)) 3561 return 0; 3562 3563 /* If Connectionless Peripheral Broadcast central role is supported 3564 * enable all necessary events for it. 3565 */ 3566 if (lmp_cpb_central_capable(hdev)) { 3567 events[1] |= 0x40; /* Triggered Clock Capture */ 3568 events[1] |= 0x80; /* Synchronization Train Complete */ 3569 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3570 events[2] |= 0x20; /* CPB Channel Map Change */ 3571 changed = true; 3572 } 3573 3574 /* If Connectionless Peripheral Broadcast peripheral role is supported 3575 * enable all necessary events for it. 3576 */ 3577 if (lmp_cpb_peripheral_capable(hdev)) { 3578 events[2] |= 0x01; /* Synchronization Train Received */ 3579 events[2] |= 0x02; /* CPB Receive */ 3580 events[2] |= 0x04; /* CPB Timeout */ 3581 events[2] |= 0x08; /* Truncated Page Complete */ 3582 changed = true; 3583 } 3584 3585 /* Enable Authenticated Payload Timeout Expired event if supported */ 3586 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3587 events[2] |= 0x80; 3588 changed = true; 3589 } 3590 3591 /* Some Broadcom based controllers indicate support for Set Event 3592 * Mask Page 2 command, but then actually do not support it. Since 3593 * the default value is all bits set to zero, the command is only 3594 * required if the event mask has to be changed. In case no change 3595 * to the event mask is needed, skip this command. 3596 */ 3597 if (!changed) 3598 return 0; 3599 3600 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3601 sizeof(events), events, HCI_CMD_TIMEOUT); 3602 } 3603 3604 /* Read local codec list if the HCI command is supported */ 3605 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3606 { 3607 if (!(hdev->commands[29] & 0x20)) 3608 return 0; 3609 3610 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3611 HCI_CMD_TIMEOUT); 3612 } 3613 3614 /* Read local pairing options if the HCI command is supported */ 3615 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3616 { 3617 if (!(hdev->commands[41] & 0x08)) 3618 return 0; 3619 3620 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3621 0, NULL, HCI_CMD_TIMEOUT); 3622 } 3623 3624 /* Get MWS transport configuration if the HCI command is supported */ 3625 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3626 { 3627 if (!(hdev->commands[30] & 0x08)) 3628 return 0; 3629 3630 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3631 0, NULL, HCI_CMD_TIMEOUT); 3632 } 3633 3634 /* Check for Synchronization Train support */ 3635 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3636 { 3637 if (!lmp_sync_train_capable(hdev)) 3638 return 0; 3639 3640 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3641 0, NULL, HCI_CMD_TIMEOUT); 3642 } 3643 3644 /* Enable Secure Connections if supported and configured */ 3645 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3646 { 3647 u8 support = 0x01; 3648 3649 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3650 !bredr_sc_enabled(hdev)) 3651 return 0; 3652 3653 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3654 sizeof(support), &support, 3655 HCI_CMD_TIMEOUT); 3656 } 3657 3658 /* Set erroneous data reporting if supported to the wideband speech 3659 * setting value 3660 */ 3661 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3662 { 3663 struct hci_cp_write_def_err_data_reporting cp; 3664 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3665 3666 if (!(hdev->commands[18] & 0x08) || 3667 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3668 return 0; 3669 3670 if (enabled == hdev->err_data_reporting) 3671 return 0; 3672 3673 memset(&cp, 0, sizeof(cp)); 3674 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3675 ERR_DATA_REPORTING_DISABLED; 3676 3677 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3678 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3679 } 3680 3681 static const struct hci_init_stage hci_init4[] = { 3682 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3683 HCI_INIT(hci_delete_stored_link_key_sync), 3684 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3685 HCI_INIT(hci_set_event_mask_page_2_sync), 3686 /* HCI_OP_READ_LOCAL_CODECS */ 3687 HCI_INIT(hci_read_local_codecs_sync), 3688 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 3689 HCI_INIT(hci_read_local_pairing_opts_sync), 3690 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 3691 HCI_INIT(hci_get_mws_transport_config_sync), 3692 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 3693 HCI_INIT(hci_read_sync_train_params_sync), 3694 /* HCI_OP_WRITE_SC_SUPPORT */ 3695 HCI_INIT(hci_write_sc_support_1_sync), 3696 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 3697 HCI_INIT(hci_set_err_data_report_sync), 3698 {} 3699 }; 3700 3701 /* Set Suggested Default Data Length to maximum if supported */ 3702 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 3703 { 3704 struct hci_cp_le_write_def_data_len cp; 3705 3706 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3707 return 0; 3708 3709 memset(&cp, 0, sizeof(cp)); 3710 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 3711 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 3712 3713 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 3714 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3715 } 3716 3717 /* Set Default PHY parameters if command is supported */ 3718 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 3719 { 3720 struct hci_cp_le_set_default_phy cp; 3721 3722 if (!(hdev->commands[35] & 0x20)) 3723 return 0; 3724 3725 memset(&cp, 0, sizeof(cp)); 3726 cp.all_phys = 0x00; 3727 cp.tx_phys = hdev->le_tx_def_phys; 3728 cp.rx_phys = hdev->le_rx_def_phys; 3729 3730 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 3731 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3732 } 3733 3734 static const struct hci_init_stage le_init4[] = { 3735 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 3736 HCI_INIT(hci_le_set_write_def_data_len_sync), 3737 /* HCI_OP_LE_SET_DEFAULT_PHY */ 3738 HCI_INIT(hci_le_set_default_phy_sync), 3739 {} 3740 }; 3741 3742 static int hci_init4_sync(struct hci_dev *hdev) 3743 { 3744 int err; 3745 3746 bt_dev_dbg(hdev, ""); 3747 3748 err = hci_init_stage_sync(hdev, hci_init4); 3749 if (err) 3750 return err; 3751 3752 if (lmp_le_capable(hdev)) 3753 return hci_init_stage_sync(hdev, le_init4); 3754 3755 return 0; 3756 } 3757 3758 static int hci_init_sync(struct hci_dev *hdev) 3759 { 3760 int err; 3761 3762 err = hci_init1_sync(hdev); 3763 if (err < 0) 3764 return