xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 0ef9d78b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  * Copyright 2023 NXP
7  */
8 
9 #include <linux/property.h>
10 
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14 
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23 
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 				  struct sk_buff *skb)
26 {
27 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
28 
29 	if (hdev->req_status != HCI_REQ_PEND)
30 		return;
31 
32 	hdev->req_result = result;
33 	hdev->req_status = HCI_REQ_DONE;
34 
35 	/* Free the request command so it is not used as response */
36 	kfree_skb(hdev->req_skb);
37 	hdev->req_skb = NULL;
38 
39 	if (skb) {
40 		struct sock *sk = hci_skb_sk(skb);
41 
42 		/* Drop sk reference if set */
43 		if (sk)
44 			sock_put(sk);
45 
46 		hdev->req_rsp = skb_get(skb);
47 	}
48 
49 	wake_up_interruptible(&hdev->req_wait_q);
50 }
51 
52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
53 					  u32 plen, const void *param,
54 					  struct sock *sk)
55 {
56 	int len = HCI_COMMAND_HDR_SIZE + plen;
57 	struct hci_command_hdr *hdr;
58 	struct sk_buff *skb;
59 
60 	skb = bt_skb_alloc(len, GFP_ATOMIC);
61 	if (!skb)
62 		return NULL;
63 
64 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
65 	hdr->opcode = cpu_to_le16(opcode);
66 	hdr->plen   = plen;
67 
68 	if (plen)
69 		skb_put_data(skb, param, plen);
70 
71 	bt_dev_dbg(hdev, "skb len %d", skb->len);
72 
73 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
74 	hci_skb_opcode(skb) = opcode;
75 
76 	/* Grab a reference if command needs to be associated with a sock (e.g.
77 	 * likely mgmt socket that initiated the command).
78 	 */
79 	if (sk) {
80 		hci_skb_sk(skb) = sk;
81 		sock_hold(sk);
82 	}
83 
84 	return skb;
85 }
86 
87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
88 			     const void *param, u8 event, struct sock *sk)
89 {
90 	struct hci_dev *hdev = req->hdev;
91 	struct sk_buff *skb;
92 
93 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
94 
95 	/* If an error occurred during request building, there is no point in
96 	 * queueing the HCI command. We can simply return.
97 	 */
98 	if (req->err)
99 		return;
100 
101 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
102 	if (!skb) {
103 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
104 			   opcode);
105 		req->err = -ENOMEM;
106 		return;
107 	}
108 
109 	if (skb_queue_empty(&req->cmd_q))
110 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
111 
112 	hci_skb_event(skb) = event;
113 
114 	skb_queue_tail(&req->cmd_q, skb);
115 }
116 
117 static int hci_cmd_sync_run(struct hci_request *req)
118 {
119 	struct hci_dev *hdev = req->hdev;
120 	struct sk_buff *skb;
121 	unsigned long flags;
122 
123 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
124 
125 	/* If an error occurred during request building, remove all HCI
126 	 * commands queued on the HCI request queue.
127 	 */
128 	if (req->err) {
129 		skb_queue_purge(&req->cmd_q);
130 		return req->err;
131 	}
132 
133 	/* Do not allow empty requests */
134 	if (skb_queue_empty(&req->cmd_q))
135 		return -ENODATA;
136 
137 	skb = skb_peek_tail(&req->cmd_q);
138 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
139 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
140 
141 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
142 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
143 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
144 
145 	queue_work(hdev->workqueue, &hdev->cmd_work);
146 
147 	return 0;
148 }
149 
150 /* This function requires the caller holds hdev->req_lock. */
151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
152 				  const void *param, u8 event, u32 timeout,
153 				  struct sock *sk)
154 {
155 	struct hci_request req;
156 	struct sk_buff *skb;
157 	int err = 0;
158 
159 	bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
160 
161 	hci_req_init(&req, hdev);
162 
163 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
164 
165 	hdev->req_status = HCI_REQ_PEND;
166 
167 	err = hci_cmd_sync_run(&req);
168 	if (err < 0)
169 		return ERR_PTR(err);
170 
171 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
172 					       hdev->req_status != HCI_REQ_PEND,
173 					       timeout);
174 
175 	if (err == -ERESTARTSYS)
176 		return ERR_PTR(-EINTR);
177 
178 	switch (hdev->req_status) {
179 	case HCI_REQ_DONE:
180 		err = -bt_to_errno(hdev->req_result);
181 		break;
182 
183 	case HCI_REQ_CANCELED:
184 		err = -hdev->req_result;
185 		break;
186 
187 	default:
188 		err = -ETIMEDOUT;
189 		break;
190 	}
191 
192 	hdev->req_status = 0;
193 	hdev->req_result = 0;
194 	skb = hdev->req_rsp;
195 	hdev->req_rsp = NULL;
196 
197 	bt_dev_dbg(hdev, "end: err %d", err);
198 
199 	if (err < 0) {
200 		kfree_skb(skb);
201 		return ERR_PTR(err);
202 	}
203 
204 	return skb;
205 }
206 EXPORT_SYMBOL(__hci_cmd_sync_sk);
207 
208 /* This function requires the caller holds hdev->req_lock. */
209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
210 			       const void *param, u32 timeout)
211 {
212 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
213 }
214 EXPORT_SYMBOL(__hci_cmd_sync);
215 
216 /* Send HCI command and wait for command complete event */
217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
218 			     const void *param, u32 timeout)
219 {
220 	struct sk_buff *skb;
221 
222 	if (!test_bit(HCI_UP, &hdev->flags))
223 		return ERR_PTR(-ENETDOWN);
224 
225 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
226 
227 	hci_req_sync_lock(hdev);
228 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
229 	hci_req_sync_unlock(hdev);
230 
231 	return skb;
232 }
233 EXPORT_SYMBOL(hci_cmd_sync);
234 
235 /* This function requires the caller holds hdev->req_lock. */
236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
237 				  const void *param, u8 event, u32 timeout)
238 {
239 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
240 				 NULL);
241 }
242 EXPORT_SYMBOL(__hci_cmd_sync_ev);
243 
244 /* This function requires the caller holds hdev->req_lock. */
245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
246 			     const void *param, u8 event, u32 timeout,
247 			     struct sock *sk)
248 {
249 	struct sk_buff *skb;
250 	u8 status;
251 
252 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
253 	if (IS_ERR(skb)) {
254 		if (!event)
255 			bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
256 				   PTR_ERR(skb));
257 		return PTR_ERR(skb);
258 	}
259 
260 	/* If command return a status event skb will be set to NULL as there are
261 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
262 	 * the actual error would be found with PTR_ERR(skb).
263 	 */
264 	if (!skb)
265 		return 0;
266 
267 	status = skb->data[0];
268 
269 	kfree_skb(skb);
270 
271 	return status;
272 }
273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
274 
275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
276 			  const void *param, u32 timeout)
277 {
278 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
279 					NULL);
280 }
281 EXPORT_SYMBOL(__hci_cmd_sync_status);
282 
283 static void hci_cmd_sync_work(struct work_struct *work)
284 {
285 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
286 
287 	bt_dev_dbg(hdev, "");
288 
289 	/* Dequeue all entries and run them */
290 	while (1) {
291 		struct hci_cmd_sync_work_entry *entry;
292 
293 		mutex_lock(&hdev->cmd_sync_work_lock);
294 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
295 						 struct hci_cmd_sync_work_entry,
296 						 list);
297 		if (entry)
298 			list_del(&entry->list);
299 		mutex_unlock(&hdev->cmd_sync_work_lock);
300 
301 		if (!entry)
302 			break;
303 
304 		bt_dev_dbg(hdev, "entry %p", entry);
305 
306 		if (entry->func) {
307 			int err;
308 
309 			hci_req_sync_lock(hdev);
310 			err = entry->func(hdev, entry->data);
311 			if (entry->destroy)
312 				entry->destroy(hdev, entry->data, err);
313 			hci_req_sync_unlock(hdev);
314 		}
315 
316 		kfree(entry);
317 	}
318 }
319 
320 static void hci_cmd_sync_cancel_work(struct work_struct *work)
321 {
322 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
323 
324 	cancel_delayed_work_sync(&hdev->cmd_timer);
325 	cancel_delayed_work_sync(&hdev->ncmd_timer);
326 	atomic_set(&hdev->cmd_cnt, 1);
327 
328 	wake_up_interruptible(&hdev->req_wait_q);
329 }
330 
331 static int hci_scan_disable_sync(struct hci_dev *hdev);
332 static int scan_disable_sync(struct hci_dev *hdev, void *data)
333 {
334 	return hci_scan_disable_sync(hdev);
335 }
336 
337 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
338 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
339 {
340 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
341 }
342 
343 static void le_scan_disable(struct work_struct *work)
344 {
345 	struct hci_dev *hdev = container_of(work, struct hci_dev,
346 					    le_scan_disable.work);
347 	int status;
348 
349 	bt_dev_dbg(hdev, "");
350 	hci_dev_lock(hdev);
351 
352 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
353 		goto _return;
354 
355 	cancel_delayed_work(&hdev->le_scan_restart);
356 
357 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
358 	if (status) {
359 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
360 		goto _return;
361 	}
362 
363 	hdev->discovery.scan_start = 0;
364 
365 	/* If we were running LE only scan, change discovery state. If
366 	 * we were running both LE and BR/EDR inquiry simultaneously,
367 	 * and BR/EDR inquiry is already finished, stop discovery,
368 	 * otherwise BR/EDR inquiry will stop discovery when finished.
369 	 * If we will resolve remote device name, do not change
370 	 * discovery state.
371 	 */
372 
373 	if (hdev->discovery.type == DISCOV_TYPE_LE)
374 		goto discov_stopped;
375 
376 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
377 		goto _return;
378 
379 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
380 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
381 		    hdev->discovery.state != DISCOVERY_RESOLVING)
382 			goto discov_stopped;
383 
384 		goto _return;
385 	}
386 
387 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
388 	if (status) {
389 		bt_dev_err(hdev, "inquiry failed: status %d", status);
390 		goto discov_stopped;
391 	}
392 
393 	goto _return;
394 
395 discov_stopped:
396 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
397 
398 _return:
399 	hci_dev_unlock(hdev);
400 }
401 
402 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
403 				       u8 filter_dup);
404 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
405 {
406 	/* If controller is not scanning we are done. */
407 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
408 		return 0;
409 
410 	if (hdev->scanning_paused) {
411 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
412 		return 0;
413 	}
414 
415 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
416 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
417 					   LE_SCAN_FILTER_DUP_ENABLE);
418 }
419 
420 static void le_scan_restart(struct work_struct *work)
421 {
422 	struct hci_dev *hdev = container_of(work, struct hci_dev,
423 					    le_scan_restart.work);
424 	unsigned long timeout, duration, scan_start, now;
425 	int status;
426 
427 	bt_dev_dbg(hdev, "");
428 
429 	status = hci_le_scan_restart_sync(hdev);
430 	if (status) {
431 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
432 			   status);
433 		return;
434 	}
435 
436 	hci_dev_lock(hdev);
437 
438 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
439 	    !hdev->discovery.scan_start)
440 		goto unlock;
441 
442 	/* When the scan was started, hdev->le_scan_disable has been queued
443 	 * after duration from scan_start. During scan restart this job
444 	 * has been canceled, and we need to queue it again after proper
445 	 * timeout, to make sure that scan does not run indefinitely.
446 	 */
447 	duration = hdev->discovery.scan_duration;
448 	scan_start = hdev->discovery.scan_start;
449 	now = jiffies;
450 	if (now - scan_start <= duration) {
451 		int elapsed;
452 
453 		if (now >= scan_start)
454 			elapsed = now - scan_start;
455 		else
456 			elapsed = ULONG_MAX - scan_start + now;
457 
458 		timeout = duration - elapsed;
459 	} else {
460 		timeout = 0;
461 	}
462 
463 	queue_delayed_work(hdev->req_workqueue,
464 			   &hdev->le_scan_disable, timeout);
465 
466 unlock:
467 	hci_dev_unlock(hdev);
468 }
469 
470 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
471 {
472 	bt_dev_dbg(hdev, "");
473 
474 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
475 	    list_empty(&hdev->adv_instances))
476 		return 0;
477 
478 	if (hdev->cur_adv_instance) {
479 		return hci_schedule_adv_instance_sync(hdev,
480 						      hdev->cur_adv_instance,
481 						      true);
482 	} else {
483 		if (ext_adv_capable(hdev)) {
484 			hci_start_ext_adv_sync(hdev, 0x00);
485 		} else {
486 			hci_update_adv_data_sync(hdev, 0x00);
487 			hci_update_scan_rsp_data_sync(hdev, 0x00);
488 			hci_enable_advertising_sync(hdev);
489 		}
490 	}
491 
492 	return 0;
493 }
494 
495 static void reenable_adv(struct work_struct *work)
496 {
497 	struct hci_dev *hdev = container_of(work, struct hci_dev,
498 					    reenable_adv_work);
499 	int status;
500 
501 	bt_dev_dbg(hdev, "");
502 
503 	hci_dev_lock(hdev);
504 
505 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
506 	if (status)
507 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
508 
509 	hci_dev_unlock(hdev);
510 }
511 
512 static void cancel_adv_timeout(struct hci_dev *hdev)
513 {
514 	if (hdev->adv_instance_timeout) {
515 		hdev->adv_instance_timeout = 0;
516 		cancel_delayed_work(&hdev->adv_instance_expire);
517 	}
518 }
519 
520 /* For a single instance:
521  * - force == true: The instance will be removed even when its remaining
522  *   lifetime is not zero.
523  * - force == false: the instance will be deactivated but kept stored unless
524  *   the remaining lifetime is zero.
525  *
526  * For instance == 0x00:
527  * - force == true: All instances will be removed regardless of their timeout
528  *   setting.
529  * - force == false: Only instances that have a timeout will be removed.
530  */
531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
532 				u8 instance, bool force)
533 {
534 	struct adv_info *adv_instance, *n, *next_instance = NULL;
535 	int err;
536 	u8 rem_inst;
537 
538 	/* Cancel any timeout concerning the removed instance(s). */
539 	if (!instance || hdev->cur_adv_instance == instance)
540 		cancel_adv_timeout(hdev);
541 
542 	/* Get the next instance to advertise BEFORE we remove
543 	 * the current one. This can be the same instance again
544 	 * if there is only one instance.
545 	 */
546 	if (instance && hdev->cur_adv_instance == instance)
547 		next_instance = hci_get_next_instance(hdev, instance);
548 
549 	if (instance == 0x00) {
550 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
551 					 list) {
552 			if (!(force || adv_instance->timeout))
553 				continue;
554 
555 			rem_inst = adv_instance->instance;
556 			err = hci_remove_adv_instance(hdev, rem_inst);
557 			if (!err)
558 				mgmt_advertising_removed(sk, hdev, rem_inst);
559 		}
560 	} else {
561 		adv_instance = hci_find_adv_instance(hdev, instance);
562 
563 		if (force || (adv_instance && adv_instance->timeout &&
564 			      !adv_instance->remaining_time)) {
565 			/* Don't advertise a removed instance. */
566 			if (next_instance &&
567 			    next_instance->instance == instance)
568 				next_instance = NULL;
569 
570 			err = hci_remove_adv_instance(hdev, instance);
571 			if (!err)
572 				mgmt_advertising_removed(sk, hdev, instance);
573 		}
574 	}
575 
576 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
577 		return 0;
578 
579 	if (next_instance && !ext_adv_capable(hdev))
580 		return hci_schedule_adv_instance_sync(hdev,
581 						      next_instance->instance,
582 						      false);
583 
584 	return 0;
585 }
586 
587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
588 {
589 	u8 instance = *(u8 *)data;
590 
591 	kfree(data);
592 
593 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
594 
595 	if (list_empty(&hdev->adv_instances))
596 		return hci_disable_advertising_sync(hdev);
597 
598 	return 0;
599 }
600 
601 static void adv_timeout_expire(struct work_struct *work)
602 {
603 	u8 *inst_ptr;
604 	struct hci_dev *hdev = container_of(work, struct hci_dev,
605 					    adv_instance_expire.work);
606 
607 	bt_dev_dbg(hdev, "");
608 
609 	hci_dev_lock(hdev);
610 
611 	hdev->adv_instance_timeout = 0;
612 
613 	if (hdev->cur_adv_instance == 0x00)
614 		goto unlock;
615 
616 	inst_ptr = kmalloc(1, GFP_KERNEL);
617 	if (!inst_ptr)
618 		goto unlock;
619 
620 	*inst_ptr = hdev->cur_adv_instance;
621 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
622 
623 unlock:
624 	hci_dev_unlock(hdev);
625 }
626 
627 void hci_cmd_sync_init(struct hci_dev *hdev)
628 {
629 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
630 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
631 	mutex_init(&hdev->cmd_sync_work_lock);
632 	mutex_init(&hdev->unregister_lock);
633 
634 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
635 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
636 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
637 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
638 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
639 }
640 
641 void hci_cmd_sync_clear(struct hci_dev *hdev)
642 {
643 	struct hci_cmd_sync_work_entry *entry, *tmp;
644 
645 	cancel_work_sync(&hdev->cmd_sync_work);
646 	cancel_work_sync(&hdev->reenable_adv_work);
647 
648 	mutex_lock(&hdev->cmd_sync_work_lock);
649 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
650 		if (entry->destroy)
651 			entry->destroy(hdev, entry->data, -ECANCELED);
652 
653 		list_del(&entry->list);
654 		kfree(entry);
655 	}
656 	mutex_unlock(&hdev->cmd_sync_work_lock);
657 }
658 
659 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
660 {
661 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
662 
663 	if (hdev->req_status == HCI_REQ_PEND) {
664 		hdev->req_result = err;
665 		hdev->req_status = HCI_REQ_CANCELED;
666 
667 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
668 	}
669 }
670 EXPORT_SYMBOL(hci_cmd_sync_cancel);
671 
672 /* Cancel ongoing command request synchronously:
673  *
674  * - Set result and mark status to HCI_REQ_CANCELED
675  * - Wakeup command sync thread
676  */
677 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
678 {
679 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
680 
681 	if (hdev->req_status == HCI_REQ_PEND) {
682 		hdev->req_result = err;
683 		hdev->req_status = HCI_REQ_CANCELED;
684 
685 		wake_up_interruptible(&hdev->req_wait_q);
686 	}
687 }
688 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
689 
690 /* Submit HCI command to be run in as cmd_sync_work:
691  *
692  * - hdev must _not_ be unregistered
693  */
694 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
695 			void *data, hci_cmd_sync_work_destroy_t destroy)
696 {
697 	struct hci_cmd_sync_work_entry *entry;
698 	int err = 0;
699 
700 	mutex_lock(&hdev->unregister_lock);
701 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
702 		err = -ENODEV;
703 		goto unlock;
704 	}
705 
706 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
707 	if (!entry) {
708 		err = -ENOMEM;
709 		goto unlock;
710 	}
711 	entry->func = func;
712 	entry->data = data;
713 	entry->destroy = destroy;
714 
715 	mutex_lock(&hdev->cmd_sync_work_lock);
716 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
717 	mutex_unlock(&hdev->cmd_sync_work_lock);
718 
719 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
720 
721 unlock:
722 	mutex_unlock(&hdev->unregister_lock);
723 	return err;
724 }
725 EXPORT_SYMBOL(hci_cmd_sync_submit);
726 
727 /* Queue HCI command:
728  *
729  * - hdev must be running
730  */
731 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
732 		       void *data, hci_cmd_sync_work_destroy_t destroy)
733 {
734 	/* Only queue command if hdev is running which means it had been opened
735 	 * and is either on init phase or is already up.
736 	 */
737 	if (!test_bit(HCI_RUNNING, &hdev->flags))
738 		return -ENETDOWN;
739 
740 	return hci_cmd_sync_submit(hdev, func, data, destroy);
741 }
742 EXPORT_SYMBOL(hci_cmd_sync_queue);
743 
744 int hci_update_eir_sync(struct hci_dev *hdev)
745 {
746 	struct hci_cp_write_eir cp;
747 
748 	bt_dev_dbg(hdev, "");
749 
750 	if (!hdev_is_powered(hdev))
751 		return 0;
752 
753 	if (!lmp_ext_inq_capable(hdev))
754 		return 0;
755 
756 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
757 		return 0;
758 
759 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
760 		return 0;
761 
762 	memset(&cp, 0, sizeof(cp));
763 
764 	eir_create(hdev, cp.data);
765 
766 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
767 		return 0;
768 
769 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
770 
771 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
772 				     HCI_CMD_TIMEOUT);
773 }
774 
775 static u8 get_service_classes(struct hci_dev *hdev)
776 {
777 	struct bt_uuid *uuid;
778 	u8 val = 0;
779 
780 	list_for_each_entry(uuid, &hdev->uuids, list)
781 		val |= uuid->svc_hint;
782 
783 	return val;
784 }
785 
786 int hci_update_class_sync(struct hci_dev *hdev)
787 {
788 	u8 cod[3];
789 
790 	bt_dev_dbg(hdev, "");
791 
792 	if (!hdev_is_powered(hdev))
793 		return 0;
794 
795 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
796 		return 0;
797 
798 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
799 		return 0;
800 
801 	cod[0] = hdev->minor_class;
802 	cod[1] = hdev->major_class;
803 	cod[2] = get_service_classes(hdev);
804 
805 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
806 		cod[1] |= 0x20;
807 
808 	if (memcmp(cod, hdev->dev_class, 3) == 0)
809 		return 0;
810 
811 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
812 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
813 }
814 
815 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
816 {
817 	/* If there is no connection we are OK to advertise. */
818 	if (hci_conn_num(hdev, LE_LINK) == 0)
819 		return true;
820 
821 	/* Check le_states if there is any connection in peripheral role. */
822 	if (hdev->conn_hash.le_num_peripheral > 0) {
823 		/* Peripheral connection state and non connectable mode
824 		 * bit 20.
825 		 */
826 		if (!connectable && !(hdev->le_states[2] & 0x10))
827 			return false;
828 
829 		/* Peripheral connection state and connectable mode bit 38
830 		 * and scannable bit 21.
831 		 */
832 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
833 				    !(hdev->le_states[2] & 0x20)))
834 			return false;
835 	}
836 
837 	/* Check le_states if there is any connection in central role. */
838 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
839 		/* Central connection state and non connectable mode bit 18. */
840 		if (!connectable && !(hdev->le_states[2] & 0x02))
841 			return false;
842 
843 		/* Central connection state and connectable mode bit 35 and
844 		 * scannable 19.
845 		 */
846 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
847 				    !(hdev->le_states[2] & 0x08)))
848 			return false;
849 	}
850 
851 	return true;
852 }
853 
854 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
855 {
856 	/* If privacy is not enabled don't use RPA */
857 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
858 		return false;
859 
860 	/* If basic privacy mode is enabled use RPA */
861 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
862 		return true;
863 
864 	/* If limited privacy mode is enabled don't use RPA if we're
865 	 * both discoverable and bondable.
866 	 */
867 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
868 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
869 		return false;
870 
871 	/* We're neither bondable nor discoverable in the limited
872 	 * privacy mode, therefore use RPA.
873 	 */
874 	return true;
875 }
876 
877 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
878 {
879 	/* If we're advertising or initiating an LE connection we can't
880 	 * go ahead and change the random address at this time. This is
881 	 * because the eventual initiator address used for the
882 	 * subsequently created connection will be undefined (some
883 	 * controllers use the new address and others the one we had
884 	 * when the operation started).
