1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u32 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 }; 61 62 void hci_sock_set_flag(struct sock *sk, int nr) 63 { 64 set_bit(nr, &hci_pi(sk)->flags); 65 } 66 67 void hci_sock_clear_flag(struct sock *sk, int nr) 68 { 69 clear_bit(nr, &hci_pi(sk)->flags); 70 } 71 72 int hci_sock_test_flag(struct sock *sk, int nr) 73 { 74 return test_bit(nr, &hci_pi(sk)->flags); 75 } 76 77 unsigned short hci_sock_get_channel(struct sock *sk) 78 { 79 return hci_pi(sk)->channel; 80 } 81 82 u32 hci_sock_get_cookie(struct sock *sk) 83 { 84 return hci_pi(sk)->cookie; 85 } 86 87 static bool hci_sock_gen_cookie(struct sock *sk) 88 { 89 int id = hci_pi(sk)->cookie; 90 91 if (!id) { 92 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 93 if (id < 0) 94 id = 0xffffffff; 95 96 hci_pi(sk)->cookie = id; 97 get_task_comm(hci_pi(sk)->comm, current); 98 return true; 99 } 100 101 return false; 102 } 103 104 static void hci_sock_free_cookie(struct sock *sk) 105 { 106 int id = hci_pi(sk)->cookie; 107 108 if (id) { 109 hci_pi(sk)->cookie = 0xffffffff; 110 ida_simple_remove(&sock_cookie_ida, id); 111 } 112 } 113 114 static inline int hci_test_bit(int nr, const void *addr) 115 { 116 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 117 } 118 119 /* Security filter */ 120 #define HCI_SFLT_MAX_OGF 5 121 122 struct hci_sec_filter { 123 __u32 type_mask; 124 __u32 event_mask[2]; 125 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 126 }; 127 128 static const struct hci_sec_filter hci_sec_filter = { 129 /* Packet types */ 130 0x10, 131 /* Events */ 132 { 0x1000d9fe, 0x0000b00c }, 133 /* Commands */ 134 { 135 { 0x0 }, 136 /* OGF_LINK_CTL */ 137 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 138 /* OGF_LINK_POLICY */ 139 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 140 /* OGF_HOST_CTL */ 141 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 142 /* OGF_INFO_PARAM */ 143 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 144 /* OGF_STATUS_PARAM */ 145 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 146 } 147 }; 148 149 static struct bt_sock_list hci_sk_list = { 150 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 151 }; 152 153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 154 { 155 struct hci_filter *flt; 156 int flt_type, flt_event; 157 158 /* Apply filter */ 159 flt = &hci_pi(sk)->filter; 160 161 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 162 163 if (!test_bit(flt_type, &flt->type_mask)) 164 return true; 165 166 /* Extra filter for event packets only */ 167 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 168 return false; 169 170 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 171 172 if (!hci_test_bit(flt_event, &flt->event_mask)) 173 return true; 174 175 /* Check filter only when opcode is set */ 176 if (!flt->opcode) 177 return false; 178 179 if (flt_event == HCI_EV_CMD_COMPLETE && 180 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 181 return true; 182 183 if (flt_event == HCI_EV_CMD_STATUS && 184 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 185 return true; 186 187 return false; 188 } 189 190 /* Send frame to RAW socket */ 191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 192 { 193 struct sock *sk; 194 struct sk_buff *skb_copy = NULL; 195 196 BT_DBG("hdev %p len %d", hdev, skb->len); 197 198 read_lock(&hci_sk_list.lock); 199 200 sk_for_each(sk, &hci_sk_list.head) { 201 struct sk_buff *nskb; 202 203 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 204 continue; 205 206 /* Don't send frame to the socket it came from */ 207 if (skb->sk == sk) 208 continue; 209 210 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 211 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 212 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 213 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 214 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 215 continue; 216 if (is_filtered_packet(sk, skb)) 217 continue; 218 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 219 if (!bt_cb(skb)->incoming) 220 continue; 221 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 222 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 223 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 224 continue; 225 } else { 226 /* Don't send frame to other channel types */ 227 continue; 228 } 229 230 if (!skb_copy) { 231 /* Create a private copy with headroom */ 232 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 233 if (!skb_copy) 234 continue; 235 236 /* Put type byte before the data */ 237 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 238 } 239 240 nskb = skb_clone(skb_copy, GFP_ATOMIC); 241 if (!nskb) 242 continue; 243 244 if (sock_queue_rcv_skb(sk, nskb)) 245 kfree_skb(nskb); 246 } 247 248 read_unlock(&hci_sk_list.lock); 249 250 kfree_skb(skb_copy); 251 } 252 253 /* Send frame to sockets with specific channel */ 254 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 255 int flag, struct sock *skip_sk) 256 { 257 struct sock *sk; 258 259 BT_DBG("channel %u len %d", channel, skb->len); 260 261 sk_for_each(sk, &hci_sk_list.head) { 262 struct sk_buff *nskb; 263 264 /* Ignore socket without the flag set */ 265 if (!hci_sock_test_flag(sk, flag)) 266 continue; 267 268 /* Skip the original socket */ 269 if (sk == skip_sk) 270 continue; 271 272 if (sk->sk_state != BT_BOUND) 273 continue; 274 275 if (hci_pi(sk)->channel != channel) 276 continue; 277 278 nskb = skb_clone(skb, GFP_ATOMIC); 279 if (!nskb) 280 continue; 281 282 if (sock_queue_rcv_skb(sk, nskb)) 283 kfree_skb(nskb); 284 } 285 286 } 287 288 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 289 int flag, struct sock *skip_sk) 290 { 291 read_lock(&hci_sk_list.lock); 292 __hci_send_to_channel(channel, skb, flag, skip_sk); 293 read_unlock(&hci_sk_list.lock); 294 } 295 296 /* Send frame to monitor socket */ 297 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 298 { 299 struct sk_buff *skb_copy = NULL; 300 struct hci_mon_hdr *hdr; 301 __le16 opcode; 302 303 if (!atomic_read(&monitor_promisc)) 304 return; 305 306 BT_DBG("hdev %p len %d", hdev, skb->len); 307 308 switch (hci_skb_pkt_type(skb)) { 309 case HCI_COMMAND_PKT: 