xref: /openbmc/linux/net/bluetooth/hci_sock.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u8              cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 	__u16             mtu;
61 };
62 
63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 	struct hci_dev *hdev = hci_pi(sk)->hdev;
66 
67 	if (!hdev)
68 		return ERR_PTR(-EBADFD);
69 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 		return ERR_PTR(-EPIPE);
71 	return hdev;
72 }
73 
74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 	set_bit(nr, &hci_pi(sk)->flags);
77 }
78 
79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 	clear_bit(nr, &hci_pi(sk)->flags);
82 }
83 
84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 	return test_bit(nr, &hci_pi(sk)->flags);
87 }
88 
89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 	return hci_pi(sk)->channel;
92 }
93 
94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 	return hci_pi(sk)->cookie;
97 }
98 
99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 	int id = hci_pi(sk)->cookie;
102 
103 	if (!id) {
104 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 		if (id < 0)
106 			id = 0xffffffff;
107 
108 		hci_pi(sk)->cookie = id;
109 		get_task_comm(hci_pi(sk)->comm, current);
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 	int id = hci_pi(sk)->cookie;
119 
120 	if (id) {
121 		hci_pi(sk)->cookie = 0xffffffff;
122 		ida_simple_remove(&sock_cookie_ida, id);
123 	}
124 }
125 
126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130 
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF  5
133 
134 struct hci_sec_filter {
135 	__u32 type_mask;
136 	__u32 event_mask[2];
137 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139 
140 static const struct hci_sec_filter hci_sec_filter = {
141 	/* Packet types */
142 	0x10,
143 	/* Events */
144 	{ 0x1000d9fe, 0x0000b00c },
145 	/* Commands */
146 	{
147 		{ 0x0 },
148 		/* OGF_LINK_CTL */
149 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 		/* OGF_LINK_POLICY */
151 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 		/* OGF_HOST_CTL */
153 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 		/* OGF_INFO_PARAM */
155 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 		/* OGF_STATUS_PARAM */
157 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 	}
159 };
160 
161 static struct bt_sock_list hci_sk_list = {
162 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164 
165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 	struct hci_filter *flt;
168 	int flt_type, flt_event;
169 
170 	/* Apply filter */
171 	flt = &hci_pi(sk)->filter;
172 
173 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174 
175 	if (!test_bit(flt_type, &flt->type_mask))
176 		return true;
177 
178 	/* Extra filter for event packets only */
179 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 		return false;
181 
182 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183 
184 	if (!hci_test_bit(flt_event, &flt->event_mask))
185 		return true;
186 
187 	/* Check filter only when opcode is set */
188 	if (!flt->opcode)
189 		return false;
190 
191 	if (flt_event == HCI_EV_CMD_COMPLETE &&
192 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 		return true;
194 
195 	if (flt_event == HCI_EV_CMD_STATUS &&
196 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 		return true;
198 
199 	return false;
200 }
201 
202 /* Send frame to RAW socket */
203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 	struct sock *sk;
206 	struct sk_buff *skb_copy = NULL;
207 
208 	BT_DBG("hdev %p len %d", hdev, skb->len);
209 
210 	read_lock(&hci_sk_list.lock);
211 
212 	sk_for_each(sk, &hci_sk_list.head) {
213 		struct sk_buff *nskb;
214 
215 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 			continue;
217 
218 		/* Don't send frame to the socket it came from */
219 		if (skb->sk == sk)
220 			continue;
221 
222 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 				continue;
229 			if (is_filtered_packet(sk, skb))
230 				continue;
231 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 			if (!bt_cb(skb)->incoming)
233 				continue;
234 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 				continue;
239 		} else {
240 			/* Don't send frame to other channel types */
241 			continue;
242 		}
243 
244 		if (!skb_copy) {
245 			/* Create a private copy with headroom */
246 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 			if (!skb_copy)
248 				continue;
249 
250 			/* Put type byte before the data */
251 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 		}
253 
254 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 		if (!nskb)
256 			continue;
257 
258 		if (sock_queue_rcv_skb(sk, nskb))
259 			kfree_skb(nskb);
260 	}
261 
262 	read_unlock(&hci_sk_list.lock);
263 
264 	kfree_skb(skb_copy);
265 }
266 
267 /* Send frame to sockets with specific channel */
268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 				  int flag, struct sock *skip_sk)
270 {
271 	struct sock *sk;
272 
273 	BT_DBG("channel %u len %d", channel, skb->len);
274 
275 	sk_for_each(sk, &hci_sk_list.head) {
276 		struct sk_buff *nskb;
277 
278 		/* Ignore socket without the flag set */
279 		if (!hci_sock_test_flag(sk, flag))
280 			continue;
281 
282 		/* Skip the original socket */
283 		if (sk == skip_sk)
284 			continue;
285 
286 		if (sk->sk_state != BT_BOUND)
287 			continue;
288 
289 		if (hci_pi(sk)->channel != channel)
290 			continue;
291 
292 		nskb = skb_clone(skb, GFP_ATOMIC);
293 		if (!nskb)
294 			continue;
295 
296 		if (sock_queue_rcv_skb(sk, nskb))
297 			kfree_skb(nskb);
298 	}
299 
300 }
301 
302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 			 int flag, struct sock *skip_sk)
304 {
305 	read_lock(&hci_sk_list.lock);
306 	__hci_send_to_channel(channel, skb, flag, skip_sk);
307 	read_unlock(&hci_sk_list.lock);
308 }
309 
310 /* Send frame to monitor socket */
311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 	struct sk_buff *skb_copy = NULL;
314 	struct hci_mon_hdr *hdr;
315 	__le16 opcode;
316 
317 	if (!atomic_read(&monitor_promisc))
318 		return;
319 
320 	BT_DBG("hdev %p len %d", hdev, skb->len);
321 
322 	switch (hci_skb_pkt_type(skb)) {
323 	case HCI_COMMAND_PKT:
324 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 		break;
326 	case HCI_EVENT_PKT:
327 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 		break;
329 	case HCI_ACLDATA_PKT:
330 		if (bt_cb(skb)->incoming)
331 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 		else
333 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 		break;
335 	case HCI_SCODATA_PKT:
336 		if (bt_cb(skb)->incoming)
337 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 		else
339 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 		break;
341 	case HCI_ISODATA_PKT:
342 		if (bt_cb(skb)->incoming)
343 			opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 		else
345 			opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 		break;
347 	case HCI_DIAG_PKT:
348 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 		break;
350 	default:
351 		return;
352 	}
353 
354 	/* Create a private copy with headroom */
355 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 	if (!skb_copy)
357 		return;
358 
359 	/* Put header before the data */
360 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 	hdr->opcode = opcode;
362 	hdr->index = cpu_to_le16(hdev->id);
363 	hdr->len = cpu_to_le16(skb->len);
364 
365 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 			    HCI_SOCK_TRUSTED, NULL);
367 	kfree_skb(skb_copy);
368 }
369 
370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 				 void *data, u16 data_len, ktime_t tstamp,