885 	 *
886 	 * In this kind of scenario skip the update and let the random
887 	 * address be updated at the next cycle.
888 	 */
889 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
890 	    hci_lookup_le_connect(hdev)) {
891 		bt_dev_dbg(hdev, "Deferring random address update");
892 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
893 		return 0;
894 	}
895 
896 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
897 				     6, rpa, HCI_CMD_TIMEOUT);
898 }
899 
900 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
901 				   bool rpa, u8 *own_addr_type)
902 {
903 	int err;
904 
905 	/* If privacy is enabled use a resolvable private address. If
906 	 * current RPA has expired or there is something else than
907 	 * the current RPA in use, then generate a new one.
908 	 */
909 	if (rpa) {
910 		/* If Controller supports LL Privacy use own address type is
911 		 * 0x03
912 		 */
913 		if (use_ll_privacy(hdev))
914 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
915 		else
916 			*own_addr_type = ADDR_LE_DEV_RANDOM;
917 
918 		/* Check if RPA is valid */
919 		if (rpa_valid(hdev))
920 			return 0;
921 
922 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
923 		if (err < 0) {
924 			bt_dev_err(hdev, "failed to generate new RPA");
925 			return err;
926 		}
927 
928 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
929 		if (err)
930 			return err;
931 
932 		return 0;
933 	}
934 
935 	/* In case of required privacy without resolvable private address,
936 	 * use an non-resolvable private address. This is useful for active
937 	 * scanning and non-connectable advertising.
938 	 */
939 	if (require_privacy) {
940 		bdaddr_t nrpa;
941 
942 		while (true) {
943 			/* The non-resolvable private address is generated
944 			 * from random six bytes with the two most significant
945 			 * bits cleared.
946 			 */
947 			get_random_bytes(&nrpa, 6);
948 			nrpa.b[5] &= 0x3f;
949 
950 			/* The non-resolvable private address shall not be
951 			 * equal to the public address.
952 			 */
953 			if (bacmp(&hdev->bdaddr, &nrpa))
954 				break;
955 		}
956 
957 		*own_addr_type = ADDR_LE_DEV_RANDOM;
958 
959 		return hci_set_random_addr_sync(hdev, &nrpa);
960 	}
961 
962 	/* If forcing static address is in use or there is no public
963 	 * address use the static address as random address (but skip
964 	 * the HCI command if the current random address is already the
965 	 * static one.
966 	 *
967 	 * In case BR/EDR has been disabled on a dual-mode controller
968 	 * and a static address has been configured, then use that
969 	 * address instead of the public BR/EDR address.
970 	 */
971 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
972 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
973 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
974 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
975 		*own_addr_type = ADDR_LE_DEV_RANDOM;
976 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
977 			return hci_set_random_addr_sync(hdev,
978 							&hdev->static_addr);
979 		return 0;
980 	}
981 
982 	/* Neither privacy nor static address is being used so use a
983 	 * public address.
984 	 */
985 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
986 
987 	return 0;
988 }
989 
990 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
991 {
992 	struct hci_cp_le_set_ext_adv_enable *cp;
993 	struct hci_cp_ext_adv_set *set;
994 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
995 	u8 size;
996 
997 	/* If request specifies an instance that doesn't exist, fail */
998 	if (instance > 0) {
999 		struct adv_info *adv;
1000 
1001 		adv = hci_find_adv_instance(hdev, instance);
1002 		if (!adv)
1003 			return -EINVAL;
1004 
1005 		/* If not enabled there is nothing to do */
1006 		if (!adv->enabled)
1007 			return 0;
1008 	}
1009 
1010 	memset(data, 0, sizeof(data));
1011 
1012 	cp = (void *)data;
1013 	set = (void *)cp->data;
1014 
1015 	/* Instance 0x00 indicates all advertising instances will be disabled */
1016 	cp->num_of_sets = !!instance;
1017 	cp->enable = 0x00;
1018 
1019 	set->handle = instance;
1020 
1021 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1022 
1023 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1024 				     size, data, HCI_CMD_TIMEOUT);
1025 }
1026 
1027 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1028 					    bdaddr_t *random_addr)
1029 {
1030 	struct hci_cp_le_set_adv_set_rand_addr cp;
1031 	int err;
1032 
1033 	if (!instance) {
1034 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1035 		 * hdev->random_addr to track its address so whenever it needs
1036 		 * to be updated this also set the random address since
1037 		 * hdev->random_addr is shared with scan state machine.
1038 		 */
1039 		err = hci_set_random_addr_sync(hdev, random_addr);
1040 		if (err)
1041 			return err;
1042 	}
1043 
1044 	memset(&cp, 0, sizeof(cp));
1045 
1046 	cp.handle = instance;
1047 	bacpy(&cp.bdaddr, random_addr);
1048 
1049 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1050 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1051 }
1052 
1053 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1054 {
1055 	struct hci_cp_le_set_ext_adv_params cp;
1056 	bool connectable;
1057 	u32 flags;
1058 	bdaddr_t random_addr;
1059 	u8 own_addr_type;
1060 	int err;
1061 	struct adv_info *adv;
1062 	bool secondary_adv;
1063 
1064 	if (instance > 0) {
1065 		adv = hci_find_adv_instance(hdev, instance);
1066 		if (!adv)
1067 			return -EINVAL;
1068 	} else {
1069 		adv = NULL;
1070 	}
1071 
1072 	/* Updating parameters of an active instance will return a
1073 	 * Command Disallowed error, so we must first disable the
1074 	 * instance if it is active.
1075 	 */
1076 	if (adv && !adv->pending) {
1077 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1078 		if (err)
1079 			return err;
1080 	}
1081 
1082 	flags = hci_adv_instance_flags(hdev, instance);
1083 
1084 	/* If the "connectable" instance flag was not set, then choose between
1085 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1086 	 */
1087 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1088 		      mgmt_get_connectable(hdev);
1089 
1090 	if (!is_advertising_allowed(hdev, connectable))
1091 		return -EPERM;
1092 
1093 	/* Set require_privacy to true only when non-connectable
1094 	 * advertising is used. In that case it is fine to use a
1095 	 * non-resolvable private address.
1096 	 */
1097 	err = hci_get_random_address(hdev, !connectable,
1098 				     adv_use_rpa(hdev, flags), adv,
1099 				     &own_addr_type, &random_addr);
1100 	if (err < 0)
1101 		return err;
1102 
1103 	memset(&cp, 0, sizeof(cp));
1104 
1105 	if (adv) {
1106 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1107 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1108 		cp.tx_power = adv->tx_power;
1109 	} else {
1110 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1111 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1112 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1113 	}
1114 
1115 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1116 
1117 	if (connectable) {
1118 		if (secondary_adv)
1119 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1120 		else
1121 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1122 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1123 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1124 		if (secondary_adv)
1125 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1126 		else
1127 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1128 	} else {
1129 		if (secondary_adv)
1130 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1131 		else
1132 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1133 	}
1134 
1135 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1136 	 * contains the peer’s Identity Address and the Peer_Address_Type
1137 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1138 	 * These parameters are used to locate the corresponding local IRK in
1139 	 * the resolving list; this IRK is used to generate their own address
1140 	 * used in the advertisement.
1141 	 */
1142 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1143 		hci_copy_identity_address(hdev, &cp.peer_addr,
1144 					  &cp.peer_addr_type);
1145 
1146 	cp.own_addr_type = own_addr_type;
1147 	cp.channel_map = hdev->le_adv_channel_map;
1148 	cp.handle = instance;
1149 
1150 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1151 		cp.primary_phy = HCI_ADV_PHY_1M;
1152 		cp.secondary_phy = HCI_ADV_PHY_2M;
1153 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1154 		cp.primary_phy = HCI_ADV_PHY_CODED;
1155 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1156 	} else {
1157 		/* In all other cases use 1M */
1158 		cp.primary_phy = HCI_ADV_PHY_1M;
1159 		cp.secondary_phy = HCI_ADV_PHY_1M;
1160 	}
1161 
1162 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1163 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1164 	if (err)
1165 		return err;
1166 
1167 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1168 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1169 	    bacmp(&random_addr, BDADDR_ANY)) {
1170 		/* Check if random address need to be updated */
1171 		if (adv) {
1172 			if (!bacmp(&random_addr, &adv->random_addr))
1173 				return 0;
1174 		} else {
1175 			if (!bacmp(&random_addr, &hdev->random_addr))
1176 				return 0;
1177 		}
1178 
1179 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1180 							&random_addr);
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1187 {
1188 	struct {
1189 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1190 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1191 	} pdu;
1192 	u8 len;
1193 	struct adv_info *adv = NULL;
1194 	int err;
1195 
1196 	memset(&pdu, 0, sizeof(pdu));
1197 
1198 	if (instance) {
1199 		adv = hci_find_adv_instance(hdev, instance);
1200 		if (!adv || !adv->scan_rsp_changed)
1201 			return 0;
1202 	}
1203 
1204 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1205 
1206 	pdu.cp.handle = instance;
1207 	pdu.cp.length = len;
1208 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1209 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1210 
1211 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1212 				    sizeof(pdu.cp) + len, &pdu.cp,
1213 				    HCI_CMD_TIMEOUT);
1214 	if (err)
1215 		return err;
1216 
1217 	if (adv) {
1218 		adv->scan_rsp_changed = false;
1219 	} else {
1220 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1221 		hdev->scan_rsp_data_len = len;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1228 {
1229 	struct hci_cp_le_set_scan_rsp_data cp;
1230 	u8 len;
1231 
1232 	memset(&cp, 0, sizeof(cp));
1233 
1234 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1235 
1236 	if (hdev->scan_rsp_data_len == len &&
1237 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1238 		return 0;
1239 
1240 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1241 	hdev->scan_rsp_data_len = len;
1242 
1243 	cp.length = len;
1244 
1245 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1246 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1247 }
1248 
1249 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1250 {
1251 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1252 		return 0;
1253 
1254 	if (ext_adv_capable(hdev))
1255 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1256 
1257 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1258 }
1259 
1260 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1261 {
1262 	struct hci_cp_le_set_ext_adv_enable *cp;
1263 	struct hci_cp_ext_adv_set *set;
1264 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1265 	struct adv_info *adv;
1266 
1267 	if (instance > 0) {
1268 		adv = hci_find_adv_instance(hdev, instance);
1269 		if (!adv)
1270 			return -EINVAL;
1271 		/* If already enabled there is nothing to do */
1272 		if (adv->enabled)
1273 			return 0;
1274 	} else {
1275 		adv = NULL;
1276 	}
1277 
1278 	cp = (void *)data;
1279 	set = (void *)cp->data;
1280 
1281 	memset(cp, 0, sizeof(*cp));
1282 
1283 	cp->enable = 0x01;
1284 	cp->num_of_sets = 0x01;
1285 
1286 	memset(set, 0, sizeof(*set));
1287 
1288 	set->handle = instance;
1289 
1290 	/* Set duration per instance since controller is responsible for
1291 	 * scheduling it.
1292 	 */
1293 	if (adv && adv->timeout) {
1294 		u16 duration = adv->timeout * MSEC_PER_SEC;
1295 
1296 		/* Time = N * 10 ms */
1297 		set->duration = cpu_to_le16(duration / 10);
1298 	}
1299 
1300 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1301 				     sizeof(*cp) +
1302 				     sizeof(*set) * cp->num_of_sets,
1303 				     data, HCI_CMD_TIMEOUT);
1304 }
1305 
1306 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1307 {
1308 	int err;
1309 
1310 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1311 	if (err)
1312 		return err;
1313 
1314 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1315 	if (err)
1316 		return err;
1317 
1318 	return hci_enable_ext_advertising_sync(hdev, instance);
1319 }
1320 
1321 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1322 {
1323 	struct hci_cp_le_set_per_adv_enable cp;
1324 	struct adv_info *adv = NULL;
1325 
1326 	/* If periodic advertising already disabled there is nothing to do. */
1327 	adv = hci_find_adv_instance(hdev, instance);
1328 	if (!adv || !adv->periodic || !adv->enabled)
1329 		return 0;
1330 
1331 	memset(&cp, 0, sizeof(cp));
1332 
1333 	cp.enable = 0x00;
1334 	cp.handle = instance;
1335 
1336 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1337 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1338 }
1339 
1340 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1341 				       u16 min_interval, u16 max_interval)
1342 {
1343 	struct hci_cp_le_set_per_adv_params cp;
1344 
1345 	memset(&cp, 0, sizeof(cp));
1346 
1347 	if (!min_interval)
1348 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1349 
1350 	if (!max_interval)
1351 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1352 
1353 	cp.handle = instance;
1354 	cp.min_interval = cpu_to_le16(min_interval);
1355 	cp.max_interval = cpu_to_le16(max_interval);
1356 	cp.periodic_properties = 0x0000;
1357 
1358 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1359 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1360 }
1361 
1362 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1363 {
1364 	struct {
1365 		struct hci_cp_le_set_per_adv_data cp;
1366 		u8 data[HCI_MAX_PER_AD_LENGTH];
1367 	} pdu;
1368 	u8 len;
1369 
1370 	memset(&pdu, 0, sizeof(pdu));
1371 
1372 	if (instance) {
1373 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1374 
1375 		if (!adv || !adv->periodic)
1376 			return 0;
1377 	}
1378 
1379 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1380 
1381 	pdu.cp.length = len;
1382 	pdu.cp.handle = instance;
1383 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1384 
1385 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1386 				     sizeof(pdu.cp) + len, &pdu,
1387 				     HCI_CMD_TIMEOUT);
1388 }
1389 
1390 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1391 {
1392 	struct hci_cp_le_set_per_adv_enable cp;
1393 	struct adv_info *adv = NULL;
1394 
1395 	/* If periodic advertising already enabled there is nothing to do. */
1396 	adv = hci_find_adv_instance(hdev, instance);
1397 	if (adv && adv->periodic && adv->enabled)
1398 		return 0;
1399 
1400 	memset(&cp, 0, sizeof(cp));
1401 
1402 	cp.enable = 0x01;
1403 	cp.handle = instance;
1404 
1405 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1406 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1407 }
1408 
1409 /* Checks if periodic advertising data contains a Basic Announcement and if it
1410  * does generates a Broadcast ID and add Broadcast Announcement.
1411  */
1412 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1413 {
1414 	u8 bid[3];
1415 	u8 ad[4 + 3];
1416 
1417 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1418 	 * advertising so it cannot used for the likes of Broadcast Announcement
1419 	 * as it can be overwritten at any point.
1420 	 */
1421 	if (!adv)
1422 		return 0;
1423 
1424 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1425 	 * there is nothing to do.
1426 	 */
1427 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1428 				  0x1851, NULL))
1429 		return 0;
1430 
1431 	/* Check if advertising data already has a Broadcast Announcement since
1432 	 * the process may want to control the Broadcast ID directly and in that
1433 	 * case the kernel shall no interfere.
1434 	 */
1435 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1436 				 NULL))
1437 		return 0;
1438 
1439 	/* Generate Broadcast ID */
1440 	get_random_bytes(bid, sizeof(bid));
1441 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1442 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1443 
1444 	return hci_update_adv_data_sync(hdev, adv->instance);
1445 }
1446 
1447 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1448 			   u8 *data, u32 flags, u16 min_interval,
1449 			   u16 max_interval, u16 sync_interval)
1450 {
1451 	struct adv_info *adv = NULL;
1452 	int err;
1453 	bool added = false;
1454 
1455 	hci_disable_per_advertising_sync(hdev, instance);
1456 
1457 	if (instance) {
1458 		adv = hci_find_adv_instance(hdev, instance);
1459 		/* Create an instance if that could not be found */
1460 		if (!adv) {
1461 			adv = hci_add_per_instance(hdev, instance, flags,
1462 						   data_len, data,
1463 						   sync_interval,
1464 						   sync_interval);
1465 			if (IS_ERR(adv))
1466 				return PTR_ERR(adv);
1467 			adv->pending = false;
1468 			added = true;
1469 		}
1470 	}
1471 
1472 	/* Start advertising */
1473 	err = hci_start_ext_adv_sync(hdev, instance);
1474 	if (err < 0)
1475 		goto fail;
1476 
1477 	err = hci_adv_bcast_annoucement(hdev, adv);
1478 	if (err < 0)
1479 		goto fail;
1480 
1481 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1482 					  max_interval);
1483 	if (err < 0)
1484 		goto fail;
1485 
1486 	err = hci_set_per_adv_data_sync(hdev, instance);
1487 	if (err < 0)
1488 		goto fail;
1489 
1490 	err = hci_enable_per_advertising_sync(hdev, instance);
1491 	if (err < 0)
1492 		goto fail;
1493 
1494 	return 0;
1495 
1496 fail:
1497 	if (added)
1498 		hci_remove_adv_instance(hdev, instance);
1499 
1500 	return err;
1501 }
1502 
1503 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1504 {
1505 	int err;
1506 
1507 	if (ext_adv_capable(hdev))
1508 		return hci_start_ext_adv_sync(hdev, instance);
1509 
1510 	err = hci_update_adv_data_sync(hdev, instance);
1511 	if (err)
1512 		return err;
1513 
1514 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1515 	if (err)
1516 		return err;
1517 
1518 	return hci_enable_advertising_sync(hdev);
1519 }
1520 
1521 int hci_enable_advertising_sync(struct hci_dev *hdev)
1522 {
1523 	struct adv_info *adv_instance;
1524 	struct hci_cp_le_set_adv_param cp;
1525 	u8 own_addr_type, enable = 0x01;
1526 	bool connectable;
1527 	u16 adv_min_interval, adv_max_interval;
1528 	u32 flags;
1529 	u8 status;
1530 
1531 	if (ext_adv_capable(hdev))
1532 		return hci_enable_ext_advertising_sync(hdev,
1533 						       hdev->cur_adv_instance);
1534 
1535 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1536 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1537 
1538 	/* If the "connectable" instance flag was not set, then choose between
1539 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1540 	 */
1541 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1542 		      mgmt_get_connectable(hdev);
1543 
1544 	if (!is_advertising_allowed(hdev, connectable))
1545 		return -EINVAL;
1546 
1547 	status = hci_disable_advertising_sync(hdev);
1548 	if (status)
1549 		return status;
1550 
1551 	/* Clear the HCI_LE_ADV bit temporarily so that the
1552 	 * hci_update_random_address knows that it's safe to go ahead
1553 	 * and write a new random address. The flag will be set back on
1554 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1555 	 */
1556 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1557 
1558 	/* Set require_privacy to true only when non-connectable
1559 	 * advertising is used. In that case it is fine to use a
1560 	 * non-resolvable private address.
1561 	 */
1562 	status = hci_update_random_address_sync(hdev, !connectable,
1563 						adv_use_rpa(hdev, flags),
1564 						&own_addr_type);
1565 	if (status)
1566 		return status;
1567 
1568 	memset(&cp, 0, sizeof(cp));
1569 
1570 	if (adv_instance) {
1571 		adv_min_interval = adv_instance->min_interval;
1572 		adv_max_interval = adv_instance->max_interval;
1573 	} else {
1574 		adv_min_interval = hdev->le_adv_min_interval;
1575 		adv_max_interval = hdev->le_adv_max_interval;
1576 	}
1577 
1578 	if (connectable) {
1579 		cp.type = LE_ADV_IND;
1580 	} else {
1581 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1582 			cp.type = LE_ADV_SCAN_IND;
1583 		else
1584 			cp.type = LE_ADV_NONCONN_IND;
1585 
1586 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1587 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1588 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1589 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1590 		}
1591 	}
1592 
1593 	cp.min_interval = cpu_to_le16(adv_min_interval);
1594 	cp.max_interval = cpu_to_le16(adv_max_interval);
1595 	cp.own_address_type = own_addr_type;
1596 	cp.channel_map = hdev->le_adv_channel_map;
1597 
1598 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1599 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1600 	if (status)
1601 		return status;
1602 
1603 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1604 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1605 }
1606 
1607 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1608 {
1609 	return hci_enable_advertising_sync(hdev);
1610 }
1611 
1612 int hci_enable_advertising(struct hci_dev *hdev)
1613 {
1614 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1615 	    list_empty(&hdev->adv_instances))
1616 		return 0;
1617 
1618 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1619 }
1620 
1621 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1622 				     struct sock *sk)
1623 {
1624 	int err;
1625 
1626 	if (!ext_adv_capable(hdev))
1627 		return 0;
1628 
1629 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1630 	if (err)
1631 		return err;
1632 
1633 	/* If request specifies an instance that doesn't exist, fail */
1634 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1635 		return -EINVAL;
1636 
1637 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1638 					sizeof(instance), &instance, 0,
1639 					HCI_CMD_TIMEOUT, sk);
1640 }
1641 
1642 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1643 {
1644 	struct adv_info *adv = data;
1645 	u8 instance = 0;
1646 
1647 	if (adv)
1648 		instance = adv->instance;
1649 
1650 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1651 }
1652 
1653 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1654 {
1655 	struct adv_info *adv = NULL;
1656 
1657 	if (instance) {
1658 		adv = hci_find_adv_instance(hdev, instance);
1659 		if (!adv)
1660 			return -EINVAL;
1661 	}
1662 
1663 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1664 }
1665 
1666 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1667 {
1668 	struct hci_cp_le_term_big cp;
1669 
1670 	memset(&cp, 0, sizeof(cp));
1671 	cp.handle = handle;
1672 	cp.reason = reason;
1673 
1674 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1675 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1676 }
1677 
1678 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1679 {
1680 	struct {
1681 		struct hci_cp_le_set_ext_adv_data cp;
1682 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1683 	} pdu;
1684 	u8 len;
1685 	struct adv_info *adv = NULL;
1686 	int err;
1687 
1688 	memset(&pdu, 0, sizeof(pdu));
1689 
1690 	if (instance) {
1691 		adv = hci_find_adv_instance(hdev, instance);
1692 		if (!adv || !adv->adv_data_changed)
1693 			return 0;
1694 	}
1695 
1696 	len = eir_create_adv_data(hdev, instance, pdu.data);
1697 
1698 	pdu.cp.length = len;
1699 	pdu.cp.handle = instance;
1700 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1701 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1702 
1703 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1704 				    sizeof(pdu.cp) + len, &pdu.cp,
1705 				    HCI_CMD_TIMEOUT);
1706 	if (err)
1707 		return err;
1708 
1709 	/* Update data if the command succeed */
1710 	if (adv) {
1711 		adv->adv_data_changed = false;
1712 	} else {
1713 		memcpy(hdev->adv_data, pdu.data, len);
1714 		hdev->adv_data_len = len;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1721 {
1722 	struct hci_cp_le_set_adv_data cp;
1723 	u8 len;
1724 
1725 	memset(&cp, 0, sizeof(cp));
1726 
1727 	len = eir_create_adv_data(hdev, instance, cp.data);
1728 
1729 	/* There's nothing to do if the data hasn't changed */
1730 	if (hdev->adv_data_len == len &&
1731 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1732 		return 0;
1733 
1734 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1735 	hdev->adv_data_len = len;
1736 
1737 	cp.length = len;
1738 
1739 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1740 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1741 }
1742 
1743 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1744 {
1745 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1746 		return 0;
1747 
1748 	if (ext_adv_capable(hdev))
1749 		return hci_set_ext_adv_data_sync(hdev, instance);
1750 
1751 	return hci_set_adv_data_sync(hdev, instance);
1752 }
1753 
1754 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1755 				   bool force)
1756 {
1757 	struct adv_info *adv = NULL;
1758 	u16 timeout;
1759 
1760 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1761 		return -EPERM;
1762 
1763 	if (hdev->adv_instance_timeout)
1764 		return -EBUSY;
1765 
1766 	adv = hci_find_adv_instance(hdev, instance);
1767 	if (!adv)
1768 		return -ENOENT;
1769 
1770 	/* A zero timeout means unlimited advertising. As long as there is
1771 	 * only one instance, duration should be ignored. We still set a timeout
1772 	 * in case further instances are being added later on.