310 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 311 break; 312 case HCI_EVENT_PKT: 313 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 314 break; 315 case HCI_ACLDATA_PKT: 316 if (bt_cb(skb)->incoming) 317 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 318 else 319 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 320 break; 321 case HCI_SCODATA_PKT: 322 if (bt_cb(skb)->incoming) 323 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 324 else 325 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 326 break; 327 case HCI_DIAG_PKT: 328 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 329 break; 330 default: 331 return; 332 } 333 334 /* Create a private copy with headroom */ 335 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 336 if (!skb_copy) 337 return; 338 339 /* Put header before the data */ 340 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 341 hdr->opcode = opcode; 342 hdr->index = cpu_to_le16(hdev->id); 343 hdr->len = cpu_to_le16(skb->len); 344 345 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 346 HCI_SOCK_TRUSTED, NULL); 347 kfree_skb(skb_copy); 348 } 349 350 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 351 void *data, u16 data_len, ktime_t tstamp, 352 int flag, struct sock *skip_sk) 353 { 354 struct sock *sk; 355 __le16 index; 356 357 if (hdev) 358 index = cpu_to_le16(hdev->id); 359 else 360 index = cpu_to_le16(MGMT_INDEX_NONE); 361 362 read_lock(&hci_sk_list.lock); 363 364 sk_for_each(sk, &hci_sk_list.head) { 365 struct hci_mon_hdr *hdr; 366 struct sk_buff *skb; 367 368 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 369 continue; 370 371 /* Ignore socket without the flag set */ 372 if (!hci_sock_test_flag(sk, flag)) 373 continue; 374 375 /* Skip the original socket */ 376 if (sk == skip_sk) 377 continue; 378 379 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 380 if (!skb) 381 continue; 382 383 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 384 put_unaligned_le16(event, skb_put(skb, 2)); 385 386 if (data) 387 skb_put_data(skb, data, data_len); 388 389 skb->tstamp = tstamp; 390 391 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 392 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 393 hdr->index = index; 394 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 395 396 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 397 HCI_SOCK_TRUSTED, NULL); 398 kfree_skb(skb); 399 } 400 401 read_unlock(&hci_sk_list.lock); 402 } 403 404 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 405 { 406 struct hci_mon_hdr *hdr; 407 struct hci_mon_new_index *ni; 408 struct hci_mon_index_info *ii; 409 struct sk_buff *skb; 410 __le16 opcode; 411 412 switch (event) { 413 case HCI_DEV_REG: 414 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 415 if (!skb) 416 return NULL; 417 418 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 419 ni->type = hdev->dev_type; 420 ni->bus = hdev->bus; 421 bacpy(&ni->bdaddr, &hdev->bdaddr); 422 memcpy(ni->name, hdev->name, 8); 423 424 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 425 break; 426 427 case HCI_DEV_UNREG: 428 skb = bt_skb_alloc(0, GFP_ATOMIC); 429 if (!skb) 430 return NULL; 431 432 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 433 break; 434 435 case HCI_DEV_SETUP: 436 if (hdev->manufacturer == 0xffff) 437 return NULL; 438 439 /* fall through */ 440 441 case HCI_DEV_UP: 442 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 443 if (!skb) 444 return NULL; 445 446 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 447 bacpy(&ii->bdaddr, &hdev->bdaddr); 448 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 449 450 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 451 break; 452 453 case HCI_DEV_OPEN: 454 skb = bt_skb_alloc(0, GFP_ATOMIC); 455 if (!skb) 456 return NULL; 457 458 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 459 break; 460 461 case HCI_DEV_CLOSE: 462 skb = bt_skb_alloc(0, GFP_ATOMIC); 463 if (!skb) 464 return NULL; 465 466 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 467 break; 468 469 default: 470 return NULL; 471 } 472 473 __net_timestamp(skb); 474 475 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 476 hdr->opcode = opcode; 477 hdr->index = cpu_to_le16(hdev->id); 478 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 479 480 return skb; 481 } 482 483 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 484 { 485 struct hci_mon_hdr *hdr; 486 struct sk_buff *skb; 487 u16 format; 488 u8 ver[3]; 489 u32 flags; 490 491 /* No message needed when cookie is not present */ 492 if (!hci_pi(sk)->cookie) 493 return NULL; 494 495 switch (hci_pi(sk)->channel) { 496 case HCI_CHANNEL_RAW: 497 format = 0x0000; 498 ver[0] = BT_SUBSYS_VERSION; 499 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 500 break; 501 case HCI_CHANNEL_USER: 502 format = 0x0001; 503 ver[0] = BT_SUBSYS_VERSION; 504 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 505 break; 506 case HCI_CHANNEL_CONTROL: 507 format = 0x0002; 508 mgmt_fill_version_info(ver); 509 break; 510 default: 511 /* No message for unsupported format */ 512 return NULL; 513 } 514 515 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 516 if (!skb) 517 return NULL; 518 519 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 520 521 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 522 put_unaligned_le16(format, skb_put(skb, 2)); 523 skb_put_data(skb, ver, sizeof(ver)); 524 put_unaligned_le32(flags, skb_put(skb, 4)); 525 skb_put_u8(skb, TASK_COMM_LEN); 526 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 527 528 __net_timestamp(skb); 529 530 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 531 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 532 if (hci_pi(sk)->hdev) 533 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 534 else 535 hdr->index = cpu_to_le16(HCI_DEV_NONE); 536 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 537 538 return skb; 539 } 540 541 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 542 { 543 struct hci_mon_hdr *hdr; 544 struct sk_buff *skb; 545 546 /* No message needed when cookie is not present */ 547 if (!hci_pi(sk)->cookie) 548 return NULL; 549 550 switch (hci_pi(sk)->channel) { 