err; 3765 3766 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3767 hci_debugfs_create_basic(hdev); 3768 3769 err = hci_init2_sync(hdev); 3770 if (err < 0) 3771 return err; 3772 3773 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 3774 * BR/EDR/LE type controllers. AMP controllers only need the 3775 * first two stages of init. 3776 */ 3777 if (hdev->dev_type != HCI_PRIMARY) 3778 return 0; 3779 3780 err = hci_init3_sync(hdev); 3781 if (err < 0) 3782 return err; 3783 3784 err = hci_init4_sync(hdev); 3785 if (err < 0) 3786 return err; 3787 3788 /* This function is only called when the controller is actually in 3789 * configured state. When the controller is marked as unconfigured, 3790 * this initialization procedure is not run. 3791 * 3792 * It means that it is possible that a controller runs through its 3793 * setup phase and then discovers missing settings. If that is the 3794 * case, then this function will not be called. It then will only 3795 * be called during the config phase. 3796 * 3797 * So only when in setup phase or config phase, create the debugfs 3798 * entries and register the SMP channels. 3799 */ 3800 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3801 !hci_dev_test_flag(hdev, HCI_CONFIG)) 3802 return 0; 3803 3804 hci_debugfs_create_common(hdev); 3805 3806 if (lmp_bredr_capable(hdev)) 3807 hci_debugfs_create_bredr(hdev); 3808 3809 if (lmp_le_capable(hdev)) 3810 hci_debugfs_create_le(hdev); 3811 3812 return 0; 3813 } 3814 3815 int hci_dev_open_sync(struct hci_dev *hdev) 3816 { 3817 int ret = 0; 3818 3819 bt_dev_dbg(hdev, ""); 3820 3821 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 3822 ret = -ENODEV; 3823 goto done; 3824 } 3825 3826 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3827 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3828 /* Check for rfkill but allow the HCI setup stage to 3829 * proceed (which in itself doesn't cause any RF activity). 3830 */ 3831 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 3832 ret = -ERFKILL; 3833 goto done; 3834 } 3835 3836 /* Check for valid public address or a configured static 3837 * random address, but let the HCI setup proceed to 3838 * be able to determine if there is a public address 3839 * or not. 3840 * 3841 * In case of user channel usage, it is not important 3842 * if a public address or static random address is 3843 * available. 3844 * 3845 * This check is only valid for BR/EDR controllers 3846 * since AMP controllers do not have an address. 3847 */ 3848 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3849 hdev->dev_type == HCI_PRIMARY && 3850 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 3851 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 3852 ret = -EADDRNOTAVAIL; 3853 goto done; 3854 } 3855 } 3856 3857 if (test_bit(HCI_UP, &hdev->flags)) { 3858 ret = -EALREADY; 3859 goto done; 3860 } 3861 3862 if (hdev->open(hdev)) { 3863 ret = -EIO; 3864 goto done; 3865 } 3866 3867 set_bit(HCI_RUNNING, &hdev->flags); 3868 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 3869 3870 atomic_set(&hdev->cmd_cnt, 1); 3871 set_bit(HCI_INIT, &hdev->flags); 3872 3873 if (hci_dev_test_flag(hdev, HCI_SETUP) || 3874 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 3875 bool invalid_bdaddr; 3876 3877 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 3878 3879 if (hdev->setup) 3880 ret = hdev->setup(hdev); 3881 3882 /* The transport driver can set the quirk to mark the 3883 * BD_ADDR invalid before creating the HCI device or in 3884 * its setup callback. 3885 */ 3886 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 3887 &hdev->quirks); 3888 3889 if (ret) 3890 goto setup_failed; 3891 3892 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 3893 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 3894 hci_dev_get_bd_addr_from_property(hdev); 3895 3896 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3897 hdev->set_bdaddr) { 3898 ret = hdev->set_bdaddr(hdev, 3899 &hdev->public_addr); 3900 3901 /* If setting of the BD_ADDR from the device 3902 * property succeeds, then treat the address 3903 * as valid even if the invalid BD_ADDR 3904 * quirk indicates otherwise. 3905 */ 3906 if (!ret) 3907 invalid_bdaddr = false; 3908 } 3909 } 3910 3911 setup_failed: 3912 /* The transport driver can set these quirks before 3913 * creating the HCI device or in its setup callback. 3914 * 3915 * For the invalid BD_ADDR quirk it is possible that 3916 * it becomes a valid address if the bootloader does 3917 * provide it (see above). 3918 * 3919 * In case any of them is set, the controller has to 3920 * start up as unconfigured. 3921 */ 3922 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 3923 invalid_bdaddr) 3924 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3925 3926 /* For an unconfigured controller it is required to 3927 * read at least the version information provided by 3928 * the Read Local Version Information command. 3929 * 3930 * If the set_bdaddr driver callback is provided, then 3931 * also the original Bluetooth public device address 3932 * will be read using the Read BD Address command. 3933 */ 3934 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3935 ret = hci_unconf_init_sync(hdev); 3936 } 3937 3938 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 3939 /* If public address change is configured, ensure that 3940 * the address gets programmed. If the driver does not 3941 * support changing the public address, fail the power 3942 * on procedure. 3943 */ 3944 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3945 hdev->set_bdaddr) 3946 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 3947 else 3948 ret = -EADDRNOTAVAIL; 3949 } 3950 3951 if (!ret) { 3952 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3953 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3954 ret = hci_init_sync(hdev); 3955 if (!ret && hdev->post_init) 3956 ret = hdev->post_init(hdev); 3957 } 3958 } 3959 3960 /* If the HCI Reset command is clearing all diagnostic settings, 3961 * then they need to be reprogrammed after the init procedure 3962 * completed. 