1773 	 *
1774 	 * If the remaining lifetime of the instance is more than the duration
1775 	 * then the timeout corresponds to the duration, otherwise it will be
1776 	 * reduced to the remaining instance lifetime.
1777 	 */
1778 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1779 		timeout = adv->duration;
1780 	else
1781 		timeout = adv->remaining_time;
1782 
1783 	/* The remaining time is being reduced unless the instance is being
1784 	 * advertised without time limit.
1785 	 */
1786 	if (adv->timeout)
1787 		adv->remaining_time = adv->remaining_time - timeout;
1788 
1789 	/* Only use work for scheduling instances with legacy advertising */
1790 	if (!ext_adv_capable(hdev)) {
1791 		hdev->adv_instance_timeout = timeout;
1792 		queue_delayed_work(hdev->req_workqueue,
1793 				   &hdev->adv_instance_expire,
1794 				   msecs_to_jiffies(timeout * 1000));
1795 	}
1796 
1797 	/* If we're just re-scheduling the same instance again then do not
1798 	 * execute any HCI commands. This happens when a single instance is
1799 	 * being advertised.
1800 	 */
1801 	if (!force && hdev->cur_adv_instance == instance &&
1802 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1803 		return 0;
1804 
1805 	hdev->cur_adv_instance = instance;
1806 
1807 	return hci_start_adv_sync(hdev, instance);
1808 }
1809 
1810 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1811 {
1812 	int err;
1813 
1814 	if (!ext_adv_capable(hdev))
1815 		return 0;
1816 
1817 	/* Disable instance 0x00 to disable all instances */
1818 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1819 	if (err)
1820 		return err;
1821 
1822 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1823 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1824 }
1825 
1826 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1827 {
1828 	struct adv_info *adv, *n;
1829 	int err = 0;
1830 
1831 	if (ext_adv_capable(hdev))
1832 		/* Remove all existing sets */
1833 		err = hci_clear_adv_sets_sync(hdev, sk);
1834 	if (ext_adv_capable(hdev))
1835 		return err;
1836 
1837 	/* This is safe as long as there is no command send while the lock is
1838 	 * held.
1839 	 */
1840 	hci_dev_lock(hdev);
1841 
1842 	/* Cleanup non-ext instances */
1843 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1844 		u8 instance = adv->instance;
1845 		int err;
1846 
1847 		if (!(force || adv->timeout))
1848 			continue;
1849 
1850 		err = hci_remove_adv_instance(hdev, instance);
1851 		if (!err)
1852 			mgmt_advertising_removed(sk, hdev, instance);
1853 	}
1854 
1855 	hci_dev_unlock(hdev);
1856 
1857 	return 0;
1858 }
1859 
1860 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1861 			       struct sock *sk)
1862 {
1863 	int err = 0;
1864 
1865 	/* If we use extended advertising, instance has to be removed first. */
1866 	if (ext_adv_capable(hdev))
1867 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1868 	if (ext_adv_capable(hdev))
1869 		return err;
1870 
1871 	/* This is safe as long as there is no command send while the lock is
1872 	 * held.
1873 	 */
1874 	hci_dev_lock(hdev);
1875 
1876 	err = hci_remove_adv_instance(hdev, instance);
1877 	if (!err)
1878 		mgmt_advertising_removed(sk, hdev, instance);
1879 
1880 	hci_dev_unlock(hdev);
1881 
1882 	return err;
1883 }
1884 
1885 /* For a single instance:
1886  * - force == true: The instance will be removed even when its remaining
1887  *   lifetime is not zero.
1888  * - force == false: the instance will be deactivated but kept stored unless
1889  *   the remaining lifetime is zero.
1890  *
1891  * For instance == 0x00:
1892  * - force == true: All instances will be removed regardless of their timeout
1893  *   setting.
1894  * - force == false: Only instances that have a timeout will be removed.
1895  */
1896 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1897 				u8 instance, bool force)
1898 {
1899 	struct adv_info *next = NULL;
1900 	int err;
1901 
1902 	/* Cancel any timeout concerning the removed instance(s). */
1903 	if (!instance || hdev->cur_adv_instance == instance)
1904 		cancel_adv_timeout(hdev);
1905 
1906 	/* Get the next instance to advertise BEFORE we remove
1907 	 * the current one. This can be the same instance again
1908 	 * if there is only one instance.
1909 	 */
1910 	if (hdev->cur_adv_instance == instance)
1911 		next = hci_get_next_instance(hdev, instance);
1912 
1913 	if (!instance) {
1914 		err = hci_clear_adv_sync(hdev, sk, force);
1915 		if (err)
1916 			return err;
1917 	} else {
1918 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1919 
1920 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1921 			/* Don't advertise a removed instance. */
1922 			if (next && next->instance == instance)
1923 				next = NULL;
1924 
1925 			err = hci_remove_adv_sync(hdev, instance, sk);
1926 			if (err)
1927 				return err;
1928 		}
1929 	}
1930 
1931 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1932 		return 0;
1933 
1934 	if (next && !ext_adv_capable(hdev))
1935 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1936 
1937 	return 0;
1938 }
1939 
1940 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1941 {
1942 	struct hci_cp_read_rssi cp;
1943 
1944 	cp.handle = handle;
1945 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1946 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1947 }
1948 
1949 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1950 {
1951 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1952 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1953 }
1954 
1955 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1956 {
1957 	struct hci_cp_read_tx_power cp;
1958 
1959 	cp.handle = handle;
1960 	cp.type = type;
1961 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1962 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1963 }
1964 
1965 int hci_disable_advertising_sync(struct hci_dev *hdev)
1966 {
1967 	u8 enable = 0x00;
1968 	int err = 0;
1969 
1970 	/* If controller is not advertising we are done. */
1971 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1972 		return 0;
1973 
1974 	if (ext_adv_capable(hdev))
1975 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1976 	if (ext_adv_capable(hdev))
1977 		return err;
1978 
1979 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1980 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1981 }
1982 
1983 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1984 					   u8 filter_dup)
1985 {
1986 	struct hci_cp_le_set_ext_scan_enable cp;
1987 
1988 	memset(&cp, 0, sizeof(cp));
1989 	cp.enable = val;
1990 
1991 	if (hci_dev_test_flag(hdev, HCI_MESH))
1992 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1993 	else
1994 		cp.filter_dup = filter_dup;
1995 
1996 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1997 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1998 }
1999 
2000 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2001 				       u8 filter_dup)
2002 {
2003 	struct hci_cp_le_set_scan_enable cp;
2004 
2005 	if (use_ext_scan(hdev))
2006 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2007 
2008 	memset(&cp, 0, sizeof(cp));
2009 	cp.enable = val;
2010 
2011 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2012 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2013 	else
2014 		cp.filter_dup = filter_dup;
2015 
2016 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2017 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2018 }
2019 
2020 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2021 {
2022 	if (!use_ll_privacy(hdev))
2023 		return 0;
2024 
2025 	/* If controller is not/already resolving we are done. */
2026 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2027 		return 0;
2028 
2029 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2030 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2031 }
2032 
2033 static int hci_scan_disable_sync(struct hci_dev *hdev)
2034 {
2035 	int err;
2036 
2037 	/* If controller is not scanning we are done. */
2038 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2039 		return 0;
2040 
2041 	if (hdev->scanning_paused) {
2042 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2043 		return 0;
2044 	}
2045 
2046 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2047 	if (err) {
2048 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2049 		return err;
2050 	}
2051 
2052 	return err;
2053 }
2054 
2055 static bool scan_use_rpa(struct hci_dev *hdev)
2056 {
2057 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2058 }
2059 
2060 static void hci_start_interleave_scan(struct hci_dev *hdev)
2061 {
2062 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2063 	queue_delayed_work(hdev->req_workqueue,
2064 			   &hdev->interleave_scan, 0);
2065 }
2066 
2067 static bool is_interleave_scanning(struct hci_dev *hdev)
2068 {
2069 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2070 }
2071 
2072 static void cancel_interleave_scan(struct hci_dev *hdev)
2073 {
2074 	bt_dev_dbg(hdev, "cancelling interleave scan");
2075 
2076 	cancel_delayed_work_sync(&hdev->interleave_scan);
2077 
2078 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2079 }
2080 
2081 /* Return true if interleave_scan wasn't started until exiting this function,
2082  * otherwise, return false
2083  */
2084 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2085 {
2086 	/* Do interleaved scan only if all of the following are true:
2087 	 * - There is at least one ADV monitor
2088 	 * - At least one pending LE connection or one device to be scanned for
2089 	 * - Monitor offloading is not supported
2090 	 * If so, we should alternate between allowlist scan and one without
2091 	 * any filters to save power.
2092 	 */
2093 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2094 				!(list_empty(&hdev->pend_le_conns) &&
2095 				  list_empty(&hdev->pend_le_reports)) &&
2096 				hci_get_adv_monitor_offload_ext(hdev) ==
2097 				    HCI_ADV_MONITOR_EXT_NONE;
2098 	bool is_interleaving = is_interleave_scanning(hdev);
2099 
2100 	if (use_interleaving && !is_interleaving) {
2101 		hci_start_interleave_scan(hdev);
2102 		bt_dev_dbg(hdev, "starting interleave scan");
2103 		return true;
2104 	}
2105 
2106 	if (!use_interleaving && is_interleaving)
2107 		cancel_interleave_scan(hdev);
2108 
2109 	return false;
2110 }
2111 
2112 /* Removes connection to resolve list if needed.*/
2113 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2114 					bdaddr_t *bdaddr, u8 bdaddr_type)
2115 {
2116 	struct hci_cp_le_del_from_resolv_list cp;
2117 	struct bdaddr_list_with_irk *entry;
2118 
2119 	if (!use_ll_privacy(hdev))
2120 		return 0;
2121 
2122 	/* Check if the IRK has been programmed */
2123 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2124 						bdaddr_type);
2125 	if (!entry)
2126 		return 0;
2127 
2128 	cp.bdaddr_type = bdaddr_type;
2129 	bacpy(&cp.bdaddr, bdaddr);
2130 
2131 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2132 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2133 }
2134 
2135 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2136 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2137 {
2138 	struct hci_cp_le_del_from_accept_list cp;
2139 	int err;
2140 
2141 	/* Check if device is on accept list before removing it */
2142 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2143 		return 0;
2144 
2145 	cp.bdaddr_type = bdaddr_type;
2146 	bacpy(&cp.bdaddr, bdaddr);
2147 
2148 	/* Ignore errors when removing from resolving list as that is likely
2149 	 * that the device was never added.
2150 	 */
2151 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2152 
2153 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2154 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2155 	if (err) {
2156 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2157 		return err;
2158 	}
2159 
2160 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2161 		   cp.bdaddr_type);
2162 
2163 	return 0;
2164 }
2165 
2166 struct conn_params {
2167 	bdaddr_t addr;
2168 	u8 addr_type;
2169 	hci_conn_flags_t flags;
2170 	u8 privacy_mode;
2171 };
2172 
2173 /* Adds connection to resolve list if needed.
2174  * Setting params to NULL programs local hdev->irk
2175  */
2176 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2177 					struct conn_params *params)
2178 {
2179 	struct hci_cp_le_add_to_resolv_list cp;
2180 	struct smp_irk *irk;
2181 	struct bdaddr_list_with_irk *entry;
2182 	struct hci_conn_params *p;
2183 
2184 	if (!use_ll_privacy(hdev))
2185 		return 0;
2186 
2187 	/* Attempt to program local identity address, type and irk if params is
2188 	 * NULL.
2189 	 */
2190 	if (!params) {
2191 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2192 			return 0;
2193 
2194 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2195 		memcpy(cp.peer_irk, hdev->irk, 16);
2196 		goto done;
2197 	}
2198 
2199 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2200 	if (!irk)
2201 		return 0;
2202 
2203 	/* Check if the IK has _not_ been programmed yet. */
2204 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2205 						&params->addr,
2206 						params->addr_type);
2207 	if (entry)
2208 		return 0;
2209 
2210 	cp.bdaddr_type = params->addr_type;
2211 	bacpy(&cp.bdaddr, &params->addr);
2212 	memcpy(cp.peer_irk, irk->val, 16);
2213 
2214 	/* Default privacy mode is always Network */
2215 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2216 
2217 	rcu_read_lock();
2218 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2219 				      &params->addr, params->addr_type);
2220 	if (!p)
2221 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2222 					      &params->addr, params->addr_type);
2223 	if (p)
2224 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2225 	rcu_read_unlock();
2226 
2227 done:
2228 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2229 		memcpy(cp.local_irk, hdev->irk, 16);
2230 	else
2231 		memset(cp.local_irk, 0, 16);
2232 
2233 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2234 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2235 }
2236 
2237 /* Set Device Privacy Mode. */
2238 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2239 					struct conn_params *params)
2240 {
2241 	struct hci_cp_le_set_privacy_mode cp;
2242 	struct smp_irk *irk;
2243 
2244 	/* If device privacy mode has already been set there is nothing to do */
2245 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2246 		return 0;
2247 
2248 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2249 	 * indicates that LL Privacy has been enabled and
2250 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2251 	 */
2252 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2253 		return 0;
2254 
2255 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2256 	if (!irk)
2257 		return 0;
2258 
2259 	memset(&cp, 0, sizeof(cp));
2260 	cp.bdaddr_type = irk->addr_type;
2261 	bacpy(&cp.bdaddr, &irk->bdaddr);
2262 	cp.mode = HCI_DEVICE_PRIVACY;
2263 
2264 	/* Note: params->privacy_mode is not updated since it is a copy */
2265 
2266 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2267 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2268 }
2269 
2270 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2271  * this attempts to program the device in the resolving list as well and
2272  * properly set the privacy mode.
2273  */
2274 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2275 				       struct conn_params *params,
2276 				       u8 *num_entries)
2277 {
2278 	struct hci_cp_le_add_to_accept_list cp;
2279 	int err;
2280 
2281 	/* During suspend, only wakeable devices can be in acceptlist */
2282 	if (hdev->suspended &&
2283 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2284 		hci_le_del_accept_list_sync(hdev, &params->addr,
2285 					    params->addr_type);
2286 		return 0;
2287 	}
2288 
2289 	/* Select filter policy to accept all advertising */
2290 	if (*num_entries >= hdev->le_accept_list_size)
2291 		return -ENOSPC;
2292 
2293 	/* Accept list can not be used with RPAs */
2294 	if (!use_ll_privacy(hdev) &&
2295 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2296 		return -EINVAL;
2297 
2298 	/* Attempt to program the device in the resolving list first to avoid
2299 	 * having to rollback in case it fails since the resolving list is
2300 	 * dynamic it can probably be smaller than the accept list.
2301 	 */
2302 	err = hci_le_add_resolve_list_sync(hdev, params);
2303 	if (err) {
2304 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2305 		return err;
2306 	}
2307 
2308 	/* Set Privacy Mode */
2309 	err = hci_le_set_privacy_mode_sync(hdev, params);
2310 	if (err) {
2311 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2312 		return err;
2313 	}
2314 
2315 	/* Check if already in accept list */
2316 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2317 				   params->addr_type))
2318 		return 0;
2319 
2320 	*num_entries += 1;
2321 	cp.bdaddr_type = params->addr_type;
2322 	bacpy(&cp.bdaddr, &params->addr);
2323 
2324 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2325 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2326 	if (err) {
2327 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2328 		/* Rollback the device from the resolving list */
2329 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2330 		return err;
2331 	}
2332 
2333 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2334 		   cp.bdaddr_type);
2335 
2336 	return 0;
2337 }
2338 
2339 /* This function disables/pause all advertising instances */
2340 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2341 {
2342 	int err;
2343 	int old_state;
2344 
2345 	/* If already been paused there is nothing to do. */
2346 	if (hdev->advertising_paused)
2347 		return 0;
2348 
2349 	bt_dev_dbg(hdev, "Pausing directed advertising");
2350 
2351 	/* Stop directed advertising */
2352 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2353 	if (old_state) {
2354 		/* When discoverable timeout triggers, then just make sure
2355 		 * the limited discoverable flag is cleared. Even in the case
2356 		 * of a timeout triggered from general discoverable, it is
2357 		 * safe to unconditionally clear the flag.
2358 		 */
2359 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2360 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2361 		hdev->discov_timeout = 0;
2362 	}
2363 
2364 	bt_dev_dbg(hdev, "Pausing advertising instances");
2365 
2366 	/* Call to disable any advertisements active on the controller.
2367 	 * This will succeed even if no advertisements are configured.
2368 	 */
2369 	err = hci_disable_advertising_sync(hdev);
2370 	if (err)
2371 		return err;
2372 
2373 	/* If we are using software rotation, pause the loop */
2374 	if (!ext_adv_capable(hdev))
2375 		cancel_adv_timeout(hdev);
2376 
2377 	hdev->advertising_paused = true;
2378 	hdev->advertising_old_state = old_state;
2379 
2380 	return 0;
2381 }
2382 
2383 /* This function enables all user advertising instances */
2384 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2385 {
2386 	struct adv_info *adv, *tmp;
2387 	int err;
2388 
2389 	/* If advertising has not been paused there is nothing  to do. */
2390 	if (!hdev->advertising_paused)
2391 		return 0;
2392 
2393 	/* Resume directed advertising */
2394 	hdev->advertising_paused = false;
2395 	if (hdev->advertising_old_state) {
2396 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2397 		hdev->advertising_old_state = 0;
2398 	}
2399 
2400 	bt_dev_dbg(hdev, "Resuming advertising instances");
2401 
2402 	if (ext_adv_capable(hdev)) {
2403 		/* Call for each tracked instance to be re-enabled */
2404 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2405 			err = hci_enable_ext_advertising_sync(hdev,
2406 							      adv->instance);
2407 			if (!err)
2408 				continue;
2409 
2410 			/* If the instance cannot be resumed remove it */
2411 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2412 							 NULL);
2413 		}
2414 	} else {
2415 		/* Schedule for most recent instance to be restarted and begin
2416 		 * the software rotation loop
2417 		 */
2418 		err = hci_schedule_adv_instance_sync(hdev,
2419 						     hdev->cur_adv_instance,
2420 						     true);
2421 	}
2422 
2423 	hdev->advertising_paused = false;
2424 
2425 	return err;
2426 }
2427 
2428 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2429 {
2430 	int err;
2431 
2432 	if (!use_ll_privacy(hdev))
2433 		return 0;
2434 
2435 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2436 		return 0;
2437 
2438 	/* Cannot disable addr resolution if scanning is enabled or
2439 	 * when initiating an LE connection.
2440 	 */
2441 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2442 	    hci_lookup_le_connect(hdev)) {
2443 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2444 		return -EPERM;
2445 	}
2446 
2447 	/* Cannot disable addr resolution if advertising is enabled. */
2448 	err = hci_pause_advertising_sync(hdev);
2449 	if (err) {
2450 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2451 		return err;
2452 	}
2453 
2454 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2455 	if (err)
2456 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2457 			   err);
2458 
2459 	/* Return if address resolution is disabled and RPA is not used. */
2460 	if (!err && scan_use_rpa(hdev))
2461 		return 0;
2462 
2463 	hci_resume_advertising_sync(hdev);
2464 	return err;
2465 }
2466 
2467 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2468 					     bool extended, struct sock *sk)
2469 {
2470 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2471 					HCI_OP_READ_LOCAL_OOB_DATA;
2472 
2473 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2474 }
2475 
2476 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2477 {
2478 	struct hci_conn_params *params;
2479 	struct conn_params *p;
2480 	size_t i;
2481 
2482 	rcu_read_lock();
2483 
2484 	i = 0;
2485 	list_for_each_entry_rcu(params, list, action)
2486 		++i;
2487 	*n = i;
2488 
2489 	rcu_read_unlock();
2490 
2491 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2492 	if (!p)
2493 		return NULL;
2494 
2495 	rcu_read_lock();
2496 
2497 	i = 0;
2498 	list_for_each_entry_rcu(params, list, action) {
2499 		/* Racing adds are handled in next scan update */
2500 		if (i >= *n)
2501 			break;
2502 
2503 		/* No hdev->lock, but: addr, addr_type are immutable.
2504 		 * privacy_mode is only written by us or in
2505 		 * hci_cc_le_set_privacy_mode that we wait for.
2506 		 * We should be idempotent so MGMT updating flags
2507 		 * while we are processing is OK.
2508 		 */
2509 		bacpy(&p[i].addr, &params->addr);
2510 		p[i].addr_type = params->addr_type;
2511 		p[i].flags = READ_ONCE(params->flags);
2512 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2513 		++i;
2514 	}
2515 
2516 	rcu_read_unlock();
2517 
2518 	*n = i;
2519 	return p;
2520 }
2521 
2522 /* Device must not be scanning when updating the accept list.
2523  *
2524  * Update is done using the following sequence:
2525  *
2526  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2527  * Remove Devices From Accept List ->
2528  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2529  * Add Devices to Accept List ->
2530  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2531  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2532  * Enable Scanning
2533  *
2534  * In case of failure advertising shall be restored to its original state and
2535  * return would disable accept list since either accept or resolving list could
2536  * not be programmed.
2537  *
2538  */
2539 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2540 {
2541 	struct conn_params *params;
2542 	struct bdaddr_list *b, *t;
2543 	u8 num_entries = 0;
2544 	bool pend_conn, pend_report;
2545 	u8 filter_policy;
2546 	size_t i, n;
2547 	int err;
2548 
2549 	/* Pause advertising if resolving list can be used as controllers
2550 	 * cannot accept resolving list modifications while advertising.
2551 	 */
2552 	if (use_ll_privacy(hdev)) {
2553 		err = hci_pause_advertising_sync(hdev);
2554 		if (err) {
2555 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2556 			return 0x00;
2557 		}
2558 	}
2559 
2560 	/* Disable address resolution while reprogramming accept list since
2561 	 * devices that do have an IRK will be programmed in the resolving list
2562 	 * when LL Privacy is enabled.
2563 	 */
2564 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2565 	if (err) {
2566 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2567 		goto done;
2568 	}
2569 
2570 	/* Go through the current accept list programmed into the
2571 	 * controller one by one and check if that address is connected or is
2572 	 * still in the list of pending connections or list of devices to
2573 	 * report. If not present in either list, then remove it from
2574 	 * the controller.
2575 	 */
2576 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2577 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2578 			continue;
2579 
2580 		/* Pointers not dereferenced, no locks needed */
2581 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2582 						      &b->bdaddr,
2583 						      b->bdaddr_type);
2584 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2585 							&b->bdaddr,
2586 							b->bdaddr_type);
2587 
2588 		/* If the device is not likely to connect or report,
2589 		 * remove it from the acceptlist.