551 case HCI_CHANNEL_RAW: 552 case HCI_CHANNEL_USER: 553 case HCI_CHANNEL_CONTROL: 554 break; 555 default: 556 /* No message for unsupported format */ 557 return NULL; 558 } 559 560 skb = bt_skb_alloc(4, GFP_ATOMIC); 561 if (!skb) 562 return NULL; 563 564 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 565 566 __net_timestamp(skb); 567 568 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 569 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 570 if (hci_pi(sk)->hdev) 571 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 572 else 573 hdr->index = cpu_to_le16(HCI_DEV_NONE); 574 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 575 576 return skb; 577 } 578 579 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 580 u16 opcode, u16 len, 581 const void *buf) 582 { 583 struct hci_mon_hdr *hdr; 584 struct sk_buff *skb; 585 586 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 587 if (!skb) 588 return NULL; 589 590 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 591 put_unaligned_le16(opcode, skb_put(skb, 2)); 592 593 if (buf) 594 skb_put_data(skb, buf, len); 595 596 __net_timestamp(skb); 597 598 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 599 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 600 hdr->index = cpu_to_le16(index); 601 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 602 603 return skb; 604 } 605 606 static void __printf(2, 3) 607 send_monitor_note(struct sock *sk, const char *fmt, ...) 608 { 609 size_t len; 610 struct hci_mon_hdr *hdr; 611 struct sk_buff *skb; 612 va_list args; 613 614 va_start(args, fmt); 615 len = vsnprintf(NULL, 0, fmt, args); 616 va_end(args); 617 618 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 619 if (!skb) 620 return; 621 622 va_start(args, fmt); 623 vsprintf(skb_put(skb, len), fmt, args); 624 *(u8 *)skb_put(skb, 1) = 0; 625 va_end(args); 626 627 __net_timestamp(skb); 628 629 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 630 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 631 hdr->index = cpu_to_le16(HCI_DEV_NONE); 632 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 633 634 if (sock_queue_rcv_skb(sk, skb)) 635 kfree_skb(skb); 636 } 637 638 static void send_monitor_replay(struct sock *sk) 639 { 640 struct hci_dev *hdev; 641 642 read_lock(&hci_dev_list_lock); 643 644 list_for_each_entry(hdev, &hci_dev_list, list) { 645 struct sk_buff *skb; 646 647 skb = create_monitor_event(hdev, HCI_DEV_REG); 648 if (!skb) 649 continue; 650 651 if (sock_queue_rcv_skb(sk, skb)) 652 kfree_skb(skb); 653 654 if (!test_bit(HCI_RUNNING, &hdev->flags)) 655 continue; 656 657 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 658 if (!skb) 659 continue; 660 661 if (sock_queue_rcv_skb(sk, skb)) 662 kfree_skb(skb); 663 664 if (test_bit(HCI_UP, &hdev->flags)) 665 skb = create_monitor_event(hdev, HCI_DEV_UP); 666 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 667 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 668 else 669 skb = NULL; 670 671 if (skb) { 672 if (sock_queue_rcv_skb(sk, skb)) 673 kfree_skb(skb); 674 } 675 } 676 677 read_unlock(&hci_dev_list_lock); 678 } 679 680 static void send_monitor_control_replay(struct sock *mon_sk) 681 { 682 struct sock *sk; 683 684 read_lock(&hci_sk_list.lock); 685 686 sk_for_each(sk, &hci_sk_list.head) { 687 struct sk_buff *skb; 688 689 skb = create_monitor_ctrl_open(sk); 690 if (!skb) 691 continue; 692 693 if (sock_queue_rcv_skb(mon_sk, skb)) 694 kfree_skb(skb); 695 } 696 697 read_unlock(&hci_sk_list.lock); 698 } 699 700 /* Generate internal stack event */ 701 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 702 { 703 struct hci_event_hdr *hdr; 704 struct hci_ev_stack_internal *ev; 705 struct sk_buff *skb; 706 707 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 708 if (!skb) 709 return; 710 711 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 712 hdr->evt = HCI_EV_STACK_INTERNAL; 713 hdr->plen = sizeof(*ev) + dlen; 714 715 ev = skb_put(skb, sizeof(*ev) + dlen); 716 ev->type = type; 717 memcpy(ev->data, data, dlen); 718 719 bt_cb(skb)->incoming = 1; 720 __net_timestamp(skb); 721 722 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 723 hci_send_to_sock(hdev, skb); 724 kfree_skb(skb); 725 } 726 727 void hci_sock_dev_event(struct hci_dev *hdev, int event) 728 { 729 BT_DBG("hdev %s event %d", hdev->name, event); 730 731 if (atomic_read(&monitor_promisc)) { 732 struct sk_buff *skb; 733 734 /* Send event to monitor */ 735 skb = create_monitor_event(hdev, event); 736 if (skb) { 737 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 738 HCI_SOCK_TRUSTED, NULL); 739 kfree_skb(skb); 740 } 741 } 742 743 if (event <= HCI_DEV_DOWN) { 744 struct hci_ev_si_device ev; 745 746 /* Send event to sockets */ 747 ev.event = event; 748 ev.dev_id = hdev->id; 749 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 750 } 751 752 if (event == HCI_DEV_UNREG) { 753 struct sock *sk; 754 755 /* Detach sockets from device */ 756 read_lock(&hci_sk_list.lock); 757 sk_for_each(sk, &hci_sk_list.head) { 758 bh_lock_sock_nested(sk); 759 if (hci_pi(sk)->hdev == hdev) { 760 hci_pi(sk)->hdev = NULL; 761 sk->sk_err = EPIPE; 762 sk->sk_state = BT_OPEN; 763 sk->sk_state_change(sk); 764 765 hci_dev_put(hdev); 766 } 767 bh_unlock_sock(sk); 768 } 769 read_unlock(&hci_sk_list.lock); 770 } 771 } 772 773 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 774 { 775 struct hci_mgmt_chan *c; 776 777 list_for_each_entry(c, &mgmt_chan_list, list) { 778 if (c->channel == channel) 779 return c; 780 } 781 782 return NULL; 783 } 784 785 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 786 { 787 struct hci_mgmt_chan *c; 788 789 mutex_lock(&mgmt_chan_list_lock); 790 c = __hci_mgmt_chan_find(channel); 791 mutex_unlock(&mgmt_chan_list_lock); 792 793 return c; 794 } 795 796 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 797 { 798 if (c->channel < HCI_CHANNEL_CONTROL) 799 return -EINVAL; 800 801 mutex_lock(&mgmt_chan_list_lock); 802 if (__hci_mgmt_chan_find(c->channel)) { 803 mutex_unlock(&mgmt_chan_list_lock); 804 return -EALREADY; 805 } 806 807 list_add_tail(&c->list, &mgmt_chan_list); 808 809 mutex_unlock(&mgmt_chan_list_lock); 810 811 return 0; 812 } 813 