372 				 int flag, struct sock *skip_sk)
373 {
374 	struct sock *sk;
375 	__le16 index;
376 
377 	if (hdev)
378 		index = cpu_to_le16(hdev->id);
379 	else
380 		index = cpu_to_le16(MGMT_INDEX_NONE);
381 
382 	read_lock(&hci_sk_list.lock);
383 
384 	sk_for_each(sk, &hci_sk_list.head) {
385 		struct hci_mon_hdr *hdr;
386 		struct sk_buff *skb;
387 
388 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 			continue;
390 
391 		/* Ignore socket without the flag set */
392 		if (!hci_sock_test_flag(sk, flag))
393 			continue;
394 
395 		/* Skip the original socket */
396 		if (sk == skip_sk)
397 			continue;
398 
399 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 		if (!skb)
401 			continue;
402 
403 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 		put_unaligned_le16(event, skb_put(skb, 2));
405 
406 		if (data)
407 			skb_put_data(skb, data, data_len);
408 
409 		skb->tstamp = tstamp;
410 
411 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 		hdr->index = index;
414 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415 
416 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 				      HCI_SOCK_TRUSTED, NULL);
418 		kfree_skb(skb);
419 	}
420 
421 	read_unlock(&hci_sk_list.lock);
422 }
423 
424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 	struct hci_mon_hdr *hdr;
427 	struct hci_mon_new_index *ni;
428 	struct hci_mon_index_info *ii;
429 	struct sk_buff *skb;
430 	__le16 opcode;
431 
432 	switch (event) {
433 	case HCI_DEV_REG:
434 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 		if (!skb)
436 			return NULL;
437 
438 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 		ni->type = hdev->dev_type;
440 		ni->bus = hdev->bus;
441 		bacpy(&ni->bdaddr, &hdev->bdaddr);
442 		memcpy(ni->name, hdev->name, 8);
443 
444 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 		break;
446 
447 	case HCI_DEV_UNREG:
448 		skb = bt_skb_alloc(0, GFP_ATOMIC);
449 		if (!skb)
450 			return NULL;
451 
452 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 		break;
454 
455 	case HCI_DEV_SETUP:
456 		if (hdev->manufacturer == 0xffff)
457 			return NULL;
458 		fallthrough;
459 
460 	case HCI_DEV_UP:
461 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 		if (!skb)
463 			return NULL;
464 
465 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 		bacpy(&ii->bdaddr, &hdev->bdaddr);
467 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468 
469 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 		break;
471 
472 	case HCI_DEV_OPEN:
473 		skb = bt_skb_alloc(0, GFP_ATOMIC);
474 		if (!skb)
475 			return NULL;
476 
477 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 		break;
479 
480 	case HCI_DEV_CLOSE:
481 		skb = bt_skb_alloc(0, GFP_ATOMIC);
482 		if (!skb)
483 			return NULL;
484 
485 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 		break;
487 
488 	default:
489 		return NULL;
490 	}
491 
492 	__net_timestamp(skb);
493 
494 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 	hdr->opcode = opcode;
496 	hdr->index = cpu_to_le16(hdev->id);
497 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498 
499 	return skb;
500 }
501 
502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 	struct hci_mon_hdr *hdr;
505 	struct sk_buff *skb;
506 	u16 format;
507 	u8 ver[3];
508 	u32 flags;
509 
510 	/* No message needed when cookie is not present */
511 	if (!hci_pi(sk)->cookie)
512 		return NULL;
513 
514 	switch (hci_pi(sk)->channel) {
515 	case HCI_CHANNEL_RAW:
516 		format = 0x0000;
517 		ver[0] = BT_SUBSYS_VERSION;
518 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 		break;
520 	case HCI_CHANNEL_USER:
521 		format = 0x0001;
522 		ver[0] = BT_SUBSYS_VERSION;
523 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 		break;
525 	case HCI_CHANNEL_CONTROL:
526 		format = 0x0002;
527 		mgmt_fill_version_info(ver);
528 		break;
529 	default:
530 		/* No message for unsupported format */
531 		return NULL;
532 	}
533 
534 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 	if (!skb)
536 		return NULL;
537 
538 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539 
540 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 	put_unaligned_le16(format, skb_put(skb, 2));
542 	skb_put_data(skb, ver, sizeof(ver));
543 	put_unaligned_le32(flags, skb_put(skb, 4));
544 	skb_put_u8(skb, TASK_COMM_LEN);
545 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546 
547 	__net_timestamp(skb);
548 
549 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 	if (hci_pi(sk)->hdev)
552 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 	else
554 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556 
557 	return skb;
558 }
559 
560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 	struct hci_mon_hdr *hdr;
563 	struct sk_buff *skb;
564 
565 	/* No message needed when cookie is not present */
566 	if (!hci_pi(sk)->cookie)
567 		return NULL;
568 
569 	switch (hci_pi(sk)->channel) {
570 	case HCI_CHANNEL_RAW:
571 	case HCI_CHANNEL_USER:
572 	case HCI_CHANNEL_CONTROL:
573 		break;
574 	default:
575 		/* No message for unsupported format */
576 		return NULL;
577 	}
578 
579 	skb = bt_skb_alloc(4, GFP_ATOMIC);
580 	if (!skb)
581 		return NULL;
582 
583 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584 
585 	__net_timestamp(skb);
586 
587 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 	if (hci_pi(sk)->hdev)
590 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 	else
592 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594 
595 	return skb;
596 }
597 
598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 						   u16 opcode, u16 len,
600 						   const void *buf)
601 {
602 	struct hci_mon_hdr *hdr;
603 	struct sk_buff *skb;
604 
605 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 	if (!skb)
607 		return NULL;
608 
609 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 	put_unaligned_le16(opcode, skb_put(skb, 2));
611 
612 	if (buf)
613 		skb_put_data(skb, buf, len);
614 
615 	__net_timestamp(skb);
616 
617 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 	hdr->index = cpu_to_le16(index);
620 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621 
622 	return skb;
623 }
624 
625 static void __printf(2, 3)
626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 	size_t len;
629 	struct hci_mon_hdr *hdr;
630 	struct sk_buff *skb;
631 	va_list args;
632 
633 	va_start(args, fmt);
634 	len = vsnprintf(NULL, 0, fmt, args);
635 	va_end(args);
636 
637 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 	if (!skb)
639 		return;
640 
641 	va_start(args, fmt);
642 	vsprintf(skb_put(skb, len), fmt, args);
643 	*(u8 *)skb_put(skb, 1) = 0;
644 	va_end(args);
645 
646 	__net_timestamp(skb);
647 
648 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652 
653 	if (sock_queue_rcv_skb(sk, skb))
654 		kfree_skb(skb);
655 }
656 
657 static void send_monitor_replay(struct sock *sk)
658 {
659 	struct hci_dev *hdev;
660 
661 	read_lock(&hci_dev_list_lock);
662 
663 	list_for_each_entry(hdev, &hci_dev_list, list) {
664 		struct sk_buff *skb;
665 
666 		skb = create_monitor_event(hdev, HCI_DEV_REG);
667 		if (!skb)
668 			continue;
669 
670 		if (sock_queue_rcv_skb(sk, skb))
671 			kfree_skb(skb);
672 
673 		if (!test_bit(HCI_RUNNING, &hdev->flags))
674 			continue;
675 
676 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 		if (!skb)
678 			continue;
679 
680 		if (sock_queue_rcv_skb(sk, skb))
681 			kfree_skb(skb);
682 
683 		if (test_bit(HCI_UP, &hdev->flags))
684 			skb = create_monitor_event(hdev, HCI_DEV_UP);
685 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 		else
688 			skb = NULL;
689 
690 		if (skb) {
691 			if (sock_queue_rcv_skb(sk, skb))
692 				kfree_skb(skb);
