1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 #include <linux/compat.h> 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u8 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 __u16 mtu; 61 }; 62 63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk) 64 { 65 struct hci_dev *hdev = hci_pi(sk)->hdev; 66 67 if (!hdev) 68 return ERR_PTR(-EBADFD); 69 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 70 return ERR_PTR(-EPIPE); 71 return hdev; 72 } 73 74 void hci_sock_set_flag(struct sock *sk, int nr) 75 { 76 set_bit(nr, &hci_pi(sk)->flags); 77 } 78 79 void hci_sock_clear_flag(struct sock *sk, int nr) 80 { 81 clear_bit(nr, &hci_pi(sk)->flags); 82 } 83 84 int hci_sock_test_flag(struct sock *sk, int nr) 85 { 86 return test_bit(nr, &hci_pi(sk)->flags); 87 } 88 89 unsigned short hci_sock_get_channel(struct sock *sk) 90 { 91 return hci_pi(sk)->channel; 92 } 93 94 u32 hci_sock_get_cookie(struct sock *sk) 95 { 96 return hci_pi(sk)->cookie; 97 } 98 99 static bool hci_sock_gen_cookie(struct sock *sk) 100 { 101 int id = hci_pi(sk)->cookie; 102 103 if (!id) { 104 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 105 if (id < 0) 106 id = 0xffffffff; 107 108 hci_pi(sk)->cookie = id; 109 get_task_comm(hci_pi(sk)->comm, current); 110 return true; 111 } 112 113 return false; 114 } 115 116 static void hci_sock_free_cookie(struct sock *sk) 117 { 118 int id = hci_pi(sk)->cookie; 119 120 if (id) { 121 hci_pi(sk)->cookie = 0xffffffff; 122 ida_simple_remove(&sock_cookie_ida, id); 123 } 124 } 125 126 static inline int hci_test_bit(int nr, const void *addr) 127 { 128 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 129 } 130 131 /* Security filter */ 132 #define HCI_SFLT_MAX_OGF 5 133 134 struct hci_sec_filter { 135 __u32 type_mask; 136 __u32 event_mask[2]; 137 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 138 }; 139 140 static const struct hci_sec_filter hci_sec_filter = { 141 /* Packet types */ 142 0x10, 143 /* Events */ 144 { 0x1000d9fe, 0x0000b00c }, 145 /* Commands */ 146 { 147 { 0x0 }, 148 /* OGF_LINK_CTL */ 149 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 150 /* OGF_LINK_POLICY */ 151 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 152 /* OGF_HOST_CTL */ 153 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 154 /* OGF_INFO_PARAM */ 155 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 156 /* OGF_STATUS_PARAM */ 157 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 158 } 159 }; 160 161 static struct bt_sock_list hci_sk_list = { 162 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 163 }; 164 165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 166 { 167 struct hci_filter *flt; 168 int flt_type, flt_event; 169 170 /* Apply filter */ 171 flt = &hci_pi(sk)->filter; 172 173 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 174 175 if (!test_bit(flt_type, &flt->type_mask)) 176 return true; 177 178 /* Extra filter for event packets only */ 179 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 180 return false; 181 182 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 183 184 if (!hci_test_bit(flt_event, &flt->event_mask)) 185 return true; 186 187 /* Check filter only when opcode is set */ 188 if (!flt->opcode) 189 return false; 190 191 if (flt_event == HCI_EV_CMD_COMPLETE && 192 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 193 return true; 194 195 if (flt_event == HCI_EV_CMD_STATUS && 196 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 197 return true; 198 199 return false; 200 } 201 202 /* Send frame to RAW socket */ 203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 204 { 205 struct sock *sk; 206 struct sk_buff *skb_copy = NULL; 207 208 BT_DBG("hdev %p len %d", hdev, skb->len); 209 210 read_lock(&hci_sk_list.lock); 211 212 sk_for_each(sk, &hci_sk_list.head) { 213 struct sk_buff *nskb; 214 215 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 216 continue; 217 218 /* Don't send frame to the socket it came from */ 219 if (skb->sk == sk) 220 continue; 221 222 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 223 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 224 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 225 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 226 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 227 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 228 continue; 229 if (is_filtered_packet(sk, skb)) 230 continue; 231 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 232 if (!bt_cb(skb)->incoming) 233 continue; 234 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 235 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 236 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 237 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 238 continue; 239 } else { 240 /* Don't send frame to other channel types */ 241 continue; 242 } 243 244 if (!skb_copy) { 245 /* Create a private copy with headroom */ 246 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 247 if (!skb_copy) 248 continue; 249 250 /* Put type byte before the data */ 251 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 252 } 253 254 nskb = skb_clone(skb_copy, GFP_ATOMIC); 255 if (!nskb) 256 continue; 257 258 if (sock_queue_rcv_skb(sk, nskb)) 259 kfree_skb(nskb); 260 } 261 262 read_unlock(&hci_sk_list.lock); 263 264 kfree_skb(skb_copy); 265 } 266 267 /* Send frame to sockets with specific channel */ 268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 269 int flag, struct sock *skip_sk) 270 { 271 struct sock *sk; 272 273 BT_DBG("channel %u len %d", channel, skb->len); 274 275 sk_for_each(sk, &hci_sk_list.head) { 276 struct sk_buff *nskb; 277 278 /* Ignore socket without the flag set */ 279 if (!hci_sock_test_flag(sk, flag)) 280 continue; 281 282 /* Skip the original socket */ 283 if (sk == skip_sk) 284 continue; 285 286 if (sk->sk_state != BT_BOUND) 287 continue; 288 289 if (hci_pi(sk)->channel != channel) 290 continue; 291 292 nskb = skb_clone(skb, GFP_ATOMIC); 293 if (!nskb) 294 continue; 295 296 if (sock_queue_rcv_skb(sk, nskb)) 297 kfree_skb(nskb); 298 } 299 300 } 301 302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 303 int flag, struct sock *skip_sk) 304 { 305 read_lock(&hci_sk_list.lock); 306 __hci_send_to_channel(channel, skb, flag, skip_sk); 307 read_unlock(&hci_sk_list.lock); 308 } 309 310 /* Send frame to monitor socket */ 311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 312 { 313 struct sk_buff *skb_copy = NULL; 314 struct hci_mon_hdr *hdr; 315 __le16 opcode; 316 317 if (!atomic_read(&monitor_promisc)) 318 return; 319 