EXPORT_SYMBOL(hci_mgmt_chan_register); 814 815 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 816 { 817 mutex_lock(&mgmt_chan_list_lock); 818 list_del(&c->list); 819 mutex_unlock(&mgmt_chan_list_lock); 820 } 821 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 822 823 static int hci_sock_release(struct socket *sock) 824 { 825 struct sock *sk = sock->sk; 826 struct hci_dev *hdev; 827 struct sk_buff *skb; 828 829 BT_DBG("sock %p sk %p", sock, sk); 830 831 if (!sk) 832 return 0; 833 834 switch (hci_pi(sk)->channel) { 835 case HCI_CHANNEL_MONITOR: 836 atomic_dec(&monitor_promisc); 837 break; 838 case HCI_CHANNEL_RAW: 839 case HCI_CHANNEL_USER: 840 case HCI_CHANNEL_CONTROL: 841 /* Send event to monitor */ 842 skb = create_monitor_ctrl_close(sk); 843 if (skb) { 844 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 845 HCI_SOCK_TRUSTED, NULL); 846 kfree_skb(skb); 847 } 848 849 hci_sock_free_cookie(sk); 850 break; 851 } 852 853 bt_sock_unlink(&hci_sk_list, sk); 854 855 hdev = hci_pi(sk)->hdev; 856 if (hdev) { 857 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 858 /* When releasing a user channel exclusive access, 859 * call hci_dev_do_close directly instead of calling 860 * hci_dev_close to ensure the exclusive access will 861 * be released and the controller brought back down. 862 * 863 * The checking of HCI_AUTO_OFF is not needed in this 864 * case since it will have been cleared already when 865 * opening the user channel. 866 */ 867 hci_dev_do_close(hdev); 868 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 869 mgmt_index_added(hdev); 870 } 871 872 atomic_dec(&hdev->promisc); 873 hci_dev_put(hdev); 874 } 875 876 sock_orphan(sk); 877 878 skb_queue_purge(&sk->sk_receive_queue); 879 skb_queue_purge(&sk->sk_write_queue); 880 881 sock_put(sk); 882 return 0; 883 } 884 885 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg) 886 { 887 bdaddr_t bdaddr; 888 int err; 889 890 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 891 return -EFAULT; 892 893 hci_dev_lock(hdev); 894 895 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 896 897 hci_dev_unlock(hdev); 898 899 return err; 900 } 901 902 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg) 903 { 904 bdaddr_t bdaddr; 905 int err; 906 907 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 908 return -EFAULT; 909 910 hci_dev_lock(hdev); 911 912 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 913 914 hci_dev_unlock(hdev); 915 916 return err; 917 } 918 919 /* Ioctls that require bound socket */ 920 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 921 unsigned long arg) 922 { 923 struct hci_dev *hdev = hci_pi(sk)->hdev; 924 925 if (!hdev) 926 return -EBADFD; 927 928 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 929 return -EBUSY; 930 931 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 932 return -EOPNOTSUPP; 933 934 if (hdev->dev_type != HCI_PRIMARY) 935 return -EOPNOTSUPP; 936 937 switch (cmd) { 938 case HCISETRAW: 939 if (!capable(CAP_NET_ADMIN)) 940 return -EPERM; 941 return -EOPNOTSUPP; 942 943 case HCIGETCONNINFO: 944 return hci_get_conn_info(hdev, (void __user *)arg); 945 946 case HCIGETAUTHINFO: 947 return hci_get_auth_info(hdev, (void __user *)arg); 948 949 case HCIBLOCKADDR: 950 if (!capable(CAP_NET_ADMIN)) 951 return -EPERM; 952 return hci_sock_blacklist_add(hdev, (void __user *)arg); 953 954 case HCIUNBLOCKADDR: 955 if (!capable(CAP_NET_ADMIN)) 956 return -EPERM; 957 return hci_sock_blacklist_del(hdev, (void __user *)arg); 958 } 959 960 return -ENOIOCTLCMD; 961 } 962 963 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 964 unsigned long arg) 965 { 966 void __user *argp = (void __user *)arg; 967 struct sock *sk = sock->sk; 968 int err; 969 970 BT_DBG("cmd %x arg %lx", cmd, arg); 971 972 lock_sock(sk); 973 974 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 975 err = -EBADFD; 976 goto done; 977 } 978 979 /* When calling an ioctl on an unbound raw socket, then ensure 980 * that the monitor gets informed. Ensure that the resulting event 981 * is only send once by checking if the cookie exists or not. The 982 * socket cookie will be only ever generated once for the lifetime 983 * of a given socket. 984 */ 985 if (hci_sock_gen_cookie(sk)) { 986 struct sk_buff *skb; 987 988 if (capable(CAP_NET_ADMIN)) 989 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 990 991 /* Send event to monitor */ 992 skb = create_monitor_ctrl_open(sk); 993 if (skb) { 994 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 995 HCI_SOCK_TRUSTED, NULL); 996 kfree_skb(skb); 997 } 998 } 999 1000 release_sock(sk); 1001 1002 switch (cmd) { 1003 case HCIGETDEVLIST: 1004 return hci_get_dev_list(argp); 1005 1006 case HCIGETDEVINFO: 1007 return hci_get_dev_info(argp); 1008 1009 case HCIGETCONNLIST: 1010 return hci_get_conn_list(argp); 1011 1012 case HCIDEVUP: 1013 if (!capable(CAP_NET_ADMIN)) 1014 return -EPERM; 1015 return hci_dev_open(arg); 1016 1017 case HCIDEVDOWN: 1018 if (!capable(CAP_NET_ADMIN)) 1019 return -EPERM; 1020 return hci_dev_close(arg); 1021 1022 case HCIDEVRESET: 1023 if (!capable(CAP_NET_ADMIN)) 1024 return -EPERM; 1025 return hci_dev_reset(arg); 1026 1027 case HCIDEVRESTAT: 1028 if (!capable(CAP_NET_ADMIN)) 1029 return -EPERM; 1030 return hci_dev_reset_stat(arg); 1031 1032 case HCISETSCAN: 1033 case HCISETAUTH: 1034 case HCISETENCRYPT: 1035 case HCISETPTYPE: 1036 case HCISETLINKPOL: 1037 case HCISETLINKMODE: 1038 case HCISETACLMTU: 1039 case HCISETSCOMTU: 1040 if (!capable(CAP_NET_ADMIN)) 1041 return -EPERM; 1042 return hci_dev_cmd(cmd, argp); 1043 1044 case HCIINQUIRY: 1045 return hci_inquiry(argp); 1046 } 1047 1048 lock_sock(sk); 1049 1050 err = hci_sock_bound_ioctl(sk, cmd, arg); 1051 1052 done: 1053 release_sock(sk); 1054 return err; 1055 } 1056 1057 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1058 int addr_len) 1059 { 1060 struct sockaddr_hci haddr; 1061 struct sock *sk = sock->sk; 1062 struct hci_dev *hdev = NULL; 1063 struct sk_buff *skb; 1064 int len, err = 0; 1065 1066 BT_DBG("sock %p sk %p", sock, sk); 1067 1068 if (!addr) 1069 return -EINVAL; 1070 1071 memset(&haddr, 0, sizeof(haddr)); 1072 len = min_t(unsigned int, sizeof(haddr), addr_len); 1073 memcpy(&haddr, addr, len); 1074 1075 if (haddr.hci_family != AF_BLUETOOTH) 1076 return -EINVAL; 1077 1078 lock_sock(sk); 1079 1080 if (sk->sk_state == BT_BOUND) { 1081 err = -EALREADY; 1082 goto done; 1083 } 1084 1085 switch (haddr.hci_channel) { 1086 case HCI_CHANNEL_RAW: 1087 if (hci_pi(sk)->hdev) { 1088 err = -EALREADY; 1089 goto done; 1090 } 1091 1092 if (haddr.hci_dev != HCI_DEV_NONE) { 1093 hdev = hci_dev_get(haddr.hci_dev); 1094 if (!hdev) { 1095 err = -ENODEV; 1096 goto done; 1097 } 1098 1099 atomic_inc(&hdev->promisc); 1100 } 1101 1102 hci_pi(sk)->channel = haddr.hci_channel; 1103 1104 if (!hci_sock_gen_cookie(sk)) { 1105 /* In the case when a cookie has already been assigned, 1106 * then there has been already an ioctl issued against 1107 * an unbound socket and with that triggerd an open 1108 * notification. Send a close notification first to 1109 * allow the state transition to bounded. 