693 		}
694 	}
695 
696 	read_unlock(&hci_dev_list_lock);
697 }
698 
699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 	struct sock *sk;
702 
703 	read_lock(&hci_sk_list.lock);
704 
705 	sk_for_each(sk, &hci_sk_list.head) {
706 		struct sk_buff *skb;
707 
708 		skb = create_monitor_ctrl_open(sk);
709 		if (!skb)
710 			continue;
711 
712 		if (sock_queue_rcv_skb(mon_sk, skb))
713 			kfree_skb(skb);
714 	}
715 
716 	read_unlock(&hci_sk_list.lock);
717 }
718 
719 /* Generate internal stack event */
720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 	struct hci_event_hdr *hdr;
723 	struct hci_ev_stack_internal *ev;
724 	struct sk_buff *skb;
725 
726 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 	if (!skb)
728 		return;
729 
730 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 	hdr->evt  = HCI_EV_STACK_INTERNAL;
732 	hdr->plen = sizeof(*ev) + dlen;
733 
734 	ev = skb_put(skb, sizeof(*ev) + dlen);
735 	ev->type = type;
736 	memcpy(ev->data, data, dlen);
737 
738 	bt_cb(skb)->incoming = 1;
739 	__net_timestamp(skb);
740 
741 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 	hci_send_to_sock(hdev, skb);
743 	kfree_skb(skb);
744 }
745 
746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 	BT_DBG("hdev %s event %d", hdev->name, event);
749 
750 	if (atomic_read(&monitor_promisc)) {
751 		struct sk_buff *skb;
752 
753 		/* Send event to monitor */
754 		skb = create_monitor_event(hdev, event);
755 		if (skb) {
756 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 					    HCI_SOCK_TRUSTED, NULL);
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	if (event <= HCI_DEV_DOWN) {
763 		struct hci_ev_si_device ev;
764 
765 		/* Send event to sockets */
766 		ev.event  = event;
767 		ev.dev_id = hdev->id;
768 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 	}
770 
771 	if (event == HCI_DEV_UNREG) {
772 		struct sock *sk;
773 
774 		/* Wake up sockets using this dead device */
775 		read_lock(&hci_sk_list.lock);
776 		sk_for_each(sk, &hci_sk_list.head) {
777 			if (hci_pi(sk)->hdev == hdev) {
778 				sk->sk_err = EPIPE;
779 				sk->sk_state_change(sk);
780 			}
781 		}
782 		read_unlock(&hci_sk_list.lock);
783 	}
784 }
785 
786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 	struct hci_mgmt_chan *c;
789 
790 	list_for_each_entry(c, &mgmt_chan_list, list) {
791 		if (c->channel == channel)
792 			return c;
793 	}
794 
795 	return NULL;
796 }
797 
798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 	struct hci_mgmt_chan *c;
801 
802 	mutex_lock(&mgmt_chan_list_lock);
803 	c = __hci_mgmt_chan_find(channel);
804 	mutex_unlock(&mgmt_chan_list_lock);
805 
806 	return c;
807 }
808 
809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 	if (c->channel < HCI_CHANNEL_CONTROL)
812 		return -EINVAL;
813 
814 	mutex_lock(&mgmt_chan_list_lock);
815 	if (__hci_mgmt_chan_find(c->channel)) {
816 		mutex_unlock(&mgmt_chan_list_lock);
817 		return -EALREADY;
818 	}
819 
820 	list_add_tail(&c->list, &mgmt_chan_list);
821 
822 	mutex_unlock(&mgmt_chan_list_lock);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827 
828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 	mutex_lock(&mgmt_chan_list_lock);
831 	list_del(&c->list);
832 	mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835 
836 static int hci_sock_release(struct socket *sock)
837 {
838 	struct sock *sk = sock->sk;
839 	struct hci_dev *hdev;
840 	struct sk_buff *skb;
841 
842 	BT_DBG("sock %p sk %p", sock, sk);
843 
844 	if (!sk)
845 		return 0;
846 
847 	lock_sock(sk);
848 
849 	switch (hci_pi(sk)->channel) {
850 	case HCI_CHANNEL_MONITOR:
851 		atomic_dec(&monitor_promisc);
852 		break;
853 	case HCI_CHANNEL_RAW:
854 	case HCI_CHANNEL_USER:
855 	case HCI_CHANNEL_CONTROL:
856 		/* Send event to monitor */
857 		skb = create_monitor_ctrl_close(sk);
858 		if (skb) {
859 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 					    HCI_SOCK_TRUSTED, NULL);
861 			kfree_skb(skb);
862 		}
863 
864 		hci_sock_free_cookie(sk);
865 		break;
866 	}
867 
868 	bt_sock_unlink(&hci_sk_list, sk);
869 
870 	hdev = hci_pi(sk)->hdev;
871 	if (hdev) {
872 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER &&
873 		    !hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
874 			/* When releasing a user channel exclusive access,
875 			 * call hci_dev_do_close directly instead of calling
876 			 * hci_dev_close to ensure the exclusive access will
877 			 * be released and the controller brought back down.
878 			 *
879 			 * The checking of HCI_AUTO_OFF is not needed in this
880 			 * case since it will have been cleared already when
881 			 * opening the user channel.
882 			 *
883 			 * Make sure to also check that we haven't already
884 			 * unregistered since all the cleanup will have already
885 			 * been complete and hdev will get released when we put
886 			 * below.
887 			 */
888 			hci_dev_do_close(hdev);
889 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
890 			mgmt_index_added(hdev);
891 		}
892 
893 		atomic_dec(&hdev->promisc);
894 		hci_dev_put(hdev);
895 	}
896 
897 	sock_orphan(sk);
898 	release_sock(sk);
899 	sock_put(sk);
900 	return 0;
901 }
902 
903 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
904 {
905 	bdaddr_t bdaddr;
906 	int err;
907 
908 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
909 		return -EFAULT;
910 
911 	hci_dev_lock(hdev);
912 
913 	err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
914 
915 	hci_dev_unlock(hdev);
916 
917 	return err;
918 }
919 
920 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
921 {
922 	bdaddr_t bdaddr;
923 	int err;
924 
925 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
926 		return -EFAULT;
927 
928 	hci_dev_lock(hdev);
929 
930 	err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
931 
932 	hci_dev_unlock(hdev);
933 
934 	return err;
935 }
936 
937 /* Ioctls that require bound socket */
938 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
939 				unsigned long arg)
940 {
941 	struct hci_dev *hdev = hci_hdev_from_sock(sk);
942 
943 	if (IS_ERR(hdev))
944 		return PTR_ERR(hdev);
945 
946 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
947 		return -EBUSY;
948 
949 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
950 		return -EOPNOTSUPP;
951 
952 	if (hdev->dev_type != HCI_PRIMARY)
953 		return -EOPNOTSUPP;
954 
955 	switch (cmd) {
956 	case HCISETRAW:
957 		if (!capable(CAP_NET_ADMIN))
958 			return -EPERM;
959 		return -EOPNOTSUPP;
960 
961 	case HCIGETCONNINFO:
962 		return hci_get_conn_info(hdev, (void __user *)arg);
963 
964 	case HCIGETAUTHINFO:
965 		return hci_get_auth_info(hdev, (void __user *)arg);
966 
967 	case HCIBLOCKADDR:
968 		if (!capable(CAP_NET_ADMIN))
969 			return -EPERM;
970 		return hci_sock_reject_list_add(hdev, (void __user *)arg);
971 
972 	case HCIUNBLOCKADDR:
973 		if (!capable(CAP_NET_ADMIN))
974 			return -EPERM;
975 		return hci_sock_reject_list_del(hdev, (void __user *)arg);
976 	}
977 
978 	return -ENOIOCTLCMD;
979 }
980 
981 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
982 			  unsigned long arg)
983 {
984 	void __user *argp = (void __user *)arg;
985 	struct sock *sk = sock->sk;
986 	int err;
987 
988 	BT_DBG("cmd %x arg %lx", cmd, arg);
989 
990 	lock_sock(sk);
991 
992 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
993 		err = -EBADFD;
994 		goto done;
995 	}
996 
997 	/* When calling an ioctl on an unbound raw socket, then ensure
998 	 * that the monitor gets informed. Ensure that the resulting event
999 	 * is only send once by checking if the cookie exists or not. The
1000 	 * socket cookie will be only ever generated once for the lifetime
1001 	 * of a given socket.
