1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <asm/unaligned.h> 30 31 #include <net/bluetooth/bluetooth.h> 32 #include <net/bluetooth/hci_core.h> 33 #include <net/bluetooth/hci_mon.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "mgmt_util.h" 37 38 static LIST_HEAD(mgmt_chan_list); 39 static DEFINE_MUTEX(mgmt_chan_list_lock); 40 41 static atomic_t monitor_promisc = ATOMIC_INIT(0); 42 43 /* ----- HCI socket interface ----- */ 44 45 /* Socket info */ 46 #define hci_pi(sk) ((struct hci_pinfo *) sk) 47 48 struct hci_pinfo { 49 struct bt_sock bt; 50 struct hci_dev *hdev; 51 struct hci_filter filter; 52 __u32 cmsg_mask; 53 unsigned short channel; 54 unsigned long flags; 55 }; 56 57 void hci_sock_set_flag(struct sock *sk, int nr) 58 { 59 set_bit(nr, &hci_pi(sk)->flags); 60 } 61 62 void hci_sock_clear_flag(struct sock *sk, int nr) 63 { 64 clear_bit(nr, &hci_pi(sk)->flags); 65 } 66 67 int hci_sock_test_flag(struct sock *sk, int nr) 68 { 69 return test_bit(nr, &hci_pi(sk)->flags); 70 } 71 72 unsigned short hci_sock_get_channel(struct sock *sk) 73 { 74 return hci_pi(sk)->channel; 75 } 76 77 static inline int hci_test_bit(int nr, const void *addr) 78 { 79 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 80 } 81 82 /* Security filter */ 83 #define HCI_SFLT_MAX_OGF 5 84 85 struct hci_sec_filter { 86 __u32 type_mask; 87 __u32 event_mask[2]; 88 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 89 }; 90 91 static const struct hci_sec_filter hci_sec_filter = { 92 /* Packet types */ 93 0x10, 94 /* Events */ 95 { 0x1000d9fe, 0x0000b00c }, 96 /* Commands */ 97 { 98 { 0x0 }, 99 /* OGF_LINK_CTL */ 100 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 101 /* OGF_LINK_POLICY */ 102 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 103 /* OGF_HOST_CTL */ 104 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 105 /* OGF_INFO_PARAM */ 106 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 107 /* OGF_STATUS_PARAM */ 108 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 109 } 110 }; 111 112 static struct bt_sock_list hci_sk_list = { 113 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 114 }; 115 116 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 117 { 118 struct hci_filter *flt; 119 int flt_type, flt_event; 120 121 /* Apply filter */ 122 flt = &hci_pi(sk)->filter; 123 124 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 125 126 if (!test_bit(flt_type, &flt->type_mask)) 127 return true; 128 129 /* Extra filter for event packets only */ 130 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 131 return false; 132 133 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 134 135 if (!hci_test_bit(flt_event, &flt->event_mask)) 136 return true; 137 138 /* Check filter only when opcode is set */ 139 if (!flt->opcode) 140 return false; 141 142 if (flt_event == HCI_EV_CMD_COMPLETE && 143 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 144 return true; 145 146 if (flt_event == HCI_EV_CMD_STATUS && 147 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 148 return true; 149 150 return false; 151 } 152 153 /* Send frame to RAW socket */ 154 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 155 { 156 struct sock *sk; 157 struct sk_buff *skb_copy = NULL; 158 159 BT_DBG("hdev %p len %d", hdev, skb->len); 160 161 read_lock(&hci_sk_list.lock); 162 163 sk_for_each(sk, &hci_sk_list.head) { 164 struct sk_buff *nskb; 165 166 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 167 continue; 168 169 /* Don't send frame to the socket it came from */ 170 if (skb->sk == sk) 171 continue; 172 173 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 174 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 175 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 176 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 177 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 178 continue; 179 if (is_filtered_packet(sk, skb)) 180 continue; 181 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 182 if (!bt_cb(skb)->incoming) 183 continue; 184 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 185 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 186 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 187 continue; 188 } else { 189 /* Don't send frame to other channel types */ 190 continue; 191 } 192 193 if (!skb_copy) { 194 /* Create a private copy with headroom */ 195 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 196 if (!skb_copy) 197 continue; 198 199 /* Put type byte before the data */ 200 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 201 } 202 203 nskb = skb_clone(skb_copy, GFP_ATOMIC); 204 if (!nskb) 205 continue; 206 207 if (sock_queue_rcv_skb(sk, nskb)) 208 kfree_skb(nskb); 209 } 210 211 read_unlock(&hci_sk_list.lock); 212 213 kfree_skb(skb_copy); 214 } 215 216 /* Send frame to sockets with specific channel */ 217 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 218 int flag, struct sock *skip_sk) 219 { 220 struct