1110 */ 1111 skb = create_monitor_ctrl_close(sk); 1112 if (skb) { 1113 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1114 HCI_SOCK_TRUSTED, NULL); 1115 kfree_skb(skb); 1116 } 1117 } 1118 1119 if (capable(CAP_NET_ADMIN)) 1120 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1121 1122 hci_pi(sk)->hdev = hdev; 1123 1124 /* Send event to monitor */ 1125 skb = create_monitor_ctrl_open(sk); 1126 if (skb) { 1127 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1128 HCI_SOCK_TRUSTED, NULL); 1129 kfree_skb(skb); 1130 } 1131 break; 1132 1133 case HCI_CHANNEL_USER: 1134 if (hci_pi(sk)->hdev) { 1135 err = -EALREADY; 1136 goto done; 1137 } 1138 1139 if (haddr.hci_dev == HCI_DEV_NONE) { 1140 err = -EINVAL; 1141 goto done; 1142 } 1143 1144 if (!capable(CAP_NET_ADMIN)) { 1145 err = -EPERM; 1146 goto done; 1147 } 1148 1149 hdev = hci_dev_get(haddr.hci_dev); 1150 if (!hdev) { 1151 err = -ENODEV; 1152 goto done; 1153 } 1154 1155 if (test_bit(HCI_INIT, &hdev->flags) || 1156 hci_dev_test_flag(hdev, HCI_SETUP) || 1157 hci_dev_test_flag(hdev, HCI_CONFIG) || 1158 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1159 test_bit(HCI_UP, &hdev->flags))) { 1160 err = -EBUSY; 1161 hci_dev_put(hdev); 1162 goto done; 1163 } 1164 1165 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1166 err = -EUSERS; 1167 hci_dev_put(hdev); 1168 goto done; 1169 } 1170 1171 mgmt_index_removed(hdev); 1172 1173 err = hci_dev_open(hdev->id); 1174 if (err) { 1175 if (err == -EALREADY) { 1176 /* In case the transport is already up and 1177 * running, clear the error here. 1178 * 1179 * This can happen when opening a user 1180 * channel and HCI_AUTO_OFF grace period 1181 * is still active. 1182 */ 1183 err = 0; 1184 } else { 1185 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1186 mgmt_index_added(hdev); 1187 hci_dev_put(hdev); 1188 goto done; 1189 } 1190 } 1191 1192 hci_pi(sk)->channel = haddr.hci_channel; 1193 1194 if (!hci_sock_gen_cookie(sk)) { 1195 /* In the case when a cookie has already been assigned, 1196 * this socket will transition from a raw socket into 1197 * a user channel socket. For a clean transition, send 1198 * the close notification first. 1199 */ 1200 skb = create_monitor_ctrl_close(sk); 1201 if (skb) { 1202 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1203 HCI_SOCK_TRUSTED, NULL); 1204 kfree_skb(skb); 1205 } 1206 } 1207 1208 /* The user channel is restricted to CAP_NET_ADMIN 1209 * capabilities and with that implicitly trusted. 1210 */ 1211 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1212 1213 hci_pi(sk)->hdev = hdev; 1214 1215 /* Send event to monitor */ 1216 skb = create_monitor_ctrl_open(sk); 1217 if (skb) { 1218 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1219 HCI_SOCK_TRUSTED, NULL); 1220 kfree_skb(skb); 1221 } 1222 1223 atomic_inc(&hdev->promisc); 1224 break; 1225 1226 case HCI_CHANNEL_MONITOR: 1227 if (haddr.hci_dev != HCI_DEV_NONE) { 1228 err = -EINVAL; 1229 goto done; 1230 } 1231 1232 if (!capable(CAP_NET_RAW)) { 1233 err = -EPERM; 1234 goto done; 1235 } 1236 1237 hci_pi(sk)->channel = haddr.hci_channel; 1238 1239 /* The monitor interface is restricted to CAP_NET_RAW 1240 * capabilities and with that implicitly trusted. 1241 */ 1242 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1243 1244 send_monitor_note(sk, "Linux version %s (%s)", 1245 init_utsname()->release, 1246 init_utsname()->machine); 1247 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1248 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1249 send_monitor_replay(sk); 1250 send_monitor_control_replay(sk); 1251 1252 atomic_inc(&monitor_promisc); 1253 break; 1254 1255 case HCI_CHANNEL_LOGGING: 1256 if (haddr.hci_dev != HCI_DEV_NONE) { 1257 err = -EINVAL; 1258 goto done; 1259 } 1260 1261 if (!capable(CAP_NET_ADMIN)) { 1262 err = -EPERM; 1263 goto done; 1264 } 1265 1266 hci_pi(sk)->channel = haddr.hci_channel; 1267 break; 1268 1269 default: 1270 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1271 err = -EINVAL; 1272 goto done; 1273 } 1274 1275 if (haddr.hci_dev != HCI_DEV_NONE) { 1276 err = -EINVAL; 1277 goto done; 1278 } 1279 1280 /* Users with CAP_NET_ADMIN capabilities are allowed 1281 * access to all management commands and events. For 1282 * untrusted users the interface is restricted and 1283 * also only untrusted events are sent. 1284 */ 1285 if (capable(CAP_NET_ADMIN)) 1286 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1287 1288 hci_pi(sk)->channel = haddr.hci_channel; 1289 1290 /* At the moment the index and unconfigured index events 1291 * are enabled unconditionally. Setting them on each 1292 * socket when binding keeps this functionality. They 1293 * however might be cleared later and then sending of these 1294 * events will be disabled, but that is then intentional. 1295 * 1296 * This also enables generic events that are safe to be 1297 * received by untrusted users. Example for such events 1298 * are changes to settings, class of device, name etc. 1299 */ 1300 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1301 if (!hci_sock_gen_cookie(sk)) { 1302 /* In the case when a cookie has already been 1303 * assigned, this socket will transtion from 1304 * a raw socket into a control socket. To 1305 * allow for a clean transtion, send the 1306 * close notification first. 