2590 		 */
2591 		if (!pend_conn && !pend_report) {
2592 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2593 						    b->bdaddr_type);
2594 			continue;
2595 		}
2596 
2597 		num_entries++;
2598 	}
2599 
2600 	/* Since all no longer valid accept list entries have been
2601 	 * removed, walk through the list of pending connections
2602 	 * and ensure that any new device gets programmed into
2603 	 * the controller.
2604 	 *
2605 	 * If the list of the devices is larger than the list of
2606 	 * available accept list entries in the controller, then
2607 	 * just abort and return filer policy value to not use the
2608 	 * accept list.
2609 	 *
2610 	 * The list and params may be mutated while we wait for events,
2611 	 * so make a copy and iterate it.
2612 	 */
2613 
2614 	params = conn_params_copy(&hdev->pend_le_conns, &n);
2615 	if (!params) {
2616 		err = -ENOMEM;
2617 		goto done;
2618 	}
2619 
2620 	for (i = 0; i < n; ++i) {
2621 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2622 						  &num_entries);
2623 		if (err) {
2624 			kvfree(params);
2625 			goto done;
2626 		}
2627 	}
2628 
2629 	kvfree(params);
2630 
2631 	/* After adding all new pending connections, walk through
2632 	 * the list of pending reports and also add these to the
2633 	 * accept list if there is still space. Abort if space runs out.
2634 	 */
2635 
2636 	params = conn_params_copy(&hdev->pend_le_reports, &n);
2637 	if (!params) {
2638 		err = -ENOMEM;
2639 		goto done;
2640 	}
2641 
2642 	for (i = 0; i < n; ++i) {
2643 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2644 						  &num_entries);
2645 		if (err) {
2646 			kvfree(params);
2647 			goto done;
2648 		}
2649 	}
2650 
2651 	kvfree(params);
2652 
2653 	/* Use the allowlist unless the following conditions are all true:
2654 	 * - We are not currently suspending
2655 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2656 	 * - Interleaved scanning is not currently using the allowlist
2657 	 */
2658 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2659 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2660 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2661 		err = -EINVAL;
2662 
2663 done:
2664 	filter_policy = err ? 0x00 : 0x01;
2665 
2666 	/* Enable address resolution when LL Privacy is enabled. */
2667 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2668 	if (err)
2669 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2670 
2671 	/* Resume advertising if it was paused */
2672 	if (use_ll_privacy(hdev))
2673 		hci_resume_advertising_sync(hdev);
2674 
2675 	/* Select filter policy to use accept list */
2676 	return filter_policy;
2677 }
2678 
2679 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2680 					  u16 interval, u16 window,
2681 					  u8 own_addr_type, u8 filter_policy)
2682 {
2683 	struct hci_cp_le_set_ext_scan_params *cp;
2684 	struct hci_cp_le_scan_phy_params *phy;
2685 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2686 	u8 num_phy = 0;
2687 
2688 	cp = (void *)data;
2689 	phy = (void *)cp->data;
2690 
2691 	memset(data, 0, sizeof(data));
2692 
2693 	cp->own_addr_type = own_addr_type;
2694 	cp->filter_policy = filter_policy;
2695 
2696 	if (scan_1m(hdev) || scan_2m(hdev)) {
2697 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2698 
2699 		phy->type = type;
2700 		phy->interval = cpu_to_le16(interval);
2701 		phy->window = cpu_to_le16(window);
2702 
2703 		num_phy++;
2704 		phy++;
2705 	}
2706 
2707 	if (scan_coded(hdev)) {
2708 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2709 
2710 		phy->type = type;
2711 		phy->interval = cpu_to_le16(interval);
2712 		phy->window = cpu_to_le16(window);
2713 
2714 		num_phy++;
2715 		phy++;
2716 	}
2717 
2718 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2719 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2720 				     data, HCI_CMD_TIMEOUT);
2721 }
2722 
2723 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2724 				      u16 interval, u16 window,
2725 				      u8 own_addr_type, u8 filter_policy)
2726 {
2727 	struct hci_cp_le_set_scan_param cp;
2728 
2729 	if (use_ext_scan(hdev))
2730 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2731 						      window, own_addr_type,
2732 						      filter_policy);
2733 
2734 	memset(&cp, 0, sizeof(cp));
2735 	cp.type = type;
2736 	cp.interval = cpu_to_le16(interval);
2737 	cp.window = cpu_to_le16(window);
2738 	cp.own_address_type = own_addr_type;
2739 	cp.filter_policy = filter_policy;
2740 
2741 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2742 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2743 }
2744 
2745 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2746 			       u16 window, u8 own_addr_type, u8 filter_policy,
2747 			       u8 filter_dup)
2748 {
2749 	int err;
2750 
2751 	if (hdev->scanning_paused) {
2752 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2753 		return 0;
2754 	}
2755 
2756 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2757 					 own_addr_type, filter_policy);
2758 	if (err)
2759 		return err;
2760 
2761 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2762 }
2763 
2764 static int hci_passive_scan_sync(struct hci_dev *hdev)
2765 {
2766 	u8 own_addr_type;
2767 	u8 filter_policy;
2768 	u16 window, interval;
2769 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2770 	int err;
2771 
2772 	if (hdev->scanning_paused) {
2773 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2774 		return 0;
2775 	}
2776 
2777 	err = hci_scan_disable_sync(hdev);
2778 	if (err) {
2779 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2780 		return err;
2781 	}
2782 
2783 	/* Set require_privacy to false since no SCAN_REQ are send
2784 	 * during passive scanning. Not using an non-resolvable address
2785 	 * here is important so that peer devices using direct
2786 	 * advertising with our address will be correctly reported
2787 	 * by the controller.
2788 	 */
2789 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2790 					   &own_addr_type))
2791 		return 0;
2792 
2793 	if (hdev->enable_advmon_interleave_scan &&
2794 	    hci_update_interleaved_scan_sync(hdev))
2795 		return 0;
2796 
2797 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2798 
2799 	/* Adding or removing entries from the accept list must
2800 	 * happen before enabling scanning. The controller does
2801 	 * not allow accept list modification while scanning.
2802 	 */
2803 	filter_policy = hci_update_accept_list_sync(hdev);
2804 
2805 	/* When the controller is using random resolvable addresses and
2806 	 * with that having LE privacy enabled, then controllers with
2807 	 * Extended Scanner Filter Policies support can now enable support
2808 	 * for handling directed advertising.
2809 	 *
2810 	 * So instead of using filter polices 0x00 (no acceptlist)
2811 	 * and 0x01 (acceptlist enabled) use the new filter policies
2812 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2813 	 */
2814 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2815 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2816 		filter_policy |= 0x02;
2817 
2818 	if (hdev->suspended) {
2819 		window = hdev->le_scan_window_suspend;
2820 		interval = hdev->le_scan_int_suspend;
2821 	} else if (hci_is_le_conn_scanning(hdev)) {
2822 		window = hdev->le_scan_window_connect;
2823 		interval = hdev->le_scan_int_connect;
2824 	} else if (hci_is_adv_monitoring(hdev)) {
2825 		window = hdev->le_scan_window_adv_monitor;
2826 		interval = hdev->le_scan_int_adv_monitor;
2827 	} else {
2828 		window = hdev->le_scan_window;
2829 		interval = hdev->le_scan_interval;
2830 	}
2831 
2832 	/* Disable all filtering for Mesh */
2833 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2834 		filter_policy = 0;
2835 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2836 	}
2837 
2838 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2839 
2840 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2841 				   own_addr_type, filter_policy, filter_dups);
2842 }
2843 
2844 /* This function controls the passive scanning based on hdev->pend_le_conns
2845  * list. If there are pending LE connection we start the background scanning,
2846  * otherwise we stop it in the following sequence:
2847  *
2848  * If there are devices to scan:
2849  *
2850  * Disable Scanning -> Update Accept List ->
2851  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2852  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2853  * Enable Scanning
2854  *
2855  * Otherwise:
2856  *
2857  * Disable Scanning
2858  */
2859 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2860 {
2861 	int err;
2862 
2863 	if (!test_bit(HCI_UP, &hdev->flags) ||
2864 	    test_bit(HCI_INIT, &hdev->flags) ||
2865 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2866 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2867 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2868 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2869 		return 0;
2870 
2871 	/* No point in doing scanning if LE support hasn't been enabled */
2872 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2873 		return 0;
2874 
2875 	/* If discovery is active don't interfere with it */
2876 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2877 		return 0;
2878 
2879 	/* Reset RSSI and UUID filters when starting background scanning
2880 	 * since these filters are meant for service discovery only.
2881 	 *
2882 	 * The Start Discovery and Start Service Discovery operations
2883 	 * ensure to set proper values for RSSI threshold and UUID
2884 	 * filter list. So it is safe to just reset them here.
2885 	 */
2886 	hci_discovery_filter_clear(hdev);
2887 
2888 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2889 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2890 
2891 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2892 	    list_empty(&hdev->pend_le_conns) &&
2893 	    list_empty(&hdev->pend_le_reports) &&
2894 	    !hci_is_adv_monitoring(hdev) &&
2895 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2896 		/* If there is no pending LE connections or devices
2897 		 * to be scanned for or no ADV monitors, we should stop the
2898 		 * background scanning.
2899 		 */
2900 
2901 		bt_dev_dbg(hdev, "stopping background scanning");
2902 
2903 		err = hci_scan_disable_sync(hdev);
2904 		if (err)
2905 			bt_dev_err(hdev, "stop background scanning failed: %d",
2906 				   err);
2907 	} else {
2908 		/* If there is at least one pending LE connection, we should
2909 		 * keep the background scan running.
2910 		 */
2911 
2912 		/* If controller is connecting, we should not start scanning
2913 		 * since some controllers are not able to scan and connect at
2914 		 * the same time.
2915 		 */
2916 		if (hci_lookup_le_connect(hdev))
2917 			return 0;
2918 
2919 		bt_dev_dbg(hdev, "start background scanning");
2920 
2921 		err = hci_passive_scan_sync(hdev);
2922 		if (err)
2923 			bt_dev_err(hdev, "start background scanning failed: %d",
2924 				   err);
2925 	}
2926 
2927 	return err;
2928 }
2929 
2930 static int update_scan_sync(struct hci_dev *hdev, void *data)
2931 {
2932 	return hci_update_scan_sync(hdev);
2933 }
2934 
2935 int hci_update_scan(struct hci_dev *hdev)
2936 {
2937 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2938 }
2939 
2940 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2941 {
2942 	return hci_update_passive_scan_sync(hdev);
2943 }
2944 
2945 int hci_update_passive_scan(struct hci_dev *hdev)
2946 {
2947 	/* Only queue if it would have any effect */
2948 	if (!test_bit(HCI_UP, &hdev->flags) ||
2949 	    test_bit(HCI_INIT, &hdev->flags) ||
2950 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2951 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2952 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2953 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2954 		return 0;
2955 
2956 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2957 }
2958 
2959 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2960 {
2961 	int err;
2962 
2963 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2964 		return 0;
2965 
2966 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2967 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2968 
2969 	if (!err) {
2970 		if (val) {
2971 			hdev->features[1][0] |= LMP_HOST_SC;
2972 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2973 		} else {
2974 			hdev->features[1][0] &= ~LMP_HOST_SC;
2975 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2976 		}
2977 	}
2978 
2979 	return err;
2980 }
2981 
2982 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2983 {
2984 	int err;
2985 
2986 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2987 	    lmp_host_ssp_capable(hdev))
2988 		return 0;
2989 
2990 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2991 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2992 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2993 	}
2994 
2995 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2996 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2997 	if (err)
2998 		return err;
2999 
3000 	return hci_write_sc_support_sync(hdev, 0x01);
3001 }
3002 
3003 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3004 {
3005 	struct hci_cp_write_le_host_supported cp;
3006 
3007 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3008 	    !lmp_bredr_capable(hdev))
3009 		return 0;
3010 
3011 	/* Check first if we already have the right host state
3012 	 * (host features set)
3013 	 */
3014 	if (le == lmp_host_le_capable(hdev) &&
3015 	    simul == lmp_host_le_br_capable(hdev))
3016 		return 0;
3017 
3018 	memset(&cp, 0, sizeof(cp));
3019 
3020 	cp.le = le;
3021 	cp.simul = simul;
3022 
3023 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3024 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3025 }
3026 
3027 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3028 {
3029 	struct adv_info *adv, *tmp;
3030 	int err;
3031 
3032 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3033 		return 0;
3034 
3035 	/* If RPA Resolution has not been enable yet it means the
3036 	 * resolving list is empty and we should attempt to program the
3037 	 * local IRK in order to support using own_addr_type
3038 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3039 	 */
3040 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3041 		hci_le_add_resolve_list_sync(hdev, NULL);
3042 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3043 	}
3044 
3045 	/* Make sure the controller has a good default for
3046 	 * advertising data. This also applies to the case
3047 	 * where BR/EDR was toggled during the AUTO_OFF phase.
3048 	 */
3049 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3050 	    list_empty(&hdev->adv_instances)) {
3051 		if (ext_adv_capable(hdev)) {
3052 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3053 			if (!err)
3054 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3055 		} else {
3056 			err = hci_update_adv_data_sync(hdev, 0x00);
3057 			if (!err)
3058 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3059 		}
3060 
3061 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3062 			hci_enable_advertising_sync(hdev);
3063 	}
3064 
3065 	/* Call for each tracked instance to be scheduled */
3066 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3067 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3068 
3069 	return 0;
3070 }
3071 
3072 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3073 {
3074 	u8 link_sec;
3075 
3076 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3077 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3078 		return 0;
3079 
3080 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3081 				     sizeof(link_sec), &link_sec,
3082 				     HCI_CMD_TIMEOUT);
3083 }
3084 
3085 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3086 {
3087 	struct hci_cp_write_page_scan_activity cp;
3088 	u8 type;
3089 	int err = 0;
3090 
3091 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3092 		return 0;
3093 
3094 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3095 		return 0;
3096 
3097 	memset(&cp, 0, sizeof(cp));
3098 
3099 	if (enable) {
3100 		type = PAGE_SCAN_TYPE_INTERLACED;
3101 
3102 		/* 160 msec page scan interval */
3103 		cp.interval = cpu_to_le16(0x0100);
3104 	} else {
3105 		type = hdev->def_page_scan_type;
3106 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3107 	}
3108 
3109 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3110 
3111 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3112 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3113 		err = __hci_cmd_sync_status(hdev,
3114 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3115 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3116 		if (err)
3117 			return err;
3118 	}
3119 
3120 	if (hdev->page_scan_type != type)
3121 		err = __hci_cmd_sync_status(hdev,
3122 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3123 					    sizeof(type), &type,
3124 					    HCI_CMD_TIMEOUT);
3125 
3126 	return err;
3127 }
3128 
3129 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3130 {
3131 	struct bdaddr_list *b;
3132 
3133 	list_for_each_entry(b, &hdev->accept_list, list) {
3134 		struct hci_conn *conn;
3135 
3136 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3137 		if (!conn)
3138 			return true;
3139 
3140 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3141 			return true;
3142 	}
3143 
3144 	return false;
3145 }
3146 
3147 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3148 {
3149 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3150 					    sizeof(val), &val,
3151 					    HCI_CMD_TIMEOUT);
3152 }
3153 
3154 int hci_update_scan_sync(struct hci_dev *hdev)
3155 {
3156 	u8 scan;
3157 
3158 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3159 		return 0;
3160 
3161 	if (!hdev_is_powered(hdev))
3162 		return 0;
3163 
3164 	if (mgmt_powering_down(hdev))
3165 		return 0;
3166 
3167 	if (hdev->scanning_paused)
3168 		return 0;
3169 
3170 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3171 	    disconnected_accept_list_entries(hdev))
3172 		scan = SCAN_PAGE;
3173 	else
3174 		scan = SCAN_DISABLED;
3175 
3176 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3177 		scan |= SCAN_INQUIRY;
3178 
3179 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3180 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3181 		return 0;
3182 
3183 	return hci_write_scan_enable_sync(hdev, scan);
3184 }
3185 
3186 int hci_update_name_sync(struct hci_dev *hdev)
3187 {
3188 	struct hci_cp_write_local_name cp;
3189 
3190 	memset(&cp, 0, sizeof(cp));
3191 
3192 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3193 
3194 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3195 					    sizeof(cp), &cp,
3196 					    HCI_CMD_TIMEOUT);
3197 }
3198 
3199 /* This function perform powered update HCI command sequence after the HCI init
3200  * sequence which end up resetting all states, the sequence is as follows:
3201  *
3202  * HCI_SSP_ENABLED(Enable SSP)
3203  * HCI_LE_ENABLED(Enable LE)
3204  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3205  * Update adv data)
3206  * Enable Authentication
3207  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3208  * Set Name -> Set EIR)
3209  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3210  */
3211 int hci_powered_update_sync(struct hci_dev *hdev)
3212 {
3213 	int err;
3214 
3215 	/* Register the available SMP channels (BR/EDR and LE) only when
3216 	 * successfully powering on the controller. This late
3217 	 * registration is required so that LE SMP can clearly decide if
3218 	 * the public address or static address is used.
3219 	 */
3220 	smp_register(hdev);
3221 
3222 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3223 	if (err)
3224 		return err;
3225 
3226 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3227 	if (err)
3228 		return err;
3229 
3230 	err = hci_powered_update_adv_sync(hdev);
3231 	if (err)
3232 		return err;
3233 
3234 	err = hci_write_auth_enable_sync(hdev);
3235 	if (err)
3236 		return err;
3237 
3238 	if (lmp_bredr_capable(hdev)) {
3239 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3240 			hci_write_fast_connectable_sync(hdev, true);
3241 		else
3242 			hci_write_fast_connectable_sync(hdev, false);
3243 		hci_update_scan_sync(hdev);
3244 		hci_update_class_sync(hdev);
3245 		hci_update_name_sync(hdev);
3246 		hci_update_eir_sync(hdev);
3247 	}
3248 
3249 	/* If forcing static address is in use or there is no public
3250 	 * address use the static address as random address (but skip
3251 	 * the HCI command if the current random address is already the
3252 	 * static one.
3253 	 *
3254 	 * In case BR/EDR has been disabled on a dual-mode controller
3255 	 * and a static address has been configured, then use that
3256 	 * address instead of the public BR/EDR address.
3257 	 */
3258 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3259 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3260 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3261 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3262 			return hci_set_random_addr_sync(hdev,
3263 							&hdev->static_addr);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 /**
3270  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3271  *				       (BD_ADDR) for a HCI device from
3272  *				       a firmware node property.
3273  * @hdev:	The HCI device
3274  *
3275  * Search the firmware node for 'local-bd-address'.
3276  *
3277  * All-zero BD addresses are rejected, because those could be properties
3278  * that exist in the firmware tables, but were not updated by the firmware. For
3279  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3280  */
3281 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3282 {
3283 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3284 	bdaddr_t ba;
3285 	int ret;
3286 
3287 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3288 					    (u8 *)&ba, sizeof(ba));
3289 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3290 		return;
3291 
3292 	bacpy(&hdev->public_addr, &ba);
3293 }
3294 
3295 struct hci_init_stage {
3296 	int (*func)(struct hci_dev *hdev);
3297 };
3298 
3299 /* Run init stage NULL terminated function table */
3300 static int hci_init_stage_sync(struct hci_dev *hdev,
3301 			       const struct hci_init_stage *stage)
3302 {
3303 	size_t i;
3304 
3305 	for (i = 0; stage[i].func; i++) {
3306 		int err;
3307 
3308 		err = stage[i].func(hdev);
3309 		if (err)
3310 			return err;
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 /* Read Local Version */
3317 static int hci_read_local_version_sync(struct hci_dev *hdev)
3318 {
3319 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3320 				     0, NULL, HCI_CMD_TIMEOUT);
3321 }
3322 
3323 /* Read BD Address */
3324 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3325 {
3326 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3327 				     0, NULL, HCI_CMD_TIMEOUT);
3328 }
3329 
3330 #define HCI_INIT(_func) \
3331 { \
3332 	.func = _func, \
3333 }
3334 
3335 static const struct hci_init_stage hci_init0[] = {
3336 	/* HCI_OP_READ_LOCAL_VERSION */
3337 	HCI_INIT(hci_read_local_version_sync),
3338 	/* HCI_OP_READ_BD_ADDR */
3339 	HCI_INIT(hci_read_bd_addr_sync),
3340 	{}
3341 };
3342 
3343 int hci_reset_sync(struct hci_dev *hdev)
3344 {
3345 	int err;
3346 
3347 	set_bit(HCI_RESET, &hdev->flags);
3348 
3349 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3350 				    HCI_CMD_TIMEOUT);
3351 	if (err)
3352 		return err;
3353 
3354 	return 0;
3355 }
3356 
3357 static int hci_init0_sync(struct hci_dev *hdev)
3358 {
3359 	int err;
3360 
3361 	bt_dev_dbg(hdev, "");
3362 
3363 	/* Reset */
3364 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3365 		err = hci_reset_sync(hdev);
3366 		if (err)
3367 			return err;
3368 	}
3369 
3370 	return hci_init_stage_sync(hdev, hci_init0);
3371 }
3372 
3373 static int hci_unconf_init_sync(struct hci_dev *hdev)
3374 {
3375 	int err;
3376 
3377 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3378 		return 0;
3379 
3380 	err = hci_init0_sync(hdev);
3381 	if (err < 0)
3382 		return err;
3383 
3384 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3385 		hci_debugfs_create_basic(hdev);
3386 
3387 	return 0;
3388 }
3389 
3390 /* Read Local Supported Features. */
3391 static int hci_read_local_features_sync(struct hci_dev *hdev)
3392 {
3393 	 /* Not all AMP controllers support this command */
3394 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3395 		return 0;
3396 
3397 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3398 				     0, NULL, HCI_CMD_TIMEOUT);
3399 }
3400 
3401 /* BR Controller init stage 1 command sequence */
3402 static const struct hci_init_stage br_init1[] = {
3403 	/* HCI_OP_READ_LOCAL_FEATURES */
3404 	HCI_INIT(hci_read_local_features_sync),
3405 	/* HCI_OP_READ_LOCAL_VERSION */
3406 	HCI_INIT(hci_read_local_version_sync),
3407 	/* HCI_OP_READ_BD_ADDR */
3408 	HCI_INIT(hci_read_bd_addr_sync),
3409 	{}
3410 };
3411 
3412 /* Read Local Commands */
3413 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3414 {
3415 	/* All Bluetooth 1.2 and later controllers should support the
3416 	 * HCI command for reading the local supported commands.
3417 	 *
3418 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3419 	 * but do not have support for this command. If that is the case,
3420 	 * the driver can quirk the behavior and skip reading the local
3421 	 * supported commands.