320 BT_DBG("hdev %p len %d", hdev, skb->len); 321 322 switch (hci_skb_pkt_type(skb)) { 323 case HCI_COMMAND_PKT: 324 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 325 break; 326 case HCI_EVENT_PKT: 327 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 328 break; 329 case HCI_ACLDATA_PKT: 330 if (bt_cb(skb)->incoming) 331 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 332 else 333 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 334 break; 335 case HCI_SCODATA_PKT: 336 if (bt_cb(skb)->incoming) 337 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 338 else 339 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 340 break; 341 case HCI_ISODATA_PKT: 342 if (bt_cb(skb)->incoming) 343 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT); 344 else 345 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT); 346 break; 347 case HCI_DIAG_PKT: 348 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 349 break; 350 default: 351 return; 352 } 353 354 /* Create a private copy with headroom */ 355 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 356 if (!skb_copy) 357 return; 358 359 /* Put header before the data */ 360 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 361 hdr->opcode = opcode; 362 hdr->index = cpu_to_le16(hdev->id); 363 hdr->len = cpu_to_le16(skb->len); 364 365 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 366 HCI_SOCK_TRUSTED, NULL); 367 kfree_skb(skb_copy); 368 } 369 370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 371 void *data, u16 data_len, ktime_t tstamp, 372 int flag, struct sock *skip_sk) 373 { 374 struct sock *sk; 375 __le16 index; 376 377 if (hdev) 378 index = cpu_to_le16(hdev->id); 379 else 380 index = cpu_to_le16(MGMT_INDEX_NONE); 381 382 read_lock(&hci_sk_list.lock); 383 384 sk_for_each(sk, &hci_sk_list.head) { 385 struct hci_mon_hdr *hdr; 386 struct sk_buff *skb; 387 388 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 389 continue; 390 391 /* Ignore socket without the flag set */ 392 if (!hci_sock_test_flag(sk, flag)) 393 continue; 394 395 /* Skip the original socket */ 396 if (sk == skip_sk) 397 continue; 398 399 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 400 if (!skb) 401 continue; 402 403 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 404 put_unaligned_le16(event, skb_put(skb, 2)); 405 406 if (data) 407 skb_put_data(skb, data, data_len); 408 409 skb->tstamp = tstamp; 410 411 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 412 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 413 hdr->index = index; 414 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 415 416 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 417 HCI_SOCK_TRUSTED, NULL); 418 kfree_skb(skb); 419 } 420 421 read_unlock(&hci_sk_list.lock); 422 } 423 424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 425 { 426 struct hci_mon_hdr *hdr; 427 struct hci_mon_new_index *ni; 428 struct hci_mon_index_info *ii; 429 struct sk_buff *skb; 430 __le16 opcode; 431 432 switch (event) { 433 case HCI_DEV_REG: 434 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 435 if (!skb) 436 return NULL; 437 438 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 439 ni->type = hdev->dev_type; 440 ni->bus = hdev->bus; 441 bacpy(&ni->bdaddr, &hdev->bdaddr); 442 memcpy(ni->name, hdev->name, 8); 443 444 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 445 break; 446 447 case HCI_DEV_UNREG: 448 skb = bt_skb_alloc(0, GFP_ATOMIC); 449 if (!skb) 450 return NULL; 451 452 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 453 break; 454 455 case HCI_DEV_SETUP: 456 if (hdev->manufacturer == 0xffff) 457 return NULL; 458 fallthrough; 459 460 case HCI_DEV_UP: 461 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 462 if (!skb) 463 return NULL; 464 465 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 466 bacpy(&ii->bdaddr, &hdev->bdaddr); 467 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 468 469 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 470 break; 471 472 case HCI_DEV_OPEN: 473 skb = bt_skb_alloc(0, GFP_ATOMIC); 474 if (!skb) 475 return NULL; 476 477 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 478 break; 479 480 case HCI_DEV_CLOSE: 481 skb = bt_skb_alloc(0, GFP_ATOMIC); 482 if (!skb) 483 return NULL; 484 485 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 486 break; 487 488 default: 489 return NULL; 490 } 491 492 __net_timestamp(skb); 493 494 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 495 hdr->opcode = opcode; 496 hdr->index = cpu_to_le16(hdev->id); 497 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 498 499 return skb; 500 } 501 502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 503 { 504 struct hci_mon_hdr *hdr; 505 struct sk_buff *skb; 506 u16 format; 507 u8 ver[3]; 508 u32 flags; 509 510 /* No message needed when cookie is not present */ 511 if (!hci_pi(sk)->cookie) 512 return NULL; 513 514 switch (hci_pi(sk)->channel) { 515 case HCI_CHANNEL_RAW: 516 format = 0x0000; 517 ver[0] = BT_SUBSYS_VERSION; 518 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 519 break; 520 case HCI_CHANNEL_USER: 521 format = 0x0001; 522 ver[0] = BT_SUBSYS_VERSION; 523 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 524 break; 525 case HCI_CHANNEL_CONTROL: 526 format = 0x0002; 527 mgmt_fill_version_info(ver); 528 break; 529 default: 530 /* No message for unsupported format */ 531 return NULL; 532 } 533 534 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 535 if (!skb) 536 return NULL; 537 538 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 539 540 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 541 put_unaligned_le16(format, skb_put(skb, 2)); 542 skb_put_data(skb, ver, sizeof(ver)); 543 put_unaligned_le32(flags, skb_put(skb, 4)); 544 skb_put_u8(skb, TASK_COMM_LEN); 545 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 546 547 __net_timestamp(skb); 548 549 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 550 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 551 if (hci_pi(sk)->hdev) 552 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 553 else 554 hdr->index = cpu_to_le16(HCI_DEV_NONE); 555 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 556 557 return skb; 558 } 559 560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 561 { 562 struct hci_mon_hdr *hdr; 563 struct sk_buff *skb; 564 565 /* No message needed when cookie is not present */ 566 if (!hci_pi(sk)->cookie) 567 return NULL; 568 569 switch (hci_pi(sk)->channel) { 570 case HCI_CHANNEL_RAW: 571 case HCI_CHANNEL_USER: 572 case HCI_CHANNEL_CONTROL: 