1002 	 */
1003 	if (hci_sock_gen_cookie(sk)) {
1004 		struct sk_buff *skb;
1005 
1006 		if (capable(CAP_NET_ADMIN))
1007 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1008 
1009 		/* Send event to monitor */
1010 		skb = create_monitor_ctrl_open(sk);
1011 		if (skb) {
1012 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1013 					    HCI_SOCK_TRUSTED, NULL);
1014 			kfree_skb(skb);
1015 		}
1016 	}
1017 
1018 	release_sock(sk);
1019 
1020 	switch (cmd) {
1021 	case HCIGETDEVLIST:
1022 		return hci_get_dev_list(argp);
1023 
1024 	case HCIGETDEVINFO:
1025 		return hci_get_dev_info(argp);
1026 
1027 	case HCIGETCONNLIST:
1028 		return hci_get_conn_list(argp);
1029 
1030 	case HCIDEVUP:
1031 		if (!capable(CAP_NET_ADMIN))
1032 			return -EPERM;
1033 		return hci_dev_open(arg);
1034 
1035 	case HCIDEVDOWN:
1036 		if (!capable(CAP_NET_ADMIN))
1037 			return -EPERM;
1038 		return hci_dev_close(arg);
1039 
1040 	case HCIDEVRESET:
1041 		if (!capable(CAP_NET_ADMIN))
1042 			return -EPERM;
1043 		return hci_dev_reset(arg);
1044 
1045 	case HCIDEVRESTAT:
1046 		if (!capable(CAP_NET_ADMIN))
1047 			return -EPERM;
1048 		return hci_dev_reset_stat(arg);
1049 
1050 	case HCISETSCAN:
1051 	case HCISETAUTH:
1052 	case HCISETENCRYPT:
1053 	case HCISETPTYPE:
1054 	case HCISETLINKPOL:
1055 	case HCISETLINKMODE:
1056 	case HCISETACLMTU:
1057 	case HCISETSCOMTU:
1058 		if (!capable(CAP_NET_ADMIN))
1059 			return -EPERM;
1060 		return hci_dev_cmd(cmd, argp);
1061 
1062 	case HCIINQUIRY:
1063 		return hci_inquiry(argp);
1064 	}
1065 
1066 	lock_sock(sk);
1067 
1068 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1069 
1070 done:
1071 	release_sock(sk);
1072 	return err;
1073 }
1074 
1075 #ifdef CONFIG_COMPAT
1076 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1077 				 unsigned long arg)
1078 {
1079 	switch (cmd) {
1080 	case HCIDEVUP:
1081 	case HCIDEVDOWN:
1082 	case HCIDEVRESET:
1083 	case HCIDEVRESTAT:
1084 		return hci_sock_ioctl(sock, cmd, arg);
1085 	}
1086 
1087 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1088 }
1089 #endif
1090 
1091 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1092 			 int addr_len)
1093 {
1094 	struct sockaddr_hci haddr;
1095 	struct sock *sk = sock->sk;
1096 	struct hci_dev *hdev = NULL;
1097 	struct sk_buff *skb;
1098 	int len, err = 0;
1099 
1100 	BT_DBG("sock %p sk %p", sock, sk);
1101 
1102 	if (!addr)
1103 		return -EINVAL;
1104 
1105 	memset(&haddr, 0, sizeof(haddr));
1106 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1107 	memcpy(&haddr, addr, len);
1108 
1109 	if (haddr.hci_family != AF_BLUETOOTH)
1110 		return -EINVAL;
1111 
1112 	lock_sock(sk);
1113 
1114 	/* Allow detaching from dead device and attaching to alive device, if
1115 	 * the caller wants to re-bind (instead of close) this socket in
1116 	 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1117 	 */
1118 	hdev = hci_pi(sk)->hdev;
1119 	if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1120 		hci_pi(sk)->hdev = NULL;
1121 		sk->sk_state = BT_OPEN;
1122 		hci_dev_put(hdev);
1123 	}
1124 	hdev = NULL;
1125 
1126 	if (sk->sk_state == BT_BOUND) {
1127 		err = -EALREADY;
1128 		goto done;
1129 	}
1130 
1131 	switch (haddr.hci_channel) {
1132 	case HCI_CHANNEL_RAW:
1133 		if (hci_pi(sk)->hdev) {
1134 			err = -EALREADY;
1135 			goto done;
1136 		}
1137 
1138 		if (haddr.hci_dev != HCI_DEV_NONE) {
1139 			hdev = hci_dev_get(haddr.hci_dev);
1140 			if (!hdev) {
1141 				err = -ENODEV;
1142 				goto done;
1143 			}
1144 
1145 			atomic_inc(&hdev->promisc);
1146 		}
1147 
1148 		hci_pi(sk)->channel = haddr.hci_channel;
1149 
1150 		if (!hci_sock_gen_cookie(sk)) {
1151 			/* In the case when a cookie has already been assigned,
1152 			 * then there has been already an ioctl issued against
1153 			 * an unbound socket and with that triggered an open
1154 			 * notification. Send a close notification first to
1155 			 * allow the state transition to bounded.
1156 			 */
1157 			skb = create_monitor_ctrl_close(sk);
1158 			if (skb) {
1159 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1160 						    HCI_SOCK_TRUSTED, NULL);
1161 				kfree_skb(skb);
1162 			}
1163 		}
1164 
1165 		if (capable(CAP_NET_ADMIN))
1166 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1167 
1168 		hci_pi(sk)->hdev = hdev;
1169 
1170 		/* Send event to monitor */
1171 		skb = create_monitor_ctrl_open(sk);
1172 		if (skb) {
1173 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1174 					    HCI_SOCK_TRUSTED, NULL);
1175 			kfree_skb(skb);
1176 		}
1177 		break;
1178 
1179 	case HCI_CHANNEL_USER:
1180 		if (hci_pi(sk)->hdev) {
1181 			err = -EALREADY;
1182 			goto done;
1183 		}
1184 
1185 		if (haddr.hci_dev == HCI_DEV_NONE) {
1186 			err = -EINVAL;
1187 			goto done;
1188 		}
1189 
1190 		if (!capable(CAP_NET_ADMIN)) {
1191 			err = -EPERM;
1192 			goto done;
1193 		}
1194 
1195 		hdev = hci_dev_get(haddr.hci_dev);
1196 		if (!hdev) {
1197 			err = -ENODEV;
1198 			goto done;
1199 		}
1200 
1201 		if (test_bit(HCI_INIT, &hdev->flags) ||
1202 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1203 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1204 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1205 		     test_bit(HCI_UP, &hdev->flags))) {
1206 			err = -EBUSY;
1207 			hci_dev_put(hdev);
1208 			goto done;
1209 		}
1210 
1211 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1212 			err = -EUSERS;
1213 			hci_dev_put(hdev);
1214 			goto done;
1215 		}
1216 
1217 		mgmt_index_removed(hdev);
1218 
1219 		err = hci_dev_open(hdev->id);
1220 		if (err) {
1221 			if (err == -EALREADY) {
1222 				/* In case the transport is already up and
1223 				 * running, clear the error here.
