1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u32 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 }; 61 62 void hci_sock_set_flag(struct sock *sk, int nr) 63 { 64 set_bit(nr, &hci_pi(sk)->flags); 65 } 66 67 void hci_sock_clear_flag(struct sock *sk, int nr) 68 { 69 clear_bit(nr, &hci_pi(sk)->flags); 70 } 71 72 int hci_sock_test_flag(struct sock *sk, int nr) 73 { 74 return test_bit(nr, &hci_pi(sk)->flags); 75 } 76 77 unsigned short hci_sock_get_channel(struct sock *sk) 78 { 79 return hci_pi(sk)->channel; 80 } 81 82 u32 hci_sock_get_cookie(struct sock *sk) 83 { 84 return hci_pi(sk)->cookie; 85 } 86 87 static bool hci_sock_gen_cookie(struct sock *sk) 88 { 89 int id = hci_pi(sk)->cookie; 90 91 if (!id) { 92 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 93 if (id < 0) 94 id = 0xffffffff; 95 96 hci_pi(sk)->cookie = id; 97 get_task_comm(hci_pi(sk)->comm, current); 98 return true; 99 } 100 101 return false; 102 } 103 104 static void hci_sock_free_cookie(struct sock *sk) 105 { 106 int id = hci_pi(sk)->cookie; 107 108 if (id) { 109 hci_pi(sk)->cookie = 0xffffffff; 110 ida_simple_remove(&sock_cookie_ida, id); 111 } 112 } 113 114 static inline int hci_test_bit(int nr, const void *addr) 115 { 116 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 117 } 118 119 /* Security filter */ 120 #define HCI_SFLT_MAX_OGF 5 121 122 struct hci_sec_filter { 123 __u32 type_mask; 124 __u32 event_mask[2]; 125 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 126 }; 127 128 static const struct hci_sec_filter hci_sec_filter = { 129 /* Packet types */ 130 0x10, 131 /* Events */ 132 { 0x1000d9fe, 0x0000b00c }, 133 /* Commands */ 134 { 135 { 0x0 }, 136 /* OGF_LINK_CTL */ 137 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 138 /* OGF_LINK_POLICY */ 139 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 140 /* OGF_HOST_CTL */ 141 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 142 /* OGF_INFO_PARAM */ 143 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 144 /* OGF_STATUS_PARAM */ 145 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 146 } 147 }; 148 149 static struct bt_sock_list hci_sk_list = { 150 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 151 }; 152 153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 154 { 155 struct hci_filter *flt; 156 int flt_type, flt_event; 157 158 /* Apply filter */ 159 flt = &hci_pi(sk)->filter; 160 161 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 162 163 if (!test_bit(flt_type, &flt->type_mask)) 164 return true; 165 166 /* Extra filter for event packets only */ 167 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 168 return false; 169 170 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 171 172 if (!hci_test_bit(flt_event, &flt->event_mask)) 173 return true; 174 175 /* Check filter only when opcode is set */ 176 if (!flt->opcode) 177 return false; 178 179 if (flt_event == HCI_EV_CMD_COMPLETE && 180 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 181 return true; 182 183 if (flt_event == HCI_EV_CMD_STATUS && 184 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 185 return true; 186 187 return false; 188 } 189 190 /* Send frame to RAW socket */ 191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 192 { 193 struct sock *sk; 194 struct sk_buff *skb_copy = NULL; 195 196 BT_DBG("hdev %p len %d", hdev, skb->len); 197 198 read_lock(&hci_sk_list.lock); 199 200 sk_for_each(sk, &hci_sk_list.head) { 201 struct sk_buff *nskb; 202 203 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 204 continue; 205 206 /* Don't send frame to the socket it came from */ 207 if (skb->sk == sk) 208 continue; 209 210 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 211 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 212 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 213 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 214 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 215 continue; 216 if (is_filtered_packet(sk, skb)) 217 continue; 218 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 219 if (!bt_cb(skb)->incoming) 220 continue; 221 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 222 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 223 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 224 continue; 225 } else { 226 /* Don't send frame to other channel types */ 227 continue; 228 } 229 230 if (!skb_copy) { 231 /* Create a private copy with headroom */ 232 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 233 if (!skb_copy) 234 continue; 235 236 /* Put type byte before the data */ 237 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 238 } 239 240 nskb = skb_clone(skb_copy, GFP_ATOMIC); 241 if (!nskb) 242 continue; 243 244 if (sock_queue_rcv_skb(sk, nskb)) 245 kfree_skb(nskb); 246 } 247 248 read_unlock(&hci_sk_list.lock); 249 250 kfree_skb(skb_copy); 251 } 252 253 /* Send frame to sockets with specific channel */ 254 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 255 int flag, struct sock *skip_sk) 256 { 257 struct sock *sk; 258 259 BT_DBG("channel %u len %d", channel, skb->len); 260 261 read_lock(&hci_sk_list.lock); 262 263 sk_for_each(sk, &hci_sk_list.head) { 264 struct sk_buff *nskb; 265 266 /* Ignore socket without the flag set */ 267 if (!hci_sock_test_flag(sk, flag)) 268 continue; 269 270 /* Skip the original socket */ 271 if (sk == skip_sk) 272 continue; 273 274 if (sk->sk_state != BT_BOUND) 275 continue; 276 277 if (hci_pi(sk)->channel != channel) 278 continue; 279 280 nskb = skb_clone(skb, GFP_ATOMIC); 281 if (!nskb) 282 continue; 283 284 if (sock_queue_rcv_skb(sk, nskb)) 285 kfree_skb(nskb); 286 } 287 288 read_unlock(&hci_sk_list.lock); 289 } 290 291 /* Send frame to monitor socket */ 292 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 293 { 294 struct sk_buff *skb_copy = NULL; 295 struct hci_mon_hdr *hdr; 296 __le16 opcode; 297 298 if (!atomic_read(&monitor_promisc)) 299 return; 300 301 BT_DBG("hdev %p len %d", hdev, skb->len); 302 303 switch (hci_skb_pkt_type(skb)) { 304 case HCI_COMMAND_PKT: 305 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 306 break; 307 case HCI_EVENT_PKT: 308 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 