573 break; 574 default: 575 /* No message for unsupported format */ 576 return NULL; 577 } 578 579 skb = bt_skb_alloc(4, GFP_ATOMIC); 580 if (!skb) 581 return NULL; 582 583 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 584 585 __net_timestamp(skb); 586 587 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 588 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 589 if (hci_pi(sk)->hdev) 590 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 591 else 592 hdr->index = cpu_to_le16(HCI_DEV_NONE); 593 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 594 595 return skb; 596 } 597 598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 599 u16 opcode, u16 len, 600 const void *buf) 601 { 602 struct hci_mon_hdr *hdr; 603 struct sk_buff *skb; 604 605 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 606 if (!skb) 607 return NULL; 608 609 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 610 put_unaligned_le16(opcode, skb_put(skb, 2)); 611 612 if (buf) 613 skb_put_data(skb, buf, len); 614 615 __net_timestamp(skb); 616 617 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 618 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 619 hdr->index = cpu_to_le16(index); 620 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 621 622 return skb; 623 } 624 625 static void __printf(2, 3) 626 send_monitor_note(struct sock *sk, const char *fmt, ...) 627 { 628 size_t len; 629 struct hci_mon_hdr *hdr; 630 struct sk_buff *skb; 631 va_list args; 632 633 va_start(args, fmt); 634 len = vsnprintf(NULL, 0, fmt, args); 635 va_end(args); 636 637 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 638 if (!skb) 639 return; 640 641 va_start(args, fmt); 642 vsprintf(skb_put(skb, len), fmt, args); 643 *(u8 *)skb_put(skb, 1) = 0; 644 va_end(args); 645 646 __net_timestamp(skb); 647 648 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 649 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 650 hdr->index = cpu_to_le16(HCI_DEV_NONE); 651 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 652 653 if (sock_queue_rcv_skb(sk, skb)) 654 kfree_skb(skb); 655 } 656 657 static void send_monitor_replay(struct sock *sk) 658 { 659 struct hci_dev *hdev; 660 661 read_lock(&hci_dev_list_lock); 662 663 list_for_each_entry(hdev, &hci_dev_list, list) { 664 struct sk_buff *skb; 665 666 skb = create_monitor_event(hdev, HCI_DEV_REG); 667 if (!skb) 668 continue; 669 670 if (sock_queue_rcv_skb(sk, skb)) 671 kfree_skb(skb); 672 673 if (!test_bit(HCI_RUNNING, &hdev->flags)) 674 continue; 675 676 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 677 if (!skb) 678 continue; 679 680 if (sock_queue_rcv_skb(sk, skb)) 681 kfree_skb(skb); 682 683 if (test_bit(HCI_UP, &hdev->flags)) 684 skb = create_monitor_event(hdev, HCI_DEV_UP); 685 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 686 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 687 else 688 skb = NULL; 689 690 if (skb) { 691 if (sock_queue_rcv_skb(sk, skb)) 692 kfree_skb(skb); 693 } 694 } 695 696 read_unlock(&hci_dev_list_lock); 697 } 698 699 static void send_monitor_control_replay(struct sock *mon_sk) 700 { 701 struct sock *sk; 702 703 read_lock(&hci_sk_list.lock); 704 705 sk_for_each(sk, &hci_sk_list.head) { 706 struct sk_buff *skb; 707 708 skb = create_monitor_ctrl_open(sk); 709 if (!skb) 710 continue; 711 712 if (sock_queue_rcv_skb(mon_sk, skb)) 713 kfree_skb(skb); 714 } 715 716 read_unlock(&hci_sk_list.lock); 717 } 718 719 /* Generate internal stack event */ 720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 721 { 722 struct hci_event_hdr *hdr; 723 struct hci_ev_stack_internal *ev; 724 struct sk_buff *skb; 725 726 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 727 if (!skb) 728 return; 729 730 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 731 hdr->evt = HCI_EV_STACK_INTERNAL; 732 hdr->plen = sizeof(*ev) + dlen; 733 734 ev = skb_put(skb, sizeof(*ev) + dlen); 735 ev->type = type; 736 memcpy(ev->data, data, dlen); 737 738 bt_cb(skb)->incoming = 1; 739 __net_timestamp(skb); 740 741 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 742 hci_send_to_sock(hdev, skb); 743 kfree_skb(skb); 744 } 745 746 void hci_sock_dev_event(struct hci_dev *hdev, int event) 747 { 748 BT_DBG("hdev %s event %d", hdev->name, event); 749 750 if (atomic_read(&monitor_promisc)) { 751 struct sk_buff *skb; 752 753 /* Send event to monitor */ 754 skb = create_monitor_event(hdev, event); 755 if (skb) { 756 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 757 HCI_SOCK_TRUSTED, NULL); 758 kfree_skb(skb); 759 } 760 } 761 762 if (event <= HCI_DEV_DOWN) { 763 struct hci_ev_si_device ev; 764 765 /* Send event to sockets */ 766 ev.event = event; 767 ev.dev_id = hdev->id; 768 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 769 } 770 771 if (event == HCI_DEV_UNREG) { 772 struct sock *sk; 773 774 /* Wake up sockets using this dead device */ 775 read_lock(&hci_sk_list.lock); 776 sk_for_each(sk, &hci_sk_list.head) { 777 if (hci_pi(sk)->hdev == hdev) { 778 sk->sk_err = EPIPE; 779 sk->sk_state_change(sk); 780 } 781 } 782 read_unlock(&hci_sk_list.lock); 783 } 784 } 785 786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 787 { 788 struct hci_mgmt_chan *c; 789 790 list_for_each_entry(c, &mgmt_chan_list, list) { 791 if (c->channel == channel) 792 return c; 793 } 794 795 return NULL; 796 } 797 798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 799 { 800 struct hci_mgmt_chan *c; 801 802 mutex_lock(&mgmt_chan_list_lock); 803 c = __hci_mgmt_chan_find(channel); 804 mutex_unlock(&mgmt_chan_list_lock); 805 806 return c; 807 } 808 809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 810 { 811 if (c->channel < HCI_CHANNEL_CONTROL) 812 return -EINVAL; 813 814 mutex_lock(&mgmt_chan_list_lock); 815 if (__hci_mgmt_chan_find(c->channel)) { 816 mutex_unlock(&mgmt_chan_list_lock); 817 return -EALREADY; 818 } 819 820 list_add_tail(&c->list, &mgmt_chan_list); 821 822 mutex_unlock(&mgmt_chan_list_lock); 823 824 return 0; 825 } 826 EXPORT_SYMBOL(hci_mgmt_chan_register); 827 828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 829 { 830 mutex_lock(&mgmt_chan_list_lock); 831 list_del(&c->list); 832 mutex_unlock(&mgmt_chan_list_lock); 833 } 834 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 835 836 static int hci_sock_release(struct socket *sock) 837 { 838 struct sock *sk = sock->sk; 839 struct hci_dev *hdev; 840 struct sk_buff *skb; 841 842 BT_DBG("sock %p sk %p", sock, sk); 843 844 if (!sk) 845 return 0; 846 847 lock_sock(sk); 848 849 switch (hci_pi(sk)->channel) { 850 case HCI_CHANNEL_MONITOR: 851 atomic_dec(&monitor_promisc); 852 break; 853 case HCI_CHANNEL_RAW: 854 case HCI_CHANNEL_USER: 855 case HCI_CHANNEL_CONTROL: 856 /* Send event to monitor */ 857 skb = create_monitor_ctrl_close(sk); 858 if (skb) { 859 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 860 HCI_SOCK_TRUSTED, NULL); 861 kfree_skb(skb); 862 } 863 864 hci_sock_free_cookie(sk); 865 break; 866 } 867 868 bt_sock_unlink(&hci_sk_list, sk); 869 870 hdev = hci_pi(sk)->hdev; 871 if (hdev) { 872 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 873 /* When releasing a user channel exclusive access, 874 * call hci_dev_do_close directly instead of calling 875 * hci_dev_close to ensure the exclusive access will 876 * be released and the controller brought back down. 877 * 878 * The checking of HCI_AUTO_OFF is not needed in this 879 * case since it will have been cleared already when 880 * opening the user channel. 