1224 				 *
1225 				 * This can happen when opening a user
1226 				 * channel and HCI_AUTO_OFF grace period
1227 				 * is still active.
1228 				 */
1229 				err = 0;
1230 			} else {
1231 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1232 				mgmt_index_added(hdev);
1233 				hci_dev_put(hdev);
1234 				goto done;
1235 			}
1236 		}
1237 
1238 		hci_pi(sk)->channel = haddr.hci_channel;
1239 
1240 		if (!hci_sock_gen_cookie(sk)) {
1241 			/* In the case when a cookie has already been assigned,
1242 			 * this socket will transition from a raw socket into
1243 			 * a user channel socket. For a clean transition, send
1244 			 * the close notification first.
1245 			 */
1246 			skb = create_monitor_ctrl_close(sk);
1247 			if (skb) {
1248 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1249 						    HCI_SOCK_TRUSTED, NULL);
1250 				kfree_skb(skb);
1251 			}
1252 		}
1253 
1254 		/* The user channel is restricted to CAP_NET_ADMIN
1255 		 * capabilities and with that implicitly trusted.
1256 		 */
1257 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1258 
1259 		hci_pi(sk)->hdev = hdev;
1260 
1261 		/* Send event to monitor */
1262 		skb = create_monitor_ctrl_open(sk);
1263 		if (skb) {
1264 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1265 					    HCI_SOCK_TRUSTED, NULL);
1266 			kfree_skb(skb);
1267 		}
1268 
1269 		atomic_inc(&hdev->promisc);
1270 		break;
1271 
1272 	case HCI_CHANNEL_MONITOR:
1273 		if (haddr.hci_dev != HCI_DEV_NONE) {
1274 			err = -EINVAL;
1275 			goto done;
1276 		}
1277 
1278 		if (!capable(CAP_NET_RAW)) {
1279 			err = -EPERM;
1280 			goto done;
1281 		}
1282 
1283 		hci_pi(sk)->channel = haddr.hci_channel;
1284 
1285 		/* The monitor interface is restricted to CAP_NET_RAW
1286 		 * capabilities and with that implicitly trusted.
1287 		 */
1288 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1289 
1290 		send_monitor_note(sk, "Linux version %s (%s)",
1291 				  init_utsname()->release,
1292 				  init_utsname()->machine);
1293 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1294 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1295 		send_monitor_replay(sk);
1296 		send_monitor_control_replay(sk);
1297 
1298 		atomic_inc(&monitor_promisc);
1299 		break;
1300 
1301 	case HCI_CHANNEL_LOGGING:
1302 		if (haddr.hci_dev != HCI_DEV_NONE) {
1303 			err = -EINVAL;
1304 			goto done;
1305 		}
1306 
1307 		if (!capable(CAP_NET_ADMIN)) {
1308 			err = -EPERM;
1309 			goto done;
1310 		}
1311 
1312 		hci_pi(sk)->channel = haddr.hci_channel;
1313 		break;
1314 
1315 	default:
1316 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1317 			err = -EINVAL;
1318 			goto done;
1319 		}
1320 
1321 		if (haddr.hci_dev != HCI_DEV_NONE) {
1322 			err = -EINVAL;
1323 			goto done;
1324 		}
1325 
1326 		/* Users with CAP_NET_ADMIN capabilities are allowed
1327 		 * access to all management commands and events. For
1328 		 * untrusted users the interface is restricted and
1329 		 * also only untrusted events are sent.
1330 		 */
1331 		if (capable(CAP_NET_ADMIN))
1332 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1333 
1334 		hci_pi(sk)->channel = haddr.hci_channel;
1335 
1336 		/* At the moment the index and unconfigured index events
1337 		 * are enabled unconditionally. Setting them on each
1338 		 * socket when binding keeps this functionality. They
1339 		 * however might be cleared later and then sending of these
1340 		 * events will be disabled, but that is then intentional.
1341 		 *
1342 		 * This also enables generic events that are safe to be
1343 		 * received by untrusted users. Example for such events
1344 		 * are changes to settings, class of device, name etc.
1345 		 */
1346 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1347 			if (!hci_sock_gen_cookie(sk)) {
1348 				/* In the case when a cookie has already been
1349 				 * assigned, this socket will transition from
1350 				 * a raw socket into a control socket. To
1351 				 * allow for a clean transition, send the
1352 				 * close notification first.
1353 				 */
1354 				skb = create_monitor_ctrl_close(sk);
1355 				if (skb) {
1356 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1357 							    HCI_SOCK_TRUSTED, NULL);
1358 					kfree_skb(skb);
1359 				}
1360 			}
1361 
1362 			/* Send event to monitor */
1363 			skb = create_monitor_ctrl_open(sk);
1364 			if (skb) {
1365 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1366 						    HCI_SOCK_TRUSTED, NULL);
1367 				kfree_skb(skb);
1368 			}
1369 
1370 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1371 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1372 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1373 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1374 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1375 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1376 		}
1377 		break;
1378 	}
1379 
1380 	/* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1381 	if (!hci_pi(sk)->mtu)
1382 		hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1383 
1384 	sk->sk_state = BT_BOUND;
1385 
1386 done:
1387 	release_sock(sk);
1388 	return err;
1389 }
1390 
1391 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1392 			    int peer)
1393 {
1394 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1395 	struct sock *sk = sock->sk;
1396 	struct hci_dev *hdev;
1397 	int err = 0;
1398 
1399 	BT_DBG("sock %p sk %p", sock, sk);
1400 
1401 	if (peer)
1402 		return -EOPNOTSUPP;
1403 
1404 	lock_sock(sk);
1405 
1406 	hdev = hci_hdev_from_sock(sk);
1407 	if (IS_ERR(hdev)) {
1408 		err = PTR_ERR(hdev);
1409 		goto done;
1410 	}
1411 
1412 	haddr->hci_family = AF_BLUETOOTH;
1413 	haddr->hci_dev    = hdev->id;
1414 	haddr->hci_channel= hci_pi(sk)->channel;
1415 	err = sizeof(*haddr);
1416 
1417 done:
1418 	release_sock(sk);
1419 	return err;
1420 }
1421 
1422 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1423 			  struct sk_buff *skb)
1424 {
1425 	__u8 mask = hci_pi(sk)->cmsg_mask;
1426 
1427 	if (mask & HCI_CMSG_DIR) {
1428 		int incoming = bt_cb(skb)->incoming;
1429 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1430 			 &incoming);
1431 	}
1432 
1433 	if (mask & HCI_CMSG_TSTAMP) {
1434 #ifdef CONFIG_COMPAT
1435 		struct old_timeval32 ctv;
1436 #endif
1437 		struct __kernel_old_timeval tv;
1438 		void *data;
1439 		int len;
1440 