3963 */ 3964 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 3965 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3966 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 3967 ret = hdev->set_diag(hdev, true); 3968 3969 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3970 msft_do_open(hdev); 3971 aosp_do_open(hdev); 3972 } 3973 3974 clear_bit(HCI_INIT, &hdev->flags); 3975 3976 if (!ret) { 3977 hci_dev_hold(hdev); 3978 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3979 hci_adv_instances_set_rpa_expired(hdev, true); 3980 set_bit(HCI_UP, &hdev->flags); 3981 hci_sock_dev_event(hdev, HCI_DEV_UP); 3982 hci_leds_update_powered(hdev, true); 3983 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3984 !hci_dev_test_flag(hdev, HCI_CONFIG) && 3985 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3986 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3987 hci_dev_test_flag(hdev, HCI_MGMT) && 3988 hdev->dev_type == HCI_PRIMARY) { 3989 ret = hci_powered_update_sync(hdev); 3990 } 3991 } else { 3992 /* Init failed, cleanup */ 3993 flush_work(&hdev->tx_work); 3994 3995 /* Since hci_rx_work() is possible to awake new cmd_work 3996 * it should be flushed first to avoid unexpected call of 3997 * hci_cmd_work() 3998 */ 3999 flush_work(&hdev->rx_work); 4000 flush_work(&hdev->cmd_work); 4001 4002 skb_queue_purge(&hdev->cmd_q); 4003 skb_queue_purge(&hdev->rx_q); 4004 4005 if (hdev->flush) 4006 hdev->flush(hdev); 4007 4008 if (hdev->sent_cmd) { 4009 kfree_skb(hdev->sent_cmd); 4010 hdev->sent_cmd = NULL; 4011 } 4012 4013 clear_bit(HCI_RUNNING, &hdev->flags); 4014 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4015 4016 hdev->close(hdev); 4017 hdev->flags &= BIT(HCI_RAW); 4018 } 4019 4020 done: 4021 return ret; 4022 } 4023 4024 /* This function requires the caller holds hdev->lock */ 4025 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4026 { 4027 struct hci_conn_params *p; 4028 4029 list_for_each_entry(p, &hdev->le_conn_params, list) { 4030 if (p->conn) { 4031 hci_conn_drop(p->conn); 4032 hci_conn_put(p->conn); 4033 p->conn = NULL; 4034 } 4035 list_del_init(&p->action); 4036 } 4037 4038 BT_DBG("All LE pending actions cleared"); 4039 } 4040 4041 int hci_dev_close_sync(struct hci_dev *hdev) 4042 { 4043 bool auto_off; 4044 int err = 0; 4045 4046 bt_dev_dbg(hdev, ""); 4047 4048 cancel_delayed_work(&hdev->power_off); 4049 cancel_delayed_work(&hdev->ncmd_timer); 4050 4051 hci_request_cancel_all(hdev); 4052 4053 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4054 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4055 test_bit(HCI_UP, &hdev->flags)) { 4056 /* Execute vendor specific shutdown routine */ 4057 if (hdev->shutdown) 4058 err = hdev->shutdown(hdev); 4059 } 4060 4061 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4062 cancel_delayed_work_sync(&hdev->cmd_timer); 4063 return err; 4064 } 4065 4066 hci_leds_update_powered(hdev, false); 4067 4068 /* Flush RX and TX works */ 4069 flush_work(&hdev->tx_work); 4070 flush_work(&hdev->rx_work); 4071 4072 if (hdev->discov_timeout > 0) { 4073 hdev->discov_timeout = 0; 4074 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4075 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4076 } 4077 4078 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4079 cancel_delayed_work(&hdev->service_cache); 4080 4081 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4082 struct adv_info *adv_instance; 4083 4084 cancel_delayed_work_sync(&hdev->rpa_expired); 4085 4086 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4087 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4088 } 4089 4090 /* Avoid potential lockdep warnings from the *_flush() calls by 4091 * ensuring the workqueue is empty up front. 4092 */ 4093 drain_workqueue(hdev->workqueue); 4094 4095 hci_dev_lock(hdev); 4096 4097 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4098 4099 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4100 4101 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4102 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4103 hci_dev_test_flag(hdev, HCI_MGMT)) 4104 __mgmt_power_off(hdev); 4105 4106 hci_inquiry_cache_flush(hdev); 4107 hci_pend_le_actions_clear(hdev); 4108 hci_conn_hash_flush(hdev); 4109 hci_dev_unlock(hdev); 4110 4111 smp_unregister(hdev); 4112 4113 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4114 4115 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4116 aosp_do_close(hdev); 4117 msft_do_close(hdev); 4118 } 4119 4120 if (hdev->flush) 4121 hdev->flush(hdev); 4122 4123 /* Reset device */ 4124 skb_queue_purge(&hdev->cmd_q); 4125 atomic_set(&hdev->cmd_cnt, 1); 4126 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4127 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4128 set_bit(HCI_INIT, &hdev->flags); 4129 hci_reset_sync(hdev); 4130 clear_bit(HCI_INIT, &hdev->flags); 4131 } 4132 4133 /* flush cmd work */ 4134 flush_work(&hdev->cmd_work); 4135 4136 /* Drop queues */ 4137 skb_queue_purge(&hdev->rx_q); 4138 skb_queue_purge(&hdev->cmd_q); 4139 skb_queue_purge(&hdev->raw_q); 4140 4141 /* Drop last sent command */ 4142 if (hdev->sent_cmd) { 4143 cancel_delayed_work_sync(&hdev->cmd_timer); 4144 kfree_skb(hdev->sent_cmd); 4145 hdev->sent_cmd = NULL; 4146 } 4147 4148 clear_bit(HCI_RUNNING, &hdev->flags); 4149 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4150 4151 /* After this point our queues are empty and no tasks are scheduled. */ 4152 hdev->close(hdev); 4153 4154 /* Clear flags */ 4155 hdev->flags &= BIT(HCI_RAW); 4156 hci_dev_clear_volatile_flags(hdev); 4157 4158 /* Controller radio is available but is currently powered down */ 4159 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4160 4161 memset(hdev->eir, 0, sizeof(hdev->eir)); 4162 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4163 bacpy(&hdev->random_addr, BDADDR_ANY); 4164 4165 hci_dev_put(hdev); 4166 return err; 4167 } 4168 4169 /* This function perform power on HCI command sequence as follows: 4170 * 4171 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4172 * sequence otherwise run hci_dev_open_sync which will follow with 4173 * hci_powered_update_sync after the init sequence is completed. 