881 */ 882 hci_dev_do_close(hdev); 883 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 884 mgmt_index_added(hdev); 885 } 886 887 atomic_dec(&hdev->promisc); 888 hci_dev_put(hdev); 889 } 890 891 sock_orphan(sk); 892 release_sock(sk); 893 sock_put(sk); 894 return 0; 895 } 896 897 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg) 898 { 899 bdaddr_t bdaddr; 900 int err; 901 902 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 903 return -EFAULT; 904 905 hci_dev_lock(hdev); 906 907 err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 908 909 hci_dev_unlock(hdev); 910 911 return err; 912 } 913 914 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg) 915 { 916 bdaddr_t bdaddr; 917 int err; 918 919 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 920 return -EFAULT; 921 922 hci_dev_lock(hdev); 923 924 err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 925 926 hci_dev_unlock(hdev); 927 928 return err; 929 } 930 931 /* Ioctls that require bound socket */ 932 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 933 unsigned long arg) 934 { 935 struct hci_dev *hdev = hci_hdev_from_sock(sk); 936 937 if (IS_ERR(hdev)) 938 return PTR_ERR(hdev); 939 940 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 941 return -EBUSY; 942 943 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 944 return -EOPNOTSUPP; 945 946 if (hdev->dev_type != HCI_PRIMARY) 947 return -EOPNOTSUPP; 948 949 switch (cmd) { 950 case HCISETRAW: 951 if (!capable(CAP_NET_ADMIN)) 952 return -EPERM; 953 return -EOPNOTSUPP; 954 955 case HCIGETCONNINFO: 956 return hci_get_conn_info(hdev, (void __user *)arg); 957 958 case HCIGETAUTHINFO: 959 return hci_get_auth_info(hdev, (void __user *)arg); 960 961 case HCIBLOCKADDR: 962 if (!capable(CAP_NET_ADMIN)) 963 return -EPERM; 964 return hci_sock_reject_list_add(hdev, (void __user *)arg); 965 966 case HCIUNBLOCKADDR: 967 if (!capable(CAP_NET_ADMIN)) 968 return -EPERM; 969 return hci_sock_reject_list_del(hdev, (void __user *)arg); 970 } 971 972 return -ENOIOCTLCMD; 973 } 974 975 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 976 unsigned long arg) 977 { 978 void __user *argp = (void __user *)arg; 979 struct sock *sk = sock->sk; 980 int err; 981 982 BT_DBG("cmd %x arg %lx", cmd, arg); 983 984 lock_sock(sk); 985 986 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 987 err = -EBADFD; 988 goto done; 989 } 990 991 /* When calling an ioctl on an unbound raw socket, then ensure 992 * that the monitor gets informed. Ensure that the resulting event 993 * is only send once by checking if the cookie exists or not. The 994 * socket cookie will be only ever generated once for the lifetime 995 * of a given socket. 996 */ 997 if (hci_sock_gen_cookie(sk)) { 998 struct sk_buff *skb; 999 1000 if (capable(CAP_NET_ADMIN)) 1001 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1002 1003 /* Send event to monitor */ 1004 skb = create_monitor_ctrl_open(sk); 1005 if (skb) { 1006 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1007 HCI_SOCK_TRUSTED, NULL); 1008 kfree_skb(skb); 1009 } 1010 } 1011 1012 release_sock(sk); 1013 1014 switch (cmd) { 1015 case HCIGETDEVLIST: 1016 return hci_get_dev_list(argp); 1017 1018 case HCIGETDEVINFO: 1019 return hci_get_dev_info(argp); 1020 1021 case HCIGETCONNLIST: 1022 return hci_get_conn_list(argp); 1023 1024 case HCIDEVUP: 1025 if (!capable(CAP_NET_ADMIN)) 1026 return -EPERM; 1027 return hci_dev_open(arg); 1028 1029 case HCIDEVDOWN: 1030 if (!capable(CAP_NET_ADMIN)) 1031 return -EPERM; 1032 return hci_dev_close(arg); 1033 1034 case HCIDEVRESET: 1035 if (!capable(CAP_NET_ADMIN)) 1036 return -EPERM; 1037 return hci_dev_reset(arg); 1038 1039 case HCIDEVRESTAT: 1040 if (!capable(CAP_NET_ADMIN)) 1041 return -EPERM; 1042 return hci_dev_reset_stat(arg); 1043 1044 case HCISETSCAN: 1045 case HCISETAUTH: 1046 case HCISETENCRYPT: 1047 case HCISETPTYPE: 1048 case HCISETLINKPOL: 1049 case HCISETLINKMODE: 1050 case HCISETACLMTU: 1051 case HCISETSCOMTU: 1052 if (!capable(CAP_NET_ADMIN)) 1053 return -EPERM; 1054 return hci_dev_cmd(cmd, argp); 1055 1056 case HCIINQUIRY: 1057 return hci_inquiry(argp); 1058 } 1059 1060 lock_sock(sk); 1061 1062 err = hci_sock_bound_ioctl(sk, cmd, arg); 1063 1064 done: 1065 release_sock(sk); 1066 return err; 1067 } 1068 1069 #ifdef CONFIG_COMPAT 1070 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd, 1071 unsigned long arg) 1072 { 1073 switch (cmd) { 1074 case HCIDEVUP: 1075 case HCIDEVDOWN: 1076 case HCIDEVRESET: 1077 case HCIDEVRESTAT: 1078 return hci_sock_ioctl(sock, cmd, arg); 1079 } 1080 1081 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 1082 } 1083 #endif 1084 1085 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1086 int addr_len) 1087 { 1088 struct sockaddr_hci haddr; 1089 struct sock *sk = sock->sk; 1090 struct hci_dev *hdev = NULL; 1091 struct sk_buff *skb; 1092 int len, err = 0; 1093 1094 BT_DBG("sock %p sk %p", sock, sk); 1095 1096 if (!addr) 1097 return -EINVAL; 1098 1099 memset(&haddr, 0, sizeof(haddr)); 1100 len = min_t(unsigned int, sizeof(haddr), addr_len); 1101 memcpy(&haddr, addr, len); 1102 1103 if (haddr.hci_family != AF_BLUETOOTH) 1104 return -EINVAL; 1105 1106 lock_sock(sk); 1107 1108 /* Allow detaching from dead device and attaching to alive device, if 1109 * the caller wants to re-bind (instead of close) this socket in 1110 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification. 