sock *sk; 221 222 BT_DBG("channel %u len %d", channel, skb->len); 223 224 read_lock(&hci_sk_list.lock); 225 226 sk_for_each(sk, &hci_sk_list.head) { 227 struct sk_buff *nskb; 228 229 /* Ignore socket without the flag set */ 230 if (!hci_sock_test_flag(sk, flag)) 231 continue; 232 233 /* Skip the original socket */ 234 if (sk == skip_sk) 235 continue; 236 237 if (sk->sk_state != BT_BOUND) 238 continue; 239 240 if (hci_pi(sk)->channel != channel) 241 continue; 242 243 nskb = skb_clone(skb, GFP_ATOMIC); 244 if (!nskb) 245 continue; 246 247 if (sock_queue_rcv_skb(sk, nskb)) 248 kfree_skb(nskb); 249 } 250 251 read_unlock(&hci_sk_list.lock); 252 } 253 254 /* Send frame to monitor socket */ 255 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 256 { 257 struct sk_buff *skb_copy = NULL; 258 struct hci_mon_hdr *hdr; 259 __le16 opcode; 260 261 if (!atomic_read(&monitor_promisc)) 262 return; 263 264 BT_DBG("hdev %p len %d", hdev, skb->len); 265 266 switch (hci_skb_pkt_type(skb)) { 267 case HCI_COMMAND_PKT: 268 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 269 break; 270 case HCI_EVENT_PKT: 271 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 272 break; 273 case HCI_ACLDATA_PKT: 274 if (bt_cb(skb)->incoming) 275 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 276 else 277 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 278 break; 279 case HCI_SCODATA_PKT: 280 if (bt_cb(skb)->incoming) 281 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 282 else 283 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 284 break; 285 case HCI_DIAG_PKT: 286 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 287 break; 288 default: 289 return; 290 } 291 292 /* Create a private copy with headroom */ 293 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 294 if (!skb_copy) 295 return; 296 297 /* Put header before the data */ 298 hdr = (void *)skb_push(skb_copy, HCI_MON_HDR_SIZE); 299 hdr->opcode = opcode; 300 hdr->index = cpu_to_le16(hdev->id); 301 hdr->len = cpu_to_le16(skb->len); 302 303 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 304 HCI_SOCK_TRUSTED, NULL); 305 kfree_skb(skb_copy); 306 } 307 308 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 309 { 310 struct hci_mon_hdr *hdr; 311 struct hci_mon_new_index *ni; 312 struct hci_mon_index_info *ii; 313 struct sk_buff *skb; 314 __le16 opcode; 315 316 switch (event) { 317 case HCI_DEV_REG: 318 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 319 if (!skb) 320 return NULL; 321 322 ni = (void *)skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 323 ni->type = hdev->dev_type; 324 ni->bus = hdev->bus; 325 bacpy(&ni->bdaddr, &hdev->bdaddr); 326 memcpy(ni->name, hdev->name, 8); 327 328 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 329 break; 330 331 case HCI_DEV_UNREG: 332 skb = bt_skb_alloc(0, GFP_ATOMIC); 333 if (!skb) 334 return NULL; 335 336 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 337 break; 338 339 case HCI_DEV_SETUP: 340 if (hdev->manufacturer == 0xffff) 341 return NULL; 342 343 /* fall through */ 344 345 case HCI_DEV_UP: 346 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 347 if (!skb) 348 return NULL; 349 350 ii = (void *)skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 351 bacpy(&ii->bdaddr, &hdev->bdaddr); 352 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 353 354 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 355 break; 356 357 case HCI_DEV_OPEN: 358 skb = bt_skb_alloc(0, GFP_ATOMIC); 359 if (!skb) 360 return NULL; 361 362 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 363 break; 364 365 case HCI_DEV_CLOSE: 366 skb = bt_skb_alloc(0, GFP_ATOMIC); 367 if (!skb) 368 return NULL; 369 370 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 371 break; 372 373 default: 374 return NULL; 375 } 376 377 __net_timestamp(skb); 378 379 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 380 hdr->opcode = opcode; 381 hdr->index = cpu_to_le16(hdev->id); 382 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 383 384 return skb; 385 } 386 387 static void __printf(2, 3) 388 send_monitor_note(struct sock *sk, const char *fmt, ...) 389 { 390 size_t len; 391 struct hci_mon_hdr *hdr; 392 struct sk_buff *skb; 393 va_list args; 394 395 va_start(args, fmt); 396 len = vsnprintf(NULL, 0, fmt, args); 397 va_end(args); 398 399 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 400 if (!skb) 401 return; 402 403 va_start(args, fmt); 404 vsprintf(skb_put(skb, len), fmt, args); 405 *skb_put(skb, 1) = 0; 406 va_end(args); 407 408 __net_timestamp(skb); 409 410 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 411 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 412 hdr->index = cpu_to_le16(HCI_DEV_NONE); 413 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 414 415 if (sock_queue_rcv_skb(sk, skb)) 416 kfree_skb(skb); 417 } 418 419 static void send_monitor_replay(struct sock *sk) 420 { 421 struct hci_dev *hdev; 422 423 read_lock(&hci_dev_list_lock); 