309 break; 310 case HCI_ACLDATA_PKT: 311 if (bt_cb(skb)->incoming) 312 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 313 else 314 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 315 break; 316 case HCI_SCODATA_PKT: 317 if (bt_cb(skb)->incoming) 318 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 319 else 320 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 321 break; 322 case HCI_DIAG_PKT: 323 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 324 break; 325 default: 326 return; 327 } 328 329 /* Create a private copy with headroom */ 330 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 331 if (!skb_copy) 332 return; 333 334 /* Put header before the data */ 335 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 336 hdr->opcode = opcode; 337 hdr->index = cpu_to_le16(hdev->id); 338 hdr->len = cpu_to_le16(skb->len); 339 340 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 341 HCI_SOCK_TRUSTED, NULL); 342 kfree_skb(skb_copy); 343 } 344 345 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 346 void *data, u16 data_len, ktime_t tstamp, 347 int flag, struct sock *skip_sk) 348 { 349 struct sock *sk; 350 __le16 index; 351 352 if (hdev) 353 index = cpu_to_le16(hdev->id); 354 else 355 index = cpu_to_le16(MGMT_INDEX_NONE); 356 357 read_lock(&hci_sk_list.lock); 358 359 sk_for_each(sk, &hci_sk_list.head) { 360 struct hci_mon_hdr *hdr; 361 struct sk_buff *skb; 362 363 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 364 continue; 365 366 /* Ignore socket without the flag set */ 367 if (!hci_sock_test_flag(sk, flag)) 368 continue; 369 370 /* Skip the original socket */ 371 if (sk == skip_sk) 372 continue; 373 374 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 375 if (!skb) 376 continue; 377 378 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 379 put_unaligned_le16(event, skb_put(skb, 2)); 380 381 if (data) 382 skb_put_data(skb, data, data_len); 383 384 skb->tstamp = tstamp; 385 386 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 387 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 388 hdr->index = index; 389 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 390 391 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 392 HCI_SOCK_TRUSTED, NULL); 393 kfree_skb(skb); 394 } 395 396 read_unlock(&hci_sk_list.lock); 397 } 398 399 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 400 { 401 struct hci_mon_hdr *hdr; 402 struct hci_mon_new_index *ni; 403 struct hci_mon_index_info *ii; 404 struct sk_buff *skb; 405 __le16 opcode; 406 407 switch (event) { 408 case HCI_DEV_REG: 409 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 410 if (!skb) 411 return NULL; 412 413 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 414 ni->type = hdev->dev_type; 415 ni->bus = hdev->bus; 416 bacpy(&ni->bdaddr, &hdev->bdaddr); 417 memcpy(ni->name, hdev->name, 8); 418 419 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 420 break; 421 422 case HCI_DEV_UNREG: 423 skb = bt_skb_alloc(0, GFP_ATOMIC); 424 if (!skb) 425 return NULL; 426 427 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 428 break; 429 430 case HCI_DEV_SETUP: 431 if (hdev->manufacturer == 0xffff) 432 return NULL; 433 434 /* fall through */ 435 436 case HCI_DEV_UP: 437 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 438 if (!skb) 439 return NULL; 440 441 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 442 bacpy(&ii->bdaddr, &hdev->bdaddr); 443 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 444 445 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 446 break; 447 448 case HCI_DEV_OPEN: 449 skb = bt_skb_alloc(0, GFP_ATOMIC); 450 if (!skb) 451 return NULL; 452 453 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 454 break; 455 456 case HCI_DEV_CLOSE: 457 skb = bt_skb_alloc(0, GFP_ATOMIC); 458 if (!skb) 459 return NULL; 460 461 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 462 break; 463 464 default: 465 return NULL; 466 } 467 468 __net_timestamp(skb); 469 470 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 471 hdr->opcode = opcode; 472 hdr->index = cpu_to_le16(hdev->id); 473 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 474 475 return skb; 476 } 477 478 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 479 { 480 struct hci_mon_hdr *hdr; 481 struct sk_buff *skb; 482 u16 format; 483 u8 ver[3]; 484 u32 flags; 485 486 /* No message needed when cookie is not present */ 487 if (!hci_pi(sk)->cookie) 488 return NULL; 489 490 switch (hci_pi(sk)->channel) { 491 case HCI_CHANNEL_RAW: 492 format = 0x0000; 493 ver[0] = BT_SUBSYS_VERSION; 494 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 495 break; 496 case HCI_CHANNEL_USER: 497 format = 0x0001; 498 ver[0] = BT_SUBSYS_VERSION; 499 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 500 break; 501 case HCI_CHANNEL_CONTROL: 502 format = 0x0002; 503 mgmt_fill_version_info(ver); 504 break; 505 default: 506 /* No message for unsupported format */ 507 return NULL; 508 } 509 510 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 511 if (!skb) 512 return NULL; 513 514 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 515 516 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 517 put_unaligned_le16(format, skb_put(skb, 2)); 518 skb_put_data(skb, ver, sizeof(ver)); 519 put_unaligned_le32(flags, skb_put(skb, 4)); 520 skb_put_u8(skb, TASK_COMM_LEN); 521 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 522 523 __net_timestamp(skb); 524 525 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 526 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 527 if (hci_pi(sk)->hdev) 528 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 529 else 530 hdr->index = cpu_to_le16(HCI_DEV_NONE); 531 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 532 533 return skb; 534 } 535 536 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 537 { 538 struct hci_mon_hdr *hdr; 539 struct sk_buff *skb; 540 541 /* No message needed when cookie is not present */ 542 if (!hci_pi(sk)->cookie) 543 return NULL; 544 545 switch (hci_pi(sk)->channel) { 546 case HCI_CHANNEL_RAW: 547 case HCI_CHANNEL_USER: 548 case HCI_CHANNEL_CONTROL: 549 break; 550 default: 551 /* No