1111 */ 1112 hdev = hci_pi(sk)->hdev; 1113 if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1114 hci_pi(sk)->hdev = NULL; 1115 sk->sk_state = BT_OPEN; 1116 hci_dev_put(hdev); 1117 } 1118 hdev = NULL; 1119 1120 if (sk->sk_state == BT_BOUND) { 1121 err = -EALREADY; 1122 goto done; 1123 } 1124 1125 switch (haddr.hci_channel) { 1126 case HCI_CHANNEL_RAW: 1127 if (hci_pi(sk)->hdev) { 1128 err = -EALREADY; 1129 goto done; 1130 } 1131 1132 if (haddr.hci_dev != HCI_DEV_NONE) { 1133 hdev = hci_dev_get(haddr.hci_dev); 1134 if (!hdev) { 1135 err = -ENODEV; 1136 goto done; 1137 } 1138 1139 atomic_inc(&hdev->promisc); 1140 } 1141 1142 hci_pi(sk)->channel = haddr.hci_channel; 1143 1144 if (!hci_sock_gen_cookie(sk)) { 1145 /* In the case when a cookie has already been assigned, 1146 * then there has been already an ioctl issued against 1147 * an unbound socket and with that triggered an open 1148 * notification. Send a close notification first to 1149 * allow the state transition to bounded. 1150 */ 1151 skb = create_monitor_ctrl_close(sk); 1152 if (skb) { 1153 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1154 HCI_SOCK_TRUSTED, NULL); 1155 kfree_skb(skb); 1156 } 1157 } 1158 1159 if (capable(CAP_NET_ADMIN)) 1160 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1161 1162 hci_pi(sk)->hdev = hdev; 1163 1164 /* Send event to monitor */ 1165 skb = create_monitor_ctrl_open(sk); 1166 if (skb) { 1167 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1168 HCI_SOCK_TRUSTED, NULL); 1169 kfree_skb(skb); 1170 } 1171 break; 1172 1173 case HCI_CHANNEL_USER: 1174 if (hci_pi(sk)->hdev) { 1175 err = -EALREADY; 1176 goto done; 1177 } 1178 1179 if (haddr.hci_dev == HCI_DEV_NONE) { 1180 err = -EINVAL; 1181 goto done; 1182 } 1183 1184 if (!capable(CAP_NET_ADMIN)) { 1185 err = -EPERM; 1186 goto done; 1187 } 1188 1189 hdev = hci_dev_get(haddr.hci_dev); 1190 if (!hdev) { 1191 err = -ENODEV; 1192 goto done; 1193 } 1194 1195 if (test_bit(HCI_INIT, &hdev->flags) || 1196 hci_dev_test_flag(hdev, HCI_SETUP) || 1197 hci_dev_test_flag(hdev, HCI_CONFIG) || 1198 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1199 test_bit(HCI_UP, &hdev->flags))) { 1200 err = -EBUSY; 1201 hci_dev_put(hdev); 1202 goto done; 1203 } 1204 1205 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1206 err = -EUSERS; 1207 hci_dev_put(hdev); 1208 goto done; 1209 } 1210 1211 mgmt_index_removed(hdev); 1212 1213 err = hci_dev_open(hdev->id); 1214 if (err) { 1215 if (err == -EALREADY) { 1216 /* In case the transport is already up and 1217 * running, clear the error here. 1218 * 1219 * This can happen when opening a user 1220 * channel and HCI_AUTO_OFF grace period 1221 * is still active. 1222 */ 1223 err = 0; 1224 } else { 1225 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1226 mgmt_index_added(hdev); 1227 hci_dev_put(hdev); 1228 goto done; 1229 } 1230 } 1231 1232 hci_pi(sk)->channel = haddr.hci_channel; 1233 1234 if (!hci_sock_gen_cookie(sk)) { 1235 /* In the case when a cookie has already been assigned, 1236 * this socket will transition from a raw socket into 1237 * a user channel socket. For a clean transition, send 1238 * the close notification first. 1239 */ 1240 skb = create_monitor_ctrl_close(sk); 1241 if (skb) { 1242 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1243 HCI_SOCK_TRUSTED, NULL); 1244 kfree_skb(skb); 1245 } 1246 } 1247 1248 /* The user channel is restricted to CAP_NET_ADMIN 1249 * capabilities and with that implicitly trusted. 1250 */ 1251 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1252 1253 hci_pi(sk)->hdev = hdev; 1254 1255 /* Send event to monitor */ 1256 skb = create_monitor_ctrl_open(sk); 1257 if (skb) { 1258 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1259 HCI_SOCK_TRUSTED, NULL); 1260 kfree_skb(skb); 1261 } 1262 1263 atomic_inc(&hdev->promisc); 1264 break; 1265 1266 case HCI_CHANNEL_MONITOR: 1267 if (haddr.hci_dev != HCI_DEV_NONE) { 1268 err = -EINVAL; 1269 goto done; 1270 } 1271 1272 if (!capable(CAP_NET_RAW)) { 1273 err = -EPERM; 1274 goto done; 1275 } 1276 1277 hci_pi(sk)->channel = haddr.hci_channel; 1278 1279 /* The monitor interface is restricted to CAP_NET_RAW 1280 * capabilities and with that implicitly trusted. 1281 */ 1282 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1283 1284 send_monitor_note(sk, "Linux version %s (%s)", 1285 init_utsname()->release, 1286 init_utsname()->machine); 1287 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1288 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1289 send_monitor_replay(sk); 1290 send_monitor_control_replay(sk); 1291 1292 atomic_inc(&monitor_promisc); 1293 break; 1294 1295 case HCI_CHANNEL_LOGGING: 1296 if (haddr.hci_dev != HCI_DEV_NONE) { 1297 err = -EINVAL; 1298 goto done; 1299 } 1300 1301 if (!capable(CAP_NET_ADMIN)) { 1302 err = -EPERM; 1303 goto done; 1304 } 1305 1306 hci_pi(sk)->channel = haddr.hci_channel; 1307 break; 1308 1309 default: 1310 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1311 err = -EINVAL; 1312 goto done; 1313 } 1314 1315 if (haddr.hci_dev != HCI_DEV_NONE) { 1316 err = -EINVAL; 1317 goto done; 1318 } 1319 1320 /* Users with CAP_NET_ADMIN capabilities are allowed 1321 * access to all management commands and events. For 1322 * untrusted users the interface is restricted and 1323 * also only untrusted events are sent. 1324 */ 1325 if (capable(CAP_NET_ADMIN)) 1326 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1327 1328 hci_pi(sk)->channel = haddr.hci_channel; 1329 1330 /* At the moment the index and unconfigured index events 1331 * are enabled unconditionally. Setting them on each 1332 * socket when binding keeps this functionality. They 1333 * however might be cleared later and then sending of these 1334 * events will be disabled, but that is then intentional. 1335 * 1336 * This also enables generic events that are safe to be 1337 * received by untrusted users. Example for such events 1338 * are changes to settings, class of device, name etc. 1339 */ 1340 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1341 if (!hci_sock_gen_cookie(sk)) { 1342 /* In the case when a cookie has already been 1343 * assigned, this socket will transition from 1344 * a raw socket into a control socket. To 1345 * allow for a clean transition, send the 1346 * close notification first. 