424 425 list_for_each_entry(hdev, &hci_dev_list, list) { 426 struct sk_buff *skb; 427 428 skb = create_monitor_event(hdev, HCI_DEV_REG); 429 if (!skb) 430 continue; 431 432 if (sock_queue_rcv_skb(sk, skb)) 433 kfree_skb(skb); 434 435 if (!test_bit(HCI_RUNNING, &hdev->flags)) 436 continue; 437 438 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 439 if (!skb) 440 continue; 441 442 if (sock_queue_rcv_skb(sk, skb)) 443 kfree_skb(skb); 444 445 if (test_bit(HCI_UP, &hdev->flags)) 446 skb = create_monitor_event(hdev, HCI_DEV_UP); 447 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 448 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 449 else 450 skb = NULL; 451 452 if (skb) { 453 if (sock_queue_rcv_skb(sk, skb)) 454 kfree_skb(skb); 455 } 456 } 457 458 read_unlock(&hci_dev_list_lock); 459 } 460 461 /* Generate internal stack event */ 462 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 463 { 464 struct hci_event_hdr *hdr; 465 struct hci_ev_stack_internal *ev; 466 struct sk_buff *skb; 467 468 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 469 if (!skb) 470 return; 471 472 hdr = (void *)skb_put(skb, HCI_EVENT_HDR_SIZE); 473 hdr->evt = HCI_EV_STACK_INTERNAL; 474 hdr->plen = sizeof(*ev) + dlen; 475 476 ev = (void *)skb_put(skb, sizeof(*ev) + dlen); 477 ev->type = type; 478 memcpy(ev->data, data, dlen); 479 480 bt_cb(skb)->incoming = 1; 481 __net_timestamp(skb); 482 483 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 484 hci_send_to_sock(hdev, skb); 485 kfree_skb(skb); 486 } 487 488 void hci_sock_dev_event(struct hci_dev *hdev, int event) 489 { 490 BT_DBG("hdev %s event %d", hdev->name, event); 491 492 if (atomic_read(&monitor_promisc)) { 493 struct sk_buff *skb; 494 495 /* Send event to monitor */ 496 skb = create_monitor_event(hdev, event); 497 if (skb) { 498 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 499 HCI_SOCK_TRUSTED, NULL); 500 kfree_skb(skb); 501 } 502 } 503 504 if (event <= HCI_DEV_DOWN) { 505 struct hci_ev_si_device ev; 506 507 /* Send event to sockets */ 508 ev.event = event; 509 ev.dev_id = hdev->id; 510 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 511 } 512 513 if (event == HCI_DEV_UNREG) { 514 struct sock *sk; 515 516 /* Detach sockets from device */ 517 read_lock(&hci_sk_list.lock); 518 sk_for_each(sk, &hci_sk_list.head) { 519 bh_lock_sock_nested(sk); 520 if (hci_pi(sk)->hdev == hdev) { 521 hci_pi(sk)->hdev = NULL; 522 sk->sk_err = EPIPE; 523 sk->sk_state = BT_OPEN; 524 sk->sk_state_change(sk); 525 526 hci_dev_put(hdev); 527 } 528 bh_unlock_sock(sk); 529 } 530 read_unlock(&hci_sk_list.lock); 531 } 532 } 533 534 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 535 { 536 struct hci_mgmt_chan *c; 537 538 list_for_each_entry(c, &mgmt_chan_list, list) { 539 if (c->channel == channel) 540 return c; 541 } 542 543 return NULL; 544 } 545 546 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 547 { 548 struct hci_mgmt_chan *c; 549 550 mutex_lock(&mgmt_chan_list_lock); 551 c = __hci_mgmt_chan_find(channel); 552 mutex_unlock(&mgmt_chan_list_lock); 553 554 return c; 555 } 556 557 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 558 { 559 if (c->channel < HCI_CHANNEL_CONTROL) 560 return -EINVAL; 561 562 mutex_lock(&mgmt_chan_list_lock); 563 if (__hci_mgmt_chan_find(c->channel)) { 564 mutex_unlock(&mgmt_chan_list_lock); 565 return -EALREADY; 566 } 567 568 list_add_tail(&c->list, &mgmt_chan_list); 569 570 mutex_unlock(&mgmt_chan_list_lock); 571 572 return 0; 573 } 574 EXPORT_SYMBOL(hci_mgmt_chan_register); 575 576 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 577 { 578 mutex_lock(&mgmt_chan_list_lock); 579 list_del(&c->list); 580 mutex_unlock(&mgmt_chan_list_lock); 581 } 582 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 583 584 static int hci_sock_release(struct socket *sock) 585 { 586 struct sock *sk = sock->sk; 587 struct hci_dev *hdev; 588 589 BT_DBG("sock %p sk %p", sock, sk); 590 591 if (!sk) 592 return 0; 593 594 hdev = hci_pi(sk)->hdev; 595 596 if (hci_pi(sk)->channel == HCI_CHANNEL_MONITOR) 597 atomic_dec(&monitor_promisc); 598 599 bt_sock_unlink(&hci_sk_list, sk); 600 601 if (hdev) { 602 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 603 /* When releasing an user channel exclusive access, 604 * call hci_dev_do_close directly instead of calling 605 * hci_dev_close to ensure the exclusive access will 606 * be released and the controller brought back down. 607 * 608 * The checking of HCI_AUTO_OFF is not needed in this 609 * case since it will have been cleared already when 610 * opening the user channel. 