3422 	 */
3423 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3424 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3425 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3426 					     0, NULL, HCI_CMD_TIMEOUT);
3427 
3428 	return 0;
3429 }
3430 
3431 /* Read Local AMP Info */
3432 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3433 {
3434 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3435 				     0, NULL, HCI_CMD_TIMEOUT);
3436 }
3437 
3438 /* Read Data Blk size */
3439 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3440 {
3441 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3442 				     0, NULL, HCI_CMD_TIMEOUT);
3443 }
3444 
3445 /* Read Flow Control Mode */
3446 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3447 {
3448 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3449 				     0, NULL, HCI_CMD_TIMEOUT);
3450 }
3451 
3452 /* Read Location Data */
3453 static int hci_read_location_data_sync(struct hci_dev *hdev)
3454 {
3455 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3456 				     0, NULL, HCI_CMD_TIMEOUT);
3457 }
3458 
3459 /* AMP Controller init stage 1 command sequence */
3460 static const struct hci_init_stage amp_init1[] = {
3461 	/* HCI_OP_READ_LOCAL_VERSION */
3462 	HCI_INIT(hci_read_local_version_sync),
3463 	/* HCI_OP_READ_LOCAL_COMMANDS */
3464 	HCI_INIT(hci_read_local_cmds_sync),
3465 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3466 	HCI_INIT(hci_read_local_amp_info_sync),
3467 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3468 	HCI_INIT(hci_read_data_block_size_sync),
3469 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3470 	HCI_INIT(hci_read_flow_control_mode_sync),
3471 	/* HCI_OP_READ_LOCATION_DATA */
3472 	HCI_INIT(hci_read_location_data_sync),
3473 	{}
3474 };
3475 
3476 static int hci_init1_sync(struct hci_dev *hdev)
3477 {
3478 	int err;
3479 
3480 	bt_dev_dbg(hdev, "");
3481 
3482 	/* Reset */
3483 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3484 		err = hci_reset_sync(hdev);
3485 		if (err)
3486 			return err;
3487 	}
3488 
3489 	switch (hdev->dev_type) {
3490 	case HCI_PRIMARY:
3491 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3492 		return hci_init_stage_sync(hdev, br_init1);
3493 	case HCI_AMP:
3494 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3495 		return hci_init_stage_sync(hdev, amp_init1);
3496 	default:
3497 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3498 		break;
3499 	}
3500 
3501 	return 0;
3502 }
3503 
3504 /* AMP Controller init stage 2 command sequence */
3505 static const struct hci_init_stage amp_init2[] = {
3506 	/* HCI_OP_READ_LOCAL_FEATURES */
3507 	HCI_INIT(hci_read_local_features_sync),
3508 	{}
3509 };
3510 
3511 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3512 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3513 {
3514 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3515 				     0, NULL, HCI_CMD_TIMEOUT);
3516 }
3517 
3518 /* Read Class of Device */
3519 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3520 {
3521 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3522 				     0, NULL, HCI_CMD_TIMEOUT);
3523 }
3524 
3525 /* Read Local Name */
3526 static int hci_read_local_name_sync(struct hci_dev *hdev)
3527 {
3528 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3529 				     0, NULL, HCI_CMD_TIMEOUT);
3530 }
3531 
3532 /* Read Voice Setting */
3533 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3534 {
3535 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3536 				     0, NULL, HCI_CMD_TIMEOUT);
3537 }
3538 
3539 /* Read Number of Supported IAC */
3540 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3541 {
3542 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3543 				     0, NULL, HCI_CMD_TIMEOUT);
3544 }
3545 
3546 /* Read Current IAC LAP */
3547 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3548 {
3549 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3550 				     0, NULL, HCI_CMD_TIMEOUT);
3551 }
3552 
3553 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3554 				     u8 cond_type, bdaddr_t *bdaddr,
3555 				     u8 auto_accept)
3556 {
3557 	struct hci_cp_set_event_filter cp;
3558 
3559 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3560 		return 0;
3561 
3562 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3563 		return 0;
3564 
3565 	memset(&cp, 0, sizeof(cp));
3566 	cp.flt_type = flt_type;
3567 
3568 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3569 		cp.cond_type = cond_type;
3570 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3571 		cp.addr_conn_flt.auto_accept = auto_accept;
3572 	}
3573 
3574 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3575 				     flt_type == HCI_FLT_CLEAR_ALL ?
3576 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3577 				     HCI_CMD_TIMEOUT);
3578 }
3579 
3580 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3581 {
3582 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3583 		return 0;
3584 
3585 	/* In theory the state machine should not reach here unless
3586 	 * a hci_set_event_filter_sync() call succeeds, but we do
3587 	 * the check both for parity and as a future reminder.
3588 	 */
3589 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3590 		return 0;
3591 
3592 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3593 					 BDADDR_ANY, 0x00);
3594 }
3595 
3596 /* Connection accept timeout ~20 secs */
3597 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3598 {
3599 	__le16 param = cpu_to_le16(0x7d00);
3600 
3601 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3602 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3603 }
3604 
3605 /* BR Controller init stage 2 command sequence */
3606 static const struct hci_init_stage br_init2[] = {
3607 	/* HCI_OP_READ_BUFFER_SIZE */
3608 	HCI_INIT(hci_read_buffer_size_sync),
3609 	/* HCI_OP_READ_CLASS_OF_DEV */
3610 	HCI_INIT(hci_read_dev_class_sync),
3611 	/* HCI_OP_READ_LOCAL_NAME */
3612 	HCI_INIT(hci_read_local_name_sync),
3613 	/* HCI_OP_READ_VOICE_SETTING */
3614 	HCI_INIT(hci_read_voice_setting_sync),
3615 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3616 	HCI_INIT(hci_read_num_supported_iac_sync),
3617 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3618 	HCI_INIT(hci_read_current_iac_lap_sync),
3619 	/* HCI_OP_SET_EVENT_FLT */
3620 	HCI_INIT(hci_clear_event_filter_sync),
3621 	/* HCI_OP_WRITE_CA_TIMEOUT */
3622 	HCI_INIT(hci_write_ca_timeout_sync),
3623 	{}
3624 };
3625 
3626 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3627 {
3628 	u8 mode = 0x01;
3629 
3630 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3631 		return 0;
3632 
3633 	/* When SSP is available, then the host features page
3634 	 * should also be available as well. However some
3635 	 * controllers list the max_page as 0 as long as SSP
3636 	 * has not been enabled. To achieve proper debugging
3637 	 * output, force the minimum max_page to 1 at least.
3638 	 */
3639 	hdev->max_page = 0x01;
3640 
3641 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3642 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3643 }
3644 
3645 static int hci_write_eir_sync(struct hci_dev *hdev)
3646 {
3647 	struct hci_cp_write_eir cp;
3648 
3649 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3650 		return 0;
3651 
3652 	memset(hdev->eir, 0, sizeof(hdev->eir));
3653 	memset(&cp, 0, sizeof(cp));
3654 
3655 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3656 				     HCI_CMD_TIMEOUT);
3657 }
3658 
3659 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3660 {
3661 	u8 mode;
3662 
3663 	if (!lmp_inq_rssi_capable(hdev) &&
3664 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3665 		return 0;
3666 
3667 	/* If Extended Inquiry Result events are supported, then
3668 	 * they are clearly preferred over Inquiry Result with RSSI
3669 	 * events.
3670 	 */
3671 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3672 
3673 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3674 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3675 }
3676 
3677 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3678 {
3679 	if (!lmp_inq_tx_pwr_capable(hdev))
3680 		return 0;
3681 
3682 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3683 				     0, NULL, HCI_CMD_TIMEOUT);
3684 }
3685 
3686 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3687 {
3688 	struct hci_cp_read_local_ext_features cp;
3689 
3690 	if (!lmp_ext_feat_capable(hdev))
3691 		return 0;
3692 
3693 	memset(&cp, 0, sizeof(cp));
3694 	cp.page = page;
3695 
3696 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3697 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3698 }
3699 
3700 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3701 {
3702 	return hci_read_local_ext_features_sync(hdev, 0x01);
3703 }
3704 
3705 /* HCI Controller init stage 2 command sequence */
3706 static const struct hci_init_stage hci_init2[] = {
3707 	/* HCI_OP_READ_LOCAL_COMMANDS */
3708 	HCI_INIT(hci_read_local_cmds_sync),
3709 	/* HCI_OP_WRITE_SSP_MODE */
3710 	HCI_INIT(hci_write_ssp_mode_1_sync),
3711 	/* HCI_OP_WRITE_EIR */
3712 	HCI_INIT(hci_write_eir_sync),
3713 	/* HCI_OP_WRITE_INQUIRY_MODE */
3714 	HCI_INIT(hci_write_inquiry_mode_sync),
3715 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3716 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3717 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3718 	HCI_INIT(hci_read_local_ext_features_1_sync),
3719 	/* HCI_OP_WRITE_AUTH_ENABLE */
3720 	HCI_INIT(hci_write_auth_enable_sync),
3721 	{}
3722 };
3723 
3724 /* Read LE Buffer Size */
3725 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3726 {
3727 	/* Use Read LE Buffer Size V2 if supported */
3728 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3729 		return __hci_cmd_sync_status(hdev,
3730 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3731 					     0, NULL, HCI_CMD_TIMEOUT);
3732 
3733 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3734 				     0, NULL, HCI_CMD_TIMEOUT);
3735 }
3736 
3737 /* Read LE Local Supported Features */
3738 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3739 {
3740 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3741 				     0, NULL, HCI_CMD_TIMEOUT);
3742 }
3743 
3744 /* Read LE Supported States */
3745 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3746 {
3747 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3748 				     0, NULL, HCI_CMD_TIMEOUT);
3749 }
3750 
3751 /* LE Controller init stage 2 command sequence */
3752 static const struct hci_init_stage le_init2[] = {
3753 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3754 	HCI_INIT(hci_le_read_local_features_sync),
3755 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3756 	HCI_INIT(hci_le_read_buffer_size_sync),
3757 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3758 	HCI_INIT(hci_le_read_supported_states_sync),
3759 	{}
3760 };
3761 
3762 static int hci_init2_sync(struct hci_dev *hdev)
3763 {
3764 	int err;
3765 
3766 	bt_dev_dbg(hdev, "");
3767 
3768 	if (hdev->dev_type == HCI_AMP)
3769 		return hci_init_stage_sync(hdev, amp_init2);
3770 
3771 	err = hci_init_stage_sync(hdev, hci_init2);
3772 	if (err)
3773 		return err;
3774 
3775 	if (lmp_bredr_capable(hdev)) {
3776 		err = hci_init_stage_sync(hdev, br_init2);
3777 		if (err)
3778 			return err;
3779 	} else {
3780 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3781 	}
3782 
3783 	if (lmp_le_capable(hdev)) {
3784 		err = hci_init_stage_sync(hdev, le_init2);
3785 		if (err)
3786 			return err;
3787 		/* LE-only controllers have LE implicitly enabled */
3788 		if (!lmp_bredr_capable(hdev))
3789 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3796 {
3797 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3798 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3799 	 * command otherwise.
3800 	 */
3801 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3802 
3803 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3804 	 * any event mask for pre 1.2 devices.
3805 	 */
3806 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3807 		return 0;
3808 
3809 	if (lmp_bredr_capable(hdev)) {
3810 		events[4] |= 0x01; /* Flow Specification Complete */
3811 
3812 		/* Don't set Disconnect Complete and mode change when
3813 		 * suspended as that would wakeup the host when disconnecting
3814 		 * due to suspend.
3815 		 */
3816 		if (hdev->suspended) {
3817 			events[0] &= 0xef;
3818 			events[2] &= 0xf7;
3819 		}
3820 	} else {
3821 		/* Use a different default for LE-only devices */
3822 		memset(events, 0, sizeof(events));
3823 		events[1] |= 0x20; /* Command Complete */
3824 		events[1] |= 0x40; /* Command Status */
3825 		events[1] |= 0x80; /* Hardware Error */
3826 
3827 		/* If the controller supports the Disconnect command, enable
3828 		 * the corresponding event. In addition enable packet flow
3829 		 * control related events.
3830 		 */
3831 		if (hdev->commands[0] & 0x20) {
3832 			/* Don't set Disconnect Complete when suspended as that
3833 			 * would wakeup the host when disconnecting due to
3834 			 * suspend.
3835 			 */
3836 			if (!hdev->suspended)
3837 				events[0] |= 0x10; /* Disconnection Complete */
3838 			events[2] |= 0x04; /* Number of Completed Packets */
3839 			events[3] |= 0x02; /* Data Buffer Overflow */
3840 		}
3841 
3842 		/* If the controller supports the Read Remote Version
3843 		 * Information command, enable the corresponding event.
3844 		 */
3845 		if (hdev->commands[2] & 0x80)
3846 			events[1] |= 0x08; /* Read Remote Version Information
3847 					    * Complete
3848 					    */
3849 
3850 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3851 			events[0] |= 0x80; /* Encryption Change */
3852 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3853 		}
3854 	}
3855 
3856 	if (lmp_inq_rssi_capable(hdev) ||
3857 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3858 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3859 
3860 	if (lmp_ext_feat_capable(hdev))
3861 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3862 
3863 	if (lmp_esco_capable(hdev)) {
3864 		events[5] |= 0x08; /* Synchronous Connection Complete */
3865 		events[5] |= 0x10; /* Synchronous Connection Changed */
3866 	}
3867 
3868 	if (lmp_sniffsubr_capable(hdev))
3869 		events[5] |= 0x20; /* Sniff Subrating */
3870 
3871 	if (lmp_pause_enc_capable(hdev))
3872 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3873 
3874 	if (lmp_ext_inq_capable(hdev))
3875 		events[5] |= 0x40; /* Extended Inquiry Result */
3876 
3877 	if (lmp_no_flush_capable(hdev))
3878 		events[7] |= 0x01; /* Enhanced Flush Complete */
3879 
3880 	if (lmp_lsto_capable(hdev))
3881 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3882 
3883 	if (lmp_ssp_capable(hdev)) {
3884 		events[6] |= 0x01;	/* IO Capability Request */
3885 		events[6] |= 0x02;	/* IO Capability Response */
3886 		events[6] |= 0x04;	/* User Confirmation Request */
3887 		events[6] |= 0x08;	/* User Passkey Request */
3888 		events[6] |= 0x10;	/* Remote OOB Data Request */
3889 		events[6] |= 0x20;	/* Simple Pairing Complete */
3890 		events[7] |= 0x04;	/* User Passkey Notification */
3891 		events[7] |= 0x08;	/* Keypress Notification */
3892 		events[7] |= 0x10;	/* Remote Host Supported
3893 					 * Features Notification
3894 					 */
3895 	}
3896 
3897 	if (lmp_le_capable(hdev))
3898 		events[7] |= 0x20;	/* LE Meta-Event */
3899 
3900 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3901 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3902 }
3903 
3904 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3905 {
3906 	struct hci_cp_read_stored_link_key cp;
3907 
3908 	if (!(hdev->commands[6] & 0x20) ||
3909 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3910 		return 0;
3911 
3912 	memset(&cp, 0, sizeof(cp));
3913 	bacpy(&cp.bdaddr, BDADDR_ANY);
3914 	cp.read_all = 0x01;
3915 
3916 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3917 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3918 }
3919 
3920 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3921 {
3922 	struct hci_cp_write_def_link_policy cp;
3923 	u16 link_policy = 0;
3924 
3925 	if (!(hdev->commands[5] & 0x10))
3926 		return 0;
3927 
3928 	memset(&cp, 0, sizeof(cp));
3929 
3930 	if (lmp_rswitch_capable(hdev))
3931 		link_policy |= HCI_LP_RSWITCH;
3932 	if (lmp_hold_capable(hdev))
3933 		link_policy |= HCI_LP_HOLD;
3934 	if (lmp_sniff_capable(hdev))
3935 		link_policy |= HCI_LP_SNIFF;
3936 	if (lmp_park_capable(hdev))
3937 		link_policy |= HCI_LP_PARK;
3938 
3939 	cp.policy = cpu_to_le16(link_policy);
3940 
3941 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3942 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3943 }
3944 
3945 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3946 {
3947 	if (!(hdev->commands[8] & 0x01))
3948 		return 0;
3949 
3950 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3951 				     0, NULL, HCI_CMD_TIMEOUT);
3952 }
3953 
3954 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3955 {
3956 	if (!(hdev->commands[18] & 0x04) ||
3957 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3958 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3959 		return 0;
3960 
3961 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3962 				     0, NULL, HCI_CMD_TIMEOUT);
3963 }
3964 
3965 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3966 {
3967 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3968 	 * support the Read Page Scan Type command. Check support for
3969 	 * this command in the bit mask of supported commands.
3970 	 */
3971 	if (!(hdev->commands[13] & 0x01))
3972 		return 0;
3973 
3974 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3975 				     0, NULL, HCI_CMD_TIMEOUT);
3976 }
3977 
3978 /* Read features beyond page 1 if available */
3979 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3980 {
3981 	u8 page;
3982 	int err;
3983 
3984 	if (!lmp_ext_feat_capable(hdev))
3985 		return 0;
3986 
3987 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3988 	     page++) {
3989 		err = hci_read_local_ext_features_sync(hdev, page);
3990 		if (err)
3991 			return err;
3992 	}
3993 
3994 	return 0;
3995 }
3996 
3997 /* HCI Controller init stage 3 command sequence */
3998 static const struct hci_init_stage hci_init3[] = {
3999 	/* HCI_OP_SET_EVENT_MASK */
4000 	HCI_INIT(hci_set_event_mask_sync),
4001 	/* HCI_OP_READ_STORED_LINK_KEY */
4002 	HCI_INIT(hci_read_stored_link_key_sync),
4003 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
4004 	HCI_INIT(hci_setup_link_policy_sync),
4005 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4006 	HCI_INIT(hci_read_page_scan_activity_sync),
4007 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4008 	HCI_INIT(hci_read_def_err_data_reporting_sync),
4009 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
4010 	HCI_INIT(hci_read_page_scan_type_sync),
4011 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4012 	HCI_INIT(hci_read_local_ext_features_all_sync),
4013 	{}
4014 };
4015 
4016 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4017 {
4018 	u8 events[8];
4019 
4020 	if (!lmp_le_capable(hdev))
4021 		return 0;
4022 
4023 	memset(events, 0, sizeof(events));
4024 
4025 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4026 		events[0] |= 0x10;	/* LE Long Term Key Request */
4027 
4028 	/* If controller supports the Connection Parameters Request
4029 	 * Link Layer Procedure, enable the corresponding event.
4030 	 */
4031 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4032 		/* LE Remote Connection Parameter Request */
4033 		events[0] |= 0x20;
4034 
4035 	/* If the controller supports the Data Length Extension
4036 	 * feature, enable the corresponding event.
4037 	 */
4038 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4039 		events[0] |= 0x40;	/* LE Data Length Change */
4040 
4041 	/* If the controller supports LL Privacy feature or LE Extended Adv,
4042 	 * enable the corresponding event.
4043 	 */
4044 	if (use_enhanced_conn_complete(hdev))
4045 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
4046 
4047 	/* If the controller supports Extended Scanner Filter
4048 	 * Policies, enable the corresponding event.
4049 	 */
4050 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4051 		events[1] |= 0x04;	/* LE Direct Advertising Report */
4052 
4053 	/* If the controller supports Channel Selection Algorithm #2
4054 	 * feature, enable the corresponding event.
4055 	 */
4056 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4057 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
4058 
4059 	/* If the controller supports the LE Set Scan Enable command,
4060 	 * enable the corresponding advertising report event.
4061 	 */
4062 	if (hdev->commands[26] & 0x08)
4063 		events[0] |= 0x02;	/* LE Advertising Report */
4064 
4065 	/* If the controller supports the LE Create Connection
4066 	 * command, enable the corresponding event.
4067 	 */
4068 	if (hdev->commands[26] & 0x10)
4069 		events[0] |= 0x01;	/* LE Connection Complete */
4070 
4071 	/* If the controller supports the LE Connection Update
4072 	 * command, enable the corresponding event.
4073 	 */
4074 	if (hdev->commands[27] & 0x04)
4075 		events[0] |= 0x04;	/* LE Connection Update Complete */
4076 
4077 	/* If the controller supports the LE Read Remote Used Features
4078 	 * command, enable the corresponding event.
4079 	 */
4080 	if (hdev->commands[27] & 0x20)
4081 		/* LE Read Remote Used Features Complete */
4082 		events[0] |= 0x08;
4083 
4084 	/* If the controller supports the LE Read Local P-256
4085 	 * Public Key command, enable the corresponding event.
4086 	 */
4087 	if (hdev->commands[34] & 0x02)
4088 		/* LE Read Local P-256 Public Key Complete */
4089 		events[0] |= 0x80;
4090 
4091 	/* If the controller supports the LE Generate DHKey
4092 	 * command, enable the corresponding event.
4093 	 */
4094 	if (hdev->commands[34] & 0x04)
4095 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4096 
4097 	/* If the controller supports the LE Set Default PHY or
4098 	 * LE Set PHY commands, enable the corresponding event.
4099 	 */
4100 	if (hdev->commands[35] & (0x20 | 0x40))
4101 		events[1] |= 0x08;        /* LE PHY Update Complete */
4102 
4103 	/* If the controller supports LE Set Extended Scan Parameters
4104 	 * and LE Set Extended Scan Enable commands, enable the
4105 	 * corresponding event.
4106 	 */
4107 	if (use_ext_scan(hdev))
4108 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4109 
4110 	/* If the controller supports the LE Extended Advertising
4111 	 * command, enable the corresponding event.
4112 	 */
4113 	if (ext_adv_capable(hdev))
4114 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4115 
4116 	if (cis_capable(hdev)) {
4117 		events[3] |= 0x01;	/* LE CIS Established */
4118 		if (cis_peripheral_capable(hdev))
4119 			events[3] |= 0x02; /* LE CIS Request */
4120 	}
4121 
4122 	if (bis_capable(hdev)) {
4123 		events[1] |= 0x20;	/* LE PA Report */
4124 		events[1] |= 0x40;	/* LE PA Sync Established */
4125 		events[3] |= 0x04;	/* LE Create BIG Complete */
4126 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4127 		events[3] |= 0x10;	/* LE BIG Sync Established */
4128 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4129 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
4130 	}
4131 
4132 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4133 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4134 }
4135 
4136 /* Read LE Advertising Channel TX Power */
4137 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4138 {
4139 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4140 		/* HCI TS spec forbids mixing of legacy and extended
4141 		 * advertising commands wherein READ_ADV_TX_POWER is
4142 		 * also included. So do not call it if extended adv
4143 		 * is supported otherwise controller will return
4144 		 * COMMAND_DISALLOWED for extended commands.