1347 */ 1348 skb = create_monitor_ctrl_close(sk); 1349 if (skb) { 1350 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1351 HCI_SOCK_TRUSTED, NULL); 1352 kfree_skb(skb); 1353 } 1354 } 1355 1356 /* Send event to monitor */ 1357 skb = create_monitor_ctrl_open(sk); 1358 if (skb) { 1359 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1360 HCI_SOCK_TRUSTED, NULL); 1361 kfree_skb(skb); 1362 } 1363 1364 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1365 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1366 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1367 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1368 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1369 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1370 } 1371 break; 1372 } 1373 1374 /* Default MTU to HCI_MAX_FRAME_SIZE if not set */ 1375 if (!hci_pi(sk)->mtu) 1376 hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE; 1377 1378 sk->sk_state = BT_BOUND; 1379 1380 done: 1381 release_sock(sk); 1382 return err; 1383 } 1384 1385 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1386 int peer) 1387 { 1388 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1389 struct sock *sk = sock->sk; 1390 struct hci_dev *hdev; 1391 int err = 0; 1392 1393 BT_DBG("sock %p sk %p", sock, sk); 1394 1395 if (peer) 1396 return -EOPNOTSUPP; 1397 1398 lock_sock(sk); 1399 1400 hdev = hci_hdev_from_sock(sk); 1401 if (IS_ERR(hdev)) { 1402 err = PTR_ERR(hdev); 1403 goto done; 1404 } 1405 1406 haddr->hci_family = AF_BLUETOOTH; 1407 haddr->hci_dev = hdev->id; 1408 haddr->hci_channel= hci_pi(sk)->channel; 1409 err = sizeof(*haddr); 1410 1411 done: 1412 release_sock(sk); 1413 return err; 1414 } 1415 1416 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1417 struct sk_buff *skb) 1418 { 1419 __u8 mask = hci_pi(sk)->cmsg_mask; 1420 1421 if (mask & HCI_CMSG_DIR) { 1422 int incoming = bt_cb(skb)->incoming; 1423 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1424 &incoming); 1425 } 1426 1427 if (mask & HCI_CMSG_TSTAMP) { 1428 #ifdef CONFIG_COMPAT 1429 struct old_timeval32 ctv; 1430 #endif 1431 struct __kernel_old_timeval tv; 1432 void *data; 1433 int len; 1434 1435 skb_get_timestamp(skb, &tv); 1436 1437 data = &tv; 1438 len = sizeof(tv); 1439 #ifdef CONFIG_COMPAT 1440 if (!COMPAT_USE_64BIT_TIME && 1441 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1442 ctv.tv_sec = tv.tv_sec; 1443 ctv.tv_usec = tv.tv_usec; 1444 data = &ctv; 1445 len = sizeof(ctv); 1446 } 1447 #endif 1448 1449 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1450 } 1451 } 1452 1453 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1454 size_t len, int flags) 1455 { 1456 struct sock *sk = sock->sk; 1457 struct sk_buff *skb; 1458 int copied, err; 1459 unsigned int skblen; 1460 1461 BT_DBG("sock %p, sk %p", sock, sk); 1462 1463 if (flags & MSG_OOB) 1464 return -EOPNOTSUPP; 1465 1466 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1467 return -EOPNOTSUPP; 1468 1469 if (sk->sk_state == BT_CLOSED) 1470 return 0; 1471 1472 skb = skb_recv_datagram(sk, flags, &err); 1473 if (!skb) 1474 return err; 1475 1476 skblen = skb->len; 1477 copied = skb->len; 1478 if (len < copied) { 1479 msg->msg_flags |= MSG_TRUNC; 1480 copied = len; 1481 } 1482 1483 skb_reset_transport_header(skb); 1484 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1485 1486 switch (hci_pi(sk)->channel) { 1487 case HCI_CHANNEL_RAW: 1488 hci_sock_cmsg(sk, msg, skb); 1489 break; 1490 case HCI_CHANNEL_USER: 1491 case HCI_CHANNEL_MONITOR: 1492 sock_recv_timestamp(msg, sk, skb); 1493 break; 1494 default: 1495 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1496 sock_recv_timestamp(msg, sk, skb); 1497 break; 1498 } 1499 1500 skb_free_datagram(sk, skb); 1501 1502 if (flags & MSG_TRUNC) 1503 copied = skblen; 1504 1505 return err ? : copied; 1506 } 1507 1508 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1509 struct sk_buff *skb) 1510 { 1511 u8 *cp; 1512 struct mgmt_hdr *hdr; 1513 u16 opcode, index, len; 1514 struct hci_dev *hdev = NULL; 1515 const struct hci_mgmt_handler *handler; 1516 bool var_len, no_hdev; 1517 int err; 1518 1519 BT_DBG("got %d bytes", skb->len); 1520 1521 if (skb->len < sizeof(*hdr)) 1522 return -EINVAL; 1523 1524 hdr = (void *)skb->data; 1525 opcode = __le16_to_cpu(hdr->opcode); 1526 index = __le16_to_cpu(hdr->index); 1527 len = __le16_to_cpu(hdr->len); 1528 1529 if (len != skb->len - sizeof(*hdr)) { 1530 err = -EINVAL; 1531 goto done; 1532 } 1533 1534 if (chan->channel == HCI_CHANNEL_CONTROL) { 1535 struct sk_buff *cmd; 1536 1537 /* Send event to monitor */ 1538 cmd = create_monitor_ctrl_command(sk, index, opcode, len, 1539 skb->data + sizeof(*hdr)); 1540 if (cmd) { 1541 hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd, 1542 HCI_SOCK_TRUSTED, NULL); 1543 kfree_skb(cmd); 1544 } 1545 } 1546 1547 if (opcode >= chan->handler_count || 1548 chan->handlers[opcode].func == NULL) { 1549 BT_DBG("Unknown op %u", opcode); 1550 err = mgmt_cmd_status(sk, index, opcode, 1551 MGMT_STATUS_UNKNOWN_COMMAND); 1552 goto done; 1553 } 1554 1555 handler = &chan->handlers[opcode]; 1556 1557 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1558 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1559 err = mgmt_cmd_status(sk, index, opcode, 1560 MGMT_STATUS_PERMISSION_DENIED); 1561 goto done; 1562 } 1563 1564 if (index != MGMT_INDEX_NONE) { 1565 hdev = hci_dev_get(index); 1566 if (!hdev) { 1567 err = mgmt_cmd_status(sk, index, opcode, 1568 MGMT_STATUS_INVALID_INDEX); 1569 goto done; 1570 } 1571 1572 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1573 hci_dev_test_flag(hdev, HCI_CONFIG) || 1574 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1575 err = mgmt_cmd_status(sk, index, opcode, 1576 MGMT_STATUS_INVALID_INDEX); 1577 goto done; 1578 } 1579 1580 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1581 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1582 err = mgmt_cmd_status(sk, index, opcode, 1583 MGMT_STATUS_INVALID_INDEX); 1584 goto done; 1585 } 1586 } 1587 1588 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) { 1589 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1590 if (no_hdev != !hdev) { 1591 err = mgmt_cmd_status(sk, index, opcode, 1592 MGMT_STATUS_INVALID_INDEX); 1593 goto done; 1594 } 1595 } 1596 1597 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1598 if ((var_len && len < handler->data_len) || 1599 (!var_len && len != handler->data_len)) { 1600 err = mgmt_cmd_status(sk, index, opcode, 1601 MGMT_STATUS_INVALID_PARAMS); 1602 goto done; 1603 } 1604 1605 if (hdev && chan->hdev_init) 1606 chan->hdev_init(sk, hdev); 1607 1608 cp = skb->data + sizeof(*hdr); 1609 1610 err = handler->func(sk, hdev, cp, len); 1611 if (err < 0) 1612 goto done; 1613 1614 err = skb->len; 1615 1616 done: 1617 if (hdev) 1618 hci_dev_put(hdev); 1619 1620 return err; 1621 } 1622 1623 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb, 1624 unsigned int flags) 1625 { 1626 struct hci_mon_hdr *hdr; 1627 struct hci_dev *hdev; 1628 u16 index; 1629 int err; 1630 1631 /* The logging frame consists at minimum of the standard header, 1632 * the priority byte, the ident length byte and at least one string 1633 * terminator NUL byte. Anything shorter are invalid packets. 