611 */ 612 hci_dev_do_close(hdev); 613 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 614 mgmt_index_added(hdev); 615 } 616 617 atomic_dec(&hdev->promisc); 618 hci_dev_put(hdev); 619 } 620 621 sock_orphan(sk); 622 623 skb_queue_purge(&sk->sk_receive_queue); 624 skb_queue_purge(&sk->sk_write_queue); 625 626 sock_put(sk); 627 return 0; 628 } 629 630 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg) 631 { 632 bdaddr_t bdaddr; 633 int err; 634 635 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 636 return -EFAULT; 637 638 hci_dev_lock(hdev); 639 640 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 641 642 hci_dev_unlock(hdev); 643 644 return err; 645 } 646 647 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg) 648 { 649 bdaddr_t bdaddr; 650 int err; 651 652 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 653 return -EFAULT; 654 655 hci_dev_lock(hdev); 656 657 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 658 659 hci_dev_unlock(hdev); 660 661 return err; 662 } 663 664 /* Ioctls that require bound socket */ 665 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 666 unsigned long arg) 667 { 668 struct hci_dev *hdev = hci_pi(sk)->hdev; 669 670 if (!hdev) 671 return -EBADFD; 672 673 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 674 return -EBUSY; 675 676 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 677 return -EOPNOTSUPP; 678 679 if (hdev->dev_type != HCI_BREDR) 680 return -EOPNOTSUPP; 681 682 switch (cmd) { 683 case HCISETRAW: 684 if (!capable(CAP_NET_ADMIN)) 685 return -EPERM; 686 return -EOPNOTSUPP; 687 688 case HCIGETCONNINFO: 689 return hci_get_conn_info(hdev, (void __user *)arg); 690 691 case HCIGETAUTHINFO: 692 return hci_get_auth_info(hdev, (void __user *)arg); 693 694 case HCIBLOCKADDR: 695 if (!capable(CAP_NET_ADMIN)) 696 return -EPERM; 697 return hci_sock_blacklist_add(hdev, (void __user *)arg); 698 699 case HCIUNBLOCKADDR: 700 if (!capable(CAP_NET_ADMIN)) 701 return -EPERM; 702 return hci_sock_blacklist_del(hdev, (void __user *)arg); 703 } 704 705 return -ENOIOCTLCMD; 706 } 707 708 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 709 unsigned long arg) 710 { 711 void __user *argp = (void __user *)arg; 712 struct sock *sk = sock->sk; 713 int err; 714 715 BT_DBG("cmd %x arg %lx", cmd, arg); 716 717 lock_sock(sk); 718 719 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 720 err = -EBADFD; 721 goto done; 722 } 723 724 release_sock(sk); 725 726 switch (cmd) { 727 case HCIGETDEVLIST: 728 return hci_get_dev_list(argp); 729 730 case HCIGETDEVINFO: 731 return hci_get_dev_info(argp); 732 733 case HCIGETCONNLIST: 734 return hci_get_conn_list(argp); 735 736 case HCIDEVUP: 737 if (!capable(CAP_NET_ADMIN)) 738 return -EPERM; 739 return hci_dev_open(arg); 740 741 case HCIDEVDOWN: 742 if (!capable(CAP_NET_ADMIN)) 743 return -EPERM; 744 return hci_dev_close(arg); 745 746 case HCIDEVRESET: 747 if (!capable(CAP_NET_ADMIN)) 748 return -EPERM; 749 return hci_dev_reset(arg); 750 751 case HCIDEVRESTAT: 752 if (!capable(CAP_NET_ADMIN)) 753 return -EPERM; 754 return hci_dev_reset_stat(arg); 755 756 case HCISETSCAN: 757 case HCISETAUTH: 758 case HCISETENCRYPT: 759 case HCISETPTYPE: 760 case HCISETLINKPOL: 761 case HCISETLINKMODE: 762 case HCISETACLMTU: 763 case HCISETSCOMTU: 764 if (!capable(CAP_NET_ADMIN)) 765 return -EPERM; 766 return hci_dev_cmd(cmd, argp); 767 768 case HCIINQUIRY: 769 return hci_inquiry(argp); 770 } 771 772 lock_sock(sk); 773 774 err = hci_sock_bound_ioctl(sk, cmd, arg); 775 776 done: 777 release_sock(sk); 778 return err; 779 } 780 781 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 782 int addr_len) 783 { 784 struct sockaddr_hci haddr; 785 struct sock *sk = sock->sk; 786 struct hci_dev *hdev = NULL; 787 int len, err = 0; 788 789 BT_DBG("sock %p sk %p", sock, sk); 790 791 if (!addr) 792 return -EINVAL; 793 794 memset(&haddr, 0, sizeof(haddr)); 795 len = min_t(unsigned int, sizeof(haddr), addr_len); 796 memcpy(&haddr, addr, len); 797 798 if (haddr.hci_family != AF_BLUETOOTH) 799 return -EINVAL; 800 801 lock_sock(sk); 802 803 if (sk->sk_state == BT_BOUND) { 804 err = -EALREADY; 805 goto done; 806 } 807 808 switch (haddr.hci_channel) { 809 case HCI_CHANNEL_RAW: 810 if (hci_pi(sk)->hdev) { 811 err = -EALREADY; 812 goto done; 813 } 814 815 if (haddr.hci_dev != HCI_DEV_NONE) { 816 hdev = hci_dev_get(haddr.hci_dev); 817 if (!hdev) { 818 err = -ENODEV; 819 goto done; 820 } 821 822 atomic_inc(&hdev->promisc); 823 } 824 825 hci_pi(sk)->hdev = hdev; 826 break; 827 828 case HCI_CHANNEL_USER: 829 if (hci_pi(sk)->hdev) { 830 err = -EALREADY; 831 goto done; 832 } 833 834 if (haddr.hci_dev == HCI_DEV_NONE) { 835 err = -EINVAL; 836 goto done; 837 } 838 839 if (!capable(CAP_NET_ADMIN)) { 840 err = -EPERM; 841 goto done; 842 } 843 844 hdev = hci_dev_get(haddr.hci_dev); 845 if (!hdev) { 846 err = -ENODEV; 847 goto done; 848 } 849 850 if (test_bit(HCI_INIT, &hdev->flags) || 851 hci_dev_test_flag(hdev, HCI_SETUP) || 852 hci_dev_test_flag(hdev, HCI_CONFIG) || 853 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 854 test_bit(HCI_UP, &hdev->flags))) { 855 err = -EBUSY; 856 hci_dev_put(hdev); 857 goto done; 858 } 859 860 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 861 err = -EUSERS; 862 hci_dev_put(hdev); 863 goto done; 864 } 865 866 mgmt_index_removed(hdev); 867 868 err = hci_dev_open(hdev->id); 869 if (err) { 870 if (err == -EALREADY) { 871 /* In case the transport is already up and 872 * running, clear the error here. 873 * 874 * This can happen when opening an user 875 * channel and HCI_AUTO_OFF grace period 876 * is still active. 