1441 		skb_get_timestamp(skb, &tv);
1442 
1443 		data = &tv;
1444 		len = sizeof(tv);
1445 #ifdef CONFIG_COMPAT
1446 		if (!COMPAT_USE_64BIT_TIME &&
1447 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1448 			ctv.tv_sec = tv.tv_sec;
1449 			ctv.tv_usec = tv.tv_usec;
1450 			data = &ctv;
1451 			len = sizeof(ctv);
1452 		}
1453 #endif
1454 
1455 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1456 	}
1457 }
1458 
1459 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1460 			    size_t len, int flags)
1461 {
1462 	struct sock *sk = sock->sk;
1463 	struct sk_buff *skb;
1464 	int copied, err;
1465 	unsigned int skblen;
1466 
1467 	BT_DBG("sock %p, sk %p", sock, sk);
1468 
1469 	if (flags & MSG_OOB)
1470 		return -EOPNOTSUPP;
1471 
1472 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1473 		return -EOPNOTSUPP;
1474 
1475 	if (sk->sk_state == BT_CLOSED)
1476 		return 0;
1477 
1478 	skb = skb_recv_datagram(sk, flags, &err);
1479 	if (!skb)
1480 		return err;
1481 
1482 	skblen = skb->len;
1483 	copied = skb->len;
1484 	if (len < copied) {
1485 		msg->msg_flags |= MSG_TRUNC;
1486 		copied = len;
1487 	}
1488 
1489 	skb_reset_transport_header(skb);
1490 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1491 
1492 	switch (hci_pi(sk)->channel) {
1493 	case HCI_CHANNEL_RAW:
1494 		hci_sock_cmsg(sk, msg, skb);
1495 		break;
1496 	case HCI_CHANNEL_USER:
1497 	case HCI_CHANNEL_MONITOR:
1498 		sock_recv_timestamp(msg, sk, skb);
1499 		break;
1500 	default:
1501 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1502 			sock_recv_timestamp(msg, sk, skb);
1503 		break;
1504 	}
1505 
1506 	skb_free_datagram(sk, skb);
1507 
1508 	if (flags & MSG_TRUNC)
1509 		copied = skblen;
1510 
1511 	return err ? : copied;
1512 }
1513 
1514 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1515 			struct sk_buff *skb)
1516 {
1517 	u8 *cp;
1518 	struct mgmt_hdr *hdr;
1519 	u16 opcode, index, len;
1520 	struct hci_dev *hdev = NULL;
1521 	const struct hci_mgmt_handler *handler;
1522 	bool var_len, no_hdev;
1523 	int err;
1524 
1525 	BT_DBG("got %d bytes", skb->len);
1526 
1527 	if (skb->len < sizeof(*hdr))
1528 		return -EINVAL;
1529 
1530 	hdr = (void *)skb->data;
1531 	opcode = __le16_to_cpu(hdr->opcode);
1532 	index = __le16_to_cpu(hdr->index);
1533 	len = __le16_to_cpu(hdr->len);
1534 
1535 	if (len != skb->len - sizeof(*hdr)) {
1536 		err = -EINVAL;
1537 		goto done;
1538 	}
1539 
1540 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1541 		struct sk_buff *cmd;
1542 
1543 		/* Send event to monitor */
1544 		cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1545 						  skb->data + sizeof(*hdr));
1546 		if (cmd) {
1547 			hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1548 					    HCI_SOCK_TRUSTED, NULL);
1549 			kfree_skb(cmd);
1550 		}
1551 	}
1552 
1553 	if (opcode >= chan->handler_count ||
1554 	    chan->handlers[opcode].func == NULL) {
1555 		BT_DBG("Unknown op %u", opcode);
1556 		err = mgmt_cmd_status(sk, index, opcode,
1557 				      MGMT_STATUS_UNKNOWN_COMMAND);
1558 		goto done;
1559 	}
1560 
1561 	handler = &chan->handlers[opcode];
1562 
1563 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1564 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1565 		err = mgmt_cmd_status(sk, index, opcode,
1566 				      MGMT_STATUS_PERMISSION_DENIED);
1567 		goto done;
1568 	}
1569 
1570 	if (index != MGMT_INDEX_NONE) {
1571 		hdev = hci_dev_get(index);
1572 		if (!hdev) {
1573 			err = mgmt_cmd_status(sk, index, opcode,
1574 					      MGMT_STATUS_INVALID_INDEX);
1575 			goto done;
1576 		}
1577 
1578 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1579 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1580 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1581 			err = mgmt_cmd_status(sk, index, opcode,
1582 					      MGMT_STATUS_INVALID_INDEX);
1583 			goto done;
1584 		}
1585 
1586 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1588 			err = mgmt_cmd_status(sk, index, opcode,
1589 					      MGMT_STATUS_INVALID_INDEX);
1590 			goto done;
1591 		}
1592 	}
1593 
1594 	if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1595 		no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1596 		if (no_hdev != !hdev) {
1597 			err = mgmt_cmd_status(sk, index, opcode,
1598 					      MGMT_STATUS_INVALID_INDEX);
1599 			goto done;
1600 		}
1601 	}
1602 
1603 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1604 	if ((var_len && len < handler->data_len) ||
1605 	    (!var_len && len != handler->data_len)) {
1606 		err = mgmt_cmd_status(sk, index, opcode,
1607 				      MGMT_STATUS_INVALID_PARAMS);
1608 		goto done;
1609 	}
1610 
1611 	if (hdev && chan->hdev_init)
1612 		chan->hdev_init(sk, hdev);
1613 
1614 	cp = skb->data + sizeof(*hdr);
1615 
1616 	err = handler->func(sk, hdev, cp, len);
1617 	if (err < 0)
1618 		goto done;
1619 
1620 	err = skb->len;
1621 
1622 done:
1623 	if (hdev)
1624 		hci_dev_put(hdev);
1625 
1626 	return err;
1627 }
1628 
1629 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1630 			     unsigned int flags)
1631 {
1632 	struct hci_mon_hdr *hdr;
1633 	struct hci_dev *hdev;
1634 	u16 index;
1635 	int err;
1636 
1637 	/* The logging frame consists at minimum of the standard header,
1638 	 * the priority byte, the ident length byte and at least one string
1639 	 * terminator NUL byte. Anything shorter are invalid packets.
1640 	 */
1641 	if (skb->len < sizeof(*hdr) + 3)
1642 		return -EINVAL;
1643 
1644 	hdr = (void *)skb->data;
1645 
1646 	if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1647 		return -EINVAL;
1648 
1649 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1650 		__u8 priority = skb->data[sizeof(*hdr)];
1651 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1652 
1653 		/* Only the priorities 0-7 are valid and with that any other
1654 		 * value results in an invalid packet.
1655 		 *
1656 		 * The priority byte is followed by an ident length byte and
1657 		 * the NUL terminated ident string. Check that the ident
1658 		 * length is not overflowing the packet and also that the
1659 		 * ident string itself is NUL terminated. In case the ident
1660 		 * length is zero, the length value actually doubles as NUL
1661 		 * terminator identifier.
1662 		 *
1663 		 * The message follows the ident string (if present) and
1664 		 * must be NUL terminated. Otherwise it is not a valid packet.