message for unsupported format */ 552 return NULL; 553 } 554 555 skb = bt_skb_alloc(4, GFP_ATOMIC); 556 if (!skb) 557 return NULL; 558 559 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 560 561 __net_timestamp(skb); 562 563 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 564 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 565 if (hci_pi(sk)->hdev) 566 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 567 else 568 hdr->index = cpu_to_le16(HCI_DEV_NONE); 569 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 570 571 return skb; 572 } 573 574 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 575 u16 opcode, u16 len, 576 const void *buf) 577 { 578 struct hci_mon_hdr *hdr; 579 struct sk_buff *skb; 580 581 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 582 if (!skb) 583 return NULL; 584 585 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 586 put_unaligned_le16(opcode, skb_put(skb, 2)); 587 588 if (buf) 589 skb_put_data(skb, buf, len); 590 591 __net_timestamp(skb); 592 593 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 594 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 595 hdr->index = cpu_to_le16(index); 596 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 597 598 return skb; 599 } 600 601 static void __printf(2, 3) 602 send_monitor_note(struct sock *sk, const char *fmt, ...) 603 { 604 size_t len; 605 struct hci_mon_hdr *hdr; 606 struct sk_buff *skb; 607 va_list args; 608 609 va_start(args, fmt); 610 len = vsnprintf(NULL, 0, fmt, args); 611 va_end(args); 612 613 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 614 if (!skb) 615 return; 616 617 va_start(args, fmt); 618 vsprintf(skb_put(skb, len), fmt, args); 619 *(u8 *)skb_put(skb, 1) = 0; 620 va_end(args); 621 622 __net_timestamp(skb); 623 624 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 625 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 626 hdr->index = cpu_to_le16(HCI_DEV_NONE); 627 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 628 629 if (sock_queue_rcv_skb(sk, skb)) 630 kfree_skb(skb); 631 } 632 633 static void send_monitor_replay(struct sock *sk) 634 { 635 struct hci_dev *hdev; 636 637 read_lock(&hci_dev_list_lock); 638 639 list_for_each_entry(hdev, &hci_dev_list, list) { 640 struct sk_buff *skb; 641 642 skb = create_monitor_event(hdev, HCI_DEV_REG); 643 if (!skb) 644 continue; 645 646 if (sock_queue_rcv_skb(sk, skb)) 647 kfree_skb(skb); 648 649 if (!test_bit(HCI_RUNNING, &hdev->flags)) 650 continue; 651 652 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 653 if (!skb) 654 continue; 655 656 if (sock_queue_rcv_skb(sk, skb)) 657 kfree_skb(skb); 658 659 if (test_bit(HCI_UP, &hdev->flags)) 660 skb = create_monitor_event(hdev, HCI_DEV_UP); 661 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 662 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 663 else 664 skb = NULL; 665 666 if (skb) { 667 if (sock_queue_rcv_skb(sk, skb)) 668 kfree_skb(skb); 669 } 670 } 671 672 read_unlock(&hci_dev_list_lock); 673 } 674 675 static void send_monitor_control_replay(struct sock *mon_sk) 676 { 677 struct sock *sk; 678 679 read_lock(&hci_sk_list.lock); 680 681 sk_for_each(sk, &hci_sk_list.head) { 682 struct sk_buff *skb; 683 684 skb = create_monitor_ctrl_open(sk); 685 if (!skb) 686 continue; 687 688 if (sock_queue_rcv_skb(mon_sk, skb)) 689 kfree_skb(skb); 690 } 691 692 read_unlock(&hci_sk_list.lock); 693 } 694 695 /* Generate internal stack event */ 696 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 697 { 698 struct hci_event_hdr *hdr; 699 struct hci_ev_stack_internal *ev; 700 struct sk_buff *skb; 701 702 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 703 if (!skb) 704 return; 705 706 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 707 hdr->evt = HCI_EV_STACK_INTERNAL; 708 hdr->plen = sizeof(*ev) + dlen; 709 710 ev = skb_put(skb, sizeof(*ev) + dlen); 711 ev->type = type; 712 memcpy(ev->data, data, dlen); 713 714 bt_cb(skb)->incoming = 1; 715 __net_timestamp(skb); 716 717 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 718 hci_send_to_sock(hdev, skb); 719 kfree_skb(skb); 720 } 721 722 void hci_sock_dev_event(struct hci_dev *hdev, int event) 723 { 724 BT_DBG("hdev %s event %d", hdev->name, event); 725 726 if (atomic_read(&monitor_promisc)) { 727 struct sk_buff *skb; 728 729 /* Send event to monitor */ 730 skb = create_monitor_event(hdev, event); 731 if (skb) { 732 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 733 HCI_SOCK_TRUSTED, NULL); 734 kfree_skb(skb); 735 } 736 } 737 738 if (event <= HCI_DEV_DOWN) { 739 struct hci_ev_si_device ev; 740 741 /* Send event to sockets */ 742 ev.event = event; 743 ev.dev_id = hdev->id; 744 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 745 } 746 747 if (event == HCI_DEV_UNREG) { 748 struct sock *sk; 749 750 /* Detach sockets from device */ 751 read_lock(&hci_sk_list.lock); 752 sk_for_each(sk, &hci_sk_list.head) { 753 bh_lock_sock_nested(sk); 754 if (hci_pi(sk)->hdev == hdev) { 755 hci_pi(sk)->hdev = NULL; 756 sk->sk_err = EPIPE; 757 sk->sk_state = BT_OPEN; 758 sk->sk_state_change(sk); 759 760 hci_dev_put(hdev); 761 } 762 bh_unlock_sock(sk); 763 } 764 read_unlock(&hci_sk_list.lock); 765 } 766 } 767 768 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 769 { 770 struct hci_mgmt_chan *c; 771 772 list_for_each_entry(c, &mgmt_chan_list, list) { 773 if (c->channel == channel) 774 return c; 775 } 776 777 return NULL; 778 } 779 780 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 781 { 782 struct hci_mgmt_chan *c; 783 784 mutex_lock(&mgmt_chan_list_lock); 785 c = __hci_mgmt_chan_find(channel); 786 mutex_unlock(&mgmt_chan_list_lock); 787 788 return c; 789 } 790 791 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 792 { 793 if (c->channel < HCI_CHANNEL_CONTROL) 794 return -EINVAL; 795 796 mutex_lock(&mgmt_chan_list_lock); 797 if (__hci_mgmt_chan_find(c->channel)) { 798 mutex_unlock(&mgmt_chan_list_lock); 799 return -EALREADY; 800 } 801 802 list_add_tail(&c->list, &mgmt_chan_list); 803 804 mutex_unlock(&mgmt_chan_list_lock); 805 806 return 0; 807 } 808 EXPORT_SYMBOL(hci_mgmt_chan_register); 809 810 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 811 { 812 