1307 */ 1308 skb = create_monitor_ctrl_close(sk); 1309 if (skb) { 1310 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1311 HCI_SOCK_TRUSTED, NULL); 1312 kfree_skb(skb); 1313 } 1314 } 1315 1316 /* Send event to monitor */ 1317 skb = create_monitor_ctrl_open(sk); 1318 if (skb) { 1319 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1320 HCI_SOCK_TRUSTED, NULL); 1321 kfree_skb(skb); 1322 } 1323 1324 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1325 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1326 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1327 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1328 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1329 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1330 } 1331 break; 1332 } 1333 1334 sk->sk_state = BT_BOUND; 1335 1336 done: 1337 release_sock(sk); 1338 return err; 1339 } 1340 1341 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1342 int peer) 1343 { 1344 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1345 struct sock *sk = sock->sk; 1346 struct hci_dev *hdev; 1347 int err = 0; 1348 1349 BT_DBG("sock %p sk %p", sock, sk); 1350 1351 if (peer) 1352 return -EOPNOTSUPP; 1353 1354 lock_sock(sk); 1355 1356 hdev = hci_pi(sk)->hdev; 1357 if (!hdev) { 1358 err = -EBADFD; 1359 goto done; 1360 } 1361 1362 haddr->hci_family = AF_BLUETOOTH; 1363 haddr->hci_dev = hdev->id; 1364 haddr->hci_channel= hci_pi(sk)->channel; 1365 err = sizeof(*haddr); 1366 1367 done: 1368 release_sock(sk); 1369 return err; 1370 } 1371 1372 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1373 struct sk_buff *skb) 1374 { 1375 __u32 mask = hci_pi(sk)->cmsg_mask; 1376 1377 if (mask & HCI_CMSG_DIR) { 1378 int incoming = bt_cb(skb)->incoming; 1379 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1380 &incoming); 1381 } 1382 1383 if (mask & HCI_CMSG_TSTAMP) { 1384 #ifdef CONFIG_COMPAT 1385 struct old_timeval32 ctv; 1386 #endif 1387 struct __kernel_old_timeval tv; 1388 void *data; 1389 int len; 1390 1391 skb_get_timestamp(skb, &tv); 1392 1393 data = &tv; 1394 len = sizeof(tv); 1395 #ifdef CONFIG_COMPAT 1396 if (!COMPAT_USE_64BIT_TIME && 1397 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1398 ctv.tv_sec = tv.tv_sec; 1399 ctv.tv_usec = tv.tv_usec; 1400 data = &ctv; 1401 len = sizeof(ctv); 1402 } 1403 #endif 1404 1405 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1406 } 1407 } 1408 1409 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1410 size_t len, int flags) 1411 { 1412 int noblock = flags & MSG_DONTWAIT; 1413 struct sock *sk = sock->sk; 1414 struct sk_buff *skb; 1415 int copied, err; 1416 unsigned int skblen; 1417 1418 BT_DBG("sock %p, sk %p", sock, sk); 1419 1420 if (flags & MSG_OOB) 1421 return -EOPNOTSUPP; 1422 1423 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1424 return -EOPNOTSUPP; 1425 1426 if (sk->sk_state == BT_CLOSED) 1427 return 0; 1428 1429 skb = skb_recv_datagram(sk, flags, noblock, &err); 1430 if (!skb) 1431 return err; 1432 1433 skblen = skb->len; 1434 copied = skb->len; 1435 if (len < copied) { 1436 msg->msg_flags |= MSG_TRUNC; 1437 copied = len; 1438 } 1439 1440 skb_reset_transport_header(skb); 1441 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1442 1443 switch (hci_pi(sk)->channel) { 1444 case HCI_CHANNEL_RAW: 1445 hci_sock_cmsg(sk, msg, skb); 1446 break; 1447 case HCI_CHANNEL_USER: 1448 case HCI_CHANNEL_MONITOR: 1449 sock_recv_timestamp(msg, sk, skb); 1450 break; 1451 default: 1452 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1453 sock_recv_timestamp(msg, sk, skb); 1454 break; 1455 } 1456 1457 skb_free_datagram(sk, skb); 1458 1459 if (flags & MSG_TRUNC) 1460 copied = skblen; 1461 1462 return err ? : copied; 1463 } 1464 1465 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1466 struct msghdr *msg, size_t msglen) 1467 { 1468 void *buf; 1469 u8 *cp; 1470 struct mgmt_hdr *hdr; 1471 u16 opcode, index, len; 1472 struct hci_dev *hdev = NULL; 1473 const struct hci_mgmt_handler *handler; 1474 bool var_len, no_hdev; 1475 int err; 1476 1477 BT_DBG("got %zu bytes", msglen); 1478 1479 if (msglen < sizeof(*hdr)) 1480 return -EINVAL; 1481 1482 buf = kmalloc(msglen, GFP_KERNEL); 1483 if (!buf) 1484 return -ENOMEM; 1485 1486 if (memcpy_from_msg(buf, msg, msglen)) { 1487 err = -EFAULT; 1488 goto done; 1489 } 1490 1491 hdr = buf; 1492 opcode = __le16_to_cpu(hdr->opcode); 1493 index = __le16_to_cpu(hdr->index); 1494 len = __le16_to_cpu(hdr->len); 1495 1496 if (len != msglen - sizeof(*hdr)) { 1497 err = -EINVAL; 1498 goto done; 1499 } 1500 1501 if (chan->channel == HCI_CHANNEL_CONTROL) { 1502 struct sk_buff *skb; 1503 1504 /* Send event to monitor */ 1505 skb = create_monitor_ctrl_command(sk, index, opcode, len, 1506 buf + sizeof(*hdr)); 1507 if (skb) { 1508 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1509 HCI_SOCK_TRUSTED, NULL); 1510 kfree_skb(skb); 1511 } 1512 } 1513 1514 if (opcode >= chan->handler_count || 1515 chan->handlers[opcode].func == NULL) { 1516 BT_DBG("Unknown op %u", opcode); 1517 err = mgmt_cmd_status(sk, index, opcode, 1518 MGMT_STATUS_UNKNOWN_COMMAND); 1519 goto done; 1520 } 1521 1522 handler = &chan->handlers[opcode]; 1523 1524 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1525 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1526 err = mgmt_cmd_status(sk, index, opcode, 1527 MGMT_STATUS_PERMISSION_DENIED); 1528 goto done; 1529 } 1530 1531 if (index != MGMT_INDEX_NONE) { 1532 hdev = hci_dev_get(index); 1533 if (!hdev) { 1534 err = mgmt_cmd_status(sk, index, opcode, 1535 MGMT_STATUS_INVALID_INDEX); 1536 goto done; 1537 } 1538 1539 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1540 hci_dev_test_flag(hdev, HCI_CONFIG) || 1541 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1542 err = mgmt_cmd_status(sk, index, opcode, 1543 MGMT_STATUS_INVALID_INDEX); 1544 goto done; 1545 } 1546 1547 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1548 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1549 err = mgmt_cmd_status(sk, index, opcode, 1550 MGMT_STATUS_INVALID_INDEX); 1551 goto done; 1552 } 1553 } 1554 1555 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1556 if (no_hdev != !hdev) { 1557 err = mgmt_cmd_status(sk, index, opcode, 