1665 		 */
1666 		if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1667 		    ident_len > skb->len - sizeof(*hdr) - 3 ||
1668 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1669 			return -EINVAL;
1670 	} else {
1671 		return -EINVAL;
1672 	}
1673 
1674 	index = __le16_to_cpu(hdr->index);
1675 
1676 	if (index != MGMT_INDEX_NONE) {
1677 		hdev = hci_dev_get(index);
1678 		if (!hdev)
1679 			return -ENODEV;
1680 	} else {
1681 		hdev = NULL;
1682 	}
1683 
1684 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1685 
1686 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1687 	err = skb->len;
1688 
1689 	if (hdev)
1690 		hci_dev_put(hdev);
1691 
1692 	return err;
1693 }
1694 
1695 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1696 			    size_t len)
1697 {
1698 	struct sock *sk = sock->sk;
1699 	struct hci_mgmt_chan *chan;
1700 	struct hci_dev *hdev;
1701 	struct sk_buff *skb;
1702 	int err;
1703 	const unsigned int flags = msg->msg_flags;
1704 
1705 	BT_DBG("sock %p sk %p", sock, sk);
1706 
1707 	if (flags & MSG_OOB)
1708 		return -EOPNOTSUPP;
1709 
1710 	if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1711 		return -EINVAL;
1712 
1713 	if (len < 4 || len > hci_pi(sk)->mtu)
1714 		return -EINVAL;
1715 
1716 	skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1717 	if (IS_ERR(skb))
1718 		return PTR_ERR(skb);
1719 
1720 	lock_sock(sk);
1721 
1722 	switch (hci_pi(sk)->channel) {
1723 	case HCI_CHANNEL_RAW:
1724 	case HCI_CHANNEL_USER:
1725 		break;
1726 	case HCI_CHANNEL_MONITOR:
1727 		err = -EOPNOTSUPP;
1728 		goto drop;
1729 	case HCI_CHANNEL_LOGGING:
1730 		err = hci_logging_frame(sk, skb, flags);
1731 		goto drop;
1732 	default:
1733 		mutex_lock(&mgmt_chan_list_lock);
1734 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1735 		if (chan)
1736 			err = hci_mgmt_cmd(chan, sk, skb);
1737 		else
1738 			err = -EINVAL;
1739 
1740 		mutex_unlock(&mgmt_chan_list_lock);
1741 		goto drop;
1742 	}
1743 
1744 	hdev = hci_hdev_from_sock(sk);
1745 	if (IS_ERR(hdev)) {
1746 		err = PTR_ERR(hdev);
1747 		goto drop;
1748 	}
1749 
1750 	if (!test_bit(HCI_UP, &hdev->flags)) {
1751 		err = -ENETDOWN;
1752 		goto drop;
1753 	}
1754 
1755 	hci_skb_pkt_type(skb) = skb->data[0];
1756 	skb_pull(skb, 1);
1757 
1758 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1759 		/* No permission check is needed for user channel
1760 		 * since that gets enforced when binding the socket.
1761 		 *
1762 		 * However check that the packet type is valid.
1763 		 */
1764 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1765 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1766 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1767 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1768 			err = -EINVAL;
1769 			goto drop;
1770 		}
1771 
1772 		skb_queue_tail(&hdev->raw_q, skb);
1773 		queue_work(hdev->workqueue, &hdev->tx_work);
1774 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1775 		u16 opcode = get_unaligned_le16(skb->data);
1776 		u16 ogf = hci_opcode_ogf(opcode);
1777 		u16 ocf = hci_opcode_ocf(opcode);
1778 
1779 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1780 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1781 				   &hci_sec_filter.ocf_mask[ogf])) &&
1782 		    !capable(CAP_NET_RAW)) {
1783 			err = -EPERM;
1784 			goto drop;
1785 		}
1786 
1787 		/* Since the opcode has already been extracted here, store
1788 		 * a copy of the value for later use by the drivers.
1789 		 */
1790 		hci_skb_opcode(skb) = opcode;
1791 
1792 		if (ogf == 0x3f) {
1793 			skb_queue_tail(&hdev->raw_q, skb);
1794 			queue_work(hdev->workqueue, &hdev->tx_work);
1795 		} else {
1796 			/* Stand-alone HCI commands must be flagged as
1797 			 * single-command requests.
1798 			 */
1799 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1800 
1801 			skb_queue_tail(&hdev->cmd_q, skb);
1802 			queue_work(hdev->workqueue, &hdev->cmd_work);
1803 		}
1804 	} else {
1805 		if (!capable(CAP_NET_RAW)) {
1806 			err = -EPERM;
1807 			goto drop;
1808 		}
1809 
1810 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1811 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1812 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1813 			err = -EINVAL;
1814 			goto drop;
1815 		}
1816 
1817 		skb_queue_tail(&hdev->raw_q, skb);
1818 		queue_work(hdev->workqueue, &hdev->tx_work);
1819 	}
1820 
1821 	err = len;
1822 
1823 done:
1824 	release_sock(sk);
1825 	return err;
1826 
1827 drop:
1828 	kfree_skb(skb);
1829 	goto done;
1830 }
1831 
1832 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1833 				   sockptr_t optval, unsigned int len)
1834 {
1835 	struct hci_ufilter uf = { .opcode = 0 };
1836 	struct sock *sk = sock->sk;
1837 	int err = 0, opt = 0;
1838 
1839 	BT_DBG("sk %p, opt %d", sk, optname);
1840 
1841 	lock_sock(sk);
1842 
1843 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1844 		err = -EBADFD;
1845 		goto done;
1846 	}
1847 
1848 	switch (optname) {
1849 	case HCI_DATA_DIR:
1850 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1851 			err = -EFAULT;
1852 			break;
1853 		}
1854 
1855 		if (opt)
1856 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1857 		else
1858 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1859 		break;
1860 
1861 	case HCI_TIME_STAMP:
1862 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1863 			err = -EFAULT;
1864 			break;
1865 		}
1866 
1867 		if (opt)
1868 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1869 		else
1870 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1871 		break;
1872 
1873 	case HCI_FILTER:
1874 		{
1875 			struct hci_filter *f = &hci_pi(sk)->filter;
1876 
1877 			uf.type_mask = f->type_mask;
1878 			uf.opcode    = f->opcode;
1879 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1880 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1881 		}
1882 
1883 		len = min_t(unsigned int, len, sizeof(uf));
1884 		if (copy_from_sockptr(&uf, optval, len)) {
1885 			err = -EFAULT;
1886 			break;
1887 		}
1888 
1889 		if (!capable(CAP_NET_RAW)) {
1890 			uf.type_mask &= hci_sec_filter.type_mask;
1891 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1892 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1893 		}
1894 
1895 		{
1896 			struct hci_filter *f = &hci_pi(sk)->filter;
1897 
1898 			f->type_mask = uf.type_mask;
1899 			f->opcode    = uf.opcode;
1900 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1901 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1902 		}
1903 		break;
1904 
1905 	default:
1906 		err = -ENOPROTOOPT;
1907 		break;
1908 	}
1909 
1910 done:
1911 	release_sock(sk);
1912 	return err;
1913 }
1914 
1915 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1916 			       sockptr_t optval, unsigned int len)
1917 {
1918 	struct sock *sk = sock->sk;
1919 	int err = 0;
1920 	u16 opt;
1921 
1922 	BT_DBG("sk %p, opt %d", sk, optname);
1923 
1924 	if (level == SOL_HCI)
1925 		return hci_sock_setsockopt_old(sock, level, optname, optval,
1926 					       len);
1927 
1928 	if (level != SOL_BLUETOOTH)
1929 		return -ENOPROTOOPT;
1930 
1931 	lock_sock(sk);
1932 
1933 	switch (optname) {
1934 	case BT_SNDMTU:
1935 	case BT_RCVMTU:
1936 		switch (hci_pi(sk)->channel) {
1937 		/* Don't allow changing MTU for channels that are meant for HCI
1938 		 * traffic only.