mutex_lock(&mgmt_chan_list_lock); 813 list_del(&c->list); 814 mutex_unlock(&mgmt_chan_list_lock); 815 } 816 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 817 818 static int hci_sock_release(struct socket *sock) 819 { 820 struct sock *sk = sock->sk; 821 struct hci_dev *hdev; 822 struct sk_buff *skb; 823 824 BT_DBG("sock %p sk %p", sock, sk); 825 826 if (!sk) 827 return 0; 828 829 hdev = hci_pi(sk)->hdev; 830 831 switch (hci_pi(sk)->channel) { 832 case HCI_CHANNEL_MONITOR: 833 atomic_dec(&monitor_promisc); 834 break; 835 case HCI_CHANNEL_RAW: 836 case HCI_CHANNEL_USER: 837 case HCI_CHANNEL_CONTROL: 838 /* Send event to monitor */ 839 skb = create_monitor_ctrl_close(sk); 840 if (skb) { 841 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 842 HCI_SOCK_TRUSTED, NULL); 843 kfree_skb(skb); 844 } 845 846 hci_sock_free_cookie(sk); 847 break; 848 } 849 850 bt_sock_unlink(&hci_sk_list, sk); 851 852 if (hdev) { 853 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 854 /* When releasing a user channel exclusive access, 855 * call hci_dev_do_close directly instead of calling 856 * hci_dev_close to ensure the exclusive access will 857 * be released and the controller brought back down. 858 * 859 * The checking of HCI_AUTO_OFF is not needed in this 860 * case since it will have been cleared already when 861 * opening the user channel. 862 */ 863 hci_dev_do_close(hdev); 864 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 865 mgmt_index_added(hdev); 866 } 867 868 atomic_dec(&hdev->promisc); 869 hci_dev_put(hdev); 870 } 871 872 sock_orphan(sk); 873 874 skb_queue_purge(&sk->sk_receive_queue); 875 skb_queue_purge(&sk->sk_write_queue); 876 877 sock_put(sk); 878 return 0; 879 } 880 881 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg) 882 { 883 bdaddr_t bdaddr; 884 int err; 885 886 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 887 return -EFAULT; 888 889 hci_dev_lock(hdev); 890 891 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 892 893 hci_dev_unlock(hdev); 894 895 return err; 896 } 897 898 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg) 899 { 900 bdaddr_t bdaddr; 901 int err; 902 903 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 904 return -EFAULT; 905 906 hci_dev_lock(hdev); 907 908 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 909 910 hci_dev_unlock(hdev); 911 912 return err; 913 } 914 915 /* Ioctls that require bound socket */ 916 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 917 unsigned long arg) 918 { 919 struct hci_dev *hdev = hci_pi(sk)->hdev; 920 921 if (!hdev) 922 return -EBADFD; 923 924 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 925 return -EBUSY; 926 927 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 928 return -EOPNOTSUPP; 929 930 if (hdev->dev_type != HCI_PRIMARY) 931 return -EOPNOTSUPP; 932 933 switch (cmd) { 934 case HCISETRAW: 935 if (!capable(CAP_NET_ADMIN)) 936 return -EPERM; 937 return -EOPNOTSUPP; 938 939 case HCIGETCONNINFO: 940 return hci_get_conn_info(hdev, (void __user *)arg); 941 942 case HCIGETAUTHINFO: 943 return hci_get_auth_info(hdev, (void __user *)arg); 944 945 case HCIBLOCKADDR: 946 if (!capable(CAP_NET_ADMIN)) 947 return -EPERM; 948 return hci_sock_blacklist_add(hdev, (void __user *)arg); 949 950 case HCIUNBLOCKADDR: 951 if (!capable(CAP_NET_ADMIN)) 952 return -EPERM; 953 return hci_sock_blacklist_del(hdev, (void __user *)arg); 954 } 955 956 return -ENOIOCTLCMD; 957 } 958 959 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 960 unsigned long arg) 961 { 962 void __user *argp = (void __user *)arg; 963 struct sock *sk = sock->sk; 964 int err; 965 966 BT_DBG("cmd %x arg %lx", cmd, arg); 967 968 lock_sock(sk); 969 970 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 971 err = -EBADFD; 972 goto done; 973 } 974 975 /* When calling an ioctl on an unbound raw socket, then ensure 976 * that the monitor gets informed. Ensure that the resulting event 977 * is only send once by checking if the cookie exists or not. The 978 * socket cookie will be only ever generated once for the lifetime 979 * of a given socket. 980 */ 981 if (hci_sock_gen_cookie(sk)) { 982 struct sk_buff *skb; 983 984 if (capable(CAP_NET_ADMIN)) 985 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 986 987 /* Send event to monitor */ 988 skb = create_monitor_ctrl_open(sk); 989 if (skb) { 990 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 991 HCI_SOCK_TRUSTED, NULL); 992 kfree_skb(skb); 993 } 994 } 995 996 release_sock(sk); 997 998 switch (cmd) { 999 case HCIGETDEVLIST: 1000 return hci_get_dev_list(argp); 1001 1002 case HCIGETDEVINFO: 1003 return hci_get_dev_info(argp); 1004 1005 case HCIGETCONNLIST: 1006 return hci_get_conn_list(argp); 1007 1008 case HCIDEVUP: 1009 if (!capable(CAP_NET_ADMIN)) 1010 return -EPERM; 1011 return hci_dev_open(arg); 1012 1013 case HCIDEVDOWN: 1014 if (!capable(CAP_NET_ADMIN)) 1015 return -EPERM; 1016 return hci_dev_close(arg); 1017 1018 case HCIDEVRESET: 1019 if (!capable(CAP_NET_ADMIN)) 1020 return -EPERM; 1021 return hci_dev_reset(arg); 1022 1023 case HCIDEVRESTAT: 1024 if (!capable(CAP_NET_ADMIN)) 1025 return -EPERM; 1026 return hci_dev_reset_stat(arg); 1027 1028 case HCISETSCAN: 1029 case HCISETAUTH: 1030 case HCISETENCRYPT: 1031 case HCISETPTYPE: 1032 case HCISETLINKPOL: 1033 case HCISETLINKMODE: 1034 case HCISETACLMTU: 1035 case HCISETSCOMTU: 1036 if (!capable(CAP_NET_ADMIN)) 1037 return -EPERM; 1038 return hci_dev_cmd(cmd, argp); 1039 1040 case HCIINQUIRY: 1041 return hci_inquiry(argp); 1042 } 1043 1044 lock_sock(sk); 1045 1046 err = hci_sock_bound_ioctl(sk, cmd, arg); 1047 1048 done: 1049 release_sock(sk); 1050 return err; 1051 } 1052 1053 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1054 int addr_len) 1055 { 1056 struct sockaddr_hci haddr; 1057 struct sock *sk = sock->sk; 1058 struct hci_dev *hdev = NULL; 1059 struct sk_buff *skb; 1060 int len, err = 0; 1061 1062 BT_DBG("sock %p sk %p", sock, sk); 1063 1064 if (!addr) 1065 return -EINVAL; 1066 1067 memset(&haddr, 0, sizeof(haddr)); 1068 len = min_t(unsigned int, sizeof(haddr), addr_len); 1069 memcpy(&haddr, addr, len); 1070 1071 if (haddr.hci_family != AF_BLUETOOTH) 1072 return -EINVAL; 1073 1074 lock_sock(sk); 1075 1076 if (sk->sk_state == BT_BOUND) { 1077 err = -EALREADY; 1078 goto done; 1079 } 1080 1081 switch (haddr.hci_channel) { 1082 case HCI_CHANNEL_RAW: 1083 if (hci_pi(sk)->hdev) { 1084 err = -EALREADY; 1085 goto done; 1086 } 1087 1088 if (haddr.hci_dev != HCI_DEV_NONE) { 1089 hdev = hci_dev_get(haddr.hci_dev); 1090 if (!hdev) { 1091 err = -ENODEV; 1092 goto done; 1093 } 1094 1095 atomic_inc(&hdev->promisc); 1096 } 1097 1098 hci_pi(sk)->channel = haddr.hci_channel; 1099 1100 if (!hci_sock_gen_cookie(sk)) { 1101 /* In the case when a cookie has already been assigned, 1102 * then there has been already an ioctl issued against 1103 * an unbound socket and with that triggerd an open 1104 * notification. Send a close notification first to 1105 * allow the state transition to bounded. 