877 */ 878 err = 0; 879 } else { 880 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 881 mgmt_index_added(hdev); 882 hci_dev_put(hdev); 883 goto done; 884 } 885 } 886 887 atomic_inc(&hdev->promisc); 888 889 hci_pi(sk)->hdev = hdev; 890 break; 891 892 case HCI_CHANNEL_MONITOR: 893 if (haddr.hci_dev != HCI_DEV_NONE) { 894 err = -EINVAL; 895 goto done; 896 } 897 898 if (!capable(CAP_NET_RAW)) { 899 err = -EPERM; 900 goto done; 901 } 902 903 /* The monitor interface is restricted to CAP_NET_RAW 904 * capabilities and with that implicitly trusted. 905 */ 906 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 907 908 send_monitor_note(sk, "Linux version %s (%s)", 909 init_utsname()->release, 910 init_utsname()->machine); 911 send_monitor_note(sk, "Bluetooth subsystem version %s", 912 BT_SUBSYS_VERSION); 913 send_monitor_replay(sk); 914 915 atomic_inc(&monitor_promisc); 916 break; 917 918 case HCI_CHANNEL_LOGGING: 919 if (haddr.hci_dev != HCI_DEV_NONE) { 920 err = -EINVAL; 921 goto done; 922 } 923 924 if (!capable(CAP_NET_ADMIN)) { 925 err = -EPERM; 926 goto done; 927 } 928 break; 929 930 default: 931 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 932 err = -EINVAL; 933 goto done; 934 } 935 936 if (haddr.hci_dev != HCI_DEV_NONE) { 937 err = -EINVAL; 938 goto done; 939 } 940 941 /* Users with CAP_NET_ADMIN capabilities are allowed 942 * access to all management commands and events. For 943 * untrusted users the interface is restricted and 944 * also only untrusted events are sent. 945 */ 946 if (capable(CAP_NET_ADMIN)) 947 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 948 949 /* At the moment the index and unconfigured index events 950 * are enabled unconditionally. Setting them on each 951 * socket when binding keeps this functionality. They 952 * however might be cleared later and then sending of these 953 * events will be disabled, but that is then intentional. 954 * 955 * This also enables generic events that are safe to be 956 * received by untrusted users. Example for such events 957 * are changes to settings, class of device, name etc. 958 */ 959 if (haddr.hci_channel == HCI_CHANNEL_CONTROL) { 960 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 961 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 962 hci_sock_set_flag(sk, HCI_MGMT_GENERIC_EVENTS); 963 } 964 break; 965 } 966 967 968 hci_pi(sk)->channel = haddr.hci_channel; 969 sk->sk_state = BT_BOUND; 970 971 done: 972 release_sock(sk); 973 return err; 974 } 975 976 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 977 int *addr_len, int peer) 978 { 979 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 980 struct sock *sk = sock->sk; 981 struct hci_dev *hdev; 982 int err = 0; 983 984 BT_DBG("sock %p sk %p", sock, sk); 985 986 if (peer) 987 return -EOPNOTSUPP; 988 989 lock_sock(sk); 990 991 hdev = hci_pi(sk)->hdev; 992 if (!hdev) { 993 err = -EBADFD; 994 goto done; 995 } 996 997 *addr_len = sizeof(*haddr); 998 haddr->hci_family = AF_BLUETOOTH; 999 haddr->hci_dev = hdev->id; 1000 haddr->hci_channel= hci_pi(sk)->channel; 1001 1002 done: 1003 release_sock(sk); 1004 return err; 1005 } 1006 1007 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1008 struct sk_buff *skb) 1009 { 1010 __u32 mask = hci_pi(sk)->cmsg_mask; 1011 1012 if (mask & HCI_CMSG_DIR) { 1013 int incoming = bt_cb(skb)->incoming; 1014 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1015 &incoming); 1016 } 1017 1018 if (mask & HCI_CMSG_TSTAMP) { 1019 #ifdef CONFIG_COMPAT 1020 struct compat_timeval ctv; 1021 #endif 1022 struct timeval tv; 1023 void *data; 1024 int len; 1025 1026 skb_get_timestamp(skb, &tv); 1027 1028 data = &tv; 1029 len = sizeof(tv); 1030 #ifdef CONFIG_COMPAT 1031 if (!COMPAT_USE_64BIT_TIME && 1032 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1033 ctv.tv_sec = tv.tv_sec; 1034 ctv.tv_usec = tv.tv_usec; 1035 data = &ctv; 1036 len = sizeof(ctv); 1037 } 1038 #endif 1039 1040 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1041 } 1042 } 1043 1044 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1045 size_t len, int flags) 1046 { 1047 int noblock = flags & MSG_DONTWAIT; 1048 struct sock *sk = sock->sk; 1049 struct sk_buff *skb; 1050 int copied, err; 1051 1052 BT_DBG("sock %p, sk %p", sock, sk); 1053 1054 if (flags & MSG_OOB) 1055 return -EOPNOTSUPP; 1056 1057 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1058 return -EOPNOTSUPP; 1059 1060 if (sk->sk_state == BT_CLOSED) 1061 return 0; 1062 1063 skb = skb_recv_datagram(sk, flags, noblock, &err); 1064 if (!skb) 1065 return err; 1066 1067 copied = skb->len; 1068 if (len < copied) { 1069 msg->msg_flags |= MSG_TRUNC; 1070 copied = len; 1071 } 1072 1073 skb_reset_transport_header(skb); 1074 