1939 		 */
1940 		case HCI_CHANNEL_RAW:
1941 		case HCI_CHANNEL_USER:
1942 			err = -ENOPROTOOPT;
1943 			goto done;
1944 		}
1945 
1946 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1947 			err = -EFAULT;
1948 			break;
1949 		}
1950 
1951 		hci_pi(sk)->mtu = opt;
1952 		break;
1953 
1954 	default:
1955 		err = -ENOPROTOOPT;
1956 		break;
1957 	}
1958 
1959 done:
1960 	release_sock(sk);
1961 	return err;
1962 }
1963 
1964 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
1965 				   char __user *optval, int __user *optlen)
1966 {
1967 	struct hci_ufilter uf;
1968 	struct sock *sk = sock->sk;
1969 	int len, opt, err = 0;
1970 
1971 	BT_DBG("sk %p, opt %d", sk, optname);
1972 
1973 	if (get_user(len, optlen))
1974 		return -EFAULT;
1975 
1976 	lock_sock(sk);
1977 
1978 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1979 		err = -EBADFD;
1980 		goto done;
1981 	}
1982 
1983 	switch (optname) {
1984 	case HCI_DATA_DIR:
1985 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1986 			opt = 1;
1987 		else
1988 			opt = 0;
1989 
1990 		if (put_user(opt, optval))
1991 			err = -EFAULT;
1992 		break;
1993 
1994 	case HCI_TIME_STAMP:
1995 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1996 			opt = 1;
1997 		else
1998 			opt = 0;
1999 
2000 		if (put_user(opt, optval))
2001 			err = -EFAULT;
2002 		break;
2003 
2004 	case HCI_FILTER:
2005 		{
2006 			struct hci_filter *f = &hci_pi(sk)->filter;
2007 
2008 			memset(&uf, 0, sizeof(uf));
2009 			uf.type_mask = f->type_mask;
2010 			uf.opcode    = f->opcode;
2011 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2012 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2013 		}
2014 
2015 		len = min_t(unsigned int, len, sizeof(uf));
2016 		if (copy_to_user(optval, &uf, len))
2017 			err = -EFAULT;
2018 		break;
2019 
2020 	default:
2021 		err = -ENOPROTOOPT;
2022 		break;
2023 	}
2024 
2025 done:
2026 	release_sock(sk);
2027 	return err;
2028 }
2029 
2030 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2031 			       char __user *optval, int __user *optlen)
2032 {
2033 	struct sock *sk = sock->sk;
2034 	int err = 0;
2035 
2036 	BT_DBG("sk %p, opt %d", sk, optname);
2037 
2038 	if (level == SOL_HCI)
2039 		return hci_sock_getsockopt_old(sock, level, optname, optval,
2040 					       optlen);
2041 
2042 	if (level != SOL_BLUETOOTH)
2043 		return -ENOPROTOOPT;
2044 
2045 	lock_sock(sk);
2046 
2047 	switch (optname) {
2048 	case BT_SNDMTU:
2049 	case BT_RCVMTU:
2050 		if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2051 			err = -EFAULT;
2052 		break;
2053 
2054 	default:
2055 		err = -ENOPROTOOPT;
2056 		break;
2057 	}
2058 
2059 	release_sock(sk);
2060 	return err;
2061 }
2062 
2063 static void hci_sock_destruct(struct sock *sk)
2064 {
2065 	mgmt_cleanup(sk);
2066 	skb_queue_purge(&sk->sk_receive_queue);
2067 	skb_queue_purge(&sk->sk_write_queue);
2068 }
2069 
2070 static const struct proto_ops hci_sock_ops = {
2071 	.family		= PF_BLUETOOTH,
2072 	.owner		= THIS_MODULE,
2073 	.release	= hci_sock_release,
2074 	.bind		= hci_sock_bind,
2075 	.getname	= hci_sock_getname,
2076 	.sendmsg	= hci_sock_sendmsg,
2077 	.recvmsg	= hci_sock_recvmsg,
2078 	.ioctl		= hci_sock_ioctl,
2079 #ifdef CONFIG_COMPAT
2080 	.compat_ioctl	= hci_sock_compat_ioctl,
2081 #endif
2082 	.poll		= datagram_poll,
2083 	.listen		= sock_no_listen,
2084 	.shutdown	= sock_no_shutdown,
2085 	.setsockopt	= hci_sock_setsockopt,
2086 	.getsockopt	= hci_sock_getsockopt,
2087 	.connect	= sock_no_connect,
2088 	.socketpair	= sock_no_socketpair,
2089 	.accept		= sock_no_accept,
2090 	.mmap		= sock_no_mmap
2091 };
2092 
2093 static struct proto hci_sk_proto = {
2094 	.name		= "HCI",
2095 	.owner		= THIS_MODULE,
2096 	.obj_size	= sizeof(struct hci_pinfo)
2097 };
2098 
2099 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2100 			   int kern)
2101 {
2102 	struct sock *sk;
2103 
2104 	BT_DBG("sock %p", sock);
2105 
2106 	if (sock->type != SOCK_RAW)
2107 		return -ESOCKTNOSUPPORT;
2108 
2109 	sock->ops = &hci_sock_ops;
2110 
2111 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2112 	if (!sk)
2113 		return -ENOMEM;
2114 
2115 	sock_init_data(sock, sk);
2116 
2117 	sock_reset_flag(sk, SOCK_ZAPPED);
2118 
2119 	sk->sk_protocol = protocol;
2120 
2121 	sock->state = SS_UNCONNECTED;
2122 	sk->sk_state = BT_OPEN;
2123 	sk->sk_destruct = hci_sock_destruct;
2124 
2125 	bt_sock_link(&hci_sk_list, sk);
2126 	return 0;
2127 }
2128 
2129 static const struct net_proto_family hci_sock_family_ops = {
2130 	.family	= PF_BLUETOOTH,
2131 	.owner	= THIS_MODULE,
2132 	.create	= hci_sock_create,
2133 };
2134 
2135 int __init hci_sock_init(void)
2136 {
2137 	int err;
2138 
2139 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2140 
2141 	err = proto_register(&hci_sk_proto, 0);
2142 	if (err < 0)
2143 		return err;
2144 
2145 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2146 	if (err < 0) {
2147 		BT_ERR("HCI socket registration failed");
2148 		goto error;
2149 	}
2150 
2151 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2152 	if (err < 0) {
2153 		BT_ERR("Failed to create HCI proc file");
2154 		bt_sock_unregister(BTPROTO_HCI);
2155 		goto error;
2156 	}
2157 
2158 	BT_INFO("HCI socket layer initialized");
2159 
2160 	return 0;
2161 
2162 error:
2163 	proto_unregister(&hci_sk_proto);
2164 	return err;
2165 }
2166 
2167 void hci_sock_cleanup(void)
2168 {
2169 	bt_procfs_cleanup(&init_net, "hci");
2170 	bt_sock_unregister(BTPROTO_HCI);
2171 	proto_unregister(&hci_sk_proto);
2172 }
2173