1106 */ 1107 skb = create_monitor_ctrl_close(sk); 1108 if (skb) { 1109 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1110 HCI_SOCK_TRUSTED, NULL); 1111 kfree_skb(skb); 1112 } 1113 } 1114 1115 if (capable(CAP_NET_ADMIN)) 1116 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1117 1118 hci_pi(sk)->hdev = hdev; 1119 1120 /* Send event to monitor */ 1121 skb = create_monitor_ctrl_open(sk); 1122 if (skb) { 1123 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1124 HCI_SOCK_TRUSTED, NULL); 1125 kfree_skb(skb); 1126 } 1127 break; 1128 1129 case HCI_CHANNEL_USER: 1130 if (hci_pi(sk)->hdev) { 1131 err = -EALREADY; 1132 goto done; 1133 } 1134 1135 if (haddr.hci_dev == HCI_DEV_NONE) { 1136 err = -EINVAL; 1137 goto done; 1138 } 1139 1140 if (!capable(CAP_NET_ADMIN)) { 1141 err = -EPERM; 1142 goto done; 1143 } 1144 1145 hdev = hci_dev_get(haddr.hci_dev); 1146 if (!hdev) { 1147 err = -ENODEV; 1148 goto done; 1149 } 1150 1151 if (test_bit(HCI_INIT, &hdev->flags) || 1152 hci_dev_test_flag(hdev, HCI_SETUP) || 1153 hci_dev_test_flag(hdev, HCI_CONFIG) || 1154 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1155 test_bit(HCI_UP, &hdev->flags))) { 1156 err = -EBUSY; 1157 hci_dev_put(hdev); 1158 goto done; 1159 } 1160 1161 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1162 err = -EUSERS; 1163 hci_dev_put(hdev); 1164 goto done; 1165 } 1166 1167 mgmt_index_removed(hdev); 1168 1169 err = hci_dev_open(hdev->id); 1170 if (err) { 1171 if (err == -EALREADY) { 1172 /* In case the transport is already up and 1173 * running, clear the error here. 1174 * 1175 * This can happen when opening a user 1176 * channel and HCI_AUTO_OFF grace period 1177 * is still active. 1178 */ 1179 err = 0; 1180 } else { 1181 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1182 mgmt_index_added(hdev); 1183 hci_dev_put(hdev); 1184 goto done; 1185 } 1186 } 1187 1188 hci_pi(sk)->channel = haddr.hci_channel; 1189 1190 if (!hci_sock_gen_cookie(sk)) { 1191 /* In the case when a cookie has already been assigned, 1192 * this socket will transition from a raw socket into 1193 * a user channel socket. For a clean transition, send 1194 * the close notification first. 1195 */ 1196 skb = create_monitor_ctrl_close(sk); 1197 if (skb) { 1198 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1199 HCI_SOCK_TRUSTED, NULL); 1200 kfree_skb(skb); 1201 } 1202 } 1203 1204 /* The user channel is restricted to CAP_NET_ADMIN 1205 * capabilities and with that implicitly trusted. 1206 */ 1207 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1208 1209 hci_pi(sk)->hdev = hdev; 1210 1211 /* Send event to monitor */ 1212 skb = create_monitor_ctrl_open(sk); 1213 if (skb) { 1214 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1215 HCI_SOCK_TRUSTED, NULL); 1216 kfree_skb(skb); 1217 } 1218 1219 atomic_inc(&hdev->promisc); 1220 break; 1221 1222 case HCI_CHANNEL_MONITOR: 1223 if (haddr.hci_dev != HCI_DEV_NONE) { 1224 err = -EINVAL; 1225 goto done; 1226 } 1227 1228 if (!capable(CAP_NET_RAW)) { 1229 err = -EPERM; 1230 goto done; 1231 } 1232 1233 hci_pi(sk)->channel = haddr.hci_channel; 1234 1235 /* The monitor interface is restricted to CAP_NET_RAW 1236 * capabilities and with that implicitly trusted. 1237 */ 1238 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1239 1240 send_monitor_note(sk, "Linux version %s (%s)", 1241 init_utsname()->release, 1242 init_utsname()->machine); 1243 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1244 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1245 send_monitor_replay(sk); 1246 send_monitor_control_replay(sk); 1247 1248 atomic_inc(&monitor_promisc); 1249 break; 1250 1251 case HCI_CHANNEL_LOGGING: 1252 if (haddr.hci_dev != HCI_DEV_NONE) { 1253 err = -EINVAL; 1254 goto done; 1255 } 1256 1257 if (!capable(CAP_NET_ADMIN)) { 1258 err = -EPERM; 1259 goto done; 1260 } 1261 1262 hci_pi(sk)->channel = haddr.hci_channel; 1263 break; 1264 1265 default: 1266 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1267 err = -EINVAL; 1268 goto done; 1269 } 1270 1271 if (haddr.hci_dev != HCI_DEV_NONE) { 1272 err = -EINVAL; 1273 goto done; 1274 } 1275 1276 /* Users with CAP_NET_ADMIN capabilities are allowed 1277 * access to all management commands and events. For 1278 * untrusted users the interface is restricted and 1279 * also only untrusted events are sent. 1280 */ 1281 if (capable(CAP_NET_ADMIN)) 1282 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1283 1284 hci_pi(sk)->channel = haddr.hci_channel; 1285 1286 /* At the moment the index and unconfigured index events 1287 * are enabled unconditionally. Setting them on each 1288 * socket when binding keeps this functionality. They 1289 * however might be cleared later and then sending of these 1290 * events will be disabled, but that is then intentional. 1291 * 1292 * This also enables generic events that are safe to be 1293 * received by untrusted users. Example for such events 1294 * are changes to settings, class of device, name etc. 1295 */ 1296 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1297 if (!hci_sock_gen_cookie(sk)) { 1298 /* In the case when a cookie has already been 1299 * assigned, this socket will transtion from 1300 * a raw socket into a control socket. To 1301 * allow for a clean transtion, send the 1302 * close notification first. 