1558 MGMT_STATUS_INVALID_INDEX); 1559 goto done; 1560 } 1561 1562 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1563 if ((var_len && len < handler->data_len) || 1564 (!var_len && len != handler->data_len)) { 1565 err = mgmt_cmd_status(sk, index, opcode, 1566 MGMT_STATUS_INVALID_PARAMS); 1567 goto done; 1568 } 1569 1570 if (hdev && chan->hdev_init) 1571 chan->hdev_init(sk, hdev); 1572 1573 cp = buf + sizeof(*hdr); 1574 1575 err = handler->func(sk, hdev, cp, len); 1576 if (err < 0) 1577 goto done; 1578 1579 err = msglen; 1580 1581 done: 1582 if (hdev) 1583 hci_dev_put(hdev); 1584 1585 kfree(buf); 1586 return err; 1587 } 1588 1589 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len) 1590 { 1591 struct hci_mon_hdr *hdr; 1592 struct sk_buff *skb; 1593 struct hci_dev *hdev; 1594 u16 index; 1595 int err; 1596 1597 /* The logging frame consists at minimum of the standard header, 1598 * the priority byte, the ident length byte and at least one string 1599 * terminator NUL byte. Anything shorter are invalid packets. 1600 */ 1601 if (len < sizeof(*hdr) + 3) 1602 return -EINVAL; 1603 1604 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1605 if (!skb) 1606 return err; 1607 1608 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1609 err = -EFAULT; 1610 goto drop; 1611 } 1612 1613 hdr = (void *)skb->data; 1614 1615 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) { 1616 err = -EINVAL; 1617 goto drop; 1618 } 1619 1620 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1621 __u8 priority = skb->data[sizeof(*hdr)]; 1622 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1623 1624 /* Only the priorities 0-7 are valid and with that any other 1625 * value results in an invalid packet. 1626 * 1627 * The priority byte is followed by an ident length byte and 1628 * the NUL terminated ident string. Check that the ident 1629 * length is not overflowing the packet and also that the 1630 * ident string itself is NUL terminated. In case the ident 1631 * length is zero, the length value actually doubles as NUL 1632 * terminator identifier. 1633 * 1634 * The message follows the ident string (if present) and 1635 * must be NUL terminated. Otherwise it is not a valid packet. 1636 */ 1637 if (priority > 7 || skb->data[len - 1] != 0x00 || 1638 ident_len > len - sizeof(*hdr) - 3 || 1639 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) { 1640 err = -EINVAL; 1641 goto drop; 1642 } 1643 } else { 1644 err = -EINVAL; 1645 goto drop; 1646 } 1647 1648 index = __le16_to_cpu(hdr->index); 1649 1650 if (index != MGMT_INDEX_NONE) { 1651 hdev = hci_dev_get(index); 1652 if (!hdev) { 1653 err = -ENODEV; 1654 goto drop; 1655 } 1656 } else { 1657 hdev = NULL; 1658 } 1659 1660 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1661 1662 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1663 err = len; 1664 1665 if (hdev) 1666 hci_dev_put(hdev); 1667 1668 drop: 1669 kfree_skb(skb); 1670 return err; 1671 } 1672 1673 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1674 size_t len) 1675 { 1676 struct sock *sk = sock->sk; 1677 struct hci_mgmt_chan *chan; 1678 struct hci_dev *hdev; 1679 struct sk_buff *skb; 1680 int err; 1681 1682 BT_DBG("sock %p sk %p", sock, sk); 1683 1684 if (msg->msg_flags & MSG_OOB) 1685 return -EOPNOTSUPP; 1686 1687 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE| 1688 MSG_CMSG_COMPAT)) 1689 return -EINVAL; 1690 1691 if (len < 4 || len > HCI_MAX_FRAME_SIZE) 1692 return -EINVAL; 1693 1694 lock_sock(sk); 1695 1696 switch (hci_pi(sk)->channel) { 1697 case HCI_CHANNEL_RAW: 1698 case HCI_CHANNEL_USER: 1699 break; 1700 case HCI_CHANNEL_MONITOR: 1701 err = -EOPNOTSUPP; 1702 goto done; 1703 case HCI_CHANNEL_LOGGING: 1704 err = hci_logging_frame(sk, msg, len); 1705 goto done; 1706 default: 1707 mutex_lock(&mgmt_chan_list_lock); 1708 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1709 if (chan) 1710 err = hci_mgmt_cmd(chan, sk, msg, len); 1711 else 1712 err = -EINVAL; 1713 1714 mutex_unlock(&mgmt_chan_list_lock); 1715 goto done; 1716 } 1717 1718 hdev = hci_pi(sk)->hdev; 1719 if (!hdev) { 1720 err = -EBADFD; 1721 goto done; 1722 } 1723 1724 if (!test_bit(HCI_UP, &hdev->flags)) { 1725 err = -ENETDOWN; 1726 goto done; 1727 } 1728 1729 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1730 if (!skb) 1731 goto done; 1732 1733 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1734 err = -EFAULT; 1735 goto drop; 1736 } 1737 1738 hci_skb_pkt_type(skb) = skb->data[0]; 1739 skb_pull(skb, 1); 1740 1741 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1742 /* No permission check is needed for user channel 1743 * since that gets enforced when binding the socket. 1744 * 1745 * However check that the packet type is valid. 1746 */ 1747 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1748 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1749 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1750 err = -EINVAL; 1751 goto drop; 1752 } 1753 1754 skb_queue_tail(&hdev->raw_q, skb); 1755 queue_work(hdev->workqueue, &hdev->tx_work); 1756 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1757 u16 opcode = get_unaligned_le16(skb->data); 1758 u16 ogf = hci_opcode_ogf(opcode); 1759 u16 ocf = hci_opcode_ocf(opcode); 1760 1761 if (((ogf > HCI_SFLT_MAX_OGF) || 1762 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1763 &hci_sec_filter.ocf_mask[ogf])) && 1764 !capable(CAP_NET_RAW)) { 1765 err = -EPERM; 1766 goto drop; 1767 } 1768 1769 /* Since the opcode has already been extracted here, store 1770 * a copy of the value for later use by the drivers. 1771 */ 1772 hci_skb_opcode(skb) = opcode; 1773 1774 if (ogf == 0x3f) { 1775 skb_queue_tail(&hdev->raw_q, skb); 1776 queue_work(hdev->workqueue, &hdev->tx_work); 1777 } else { 1778 /* Stand-alone HCI commands must be flagged as 1779 * single-command requests. 