4174 */ 4175 static int hci_power_on_sync(struct hci_dev *hdev) 4176 { 4177 int err; 4178 4179 if (test_bit(HCI_UP, &hdev->flags) && 4180 hci_dev_test_flag(hdev, HCI_MGMT) && 4181 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4182 cancel_delayed_work(&hdev->power_off); 4183 return hci_powered_update_sync(hdev); 4184 } 4185 4186 err = hci_dev_open_sync(hdev); 4187 if (err < 0) 4188 return err; 4189 4190 /* During the HCI setup phase, a few error conditions are 4191 * ignored and they need to be checked now. If they are still 4192 * valid, it is important to return the device back off. 4193 */ 4194 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4195 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4196 (hdev->dev_type == HCI_PRIMARY && 4197 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4198 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4199 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4200 hci_dev_close_sync(hdev); 4201 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4202 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4203 HCI_AUTO_OFF_TIMEOUT); 4204 } 4205 4206 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4207 /* For unconfigured devices, set the HCI_RAW flag 4208 * so that userspace can easily identify them. 4209 */ 4210 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4211 set_bit(HCI_RAW, &hdev->flags); 4212 4213 /* For fully configured devices, this will send 4214 * the Index Added event. For unconfigured devices, 4215 * it will send Unconfigued Index Added event. 4216 * 4217 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4218 * and no event will be send. 4219 */ 4220 mgmt_index_added(hdev); 4221 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4222 /* When the controller is now configured, then it 4223 * is important to clear the HCI_RAW flag. 4224 */ 4225 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4226 clear_bit(HCI_RAW, &hdev->flags); 4227 4228 /* Powering on the controller with HCI_CONFIG set only 4229 * happens with the transition from unconfigured to 4230 * configured. This will send the Index Added event. 4231 */ 4232 mgmt_index_added(hdev); 4233 } 4234 4235 return 0; 4236 } 4237 4238 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4239 { 4240 struct hci_cp_remote_name_req_cancel cp; 4241 4242 memset(&cp, 0, sizeof(cp)); 4243 bacpy(&cp.bdaddr, addr); 4244 4245 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4246 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4247 } 4248 4249 int hci_stop_discovery_sync(struct hci_dev *hdev) 4250 { 4251 struct discovery_state *d = &hdev->discovery; 4252 struct inquiry_entry *e; 4253 int err; 4254 4255 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4256 4257 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4258 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4259 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4260 0, NULL, HCI_CMD_TIMEOUT); 4261 if (err) 4262 return err; 4263 } 4264 4265 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4266 cancel_delayed_work(&hdev->le_scan_disable); 4267 cancel_delayed_work(&hdev->le_scan_restart); 4268 4269 err = hci_scan_disable_sync(hdev); 4270 if (err) 4271 return err; 4272 } 4273 4274 } else { 4275 err = hci_scan_disable_sync(hdev); 4276 if (err) 4277 return err; 4278 } 4279 4280 /* Resume advertising if it was paused */ 4281 if (use_ll_privacy(hdev)) 4282 hci_resume_advertising_sync(hdev); 4283 4284 /* No further actions needed for LE-only discovery */ 4285 if (d->type == DISCOV_TYPE_LE) 4286 return 0; 4287 4288 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4289 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4290 NAME_PENDING); 4291 if (!e) 4292 return 0; 4293 4294 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4295 } 4296 4297 return 0; 4298 } 4299 4300 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4301 u8 reason) 4302 { 4303 struct hci_cp_disconn_phy_link cp; 4304 4305 memset(&cp, 0, sizeof(cp)); 4306 cp.phy_handle = HCI_PHY_HANDLE(handle); 4307 cp.reason = reason; 4308 4309 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4310 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4311 } 4312 4313 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4314 u8 reason) 4315 { 4316 struct hci_cp_disconnect cp; 4317 4318 if (conn->type == AMP_LINK) 4319 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4320 4321 memset(&cp, 0, sizeof(cp)); 4322 cp.handle = cpu_to_le16(conn->handle); 4323 cp.reason = reason; 4324 4325 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4326 * suspending. 4327 */ 4328 if (!hdev->suspended) 4329 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4330 sizeof(cp), &cp, 4331 HCI_EV_DISCONN_COMPLETE, 4332 HCI_CMD_TIMEOUT, NULL); 4333 4334 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4335 HCI_CMD_TIMEOUT); 4336 } 4337 4338 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4339 struct hci_conn *conn) 4340 { 4341 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4342 return 0; 4343 4344 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4345 6, &conn->dst, HCI_CMD_TIMEOUT); 4346 } 4347 4348 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4349 { 4350 if (conn->type == LE_LINK) 4351 return hci_le_connect_cancel_sync(hdev, conn); 4352 4353 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4354 return 0; 4355 4356 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4357 6, &conn->dst, HCI_CMD_TIMEOUT); 4358 } 4359 4360 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4361 u8 reason) 4362 { 4363 struct hci_cp_reject_sync_conn_req cp; 4364 4365 memset(&cp, 0, sizeof(cp)); 4366 bacpy(&cp.bdaddr, &conn->dst); 4367 cp.reason = reason; 4368 4369 /* SCO rejection has its own limited set of 4370 * allowed error values (0x0D-0x0F). 4371 */ 4372 if (reason < 0x0d || reason > 0x0f) 4373 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4374 4375 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4376 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4377 } 4378 4379 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4380 u8 reason) 4381 { 4382 struct hci_cp_reject_conn_req cp; 4383 4384 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4385 return hci_reject_sco_sync(hdev, conn, reason); 4386 4387 memset(&cp, 0, sizeof(cp)); 4388 bacpy(&cp.bdaddr, &conn->dst); 4389 cp.reason = reason; 4390 4391 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4392 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4393 } 4394 4395 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4396 u8 reason) 4397 { 4398 switch (conn->state) { 4399 case BT_CONNECTED: 4400 case BT_CONFIG: 4401 return hci_disconnect_sync(hdev, conn, reason); 4402 case BT_CONNECT: 4403 return hci_connect_cancel_sync(hdev, conn); 4404 case BT_CONNECT2: 4405 return hci_reject_conn_sync(hdev, conn, reason); 4406 default: 4407 conn->state = BT_CLOSED; 4408 break; 4409 } 4410 4411 return 0; 4412 } 4413 4414 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4415 { 4416 struct hci_conn *conn, *tmp; 4417 int err; 4418 4419 