1303 */ 1304 skb = create_monitor_ctrl_close(sk); 1305 if (skb) { 1306 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1307 HCI_SOCK_TRUSTED, NULL); 1308 kfree_skb(skb); 1309 } 1310 } 1311 1312 /* Send event to monitor */ 1313 skb = create_monitor_ctrl_open(sk); 1314 if (skb) { 1315 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1316 HCI_SOCK_TRUSTED, NULL); 1317 kfree_skb(skb); 1318 } 1319 1320 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1321 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1322 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1323 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1324 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1325 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1326 } 1327 break; 1328 } 1329 1330 sk->sk_state = BT_BOUND; 1331 1332 done: 1333 release_sock(sk); 1334 return err; 1335 } 1336 1337 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1338 int *addr_len, int peer) 1339 { 1340 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1341 struct sock *sk = sock->sk; 1342 struct hci_dev *hdev; 1343 int err = 0; 1344 1345 BT_DBG("sock %p sk %p", sock, sk); 1346 1347 if (peer) 1348 return -EOPNOTSUPP; 1349 1350 lock_sock(sk); 1351 1352 hdev = hci_pi(sk)->hdev; 1353 if (!hdev) { 1354 err = -EBADFD; 1355 goto done; 1356 } 1357 1358 *addr_len = sizeof(*haddr); 1359 haddr->hci_family = AF_BLUETOOTH; 1360 haddr->hci_dev = hdev->id; 1361 haddr->hci_channel= hci_pi(sk)->channel; 1362 1363 done: 1364 release_sock(sk); 1365 return err; 1366 } 1367 1368 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1369 struct sk_buff *skb) 1370 { 1371 __u32 mask = hci_pi(sk)->cmsg_mask; 1372 1373 if (mask & HCI_CMSG_DIR) { 1374 int incoming = bt_cb(skb)->incoming; 1375 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1376 &incoming); 1377 } 1378 1379 if (mask & HCI_CMSG_TSTAMP) { 1380 #ifdef CONFIG_COMPAT 1381 struct compat_timeval ctv; 1382 #endif 1383 struct timeval tv; 1384 void *data; 1385 int len; 1386 1387 skb_get_timestamp(skb, &tv); 1388 1389 data = &tv; 1390 len = sizeof(tv); 1391 #ifdef CONFIG_COMPAT 1392 if (!COMPAT_USE_64BIT_TIME && 1393 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1394 ctv.tv_sec = tv.tv_sec; 1395 ctv.tv_usec = tv.tv_usec; 1396 data = &ctv; 1397 len = sizeof(ctv); 1398 } 1399 #endif 1400 1401 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1402 } 1403 } 1404 1405 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1406 size_t len, int flags) 1407 { 1408 int noblock = flags & MSG_DONTWAIT; 1409 struct sock *sk = sock->sk; 1410 struct sk_buff *skb; 1411 int copied, err; 1412 unsigned int skblen; 1413 1414 BT_DBG("sock %p, sk %p", sock, sk); 1415 1416 if (flags & MSG_OOB) 1417 return -EOPNOTSUPP; 1418 1419 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1420 return -EOPNOTSUPP; 1421 1422 if (sk->sk_state == BT_CLOSED) 1423 return 0; 1424 1425 skb = skb_recv_datagram(sk, flags, noblock, &err); 1426 if (!skb) 1427 return err; 1428 1429 skblen = skb->len; 1430 copied = skb->len; 1431 if (len < copied) { 1432 msg->msg_flags |= MSG_TRUNC; 1433 copied = len; 1434 } 1435 1436 skb_reset_transport_header(skb); 1437 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1438 1439 switch (hci_pi(sk)->channel) { 1440 case HCI_CHANNEL_RAW: 1441 hci_sock_cmsg(sk, msg, skb); 1442 break; 1443 case HCI_CHANNEL_USER: 1444 case HCI_CHANNEL_MONITOR: 1445 sock_recv_timestamp(msg, sk, skb); 1446 break; 1447 default: 1448 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1449 sock_recv_timestamp(msg, sk, skb); 1450 break; 1451 } 1452 1453 skb_free_datagram(sk, skb); 1454 1455 if (flags & MSG_TRUNC) 1456 copied = skblen; 1457 1458 return err ? : copied; 1459 } 1460 1461 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1462 struct msghdr *msg, size_t msglen) 1463 { 1464 void *buf; 1465 u8 *cp; 1466 struct mgmt_hdr *hdr; 1467 u16 opcode, index, len; 1468 struct hci_dev *hdev = NULL; 1469 const struct hci_mgmt_handler *handler; 1470 bool var_len, no_hdev; 1471 int err; 1472 1473 BT_DBG("got %zu bytes", msglen); 1474 1475 if (msglen < sizeof(*hdr)) 1476 return -EINVAL; 1477 1478 buf = kmalloc(msglen, GFP_KERNEL); 1479 if (!buf) 1480 return -ENOMEM; 1481 1482 if (memcpy_from_msg(buf, msg, msglen)) { 1483 err = -EFAULT; 1484 goto done; 1485 } 1486 1487 hdr = buf; 1488 opcode = __le16_to_cpu(hdr->opcode); 1489 index = __le16_to_cpu(hdr->index); 1490 len = __le16_to_cpu(hdr->len); 1491 1492 if (len != msglen - sizeof(*hdr)) { 1493 err = -EINVAL; 1494 goto done; 1495 } 1496 1497 if (chan->channel == HCI_CHANNEL_CONTROL) { 1498 struct sk_buff *skb; 1499 1500 /* Send event to monitor */ 1501 skb = create_monitor_ctrl_command(sk, index, opcode, len, 1502 buf + sizeof(*hdr)); 1503 if (skb) { 1504 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1505 HCI_SOCK_TRUSTED, NULL); 1506 kfree_skb(skb); 1507 } 1508 } 1509 1510 if (opcode >= chan->handler_count || 1511 chan->handlers[opcode].func == NULL) { 1512 BT_DBG("Unknown op %u", opcode); 1513 err = mgmt_cmd_status(sk, index, opcode, 1514 MGMT_STATUS_UNKNOWN_COMMAND); 1515 goto done; 1516 } 1517 1518 handler = &chan->handlers[opcode]; 1519 1520 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1521 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1522 err = mgmt_cmd_status(sk, index, opcode, 1523 MGMT_STATUS_PERMISSION_DENIED); 1524 goto done; 1525 } 1526 1527 if (index != MGMT_INDEX_NONE) { 1528 hdev = hci_dev_get(index); 1529 if (!hdev) { 1530 err = mgmt_cmd_status(sk, index, opcode, 1531 MGMT_STATUS_INVALID_INDEX); 1532 goto done; 1533 } 1534 1535 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1536 hci_dev_test_flag(hdev, HCI_CONFIG) || 1537 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1538 err = mgmt_cmd_status(sk, index, opcode, 1539 MGMT_STATUS_INVALID_INDEX); 1540 goto done; 1541 } 1542 1543 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1544 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1545 err = mgmt_cmd_status(sk, index, opcode, 1546 MGMT_STATUS_INVALID_INDEX); 1547 goto done; 1548 } 1549 } 1550 1551 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1552 if (no_hdev != !hdev) { 1553 err = mgmt_cmd_status(sk, index, opcode, 1554 MGMT_STATUS_INVALID_INDEX); 1555 