4145 		 */
4146 		return __hci_cmd_sync_status(hdev,
4147 					       HCI_OP_LE_READ_ADV_TX_POWER,
4148 					       0, NULL, HCI_CMD_TIMEOUT);
4149 	}
4150 
4151 	return 0;
4152 }
4153 
4154 /* Read LE Min/Max Tx Power*/
4155 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4156 {
4157 	if (!(hdev->commands[38] & 0x80) ||
4158 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4159 		return 0;
4160 
4161 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4162 				     0, NULL, HCI_CMD_TIMEOUT);
4163 }
4164 
4165 /* Read LE Accept List Size */
4166 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4167 {
4168 	if (!(hdev->commands[26] & 0x40))
4169 		return 0;
4170 
4171 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4172 				     0, NULL, HCI_CMD_TIMEOUT);
4173 }
4174 
4175 /* Clear LE Accept List */
4176 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4177 {
4178 	if (!(hdev->commands[26] & 0x80))
4179 		return 0;
4180 
4181 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4182 				     HCI_CMD_TIMEOUT);
4183 }
4184 
4185 /* Read LE Resolving List Size */
4186 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4187 {
4188 	if (!(hdev->commands[34] & 0x40))
4189 		return 0;
4190 
4191 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4192 				     0, NULL, HCI_CMD_TIMEOUT);
4193 }
4194 
4195 /* Clear LE Resolving List */
4196 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4197 {
4198 	if (!(hdev->commands[34] & 0x20))
4199 		return 0;
4200 
4201 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4202 				     HCI_CMD_TIMEOUT);
4203 }
4204 
4205 /* Set RPA timeout */
4206 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4207 {
4208 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4209 
4210 	if (!(hdev->commands[35] & 0x04) ||
4211 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4212 		return 0;
4213 
4214 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4215 				     sizeof(timeout), &timeout,
4216 				     HCI_CMD_TIMEOUT);
4217 }
4218 
4219 /* Read LE Maximum Data Length */
4220 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4221 {
4222 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4223 		return 0;
4224 
4225 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4226 				     HCI_CMD_TIMEOUT);
4227 }
4228 
4229 /* Read LE Suggested Default Data Length */
4230 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4231 {
4232 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4233 		return 0;
4234 
4235 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4236 				     HCI_CMD_TIMEOUT);
4237 }
4238 
4239 /* Read LE Number of Supported Advertising Sets */
4240 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4241 {
4242 	if (!ext_adv_capable(hdev))
4243 		return 0;
4244 
4245 	return __hci_cmd_sync_status(hdev,
4246 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4247 				     0, NULL, HCI_CMD_TIMEOUT);
4248 }
4249 
4250 /* Write LE Host Supported */
4251 static int hci_set_le_support_sync(struct hci_dev *hdev)
4252 {
4253 	struct hci_cp_write_le_host_supported cp;
4254 
4255 	/* LE-only devices do not support explicit enablement */
4256 	if (!lmp_bredr_capable(hdev))
4257 		return 0;
4258 
4259 	memset(&cp, 0, sizeof(cp));
4260 
4261 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4262 		cp.le = 0x01;
4263 		cp.simul = 0x00;
4264 	}
4265 
4266 	if (cp.le == lmp_host_le_capable(hdev))
4267 		return 0;
4268 
4269 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4270 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4271 }
4272 
4273 /* LE Set Host Feature */
4274 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4275 {
4276 	struct hci_cp_le_set_host_feature cp;
4277 
4278 	if (!iso_capable(hdev))
4279 		return 0;
4280 
4281 	memset(&cp, 0, sizeof(cp));
4282 
4283 	/* Isochronous Channels (Host Support) */
4284 	cp.bit_number = 32;
4285 	cp.bit_value = 1;
4286 
4287 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4288 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4289 }
4290 
4291 /* LE Controller init stage 3 command sequence */
4292 static const struct hci_init_stage le_init3[] = {
4293 	/* HCI_OP_LE_SET_EVENT_MASK */
4294 	HCI_INIT(hci_le_set_event_mask_sync),
4295 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4296 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4297 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4298 	HCI_INIT(hci_le_read_tx_power_sync),
4299 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4300 	HCI_INIT(hci_le_read_accept_list_size_sync),
4301 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4302 	HCI_INIT(hci_le_clear_accept_list_sync),
4303 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4304 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4305 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4306 	HCI_INIT(hci_le_clear_resolv_list_sync),
4307 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4308 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4309 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4310 	HCI_INIT(hci_le_read_max_data_len_sync),
4311 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4312 	HCI_INIT(hci_le_read_def_data_len_sync),
4313 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4314 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4315 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4316 	HCI_INIT(hci_set_le_support_sync),
4317 	/* HCI_OP_LE_SET_HOST_FEATURE */
4318 	HCI_INIT(hci_le_set_host_feature_sync),
4319 	{}
4320 };
4321 
4322 static int hci_init3_sync(struct hci_dev *hdev)
4323 {
4324 	int err;
4325 
4326 	bt_dev_dbg(hdev, "");
4327 
4328 	err = hci_init_stage_sync(hdev, hci_init3);
4329 	if (err)
4330 		return err;
4331 
4332 	if (lmp_le_capable(hdev))
4333 		return hci_init_stage_sync(hdev, le_init3);
4334 
4335 	return 0;
4336 }
4337 
4338 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4339 {
4340 	struct hci_cp_delete_stored_link_key cp;
4341 
4342 	/* Some Broadcom based Bluetooth controllers do not support the
4343 	 * Delete Stored Link Key command. They are clearly indicating its
4344 	 * absence in the bit mask of supported commands.
4345 	 *
4346 	 * Check the supported commands and only if the command is marked
4347 	 * as supported send it. If not supported assume that the controller
4348 	 * does not have actual support for stored link keys which makes this
4349 	 * command redundant anyway.
4350 	 *
4351 	 * Some controllers indicate that they support handling deleting
4352 	 * stored link keys, but they don't. The quirk lets a driver
4353 	 * just disable this command.
4354 	 */
4355 	if (!(hdev->commands[6] & 0x80) ||
4356 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4357 		return 0;
4358 
4359 	memset(&cp, 0, sizeof(cp));
4360 	bacpy(&cp.bdaddr, BDADDR_ANY);
4361 	cp.delete_all = 0x01;
4362 
4363 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4364 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4365 }
4366 
4367 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4368 {
4369 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4370 	bool changed = false;
4371 
4372 	/* Set event mask page 2 if the HCI command for it is supported */
4373 	if (!(hdev->commands[22] & 0x04))
4374 		return 0;
4375 
4376 	/* If Connectionless Peripheral Broadcast central role is supported
4377 	 * enable all necessary events for it.
4378 	 */
4379 	if (lmp_cpb_central_capable(hdev)) {
4380 		events[1] |= 0x40;	/* Triggered Clock Capture */
4381 		events[1] |= 0x80;	/* Synchronization Train Complete */
4382 		events[2] |= 0x08;	/* Truncated Page Complete */
4383 		events[2] |= 0x20;	/* CPB Channel Map Change */
4384 		changed = true;
4385 	}
4386 
4387 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4388 	 * enable all necessary events for it.
4389 	 */
4390 	if (lmp_cpb_peripheral_capable(hdev)) {
4391 		events[2] |= 0x01;	/* Synchronization Train Received */
4392 		events[2] |= 0x02;	/* CPB Receive */
4393 		events[2] |= 0x04;	/* CPB Timeout */
4394 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4395 		changed = true;
4396 	}
4397 
4398 	/* Enable Authenticated Payload Timeout Expired event if supported */
4399 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4400 		events[2] |= 0x80;
4401 		changed = true;
4402 	}
4403 
4404 	/* Some Broadcom based controllers indicate support for Set Event
4405 	 * Mask Page 2 command, but then actually do not support it. Since
4406 	 * the default value is all bits set to zero, the command is only
4407 	 * required if the event mask has to be changed. In case no change
4408 	 * to the event mask is needed, skip this command.
4409 	 */
4410 	if (!changed)
4411 		return 0;
4412 
4413 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4414 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4415 }
4416 
4417 /* Read local codec list if the HCI command is supported */
4418 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4419 {
4420 	if (hdev->commands[45] & 0x04)
4421 		hci_read_supported_codecs_v2(hdev);
4422 	else if (hdev->commands[29] & 0x20)
4423 		hci_read_supported_codecs(hdev);
4424 
4425 	return 0;
4426 }
4427 
4428 /* Read local pairing options if the HCI command is supported */
4429 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4430 {
4431 	if (!(hdev->commands[41] & 0x08))
4432 		return 0;
4433 
4434 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4435 				     0, NULL, HCI_CMD_TIMEOUT);
4436 }
4437 
4438 /* Get MWS transport configuration if the HCI command is supported */
4439 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4440 {
4441 	if (!mws_transport_config_capable(hdev))
4442 		return 0;
4443 
4444 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4445 				     0, NULL, HCI_CMD_TIMEOUT);
4446 }
4447 
4448 /* Check for Synchronization Train support */
4449 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4450 {
4451 	if (!lmp_sync_train_capable(hdev))
4452 		return 0;
4453 
4454 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4455 				     0, NULL, HCI_CMD_TIMEOUT);
4456 }
4457 
4458 /* Enable Secure Connections if supported and configured */
4459 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4460 {
4461 	u8 support = 0x01;
4462 
4463 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4464 	    !bredr_sc_enabled(hdev))
4465 		return 0;
4466 
4467 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4468 				     sizeof(support), &support,
4469 				     HCI_CMD_TIMEOUT);
4470 }
4471 
4472 /* Set erroneous data reporting if supported to the wideband speech
4473  * setting value
4474  */
4475 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4476 {
4477 	struct hci_cp_write_def_err_data_reporting cp;
4478 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4479 
4480 	if (!(hdev->commands[18] & 0x08) ||
4481 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4482 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4483 		return 0;
4484 
4485 	if (enabled == hdev->err_data_reporting)
4486 		return 0;
4487 
4488 	memset(&cp, 0, sizeof(cp));
4489 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4490 				ERR_DATA_REPORTING_DISABLED;
4491 
4492 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4493 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4494 }
4495 
4496 static const struct hci_init_stage hci_init4[] = {
4497 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4498 	HCI_INIT(hci_delete_stored_link_key_sync),
4499 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4500 	HCI_INIT(hci_set_event_mask_page_2_sync),
4501 	/* HCI_OP_READ_LOCAL_CODECS */
4502 	HCI_INIT(hci_read_local_codecs_sync),
4503 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4504 	HCI_INIT(hci_read_local_pairing_opts_sync),
4505 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4506 	HCI_INIT(hci_get_mws_transport_config_sync),
4507 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4508 	HCI_INIT(hci_read_sync_train_params_sync),
4509 	/* HCI_OP_WRITE_SC_SUPPORT */
4510 	HCI_INIT(hci_write_sc_support_1_sync),
4511 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4512 	HCI_INIT(hci_set_err_data_report_sync),
4513 	{}
4514 };
4515 
4516 /* Set Suggested Default Data Length to maximum if supported */
4517 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4518 {
4519 	struct hci_cp_le_write_def_data_len cp;
4520 
4521 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4522 		return 0;
4523 
4524 	memset(&cp, 0, sizeof(cp));
4525 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4526 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4527 
4528 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4529 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4530 }
4531 
4532 /* Set Default PHY parameters if command is supported, enables all supported
4533  * PHYs according to the LE Features bits.
4534  */
4535 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4536 {
4537 	struct hci_cp_le_set_default_phy cp;
4538 
4539 	if (!(hdev->commands[35] & 0x20)) {
4540 		/* If the command is not supported it means only 1M PHY is
4541 		 * supported.
4542 		 */
4543 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4544 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4545 		return 0;
4546 	}
4547 
4548 	memset(&cp, 0, sizeof(cp));
4549 	cp.all_phys = 0x00;
4550 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4551 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4552 
4553 	/* Enables 2M PHY if supported */
4554 	if (le_2m_capable(hdev)) {
4555 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4556 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4557 	}
4558 
4559 	/* Enables Coded PHY if supported */
4560 	if (le_coded_capable(hdev)) {
4561 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4562 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4563 	}
4564 
4565 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4566 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4567 }
4568 
4569 static const struct hci_init_stage le_init4[] = {
4570 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4571 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4572 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4573 	HCI_INIT(hci_le_set_default_phy_sync),
4574 	{}
4575 };
4576 
4577 static int hci_init4_sync(struct hci_dev *hdev)
4578 {
4579 	int err;
4580 
4581 	bt_dev_dbg(hdev, "");
4582 
4583 	err = hci_init_stage_sync(hdev, hci_init4);
4584 	if (err)
4585 		return err;
4586 
4587 	if (lmp_le_capable(hdev))
4588 		return hci_init_stage_sync(hdev, le_init4);
4589 
4590 	return 0;
4591 }
4592 
4593 static int hci_init_sync(struct hci_dev *hdev)
4594 {
4595 	int err;
4596 
4597 	err = hci_init1_sync(hdev);
4598 	if (err < 0)
4599 		return err;
4600 
4601 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4602 		hci_debugfs_create_basic(hdev);
4603 
4604 	err = hci_init2_sync(hdev);
4605 	if (err < 0)
4606 		return err;
4607 
4608 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4609 	 * BR/EDR/LE type controllers. AMP controllers only need the
4610 	 * first two stages of init.
4611 	 */
4612 	if (hdev->dev_type != HCI_PRIMARY)
4613 		return 0;
4614 
4615 	err = hci_init3_sync(hdev);
4616 	if (err < 0)
4617 		return err;
4618 
4619 	err = hci_init4_sync(hdev);
4620 	if (err < 0)
4621 		return err;
4622 
4623 	/* This function is only called when the controller is actually in
4624 	 * configured state. When the controller is marked as unconfigured,
4625 	 * this initialization procedure is not run.
4626 	 *
4627 	 * It means that it is possible that a controller runs through its
4628 	 * setup phase and then discovers missing settings. If that is the
4629 	 * case, then this function will not be called. It then will only
4630 	 * be called during the config phase.
4631 	 *
4632 	 * So only when in setup phase or config phase, create the debugfs
4633 	 * entries and register the SMP channels.
4634 	 */
4635 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4636 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4637 		return 0;
4638 
4639 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4640 		return 0;
4641 
4642 	hci_debugfs_create_common(hdev);
4643 
4644 	if (lmp_bredr_capable(hdev))
4645 		hci_debugfs_create_bredr(hdev);
4646 
4647 	if (lmp_le_capable(hdev))
4648 		hci_debugfs_create_le(hdev);
4649 
4650 	return 0;
4651 }
4652 
4653 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4654 
4655 static const struct {
4656 	unsigned long quirk;
4657 	const char *desc;
4658 } hci_broken_table[] = {
4659 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4660 			 "HCI Read Local Supported Commands not supported"),
4661 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4662 			 "HCI Delete Stored Link Key command is advertised, "
4663 			 "but not supported."),
4664 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4665 			 "HCI Read Default Erroneous Data Reporting command is "
4666 			 "advertised, but not supported."),
4667 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4668 			 "HCI Read Transmit Power Level command is advertised, "
4669 			 "but not supported."),
4670 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4671 			 "HCI Set Event Filter command not supported."),
4672 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4673 			 "HCI Enhanced Setup Synchronous Connection command is "
4674 			 "advertised, but not supported."),
4675 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4676 			 "HCI LE Set Random Private Address Timeout command is "
4677 			 "advertised, but not supported."),
4678 	HCI_QUIRK_BROKEN(LE_CODED,
4679 			 "HCI LE Coded PHY feature bit is set, "
4680 			 "but its usage is not supported.")
4681 };
4682 
4683 /* This function handles hdev setup stage:
4684  *
4685  * Calls hdev->setup
4686  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4687  */
4688 static int hci_dev_setup_sync(struct hci_dev *hdev)
4689 {
4690 	int ret = 0;
4691 	bool invalid_bdaddr;
4692 	size_t i;
4693 
4694 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4695 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4696 		return 0;
4697 
4698 	bt_dev_dbg(hdev, "");
4699 
4700 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4701 
4702 	if (hdev->setup)
4703 		ret = hdev->setup(hdev);
4704 
4705 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4706 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4707 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4708 	}
4709 
4710 	/* The transport driver can set the quirk to mark the
4711 	 * BD_ADDR invalid before creating the HCI device or in
4712 	 * its setup callback.
4713 	 */
4714 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4715 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4716 	if (!ret) {
4717 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4718 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
4719 			hci_dev_get_bd_addr_from_property(hdev);
4720 
4721 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4722 		    hdev->set_bdaddr) {
4723 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4724 			if (!ret)
4725 				invalid_bdaddr = false;
4726 		}
4727 	}
4728 
4729 	/* The transport driver can set these quirks before
4730 	 * creating the HCI device or in its setup callback.
4731 	 *
4732 	 * For the invalid BD_ADDR quirk it is possible that
4733 	 * it becomes a valid address if the bootloader does
4734 	 * provide it (see above).
4735 	 *
4736 	 * In case any of them is set, the controller has to
4737 	 * start up as unconfigured.
4738 	 */
4739 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4740 	    invalid_bdaddr)
4741 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4742 
4743 	/* For an unconfigured controller it is required to
4744 	 * read at least the version information provided by
4745 	 * the Read Local Version Information command.
4746 	 *
4747 	 * If the set_bdaddr driver callback is provided, then
4748 	 * also the original Bluetooth public device address
4749 	 * will be read using the Read BD Address command.
4750 	 */
4751 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4752 		return hci_unconf_init_sync(hdev);
4753 
4754 	return ret;
4755 }
4756 
4757 /* This function handles hdev init stage:
4758  *
4759  * Calls hci_dev_setup_sync to perform setup stage
4760  * Calls hci_init_sync to perform HCI command init sequence
4761  */
4762 static int hci_dev_init_sync(struct hci_dev *hdev)
4763 {
4764 	int ret;
4765 
4766 	bt_dev_dbg(hdev, "");
4767 
4768 	atomic_set(&hdev->cmd_cnt, 1);
4769 	set_bit(HCI_INIT, &hdev->flags);
4770 
4771 	ret = hci_dev_setup_sync(hdev);
4772 
4773 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4774 		/* If public address change is configured, ensure that
4775 		 * the address gets programmed. If the driver does not
4776 		 * support changing the public address, fail the power
4777 		 * on procedure.
4778 		 */
4779 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4780 		    hdev->set_bdaddr)
4781 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4782 		else
4783 			ret = -EADDRNOTAVAIL;
4784 	}
4785 
4786 	if (!ret) {
4787 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4788 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4789 			ret = hci_init_sync(hdev);
4790 			if (!ret && hdev->post_init)
4791 				ret = hdev->post_init(hdev);
4792 		}
4793 	}
4794 
4795 	/* If the HCI Reset command is clearing all diagnostic settings,
4796 	 * then they need to be reprogrammed after the init procedure
4797 	 * completed.
4798 	 */
4799 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4800 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4801 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4802 		ret = hdev->set_diag(hdev, true);
4803 
4804 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4805 		msft_do_open(hdev);
4806 		aosp_do_open(hdev);
4807 	}
4808 
4809 	clear_bit(HCI_INIT, &hdev->flags);
4810 
4811 	return ret;
4812 }
4813 
4814 int hci_dev_open_sync(struct hci_dev *hdev)
4815 {
4816 	int ret;
4817 
4818 	bt_dev_dbg(hdev, "");
4819 
4820 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4821 		ret = -ENODEV;
4822 		goto done;
4823 	}
4824 
4825 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4826 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4827 		/* Check for rfkill but allow the HCI setup stage to
4828 		 * proceed (which in itself doesn't cause any RF activity).
4829 		 */
4830 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4831 			ret = -ERFKILL;
4832 			goto done;
4833 		}
4834 
4835 		/* Check for valid public address or a configured static
4836 		 * random address, but let the HCI setup proceed to
4837 		 * be able to determine if there is a public address
4838 		 * or not.
4839 		 *
4840 		 * In case of user channel usage, it is not important
4841 		 * if a public address or static random address is
4842 		 * available.
4843 		 *
4844 		 * This check is only valid for BR/EDR controllers
4845 		 * since AMP controllers do not have an address.
4846 		 */
4847 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4848 		    hdev->dev_type == HCI_PRIMARY &&
4849 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4850 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4851 			ret = -EADDRNOTAVAIL;
4852 			goto done;
4853 		}
4854 	}
4855 
4856 	if (test_bit(HCI_UP, &hdev->flags)) {
4857 		ret = -EALREADY;
4858 		goto done;
4859 	}
4860 
4861 	if (hdev->open(hdev)) {
4862 		ret = -EIO;
4863 		goto done;
4864 	}
4865 
4866 	hci_devcd_reset(hdev);
4867 
4868 	set_bit(HCI_RUNNING, &hdev->flags);
4869 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4870 
4871 	ret = hci_dev_init_sync(hdev);
4872 	if (!ret) {
4873 		hci_dev_hold(hdev);
4874 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4875 		hci_adv_instances_set_rpa_expired(hdev, true);
4876 		set_bit(HCI_UP, &hdev->flags);
4877 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4878 		hci_leds_update_powered(hdev, true);
4879 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4880 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4881 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4882 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4883 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4884 		    hdev->dev_type == HCI_PRIMARY) {
4885 			ret = hci_powered_update_sync(hdev);
4886 			mgmt_power_on(hdev, ret);
4887 		}
4888 	} else {
4889 		/* Init failed, cleanup */
4890 		flush_work(&hdev->tx_work);
4891 
4892 		/* Since hci_rx_work() is possible to awake new cmd_work
4893 		 * it should be flushed first to avoid unexpected call of
4894 		 * hci_cmd_work()
4895 		 */
4896 		flush_work(&hdev->rx_work);
4897 		flush_work(&hdev->cmd_work);
4898 
4899 		skb_queue_purge(&hdev->cmd_q);
4900 		skb_queue_purge(&hdev->rx_q);
4901 
4902 		if (hdev->flush)
4903 			hdev->flush(hdev);
4904 
4905 		if (hdev->sent_cmd) {
4906 			cancel_delayed_work_sync(&hdev->cmd_timer);
4907 			kfree_skb(hdev->sent_cmd);
4908 			hdev->sent_cmd = NULL;
4909 		}
4910 
4911 		if (hdev->req_skb) {
4912 			kfree_skb(hdev->req_skb);
4913 			hdev->req_skb = NULL;
4914 		}
4915 
4916 		clear_bit(HCI_RUNNING, &hdev->flags);
4917 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4918 
4919 		hdev->close(hdev);
4920 		hdev->flags &= BIT(HCI_RAW);
4921 	}
4922 
4923 done:
4924 	return ret;
4925 }
4926 
4927 /* This function requires the caller holds hdev->lock */
4928 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4929 {
4930 	struct hci_conn_params *p;
4931 
4932 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4933 		hci_pend_le_list_del_init(p);
4934 		if (p->conn) {
4935 			hci_conn_drop(p->conn);
4936 			hci_conn_put(p->conn);
4937 			p->conn = NULL;
4938 		}
4939 	}
4940 
4941 	BT_DBG("All LE pending actions cleared");
4942 }
4943 
4944 static int hci_dev_shutdown(struct hci_dev *hdev)
4945 {
4946 	int err = 0;
4947 	/* Similar to how we first do setup and then set the exclusive access
4948 	 * bit for userspace, we must first unset userchannel and then clean up.
4949 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4950 	 * the controller (some shutdown routines require sending additional
4951 	 * commands to the controller for example).
4952 	 */
4953 	bool was_userchannel =
4954 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4955 
4956 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4957 	    test_bit(HCI_UP, &hdev->flags)) {
4958 		/* Execute vendor specific shutdown routine */
4959 		if (hdev->shutdown)
4960 			err = hdev->shutdown(hdev);
4961 	}
4962 
4963 	if (was_userchannel)
4964 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4965 
4966 	return err;
4967 }
4968 
4969 int hci_dev_close_sync(struct hci_dev *hdev)
4970 {
4971 	bool auto_off;
4972 	int err = 0;
4973 
4974 	bt_dev_dbg(hdev, "");
4975 
4976 	cancel_delayed_work(&hdev->power_off);
4977 	cancel_delayed_work(&hdev->ncmd_timer);
4978 	cancel_delayed_work(&hdev->le_scan_disable);
4979 	cancel_delayed_work(&hdev->le_scan_restart);
4980 
4981 	hci_request_cancel_all(hdev);
4982 
4983 	if (hdev->adv_instance_timeout) {
4984 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4985 		hdev->adv_instance_timeout = 0;
4986 	}
4987 
4988 	err = hci_dev_shutdown(hdev);
4989 
4990 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4991 		cancel_delayed_work_sync(&hdev->cmd_timer);
4992 		return err;
4993 	}
4994 
4995 	hci_leds_update_powered(hdev, false);
4996 
4997 	/* Flush RX and TX works */
4998 	flush_work(&hdev->tx_work);
4999 	flush_work(&hdev->rx_work);
5000 
5001 	if (hdev->discov_timeout > 0) {
5002 		hdev->discov_timeout = 0;
5003 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
5004 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
5005 	}
5006 
5007 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
5008 		cancel_delayed_work(&hdev->service_cache);
5009 
5010 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5011 		struct adv_info *adv_instance;
5012 
5013 		cancel_delayed_work_sync(&hdev->rpa_expired);
5014 
5015 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5016 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5017 	}
5018 
5019 	/* Avoid potential lockdep warnings from the *_flush() calls by
5020 	 * ensuring the workqueue is empty up front.