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4420 err = hci_abort_conn_sync(hdev, conn, reason); 4421 if (err) 4422 return err; 4423 } 4424 4425 return err; 4426 } 4427 4428 /* This function perform power off HCI command sequence as follows: 4429 * 4430 * Clear Advertising 4431 * Stop Discovery 4432 * Disconnect all connections 4433 * hci_dev_close_sync 4434 */ 4435 static int hci_power_off_sync(struct hci_dev *hdev) 4436 { 4437 int err; 4438 4439 /* If controller is already down there is nothing to do */ 4440 if (!test_bit(HCI_UP, &hdev->flags)) 4441 return 0; 4442 4443 if (test_bit(HCI_ISCAN, &hdev->flags) || 4444 test_bit(HCI_PSCAN, &hdev->flags)) { 4445 err = hci_write_scan_enable_sync(hdev, 0x00); 4446 if (err) 4447 return err; 4448 } 4449 4450 err = hci_clear_adv_sync(hdev, NULL, false); 4451 if (err) 4452 return err; 4453 4454 err = hci_stop_discovery_sync(hdev); 4455 if (err) 4456 return err; 4457 4458 /* Terminated due to Power Off */ 4459 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4460 if (err) 4461 return err; 4462 4463 return hci_dev_close_sync(hdev); 4464 } 4465 4466 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4467 { 4468 if (val) 4469 return hci_power_on_sync(hdev); 4470 4471 return hci_power_off_sync(hdev); 4472 } 4473 4474 static int hci_write_iac_sync(struct hci_dev *hdev) 4475 { 4476 struct hci_cp_write_current_iac_lap cp; 4477 4478 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4479 return 0; 4480 4481 memset(&cp, 0, sizeof(cp)); 4482 4483 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4484 /* Limited discoverable mode */ 4485 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4486 cp.iac_lap[0] = 0x00; /* LIAC */ 4487 cp.iac_lap[1] = 0x8b; 4488 cp.iac_lap[2] = 0x9e; 4489 cp.iac_lap[3] = 0x33; /* GIAC */ 4490 cp.iac_lap[4] = 0x8b; 4491 cp.iac_lap[5] = 0x9e; 4492 } else { 4493 /* General discoverable mode */ 4494 cp.num_iac = 1; 4495 cp.iac_lap[0] = 0x33; /* GIAC */ 4496 cp.iac_lap[1] = 0x8b; 4497 cp.iac_lap[2] = 0x9e; 4498 } 4499 4500 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4501 (cp.num_iac * 3) + 1, &cp, 4502 HCI_CMD_TIMEOUT); 4503 } 4504 4505 int hci_update_discoverable_sync(struct hci_dev *hdev) 4506 { 4507 int err = 0; 4508 4509 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4510 err = hci_write_iac_sync(hdev); 4511 if (err) 4512 return err; 4513 4514 err = hci_update_scan_sync(hdev); 4515 if (err) 4516 return err; 4517 4518 err = hci_update_class_sync(hdev); 4519 if (err) 4520 return err; 4521 } 4522 4523 /* Advertising instances don't use the global discoverable setting, so 4524 * only update AD if advertising was enabled using Set Advertising. 4525 */ 4526 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4527 err = hci_update_adv_data_sync(hdev, 0x00); 4528 if (err) 4529 return err; 4530 4531 /* Discoverable mode affects the local advertising 4532 * address in limited privacy mode. 4533 */ 4534 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4535 if (ext_adv_capable(hdev)) 4536 err = hci_start_ext_adv_sync(hdev, 0x00); 4537 else 4538 err = hci_enable_advertising_sync(hdev); 4539 } 4540 } 4541 4542 return err; 4543 } 4544 4545 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4546 { 4547 return hci_update_discoverable_sync(hdev); 4548 } 4549 4550 int hci_update_discoverable(struct hci_dev *hdev) 4551 { 4552 /* Only queue if it would have any effect */ 4553 if (hdev_is_powered(hdev) && 4554 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4555 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4556 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4557 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4558 NULL); 4559 4560 return 0; 4561 } 4562 4563 int hci_update_connectable_sync(struct hci_dev *hdev) 4564 { 4565 int err; 4566 4567 err = hci_update_scan_sync(hdev); 4568 if (err) 4569 return err; 4570 4571 /* If BR/EDR is not enabled and we disable advertising as a 4572 * by-product of disabling connectable, we need to update the 4573 * advertising flags. 4574 */ 4575 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4576 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4577 4578 /* Update the advertising parameters if necessary */ 4579 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4580 !list_empty(&hdev->adv_instances)) { 4581 if (ext_adv_capable(hdev)) 4582 err = hci_start_ext_adv_sync(hdev, 4583 hdev->cur_adv_instance); 4584 else 4585 err = hci_enable_advertising_sync(hdev); 4586 4587 if (err) 4588 return err; 4589 } 4590 4591 return hci_update_passive_scan_sync(hdev); 4592 } 4593 4594 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4595 { 4596 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4597 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4598 struct hci_cp_inquiry cp; 4599 4600 bt_dev_dbg(hdev, ""); 4601 4602 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4603 return 0; 4604 4605 hci_dev_lock(hdev); 4606 hci_inquiry_cache_flush(hdev); 4607 hci_dev_unlock(hdev); 4608 4609 memset(&cp, 0, sizeof(cp)); 4610 4611 if (hdev->discovery.limited) 4612 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4613 else 4614 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4615 4616 cp.length = length; 4617 4618 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4619 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4620 } 4621 4622 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4623 { 4624 u8 own_addr_type; 4625 /* Accept list is not used for discovery */ 4626 u8 filter_policy = 0x00; 4627 /* Default is to enable duplicates filter */ 4628 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 4629 int err; 4630 4631 bt_dev_dbg(hdev, ""); 4632 4633 /* If controller is scanning, it means the passive scanning is 4634 * running. Thus, we should temporarily stop it in order to set the 4635 * discovery scanning parameters. 4636 */ 4637 err = hci_scan_disable_sync(hdev); 4638 if (err) { 4639 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 4640 return err; 4641 } 4642 4643 cancel_interleave_scan(hdev); 4644 4645 /* Pause advertising since active scanning disables address resolution 4646 * which advertising depend on in order to generate its RPAs. 4647 */ 4648 if (use_ll_privacy(hdev)) { 4649 err = hci_pause_advertising_sync(hdev); 4650 if (err) { 4651 bt_dev_err(hdev, "pause advertising failed: %d", err); 4652 goto failed; 4653 } 4654 } 4655 4656 /* Disable address resolution while doing active scanning since the 4657 * accept list shall not be used and all reports shall reach the host 4658 * anyway. 