goto done; 1556 } 1557 1558 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1559 if ((var_len && len < handler->data_len) || 1560 (!var_len && len != handler->data_len)) { 1561 err = mgmt_cmd_status(sk, index, opcode, 1562 MGMT_STATUS_INVALID_PARAMS); 1563 goto done; 1564 } 1565 1566 if (hdev && chan->hdev_init) 1567 chan->hdev_init(sk, hdev); 1568 1569 cp = buf + sizeof(*hdr); 1570 1571 err = handler->func(sk, hdev, cp, len); 1572 if (err < 0) 1573 goto done; 1574 1575 err = msglen; 1576 1577 done: 1578 if (hdev) 1579 hci_dev_put(hdev); 1580 1581 kfree(buf); 1582 return err; 1583 } 1584 1585 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len) 1586 { 1587 struct hci_mon_hdr *hdr; 1588 struct sk_buff *skb; 1589 struct hci_dev *hdev; 1590 u16 index; 1591 int err; 1592 1593 /* The logging frame consists at minimum of the standard header, 1594 * the priority byte, the ident length byte and at least one string 1595 * terminator NUL byte. Anything shorter are invalid packets. 1596 */ 1597 if (len < sizeof(*hdr) + 3) 1598 return -EINVAL; 1599 1600 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1601 if (!skb) 1602 return err; 1603 1604 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1605 err = -EFAULT; 1606 goto drop; 1607 } 1608 1609 hdr = (void *)skb->data; 1610 1611 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) { 1612 err = -EINVAL; 1613 goto drop; 1614 } 1615 1616 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1617 __u8 priority = skb->data[sizeof(*hdr)]; 1618 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1619 1620 /* Only the priorities 0-7 are valid and with that any other 1621 * value results in an invalid packet. 1622 * 1623 * The priority byte is followed by an ident length byte and 1624 * the NUL terminated ident string. Check that the ident 1625 * length is not overflowing the packet and also that the 1626 * ident string itself is NUL terminated. In case the ident 1627 * length is zero, the length value actually doubles as NUL 1628 * terminator identifier. 1629 * 1630 * The message follows the ident string (if present) and 1631 * must be NUL terminated. Otherwise it is not a valid packet. 1632 */ 1633 if (priority > 7 || skb->data[len - 1] != 0x00 || 1634 ident_len > len - sizeof(*hdr) - 3 || 1635 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) { 1636 err = -EINVAL; 1637 goto drop; 1638 } 1639 } else { 1640 err = -EINVAL; 1641 goto drop; 1642 } 1643 1644 index = __le16_to_cpu(hdr->index); 1645 1646 if (index != MGMT_INDEX_NONE) { 1647 hdev = hci_dev_get(index); 1648 if (!hdev) { 1649 err = -ENODEV; 1650 goto drop; 1651 } 1652 } else { 1653 hdev = NULL; 1654 } 1655 1656 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1657 1658 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1659 err = len; 1660 1661 if (hdev) 1662 hci_dev_put(hdev); 1663 1664 drop: 1665 kfree_skb(skb); 1666 return err; 1667 } 1668 1669 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1670 size_t len) 1671 { 1672 struct sock *sk = sock->sk; 1673 struct hci_mgmt_chan *chan; 1674 struct hci_dev *hdev; 1675 struct sk_buff *skb; 1676 int err; 1677 1678 BT_DBG("sock %p sk %p", sock, sk); 1679 1680 if (msg->msg_flags & MSG_OOB) 1681 return -EOPNOTSUPP; 1682 1683 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE| 1684 MSG_CMSG_COMPAT)) 1685 return -EINVAL; 1686 1687 if (len < 4 || len > HCI_MAX_FRAME_SIZE) 1688 return -EINVAL; 1689 1690 lock_sock(sk); 1691 1692 switch (hci_pi(sk)->channel) { 1693 case HCI_CHANNEL_RAW: 1694 case HCI_CHANNEL_USER: 1695 break; 1696 case HCI_CHANNEL_MONITOR: 1697 err = -EOPNOTSUPP; 1698 goto done; 1699 case HCI_CHANNEL_LOGGING: 1700 err = hci_logging_frame(sk, msg, len); 1701 goto done; 1702 default: 1703 mutex_lock(&mgmt_chan_list_lock); 1704 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1705 if (chan) 1706 err = hci_mgmt_cmd(chan, sk, msg, len); 1707 else 1708 err = -EINVAL; 1709 1710 mutex_unlock(&mgmt_chan_list_lock); 1711 goto done; 1712 } 1713 1714 hdev = hci_pi(sk)->hdev; 1715 if (!hdev) { 1716 err = -EBADFD; 1717 goto done; 1718 } 1719 1720 if (!test_bit(HCI_UP, &hdev->flags)) { 1721 err = -ENETDOWN; 1722 goto done; 1723 } 1724 1725 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1726 if (!skb) 1727 goto done; 1728 1729 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1730 err = -EFAULT; 1731 goto drop; 1732 } 1733 1734 hci_skb_pkt_type(skb) = skb->data[0]; 1735 skb_pull(skb, 1); 1736 1737 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1738 /* No permission check is needed for user channel 1739 * since that gets enforced when binding the socket. 1740 * 1741 * However check that the packet type is valid. 1742 */ 1743 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1744 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1745 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1746 err = -EINVAL; 1747 goto drop; 1748 } 1749 1750 skb_queue_tail(&hdev->raw_q, skb); 1751 queue_work(hdev->workqueue, &hdev->tx_work); 1752 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1753 u16 opcode = get_unaligned_le16(skb->data); 1754 u16 ogf = hci_opcode_ogf(opcode); 1755 u16 ocf = hci_opcode_ocf(opcode); 1756 1757 if (((ogf > HCI_SFLT_MAX_OGF) || 1758 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1759 &hci_sec_filter.ocf_mask[ogf])) && 1760 !capable(CAP_NET_RAW)) { 1761 err = -EPERM; 1762 goto drop; 1763 } 1764 1765 /* Since the opcode has already been extracted here, store 1766 * a copy of the value for later use by the drivers. 1767 */ 1768 hci_skb_opcode(skb) = opcode; 1769 1770 if (ogf == 0x3f) { 1771 skb_queue_tail(&hdev->raw_q, skb); 1772 queue_work(hdev->workqueue, &hdev->tx_work); 1773 } else { 1774 /* Stand-alone HCI commands must be flagged as 1775 * single-command requests. 