5021 	 */
5022 	drain_workqueue(hdev->workqueue);
5023 
5024 	hci_dev_lock(hdev);
5025 
5026 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5027 
5028 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5029 
5030 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
5031 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5032 	    hci_dev_test_flag(hdev, HCI_MGMT))
5033 		__mgmt_power_off(hdev);
5034 
5035 	hci_inquiry_cache_flush(hdev);
5036 	hci_pend_le_actions_clear(hdev);
5037 	hci_conn_hash_flush(hdev);
5038 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5039 	smp_unregister(hdev);
5040 	hci_dev_unlock(hdev);
5041 
5042 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5043 
5044 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5045 		aosp_do_close(hdev);
5046 		msft_do_close(hdev);
5047 	}
5048 
5049 	if (hdev->flush)
5050 		hdev->flush(hdev);
5051 
5052 	/* Reset device */
5053 	skb_queue_purge(&hdev->cmd_q);
5054 	atomic_set(&hdev->cmd_cnt, 1);
5055 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5056 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5057 		set_bit(HCI_INIT, &hdev->flags);
5058 		hci_reset_sync(hdev);
5059 		clear_bit(HCI_INIT, &hdev->flags);
5060 	}
5061 
5062 	/* flush cmd  work */
5063 	flush_work(&hdev->cmd_work);
5064 
5065 	/* Drop queues */
5066 	skb_queue_purge(&hdev->rx_q);
5067 	skb_queue_purge(&hdev->cmd_q);
5068 	skb_queue_purge(&hdev->raw_q);
5069 
5070 	/* Drop last sent command */
5071 	if (hdev->sent_cmd) {
5072 		cancel_delayed_work_sync(&hdev->cmd_timer);
5073 		kfree_skb(hdev->sent_cmd);
5074 		hdev->sent_cmd = NULL;
5075 	}
5076 
5077 	/* Drop last request */
5078 	if (hdev->req_skb) {
5079 		kfree_skb(hdev->req_skb);
5080 		hdev->req_skb = NULL;
5081 	}
5082 
5083 	clear_bit(HCI_RUNNING, &hdev->flags);
5084 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5085 
5086 	/* After this point our queues are empty and no tasks are scheduled. */
5087 	hdev->close(hdev);
5088 
5089 	/* Clear flags */
5090 	hdev->flags &= BIT(HCI_RAW);
5091 	hci_dev_clear_volatile_flags(hdev);
5092 
5093 	/* Controller radio is available but is currently powered down */
5094 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5095 
5096 	memset(hdev->eir, 0, sizeof(hdev->eir));
5097 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5098 	bacpy(&hdev->random_addr, BDADDR_ANY);
5099 	hci_codec_list_clear(&hdev->local_codecs);
5100 
5101 	hci_dev_put(hdev);
5102 	return err;
5103 }
5104 
5105 /* This function perform power on HCI command sequence as follows:
5106  *
5107  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5108  * sequence otherwise run hci_dev_open_sync which will follow with
5109  * hci_powered_update_sync after the init sequence is completed.
5110  */
5111 static int hci_power_on_sync(struct hci_dev *hdev)
5112 {
5113 	int err;
5114 
5115 	if (test_bit(HCI_UP, &hdev->flags) &&
5116 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5117 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5118 		cancel_delayed_work(&hdev->power_off);
5119 		return hci_powered_update_sync(hdev);
5120 	}
5121 
5122 	err = hci_dev_open_sync(hdev);
5123 	if (err < 0)
5124 		return err;
5125 
5126 	/* During the HCI setup phase, a few error conditions are
5127 	 * ignored and they need to be checked now. If they are still
5128 	 * valid, it is important to return the device back off.
5129 	 */
5130 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5131 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5132 	    (hdev->dev_type == HCI_PRIMARY &&
5133 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5134 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5135 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5136 		hci_dev_close_sync(hdev);
5137 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5138 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5139 				   HCI_AUTO_OFF_TIMEOUT);
5140 	}
5141 
5142 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5143 		/* For unconfigured devices, set the HCI_RAW flag
5144 		 * so that userspace can easily identify them.
5145 		 */
5146 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5147 			set_bit(HCI_RAW, &hdev->flags);
5148 
5149 		/* For fully configured devices, this will send
5150 		 * the Index Added event. For unconfigured devices,
5151 		 * it will send Unconfigued Index Added event.
5152 		 *
5153 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5154 		 * and no event will be send.
5155 		 */
5156 		mgmt_index_added(hdev);
5157 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5158 		/* When the controller is now configured, then it
5159 		 * is important to clear the HCI_RAW flag.
5160 		 */
5161 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5162 			clear_bit(HCI_RAW, &hdev->flags);
5163 
5164 		/* Powering on the controller with HCI_CONFIG set only
5165 		 * happens with the transition from unconfigured to
5166 		 * configured. This will send the Index Added event.
5167 		 */
5168 		mgmt_index_added(hdev);
5169 	}
5170 
5171 	return 0;
5172 }
5173 
5174 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5175 {
5176 	struct hci_cp_remote_name_req_cancel cp;
5177 
5178 	memset(&cp, 0, sizeof(cp));
5179 	bacpy(&cp.bdaddr, addr);
5180 
5181 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5182 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5183 }
5184 
5185 int hci_stop_discovery_sync(struct hci_dev *hdev)
5186 {
5187 	struct discovery_state *d = &hdev->discovery;
5188 	struct inquiry_entry *e;
5189 	int err;
5190 
5191 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5192 
5193 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5194 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5195 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5196 						    0, NULL, HCI_CMD_TIMEOUT);
5197 			if (err)
5198 				return err;
5199 		}
5200 
5201 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5202 			cancel_delayed_work(&hdev->le_scan_disable);
5203 			cancel_delayed_work(&hdev->le_scan_restart);
5204 
5205 			err = hci_scan_disable_sync(hdev);
5206 			if (err)
5207 				return err;
5208 		}
5209 
5210 	} else {
5211 		err = hci_scan_disable_sync(hdev);
5212 		if (err)
5213 			return err;
5214 	}
5215 
5216 	/* Resume advertising if it was paused */
5217 	if (use_ll_privacy(hdev))
5218 		hci_resume_advertising_sync(hdev);
5219 
5220 	/* No further actions needed for LE-only discovery */
5221 	if (d->type == DISCOV_TYPE_LE)
5222 		return 0;
5223 
5224 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5225 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5226 						     NAME_PENDING);
5227 		if (!e)
5228 			return 0;
5229 
5230 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5231 	}
5232 
5233 	return 0;
5234 }
5235 
5236 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5237 					u8 reason)
5238 {
5239 	struct hci_cp_disconn_phy_link cp;
5240 
5241 	memset(&cp, 0, sizeof(cp));
5242 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5243 	cp.reason = reason;
5244 
5245 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5246 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5247 }
5248 
5249 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5250 			       u8 reason)
5251 {
5252 	struct hci_cp_disconnect cp;
5253 
5254 	if (conn->type == AMP_LINK)
5255 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5256 
5257 	memset(&cp, 0, sizeof(cp));
5258 	cp.handle = cpu_to_le16(conn->handle);
5259 	cp.reason = reason;
5260 
5261 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5262 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5263 	 * used when suspending or powering off, where we don't want to wait
5264 	 * for the peer's response.
5265 	 */
5266 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5267 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5268 						sizeof(cp), &cp,
5269 						HCI_EV_DISCONN_COMPLETE,
5270 						HCI_CMD_TIMEOUT, NULL);
5271 
5272 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5273 				     HCI_CMD_TIMEOUT);
5274 }
5275 
5276 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5277 				      struct hci_conn *conn, u8 reason)
5278 {
5279 	/* Return reason if scanning since the connection shall probably be
5280 	 * cleanup directly.
5281 	 */
5282 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5283 		return reason;
5284 
5285 	if (conn->role == HCI_ROLE_SLAVE ||
5286 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5287 		return 0;
5288 
5289 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5290 				     0, NULL, HCI_CMD_TIMEOUT);
5291 }
5292 
5293 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5294 				   u8 reason)
5295 {
5296 	if (conn->type == LE_LINK)
5297 		return hci_le_connect_cancel_sync(hdev, conn, reason);
5298 
5299 	if (conn->type == ISO_LINK) {
5300 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5301 		 * page 1857:
5302 		 *
5303 		 * If this command is issued for a CIS on the Central and the
5304 		 * CIS is successfully terminated before being established,
5305 		 * then an HCI_LE_CIS_Established event shall also be sent for
5306 		 * this CIS with the Status Operation Cancelled by Host (0x44).
5307 		 */
5308 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5309 			return hci_disconnect_sync(hdev, conn, reason);
5310 
5311 		/* CIS with no Create CIS sent have nothing to cancel */
5312 		if (bacmp(&conn->dst, BDADDR_ANY))
5313 			return HCI_ERROR_LOCAL_HOST_TERM;
5314 
5315 		/* There is no way to cancel a BIS without terminating the BIG
5316 		 * which is done later on connection cleanup.
5317 		 */
5318 		return 0;
5319 	}
5320 
5321 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5322 		return 0;
5323 
5324 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5325 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5326 	 * used when suspending or powering off, where we don't want to wait
5327 	 * for the peer's response.
5328 	 */
5329 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5330 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5331 						6, &conn->dst,
5332 						HCI_EV_CONN_COMPLETE,
5333 						HCI_CMD_TIMEOUT, NULL);
5334 
5335 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5336 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5337 }
5338 
5339 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5340 			       u8 reason)
5341 {
5342 	struct hci_cp_reject_sync_conn_req cp;
5343 
5344 	memset(&cp, 0, sizeof(cp));
5345 	bacpy(&cp.bdaddr, &conn->dst);
5346 	cp.reason = reason;
5347 
5348 	/* SCO rejection has its own limited set of
5349 	 * allowed error values (0x0D-0x0F).
5350 	 */
5351 	if (reason < 0x0d || reason > 0x0f)
5352 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5353 
5354 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5355 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5356 }
5357 
5358 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5359 				  u8 reason)
5360 {
5361 	struct hci_cp_le_reject_cis cp;
5362 
5363 	memset(&cp, 0, sizeof(cp));
5364 	cp.handle = cpu_to_le16(conn->handle);
5365 	cp.reason = reason;
5366 
5367 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5368 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5369 }
5370 
5371 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5372 				u8 reason)
5373 {
5374 	struct hci_cp_reject_conn_req cp;
5375 
5376 	if (conn->type == ISO_LINK)
5377 		return hci_le_reject_cis_sync(hdev, conn, reason);
5378 
5379 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5380 		return hci_reject_sco_sync(hdev, conn, reason);
5381 
5382 	memset(&cp, 0, sizeof(cp));
5383 	bacpy(&cp.bdaddr, &conn->dst);
5384 	cp.reason = reason;
5385 
5386 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5387 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5388 }
5389 
5390 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5391 {
5392 	int err = 0;
5393 	u16 handle = conn->handle;
5394 	bool disconnect = false;
5395 	struct hci_conn *c;
5396 
5397 	switch (conn->state) {
5398 	case BT_CONNECTED:
5399 	case BT_CONFIG:
5400 		err = hci_disconnect_sync(hdev, conn, reason);
5401 		break;
5402 	case BT_CONNECT:
5403 		err = hci_connect_cancel_sync(hdev, conn, reason);
5404 		break;
5405 	case BT_CONNECT2:
5406 		err = hci_reject_conn_sync(hdev, conn, reason);
5407 		break;
5408 	case BT_OPEN:
5409 		hci_dev_lock(hdev);
5410 
5411 		/* Cleanup bis or pa sync connections */
5412 		if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) ||
5413 		    test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) {
5414 			hci_conn_failed(conn, reason);
5415 		} else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) ||
5416 			   test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
5417 			conn->state = BT_CLOSED;
5418 			hci_disconn_cfm(conn, reason);
5419 			hci_conn_del(conn);
5420 		}
5421 
5422 		hci_dev_unlock(hdev);
5423 		return 0;
5424 	case BT_BOUND:
5425 		break;
5426 	default:
5427 		disconnect = true;
5428 		break;
5429 	}
5430 
5431 	hci_dev_lock(hdev);
5432 
5433 	/* Check if the connection has been cleaned up concurrently */
5434 	c = hci_conn_hash_lookup_handle(hdev, handle);
5435 	if (!c || c != conn) {
5436 		err = 0;
5437 		goto unlock;
5438 	}
5439 
5440 	/* Cleanup hci_conn object if it cannot be cancelled as it
5441 	 * likelly means the controller and host stack are out of sync
5442 	 * or in case of LE it was still scanning so it can be cleanup
5443 	 * safely.
5444 	 */
5445 	if (disconnect) {
5446 		conn->state = BT_CLOSED;
5447 		hci_disconn_cfm(conn, reason);
5448 		hci_conn_del(conn);
5449 	} else {
5450 		hci_conn_failed(conn, reason);
5451 	}
5452 
5453 unlock:
5454 	hci_dev_unlock(hdev);
5455 	return err;
5456 }
5457 
5458 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5459 {
5460 	struct list_head *head = &hdev->conn_hash.list;
5461 	struct hci_conn *conn;
5462 
5463 	rcu_read_lock();
5464 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5465 		/* Make sure the connection is not freed while unlocking */
5466 		conn = hci_conn_get(conn);
5467 		rcu_read_unlock();
5468 		/* Disregard possible errors since hci_conn_del shall have been
5469 		 * called even in case of errors had occurred since it would
5470 		 * then cause hci_conn_failed to be called which calls
5471 		 * hci_conn_del internally.
5472 		 */
5473 		hci_abort_conn_sync(hdev, conn, reason);
5474 		hci_conn_put(conn);
5475 		rcu_read_lock();
5476 	}
5477 	rcu_read_unlock();
5478 
5479 	return 0;
5480 }
5481 
5482 /* This function perform power off HCI command sequence as follows:
5483  *
5484  * Clear Advertising
5485  * Stop Discovery
5486  * Disconnect all connections
5487  * hci_dev_close_sync
5488  */
5489 static int hci_power_off_sync(struct hci_dev *hdev)
5490 {
5491 	int err;
5492 
5493 	/* If controller is already down there is nothing to do */
5494 	if (!test_bit(HCI_UP, &hdev->flags))
5495 		return 0;
5496 
5497 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5498 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5499 		err = hci_write_scan_enable_sync(hdev, 0x00);
5500 		if (err)
5501 			return err;
5502 	}
5503 
5504 	err = hci_clear_adv_sync(hdev, NULL, false);
5505 	if (err)
5506 		return err;
5507 
5508 	err = hci_stop_discovery_sync(hdev);
5509 	if (err)
5510 		return err;
5511 
5512 	/* Terminated due to Power Off */
5513 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5514 	if (err)
5515 		return err;
5516 
5517 	return hci_dev_close_sync(hdev);
5518 }
5519 
5520 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5521 {
5522 	if (val)
5523 		return hci_power_on_sync(hdev);
5524 
5525 	return hci_power_off_sync(hdev);
5526 }
5527 
5528 static int hci_write_iac_sync(struct hci_dev *hdev)
5529 {
5530 	struct hci_cp_write_current_iac_lap cp;
5531 
5532 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5533 		return 0;
5534 
5535 	memset(&cp, 0, sizeof(cp));
5536 
5537 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5538 		/* Limited discoverable mode */
5539 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5540 		cp.iac_lap[0] = 0x00;	/* LIAC */
5541 		cp.iac_lap[1] = 0x8b;
5542 		cp.iac_lap[2] = 0x9e;
5543 		cp.iac_lap[3] = 0x33;	/* GIAC */
5544 		cp.iac_lap[4] = 0x8b;
5545 		cp.iac_lap[5] = 0x9e;
5546 	} else {
5547 		/* General discoverable mode */
5548 		cp.num_iac = 1;
5549 		cp.iac_lap[0] = 0x33;	/* GIAC */
5550 		cp.iac_lap[1] = 0x8b;
5551 		cp.iac_lap[2] = 0x9e;
5552 	}
5553 
5554 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5555 				     (cp.num_iac * 3) + 1, &cp,
5556 				     HCI_CMD_TIMEOUT);
5557 }
5558 
5559 int hci_update_discoverable_sync(struct hci_dev *hdev)
5560 {
5561 	int err = 0;
5562 
5563 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5564 		err = hci_write_iac_sync(hdev);
5565 		if (err)
5566 			return err;
5567 
5568 		err = hci_update_scan_sync(hdev);
5569 		if (err)
5570 			return err;
5571 
5572 		err = hci_update_class_sync(hdev);
5573 		if (err)
5574 			return err;
5575 	}
5576 
5577 	/* Advertising instances don't use the global discoverable setting, so
5578 	 * only update AD if advertising was enabled using Set Advertising.
5579 	 */
5580 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5581 		err = hci_update_adv_data_sync(hdev, 0x00);
5582 		if (err)
5583 			return err;
5584 
5585 		/* Discoverable mode affects the local advertising
5586 		 * address in limited privacy mode.
5587 		 */
5588 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5589 			if (ext_adv_capable(hdev))
5590 				err = hci_start_ext_adv_sync(hdev, 0x00);
5591 			else
5592 				err = hci_enable_advertising_sync(hdev);
5593 		}
5594 	}
5595 
5596 	return err;
5597 }
5598 
5599 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5600 {
5601 	return hci_update_discoverable_sync(hdev);
5602 }
5603 
5604 int hci_update_discoverable(struct hci_dev *hdev)
5605 {
5606 	/* Only queue if it would have any effect */
5607 	if (hdev_is_powered(hdev) &&
5608 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5609 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5610 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5611 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5612 					  NULL);
5613 
5614 	return 0;
5615 }
5616 
5617 int hci_update_connectable_sync(struct hci_dev *hdev)
5618 {
5619 	int err;
5620 
5621 	err = hci_update_scan_sync(hdev);
5622 	if (err)
5623 		return err;
5624 
5625 	/* If BR/EDR is not enabled and we disable advertising as a
5626 	 * by-product of disabling connectable, we need to update the
5627 	 * advertising flags.
5628 	 */
5629 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5630 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5631 
5632 	/* Update the advertising parameters if necessary */
5633 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5634 	    !list_empty(&hdev->adv_instances)) {
5635 		if (ext_adv_capable(hdev))
5636 			err = hci_start_ext_adv_sync(hdev,
5637 						     hdev->cur_adv_instance);
5638 		else
5639 			err = hci_enable_advertising_sync(hdev);
5640 
5641 		if (err)
5642 			return err;
5643 	}
5644 
5645 	return hci_update_passive_scan_sync(hdev);
5646 }
5647 
5648 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5649 {
5650 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5651 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5652 	struct hci_cp_inquiry cp;
5653 
5654 	bt_dev_dbg(hdev, "");
5655 
5656 	if (test_bit(HCI_INQUIRY, &hdev->flags))
5657 		return 0;
5658 
5659 	hci_dev_lock(hdev);
5660 	hci_inquiry_cache_flush(hdev);
5661 	hci_dev_unlock(hdev);
5662 
5663 	memset(&cp, 0, sizeof(cp));
5664 
5665 	if (hdev->discovery.limited)
5666 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5667 	else
5668 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5669 
5670 	cp.length = length;
5671 
5672 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5673 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5674 }
5675 
5676 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5677 {
5678 	u8 own_addr_type;
5679 	/* Accept list is not used for discovery */
5680 	u8 filter_policy = 0x00;
5681 	/* Default is to enable duplicates filter */
5682 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5683 	int err;
5684 
5685 	bt_dev_dbg(hdev, "");
5686 
5687 	/* If controller is scanning, it means the passive scanning is
5688 	 * running. Thus, we should temporarily stop it in order to set the
5689 	 * discovery scanning parameters.
5690 	 */
5691 	err = hci_scan_disable_sync(hdev);
5692 	if (err) {
5693 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5694 		return err;
5695 	}
5696 
5697 	cancel_interleave_scan(hdev);
5698 
5699 	/* Pause address resolution for active scan and stop advertising if
5700 	 * privacy is enabled.
5701 	 */
5702 	err = hci_pause_addr_resolution(hdev);
5703 	if (err)
5704 		goto failed;
5705 
5706 	/* All active scans will be done with either a resolvable private
5707 	 * address (when privacy feature has been enabled) or non-resolvable
5708 	 * private address.
5709 	 */
5710 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5711 					     &own_addr_type);
5712 	if (err < 0)
5713 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5714 
5715 	if (hci_is_adv_monitoring(hdev)) {
5716 		/* Duplicate filter should be disabled when some advertisement
5717 		 * monitor is activated, otherwise AdvMon can only receive one
5718 		 * advertisement for one peer(*) during active scanning, and
5719 		 * might report loss to these peers.
5720 		 *
5721 		 * Note that different controllers have different meanings of
5722 		 * |duplicate|. Some of them consider packets with the same
5723 		 * address as duplicate, and others consider packets with the
5724 		 * same address and the same RSSI as duplicate. Although in the
5725 		 * latter case we don't need to disable duplicate filter, but
5726 		 * it is common to have active scanning for a short period of
5727 		 * time, the power impact should be neglectable.
5728 		 */
5729 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5730 	}
5731 
5732 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5733 				  hdev->le_scan_window_discovery,
5734 				  own_addr_type, filter_policy, filter_dup);
5735 	if (!err)
5736 		return err;
5737 
5738 failed:
5739 	/* Resume advertising if it was paused */
5740 	if (use_ll_privacy(hdev))
5741 		hci_resume_advertising_sync(hdev);
5742 
5743 	/* Resume passive scanning */
5744 	hci_update_passive_scan_sync(hdev);
5745 	return err;
5746 }
5747 
5748 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5749 {
5750 	int err;
5751 
5752 	bt_dev_dbg(hdev, "");
5753 
5754 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5755 	if (err)
5756 		return err;
5757 
5758 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5759 }
5760 
5761 int hci_start_discovery_sync(struct hci_dev *hdev)
5762 {
5763 	unsigned long timeout;
5764 	int err;
5765 
5766 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5767 
5768 	switch (hdev->discovery.type) {
5769 	case DISCOV_TYPE_BREDR:
5770 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5771 	case DISCOV_TYPE_INTERLEAVED:
5772 		/* When running simultaneous discovery, the LE scanning time
5773 		 * should occupy the whole discovery time sine BR/EDR inquiry
5774 		 * and LE scanning are scheduled by the controller.
5775 		 *
5776 		 * For interleaving discovery in comparison, BR/EDR inquiry
5777 		 * and LE scanning are done sequentially with separate
5778 		 * timeouts.
5779 		 */
5780 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5781 			     &hdev->quirks)) {
5782 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5783 			/* During simultaneous discovery, we double LE scan
5784 			 * interval. We must leave some time for the controller
5785 			 * to do BR/EDR inquiry.