4659 */ 4660 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 4661 if (err) { 4662 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 4663 err); 4664 goto failed; 4665 } 4666 4667 /* All active scans will be done with either a resolvable private 4668 * address (when privacy feature has been enabled) or non-resolvable 4669 * private address. 4670 */ 4671 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 4672 &own_addr_type); 4673 if (err < 0) 4674 own_addr_type = ADDR_LE_DEV_PUBLIC; 4675 4676 if (hci_is_adv_monitoring(hdev)) { 4677 /* Duplicate filter should be disabled when some advertisement 4678 * monitor is activated, otherwise AdvMon can only receive one 4679 * advertisement for one peer(*) during active scanning, and 4680 * might report loss to these peers. 4681 * 4682 * Note that different controllers have different meanings of 4683 * |duplicate|. Some of them consider packets with the same 4684 * address as duplicate, and others consider packets with the 4685 * same address and the same RSSI as duplicate. Although in the 4686 * latter case we don't need to disable duplicate filter, but 4687 * it is common to have active scanning for a short period of 4688 * time, the power impact should be neglectable. 4689 */ 4690 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 4691 } 4692 4693 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 4694 hdev->le_scan_window_discovery, 4695 own_addr_type, filter_policy, filter_dup); 4696 if (!err) 4697 return err; 4698 4699 failed: 4700 /* Resume advertising if it was paused */ 4701 if (use_ll_privacy(hdev)) 4702 hci_resume_advertising_sync(hdev); 4703 4704 /* Resume passive scanning */ 4705 hci_update_passive_scan_sync(hdev); 4706 return err; 4707 } 4708 4709 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 4710 { 4711 int err; 4712 4713 bt_dev_dbg(hdev, ""); 4714 4715 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 4716 if (err) 4717 return err; 4718 4719 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4720 } 4721 4722 int hci_start_discovery_sync(struct hci_dev *hdev) 4723 { 4724 unsigned long timeout; 4725 int err; 4726 4727 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 4728 4729 switch (hdev->discovery.type) { 4730 case DISCOV_TYPE_BREDR: 4731 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4732 case DISCOV_TYPE_INTERLEAVED: 4733 /* When running simultaneous discovery, the LE scanning time 4734 * should occupy the whole discovery time sine BR/EDR inquiry 4735 * and LE scanning are scheduled by the controller. 4736 * 4737 * For interleaving discovery in comparison, BR/EDR inquiry 4738 * and LE scanning are done sequentially with separate 4739 * timeouts. 4740 */ 4741 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 4742 &hdev->quirks)) { 4743 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4744 /* During simultaneous discovery, we double LE scan 4745 * interval. We must leave some time for the controller 4746 * to do BR/EDR inquiry. 4747 */ 4748 err = hci_start_interleaved_discovery_sync(hdev); 4749 break; 4750 } 4751 4752 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 4753 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4754 break; 4755 case DISCOV_TYPE_LE: 4756 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4757 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4758 break; 4759 default: 4760 return -EINVAL; 4761 } 4762 4763 if (err) 4764 return err; 4765 4766 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 4767 4768 /* When service discovery is used and the controller has a 4769 * strict duplicate filter, it is important to remember the 4770 * start and duration of the scan. This is required for 4771 * restarting scanning during the discovery phase. 4772 */ 4773 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 4774 hdev->discovery.result_filtering) { 4775 hdev->discovery.scan_start = jiffies; 4776 hdev->discovery.scan_duration = timeout; 4777 } 4778 4779 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 4780 timeout); 4781 return 0; 4782 } 4783 4784 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 4785 { 4786 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4787 case HCI_ADV_MONITOR_EXT_MSFT: 4788 msft_suspend_sync(hdev); 4789 break; 4790 default: 4791 return; 4792 } 4793 } 4794 4795 /* This function disables discovery and mark it as paused */ 4796 static int hci_pause_discovery_sync(struct hci_dev *hdev) 4797 { 4798 int old_state = hdev->discovery.state; 4799 int err; 4800 4801 /* If discovery already stopped/stopping/paused there nothing to do */ 4802 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 4803 hdev->discovery_paused) 4804 return 0; 4805 4806 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 4807 err = hci_stop_discovery_sync(hdev); 4808 if (err) 4809 return err; 4810 4811 hdev->discovery_paused = true; 4812 hdev->discovery_old_state = old_state; 4813 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4814 4815 return 0; 4816 } 4817 4818 static int hci_update_event_filter_sync(struct hci_dev *hdev) 4819 { 4820 struct bdaddr_list_with_flags *b; 4821 u8 scan = SCAN_DISABLED; 4822 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 4823 int err; 4824 4825 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4826 return 0; 4827 4828 /* Always clear event filter when starting */ 4829 hci_clear_event_filter_sync(hdev); 4830 4831 list_for_each_entry(b, &hdev->accept_list, list) { 4832 if (!test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, b->flags)) 4833 continue; 4834 4835 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 4836 4837 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 4838 HCI_CONN_SETUP_ALLOW_BDADDR, 4839 &b->bdaddr, 4840 HCI_CONN_SETUP_AUTO_ON); 4841 if (err) 4842 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 4843 &b->bdaddr); 4844 else 4845 scan = SCAN_PAGE; 4846 } 4847 4848 if (scan && !scanning) 4849 hci_write_scan_enable_sync(hdev, scan); 4850 else if (!scan && scanning) 4851 hci_write_scan_enable_sync(hdev, scan); 4852 4853 return 0; 4854 } 4855 4856 /* This function performs the HCI suspend procedures in the follow order: 4857 * 4858 * Pause discovery (active scanning/inquiry) 4859 * Pause Directed Advertising/Advertising 4860 * Disconnect all connections 4861 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 4862 * otherwise: 4863 * Update