1634 */ 1635 if (skb->len < sizeof(*hdr) + 3) 1636 return -EINVAL; 1637 1638 hdr = (void *)skb->data; 1639 1640 if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr)) 1641 return -EINVAL; 1642 1643 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1644 __u8 priority = skb->data[sizeof(*hdr)]; 1645 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1646 1647 /* Only the priorities 0-7 are valid and with that any other 1648 * value results in an invalid packet. 1649 * 1650 * The priority byte is followed by an ident length byte and 1651 * the NUL terminated ident string. Check that the ident 1652 * length is not overflowing the packet and also that the 1653 * ident string itself is NUL terminated. In case the ident 1654 * length is zero, the length value actually doubles as NUL 1655 * terminator identifier. 1656 * 1657 * The message follows the ident string (if present) and 1658 * must be NUL terminated. Otherwise it is not a valid packet. 1659 */ 1660 if (priority > 7 || skb->data[skb->len - 1] != 0x00 || 1661 ident_len > skb->len - sizeof(*hdr) - 3 || 1662 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) 1663 return -EINVAL; 1664 } else { 1665 return -EINVAL; 1666 } 1667 1668 index = __le16_to_cpu(hdr->index); 1669 1670 if (index != MGMT_INDEX_NONE) { 1671 hdev = hci_dev_get(index); 1672 if (!hdev) 1673 return -ENODEV; 1674 } else { 1675 hdev = NULL; 1676 } 1677 1678 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1679 1680 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1681 err = skb->len; 1682 1683 if (hdev) 1684 hci_dev_put(hdev); 1685 1686 return err; 1687 } 1688 1689 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1690 size_t len) 1691 { 1692 struct sock *sk = sock->sk; 1693 struct hci_mgmt_chan *chan; 1694 struct hci_dev *hdev; 1695 struct sk_buff *skb; 1696 int err; 1697 const unsigned int flags = msg->msg_flags; 1698 1699 BT_DBG("sock %p sk %p", sock, sk); 1700 1701 if (flags & MSG_OOB) 1702 return -EOPNOTSUPP; 1703 1704 if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT)) 1705 return -EINVAL; 1706 1707 if (len < 4 || len > hci_pi(sk)->mtu) 1708 return -EINVAL; 1709 1710 skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0); 1711 if (IS_ERR(skb)) 1712 return PTR_ERR(skb); 1713 1714 lock_sock(sk); 1715 1716 switch (hci_pi(sk)->channel) { 1717 case HCI_CHANNEL_RAW: 1718 case HCI_CHANNEL_USER: 1719 break; 1720 case HCI_CHANNEL_MONITOR: 1721 err = -EOPNOTSUPP; 1722 goto drop; 1723 case HCI_CHANNEL_LOGGING: 1724 err = hci_logging_frame(sk, skb, flags); 1725 goto drop; 1726 default: 1727 mutex_lock(&mgmt_chan_list_lock); 1728 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1729 if (chan) 1730 err = hci_mgmt_cmd(chan, sk, skb); 1731 else 1732 err = -EINVAL; 1733 1734 mutex_unlock(&mgmt_chan_list_lock); 1735 goto drop; 1736 } 1737 1738 hdev = hci_hdev_from_sock(sk); 1739 if (IS_ERR(hdev)) { 1740 err = PTR_ERR(hdev); 1741 goto drop; 1742 } 1743 1744 if (!test_bit(HCI_UP, &hdev->flags)) { 1745 err = -ENETDOWN; 1746 goto drop; 1747 } 1748 1749 hci_skb_pkt_type(skb) = skb->data[0]; 1750 skb_pull(skb, 1); 1751 1752 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1753 /* No permission check is needed for user channel 1754 * since that gets enforced when binding the socket. 1755 * 1756 * However check that the packet type is valid. 1757 */ 1758 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1759 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1760 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1761 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1762 err = -EINVAL; 1763 goto drop; 1764 } 1765 1766 skb_queue_tail(&hdev->raw_q, skb); 1767 queue_work(hdev->workqueue, &hdev->tx_work); 1768 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1769 u16 opcode = get_unaligned_le16(skb->data); 1770 u16 ogf = hci_opcode_ogf(opcode); 1771 u16 ocf = hci_opcode_ocf(opcode); 1772 1773 if (((ogf > HCI_SFLT_MAX_OGF) || 1774 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1775 &hci_sec_filter.ocf_mask[ogf])) && 1776 !capable(CAP_NET_RAW)) { 1777 err = -EPERM; 1778 goto drop; 1779 } 1780 1781 /* Since the opcode has already been extracted here, store 1782 * a copy of the value for later use by the drivers. 1783 */ 1784 hci_skb_opcode(skb) = opcode; 1785 1786 if (ogf == 0x3f) { 1787 skb_queue_tail(&hdev->raw_q, skb); 1788 queue_work(hdev->workqueue, &hdev->tx_work); 1789 } else { 1790 /* Stand-alone HCI commands must be flagged as 1791 * single-command requests. 1792 */ 1793 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1794 1795 skb_queue_tail(&hdev->cmd_q, skb); 1796 queue_work(hdev->workqueue, &hdev->cmd_work); 1797 } 1798 } else { 1799 if (!capable(CAP_NET_RAW)) { 1800 err = -EPERM; 1801 goto drop; 1802 } 1803 1804 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1805 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1806 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1807 err = -EINVAL; 1808 goto drop; 1809 } 1810 1811 skb_queue_tail(&hdev->raw_q, skb); 1812 queue_work(hdev->workqueue, &hdev->tx_work); 1813 } 1814 1815 err = len; 1816 1817 done: 1818 release_sock(sk); 1819 return err; 1820 1821 drop: 1822 kfree_skb(skb); 1823 goto done; 1824 } 1825 1826 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname, 1827 sockptr_t optval, unsigned int len) 1828 { 1829 struct hci_ufilter uf = { .opcode = 0 }; 1830 struct sock *sk = sock->sk; 1831 int err = 0, opt = 0; 1832 1833 BT_DBG("sk %p, opt %d", sk, optname); 1834 1835 lock_sock(sk); 1836 1837 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1838 err = -EBADFD; 1839 goto done; 1840 } 1841 1842 switch (optname) { 1843 case HCI_DATA_DIR: 1844 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1845 err = -EFAULT; 1846 break; 1847 } 1848 1849 if (opt) 1850 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1851 else 1852 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1853 break; 1854 1855 case HCI_TIME_STAMP: 1856 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1857 err = -EFAULT; 1858 break; 1859 } 1860 1861 if (opt) 1862 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1863 else 1864 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1865 break; 1866 1867 case HCI_FILTER: 1868 { 1869 struct hci_filter *f = &hci_pi(sk)->filter; 1870 1871 uf.type_mask = f->type_mask; 1872 uf.opcode = f->opcode; 1873 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1874 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1875 } 1876 1877 len = min_t(unsigned int, len, sizeof(uf)); 1878 if (copy_from_sockptr(&uf, optval, len)) { 1879 err = -EFAULT; 1880 break; 1881 } 1882 1883 if (!capable(CAP_NET_RAW)) { 1884 uf.type_mask &= hci_sec_filter.type_mask; 1885 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1886 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1887 } 1888 1889 { 1890 struct hci_filter *f = &hci_pi(sk)->filter; 1891 1892 f->type_mask = uf.type_mask; 1893 f->opcode = uf.opcode; 1894 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1895 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1896 } 1897 break; 1898 1899 default: 1900 err = -ENOPROTOOPT; 1901 break; 1902 } 1903 1904 done: 1905 release_sock(sk); 1906 return err; 1907 } 1908 1909 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1910 sockptr_t optval, unsigned int len) 1911 { 1912 struct sock *sk = sock->sk; 1913 int err = 0; 1914 u16 opt; 1915 1916 BT_DBG("sk %p, opt %d", sk, optname); 1917 1918 if (level == SOL_HCI) 1919 return hci_sock_setsockopt_old(sock, level, optname, optval, 1920 len); 1921 1922 if (level != SOL_BLUETOOTH) 1923 return -ENOPROTOOPT; 1924 1925 lock_sock(sk); 1926 1927 switch (optname) { 1928 case BT_SNDMTU: 1929 case BT_RCVMTU: 1930 switch (hci_pi(sk)->channel) { 1931 /* Don't allow changing MTU for channels that are meant for HCI 1932 * traffic only. 1933 */ 1934 case HCI_CHANNEL_RAW: 1935 case HCI_CHANNEL_USER: 1936 err = -ENOPROTOOPT; 1937 goto done; 1938 } 1939 1940 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1941 err = -EFAULT; 1942 break; 1943 } 1944 1945 hci_pi(sk)->mtu = opt; 1946 break; 1947 1948 default: 1949 err = -ENOPROTOOPT; 1950 break; 1951 } 1952 1953 done: 1954 release_sock(sk); 1955 return err; 1956 } 1957 1958 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname, 1959 char __user *optval, int __user *optlen) 1960 { 1961 struct hci_ufilter uf; 1962 struct sock *sk = sock->sk; 1963 int len, opt, err = 0; 1964 1965 BT_DBG("sk %p, opt %d", sk, optname); 1966 1967 if (get_user(len, optlen)) 1968 return -EFAULT; 1969 1970 lock_sock(sk); 1971 1972 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1973 err = -EBADFD; 1974 goto done; 1975 } 1976 1977 switch (optname) { 1978 case HCI_DATA_DIR: 1979 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1980 opt = 1; 1981 else 1982 opt = 0; 1983 1984 if (put_user(opt, optval)) 1985 err = -EFAULT; 1986 break; 1987 1988 case HCI_TIME_STAMP: 1989 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1990 opt = 1; 1991 else 1992 opt = 0; 1993 1994 if (put_user(opt, optval)) 1995 err = -EFAULT; 1996 break; 1997 1998 case HCI_FILTER: 1999 { 2000 struct hci_filter *f = &hci_pi(sk)->filter; 2001 2002 memset(&uf, 0, sizeof(uf)); 2003 uf.type_mask = f->type_mask; 2004 uf.opcode = f->opcode; 2005 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 2006 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 2007 } 2008 2009 len = min_t(unsigned int, len, sizeof(uf)); 2010 if (copy_to_user(optval, &uf, len)) 2011 err = -EFAULT; 2012 break; 2013 2014 default: 2015 err = -ENOPROTOOPT; 2016 break; 2017 } 2018 2019 done: 2020 release_sock(sk); 2021 return err; 2022 } 2023 2024 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 2025 char __user *optval, int __user *optlen) 2026 { 2027 struct sock *sk = sock->sk; 2028 int err = 0; 2029 2030 BT_DBG("sk %p, opt %d", sk, optname); 2031 2032 if (level == SOL_HCI) 2033 return hci_sock_getsockopt_old(sock, level, optname, optval, 2034 optlen); 2035 2036 if (level != SOL_BLUETOOTH) 2037 return -ENOPROTOOPT; 2038 2039 lock_sock(sk); 2040 2041 switch (optname) { 2042 case BT_SNDMTU: 2043 case BT_RCVMTU: 2044 if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval)) 2045 err = -EFAULT; 2046 break; 2047 2048 default: 2049 err = -ENOPROTOOPT; 2050 break; 2051 } 2052 2053 release_sock(sk); 2054 return err; 2055 } 2056 2057 static void hci_sock_destruct(struct sock *sk) 2058 { 2059 skb_queue_purge(&sk->sk_receive_queue); 2060 skb_queue_purge(&sk->sk_write_queue); 2061 } 2062 2063 static const struct proto_ops hci_sock_ops = { 2064 .family = PF_BLUETOOTH, 2065 .owner = THIS_MODULE, 2066 .release = hci_sock_release, 2067 .bind = hci_sock_bind, 2068 .getname = hci_sock_getname, 2069 .sendmsg = hci_sock_sendmsg, 2070 .recvmsg = hci_sock_recvmsg, 2071 .ioctl = hci_sock_ioctl, 2072 #ifdef CONFIG_COMPAT 2073 .compat_ioctl = hci_sock_compat_ioctl, 2074 #endif 2075 .poll = datagram_poll, 2076 .listen = sock_no_listen, 2077 .shutdown = sock_no_shutdown, 2078 .setsockopt = hci_sock_setsockopt, 2079 .getsockopt = hci_sock_getsockopt, 2080 .connect = sock_no_connect, 2081 .socketpair = sock_no_socketpair, 2082 .accept = sock_no_accept, 2083 .mmap = sock_no_mmap 2084 }; 2085 2086 static struct proto hci_sk_proto = { 2087 .name = "HCI", 2088 .owner = THIS_MODULE, 2089 .obj_size = sizeof(struct hci_pinfo) 2090 }; 2091 2092 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 2093 int kern) 2094 { 2095 struct sock *sk; 2096 2097 BT_DBG("sock %p", sock); 2098 2099 if (sock->type != SOCK_RAW) 2100 return -ESOCKTNOSUPPORT; 2101 2102 sock->ops = &hci_sock_ops; 2103 2104 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2105 if (!sk) 2106 return -ENOMEM; 2107 2108 sock_init_data(sock, sk); 2109 2110 sock_reset_flag(sk, SOCK_ZAPPED); 2111 2112 sk->sk_protocol = protocol; 2113 2114 sock->state = SS_UNCONNECTED; 2115 sk->sk_state = BT_OPEN; 2116 sk->sk_destruct = hci_sock_destruct; 2117 2118 bt_sock_link(&hci_sk_list, sk); 2119 return 0; 2120 } 2121 2122 static const struct net_proto_family hci_sock_family_ops = { 2123 .family = PF_BLUETOOTH, 2124 .owner = THIS_MODULE, 2125 .create = hci_sock_create, 2126 }; 2127 2128 int __init hci_sock_init(void) 2129 { 2130 int err; 2131 2132 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2133 2134 err = proto_register(&hci_sk_proto, 0); 2135 if (err < 0) 2136 return err; 2137 2138 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2139 if (err < 0) { 2140 BT_ERR("HCI socket registration failed"); 2141 goto error; 2142 } 2143 2144 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2145 if (err < 0) { 2146 BT_ERR("Failed to create HCI proc file"); 2147 bt_sock_unregister(BTPROTO_HCI); 2148 goto error; 2149 } 2150 2151 BT_INFO("HCI socket layer initialized"); 2152 2153 return 0; 2154 2155 error: 2156 proto_unregister(&hci_sk_proto); 2157 return err; 2158 } 2159 2160 void hci_sock_cleanup(void) 2161 { 2162 bt_procfs_cleanup(&init_net, "hci"); 2163 bt_sock_unregister(BTPROTO_HCI); 2164 proto_unregister(&hci_sk_proto); 2165 } 2166