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1075 1076 switch (hci_pi(sk)->channel) { 1077 case HCI_CHANNEL_RAW: 1078 hci_sock_cmsg(sk, msg, skb); 1079 break; 1080 case HCI_CHANNEL_USER: 1081 case HCI_CHANNEL_MONITOR: 1082 sock_recv_timestamp(msg, sk, skb); 1083 break; 1084 default: 1085 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1086 sock_recv_timestamp(msg, sk, skb); 1087 break; 1088 } 1089 1090 skb_free_datagram(sk, skb); 1091 1092 return err ? : copied; 1093 } 1094 1095 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1096 struct msghdr *msg, size_t msglen) 1097 { 1098 void *buf; 1099 u8 *cp; 1100 struct mgmt_hdr *hdr; 1101 u16 opcode, index, len; 1102 struct hci_dev *hdev = NULL; 1103 const struct hci_mgmt_handler *handler; 1104 bool var_len, no_hdev; 1105 int err; 1106 1107 BT_DBG("got %zu bytes", msglen); 1108 1109 if (msglen < sizeof(*hdr)) 1110 return -EINVAL; 1111 1112 buf = kmalloc(msglen, GFP_KERNEL); 1113 if (!buf) 1114 return -ENOMEM; 1115 1116 if (memcpy_from_msg(buf, msg, msglen)) { 1117 err = -EFAULT; 1118 goto done; 1119 } 1120 1121 hdr = buf; 1122 opcode = __le16_to_cpu(hdr->opcode); 1123 index = __le16_to_cpu(hdr->index); 1124 len = __le16_to_cpu(hdr->len); 1125 1126 if (len != msglen - sizeof(*hdr)) { 1127 err = -EINVAL; 1128 goto done; 1129 } 1130 1131 if (opcode >= chan->handler_count || 1132 chan->handlers[opcode].func == NULL) { 1133 BT_DBG("Unknown op %u", opcode); 1134 err = mgmt_cmd_status(sk, index, opcode, 1135 MGMT_STATUS_UNKNOWN_COMMAND); 1136 goto done; 1137 } 1138 1139 handler = &chan->handlers[opcode]; 1140 1141 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1142 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1143 err = mgmt_cmd_status(sk, index, opcode, 1144 MGMT_STATUS_PERMISSION_DENIED); 1145 goto done; 1146 } 1147 1148 if (index != MGMT_INDEX_NONE) { 1149 hdev = hci_dev_get(index); 1150 if (!hdev) { 1151 err = mgmt_cmd_status(sk, index, opcode, 1152 MGMT_STATUS_INVALID_INDEX); 1153 goto done; 1154 } 1155 1156 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1157 hci_dev_test_flag(hdev, HCI_CONFIG) || 1158 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1159 err = mgmt_cmd_status(sk, index, opcode, 1160 MGMT_STATUS_INVALID_INDEX); 1161 goto done; 1162 } 1163 1164 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1165 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1166 err = mgmt_cmd_status(sk, index, opcode, 1167 MGMT_STATUS_INVALID_INDEX); 1168 goto done; 1169 } 1170 } 1171 1172 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1173 if (no_hdev != !hdev) { 1174 err = mgmt_cmd_status(sk, index, opcode, 1175 MGMT_STATUS_INVALID_INDEX); 1176 goto done; 1177 } 1178 1179 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1180 if ((var_len && len < handler->data_len) || 1181 (!var_len && len != handler->data_len)) { 1182 err = mgmt_cmd_status(sk, index, opcode, 1183 MGMT_STATUS_INVALID_PARAMS); 1184 goto done; 1185 } 1186 1187 if (hdev && chan->hdev_init) 1188 chan->hdev_init(sk, hdev); 1189 1190 cp = buf + sizeof(*hdr); 1191 1192 err = handler->func(sk, hdev, cp, len); 1193 if (err < 0) 1194 goto done; 1195 1196 err = msglen; 1197 1198 done: 1199 if (hdev) 1200 hci_dev_put(hdev); 1201 1202 kfree(buf); 1203 return err; 1204 } 1205 1206 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len) 1207 { 1208 struct hci_mon_hdr *hdr; 1209 struct sk_buff *skb; 1210 struct hci_dev *hdev; 1211 u16 index; 1212 int err; 1213 1214 /* The logging frame consists at minimum of the standard header, 1215 * the priority byte, the ident length byte and at least one string 1216 * terminator NUL byte. Anything shorter are invalid packets. 1217 */ 1218 if (len < sizeof(*hdr) + 3) 1219 return -EINVAL; 1220 1221 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1222 if (!skb) 1223 return err; 1224 1225 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1226 err = -EFAULT; 1227 goto drop; 1228 } 1229 1230 hdr = (void *)skb->data; 1231 1232 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) { 1233 err = -EINVAL; 1234 goto drop; 1235 } 1236 1237 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1238 __u8 priority = skb->data[sizeof(*hdr)]; 1239 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1240 1241 /* Only the priorities 0-7 are valid and with that any other 1242 * value results in an invalid packet. 1243 * 1244 * The priority byte is followed by an ident length byte and 1245 * the NUL terminated ident string. Check that the ident 1246 * length is not overflowing the packet and also that the 1247 * ident string itself is NUL terminated. In case the ident 1248 * length is zero, the length value actually doubles as NUL 1249 * terminator identifier. 1250 * 1251 * The message follows the ident string (if present) and 1252 * must be NUL terminated. Otherwise it is not a valid packet. 