1776 */ 1777 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1778 1779 skb_queue_tail(&hdev->cmd_q, skb); 1780 queue_work(hdev->workqueue, &hdev->cmd_work); 1781 } 1782 } else { 1783 if (!capable(CAP_NET_RAW)) { 1784 err = -EPERM; 1785 goto drop; 1786 } 1787 1788 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1789 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1790 err = -EINVAL; 1791 goto drop; 1792 } 1793 1794 skb_queue_tail(&hdev->raw_q, skb); 1795 queue_work(hdev->workqueue, &hdev->tx_work); 1796 } 1797 1798 err = len; 1799 1800 done: 1801 release_sock(sk); 1802 return err; 1803 1804 drop: 1805 kfree_skb(skb); 1806 goto done; 1807 } 1808 1809 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1810 char __user *optval, unsigned int len) 1811 { 1812 struct hci_ufilter uf = { .opcode = 0 }; 1813 struct sock *sk = sock->sk; 1814 int err = 0, opt = 0; 1815 1816 BT_DBG("sk %p, opt %d", sk, optname); 1817 1818 if (level != SOL_HCI) 1819 return -ENOPROTOOPT; 1820 1821 lock_sock(sk); 1822 1823 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1824 err = -EBADFD; 1825 goto done; 1826 } 1827 1828 switch (optname) { 1829 case HCI_DATA_DIR: 1830 if (get_user(opt, (int __user *)optval)) { 1831 err = -EFAULT; 1832 break; 1833 } 1834 1835 if (opt) 1836 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1837 else 1838 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1839 break; 1840 1841 case HCI_TIME_STAMP: 1842 if (get_user(opt, (int __user *)optval)) { 1843 err = -EFAULT; 1844 break; 1845 } 1846 1847 if (opt) 1848 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1849 else 1850 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1851 break; 1852 1853 case HCI_FILTER: 1854 { 1855 struct hci_filter *f = &hci_pi(sk)->filter; 1856 1857 uf.type_mask = f->type_mask; 1858 uf.opcode = f->opcode; 1859 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1860 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1861 } 1862 1863 len = min_t(unsigned int, len, sizeof(uf)); 1864 if (copy_from_user(&uf, optval, len)) { 1865 err = -EFAULT; 1866 break; 1867 } 1868 1869 if (!capable(CAP_NET_RAW)) { 1870 uf.type_mask &= hci_sec_filter.type_mask; 1871 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1872 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1873 } 1874 1875 { 1876 struct hci_filter *f = &hci_pi(sk)->filter; 1877 1878 f->type_mask = uf.type_mask; 1879 f->opcode = uf.opcode; 1880 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1881 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1882 } 1883 break; 1884 1885 default: 1886 err = -ENOPROTOOPT; 1887 break; 1888 } 1889 1890 done: 1891 release_sock(sk); 1892 return err; 1893 } 1894 1895 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 1896 char __user *optval, int __user *optlen) 1897 { 1898 struct hci_ufilter uf; 1899 struct sock *sk = sock->sk; 1900 int len, opt, err = 0; 1901 1902 BT_DBG("sk %p, opt %d", sk, optname); 1903 1904 if (level != SOL_HCI) 1905 return -ENOPROTOOPT; 1906 1907 if (get_user(len, optlen)) 1908 return -EFAULT; 1909 1910 lock_sock(sk); 1911 1912 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1913 err = -EBADFD; 1914 goto done; 1915 } 1916 1917 switch (optname) { 1918 case HCI_DATA_DIR: 1919 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1920 opt = 1; 1921 else 1922 opt = 0; 1923 1924 if (put_user(opt, optval)) 1925 err = -EFAULT; 1926 break; 1927 1928 case HCI_TIME_STAMP: 1929 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1930 opt = 1; 1931 else 1932 opt = 0; 1933 1934 if (put_user(opt, optval)) 1935 err = -EFAULT; 1936 break; 1937 1938 case HCI_FILTER: 1939 { 1940 struct hci_filter *f = &hci_pi(sk)->filter; 1941 1942 memset(&uf, 0, sizeof(uf)); 1943 uf.type_mask = f->type_mask; 1944 uf.opcode = f->opcode; 1945 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1946 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1947 } 1948 1949 len = min_t(unsigned int, len, sizeof(uf)); 1950 if (copy_to_user(optval, &uf, len)) 1951 err = -EFAULT; 1952 break; 1953 1954 default: 1955 err = -ENOPROTOOPT; 1956 break; 1957 } 1958 1959 done: 1960 release_sock(sk); 1961 return err; 1962 } 1963 1964 static const struct proto_ops hci_sock_ops = { 1965 .family = PF_BLUETOOTH, 1966 .owner = THIS_MODULE, 1967 .release = hci_sock_release, 1968 .bind = hci_sock_bind, 1969 .getname = hci_sock_getname, 1970 .sendmsg = hci_sock_sendmsg, 1971 .recvmsg = hci_sock_recvmsg, 1972 .ioctl = hci_sock_ioctl, 1973 .poll = datagram_poll, 1974 .listen = sock_no_listen, 1975 .shutdown = sock_no_shutdown, 1976 .setsockopt = hci_sock_setsockopt, 1977 .getsockopt = hci_sock_getsockopt, 1978 .connect = sock_no_connect, 1979 .socketpair = sock_no_socketpair, 1980 .accept = sock_no_accept, 1981 .mmap = sock_no_mmap 1982 }; 1983 1984 static struct proto hci_sk_proto = { 1985 .name = "HCI", 1986 .owner = THIS_MODULE, 1987 .obj_size = sizeof(struct hci_pinfo) 1988 }; 1989 1990 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 1991 int kern) 1992 { 1993 struct sock *sk; 1994 1995 BT_DBG("sock %p", sock); 1996 1997 if (sock->type != SOCK_RAW) 1998 return -ESOCKTNOSUPPORT; 1999 2000 sock->ops = &hci_sock_ops; 2001 2002 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2003 if (!sk) 2004 return -ENOMEM; 2005 2006 sock_init_data(sock, sk); 2007 2008 sock_reset_flag(sk, SOCK_ZAPPED); 2009 2010 sk->sk_protocol = protocol; 2011 2012 sock->state = SS_UNCONNECTED; 2013 sk->sk_state = BT_OPEN; 2014 2015 bt_sock_link(&hci_sk_list, sk); 2016 return 0; 2017 } 2018 2019 static const struct net_proto_family hci_sock_family_ops = { 2020 .family = PF_BLUETOOTH, 2021 .owner = THIS_MODULE, 2022 .create = hci_sock_create, 2023 }; 2024 2025 int __init hci_sock_init(void) 2026 { 2027 int err; 2028 2029 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2030 2031 err = proto_register(&hci_sk_proto, 0); 2032 if (err < 0) 2033 return err; 2034 2035 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2036 if (err < 0) { 2037 BT_ERR("HCI socket registration failed"); 2038 goto error; 2039 } 2040 2041 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2042 if (err < 0) { 2043 BT_ERR("Failed to create HCI proc file"); 2044 bt_sock_unregister(BTPROTO_HCI); 2045 goto error; 2046 } 2047 2048 BT_INFO("HCI socket layer initialized"); 2049 2050 return 0; 2051 2052 error: 2053 proto_unregister(&hci_sk_proto); 2054 return err; 2055 } 2056 2057 void hci_sock_cleanup(void) 2058 { 2059 bt_procfs_cleanup(&init_net, "hci"); 2060 bt_sock_unregister(BTPROTO_HCI); 2061 proto_unregister(&hci_sk_proto); 2062 } 2063