event mask (only set events that are allowed to wake up the host) 4864 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 4865 * Update passive scanning (lower duty cycle) 4866 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 4867 */ 4868 int hci_suspend_sync(struct hci_dev *hdev) 4869 { 4870 int err; 4871 4872 /* If marked as suspended there nothing to do */ 4873 if (hdev->suspended) 4874 return 0; 4875 4876 /* Mark device as suspended */ 4877 hdev->suspended = true; 4878 4879 /* Pause discovery if not already stopped */ 4880 hci_pause_discovery_sync(hdev); 4881 4882 /* Pause other advertisements */ 4883 hci_pause_advertising_sync(hdev); 4884 4885 /* Disable page scan if enabled */ 4886 if (test_bit(HCI_PSCAN, &hdev->flags)) 4887 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 4888 4889 /* Suspend monitor filters */ 4890 hci_suspend_monitor_sync(hdev); 4891 4892 /* Prevent disconnects from causing scanning to be re-enabled */ 4893 hdev->scanning_paused = true; 4894 4895 /* Soft disconnect everything (power off) */ 4896 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4897 if (err) { 4898 /* Set state to BT_RUNNING so resume doesn't notify */ 4899 hdev->suspend_state = BT_RUNNING; 4900 hci_resume_sync(hdev); 4901 return err; 4902 } 4903 4904 /* Only configure accept list if disconnect succeeded and wake 4905 * isn't being prevented. 4906 */ 4907 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 4908 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 4909 return 0; 4910 } 4911 4912 /* Unpause to take care of updating scanning params */ 4913 hdev->scanning_paused = false; 4914 4915 /* Update event mask so only the allowed event can wakeup the host */ 4916 hci_set_event_mask_sync(hdev); 4917 4918 /* Enable event filter for paired devices */ 4919 hci_update_event_filter_sync(hdev); 4920 4921 /* Update LE passive scan if enabled */ 4922 hci_update_passive_scan_sync(hdev); 4923 4924 /* Pause scan changes again. */ 4925 hdev->scanning_paused = true; 4926 4927 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 4928 4929 return 0; 4930 } 4931 4932 /* This function resumes discovery */ 4933 static int hci_resume_discovery_sync(struct hci_dev *hdev) 4934 { 4935 int err; 4936 4937 /* If discovery not paused there nothing to do */ 4938 if (!hdev->discovery_paused) 4939 return 0; 4940 4941 hdev->discovery_paused = false; 4942 4943 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 4944 4945 err = hci_start_discovery_sync(hdev); 4946 4947 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 4948 DISCOVERY_FINDING); 4949 4950 return err; 4951 } 4952 4953 static void hci_resume_monitor_sync(struct hci_dev *hdev) 4954 { 4955 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4956 case HCI_ADV_MONITOR_EXT_MSFT: 4957 msft_resume_sync(hdev); 4958 break; 4959 default: 4960 return; 4961 } 4962 } 4963 4964 /* This function performs the HCI suspend procedures in the follow order: 4965 * 4966 * Restore event mask 4967 * Clear event filter 4968 * Update passive scanning (normal duty cycle) 4969 * Resume Directed Advertising/Advertising 4970 * Resume discovery (active scanning/inquiry) 4971 */ 4972 int hci_resume_sync(struct hci_dev *hdev) 4973 { 4974 /* If not marked as suspended there nothing to do */ 4975 if (!hdev->suspended) 4976 return 0; 4977 4978 hdev->suspended = false; 4979 hdev->scanning_paused = false; 4980 4981 /* Restore event mask */ 4982 hci_set_event_mask_sync(hdev); 4983 4984 /* Clear any event filters and restore scan state */ 4985 hci_clear_event_filter_sync(hdev); 4986 hci_update_scan_sync(hdev); 4987 4988 /* Reset passive scanning to normal */ 4989 hci_update_passive_scan_sync(hdev); 4990 4991 /* Resume monitor filters */ 4992 hci_resume_monitor_sync(hdev); 4993 4994 /* Resume other advertisements */ 4995 hci_resume_advertising_sync(hdev); 4996 4997 /* Resume discovery */ 4998 hci_resume_discovery_sync(hdev); 4999 5000 return 0; 5001 } 5002 5003 static bool conn_use_rpa(struct hci_conn *conn) 5004 { 5005 struct hci_dev *hdev = conn->hdev; 5006 5007 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5008 } 5009 5010 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5011 struct hci_conn *conn) 5012 { 5013 struct hci_cp_le_set_ext_adv_params cp; 5014 int err; 5015 bdaddr_t random_addr; 5016 u8 own_addr_type; 5017 5018 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5019 &own_addr_type); 5020 if (err) 5021 return err; 5022 5023 /* Set require_privacy to false so that the remote device has a 5024 * chance of identifying us. 5025 */ 5026 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5027 &own_addr_type, &random_addr); 5028 if (err) 5029 return err; 5030 5031 memset(&cp, 0, sizeof(cp)); 5032 5033 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5034 cp.own_addr_type = own_addr_type; 5035 cp.channel_map = hdev->le_adv_channel_map; 5036 cp.tx_power = HCI_TX_POWER_INVALID; 5037 cp.primary_phy = HCI_ADV_PHY_1M; 5038 cp.secondary_phy = HCI_ADV_PHY_1M; 5039 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5040 cp.own_addr_type = own_addr_type; 5041 cp.peer_addr_type = conn->dst_type; 5042 bacpy(&cp.peer_addr, &conn->dst); 5043 5044 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5045 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5046 * does not supports advertising data when the advertising set already 5047 * contains some, the controller shall return erroc code 'Invalid 5048 * HCI Command Parameters(0x12). 5049 * So it is required to remove adv set for handle 0x00. since we use 5050 * instance 0 for directed adv. 5051 */ 5052 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5053 if (err) 5054 return err; 5055 5056 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5057 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5058 if (err) 5059 return err; 5060 5061 /* Check if random address need to be updated */ 5062 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5063 bacmp(&random_addr, BDADDR_ANY) && 5064 bacmp(&random_addr, &hdev->random_addr)) { 5065 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5066 &random_addr); 5067 if (err) 5068 return err; 5069 } 5070 5071 return hci_enable_ext_advertising_sync(hdev, 0x00); 5072 } 5073 5074 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5075 struct hci_conn *conn) 5076 { 5077 struct hci_cp_le_set_adv_param cp; 5078 u8 status; 5079 u8 own_addr_type; 5080 u8 enable; 5081 5082 if (ext_adv_capable(hdev)) 5083 return hci_le_ext_directed_advertising_sync(hdev, conn); 5084 5085 /* Clear the HCI_LE_ADV bit temporarily so that the 5086 * hci_update_random_address knows that it's safe to go ahead 5087 * and write a new random address. The flag will be set back on 5088 * as soon as the SET_ADV_ENABLE HCI command completes. 