1253 */ 1254 if (priority > 7 || skb->data[len - 1] != 0x00 || 1255 ident_len > len - sizeof(*hdr) - 3 || 1256 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) { 1257 err = -EINVAL; 1258 goto drop; 1259 } 1260 } else { 1261 err = -EINVAL; 1262 goto drop; 1263 } 1264 1265 index = __le16_to_cpu(hdr->index); 1266 1267 if (index != MGMT_INDEX_NONE) { 1268 hdev = hci_dev_get(index); 1269 if (!hdev) { 1270 err = -ENODEV; 1271 goto drop; 1272 } 1273 } else { 1274 hdev = NULL; 1275 } 1276 1277 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1278 1279 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1280 err = len; 1281 1282 if (hdev) 1283 hci_dev_put(hdev); 1284 1285 drop: 1286 kfree_skb(skb); 1287 return err; 1288 } 1289 1290 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1291 size_t len) 1292 { 1293 struct sock *sk = sock->sk; 1294 struct hci_mgmt_chan *chan; 1295 struct hci_dev *hdev; 1296 struct sk_buff *skb; 1297 int err; 1298 1299 BT_DBG("sock %p sk %p", sock, sk); 1300 1301 if (msg->msg_flags & MSG_OOB) 1302 return -EOPNOTSUPP; 1303 1304 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE)) 1305 return -EINVAL; 1306 1307 if (len < 4 || len > HCI_MAX_FRAME_SIZE) 1308 return -EINVAL; 1309 1310 lock_sock(sk); 1311 1312 switch (hci_pi(sk)->channel) { 1313 case HCI_CHANNEL_RAW: 1314 case HCI_CHANNEL_USER: 1315 break; 1316 case HCI_CHANNEL_MONITOR: 1317 err = -EOPNOTSUPP; 1318 goto done; 1319 case HCI_CHANNEL_LOGGING: 1320 err = hci_logging_frame(sk, msg, len); 1321 goto done; 1322 default: 1323 mutex_lock(&mgmt_chan_list_lock); 1324 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1325 if (chan) 1326 err = hci_mgmt_cmd(chan, sk, msg, len); 1327 else 1328 err = -EINVAL; 1329 1330 mutex_unlock(&mgmt_chan_list_lock); 1331 goto done; 1332 } 1333 1334 hdev = hci_pi(sk)->hdev; 1335 if (!hdev) { 1336 err = -EBADFD; 1337 goto done; 1338 } 1339 1340 if (!test_bit(HCI_UP, &hdev->flags)) { 1341 err = -ENETDOWN; 1342 goto done; 1343 } 1344 1345 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1346 if (!skb) 1347 goto done; 1348 1349 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1350 err = -EFAULT; 1351 goto drop; 1352 } 1353 1354 hci_skb_pkt_type(skb) = skb->data[0]; 1355 skb_pull(skb, 1); 1356 1357 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1358 /* No permission check is needed for user channel 1359 * since that gets enforced when binding the socket. 1360 * 1361 * However check that the packet type is valid. 1362 */ 1363 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1364 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1365 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1366 err = -EINVAL; 1367 goto drop; 1368 } 1369 1370 skb_queue_tail(&hdev->raw_q, skb); 1371 queue_work(hdev->workqueue, &hdev->tx_work); 1372 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1373 u16 opcode = get_unaligned_le16(skb->data); 1374 u16 ogf = hci_opcode_ogf(opcode); 1375 u16 ocf = hci_opcode_ocf(opcode); 1376 1377 if (((ogf > HCI_SFLT_MAX_OGF) || 1378 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1379 &hci_sec_filter.ocf_mask[ogf])) && 1380 !capable(CAP_NET_RAW)) { 1381 err = -EPERM; 1382 goto drop; 1383 } 1384 1385 /* Since the opcode has already been extracted here, store 1386 * a copy of the value for later use by the drivers. 1387 */ 1388 hci_skb_opcode(skb) = opcode; 1389 1390 if (ogf == 0x3f) { 1391 skb_queue_tail(&hdev->raw_q, skb); 1392 queue_work(hdev->workqueue, &hdev->tx_work); 1393 } else { 1394 /* Stand-alone HCI commands must be flagged as 1395 * single-command requests. 1396 */ 1397 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1398 1399 skb_queue_tail(&hdev->cmd_q, skb); 1400 queue_work(hdev->workqueue, &hdev->cmd_work); 1401 } 1402 } else { 1403 if (!capable(CAP_NET_RAW)) { 1404 err = -EPERM; 1405 goto drop; 1406 } 1407 1408 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1409 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1410 err = -EINVAL; 1411 goto drop; 1412 } 1413 1414 skb_queue_tail(&hdev->raw_q, skb); 1415 queue_work(hdev->workqueue, &hdev->tx_work); 1416 } 1417 1418 err = len; 1419 1420 done: 1421 release_sock(sk); 1422 return err; 1423 1424 drop: 1425 kfree_skb(skb); 1426 goto done; 1427 } 1428 1429 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1430 char __user *optval, unsigned int len) 1431 { 1432 struct hci_ufilter uf = { .opcode = 0 }; 1433 struct sock *sk = sock->sk; 1434 int err = 0, opt = 0; 1435 1436 BT_DBG("sk %p, opt %d", sk, optname); 1437 1438 lock_sock(sk); 1439 1440 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1441 err = -EBADFD; 1442 goto done; 1443 } 1444 1445 switch (optname) { 1446 case HCI_DATA_DIR: 1447 if (get_user(opt, (int __user *)optval)) { 1448 err = -EFAULT; 1449 break; 1450 } 1451 1452 if (opt) 1453 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1454 else 1455 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1456 break; 1457 1458 case HCI_TIME_STAMP: 1459 if (get_user(opt, (int __user *)optval)) { 1460 err = -EFAULT; 1461 break; 1462 } 1463 1464 if (opt) 1465 