1780 */ 1781 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1782 1783 skb_queue_tail(&hdev->cmd_q, skb); 1784 queue_work(hdev->workqueue, &hdev->cmd_work); 1785 } 1786 } else { 1787 if (!capable(CAP_NET_RAW)) { 1788 err = -EPERM; 1789 goto drop; 1790 } 1791 1792 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1793 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1794 err = -EINVAL; 1795 goto drop; 1796 } 1797 1798 skb_queue_tail(&hdev->raw_q, skb); 1799 queue_work(hdev->workqueue, &hdev->tx_work); 1800 } 1801 1802 err = len; 1803 1804 done: 1805 release_sock(sk); 1806 return err; 1807 1808 drop: 1809 kfree_skb(skb); 1810 goto done; 1811 } 1812 1813 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1814 char __user *optval, unsigned int len) 1815 { 1816 struct hci_ufilter uf = { .opcode = 0 }; 1817 struct sock *sk = sock->sk; 1818 int err = 0, opt = 0; 1819 1820 BT_DBG("sk %p, opt %d", sk, optname); 1821 1822 if (level != SOL_HCI) 1823 return -ENOPROTOOPT; 1824 1825 lock_sock(sk); 1826 1827 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1828 err = -EBADFD; 1829 goto done; 1830 } 1831 1832 switch (optname) { 1833 case HCI_DATA_DIR: 1834 if (get_user(opt, (int __user *)optval)) { 1835 err = -EFAULT; 1836 break; 1837 } 1838 1839 if (opt) 1840 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1841 else 1842 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1843 break; 1844 1845 case HCI_TIME_STAMP: 1846 if (get_user(opt, (int __user *)optval)) { 1847 err = -EFAULT; 1848 break; 1849 } 1850 1851 if (opt) 1852 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1853 else 1854 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1855 break; 1856 1857 case HCI_FILTER: 1858 { 1859 struct hci_filter *f = &hci_pi(sk)->filter; 1860 1861 uf.type_mask = f->type_mask; 1862 uf.opcode = f->opcode; 1863 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1864 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1865 } 1866 1867 len = min_t(unsigned int, len, sizeof(uf)); 1868 if (copy_from_user(&uf, optval, len)) { 1869 err = -EFAULT; 1870 break; 1871 } 1872 1873 if (!capable(CAP_NET_RAW)) { 1874 uf.type_mask &= hci_sec_filter.type_mask; 1875 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1876 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1877 } 1878 1879 { 1880 struct hci_filter *f = &hci_pi(sk)->filter; 1881 1882 f->type_mask = uf.type_mask; 1883 f->opcode = uf.opcode; 1884 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1885 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1886 } 1887 break; 1888 1889 default: 1890 err = -ENOPROTOOPT; 1891 break; 1892 } 1893 1894 done: 1895 release_sock(sk); 1896 return err; 1897 } 1898 1899 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 1900 char __user *optval, int __user *optlen) 1901 { 1902 struct hci_ufilter uf; 1903 struct sock *sk = sock->sk; 1904 int len, opt, err = 0; 1905 1906 BT_DBG("sk %p, opt %d", sk, optname); 1907 1908 if (level != SOL_HCI) 1909 return -ENOPROTOOPT; 1910 1911 if (get_user(len, optlen)) 1912 return -EFAULT; 1913 1914 lock_sock(sk); 1915 1916 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1917 err = -EBADFD; 1918 goto done; 1919 } 1920 1921 switch (optname) { 1922 case HCI_DATA_DIR: 1923 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1924 opt = 1; 1925 else 1926 opt = 0; 1927 1928 if (put_user(opt, optval)) 1929 err = -EFAULT; 1930 break; 1931 1932 case HCI_TIME_STAMP: 1933 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1934 opt = 1; 1935 else 1936 opt = 0; 1937 1938 if (put_user(opt, optval)) 1939 err = -EFAULT; 1940 break; 1941 1942 case HCI_FILTER: 1943 { 1944 struct hci_filter *f = &hci_pi(sk)->filter; 1945 1946 memset(&uf, 0, sizeof(uf)); 1947 uf.type_mask = f->type_mask; 1948 uf.opcode = f->opcode; 1949 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1950 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1951 } 1952 1953 len = min_t(unsigned int, len, sizeof(uf)); 1954 if (copy_to_user(optval, &uf, len)) 1955 err = -EFAULT; 1956 break; 1957 1958 default: 1959 err = -ENOPROTOOPT; 1960 break; 1961 } 1962 1963 done: 1964 release_sock(sk); 1965 return err; 1966 } 1967 1968 static const struct proto_ops hci_sock_ops = { 1969 .family = PF_BLUETOOTH, 1970 .owner = THIS_MODULE, 1971 .release = hci_sock_release, 1972 .bind = hci_sock_bind, 1973 .getname = hci_sock_getname, 1974 .sendmsg = hci_sock_sendmsg, 1975 .recvmsg = hci_sock_recvmsg, 1976 .ioctl = hci_sock_ioctl, 1977 .poll = datagram_poll, 1978 .listen = sock_no_listen, 1979 .shutdown = sock_no_shutdown, 1980 .setsockopt = hci_sock_setsockopt, 1981 .getsockopt = hci_sock_getsockopt, 1982 .connect = sock_no_connect, 1983 .socketpair = sock_no_socketpair, 1984 .accept = sock_no_accept, 1985 .mmap = sock_no_mmap 1986 }; 1987 1988 static struct proto hci_sk_proto = { 1989 .name = "HCI", 1990 .owner = THIS_MODULE, 1991 .obj_size = sizeof(struct hci_pinfo) 1992 }; 1993 1994 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 1995 int kern) 1996 { 1997 struct sock *sk; 1998 1999 BT_DBG("sock %p", sock); 2000 2001 if (sock->type != SOCK_RAW) 2002 return -ESOCKTNOSUPPORT; 2003 2004 sock->ops = &hci_sock_ops; 2005 2006 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2007 if (!sk) 2008 return -ENOMEM; 2009 2010 sock_init_data(sock, sk); 2011 2012 sock_reset_flag(sk, SOCK_ZAPPED); 2013 2014 sk->sk_protocol = protocol; 2015 2016 sock->state = SS_UNCONNECTED; 2017 sk->sk_state = BT_OPEN; 2018 2019 bt_sock_link(&hci_sk_list, sk); 2020 return 0; 2021 } 2022 2023 static const struct net_proto_family hci_sock_family_ops = { 2024 .family = PF_BLUETOOTH, 2025 .owner = THIS_MODULE, 2026 .create = hci_sock_create, 2027 }; 2028 2029 int __init hci_sock_init(void) 2030 { 2031 int err; 2032 2033 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2034 2035 err = proto_register(&hci_sk_proto, 0); 2036 if (err < 0) 2037 return err; 2038 2039 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2040 if (err < 0) { 2041 BT_ERR("HCI socket registration failed"); 2042 goto error; 2043 } 2044 2045 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2046 if (err < 0) { 2047 BT_ERR("Failed to create HCI proc file"); 2048 bt_sock_unregister(BTPROTO_HCI); 2049 goto error; 2050 } 2051 2052 BT_INFO("HCI socket layer initialized"); 2053 2054 return 0; 2055 2056 error: 2057 proto_unregister(&hci_sk_proto); 2058 return err; 2059 } 2060 2061 void hci_sock_cleanup(void) 2062 { 2063 bt_procfs_cleanup(&init_net, "hci"); 2064 bt_sock_unregister(BTPROTO_HCI); 2065 proto_unregister(&hci_sk_proto); 2066 } 2067