5786 			 */
5787 			err = hci_start_interleaved_discovery_sync(hdev);
5788 			break;
5789 		}
5790 
5791 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5792 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5793 		break;
5794 	case DISCOV_TYPE_LE:
5795 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5796 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5797 		break;
5798 	default:
5799 		return -EINVAL;
5800 	}
5801 
5802 	if (err)
5803 		return err;
5804 
5805 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5806 
5807 	/* When service discovery is used and the controller has a
5808 	 * strict duplicate filter, it is important to remember the
5809 	 * start and duration of the scan. This is required for
5810 	 * restarting scanning during the discovery phase.
5811 	 */
5812 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5813 	    hdev->discovery.result_filtering) {
5814 		hdev->discovery.scan_start = jiffies;
5815 		hdev->discovery.scan_duration = timeout;
5816 	}
5817 
5818 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5819 			   timeout);
5820 	return 0;
5821 }
5822 
5823 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5824 {
5825 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5826 	case HCI_ADV_MONITOR_EXT_MSFT:
5827 		msft_suspend_sync(hdev);
5828 		break;
5829 	default:
5830 		return;
5831 	}
5832 }
5833 
5834 /* This function disables discovery and mark it as paused */
5835 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5836 {
5837 	int old_state = hdev->discovery.state;
5838 	int err;
5839 
5840 	/* If discovery already stopped/stopping/paused there nothing to do */
5841 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5842 	    hdev->discovery_paused)
5843 		return 0;
5844 
5845 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5846 	err = hci_stop_discovery_sync(hdev);
5847 	if (err)
5848 		return err;
5849 
5850 	hdev->discovery_paused = true;
5851 	hdev->discovery_old_state = old_state;
5852 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5853 
5854 	return 0;
5855 }
5856 
5857 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5858 {
5859 	struct bdaddr_list_with_flags *b;
5860 	u8 scan = SCAN_DISABLED;
5861 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5862 	int err;
5863 
5864 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5865 		return 0;
5866 
5867 	/* Some fake CSR controllers lock up after setting this type of
5868 	 * filter, so avoid sending the request altogether.
5869 	 */
5870 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5871 		return 0;
5872 
5873 	/* Always clear event filter when starting */
5874 	hci_clear_event_filter_sync(hdev);
5875 
5876 	list_for_each_entry(b, &hdev->accept_list, list) {
5877 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5878 			continue;
5879 
5880 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5881 
5882 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5883 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5884 						 &b->bdaddr,
5885 						 HCI_CONN_SETUP_AUTO_ON);
5886 		if (err)
5887 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5888 				   &b->bdaddr);
5889 		else
5890 			scan = SCAN_PAGE;
5891 	}
5892 
5893 	if (scan && !scanning)
5894 		hci_write_scan_enable_sync(hdev, scan);
5895 	else if (!scan && scanning)
5896 		hci_write_scan_enable_sync(hdev, scan);
5897 
5898 	return 0;
5899 }
5900 
5901 /* This function disables scan (BR and LE) and mark it as paused */
5902 static int hci_pause_scan_sync(struct hci_dev *hdev)
5903 {
5904 	if (hdev->scanning_paused)
5905 		return 0;
5906 
5907 	/* Disable page scan if enabled */
5908 	if (test_bit(HCI_PSCAN, &hdev->flags))
5909 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5910 
5911 	hci_scan_disable_sync(hdev);
5912 
5913 	hdev->scanning_paused = true;
5914 
5915 	return 0;
5916 }
5917 
5918 /* This function performs the HCI suspend procedures in the follow order:
5919  *
5920  * Pause discovery (active scanning/inquiry)
5921  * Pause Directed Advertising/Advertising
5922  * Pause Scanning (passive scanning in case discovery was not active)
5923  * Disconnect all connections
5924  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5925  * otherwise:
5926  * Update event mask (only set events that are allowed to wake up the host)
5927  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5928  * Update passive scanning (lower duty cycle)
5929  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5930  */
5931 int hci_suspend_sync(struct hci_dev *hdev)
5932 {
5933 	int err;
5934 
5935 	/* If marked as suspended there nothing to do */
5936 	if (hdev->suspended)
5937 		return 0;
5938 
5939 	/* Mark device as suspended */
5940 	hdev->suspended = true;
5941 
5942 	/* Pause discovery if not already stopped */
5943 	hci_pause_discovery_sync(hdev);
5944 
5945 	/* Pause other advertisements */
5946 	hci_pause_advertising_sync(hdev);
5947 
5948 	/* Suspend monitor filters */
5949 	hci_suspend_monitor_sync(hdev);
5950 
5951 	/* Prevent disconnects from causing scanning to be re-enabled */
5952 	hci_pause_scan_sync(hdev);
5953 
5954 	if (hci_conn_count(hdev)) {
5955 		/* Soft disconnect everything (power off) */
5956 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5957 		if (err) {
5958 			/* Set state to BT_RUNNING so resume doesn't notify */
5959 			hdev->suspend_state = BT_RUNNING;
5960 			hci_resume_sync(hdev);
5961 			return err;
5962 		}
5963 
5964 		/* Update event mask so only the allowed event can wakeup the
5965 		 * host.
5966 		 */
5967 		hci_set_event_mask_sync(hdev);
5968 	}
5969 
5970 	/* Only configure accept list if disconnect succeeded and wake
5971 	 * isn't being prevented.
5972 	 */
5973 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5974 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5975 		return 0;
5976 	}
5977 
5978 	/* Unpause to take care of updating scanning params */
5979 	hdev->scanning_paused = false;
5980 
5981 	/* Enable event filter for paired devices */
5982 	hci_update_event_filter_sync(hdev);
5983 
5984 	/* Update LE passive scan if enabled */
5985 	hci_update_passive_scan_sync(hdev);
5986 
5987 	/* Pause scan changes again. */
5988 	hdev->scanning_paused = true;
5989 
5990 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5991 
5992 	return 0;
5993 }
5994 
5995 /* This function resumes discovery */
5996 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5997 {
5998 	int err;
5999 
6000 	/* If discovery not paused there nothing to do */
6001 	if (!hdev->discovery_paused)
6002 		return 0;
6003 
6004 	hdev->discovery_paused = false;
6005 
6006 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
6007 
6008 	err = hci_start_discovery_sync(hdev);
6009 
6010 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
6011 				DISCOVERY_FINDING);
6012 
6013 	return err;
6014 }
6015 
6016 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6017 {
6018 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
6019 	case HCI_ADV_MONITOR_EXT_MSFT:
6020 		msft_resume_sync(hdev);
6021 		break;
6022 	default:
6023 		return;
6024 	}
6025 }
6026 
6027 /* This function resume scan and reset paused flag */
6028 static int hci_resume_scan_sync(struct hci_dev *hdev)
6029 {
6030 	if (!hdev->scanning_paused)
6031 		return 0;
6032 
6033 	hdev->scanning_paused = false;
6034 
6035 	hci_update_scan_sync(hdev);
6036 
6037 	/* Reset passive scanning to normal */
6038 	hci_update_passive_scan_sync(hdev);
6039 
6040 	return 0;
6041 }
6042 
6043 /* This function performs the HCI suspend procedures in the follow order:
6044  *
6045  * Restore event mask
6046  * Clear event filter
6047  * Update passive scanning (normal duty cycle)
6048  * Resume Directed Advertising/Advertising
6049  * Resume discovery (active scanning/inquiry)
6050  */
6051 int hci_resume_sync(struct hci_dev *hdev)
6052 {
6053 	/* If not marked as suspended there nothing to do */
6054 	if (!hdev->suspended)
6055 		return 0;
6056 
6057 	hdev->suspended = false;
6058 
6059 	/* Restore event mask */
6060 	hci_set_event_mask_sync(hdev);
6061 
6062 	/* Clear any event filters and restore scan state */
6063 	hci_clear_event_filter_sync(hdev);
6064 
6065 	/* Resume scanning */
6066 	hci_resume_scan_sync(hdev);
6067 
6068 	/* Resume monitor filters */
6069 	hci_resume_monitor_sync(hdev);
6070 
6071 	/* Resume other advertisements */
6072 	hci_resume_advertising_sync(hdev);
6073 
6074 	/* Resume discovery */
6075 	hci_resume_discovery_sync(hdev);
6076 
6077 	return 0;
6078 }
6079 
6080 static bool conn_use_rpa(struct hci_conn *conn)
6081 {
6082 	struct hci_dev *hdev = conn->hdev;
6083 
6084 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
6085 }
6086 
6087 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6088 						struct hci_conn *conn)
6089 {
6090 	struct hci_cp_le_set_ext_adv_params cp;
6091 	int err;
6092 	bdaddr_t random_addr;
6093 	u8 own_addr_type;
6094 
6095 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6096 					     &own_addr_type);
6097 	if (err)
6098 		return err;
6099 
6100 	/* Set require_privacy to false so that the remote device has a
6101 	 * chance of identifying us.
6102 	 */
6103 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6104 				     &own_addr_type, &random_addr);
6105 	if (err)
6106 		return err;
6107 
6108 	memset(&cp, 0, sizeof(cp));
6109 
6110 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6111 	cp.channel_map = hdev->le_adv_channel_map;
6112 	cp.tx_power = HCI_TX_POWER_INVALID;
6113 	cp.primary_phy = HCI_ADV_PHY_1M;
6114 	cp.secondary_phy = HCI_ADV_PHY_1M;
6115 	cp.handle = 0x00; /* Use instance 0 for directed adv */
6116 	cp.own_addr_type = own_addr_type;
6117 	cp.peer_addr_type = conn->dst_type;
6118 	bacpy(&cp.peer_addr, &conn->dst);
6119 
6120 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6121 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6122 	 * does not supports advertising data when the advertising set already
6123 	 * contains some, the controller shall return erroc code 'Invalid
6124 	 * HCI Command Parameters(0x12).
6125 	 * So it is required to remove adv set for handle 0x00. since we use
6126 	 * instance 0 for directed adv.
6127 	 */
6128 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6129 	if (err)
6130 		return err;
6131 
6132 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6133 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6134 	if (err)
6135 		return err;
6136 
6137 	/* Check if random address need to be updated */
6138 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6139 	    bacmp(&random_addr, BDADDR_ANY) &&
6140 	    bacmp(&random_addr, &hdev->random_addr)) {
6141 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6142 						       &random_addr);
6143 		if (err)
6144 			return err;
6145 	}
6146 
6147 	return hci_enable_ext_advertising_sync(hdev, 0x00);
6148 }
6149 
6150 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6151 					    struct hci_conn *conn)
6152 {
6153 	struct hci_cp_le_set_adv_param cp;
6154 	u8 status;
6155 	u8 own_addr_type;
6156 	u8 enable;
6157 
6158 	if (ext_adv_capable(hdev))
6159 		return hci_le_ext_directed_advertising_sync(hdev, conn);
6160 
6161 	/* Clear the HCI_LE_ADV bit temporarily so that the
6162 	 * hci_update_random_address knows that it's safe to go ahead
6163 	 * and write a new random address. The flag will be set back on
6164 	 * as soon as the SET_ADV_ENABLE HCI command completes.
6165 	 */
6166 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
6167 
6168 	/* Set require_privacy to false so that the remote device has a
6169 	 * chance of identifying us.
6170 	 */
6171 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6172 						&own_addr_type);
6173 	if (status)
6174 		return status;
6175 
6176 	memset(&cp, 0, sizeof(cp));
6177 
6178 	/* Some controllers might reject command if intervals are not
6179 	 * within range for undirected advertising.
6180 	 * BCM20702A0 is known to be affected by this.
6181 	 */
6182 	cp.min_interval = cpu_to_le16(0x0020);
6183 	cp.max_interval = cpu_to_le16(0x0020);
6184 
6185 	cp.type = LE_ADV_DIRECT_IND;
6186 	cp.own_address_type = own_addr_type;
6187 	cp.direct_addr_type = conn->dst_type;
6188 	bacpy(&cp.direct_addr, &conn->dst);
6189 	cp.channel_map = hdev->le_adv_channel_map;
6190 
6191 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6192 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6193 	if (status)
6194 		return status;
6195 
6196 	enable = 0x01;
6197 
6198 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6199 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6200 }
6201 
6202 static void set_ext_conn_params(struct hci_conn *conn,
6203 				struct hci_cp_le_ext_conn_param *p)
6204 {
6205 	struct hci_dev *hdev = conn->hdev;
6206 
6207 	memset(p, 0, sizeof(*p));
6208 
6209 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6210 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6211 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6212 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6213 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6214 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6215 	p->min_ce_len = cpu_to_le16(0x0000);
6216 	p->max_ce_len = cpu_to_le16(0x0000);
6217 }
6218 
6219 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6220 				       struct hci_conn *conn, u8 own_addr_type)
6221 {
6222 	struct hci_cp_le_ext_create_conn *cp;
6223 	struct hci_cp_le_ext_conn_param *p;
6224 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6225 	u32 plen;
6226 
6227 	cp = (void *)data;
6228 	p = (void *)cp->data;
6229 
6230 	memset(cp, 0, sizeof(*cp));
6231 
6232 	bacpy(&cp->peer_addr, &conn->dst);
6233 	cp->peer_addr_type = conn->dst_type;
6234 	cp->own_addr_type = own_addr_type;
6235 
6236 	plen = sizeof(*cp);
6237 
6238 	if (scan_1m(hdev)) {
6239 		cp->phys |= LE_SCAN_PHY_1M;
6240 		set_ext_conn_params(conn, p);
6241 
6242 		p++;
6243 		plen += sizeof(*p);
6244 	}
6245 
6246 	if (scan_2m(hdev)) {
6247 		cp->phys |= LE_SCAN_PHY_2M;
6248 		set_ext_conn_params(conn, p);
6249 
6250 		p++;
6251 		plen += sizeof(*p);
6252 	}
6253 
6254 	if (scan_coded(hdev)) {
6255 		cp->phys |= LE_SCAN_PHY_CODED;
6256 		set_ext_conn_params(conn, p);
6257 
6258 		plen += sizeof(*p);
6259 	}
6260 
6261 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6262 					plen, data,
6263 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6264 					conn->conn_timeout, NULL);
6265 }
6266 
6267 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6268 {
6269 	struct hci_cp_le_create_conn cp;
6270 	struct hci_conn_params *params;
6271 	u8 own_addr_type;
6272 	int err;
6273 
6274 	/* If requested to connect as peripheral use directed advertising */
6275 	if (conn->role == HCI_ROLE_SLAVE) {
6276 		/* If we're active scanning and simultaneous roles is not
6277 		 * enabled simply reject the attempt.
6278 		 */
6279 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6280 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6281 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6282 			hci_conn_del(conn);
6283 			return -EBUSY;
6284 		}
6285 
6286 		/* Pause advertising while doing directed advertising. */
6287 		hci_pause_advertising_sync(hdev);
6288 
6289 		err = hci_le_directed_advertising_sync(hdev, conn);
6290 		goto done;
6291 	}
6292 
6293 	/* Disable advertising if simultaneous roles is not in use. */
6294 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6295 		hci_pause_advertising_sync(hdev);
6296 
6297 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6298 	if (params) {
6299 		conn->le_conn_min_interval = params->conn_min_interval;
6300 		conn->le_conn_max_interval = params->conn_max_interval;
6301 		conn->le_conn_latency = params->conn_latency;
6302 		conn->le_supv_timeout = params->supervision_timeout;
6303 	} else {
6304 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6305 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6306 		conn->le_conn_latency = hdev->le_conn_latency;
6307 		conn->le_supv_timeout = hdev->le_supv_timeout;
6308 	}
6309 
6310 	/* If controller is scanning, we stop it since some controllers are
6311 	 * not able to scan and connect at the same time. Also set the
6312 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6313 	 * handler for scan disabling knows to set the correct discovery
6314 	 * state.
6315 	 */
6316 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6317 		hci_scan_disable_sync(hdev);
6318 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6319 	}
6320 
6321 	/* Update random address, but set require_privacy to false so
6322 	 * that we never connect with an non-resolvable address.
6323 	 */
6324 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6325 					     &own_addr_type);
6326 	if (err)
6327 		goto done;
6328 
6329 	if (use_ext_conn(hdev)) {
6330 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6331 		goto done;
6332 	}
6333 
6334 	memset(&cp, 0, sizeof(cp));
6335 
6336 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6337 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6338 
6339 	bacpy(&cp.peer_addr, &conn->dst);
6340 	cp.peer_addr_type = conn->dst_type;
6341 	cp.own_address_type = own_addr_type;
6342 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6343 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6344 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6345 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6346 	cp.min_ce_len = cpu_to_le16(0x0000);
6347 	cp.max_ce_len = cpu_to_le16(0x0000);
6348 
6349 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6350 	 *
6351 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6352 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6353 	 * sent when a new connection has been created.
6354 	 */
6355 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6356 				       sizeof(cp), &cp,
6357 				       use_enhanced_conn_complete(hdev) ?
6358 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6359 				       HCI_EV_LE_CONN_COMPLETE,
6360 				       conn->conn_timeout, NULL);
6361 
6362 done:
6363 	if (err == -ETIMEDOUT)
6364 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
6365 
6366 	/* Re-enable advertising after the connection attempt is finished. */
6367 	hci_resume_advertising_sync(hdev);
6368 	return err;
6369 }
6370 
6371 int hci_le_create_cis_sync(struct hci_dev *hdev)
6372 {
6373 	struct {
6374 		struct hci_cp_le_create_cis cp;
6375 		struct hci_cis cis[0x1f];
6376 	} cmd;
6377 	struct hci_conn *conn;
6378 	u8 cig = BT_ISO_QOS_CIG_UNSET;
6379 
6380 	/* The spec allows only one pending LE Create CIS command at a time. If
6381 	 * the command is pending now, don't do anything. We check for pending
6382 	 * connections after each CIS Established event.
6383 	 *
6384 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6385 	 * page 2566:
6386 	 *
6387 	 * If the Host issues this command before all the
6388 	 * HCI_LE_CIS_Established events from the previous use of the
6389 	 * command have been generated, the Controller shall return the
6390 	 * error code Command Disallowed (0x0C).
6391 	 *
6392 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6393 	 * page 2567:
6394 	 *
6395 	 * When the Controller receives the HCI_LE_Create_CIS command, the
6396 	 * Controller sends the HCI_Command_Status event to the Host. An
6397 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
6398 	 * is established or if it is disconnected or considered lost before
6399 	 * being established; until all the events are generated, the command
6400 	 * remains pending.
6401 	 */
6402 
6403 	memset(&cmd, 0, sizeof(cmd));
6404 
6405 	hci_dev_lock(hdev);
6406 
6407 	rcu_read_lock();
6408 
6409 	/* Wait until previous Create CIS has completed */
6410 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6411 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6412 			goto done;
6413 	}
6414 
6415 	/* Find CIG with all CIS ready */
6416 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6417 		struct hci_conn *link;
6418 
6419 		if (hci_conn_check_create_cis(conn))
6420 			continue;
6421 
6422 		cig = conn->iso_qos.ucast.cig;
6423 
6424 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6425 			if (hci_conn_check_create_cis(link) > 0 &&
6426 			    link->iso_qos.ucast.cig == cig &&
6427 			    link->state != BT_CONNECTED) {
6428 				cig = BT_ISO_QOS_CIG_UNSET;
6429 				break;
6430 			}
6431 		}
6432 
6433 		if (cig != BT_ISO_QOS_CIG_UNSET)
6434 			break;
6435 	}
6436 
6437 	if (cig == BT_ISO_QOS_CIG_UNSET)
6438 		goto done;
6439 
6440 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6441 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6442 
6443 		if (hci_conn_check_create_cis(conn) ||
6444 		    conn->iso_qos.ucast.cig != cig)
6445 			continue;
6446 
6447 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6448 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6449 		cis->cis_handle = cpu_to_le16(conn->handle);
6450 		cmd.cp.num_cis++;
6451 
6452 		if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6453 			break;
6454 	}
6455 
6456 done:
6457 	rcu_read_unlock();
6458 
6459 	hci_dev_unlock(hdev);
6460 
6461 	if (!cmd.cp.num_cis)
6462 		return 0;
6463 
6464 	/* Wait for HCI_LE_CIS_Established */
6465 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6466 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6467 					cmd.cp.num_cis, &cmd,
6468 					HCI_EVT_LE_CIS_ESTABLISHED,
6469 					conn->conn_timeout, NULL);
6470 }
6471 
6472 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6473 {
6474 	struct hci_cp_le_remove_cig cp;
6475 
6476 	memset(&cp, 0, sizeof(cp));
6477 	cp.cig_id = handle;
6478 
6479 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6480 				     &cp, HCI_CMD_TIMEOUT);
6481 }
6482 
6483 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6484 {
6485 	struct hci_cp_le_big_term_sync cp;
6486 
6487 	memset(&cp, 0, sizeof(cp));
6488 	cp.handle = handle;
6489 
6490 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6491 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6492 }
6493 
6494 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6495 {
6496 	struct hci_cp_le_pa_term_sync cp;
6497 
6498 	memset(&cp, 0, sizeof(cp));
6499 	cp.handle = cpu_to_le16(handle);
6500 
6501 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6502 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6503 }
6504 
6505 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6506 			   bool use_rpa, struct adv_info *adv_instance,
6507 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6508 {
6509 	int err;
6510 
6511 	bacpy(rand_addr, BDADDR_ANY);
6512 
6513 	/* If privacy is enabled use a resolvable private address. If
6514 	 * current RPA has expired then generate a new one.
6515 	 */
6516 	if (use_rpa) {
6517 		/* If Controller supports LL Privacy use own address type is
6518 		 * 0x03
6519 		 */
6520 		if (use_ll_privacy(hdev))
6521 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6522 		else
6523 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6524 
6525 		if (adv_instance) {
6526 			if (adv_rpa_valid(adv_instance))
6527 				return 0;
6528 		} else {
6529 			if (rpa_valid(hdev))
6530 				return 0;
6531 		}
6532 
6533 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6534 		if (err < 0) {
6535 			bt_dev_err(hdev, "failed to generate new RPA");
6536 			return err;
6537 		}
6538 
6539 		bacpy(rand_addr, &hdev->rpa);
6540 
6541 		return 0;
6542 	}
6543 
6544 	/* In case of required privacy without resolvable private address,
6545 	 * use an non-resolvable private address. This is useful for
6546 	 * non-connectable advertising.
6547 	 */
6548 	if (require_privacy) {
6549 		bdaddr_t nrpa;
6550 
6551 		while (true) {
6552 			/* The non-resolvable private address is generated
6553 			 * from random six bytes with the two most significant
6554 			 * bits cleared.
6555 			 */
6556 			get_random_bytes(&nrpa, 6);
6557 			nrpa.b[5] &= 0x3f;
6558 
6559 			/* The non-resolvable private address shall not be
6560 			 * equal to the public address.
6561 			 */
6562 			if (bacmp(&hdev->bdaddr, &nrpa))
6563 				break;
6564 		}
6565 
6566 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6567 		bacpy(rand_addr, &nrpa);
6568 
6569 		return 0;
6570 	}
6571 
6572 	/* No privacy so use a public address. */
6573 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6574 
6575 	return 0;
6576 }
6577 
6578 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6579 {
6580 	u8 instance = PTR_UINT(data);
6581 
6582 	return hci_update_adv_data_sync(hdev, instance);
6583 }
6584 
6585 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6586 {
6587 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6588 				  UINT_PTR(instance), NULL);
6589 }
6590