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1466 else 1467 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1468 break; 1469 1470 case HCI_FILTER: 1471 { 1472 struct hci_filter *f = &hci_pi(sk)->filter; 1473 1474 uf.type_mask = f->type_mask; 1475 uf.opcode = f->opcode; 1476 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1477 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1478 } 1479 1480 len = min_t(unsigned int, len, sizeof(uf)); 1481 if (copy_from_user(&uf, optval, len)) { 1482 err = -EFAULT; 1483 break; 1484 } 1485 1486 if (!capable(CAP_NET_RAW)) { 1487 uf.type_mask &= hci_sec_filter.type_mask; 1488 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1489 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1490 } 1491 1492 { 1493 struct hci_filter *f = &hci_pi(sk)->filter; 1494 1495 f->type_mask = uf.type_mask; 1496 f->opcode = uf.opcode; 1497 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1498 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1499 } 1500 break; 1501 1502 default: 1503 err = -ENOPROTOOPT; 1504 break; 1505 } 1506 1507 done: 1508 release_sock(sk); 1509 return err; 1510 } 1511 1512 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 1513 char __user *optval, int __user *optlen) 1514 { 1515 struct hci_ufilter uf; 1516 struct sock *sk = sock->sk; 1517 int len, opt, err = 0; 1518 1519 BT_DBG("sk %p, opt %d", sk, optname); 1520 1521 if (get_user(len, optlen)) 1522 return -EFAULT; 1523 1524 lock_sock(sk); 1525 1526 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1527 err = -EBADFD; 1528 goto done; 1529 } 1530 1531 switch (optname) { 1532 case HCI_DATA_DIR: 1533 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1534 opt = 1; 1535 else 1536 opt = 0; 1537 1538 if (put_user(opt, optval)) 1539 err = -EFAULT; 1540 break; 1541 1542 case HCI_TIME_STAMP: 1543 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1544 opt = 1; 1545 else 1546 opt = 0; 1547 1548 if (put_user(opt, optval)) 1549 err = -EFAULT; 1550 break; 1551 1552 case HCI_FILTER: 1553 { 1554 struct hci_filter *f = &hci_pi(sk)->filter; 1555 1556 memset(&uf, 0, sizeof(uf)); 1557 uf.type_mask = f->type_mask; 1558 uf.opcode = f->opcode; 1559 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1560 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1561 } 1562 1563 len = min_t(unsigned int, len, sizeof(uf)); 1564 if (copy_to_user(optval, &uf, len)) 1565 err = -EFAULT; 1566 break; 1567 1568 default: 1569 err = -ENOPROTOOPT; 1570 break; 1571 } 1572 1573 done: 1574 release_sock(sk); 1575 return err; 1576 } 1577 1578 static const struct proto_ops hci_sock_ops = { 1579 .family = PF_BLUETOOTH, 1580 .owner = THIS_MODULE, 1581 .release = hci_sock_release, 1582 .bind = hci_sock_bind, 1583 .getname = hci_sock_getname, 1584 .sendmsg = hci_sock_sendmsg, 1585 .recvmsg = hci_sock_recvmsg, 1586 .ioctl = hci_sock_ioctl, 1587 .poll = datagram_poll, 1588 .listen = sock_no_listen, 1589 .shutdown = sock_no_shutdown, 1590 .setsockopt = hci_sock_setsockopt, 1591 .getsockopt = hci_sock_getsockopt, 1592 .connect = sock_no_connect, 1593 .socketpair = sock_no_socketpair, 1594 .accept = sock_no_accept, 1595 .mmap = sock_no_mmap 1596 }; 1597 1598 static struct proto hci_sk_proto = { 1599 .name = "HCI", 1600 .owner = THIS_MODULE, 1601 .obj_size = sizeof(struct hci_pinfo) 1602 }; 1603 1604 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 1605 int kern) 1606 { 1607 struct sock *sk; 1608 1609 BT_DBG("sock %p", sock); 1610 1611 if (sock->type != SOCK_RAW) 1612 return -ESOCKTNOSUPPORT; 1613 1614 sock->ops = &hci_sock_ops; 1615 1616 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 1617 if (!sk) 1618 return -ENOMEM; 1619 1620 sock_init_data(sock, sk); 1621 1622 sock_reset_flag(sk, SOCK_ZAPPED); 1623 1624 sk->sk_protocol = protocol; 1625 1626 sock->state = SS_UNCONNECTED; 1627 sk->sk_state = BT_OPEN; 1628 1629 bt_sock_link(&hci_sk_list, sk); 1630 return 0; 1631 } 1632 1633 static const struct net_proto_family hci_sock_family_ops = { 1634 .family = PF_BLUETOOTH, 1635 .owner = THIS_MODULE, 1636 .create = hci_sock_create, 1637 }; 1638 1639 int __init hci_sock_init(void) 1640 { 1641 int err; 1642 1643 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 1644 1645 err = proto_register(&hci_sk_proto, 0); 1646 if (err < 0) 1647 return err; 1648 1649 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 1650 if (err < 0) { 1651 BT_ERR("HCI socket registration failed"); 1652 goto error; 1653 } 1654 1655 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 1656 if (err < 0) { 1657 BT_ERR("Failed to create HCI proc file"); 1658 bt_sock_unregister(BTPROTO_HCI); 1659 goto error; 1660 } 1661 1662 BT_INFO("HCI socket layer initialized"); 1663 1664 return 0; 1665 1666 error: 1667 proto_unregister(&hci_sk_proto); 1668 return err; 1669 } 1670 1671 void hci_sock_cleanup(void) 1672 { 1673 bt_procfs_cleanup(&init_net, "hci"); 1674 bt_sock_unregister(BTPROTO_HCI); 1675 proto_unregister(&hci_sk_proto); 1676 } 1677