5089 */ 5090 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5091 5092 /* Set require_privacy to false so that the remote device has a 5093 * chance of identifying us. 5094 */ 5095 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5096 &own_addr_type); 5097 if (status) 5098 return status; 5099 5100 memset(&cp, 0, sizeof(cp)); 5101 5102 /* Some controllers might reject command if intervals are not 5103 * within range for undirected advertising. 5104 * BCM20702A0 is known to be affected by this. 5105 */ 5106 cp.min_interval = cpu_to_le16(0x0020); 5107 cp.max_interval = cpu_to_le16(0x0020); 5108 5109 cp.type = LE_ADV_DIRECT_IND; 5110 cp.own_address_type = own_addr_type; 5111 cp.direct_addr_type = conn->dst_type; 5112 bacpy(&cp.direct_addr, &conn->dst); 5113 cp.channel_map = hdev->le_adv_channel_map; 5114 5115 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5116 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5117 if (status) 5118 return status; 5119 5120 enable = 0x01; 5121 5122 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5123 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5124 } 5125 5126 static void set_ext_conn_params(struct hci_conn *conn, 5127 struct hci_cp_le_ext_conn_param *p) 5128 { 5129 struct hci_dev *hdev = conn->hdev; 5130 5131 memset(p, 0, sizeof(*p)); 5132 5133 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5134 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5135 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5136 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5137 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5138 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5139 p->min_ce_len = cpu_to_le16(0x0000); 5140 p->max_ce_len = cpu_to_le16(0x0000); 5141 } 5142 5143 int hci_le_ext_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5144 u8 own_addr_type) 5145 { 5146 struct hci_cp_le_ext_create_conn *cp; 5147 struct hci_cp_le_ext_conn_param *p; 5148 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5149 u32 plen; 5150 5151 cp = (void *)data; 5152 p = (void *)cp->data; 5153 5154 memset(cp, 0, sizeof(*cp)); 5155 5156 bacpy(&cp->peer_addr, &conn->dst); 5157 cp->peer_addr_type = conn->dst_type; 5158 cp->own_addr_type = own_addr_type; 5159 5160 plen = sizeof(*cp); 5161 5162 if (scan_1m(hdev)) { 5163 cp->phys |= LE_SCAN_PHY_1M; 5164 set_ext_conn_params(conn, p); 5165 5166 p++; 5167 plen += sizeof(*p); 5168 } 5169 5170 if (scan_2m(hdev)) { 5171 cp->phys |= LE_SCAN_PHY_2M; 5172 set_ext_conn_params(conn, p); 5173 5174 p++; 5175 plen += sizeof(*p); 5176 } 5177 5178 if (scan_coded(hdev)) { 5179 cp->phys |= LE_SCAN_PHY_CODED; 5180 set_ext_conn_params(conn, p); 5181 5182 plen += sizeof(*p); 5183 } 5184 5185 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5186 plen, data, 5187 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5188 HCI_CMD_TIMEOUT, NULL); 5189 } 5190 5191 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5192 { 5193 struct hci_cp_le_create_conn cp; 5194 struct hci_conn_params *params; 5195 u8 own_addr_type; 5196 int err; 5197 5198 /* If requested to connect as peripheral use directed advertising */ 5199 if (conn->role == HCI_ROLE_SLAVE) { 5200 /* If we're active scanning and simultaneous roles is not 5201 * enabled simply reject the attempt. 5202 */ 5203 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5204 hdev->le_scan_type == LE_SCAN_ACTIVE && 5205 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5206 hci_conn_del(conn); 5207 return -EBUSY; 5208 } 5209 5210 /* Pause advertising while doing directed advertising. */ 5211 hci_pause_advertising_sync(hdev); 5212 5213 err = hci_le_directed_advertising_sync(hdev, conn); 5214 goto done; 5215 } 5216 5217 /* Disable advertising if simultaneous roles is not in use. */ 5218 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 5219 hci_pause_advertising_sync(hdev); 5220 5221 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 5222 if (params) { 5223 conn->le_conn_min_interval = params->conn_min_interval; 5224 conn->le_conn_max_interval = params->conn_max_interval; 5225 conn->le_conn_latency = params->conn_latency; 5226 conn->le_supv_timeout = params->supervision_timeout; 5227 } else { 5228 conn->le_conn_min_interval = hdev->le_conn_min_interval; 5229 conn->le_conn_max_interval = hdev->le_conn_max_interval; 5230 conn->le_conn_latency = hdev->le_conn_latency; 5231 conn->le_supv_timeout = hdev->le_supv_timeout; 5232 } 5233 5234 /* If controller is scanning, we stop it since some controllers are 5235 * not able to scan and connect at the same time. Also set the 5236 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 5237 * handler for scan disabling knows to set the correct discovery 5238 * state. 5239 */ 5240 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5241 hci_scan_disable_sync(hdev); 5242 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 5243 } 5244 5245 /* Update random address, but set require_privacy to false so 5246 * that we never connect with an non-resolvable address. 5247 */ 5248 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5249 &own_addr_type); 5250 if (err) 5251 goto done; 5252 5253 if (use_ext_conn(hdev)) { 5254 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 5255 goto done; 5256 } 5257 5258 memset(&cp, 0, sizeof(cp)); 5259 5260 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5261 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5262 5263 bacpy(&cp.peer_addr, &conn->dst); 5264 cp.peer_addr_type = conn->dst_type; 5265 cp.own_address_type = own_addr_type; 5266 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5267 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5268 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 5269 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5270 cp.min_ce_len = cpu_to_le16(0x0000); 5271 cp.max_ce_len = cpu_to_le16(0x0000); 5272 5273 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 5274 sizeof(cp), &cp, HCI_EV_LE_CONN_COMPLETE, 5275 HCI_CMD_TIMEOUT, NULL); 5276 5277 done: 5278 /* Re-enable advertising after the connection attempt is finished. */ 5279 hci_resume_advertising_sync(hdev); 5280 return err; 5281 } 5282